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Cancer is a severe threat to human health. Early detection isleraasthe
best way to increase the chance for survival. While the traditwarader detection
method, biopsy, is invasive, noninvasive optical diagnostic techniques are
revolutionizing the way that cancer is diagnosed. Reflectancerepampy is one of
these optical spectroscopy techniques showing promise as a diagoolstmr pre-
cancer detection. When a neoplasia occurs in tissue, morphologic andnbaathe
changes happen in the tissue, which in turn results in the changecal ppbiperties
and reflectance spectroscopy. Therefore, a pre-cancer can btedidtgextracting
optical properties from reflectance spectroscopy.

This dissertation described the construction of a fiberoptic bafledtaace
system and the development of a series of modeling studies. Téasaless aimed at
establishing an improved understanding of the optical properties of mucosal tissues by
analyzing reflectance signals at different wavelengths. Timaik# goal is to reveal
the potential of reflectance-based optical diagnosis of pre-cahberresearch is
detailed in Chapter 3 through Chapter 5. Although related with each etdr,
chapter was designed to become a journal paper ultimately. In Cl3amemulti-
wavelength, fiberoptic system was constructed, evaluated and impésmént

determine internal tissue optical properties at ultraviolet Avasitdle wavelengths. A



condensed Monte Carlo model was deployed to simulate light-tisgeradtion and
generate spatially distributed reflectance data. These data were uséd 4o inverse
neural network model to extract tissue optical properties frofactahce. Optical
properties of porcine mucosal and liver tissues were finallysared. In Chapter 4,
the condensed Monte Carlo method was extended so that it can reimdiyate
reflectance from a single illumination-detection fiber thus englihe calculation of
large data sets. The model was implemented to study spefietarece changes due
to breast cancer. The effect of adding an illumination-detectomn fo a linear array
fiber for optical property determination was also evaluated. In @hd&pt an
investigation of extracting the optical properties from two+layssues was
performed. The relationship between spatially-resolved reflectdistgbutions and
optical properties in two-layer tissue was investigated. dase all the
aforementioned studies, spatially resolved reflectance systepted with condensed
Monte Carlo and neural network models was found to be objective and apear t
sensitive and accurate in quantitatively assessing optical prajrenyge of mucosal

tissues.
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Chapter 1. INTRODUCTION

1.1Overview

Cancer is any of various malignant neoplasms characterized pyadliferation
of anaplastic cells that tend to invade surrounding tissue and rsetasta new body
sites. Most cancers begin with abnormal cell growing to fotmg called tumor until
the tumor is out of control and spread to other part of the body. The longer the tumor goes
unnoticed, the smaller the chance that the cancer can be tréatdivady. In the USA
and other developed countries, 25% of all deaths come from cancer. Thdambst
cancers for males include lung cancer, prostate cancer, colarantar, and pancreatic
cancer and those for females include lung cancer, breast cancer, cbtaects, ovarian
cancer, and pancreatic cancer.

Cancer is a preventable disease. Early detection of cancansglered the best
way to increase the chance for survival. For example, colorestaéd is reported by the
American Cancer Society to have a five-year survival ra®29s if detected and treated
at an early stage. The rate drops to 64% if the cancer spreaitiedire colon to the
lymph nodes. This number drops dramatically to 7% if the cancer headsfurther to
the liver or other organs. It is clear from these outcomes tHgitdediection is essential to
patient survival. Unfortunately, it is also reported that only 37%otdrectal cancer is
currently found at an early stadeThe five-year relative survival rate for cervical cancer
is 92.2% when it is detected at a localized stage. The survieatlraps to only 16.5%
when diagnosed with distant metastasis.

The visible inspection of a tissue such as skin has long been ussess e
tissue lesions of patients. This is probably the rudiment of modermabdtagnostics.

Since visible inspection depends on the evaluator’s skill and the evakibly different



observers can be inconsistent, quantitative instrumental methods assargdo offer a
more objective means of diagnosis. The traditional method for cdetection is by a
surgical procedure which is painful and it takes time for the wouredab However, a
new techniquejn vivo optical spectroscopy which use light to detect tissues without
moving them out of the body, is revolutionizing the way that canceragndsed by
facilitating the localization of biopsies or, eventually, elimingttheir need altogether.
This technique has great potential to provide rapid, accurate, miypsimadsive disease
detectiond. When light interacts with a tissue, it could be absorbed, sedttart of the
tissue, or emit fluorescence after absorbing excitation photonghedé interactions can
provide useful and critical information about chromospheres, physiolograidns and
structure of the tissue.

Many researchers are focusing on the research, development and
commercialization ofin vivo technologies which aid in the early detection and
localization of cancer and several companies have commercidtegdotvn products.

Xillix® Technologies Corp. ffttp://www.xillix.com) developed innovative fluorescence

endoscopy systems including Xillix LIFE-LuRg Xillix LIFE II ™, and Onco-LIFE"
which allow physicians to see very small, early stage caandr even subtle pre-

cancerous lesions especially in lung. MediSpechi#p:(/www.medispectra.comhas

commercialized its LUMA® Cervical Imaging System to evéue cervix as an aid in
the early detection of high-grade cervical cancer and its p@surThe LUMA® system
scans tissue with a combination of fluorescence spectroscopy and lighiteliffuse
reflectance spectroscopy to detect pre-cancerous cervical abmiesntdat have the
potential of becoming invasive cancer. TruScreen® by Polartechnics

(http://www.polartechnics.com.ais also designed to detect abnormalities of the cervix.

The WavSTAT™ optical biopsy system by SpectraScience

(http://www.spectrascience.cgnis used to detect colorectal cancer by collecting the

emitted fluorescent signals.



Most of these commercialized instruments mentioned work in thevioliea A
(UVA) and visible (VIS) regions where fluorescence informatiorthef tissue can be
used in diagnosis. Despite these commercialized instruments, thel guoperties |(,
andys) of tissues are minimally studied. Most research on detenamnat 1, andps has
been carried out in the spectral regions from 600 to 1300 nm and bhasdam low and
moderate absorption coefficientalues ®> because the absorption of water and
chromophores such as hemoglobin, melanin, and nucleic acids is low impdicisab
range. However, since spectral regions below 600nm are essentralvigo fiberoptic
diagnostics, especially for the fluorescence study, improved undergjasfdihep, and
Ms values of tissues is crucial for these clinical instruments to achieveuth@otential.

Spectroscopy signals from a tissue can be detected as an amaggpectrum
and the signals can be reflectance or fluorescence. While imegimgisualize lesions
directly, a spectrum can provide a quantitative understanding on optperpes of the
tissue by showing the spatial or temporal distribution of the radi&@wae instruments -
hyperspected imaging system - actually work as a hybrid formdauping a spectrum at

each pixel in the image.

1.2 Overall objective

More than 85% of all cancers originate in the epithelia of mudssaes lining
the internal surface of the human b&dyeflectance spectroscopy has been demonstrated
to be useful for providing biochemical and morphological information for mafly-

invasive detection of cancer in these mucosa tissues, including ééngsophagus™?,

13, 14

colon etc It has also been used for monitoring of tissue oxygenatiéhand

ﬁ5_30 31-35

analytes such as bilirubi and glucose Furthermore, reflectance-based
approaches are critical for providing fundamental optical properiy datbiological
tissues which can be used in disease diagnosis, disease tre#temetjcal models, or

to enable extraction of intrinsic signals for disease diagri8sfs These tasks can be



accomplished using imaging techniques or fiberoptic probes. Fiberoptd logsical
systems are essential fiorvivo tissue diagnosis since fiber probes can be easily coupled
with endoscope.

Although the literature contains a wealth of data on tissue ogtioglkerties in
the far visible (600-750 nm) and near-infrared range (750-1400 nm), tharéack of
information in the ultraviolet A (UVA) to short visible (VIS) ramgvhereu, andps’ may
be high. Furthermore, there is a lack of established experimenthlnamerical
approaches that are suitable for use in this spectral range. The data béatdeagairom
tissue samples that have been sectioned or frozen, which reduaeltheince to then
vivo condition.

The overall objective of my research is to improve quantitative utasheliag of
the relationship between reflectance spectroscopy and optical peepeftimucosal
tissues and to obtain optical property data of these tissues ffl@ctarece spectroscopy
with a fiberoptic reflectance system. The ultimate goal ofresgarch is to know optical

properties of all relevant human mucosal tissues undavo condition.

1.3 Organization of the dissertation
My research includes construction, evaluation, and implementation of a

fiberoptic-based reflectance spectroscopy system, light-tissue traarawdeling, neural
network model development, probe geometry investigation and single- andayet
tissue study. This dissertation is organized into the following chapters. CRaptarides
some background information relevant to the research described in shestaion,
including absorption and scattering, tissue optical properties, prinafpteflectance
spectroscopy for diagnosis of pre-cancer, tissue-simulating phantocthsy@a common
spectroscopic techniques for measuring tissue optical properties.eClaaghrough
Chapter 5 are arranged in such a way that each chapter willy fibecome an

independent journal paper (Chapter 3 has been publft8i@fthpter 4 is ready to submit



and chapter 5 is in preparation. These chapters are detailed awimgll paragraphs)
Chapter 6 summarizes the whole research and recommends seeetadrdirfor future
study.

In Chapter 3, | provide theoretical and experimental evidence of pladitty of
my multi-wavelength fiberoptic reflectance system to yietduasate optical property
measurements within the UVA-VIS wavelength range. The systas constructed,
evaluated and implemented to determine internal tissue optical pespdrverse
modeling was performed with a neural network algorithm to estinafsorption
coefficients (1) and reduced scattering coefficien{s’)( based on spatially-resolved
reflectance distributions. The inverse models were calibratdd svtulated reflectance
datasets generated using a condensed Monte Carlo approagh wugitho 85 crit andpiy
up to 118 crit, which covers most of the optical properties of mammalian tissitles
the UVA-VIS wavelength range. After theoretical and experinhealuations of the
system, optical properties of porcine bladder, colon, esophagus, oral macddajer
were measured at 325, 375, 405, 445 and 532 nm. These data provide evidence that as
wavelengths decrease into the UVA, the dominant tissue chromophore fsbift
hemoglobin to structural proteins such as collagen. This system wavidgh level of
accuracy over a wide range of optical properties, and should be aftyiaideful forin
situ characterization of highly attenuating biological tissues in the UVA-VIS.

Based on the study of condensed Monte Carlo model in Chapter 3, | ektende
the model so that it could facilitate computation of large ¢fetsflectance data for single
illumination-detection fiber (a fiber that both illuminates and cletiee signal) probes in
biological tissues in Chapter 4. The model was validated agasists from a standard
Monte Carlo model and implemented to perform four tasks involving lamgebers of
individual simulations. First, by performing simulations at a widegeaof optical
property combinations, | was able to characterize the effectbef tiameter on the

relationship between reflectance and tissue optical propertiesnd@gc| simulated

5



reflectance over a range of wavelengths from 400 to 500 nm based aptite
properties of malignant and adipose breast tissues to elucidatettteof fiber diameter
on reflectance spectra. The third task involved evaluating the effeeidding an
illumination-detection fiber to a linear array fiber probe for optical ptymketermination.
The implications of this approach for optimization of probe geomearnesdiscussed.
Finally, | developed a scaling equation to calculate the maximumatyadion depth of a
photon. Influence of optical properties, detection distance from theiniétion point,
and size of an illumination-detection fiber on detection depth werkest My results
show that this approach represents a powerful technique for rapicasonubf light-
tissue interactions when combined with existing methods for condensedingoalth
separated fiber geometries.

While Chapter 3 and Chapter 4 were focused on single-layer tissuéyo-
layer tissue situation was investigated in Chapter 5. In ordémcmlate light propagation
mechanisms involved in optical spectroscopy devices, the optical prepeftiayered
mucosal tissues at UVA and VIS wavelengths are needed. Preappueaches to
measuring these data have typically been based on spatially-cesaflectance.
However, these approaches have limitations, some of which are noundaistood.
Therefore, the objectives of Chapter 5 were (1) to elucidate thgorship between
spatially-resolved reflectance distributions and optical propeitiesvo-layer tissue
models and (2) to introduce and assess an unconstrained approach to apiedl/ pr
measurement. The first part of this study involved calculatingatehce from two-layer
tissues for a wide variety of optical property combinatiqns (1-22.5 cnit, ps= 5-42.5
cm?) using a Monte Carlo scaling technique. In the second part, a meivedrk
inverse model trained with the aforementioned results was evalusieg simulated
reflectance data. The relationship between optical properties #adtaece provides
fundamental insights into the strengths, weaknesses and potentiafiding of strategies

for optical property measurement based on spatially-resolvedtasitec The neural

6



network approach estimated optical property values with a degreecofaay that
depended on the probe geometry (5-, 6-, 10- and 11-fiber probes weratsdnulhe
average error ip, determination ranged from 15 to 51% and average errqu;faanged
from 8 to 32%. While computationally expensive to develop, neural networklsnode
calibrated with simulation data may prove to be a highly effecmeroach for rapid,

unconstrained estimation of the optical properties of two-layer tissues.



Chapter 2. BACKGROUND

This chapter provided some background information relevant to the research
described in this dissertation, including interaction of light wislsue, significance of
study of tissue optical properties, tissue-simulating phantoms, andcomomon

spectroscopy techniques for measuring tissue optical properties.
2.1Interaction of light with tissue

2.1.1 Absorption and scattering — the basic

An atom can have many states which are defined by the arrangement of electrons
in atomic orbits and these states have different energy laWlen an atom interacts
with an incoming photon, the photon can be either absorbed or scattered depeariting
energy E=hv). If the photon’s energy matches the energy difference betweercdad
state and current state of the atom, the atom will absorb the phudojurap to the
excited state. The excitation energy will then either be napidhsferred, via collisions,
to random atomic motion or thermal energy, before a lower energy ptentdre emitted
*1 " or vice versa. The process of “taking up” a photon and consuming ity émealled
absorption. The whole process from the hitting of a photon on an atom, tartbiet of
the excitation energy to other energy, to the final dischargaather photon with lower
energy is called inelastic scattering. Inelastic scatjeris also the principle of
fluorescence. In contrast to the inelastic scattering, if i@ aadiates a photon with the
same frequency as the incident one without transferring the teinergy to other
energy, the whole process is called elastic scattering oresthgrattering. In the elastic
scattering process, the energy (and therefore the wavelength) in€ident photon is

conserved and only its direction is changed. To be precise, scaites@lgom complete

elastic and absorption always goes with some degree of sogtt€mn a macroscopic
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scale, however, treating them separately is often convenient agpémi the theoretical
study. We can think that “absorption” and “scattering” take place imdkgoely without
any appreciable contribution from the other process.

The theory of absorption and scattering by an atom can be extenddoigto a
molecule. Similar as an atom, a molecule also have many dnestgtes which are
defined by the energy states of one or more atoms of the molecojetioe molecule’s
modes of vibration and rotation. A large molecule’s energetic state can be loddedgs
packed on top of each of its small components such as different fungrongls. Like
atomic orbital, these energetic states are also quantized andliberete energy levels.
Light can be absorbed by a molecule through electronic transitionsboational
transitions which will excite a molecule from a less en@gghate to a more energetic
one. Electronic transitions change the energetic state of a uleley exciting its
electrons to a higher energy level. Such transitions are rd&yaéimergetic and hence are
often associated with absorption of ultraviolet, visible and near-@dfraravelengths.
Vibrational transitions change the energetic state of a moléguthanging the ways of
vibration and rotation of a molecule’s bonds. Such transitions are ndromg ®S
electronic transitions and are hence associated with absorptiorrarethfvavelengths.
Same as the atomic case, the excited states usually do nst. gdérsy will revert back to
lower energy states and emit photons. If the emitted photons havantleeesergy level
as the exciting ones, this process is called elastic sogttedtherwise, it is called

inelastic scattering.

2.1.2 Tissue absorption

As shown in Fig. 1, when a photon enters a tissue, quite a large number of
scattering events by cell constituents, tissue fibers, intel@ebtructures, organelles in
cells and the interfaces between structural components will ddesides scattering, the

photon can also be absorbed by chromophores such as water, hemoglobin, mitelanin,



The photon will then be remitted from the tissue as diffuse tefiee, be totally
absorbed inside the tissue or lose some energy becoming fluoresicgrateAll of these

signals carry useful biochemical and morphological information about the tissue.

remitted  Air
(diffuse
reflectance)

internally
reflected

scattere

transmitted

Air

Fig. 1 Propagation of photons in a tissue

In a biological tissue, molecules that absorb light are calledodcall
chromophores or biological absorbers. A biological chromophore can (1) abdabtr
energy in the far-infrared and microwave regions, converting itotational kinetic
energy; (2) absorb infrared photons, transforming its energy into abahtinotion of the
molecule; (3) absorb energy in the visible and ultraviolet regionsighrthe mechanism
of electron transitions, much like that of an atom. Biological chrom@ghtrat can
absorb energy in the visible and ultraviolet regions generally hasteirg of double
bonds whose pi-orbital electrons behave as a small antenna whichecaivet the
electromagnetic wave of a passing photon. Porphyrins, including hemogldiminvi
B12, cytochrome C and P450, are a main group of biological chromopho#es.the
main composition of tissue, water is a main chromophore in the neanreihf
wavelengths. Fig. 2 and Fig. 3 show the absorption spectra of hemoglobinaterd w

respectively.
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The parameter that describes the absorption property of tisdue as$orption
coefficient,pu,. When a photon propagates over infinitesimal distalsc¢éhe probability
for an absorption event i3,ds In other words, the mean free path for an absorption
event is ;. On a macro scale, the absorption coefficient is the fractiaghdafdbsorbed
per unit distance in a participating medium. The absorption coefficfemttissue varies

strongly over the wavelength ranging from ultraviolet to visible light.
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Fig. 2 Absorption coefficient of hemoglobin

(http://omlc.ogi.edu/spectra/lhemoglobin/summary.gif
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Fig. 3 Absorption coefficient of water

(http://www.lsbu.ac.uk/water/images/watopt)gif

2.1.3 Tissue scattering

As a bulk turbid medium, the most pronounced event of light-tissue interact
is scattering. Light propagation in biological tissues is often datad by scattering
interactions. Extending from macromolecules to membranes to mendggregates to
collagen fibers to cell organelles such as nuclei to cell,asiierctures and ultrastructures
of a tissue that can scatter light are called biologicatteseas. Structures with size
matching light wavelength scatter the light most stroffgijhe turbidity or apparent
nontransparency of tissue is caused by multiple scattering offtahtthese biological

scatterers. Fig. 4 shows the sizes of some biological scatterers.
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Fig. 4 Sizes of some biological scatterers
(http://omlc.oqi.edu/classroom/ece532/class3/scatterers.html

Like scattering in any other medium, scattering in a tissuebeaimelastic or
elastic. In inelastic scattering, the incident and scattered phansof different
energy/frequencies. If the difference in energy generates acpustons, the scattering
is called Brillouin scattering. If the difference in energn@ates a vibrational excitation
in the molecule, it is called Raman scattering. The inelastitesicatin biological tissues
is weak.*®

The elastic scattering, in which the incident and scattered phatensf the
same energy/frequencies, is strong in a tissue. There are ategodes of elastic
scattering. The first one is Rayleigh scattering, which happédme whe size of the
scatterer is smaller than the wavelength of liglet (ess than about/15). In Rayleigh
scattering, the intensity of the scattered light is proportioaal/t* and therefore
increases with/*, where). is wavelength and is frequency** The second one is Mie
scattering, which happens when the scatterer size is compavableMie scattering
depends only weakly oh with the intensity of the scattered light being proportional to
1/ 17 (0.4<X<0.5)** and becomes independent of it (white light in, white light out) when

the particle size exceéd™.
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Mie theory, which is named after its developer German physicista® Mie, is
a complete analytical solution of Maxwell's equations for thettscag of
electromagnetic radiation from spherical particles of any. SpeRayleigh scattering is
the small-size limiting case of Mie scattering. The Mieary reduces to Rayleigh
scattering when the particle is much smaller than the wavéleiigiwever, in most
conditions, Mie theory is used in the intermediate size-to-wavidlaagio range where
the Rayleigh is not valid. To accurate describe the scattartegactions of light with
tissue, both Rayleigh scattering and Mie scattering are needsdeidh scattering
describes the scattering of light by tissue structures muchiesntiaan A including
cellular components such as membranes and cell subcompartments, racdllabdr
components such as the banded ultrastructure of collagen fibrilscMtersng describes
the scattering of light by various cellular structures likeontibndria and nuclei, and
extracellular components like collagen fibers. Even though some lwal@gatterers are
not necessarily spherical, their scattering behavior can still be modetetably well by

Mie theory.**

azimuthal

deflaction angle v

angle 0

T L~ cos(0)
photon
trajectory

scattering event

Fig. 5 A scattering event with a deflection angleral an azimuthal angle
(http://omlc.oqi.edu/classroom/ece532/class3/gdefinition)html
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Scatter angles are important parameters to describe arsgattvent. Fig. 5
shows the deflection anglé)(and the azimuthal angl&) of a scattering event. Tissues
are anisotropic and their optical properties are a function of thaeimtclight direction.
However, they are often assumed to be isotropic to simplify the comslitFor an
isotropic medium, scattering depends only on the afgletween the direction of
incident Iightéand the direction of reflected Iigﬁt. The phase function is defined as
the reflected intensity as a function of angle normalized byiritensity at normal
incidence. It gives the intensity of reflected light from per urténsity of incident light
for a given angle of scattering event. It is also the singl&esang probability density

function p(§ , 'S“) which can be written as
P(S, S )=p(S"S )=p(cos6)=p(v) 1)
wherev =cos6. The integral of a density function around the incident point (solid angle

of 4z steradian) is unit one.

[ p(8,8)dw'=27] p(v)dv=1 )
Therefore, for an isotropic scattering event
1
p(v) = — 3)
4r

Unfortunately, light scattering in a tissue is far from isotwopiherefore, the anisotropy
factor (g) which is the average cosine value of the angle bettheeincident light and
the reflected light is defined to describe the direction propertgcaftered light. The
anisotropy factor g has a value between -1 and 1. A value of -1 ireliosté backward
scattering and a value of 1 indicates total forward scattesofyopic scattering means
g=0. The anisotropy factor of a tissue, which is a combination number [roth
Rayleigh scattering and Mie scattering ranges from 0.3 to 0.98, but quite ofteritnd ar
0.9 in the visible spectruffi.The g value of Rayleigh scattering is around zero. While the

g value of Mie scattering is near one.
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Fig. 6 shows the phase function of a Rayleigh scattering inlaulated from a

web site [ittp://omlc.ogi.edu/calc/mie_calc.htynlt describes the angular distribution of

375 nm light scattered by a 10 nm diameter sphere with reflaothex of 1.5. Light is
incident from the left with the sphere located at the centeneofihear polar plot. The
green and blue curves demonstrate the situations of perpendicular ahel hghd
incident while the red curve demonstrated the situation of unpolarized natural light. From
this figure, the forward and backward scattering is the samehand value is 0.0014.
However, the scattering is not isotropic. If the sphere diametercieased to 400 nm,
then the scattering become Mie scattering as shown in Fig. /whiows a strong

forward scattering pattern.
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Fig. 6 The phase function of a Rayleigh scattering

16



Fig. 7 The phase function of a Mie scattering

The parameter that describes the absorption property of tisstiies geattering
coefficient,ls. When a photon propagates over infinitesimal distalsc¢he probability
for an scattering event |s;ds In other words, the mean free path for a scattering event is
1/us. On a macro scale, the scattering coefficient is the dracif light scattered per unit
distance in a participating medium. The scattering coefficientallys decreases
monotonically with increasing wavelength.

The scattering coefficient and the anisotropy factor are sometlomped to
form a new parameter, reduced scattering coefficiggt (1-g) Hg). In a multiple
scattering event in a tissue, an anisotropic scattering prodgsarwanisotropy factor g
and a scattering coefficiept appears identical to an isotropic scattering process with an
anisotropy factor zero and a scattering coefficight That means a photon will either
take one big step of isotropic scattering (anisotropy factor ®) wéan free path i/ or
1/(1-g) smaller steps of anisotropic scattering (anisotropyprfapt with mean free path

1/us to get to the same position. This is called similarity primgiplhich is often used in
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theoretical study. Fig. 8 shows thg of skin dermis, where the read line is tissue data,
the green line comes from Mie theory based on collagen cylintherglde line is from
Rayleigh scattering due to small-scale structure of colléigens, and the black dashed

line is the combination of the green line and the blue line.
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Fig. 8 s’ of dermis
(http://omlc.oqgi.edu/news/jan98/skinoptics.himl

2.2 Significance of study of optical properties

The optical properties of a tissue mainly inclyde bs, g, and n (the index of
refraction). While the values of g and n of a tissue usually do not change muanarel c
approximated by experience numbagrs.andps change a lot with tissue type, structure,
and health condition. Study @f, and s of tissues can provide valuable information in

several issues detailed below.

2.2.1 For disease diagnosis

As precancers develop, the morphology change of epithelial cells ajsauc
tissue like cervix is characterized by increased concentratiochreimatin, increased
variation in nuclear size and shape, an increased nuclear to cytmptatio, roughing of
the chromatin texture, the margination of nuclear chromatin, and sacreaetabolic

activity. Accompanied with the development of intraepithelial neoplasiamal layer is
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also altered with increased angiogenesis, decreased matrixydansi other alterations
in the epithelial-stromal communicatidh?®*°Dysplasia and carcinoma in the oral cavity
had features including hyperproliferation and nuclear crowding of badlsl dhe
epithelium often showed features like epithelium thickening, loss lbfstatification,
and enlargement of epithelial cell nuclei. Parts of the basemembrane and underlying
collagen network (source of scattering) degraded and the volumecbtbriraf fibers
decreases, facilitating tumor cell invasion and ultimately statia dissemination via the
lymphatic and vascular systemi§>* Milord et al showed that urothelial neoplasms of
the urinary bladder were characterized by the presence of numesitgisvith large
irregular and hyperchromatic nuclei that may be present eitit@eientire thickness of
the epithelium or only a part of >. A study of esophagus indicated that cancer
esophagus had higher density of cells with irregular cell sizeshape and extreme
heterogeneity. The nucleus cytoplasm ratio was also very irregdl@iochemical
changes often accompany the morphologic changes. Study shows that blood supply
increased in dysplastic tissue, which is usually due to the sexteaicrovessel density
and the angiogenesis in the mucosal and submucosal ti¥stes.

As stated above, the tissue’s biochemical and morphological charadter
change when a tumor formed in a tissue, which in turn results irhdrge of optical
properties. For a mucosa tissue, dysplastic changes include etcreeattering from
epithelial cells, decreased scattering from collagen fibethe stroma, and increased
absorption in stroma owning to increases in hemoglobin concentr&dtibhe change of
optical properties will then bring change of reflectance specpgscTherefore, by
extracting optical properties out of reflectance signal, we dmgnose disease

quantitatively.
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2.2.2 For disease treatment

Modeling light propagation in tissues to get the optical propediessential for
photochemical reaction in tissue such as in photodynamic therapy. Thdo&ieyetry
parameter for photodynamic therapy is the fluenced@ewhich is a function of depth z.
For highly scattering tissue, the diffuse light in tissue dsesaxponentially with depth

according to the equation o{z) = A exp(iesr Z), Where A is a constant apgy is the

effective attenuation coefficient witl, :\/3,ua[,ua+,us (L-9)] . Fluence rates lower

than expected will not do the therapy job. On the other hand, fluencehrgites than
expected produce a greater than expected photochemical reactiah hade production,
and temperature rise, which will in turn damage some healtretiI$herefore, accurate

Ma andys values are essential for dosimetry in optical therapy.

2.2.3 For tissue monitoring

Reflectance spectroscopy together with the extracted opticalrpespean be
applied for tissue monitoring, which overlaps with its function of desehagnosis and
treatment. It can be used for margin assessment during core higxtig®’, monitoring
tumor respond to therap§®® monitoring tissue oxygenatidi?* ®°and analytes such as

bilirubin #>*°and glucosé"*°in order to guide future health care.

2.2.4 For theoretical study

Optical properties from reflectance-based approaches aralcfdrcproviding
fundamental optical property data on biological tissues which can deirusieeoretical
models or to enable extraction of intrinsic signals for diseasgndsis®®>° Further
more, optical properties can be utilized for probe geometry optimrzaind accurate

ﬁ, 40, 67

light-tissue interaction simulatio , which in turn will facilitate the clinical

detection and therapy.
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2.3Tissue-simulating phantoms

Mimicking the properties of human or animal tissues, the tissualesimg
phantoms play a crucial role in aiding on understanding of light-tisselaction and on
developing diagnostic imaging or spectroscopy systems and physicalpdahiec
interventions. Many tissue-simulating phantoms have been proposed in optical
applications such as spectroscopy and imadififf. In general, phantoms are used for
several purposes, including: (1) calibrating and optimizing an instiyn{2) testing of
stability and reproducibility of an instrument; (3) comparing perfoicea between
systems; (4) providing a qualitative means of testing matheshatiocdels, simulations,
and theories’*

To achieve these goals, an ideal phantom should have the following papertie
(1) the optical properties of the phantgm, (L, g and n) are similar to those of the tissue
at specified wavelengths; (2) the optical properties of the phaatenadjustable to
mimic different tissues. Molecules of specific interest lsanncorporated to mimic those
in a tissue; (3) The thermal, mechanical, chemical and surfapenies of the phantom
are similar to those of the tissue and stable over time and enentanconditions; (4)
The regions in the phantom can be incorporated with different opticalrpespé5) The
phantom can be incorporated with Brownian motion or flow; (6) The phantom is
inexpensive and easy to manufacture and trandparphantom having above properties
can be used for any application. However, no single tissue phantom pssHésisese
properties. In real application, only some of these properties agtant and the others
can be neglected. For example, if one wants to calibrate thenmesit, the accurate

optical properties are most important and the other requirements are of lowy priorit

2.3.1 Phantom composition
The basic compositions in a phantom include matrix materialsesaattand

absorbers. The matrix materials are typically water, hydso¢gtlatid?, collager®,
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agar*, polyacrylamid&® poly(vinyl alcoholf® ) and hard polymers (polyester®?
epoxy”>, polyurethan®). Some novel materials such as soft siliéor& are also used.
The water and hydrogel based phantoms are usually biologically colepatt can not
be kept permanently. On the other hand, the polymer based phantoms areogatabiypl
compatible but can be kept permanently. The fabrication of a wated Ipdnantom is the
easiest, and that of a polymer based phantom is the most diffioude e polymer
based phantoms can be preserved permanently, they are good for nglilanadi
optimizing the instrument.

The scatterers typically include lipid based emulsions (Intcéfipt’, milk®®),
inorganic powders (titanium dioxide, aluminum oxide, §3ldnd polymer microspheres
(polystyrend’). The lipid based emulsions have biologically similar chemical and
mechanical structure as the bilipid membrane of cells and orgamnefat is thought to
cause scattering in a tissue. The disadvantage of such seaitetleat they are not as
stable as other scatterers. The inorganic powders are thecomshon choice for
scatterers because of their wide availability and high scagteoefficients. They can be
obtained in well-controlled spherical formulations. Titanium dioxide and almioxide
are two commonly used inorganic scatterers. A primary defetsgteeeen them is the
maximum attainable value for the anisotropy factor. Firbank and Depbrted that the
anisotropy factor of titanium dioxide is limited to 0.7, whereas thiso&ropy factor of
aluminum oxide can reach 0.97 in polyester r&iFhe main downsides of the inorganic
scatterers are that they subside in suspension in most mediatdag togh density and
that they are not exactly representative of tissue scattgpicira. Polymer microspheres
are also common choices as scatterers, with polystyrene micresgbeing the most
popular. From a scientific perspective, polystyrene microspheregexaealent for a
standard phantom because they are produced with good quality control oseethad
index of reflection. Thus, Mie theory can accurately predict thdesing coefficient of

the phantom with polystyrene microspheres as scatterers. Prewmlisssshow that
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polystyrene microspheres are less fluorescent and less absoobnpgred with other
microsphere§' Furthermore, they can suspend in water for longer time becaise the
specific density, which ranges from 1.04 to 1.09, is very close to tha@tr. The
shortcoming of polystyrene microspheres is that they are expensive.

The choice for absorbers varies widely from blood, cells, or hemoglobin t
molecular dyes and inks (black ik Protoporphyrin IX°, methylene blu&). The
absorbers from organisms provide realistic tissue spectra butnwosh than the
molecular dyes and inks. Besides, they are less stable.

The early studies in tissue phantoms were mainly focused on nmyithke
reduced scattering coefficient and the absorption coefficient afsaet at specific
wavelength. In the past decade, phantoms that can mimic tissue @ptipalties in a
wider wavelength range and that are made of biologically impomafgcules such as
hemoglobin and melanin and biologically compatible materials sucbli@gen are of
interest. Besides, the mass flow in phantoms is also attranoting attentions. Methods
that image mass flow in tissue include Doppler shift measurstiefitand correlation

analysis of speckia®

2.3.2 Determination of phantomp, - Beer’s law

Tissue phantoms with known values |of and s are essential to the study of
tissue optics and calibration of optical instruments. The absorptioficceraf of an
absorber can be determined from the transmittance value or absorzdneeof its
solution by Beer’s law. The law states that the quantity of kdisorbed by a substance
dissolved in a nonabsorbing solvent is directly proportional to the concemtcdtthe
substance and the path length of the light through the solution. The dsw ieeferred to
as the Beer-Lambert law or the Bouguer-Beer law. A mutatideef’s law is shown as

following equations.
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T= i Cgme (4)
I 0

A=-log, T= u -d-log, e (5)
wherely is the intensity of incident light; the intensity of the transmitted light,the
transmittance A the absorbance, andl the path length. From above equations, the
absorption coefficient can be calculated as

u, =(A-In10)/d (6)

or u,=—InT/d (7)

From Beer’s law, the absorbance is proportional to the concentrataisofber,
so is the absorption coefficient. Therefore, the absorption coefficfeah absorber at
desired wavelength can be calculated from the absorbance measured by
spectrophotometer. When light irradiate on the surface of a methaawiabsorption

coefficienty,, the light intensity decrease exponentially with depth as shown in Fig. 9.
1
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Fig. 9 Light intensity as a function of depth (cm)n media with different p, (cm?)
Several sources can cause errors of the Beer’s law. The lasurgi@conly for a
dilute solution. Deviations from the law occur in concentrated solutions tdue
electrostatic interactions between solute molecules and changesativefmdex at high

solute concentration. The linear-range concentration must be deterexipeimentally.
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Scattering of light due to particulates in the sample and fluenmesfphosphorescence of

the sample can also cause error.

2.3.3 Determination of phantom s - Mie theory

Mie theory, which is named after its developer German phys$itistav Mie, is
very important in tissue phantom study. Tneof scatterers in tissue phantoms can be
calculated by this theory. Mie theory is not a theory. Instead, atcomplete analytical
solution of Maxwell’s equations for the scattering of electrom@agnadiation. Therefore,
it is called Mie solution sometimes. The theoretical saatiecoefficient, absorption
coefficient, and anisotropy factor of microspheres in a phantom carccgately
calculated with the Mie theory. In Mie theory, the imaginary xndérefraction which
indicates the amount of absorption loss when the electromagnetic pragagates
through the material is needed. Generally, the imaginary indesflettion is very small
and neglected. Some on Iline Mie theory calculators are availablg. (

http://www.lightscattering.de/MieCalc/ by Bernhard Michel,

http://omlc.ogi.edu/calc/mie_calc.htioy Scott Prahl).

The Mie theory dependent on the wavelength in vacuum, the sphere djameter
the refractive index of medium, the refractive index of microsghépeth real and
imaginary), and the sphere density. The refractive indexes of th@éium and
microspheres are usually functions of wavelength and tempetatd?é®*The refractive

indexes of polystyrert&' and wate® are show in Fig. 10.
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Fig. 10 Refractive indexes of polystyrene and water

2.4 Spectroscopy techniques for measuring tissue optical properties

Cancer detection with reflectance spectroscopy is based on thiadadtissue
optical properties, such as absorption coefficient and scatterinficeogf change as
tissue become dysplastic, which will in turn change the refleetapectrum. By
analyzing the reflectance spectrum, optical property changeingstiom dysplastic
change can be quantified.

The spectroscopy techniques for measuring tissue optical propestie®ec
classified in different ways such &s vitro andin vivo or direct and indirectln vitro
techniques usually measure tissue sections wumil@vo techniques measure tissues on
living body. Direct techniques are generally perfornmeditro and are independent of
any model of light propagation in tissue. In direct method, the tisscos is thin
enough that multiple photon scattering is negligible. The optical abmoigotd scattering
properties of a tissue can be calculated directly from theidret light absorbed or
scatted by the sampt®® Although the principle of the direct method is simple, it is
extremely difficult to prepare the sample. The thickness ofmplgafor direct techniques
should be much smaller than 14 which is only several microns. Such a sample is
difficult to make without altering the optical properties. In contfras indirect technique

can be performed eithén vitro or in vivo and it highly depends on the models. In an
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indirect method, the parameters such as reflectance and tranemitf a bulk tissue are
measured, from which the optical properties are deduced by applying or@meof the
light propagation modef$> Two prevalent spectroscopy techniques were discussed as

following.

2.4.1 Spectrophotometer with an integrating sphere

One technique for optical property measurement is spectrophotométearwi
integrating sphere. An integrating sphere, which is typically used withtskgirce and a
detector for optical power, is an optical component consisting of a hollow sploands!
Its inner surface is coated with highly reflective material$ siscbarium sulfate (BaSO
Its spherical shape and highly reflective inner surface makeliffuser which preserves
power but destroys spatial information. Light rays incident on any pditihe inner
surface are distributed equally to all other points by multiplétesaag reflections.
Therefore, effects of the original direction of such light afeinmzed. An integrating
sphere usually has several relatively small windows for entramdesxit of light or as a
sample port. The sizes of these windows should be considered whentioglitting
system.

Integrating spheres are often used to measure the reflectai@ed or
transmittance of a tissue. The measurements can be made iendiffeys. The incident
light can be either collimated or diffuse and the light beanmbeagither one or two. The
reflectance (R) and transmittance (T) of a tissue can beuresh using one single
integrating sphere in two steps or two combining integrating spimerene step.
Depending on the experiment design, either total or diffuse refleeftaansmittance can

be measured as shown in Fig. 11.
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Fig. 11 Measurement of reflectance and transmittarewith one integrating sphere

Integrating spheres can be used in different ways such asidirgtb, indirect
in vitro, or indirectin vivo. If the sample is thin enough (only several microns) that
multiple photon scattering is negligible, it is a directvitro method. If the sample is
optically thick tissue section, it is an indirect vitro method. If the living tissue is
directly attached to the sphere window, it is an indirestivo method. Since the sample
for directin vitro method is difficult to prepare and it is not convenient to attach the
sphere to a living tissue, the indir@ctvitro method is used mostly.

The inverse adding-doubling (IAD) meth8¥is usually used to extract the
optical properties from the reflectance and transmittance uresghsvith an integrating
sphere attached to a spectrophotometer. Therefore, the whole technighenghides
the measurement of reflectance and transmittance with anattggisphere and the
extraction of optical properties from the measured reflectanddransmittance with the

IAD method is sometimes also called the IAD method.
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2.4.2 Fiberoptic-based spectroscopy techniques

Although the integrating sphere is widely used in optical studies fiot
convenient, especially fan vivo measurements. The introduction of optical fibers into
the tissue optics area makes the real-time diagnosis posbilecent years, significant
progress has been made in the development of fiberoptic techniquesakurimg tissue
optical properties within the UVA-VIS wavelength range. Thesecgubes make it
possible to characterize internal tissuesity, including via endoscopic delivery. They
also enable measurements of ing@civotissues, as opposed to preot vivotechniques
which involved freezing, sectioning or homogenization, which may changésthe
optical properties. Amelink et 3’ demonstrated the capability of differential path-
length spectroscopy which consisted of two bifurcated optical filzedetermine the
local optical properties of a tissue. Moffitt et'@l constructed a sized-fiber spectroscopy
system consisting of two fibers with diameters of 200 and 600 pmeatetitthe system
in the p, range of 0.1-2.0 cth and ps' range of 5-50 cih Each fiber emitted and
collected its own backscattered light. Seinal®’ developed a diffusion-theory-based
inversion method for the extraction of tissue optical properties fromvo spectral
measurement ranging from 350 nm to 650 nm with a cylindrical optizad probe. The
probe was composed of a central collection fiber surrounded by sixdmexedly close-
packed illumination fibers. The tissue optical properties used in shedy wergu=40-
100 cm', uz=0.1-2.5 mn, and g=0.84. Thueleet al'® described a fast spectroscopic
system for superficial and local determination of the absorption Gaitesng properties
of a tissue with a probe composed of eleven linearly arranged oplieed, one for

illumination and ten for detection. Palmetral''®

identified an optimal probe geometry
which consisted of a single illumination and two collection fibers.yToend thatp,
ranging from 0 to 80 cthandps ranging from 3 to 40 cthcould be extracted from

reflectance with root-mean-square (RMS) errors of 0.30 and 0.41 cnl respectively
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using this probe geometry in conjunction with a neural network algorithia.was only
a purely theoretical study without any experiments.

In prior studies by our group, Pfefat al®® developed a neural network
algorithm for the extraction ofi, and pg from spatially resolved diffuse reflectance.
Reflectance datasets for development of the neural network weesaged by direct
measurement of Intralipid-dye tissue phantoms at 675 nm and Montedtadlation of
light propagation withu, 1-25 cm® andps’ 5-25 cm*. The algorithm was able to extract
Ha andp of the phantoms to within RMS errors of +2 and +3'cnespectively. Sharma

et al'™

improved on this system by implementing an imaging spectrograph, high
sensitivity CCD camera and in-line neutral density filteramaximize dynamic range and
signal to noise ratio. With a similar algorithm the new syststimatedi, andys’ values

with average errors of 4.0% and 5.5%, respectively.

Fiberoptic-based systems for tissue optical property measureftemicombine
reflectance spectroscopy hardware with software for forwardrarsiise modeling. The
hardware includes lagér 19 112 13r proadbantf ©” 197 Hight sources, a probe with
multiple optical fibers, one or more detectors, and a computer. The désngnprobe —

a bundle of illumination and detection fibers arranged in a well-défj@@metry — is a
key issue during system construction. Forward models can be cagelgasianalytical or
numerical. An analytical model is usually an approximation of tlatige transport
equation. Light propagation in a tissue can be described by an intégeditl
equation of radiative transport whose general analytic solution doesxisft>. A
diffusion approximation of radiative transport is often applied to obtattosed-form
analytical solutiofr® 7 Analytical models are more elegant in principle since
reflectance/transmittance can be expressed in a closed-foenmis of optical properties.
However, the specific experimental conditions for which they apgyotien simplified
and the modeling equations are sometimes difficult to solve. Nurerockels, however,

enable incorporation of any source-tissue-detector geometry. Monle Gadeling,
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which uses random numbers and statistics to find solutions to mathemathdahps that
cannot be easily solved, is a common numerical model for estintigtmgropagation in

a tissue. The Monte Carlo method has long been recognized as a pdaarfal solve
problems that are too complicated for an analytical solution. S$imecérst paper that
introduced Monte Carlo simulation of laser-tissue interattfpnumerous improvements
have been mad¥ % Published works that provide a detailed description of the Monte
Carlo approach as applied to light transport are available intéatliré> *** Because
the Monte Carlo method is computationally intensive, various techniques begve
developed to improve its efficienid) *> The condensed Monte Carlo simulation
introduced by Graafét al*?® is theoretically transparent and relatively easy to implement
Palmer and Ramanujafi extended Graafét al’s condensed Monte Carlo method from
a ray source to a beam source by convolution.

By training an inverse model on the relationship between optical pepefta
sample and its reflectance distribution, it is possible to developdel that can readily
calculate the optical properties of any sample based on the lyp&isalved reflectance
distribution measured from that sample. Neural network is an eapmethod that is
commonly used to develop inverse models for optical property determiiatidn'?’
While primarily used as an inverse model, it can also be usedf@svard model to
quickly determine reflectance distributions for arbitrary optaraberties. Inverse neural
network models for optical property determination require calibratibim eatasets that
establish the relationship between sample optical properties dectaete distribution.
These datasets can come from phantom measurémeénomte Carlo simulatiorts', or

analytical models like diffusion thed#.
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Chapter 3. OPTICAL PROPERTY MEASUREMENT OF
SINGLE-LAYER TISSUES WITH A FIBEROPTIC
REFLECTANCE SYSTEM

3.1lIntroduction

In order to quantitatively understand light-tissue interaction, ateur
information on tissue optical properties is essential. To perforim &wvo measurement,
minimally-invasive systems based on fiberoptic probe measuremenes Iheen
developed™. Previous fiberoptic-based approaches to optical property measurement ha
typically involved wavelengths from visible to near-infrared. Duehi low levels of
attenuation in this spectral range, measuring reflectanceelsdely easy compared to
highly attenuating at short ultraviolet A (UVA) and visible (Vi8avelengths. However,
since most commercialized instruments for cancer detection wotdMA and VIS
regions where the optical properties suchugsand s of tissues are limited, further
understanding of the, andps values of tissues in the UVA and VIS regions is crucial for
the clinical instruments to achieve their full potential.

The focus in this investigation was on thevitro determination of tissue optical
properties, especially, andps. A forward Monte Carlo simulation was run, followed by
condensed Monte Carlo simulations to extend the datasets. With trsetslaam
condensed Monte Carlo simulations, inverse neural network models werlepaelve
Then a fiberoptic reflectance system was constructed and tadibrath phantoms. A
Matlab® (The MathWorks, Inc.) routine, which would call the inverse nenetdiorks
and was coupled into the LabView virtual instrument software, wasedpol extracii,
and s from the measured reflectance with the system. The wholensystluding the
developed models was vitro validated with phantoms and was finally used to measure

porcine tissuesx viva Fig. 12 shows the flow chart of this investigation.
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Fig. 12 Flow chart of the investigation

3.2Monte Carlo modeling of light transport in single-layer tissues

Monte Carlo methods are based on the use of random numbers and probability
statistics to find solutions to solve problems that are too comgdidat a more classical
approach. They are a class of nondeterministic algorithms bedsiywised. Because of
the large number of calculations involved, Monte Carlo methods highly depend
computers. Since high-speed computers became widespread in the 195Ghegubli
papers about Monte Carlo method explore. Monte Carlo methods have been used in many
different fields and a great deal of theoretical as webirastical investigations have been
undertaken. In general, most Monte Carlo models are used to sinmégiepagation of
electron, photon, and neutr&fi*° Gauvinet al developed a new Monte Carlo program
to compute the X-ray spectra obtained with a scanning electransoipe-*! Similar
simulations were also carried out by many other grotfp's?

Monte Carlo simulation of photon propagation simulates the “random walk” of
photons in a medium. The movement of a photon from one absorption/scatterihgpeve
another is called one step. As shown in Fig. 13, the main paramet@rslonte Carlo
simulation include step siz deflection angl®, and azimuthal angl#. For every step,
these parameters are chosen by statistically sampling thebpitgbdistribution as
following equations, where® is a random number between [0,1] generated by a

computer®
- - In(é/) (8)
Hy

S
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cos&’zi 1 g° - _g for g=0 (9)
29 1- g9+ 24

cosd= 2 -1 for g=0 (20)
Y =272 (11)

Absorption/
\scattering
Scattered ' event
photon

Fig. 13 Deflection of a photon by scattering event

Once a photon begins its travel in the media, gght will be attenuated due to
absorption by the media. If the photon weightMsV is updated after each step according
the following equation.

W& W= (1- pally ) (12)

Of course, the internal reflectance or escape atbibundary as well as the
termination of a photon should also be considétedthough my focus is on the diffuse
reflectance signals, the Monte Carlo simulation alsio generate transmittance signals as
well as internal fluence.

Based on above algorithm, a Matlab program wastnaoted to do the Monte
Carlo simulations. Fig. 14 and Fig. 15 show resoiltsvo simulations. In each simulation,
50,000 photons were lunched vertically from a rayree into a tissue witpi, value of
0.5 cni', ps value of 20 crt, g of 0.9, and n of 1.37. The Henyey-Greensteiasph
function was used to mimic the scattering angles fissue thickness in Fig. 14 and Fig.

15 was 10 cm and 0.3 cm respectively.
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(b) Diffuse reflectance on the tissue surface
Fig. 14 Simulation results of a semi-infinite homogneous tissue
(Ma=0.5 cm®, ps'=20 cm*, g=0.9, n=1.37, thickness 10 cm)
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(b) Diffuse reflectance on the tissue surface
Fig. 15 Simulation results of a homogeneous bulkssue
(M,=0.5 cm®, p'=20 cm?, g=0.9, n=1.37, thickness 0.3 cm)
To verify the accuracy of my Monte Carlo progranmmudation results was

compared with literatufd. Two simulations were run to obtain radially reso
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reflectance of two semi-infinite media. The two riaebad samet, (0.1 cmi’) andug(10
cm™) but different g (0.9 and 0 respectively). The f#BnrGreenstein phase function was
used to mimic the scattering angle. The reflectindex of the fibers and media were 1.
The incident light was a collimated pencil beamnfroevhich 500,000 photons were
launched. All the escaped photons were detecteyl. F6§ shows my MC simulation
results compared with results from literature. Frtms figure, both simulation curves

overlap the curves from literature, which meanMute Carlo program is accurate.

il | L 1 | 1 1 1 1 -

E | e A g=0.9 |

100 = | = ! 3

: S

"‘\.‘-\ B —g=0.9 (Myresults) | |

= g — g=0 (My results) E

L i B

o 17 3
0.01

0 0.2 0.4 0.6 0.8 1

r(cm)
Fig. 16 Diffuse reflectance as a function of radiug) - Comparison of MC simulation results with
results from literature

3.3Condensed Monte Carlo modeling of single-layer tissues
Because the Monte Carlo method is computationafitenisive, various
techniques have been developed to improve itsiefiig*>* **> The condensed Monte

Carlo simulation introduced by Graadt al?®

is theoretically transparent and relatively
easy to implement. Palmer and Ramandfdmxtended Graafét al’s condensed Monte

Carlo method from a ray source to a beam sourcedmyolution. They derived a
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convolution equation for the condition that thentlination fiber and the detection fiber
are different ones.

Spatially resolved diffuse reflectance was caladatith a condensed Monte
Carlo approactt® ***mentioned above. Light propagation in a mediunhaibsorption
coefficient of O crif(Uasin), Scattering coefficient of 150 éh(ussin), and g=0.9 was
simulated with a primary Monte Carlo model at firstshould be noted that non-zero
Masim Values can also be used in this simulation. TheyeleGreenstein phase function
was used to mimic the scattering angle. The inderfoaction (n) of fibers was 1.45 and
n=1.37 for tissues. The numerical aperture (NA)doth the illumination and collection
fibers was 0.22. The incident light was a ray oerfpil beam” source from which
40,000,000 photons were launched in a uniform idigion over all angles within the
cone specified by NA=n-dinwhered is the incident/acceptance angle measured from the
normal to the tissue surface. For each detectedophehich was governed by the
acceptance angle, the number of interactions withtterers l), the distance from
entrance to exitr{), and the weight of the remitted photdfs) were recorded. The
value of W;i, was determined according to standard Monte Cafwaaches including
weight reduction due to specular reflectance arsbition (in my case, the latter was
minimal)*® *2% In order to simulate a medium with new absorptioafficient (15 ney) and
scattering coefficientys new, Scaling was performed for each photon to obtaénew
distance from entrance to exitd,) and the new weight of the remitted photd¥,dy)
according to following equations (note that thddwaing represent the general forms,

whereas in my specific cage,simis zeroj>> **¢

4 .

Fnew = T'sim * (M) (13)
s,new + :ua,new

WneW — Wsim . ( :us,new . :us,sim + :ua,sim) N (14)

:us,new + /ua,new /us,sim
Since the probe’s illumination fiber was not a iyurce, the following convolution

equation®® was used to calculate the probabilip) bf a photon being collected by a
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collection fiber with radius. after traveling a distance ofe,, from an illumination fiber

with radiusr;.
2 min(ri 's_rnew+rc) o SZ + (S— X)Z —_ r 2
P=—— zj (s—x)-cos’| L
T ri max(-r; ,S—Thew—Tc) 2(5_ X)S
2 2 2 (15)
r +(S—X)" —Tr
-COS ' [-new (S=X)"~F, ]-dx

2(S—X)l e
wheres was the center to center distance between illumoimdiber and detection fiber.
This convolution equation was only use@ ¥ ri+r; ands-fi-rc < rnew < S+ri+r¢, otherwise,
p=0. Therefore, the collected weightgLiec) Of a photon by the detection fiber was

calculated by the following equation.
Weoliect = Whew - P (16)

The reflectance from a collection fiber was obtdibg dividing the sum of total collected
weight by the total number of launched photon.

By applying above condensed Monte Carlo technitgflectance datasets within
a wide range of optical properties jn (0.1-85 cm) and ps (0.1-118 crit) were
generated. In total, 2805 datasets with even sgaxfi2.5 cni for bothp, andps while
Ha>30 cm!® and pg>5 cm* and smaller spacing whilg.<30 cm® or ps<5 cni* were
obtained, as well as 220 random datasets.

The geometry used in the condensed Monte Carlolaions replicated the
design of my fiberoptic probe. A diagram of theldace is shown in Fig. 17. The probe
contains linearly arranged fibers, a single illuation fiber and five detection fibers,
spaced at consecutive center-to-center distanc@bofim. The core diameter of each

fiber is 0.2 mm with a NA of 0.22.

e lllumination fiber

° 330331% ° Detection fiber

Fig. 17 The 4 mm diameter face of the fiberoptic pbe
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Fig. 18 shows the contour curves of dimensionlesfteatance from five
detection fibers from condensed Monte Carlo sinmutat Reflectance per unit area can
be obtained by dividing the dimensionless valuesth® cross section area of each
detection fiber. These contour curves indicate thatsensitivity of reflectance to optical
properties varies withu, and pus. For each curve, its slope changes continuously. A
steeper slope at a point means that the reflectanl@ss sensitive tpg' there. On the
other hand, a shallower slope at a point meanshleateflectance is less sensitiveim
For example, reflectance is more sensitiveiddhan topa whenps' is less than 5 cih
This may affect the accuracy of neural networkdifferentp, andps' ranges. For a fixed
Ha, reflectance increases to a maximum value anddbereases with increasipg. This
trend seems to be related to prior findings thafsource-detector separation of 1.7 mm
both the average photon path length and reflectameasity are relatively insensitive to
scattering properties (overg range of 7.5 to 22 c®**® A similar insensitivity to
scattering was also seen in reflectance data pregsémmy prior study®. Although | do
not show the results for source-detector separatidn7 mm here, a similar conclusion
can still be obtained from Fig. 18 (c) which shothe reflectance for source-detector
separation of 1.5 mm. From this graph, the contawesroughly vertical wheps' ranges
from 7.5 to 22 cnl, which means the reflectance is insensitive tongha in ps.
Furthermore, it is possible to identify similats’ range for other source-detector

separation distance from similar contours in F&y(d), (b), (d) and (e).
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Fig. 18 Contours of dimensionless reflectance fro@ach detection fiber with radius of 0.1 mm, where
graphs a, b, ¢, d and e correspond to center-to-ctar distances of 0.5, 1.0, 1.5, 2.0 and 2.5 mm,
respectively, between the illumination and collectin fibers.

Overall, the plots for each fiber are similar. Tbentours of a nearer fiber
resemble a close-up of those of a further fibecepk that the absolute values are higher.
This shows the scaling theory of the condensed &@arlo method in another way. The
irregular contour patterns at high andps’ for farther fibers originate from the fact that
the quantity of launched photons is insufficient é@nvergence to an accurate solution
for reflectance in these regions. Therefore, nenedlvorks trained with these datasets

may be prone to larger errors. For Fig. 18 (c)afa) (e), it should be noted that the blank

areas at the top of each graph indicate regiongticch almost no photon were collected.

3.4Development and evaluation of neural network models for single-layer tises
Traditionally, neural network means a network acuwit of biological neurons.

Mathematically, neural networks involve a network simple processing elements

(artificial neurons or commonly just neurons) whaan exhibit complex global behavior,

determined by the connections between the proggséements and element parameters.
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A neural network can be trained by adjusting thkies of the connections (weights)
between neurons so that a particular input leadssjgecific target output.

Reflectance datasets generated with the condensateNCarlo simulations were
used to train and evaluate feed-forward back-prapag neural network models with the
Neural Network Toolbox in Matldb The input vector for each network (sometimes
referred to as an “input layer”) consisted of 2eflectance values corresponding to the
number of detection fibers used. The network atstained two hidden layers of seven
neurons each with logarithmic sigmoid transfer fiores, and an output layer of two
neurons with linear transfer functions. The outgettor consisted of the absorption and
reduced scattering values. A Levenberg-Marquarckfrapagation training function was
used. The number of neurons came from my optinumatsults. The reflectance datasets
used for training included 2805 optical propertyntinations determined from the
condensed Monte Carlo model. Two-thirds of thedasdds were used for training and
one-third of them were used for evaluation durnagning.

In order to identify appropriate model designs p@rforming optical property
estimations, | evaluated the influence of detectiber quantity {.e., the size of the input
vector). This analysis was performed using sinmatlatasets both with and without the
addition of artificially generated noise. A setfofir neural network models, based on 2, 3,
4 and 5 detection fibers was generated and tramtdn the optical property range of
0.1-85 cn for pa and 0.1-118 cihfor .

During initial measurements of highly attenuatirsges, it was found that under
highly attenuating conditions (tissues, wavelengtagger separation distance fibers did
not collect sufficient signal. In order to ass#ssaccuracy and robustness of my inverse
modeling approach when fewer than five detectiberg were implemented, | performed
the following theoretical analysis. Four neuralwmks based on 2, 3, 4, and 5 detection
fibers were evaluated with the 220 random datageterated with condensed Monte

Carlo simulations. This evaluation was performethbwithout added noise and with 5%
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random noise added to the reflectance values dtballs. The noise level of 5% was
based on measured variationse vivotissues, which was likely dominated by spatial
inhomogeneity. Table 1 summarizes the average satiieabsolute errors from the
evaluations. The results for 5% noise are the geeohthree evaluations.

Table 1. Absolute errors of four neural networks (en™)

No. of Fiber 2 3 4 5

oP Ha M’ Ha M Ma M’ Ha M’

No noise 032 041 039 038 022 028 024 0.25
5% noise 070 313 062 236 052 198l 057 212

From Table 1, the absolute errors of optical progerfrom the neural networks
decrease with an increasing number of detecticerdilexcept for the five-fiber network
which shows similar accuracy with the four-fibertwerk. This is likely because the
greater noise in reflectance at high and s for fiber No.5 (Fig.4 (e)) render the
reflectance from detection fiber No.5 of little use general, the errors @i’ are larger
than the errors gfi,, particularly for the 5% noise cases. Althoughseancreases error,
the accuracy is still quite good in all cases amhgares favorably with peer research to
daté'®. Figure 5 shows the calculategd and ¢ from the neural network based on 4
detection fibers versus their theoretical valuegnvho noise was added as well as 5%
noise was added to reflectance. From Fig. 19 (o, dalculated values match the

theoretical values well even with noise added éoréflectance.
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Fig. 19 The calculated., and ps’ from the neural network based on four detection
fibers versus their theoretical values (straight hes indicate where the calculated
values are equal to the theoretical values).

To study the sensitivity of neural networks at eliéint optical property ranges,
3D plots of absolute errors (from the neural nekweith 4 detection fibers) gi, andps’
of each evaluation dataset are shown in Fig. 2o noise is added to the reflectance

for evaluation, the error gf, is larger whenus' is less than 10 ci(Fig. 20a). This
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agrees with Fig. 18 which shows that reflectanceas sensitive tqu, at low ps. In
general ' is rather accurate when no noise is added toetectance (Fig. 20b). When
5% noise is added to the reflectance for evaluatiom error ofu, is larger at regions of
loweru,-higherys’ and highemds-lower4us’ (Fig. 20c). From Fig. 20d, the errors |of
are larger at loweps-higheryls' region with 5% noise added. All these conclusicas

also be obtained according to reflectance contlmursachp, andps’ set (Fig. 18)
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Fig. 20 Absolute errors ofu, and p' of each evaluation dataset from neural network
based on 4 detection fibers

3.5 Construction of single-layer phantoms
During the developing of the fiberoptic diffuse leetance system, phantoms

with known optical properties are necessary foibcaling and optimizing the instrument
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and providing a qualitative means of testing theapeeters and assumptions made in
mathematical models and simulations. Since agusaspension phantoms are easy to
make, they are used as my single-layer phantoms.

Both nigrosine and hemoglobingAFerrous stabilized human, Sigma H0267)
were used as absorbers in phantoms. The formdreaper and more stable while the
later provides realistic tissue spectra. Their spets were measured with a
spectrophotometer as shown in Fig. 21 and Fig. 23.

As observed from figures Fig. 22 and Fig. 24ugfversus concentration, both
nigrosine and hemoglobin show a linear relationwken g, and concentrations. At
wavelength 415 nm, the absorption coefficient hasramum value for nigrosine while a
peak value for hemoglobin. On average, the absormoefficient of nigrosine is much

higher than that of hemoglobin with wavelength esmffom 300 nm to 700 nm.
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Fig. 21, of nigrosine as a function of wavelength at diffegnt concentrations
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Fig. 24, of hemoglobin as a function of concentration at ffierent wavelengths
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As mentioned before, polystyrene microsphere isexrellent scatterer for a
standard phantom because 1) it is produced withl gp@lity control over the size and
index of reflection, 2) it is less fluorescent aleds absorbing compared with other
microspheres, and 3) it has similar density withtena Therefore, polystyrene
microsphere was chosen for phantom constructioe. arfisotropy factor of polystyrene
microsphere is controlled by the sphere diametavelength, refractive index of medium
(water), and refractive index of sphere (polystgeMable 2 shows the refractive index
of water and polystyrene from Fig. 10. The anigogrtactors of polystyrene microsphere
with different diameters in water at different wharegths are shown in Table 3.

Table 2. Refractive indexes of water and polystyremat different wavelengths

Wavelength (nm)| 325 375 405 445 543
Refractive index | 1.3521 1.3446 1.3417 1.3387 1.3344
of water

Refractive index | 1.6706 1.6390 1.6266 1.6145 1.5968
of polystyrene

Table 3. The anisotropy factors of polystyrene miarspheres in water

Wavelength (nm)] 325 375 405 445 543
1.0 0.8305 0.9011| 0.9148 0.9207 0.9283

Diameter | 1.5 0.8347 0.7870| 0.8274 0.8485 0.8753

(um) 2.0 0.8331 0.8676| 0.8344 0.827% 0.8182
2.5 0.8844 0.8452| 0.883y 0.8761 0.8732
3.0 0.8953 0.8634| 0.8480 0.8454 0.8826

In order to best approximate biological tissues aadisfy the similarity
relationship, a scatterer with an anisotropy fadiigger than 0.9 should be uséd.
Therefore, polystyrene microsphere with diametet.0fum was employed.

The scattering coefficient of a phantom can beutated by Mie theory. There
are many Mie theory programs available. The proguasd in my research was based on
a Fortune language program for homogeneous spffefithis program was initially
translated and modified to a Matlab program by Anagrawal in our lab. Since the
program could only calculate one group of inputapagters every time, | then wrote

another one to deal with the data input and outpich called the initial one as a
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subroutine. The whole program can now input as ntatg as you want from an Excel
worksheet simultaneously and output the resultanother worksheet in the same file
after calculation. Fig. 25 and (a) (b)

Fig. 26 show the results from these two Mie scauteprograms at different

wavelengths and sphere densities.
40

0.0048 spheres/um3
e (.0096 spheres/um3

0 \ \ \ \ \
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Fig. 25 ps' of polystyrene microsphere (0.989 micron diameterds a function of wavelength
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Fig. 264" of polystyrene microsphere (0.989 micron diameterds a function of density
Fig. 25 shows the monotonic decreasquofwith wavelength except the lobe
patterns between 300 nm and 350 nm. The lobe patt®me from the similar patterns of
phase function by Mie theory in this range. (a) (b)

Fig. 26 shows thalts' increases linearly with sphere density.
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Once the relations between the absorption coefficeduced scattering
coefficient and the concentration/wavelength arevkm phantoms with accurate optical
properties can be constructed from deionized watetystyrene microspheres, and
nigrosine or hemoglobin at any desired propertyuesl Fig. 27 shows a series of

phantoms with polystyrene microspheres as sca@ebnigrosine as absorber.

Fig. 27 Phantoms with increasingu, and s’ held constant (nigrosine as absorber)
3.6 Construction and calibration of the fiberoptic diffuse reflectancesystem

3.6.1 Light source

The light source of the fiberoptic diffuse refleata system can be either a lamp
or a laser. A lamp emits incoherent photons in alnadi directions, usually over a wide
spectrum of wavelengths. A laser light, howevertyjgcally near-monochromatic and
emitted as a narrow beam in a specific directiossifdes, the light from a laser source is
coherent. This means the waves of the laser lighingphase.

Sincep, andps' are functions of wavelength, their values are nmgdul only at
given wavelength. When a lamp is used as lightcgut is usually used together with a
spectrometer or a filter to get the desired wawglgnwhich makes the system clumsy
and inefficient. Besides, it is difficult to co@pthe light into a fiber efficiently. On the
other side, a laser source with a small volumebsansed as a light source independently.
And because of its directional property, laserlwaroupled into a fiber easily. Therefore,
laser sources were chosen in my system.

The spectral region below 600 nm (the UVA-VIS regics essential foin vivo
fiberoptic diagnostics especially for the fluoresoe study. Besides, it is possible to study

a smaller area on tissue with light in this regtban with light of longer wavelength.
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Shorter wavelength also means shorter source-deté€8D) separation. Only photons
experiencing multiple scattering events can provigeful information about the
scattering coefficient. Since the scattering cogdfit of a tissue is higher at shorter
wavelength, a photon with shorter wavelength wipe&rience a given number of
scattering events within a shorter SD separationceSthe data about the reflectance
study in the UVA and VIS regions are limited, | wdao fill up this blank. The laser

wavelengths in our systems are 325 nm, 375 nmnaQ)3445 nm, and 543 nm.

3.6.2 Construction of the fiberoptic diffuse reflectance system

A multi-wavelength, fiberoptic diffuse reflectansystem was developed as
illustrated in Fig. 28. The system included fivedasources with wavelengths of 325 nm,
375 nm, 405 nm, 445 nm and 543 nm. The power outptlite lasers was approximately
one milliwatt except the 543 nm laser whose poweput was about 5QW. The laser
sources were coupled via a fiber switch to a lirexaay fiberoptic probe (Fig. 17). The
diffuse reflected light was collected via five dgten fibers at different distances from
the illumination center and recorded as a spedrogwith a high-sensitivity charge-
coupled device (CCD) camera (Princeton Instruménts). In-line neutral density (ND)
filters were applied to attenuate signals in soiher$ and thus maximize the dynamic
range. A LabView (National Instruments Corporatioojitine was developed to control
the instrumentation, acquire data and calculategfiectance based on calibration results

described below.
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Fig. 28 Multi-wavelength, fiberoptic diffuse refledance system for optical property measurement

3.6.3 Measurement of absolute reflectance intensity

Fig. 29 shows the light propagation in a turbid raednd the detection of
scattered light with a fiber probe. The intensifysoattered lights at the tissue surface
decreases exponentially with distance from thamihation point (Fig. 30). The light
intensity at positions with different distancesnfréhe illumination point is collected by
five detection fibers and transferred to a specaplg with a high-sensitivity CCD camera.
CCD is the abbreviation of charge-coupled devicelis an image sensor containing an
array of coupled light-sensitive capacitors.

The intensity of light collected by each detectidmer could be three to six
orders of magnitude difference if no filters arstalled in the system. Since the intensity
from each pixel on CCD is recorded by a 2 bytes Ifit6) number, the maximum
intensity value is 2216-1=65,535. Therefore, thensity from the highest detection fiber
may have saturated the camera while the intensity the lowest one is still too low. By
applying the in-line neutral density (ND) filters attenuate signals in several fibers with
higher intensity, the light intensity levels thrdugll the detection fibers are homogenized
and the dynamic range of the CCD camera is broaderee in-line ND filters in my

system are optimized in such a way that the sysmmeasure phantoms or tissues with
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a wide optical property range. Fig. 31 shows a @lodiight intensity obtained by a CCD

camera from five detection fibers.

Source Fiber Detection Fibers

(Incident Light) Scattering &

Absorbing
Media

Fig. 29 Light propagation and the detection of scaé¢red light by a fiber probe

n 1] 10 15 20 235 30
Distance frora illnrunation et (rara)
Fig. 30 Light intensity at tissue surface as a funion of distance from an illumination fiber

o o o
> o o)

o
[N

Normalized light intensity

Fig. 31 CCD camera image of light intensity obtaing by the five detection fibers

3.6.4 System calibration - Converting intensity to reflectance
As shown in Fig. 31, data from the CCD camera2six matrix that represents
light intensity in each pixel. Since the intensdl light from each detection fiber is

attenuated differently by the ND filters, the i@y matrix cannot tell us the direct
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information of the reflectance. The intensity mafriom each fiber should be converted
to reflectance which is defined as the fractiomafdent light from the illumination fiber

that is collected by this fiber. It is proportiortalthe ratio of intensity per unit time from
this fiber to the incident power (measured withcaver meter) or the ratio of intensity
within the exposure time from this fiber to theident energy within the exposure time.

These relations can be expressed by the followgug@ons:
R:B oc M: P (17)

P, R R*t E

whereP is the power of light collected through a detettiber in watts Py the incident
power from the illumination fiber in wattd, the dimensionless intensity from CCD
camerat the exposure time in seconds, dadthe incident energy within the exposure
time in joules. Therefore, there is a linear ielatbetween the reflectance and the
intensity per unit energy of illumination light feach detection fiber as shown below:
(18)

R=k. 1
E

0

wherek is a constant for a given detection fiber at a&giwavelength in joules.

The value ok for each detection fiber and at each wavelength etdained during
calibration. For a phantom with knowr andps’, R from each detection fiber and at each
wavelength was calculated from the condensed M&@wudo simulation and was
measured by the CCD cameia was the product of the incident powleg and the
exposure time. Then,k was calculated according to equation 6 and shoeraain
constant for samples with differepf andps. During calibration, a series of phantoms
were constructed as described in section 2.4 anasuned to determiné for each
phantom and fiber. For each fiber, a graptiRafersusl /E; was constructed and used to
determine a linear best fit. The slope of this mask. In all cases, the? values were
above 0.99. Oncé for each detection fiber at each wavelength wasioed, the
reflectance of a phantom with unknown optical prtipe could be calculated according

to equation 6. This process was performed with alaif& routine coupled into the
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LabView virtual instrument software. Thevalues were calculated once and occasionally
verified using phantoms. Drift &ffrom its original value was not significant. FRR~Fig.

36 show the relation betwe@&handl / Ey. The slopes of each trendline in these figures
are thek values. The whole process of dealing with data aaseved by a Matlab

routine coupled in the LabView control program.
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Fig. 35 Reflectance versus intensity per mJ of ilmination light at 445 nm
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Fig. 36 Reflectance versus intensity per mJ of ilmination light at 543 nm

3.71n vitro validation of the reflectance system

To evaluate the performance of the fiber optic edfince system and the
mathematical models, tissue phantoms were consttudtom deionized water,
polystyrene microspheres (Polyb&aMlicrospheres 1.0um, Polysciences, Inc.) and
hemoglobin (Hb) (hemoglobin A0, ferrous stabilizdsduman, Sigma HO0267).
Microspheres and Hb were chosen for their optigallarity to tissue scatterers and
chromophores within the UVA-VIS spectral range. Mgpheres of um diameter have
commonly been used to simulate the cellular anetstral protein scatterers in tisstfe
Theoretical estimates of phantumandys’ were determined according to Beer’s law and
Mie theory. From the spatially-resolved reflectgngg and us' were calculated by the
developed neural network based on 4 collectiorrdib®ystem accuracy was evaluated by
comparing the theoretical, and us' with the values predicted from diffuse reflectance

measurements.
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Results for four tissue phantoms measured at\aliiavelengths are shown in
Fig. 37. The phantoms included two levels of apgon and scattering, as indicated in
the graphs by Hb and polystyrene sphere concemmatiFigures 7 (a) and 7 (b) came
from the neural network based on two detectionréibEigures 7 (c) and 7 (d) came from
the neural network based on four detection fibBrsgeneral, these graphs show good
agreement between theoretical and measured dgbeciady for p,. Absorption
coefficient data display the well-known absorptsignature of oxyhemoglobin, including
a strong peak at 415 nm. While the 405 nm wavetenged in my measurements does
not coincide with the peak of the oxyhemoglobinaepson curve, the phantom, values
at this wavelength are more than 3 times greager # any of the other four wavelengths
studied. The average error in predictings 1.0 cnit for both Fig. 37 (a) and Fig. 37 (c).
Figures 7 (b) and 7 (d) display the expected marnotdecrease ips with wavelength.
It is worth noting that the greatest errorguihoccur at 325 nm — whege, is low anduy’
is high, which agrees with Fig. 20. The averagerdor ¢ estimates are 3.0 ¢hior Fig.
37 (b) and 2.7 cthfor Fig. 37 (d). Data points in Fig. 37 (a) and).F87 (c) appear in
pairs due to the fact that for egef two differentys’ were investigated, and vice versa in

Fig. 37 (b) and Fig. 37 (d).
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Fig. 37 Comparison of theoretical optical propertis (curves in the graphs) with estimates based on
reflectance measured with the fiberoptic system

3.8 Ex vivotissue measurements

Fresh porcine esophagus, bladder, colon, oral najcmsd liver tissues were
brought back to my lab in a cooler filled with icemediately after animals were
sacrificed. The colon, esophagus, and bladder wssected longitudinally. All tissues
were placed in a Petri dish and covered with gaupéstened with saline to prevent
desiccation after they were flushed with salinestmove excess materials on the surface.
The time between sacrifice and commencement of uneaents was approximately
three hours. According to a recent stifythese tissue handling procedures should have

been sufficient to avoid significant changes inleghnce, which can be altered by
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processes such as freezing and thawing. To pedameasurement, the fiber-optic probe
was placed gently on a tissue such that the tip fhesh with the tissue surface.
Reflectance data were collected at three diffesgat on each tissue. At each site, three
measurements were taken followed by a backgrourasunement with the light source
blocked. Each site was moistened with saline befoeasurements. All tissue samples
were measured within four hours of sacrifice. Tgpimeasurement-to-measurement
variation at a single site was approximately 1%e Tissue optical properties were
determined from reflectance datasets with inversaral network models (based on 2
collection fibers for liver and 4 collection fibei@r other tissues). To evaluate the optical
property results, forward condensed Monte Carloukations were run with the optical
properties obtained from neural networks. The geedrreflectance values for tissues at
different wavelengths were then compared with tlieasared values.

Averagep, andps' values measured in porcine liver and mucosal ¢ssi the
bladder, colon, esophagus and oral cavity frometissgine are displayed in Fig. 38. Data
in these graphs were calculated by the neural nmktlvased on reflectance from four
detection fibers, except for the liver data whiciisvbased on two detection fibers because
of its high absorption. When the two fiber approauid four fiber approach were
compared during mucosal tissue measurements, timefavas shown to have 7% greater
variability. However, very highly attenuating tigsumeasurements are limited by the
detector noise floor and the potential for therdehage due to higher irradiation levels.

The ex vivotissues show relatively consistent spectral treindg, and ps,
specifically, a decrease [, from 325 nm to 375 nm, followed by an increasd@5 nm
and consecutive decreases to 445 and 543 nm. dstinofus’ showed a monotonic
decrease with wavelength, although the magnitudéisfdecrease varied from tissue to
tissue.

Exceptions to these trends are also evident, naiably, the minimal decrease

in 1 with wavelength for colon tissue (Fig. 8 (d)) amtligher than expected value at
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543 nm for esophageal tissue (Fig. 8 (e)). Thesalts may be due to significant tissue
inhomogeneities, irregularities in placement of pinebe (e.g., an air bubble between the
probe and tissue), variations in laser power oresoambination of these issues.

The similarities in results are even greater fag #pithelial tissue samples:
bladder, colon, esophagus, and oral mucosa. Thessee$ show similar optical property
magnitudes as well, with, ranging from 1 cii to 15 cni andus ranging from 15 ci
to 65 cm'. In generalyl, of bladder and colon is higher thaa of esophagus and oral
mucosay of bladder is higher thans' of other tissues at 325 nm. While thg¢level of
the one non-epithelial tissue — liver — is similarother tissues, itg, is significantly
higher, likely due to high blood content.

The error bars in Fig. 8 demonstrate the signiticaariation in optical
properties found in this study. It is worth notitigt these error levels are approximately
equal to or less than the levels documented ititératuré****> For example, Zoniost
al. showed that the typical standard deviation of agbtiproperties of colons from
different animals were in the +30-50% ratije This level of standard deviation helps to
explain the wide variations in the optical propestreported in different papers, such as
Ha values of human colons at 475 nm measured as T2acm 2 crit in two different
papers*? %3 Our preliminary findings in comparing repeat sw@@ments at a single
location to measurements at different sites andlifferent animals indicate that a
significant portion of this variation may be dueltzal, regional or animal-to-animal
variations (e.g. collagen fibers, animal growthgs)a One possible source of error is
discrete blood vessels which it may be possibEctmunt for using correction factdfS.
Another variable may be the presence, thickness apittal properties of mucosal
epithelia.®® **” While several techniques for measuring the oppcaperties of multi-
layer tissues have been proposed, there is no meunsén the literature as to the best way

to accomplish this task, nor is there significasgue data using these proposed methods.
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Fig. 38 Optical properties of porcine tissues (avage values of three animals)

To evaluate the optical property results in Fig.i88a direct way, forward
condensed Monte Carlo simulations were run withdpgcal properties obtained from
tissues using neural networks. The generated taflee values were then compared with
the measured ones. Data on oral mucosa and liggrrasented in Fig. 39. In general, the
reflectance values from Monte Carlo simulation rhatt very well with the measured

values, providing further validation of my approascmonhomoneneous tissue.
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Fig. 39 Reflectance as a function of distance frogenter of illumination
fiber (r) (Hollow symbols indicate the values fromforward condensed Monte Carlo
simulations. Solid symbols indicate the measured izes.)

Table 4 provides a summary of relevant publisheth da tissue optical
properties. Some data in this table were estimiated printed graphs. The' of human
esophagus in Holmest al’s paper*** roughly matches my value at 325 nm. However,

the Y, is about six times higher than my value. The tesaf human esophagus by

12
l.

Georgakoudet al. *“ agree with my porcine results. The andpus of human colon in

Wei et al’s paper*? match my results of porcine colon, while fhevalues of human

}45

colon in Zonioset al's paper™ are higher than my porcine colon results and thgir

149

values are lower. From Ri&t al's paper ™, theirpy, values of porcine liver are lower

than mine angls’ values are higher. The values in Parsat al’s paper**°is consistent
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with my porcine results. Thejts' values are higher than mine. When comparing these
results, it is important to note that the opticabgerties may change during tissue
preparatiofi

As noted previously, the curves in Fig. 8 have ssvieatures in common. The
peak inp, at 405 nm is consistent with the established qointteat Hb is the dominant
chromophore for most tissues in the visible rangmwever, the intensity of this peak
relative to values at nearby wavelengths is mush tean shown in tissue phantoms, and
the decrease ip, from 325 nm to 375 nm is not consistent with thle-ddéminated
phantom results. These findings support the idatdt short visible wavelengths other
chromophores become increasingly significant. Adicg to the literature, tissue
constituents such as collagen, elastin, DNA andesother proteins (especially those
with high aromatic amino acid content such as ogpan and tyrosine) also contribute to
the absorption of UVA light*™*>3

Table 4. Optical properties from literature

Tissue Wavelengt p, Ms' Tissue Reference
h (nm) (cm®  (cm?®)  preparation
Human 330 24.7 30.5 Frozen, Holmeret al.
esophagus homogenized
Human 405 23 Fresh, bulkex  Georgakoudi
esophagus 445 21 Vivo et al.’?
543 20
Human colon 476-532 2.3-3.3 24.6- Fresh, slicedex Weiet al.'*
19.1 Vivo
Human colon 325 13 22 Frozen, sliced Zoniost al.
375 9 15 145
405 21 14
445 7 10
543 4 8
Porcine liver 405 45 30 Frozen, Ritz et al.**
445 20 18 homogenized
543 13 12
Rat liver 375 57 23 Fresh, slicedex Parseet al.
405 60 20 Vivo 150
445 42 19
543 20 15
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In order to clarify the role of structural proteissich as collagen, | have
performed preliminary spectrophotometric measurdésehcollagen (type I, bovine, BD
Biosciences 354231) absorption. These data aphgdain Fig. 40 along with the, of
Hb (hemoglobin AO, ferrous stabilized human, Sighti@267). Thep, of collagen
increases exponentially with decreasing wavelenghin the UVA range. Although the
absolute value of collagam, is two magnitudes less than that of Hb, the cbation of
other chromophores such as collagen and elast tf tissues can still be remarkable
considering the higher concentration of these clpbmores relative to Hb. Therefore, it
is likely that they, distributions in Fig. 38 are due to the superpmsiof Hb and other
chromophores such as collagen and elastin. Inutoeef, it may be possible to determine

the concentrations of these chromophores throdtyhgfialgorithms.
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Fig. 40 Absorption coefficient of Hb and type | cdagen

3.9Conclusion

Towards the goal of accuratevivo measurements of tissue optical properties, |
have constructed and evaluated a novel fiberoptseth system for optical property
measurement within the UVA-VIS wavelength range. Bfyproach involves a neural
network-based inverse model calibrated with refleceé datasets simulated using a

condensed Monte Carlo approach wijth up to 85crit and ps up to 118 crt.
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Theoretical evaluation of the inverse model shogedd agreement between calculated
and theoretical values. Experimental evaluationtiseue phantoms showed average
errors in predictingt, andpg of 1.0 cm* and 2.7 crt.

Optical property data collected in unprocessed rsaicand liver tissuesx vivo
provide evidence that the current approach canusediseful data on tissue optical
properties over a wide range of optical charadiess Significant tissue-specific
variations in scattering and absorption were fourfficattering coefficients decreased
monotonically with wavelength. Variations in aljgoon with wavelength indicate a
shift in primary chromophore from hemoglobin at ibie wavelengths to other
components, likely other proteins, in the ultragtol While significant variability in
optical properties was found for individual tisgypes, this variability tended to be less

than in prior studies. However, additional reseasateeded to investigate their origin.
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Chapter 4. OPTICAL STUDY OF SINGLE-LAYER
TISSUES WITH AN ILLUMINATION-DETECTION FIBER

4.1 Introduction

Reflectance spectroscopy has been demonstratec taséful for providing
biochemical and morphological information for mirilty-invasive detection of cancer in
mucosal tissues such as the cerjesophagus’, colori* as well as breast tissge
155 It has also been used for monitoring of tissuggeratiof” * and analytes such as
bilirubin *2°and glucos® * Furthermore, reflectance-based approaches #ialcfor
providing fundamental optical property data on dgital tissues which are used in
theoretical models and to extract intrinsic optiighals for disease diagnodis® These
tasks can be accomplished using imaging techniqudieroptic probes. Non-imaging
systems based on fiberoptic probes can be categoii#o two groups: those with
separate fibers for illumination and detectfdr?’” **°and those in which the illumination
and detection regions overlap, such as with a airiger °” 08 136 157 |5 thjs
dissertation | use the term “illumination-detectifiper” to denote this latter geometry.
While my study in Chapter 3 mainly focuses on tingt fgroup of fibers, | will focus on
illumination-detection fibers in this chapter.

lllumination-detection fiber geometries have bemplemented in clinicat®®*°*
and theoreticalt®®*** studies of fluorescence spectroscopy, as well\agiaty of studies
involving reflectance measurement from tissue. Moft al. developed a sized-fiber
probe for measuring local optical properties. Thabp included two fibers with different
diameters. Each fiber illuminated and detectedvs backscattered light at 632.8 nm.
198 Bargoet al studied how the collection efficiency of a singlatical fiber depended on
the optical properties of turbid medfd’. Amelink et al measured the local optical

properties of tissue with an approach that includedllumination-detection fiber and a
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detection fiber®”. Papaioannoet al investigated effects of fiber-optic probe desigmi
probe-to-target distance on diffuse reflectancesmesament of turbid media with a single
fiber probe®®.

Calculation of light propagation and reflectancestmbution in a tissue is
commonly performed using Monte Carlo modeling. \Wlatcurate, this approach can be
computationally inefficient. Various techniques balkieen developed to improve its
efficiency'** % The condensed Monte Carlo simulation introduceGimaffet al **is
theoretically transparent and relatively easy tplement. Palmer and Ramanujdffi
extended Graafét al’s condensed Monte Carlo method from a ray sotwca beam
source and from the total reflectance to the r&dleme with a detection fiber by
convolution. This condensed Monte Carlo method besn applied to accelerate the
simulation of reflectance by detection fibéfs However, these prior studies did not
address the single fiber approach.

In Chapter 3, | implemented a condensed MC methmdadcelerate the
simulation of reflectance measured by detectioarfibln this chapter, | have derived and
validated two convolution equations for the conéehdMonte Carlo simulation to
calculate the reflectance from an illumination-dét:n fiber. | also developed a scaling
equation to scale the maximum penetration depth ghoton. These equations, together
with those described in earlier papét **°extend the simulation capability of condensed
Monte Carlo method and can generate theoreticctahce of media with different
optical properties from both an illumination-detentfiber and several detection fibers
based on one primary Monte Carlo simulation. Wil éxtended Monte Carlo method, |
studied the influence of illumination-detectionditsize on the reflectance in a widg
and ug' range. The method was then implemented to studyetfect of illumination-
collection fiber diameter on the ability to disttngh between normal and cancerous
breast tissues using reflectance spectra. The oh@the also used to evaluate the additive

benefit of illumination-detection fiber data to inope the accuracy of diffuse-reflectance
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based tissue optical property measurements. Fjredfyct of optical properties, detection
distance from the illumination point, and size of Blumination-detection fiber on

detection depth were studied.
4.2 Condensed Monte Carlo simulation for an illumination-detection fiker

4.2.1 Convolution equations for an illumination-detection fiber

| have derived two convolution equations for ammlination-detection fiber .
They can be used to convert data from a primary 8i@Gulation of a ray source
illumination in a tissue with absorption coefficienf pasim and scattering coefficient of
MssimtO @ new set of data for a beam source in tisstiealsorption coefficient gl new
and scattering coefficient gfis new | assume that the system is circularly symmgiteg
the illumination-detection fiber is normal to a hogeneous medium and the system is
symmetric about the central axis of the fiber. thet fiber be centered at the origin with
radiusr;. Because the system is symmetric, a photon lauhah€x,0) with a net travel
distance of; may exit the surface anywhere along the circldered at (x,0) with radius
r (blue circle in Fig. 41) with equal probability.llAohotons launched from the circle
centered at origin with radius x (red circle in .Hd) have the san® value. Therefore,
the probability that a photon launched from a dacdiber will be collected by the same

fiber after traveling a net distancecan be calculated by

1 fi
p=——75['P-(2m)-dx
T (19)

wherepy is the probability that the photon launched a@)Xblue point) is collected by
the fiber and (2 x)-dx is the differential element of a small ar@acepy is a function of
rr andx, p can be expressed in different ways under diffecentitions:

@) re=2r

In this case, the photon can not be detected bijttbe p = O.
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(2) 0 <r¢<

If 0 <X <ri-r, po=1. Therefore,

p= ! - J'Ori_rtl- (27x) - dx
which can be simplified as
rL—r
p=(—4°
I

(20)

Fig. 41 Schematic of the fiber configuration (0 << ;)

If ri-r < X <rj, probability of a photon launched at (x,0) is eoted by the fiber

(Fig. 41) is
2 2 2 2 2 2
"+ X —r 1 1 r +xX —r
p, =2-cos [+——"] — =—- 0031[12—']
2-X-1, 2r 7 - X-T (21)
Substitution of Eq. 21 into Eq. 19 yields
1 o 1 2 +xX—r
p= 2.[ —-COSl[t—']- (Zm()dx
/A AR 2-X-T,
which can be simplified as
2 e ri X —r?
p= zj'r cosl[tz—']-x-dx
. r =T .X.
T X- T, (22)

Therefore, the probability that a photon launcheanfthe circular fiber will be collected
by the same fiber after traveling a net distancén the whole range of 8 x < r; and
under the condition of 0k <r;, can be calculated by combining Eq.(20) and E.§32

following:
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2 2 2
r—r, 2 BT EX T
p=("——1)2+ zj cos'[+———
I - h—r 2.X.rt

]- x-dx
(23)

B)ri<r <2

Fig. 42 Schematic of the fiber configurationr} <r; < 2r))
Probability of the photon launched at (x,0) is ecled by the fiber is:
rP+x*-r?. 1 1 [+ X —r’
p, =2-cos' [+————"].— ==.coS[+——"]
2-X-T, 2r 2-X-T,
If X <r¢-ri, p=0. To make sure a photon can be collected,ela¢ions ofr; - r;
<X <rj, ri+re > X, ri+x >ry andri+x >r; should be satisfied. In sum, the range of x should

ber; - r < x <r;. Therefore,

1 o 1 o riexior?
p= 2jr = .cos'[+——"——"1]-(22x) - dx
gor2den g 2-X-T,
which can be simplified as
2 o Xt
p=—- cos'[+——]-x-dx
71 2-X-1,

(24)
Eq. 23 and Eq. 24 can be used to convert data &gmmary Monte Carlo
simulation of a ray source illumination in a tistoea new set of data for a beam source

in the tissue.

4.2.2 Scaling equation for maximum penetration depth
Eq. 13 in Chapter 3 shows the scaling equationatoutate the distance from
entrance to exit of a photon in a tissue with giwegtical properties according to data

from a primary Monte Carlo simulation with optiqadoperties ofi, sim andps sim In the
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same way, the maximum depth that a photon penstiate a tissue with optical

properties ofla new@ndps newCan also be calculated with a similar equatiofolswing

d . d /us,sim + :ua,sim
new — “sim’ (
/us,new + :ua,new

(25)

wheredsim is the maximum penetration depth of a photon ftbenprimary Monte Carlo
simulation andd,ey is the maximum penetration depth of this photoraitissue with

different optical properties from the primary one.

4.2.3 Condensed Monte Carlo model

The principle of condensed Monte Carlo modeling haen described in
Chapter 3. In this chapter, convolution equatioh&ep 23 and Eq. 24 were coupled into
the condensed Monte Carlo model developed in Ch8pte calculate reflectance values
from illumination-detection fibers. The parametérroin these equations has the same
meaning asnew in Chapter 3. Besides, the scaling equation of Zsqwas also coupled
into the model to calculate the maximum penetratiepths of detected photons. The
geometry used in the simulations replicated thegdesf my fiberoptic probe. A diagram
of the probe face is shown in Fig. 43. The prob#aias linearly arranged fibers, a single
illumination-detection fiber and five detection dits, spaced at consecutive center-to-
center distances of 0.5 mm. The core diameter df &ber is 0.2 mm with a numerical
aperture (NA) of 0.22. This model was used througtbis chapter and parameters and

details of this model are the same as those int€h&pf not otherwise specified.

00000 e lllumination-detection fiber
12345 °© Detection fiber

Fig. 43 The 4 mm diameter face of the fiberoptic pbe
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4.2.4 Evaluation of convolution equations for an illumination-detection ber and
the scaling equation for maximum penetration depth of a photon

The accuracy of Eg. 23 and Eq. 24 was evaluatetbmparing the reflectance
from condensed Monte Carlo simulations with thabnfr standard Monte Carlo
simulations. A series of optical properties withvalues as 1, 10, 20, 30, and 40 cand
H¢ values as 5, 15, 25, 37.5, 50, 62.5, 75, 87.5180dcm’ (Fig. 44) were employed to
evaluate the equations for two illumination-detactfibers with radii of 0.1 mm and 0.5
mm respectively. Fig. 45 shows the evaluation tesul the form of reflectance from
condensed Monte Carlo simulations versus refleetafnom standard Monte Carlo
simulations. The dashed line in Fig. 45 is wheeer#sults from both methods are same
(0% error). The average errors from the condensedt®ICarlo simulations were found
to be 6.3% for the fiber with radius of 0.1 mm @&nd% for the fiber with radius of 0.5
mm. In general, less reflectance signal will beeditd with smalleps, largerp,, and
smaller fiber radius, which in turn will bring laggerror. The effect of smalis' on the
average error of condensed Monte Carlo simulatisnsignificant. If the evaluation
results fromps' of 5 cmi* (grey symbols in Fig. 44) are excluded, the averagor will
become 5.1% for the fiber with radius of 0.1 mm &tz for the fiber with radius of 0.5
mm.

The condensed Monte Carlo simulations are not aotyirate, but also fast. The
calculation time of both standard and condensedt®@arlo models is proportional to
the number of photons. Fig. 46 shows the calculdiime of both methods for 40 million
photons using a computer with 2992 Mhz processdrla®B physical memory. For the
standard Monte Carlo simulation, smaller and/or biggenus can significantly slow
down the speed (Fig. 46a). For the condensed MGaro simulation, however, the
speed will be reduced mainly by biggef (Fig. 46b) and bigger radius. For illumination-

detection fibers with radii of 0.1 mm and 0.5 mmondensed Monte Carlo reduced the
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calculation time by three orders of magnitude ama orders of magnitude respectively,

compared with the standard Monte Carlo model.
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Fig. 44 Optical properties for evaluation of Eq. 23and Eq. 24
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Fig. 46 Simulation speeds of (a) standard Monte Chr (in minutes) and (b) condensed Monte Carlo
(in seconds) models for an illumination-detectionilher with radius of 0.1 mm

To evaluate Eq. 25, the average values of maximemefpation depths of
detected photons from condensed Monte Carlo simuoktwere compared with those
from standard Monte Carlo simulations. Maximum dete depths of twelve tissues
with optical properties shown in Table 5 were siatedl. The average maximum
penetration depth of photons detected by the ithatmdn-detection fiber and detection

fibers (Fig. 43) were calculated with both condehddonte Carlo simulations and
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independent Monte Carlo Simulations (Fig. 47). Agdhe line in Fig. 47 is where the
standard Monte Carlo results are the same as ceedévionte Carlo results. The legend
in the figure shows the fiber center distance ftbm illumination point. Since all points

fall right on the line or close to the line, thealieg equation for maximum penetration
depth of a photon is proven to be accurate. Alsomfdifferent symbols for each

detection fiber, we can see that a fiber furthemfithe illumination point usually detects
photons that penetrate deeper into the tissue.

Table 5. Optical properties for evaluation of the saling equation
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Fig. 47 Average values of maximum penetration deptirom condensed MC simulations versus the
values from standard MC simulations

Accuracy of the condensed Monte Carlo technique fuaher evaluated by
simulating reflectance values of tissues with ddfe optical properties from both the
illumination-detection fiber and detection fibefig. 48 shows the reflectance values
from a fiber probe shown in Fig. 43. In this figuh®mllow symbols are from condensed
Monte Carlo simulations and solid symbols are frstandard Monte Carlo simulations.

The legend shows the different optical propertresimulations. From the figure, results
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from the condensed Monte Carlo simulations almwestlap with those from the standard
Monte Carlo simulations. Fig. 49 shows the refleceafrom condensed Monte Carlo
simulations versus that from standard Monte Cartwkations, the same data as in Fig.
48 but shown in a different way. The dash line nere the values from condensed Monte
Carlo simulations are equal to those form standdotite Carlo simulations. There is

only 1% deference in reflectance values betweertdheensed Monte Carlo simulations
and the standard Monte Carlo simulations exceptvtiees from the fourth and fifth

detection fibers whep. is 30 cm* andp’ is 15 cnt* (There is 27% difference at these
two points, which means the error in reflectanceraases with distance from the
illumination site and with absorption coefficienfig. 48a shows that the reflectance

from the illumination-detection fiber is not sengitto p, while p¢ is smaller than15 cth
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4.3 Effect of fiber diameter on reflectance from an illumination-detetion fiber

Based on condensed Monte Carlo simulations, tharikbgnic contour curves of
reflectance values from illumination-detection fibevere obtained for fiber radii of 0.05,
0.1, 0.2, 0.3, 0.4, 0.5 and 5 mm. Totallyj8¥alues ranged from 0.1 ¢hto 40 cni and
44 14 values ranged from 0.1 ¢hto 100 cnT were applied for each fiber size. In other
words, 1628 simulations were performed for eachtaxmgraph. Fig. 50 shows the
results for fiber radii of 0.05, 0.2, 0.5 and 5 mmspectively. Fig. 51 shows the
reflectance of four optical property sets as a tioncof radius.

Fig. 50 indicates that the sensitivity of reflectarto optical properties varies
with p, and ps' (similar contour figures for detection fibers dsown in Fig. 43 are
available in Fig. 18). A steeper slope at a pomplies that the reflectance is less
sensitive tgus at that point. On the other hand, a shallowereslapa point implies that
the reflectance is less sensitive jig. The figure shows that reflectance from an
illumination-detection fiber is not sensitive fig at low s values, especially for a fiber
with small radius. The same conclusion can alsodi@vn from the fact that the

difference between the two dashed lines is sméllar the difference between the two
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solid lines in Fig. 51. Unlike the reflectance frather detection fibers which was not
sensitive tqus’ at all at certain optical ranges as shown in Egj.the reflectance from the
illumination-detection fiber is sensitive (@' over the entire optical range pf from 0.1
cm™ to 40 cm* andps’ from 0.1 cn to 100 cn-

Graphs in Fig. 50 provide quantitative insightoirthe effect of fiber size on
sensitivity of reflectance to optical propertiesof Fig. 50, there is an increase in
“slope” of the contour lines with fiber radius, whitranslates to an increase in sensitivity
to changes inu,, likely due to the greater probability of detegtitonger pathlength
photons. For example, whep,is 10 cm* andps changes from 10 cfto 30 cn, the
change in reflectance is 6.9x1fbr the 0.1 mm radius fiber and 1.2x1®or the 0.2 mm
radius fiber. Fig. 51 also shows that bigger fisere can distinguish the reflectance
difference more significantly.

Since the condensed model can be used to buildrgp Hata sets such as these,
this approach may help to facilitate the developnoémapid optical approaches based on

extensive “lookup tables” such as that recentlyppeed by Rajaram et ¥f.
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Fig. 51 Reflectance as a function of fiber radius
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4.4Reflectance from an illumination-detection fiber to improve the accuracy of
neural network

By applying the condensed Monte Carlo techniquigatance datasets within a
wide range of optical properties|in (0.1-85 cnt) andps’ (0.1-118 crit) were generated.
In total, 2805 datasets with an even 2.5'@pacing for botty, andps while pz>30 cni
andps>5 cm’® and a smaller spacing whife<30 cm® or pg<5 cm’® were obtained, as
well as 220 random datasets. There were 8 valuesch dataset 4, Mg, reflectance
values from five detection fibers, and the reflacevalue from an illumination-detection
fiber (There was no this value in Chapter 3). TBO@32datasets were used to train and
evaluate feed-forward back-propagation neural ndtwaodels. Each network consisted
of an input layer, a hidden middle layer and arpoutayer. The input data were a matrix
of reflectance values. Of the 2805 datasets gesteriibm condensed Monte Carlo
simulations, two-thirds were used for training amuk-third was used for evaluation
during training. The 220 random datasets were usee@valuate the trained neural
networks.

In order to evaluated influence of the illuminatidetection fiber and quantity of
other detection fibersi.¢., the matrix size of the reflectance datasets asitinfor
performing optical property estimations with a reduretwork, two sets of neural network
models (NNsetl & NNset2) were generated accordindpé 2805 datasets. Reflectance
values from different fibers were used in differaetural network models. NNsetl was
based on reflectance values from the illuminatietedtion fiber and 1, 2, 3, 4 and 5
detection fibers respectively (In other words, ¢hearere respectively 2, 3, 4, 5 and 6
reflectance values in the feed in matrix to eadlralenetworks.). NNset2 was based on
reflectance values from 2, 3, 4 and 5 detectioarfilrespectively (In other words, there
were respectively 2, 3, 4, and 5 reflectance vainabe feed in matrix to each neural
networks.). These neural network models were thaluated with the 220 random

datasets from condensed Monte Carlo simulations.
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To test the robustness of these neural networkssenwas added to the
reflectance values of the 220 random datasetshapt@r 3, up to 5% random noise was
added to the reflectance. For any reflectangdtfe feed value to a neural network will be
R=R * (1+ 5% * Rand), whereRandwas an evenly distributed random real number
greater than -1 and less than 1. However, the fiaae an actual optical system may not
behave this way. To simulate the actual noise obptical system, tissue phantoms were
constructed from deionized water, polystyrene nspheres (Polybead® Microspheres
1.00 um, Polysciences, Inc.) and hemoglobin (Hb) (hemmigld®,, ferrous stabilized
human, Sigma H0267). The reflectance of each phamtas then measured three times
with the system. The reflectance values from eaatldtion fiber in each measurement
were recorded and their standard deviations wereuleéed. By analyzing the
relationship between the reflectance values and #teandard deviations, the noise
characteristics of the optical system can be detemn Fig. 52 shows the standard
deviation characteristics of the optical systeme Tigure shows that the standard
deviation has a power relation with the reflectance

SD = 0.00027 * R-%° (26)
where SD is standard deviation ang iR reflectance. This standard deviation might be
the results of noise from the CCD camera, shotenarsd laser noise from the system.
Therefore, noise can be added to the reflectanitefallowing equation

R =R+ SD *RandN (27)
where R is the reflectance with noise d@dndNis a random number drawn from a
normal distribution with mean zero and deviatioe.on

Table 6 summarizes the absolute errors from thiuatrans. From this table, the
absolute errors of optical properties from NNset2rdase with an increasing number of
detection fibers except for the five-fiber netwavkich shows similar accuracy with the
four-fiber network. This is likely because the dezanoise in reflectance at highh and

WS for fiber No.5 renders the reflectance from detecfiber No.5 of little use. On the
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other hand, the absolute errors of optical propertiom NNsetl have almost the same
level of error for all the neural networks and téeel is significantly less than that from
NNset2, which means accurate optical properties lbanextracted just from the
reflectance of the illumination fiber and one separdetection fiber. However, at least
three fibers (one illumination and two detectiobefis) are needed to measure optical
properties if the illumination fiber does not measweflectance signal. Probe with less

optical fibers could be coupled into an endoscaseee.
1.E-06

- 0.85
LEQ7 | ¥=0.00027x .

1.E-08 -
1.E-09 -
1.E-10 -
1.E-11

1.E-12

Standard deviation of reflectance

1.E-13

1.E-14 : ‘ ‘ ‘ ‘
113 1F11 1E09 1E07 1E05 1.E03
Reflectance

Fig. 52 Standard deviation of reflectance with tred line

Table 6. Absolute errors of neural networks (crit)

lllumination fiber Number of detection fibers except the illuminatfdoer
used for
detection?

1 2 3 4 5

Ha M’ Ha vy Ha vy Ha M’ Ha M’
Yes (NNsetl) 0.03 0.06 0.03 0.06 0.03 0.06 0.03 0.06 0.03 0.06

No (NNset2) - - 0.32 0.41 0.39 0.38 0.22 0.28 0.24 0.25

4.5Reflectance spectra of breast tissues from illumination-detecticitbers
Any structural and biochemical changes associatédd abnormal changes in a

tissue will result in its optical property changesich will in turn result in the changes of
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reflectance spectroscopy. Because of its fast speedondensed Monte Carlo method |
developed can help us to quantitatively understaedspecific contributions of changes
in optical properties by a pre-cancer to the ovespéctral response. Parameters and

details in the primary MC simulation were the samehose in our previous paffer
20

pa_Malignant
------- ya_Adipose
ys'_Malignant
= = = =ps'_Adipose

15 +

10 { -

M, & W' (cmt)

400 420 440 460 480 500
Wavelength (nm)

Fig. 53 Optical properties of breast tissue from terature

The reflectance spectra of adipose and malignadsbrtissues were simulated
with condensed Monte Carlo model according topthandps data as shown in Fig. 53
from a prior papef®. Thep, andps data were read every 5 nm from 400 nm to 500nm
from the paper. The influence of fiber radius oftextance spectra of the adipose tissue
was also studied. Fig. 54 shows the reflectancetigpef adipose and malignant breast
tissues for illumination-detection fibers with radf 0.05, 0.2, 0.5 and 5 mm. The 5 mm
radius fiber is to simulate an imaging probe wtgah collect more reflectance signal and
detect deeper into tissues. Each reflectance spesttas normalized to the total detected
reflectance Rt Increasing fiber radius tended to exaggeratel lo@xima and minima
and increase collection efficiency. The former effis similar to that seen for multiple
fiber probes at different separation distancesrandt likely due to increased sensitivity
to longer photon trajectories, which are more gipraffected by absorption. While

spectra calculated for adipose and malignant tssboéh show the effects of strong HbO
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absorption near 415 nm, significant differencestletween these tissue types. Fig. 55
shows the percentage change of reflectance of naaligoreast tissue compared with that
of adipose breast tissue. The figure shows thajetaradius fibers increased the

percentage change which may help to distinguishlstnanges in a tissue.
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------- Adipose, r=0.2 mm, Rt=0.055 ]
0.025 { ———Adipose, r=0.5 mm, Rt=0.090 .
- - - = Adipose,r=5 mm, Rt=0.178 :
I
x 0020 - ;
B .
S 0.015 - !
© ’
£ , /.
S 7 -
< 0.010 | —
0.005
0.000 ‘ T T T
400 420 440 460 480 500
Wavelength (nm)
(a)
0.030
—— Malignant, r=0.05mm, Rt=0.034
------- Malignant, r= 0.2 mm, Rt=0.082
0.025 .
= Malignant, r=0.5 mm, Rt=0.153
- - = =Malignant,r=5 mm, Rt=0.392
0.020 ‘

Normalized R

400 420 440 460 480 500
Wavelength (nm)

(b)

Fig. 54 Reflectance spectra of adipose and maligniloreast tissues from illumination-detection fibers
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Fig. 55 Percentage change of reflectance of maligmzbreast tissue

4.6 Maximum penetration depth of a photon and detection depth of a fiber

It is known that the signal detected at a locafimther from the illumination
point usually travels a longer distance and petedrdeeper in the tissue. While some
researchers have engaged in the depth-resolvecedicence measurement with fiber-
optic probes®* %317 the study about depth-resolved reflectance detewtith a fiber-
optic probe is insufficient. Papaioanneti al have investigated effects of fiber-optic
probe design and probe-to-target distance on dffeflectance measurements. They got
the internal flux distributions of photons collettie the form of contour§® Amelink et
al. developed a differential path-length spectrosceyych included an illumination-
detection fiber and was sensitive to the opticapprties in the most superficial layer of
the tissue'®” However, they did not study the probing depthffitoet al constructed a
sized-fiber reflectometry for measuring local ogtiproperties. They showed a few data
about the depth where an absorbing plane embeddiaghantom absorbed 50% of the
reflectance signal. However, these data only sh@pezific case and is not a profound
study about probing deptf®

In this section, | systematically study the detattdepth by both illumination-

detection fibers and detection fibers. The methbéxpressing detection depth by the
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maximum penetration depth of detected photons wasstigated with the condensed
Monte Carlo model. Weisst al introduced the idea of penetration depth witkasigtical
method on the basis of a lattice random-walk mt@ieTheir results showed that the
average of the maximum depth probed by photonsethiathe media at a distancérom

the illumination point had a linear relationshipttwi?

at sufficiently greatr value.
While being a pioneer study, this research only$oon the average of the maximum
penetration depth and the so called ‘sufficientlgagr value’ is not a precise definition.
Besides, they did not prove that this conclusidd breie for all optical ranges.

In my simulations, new convolution equations foe tllumination-detection
fiber (Eq. 23 and Eq. 24) and scaling equatiomiaximum probing depth (Eg. 25) were
coupled with the condensed Monte Carlo simulatiasell on our initial stud% The
parameters in simulations are the same as thos&hapter 3 except those otherwise
specified. For each escaping photon which was gekby the acceptance angle, its
maximum penetration deptls(,) was recorded besides the number of interactiatis w
scatterersN), the distance from illumination point to exitipgint (rsir), and its weight
(Wsim). To simulate a medium with new absorption coefht (Uanew and scattering
coefficient (isney), Scaling was performed for each photon to obtaw maximum
penetration depthdfen), New distance from illumination point to exitipgint (new) and
new weight of the remitted photohVi{e,) according to scaling equations. Convolution
equations were used to calculate the possibilay #m escaping photon was detected by a
fiber. The probe geometry was same as shown ind3gAfter scaling and convolution
calculation, the new database was sorted baseld.gm ascending ordekMe,Was then
numerically integrated witlle,, and normalized to the maximum value and shown as a
function of depth. Fig. 56 shows the simulatioruftssin four different optical property

ranges: lowda-low-ps, low-pg-high-s, high{ug-low-pg and highpia-high4us'.
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(4)

Fig. 56 shows the normalized integration of refiece from top to bottom as a

function of maximum penetration depth. Similar wittepth-resolved fluorescence
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study®® 167 189 we defined a percentage detection depth of diffieflectance. A 90%
detection depth was defined as the largest valubeofnaximum penetration depth that
90% of the total detected photon (in term of weliglain penetratestc From Fig. 56, the
detection depth of any percentage can be readeriergl, the detection depth decreases
with increasingu, or ¢ value. Fig. 56(1) and (3) implies that the detactilepth by the
illumination-detection fiber is significant shallewthan other detection fibers whegis

low. Table 7 shows some data read from Fig. 56. 5fgshows detection depth as a
function of square root of center position of datetfibers according to Table 7. Weiss
et al’s conclusion of “the average of the maximum dgpibbed by photons that exit the
media at a distanaefrom the illumination point have a linear relatibis with r*/2 168
can be drawn from the curve of 50% detection depffig. 57 (1) which shows the case
of low P, and low s values. Even more, this conclusion can be exteridesother

percentage detection depth. However, this conatusiomot true for other optical property

ranges as show in Fig. 57 (2)-(4) since lines @séhgraphs are not straight.

96



Table 7. Detection depth of fibers into differentissues (cm)

Percentage of detection signal from top to bottom

Tissue Fiber

optical center

properties | position | 10% |20% |30% |40% |50% |60% |70% |80% | 90%

(em™) (mm)

Ha He'
0 0.004 | 0.007| 0.012] 0.016 0.02p 0.025 0.0B4 0.0450670
0.5 0.038 | 0.053] 0.066 0.079 0.091 0.105 0.124 0.148194

1 5 1.0 0.050 | 0.070| 0.087 0.10 0.116 0.134 0.157 0.192241
1.5 0.063 | 0.083] 0.102 0.119 0.139 0.1%58 0.183 0.21H279
2.0 0.075| 0.099| 0.117, 0.137 0.160 0.181 0.208 0.248307
2.5 0.087 | 0.112] 0.136 0.156 0.175 0.199 0.232 0.26¥337
0 0.002 | 0.004| 0.006) 0.008 0.01p 0.013 0.016 0.0210310
0.5 0.017 | 0.022] 0.027 0.031 0.036 0.042 0.049 0.08R079

1 35 1.0 0.031 | 0.039| 0.045 0.052 0.059 0.067 0.078 0.098117
1.5 0.042 | 0.052] 0.061 0.071 0.081 0.091 0.104 0.171149
2.0 0.056 | 0.070/ 0.083 0.093 0.102 0.116 0.132 0.15D184
2.5 0.071 | 0.085| 0.096 0.107 0.119 0.134 0.149 0.17201
0 0.002 | 0.004| 0.006) 0.009 0.011 0.014 0.017 0.0230320
0.5 0.016 | 0.023] 0.0300 0.035 0.041 0.048 0.056 0.06%1080

20 |5 1.0 0.022 | 0.031] 0.035 0.042 0.049 0.0%57 0.066 0.07r094
1.5 0.025 | 0.037| 0.047 0.054 0.064 0.0y1 0.078 0.088108
2.0 0.034 | 0.047| 0.056 0.062 0.070 0.080 0.093 0.1@121
2.5 - - - - - - -
0 0.001 | 0.003| 0.004/ 0.005 0.00f 0.009 0.011 0.0130180
0.5 0.012 | 0.015] 0.01§ 0.021 0.024 0.027 0.080 0.035042

20 | 35 1.0 0.020 | 0.025| 0.029 0.032 0.035 0.039 0.043 0.042057
1.5 0.026 | 0.032] 0.036 0.04 0.044 0.049 0.054 0.081072
2.0 0.031 | 0.037| 0.042 0.047 0.053 0.060 0.065 0.07082
2.5 0.038 | 0.046| 0.047, 0.055 0.062 0.069 0.076 0.08r099
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To study the influence of an illumination-detectiGber’'s size on detection
depth, similar simulations as described above wameed out. The only different is that a
series of illumination-detection fibers with diféett sizes were used instead of a fiber
probe as shown in Fig. 43. A group of graphs simi@&h Fig. 56 were obtained as
shown in Fig. 58. Again, the simulation results arefour different optical property
ranges: lowda-low-s, low-a-high4us’, highqa-low-pg and highpie-high4us. From Fig.
58, the detection depth by an illumination-detetctider increases with increasing fiber
size. However, their relation is not linear. Thergase of detection depth with increasing
fiber size is more significant while the fiber sigesmaller. In general, the detection depth
by an illumination-detection fiber is small in ahe optical ranges. Take the 80%
detection depth by an illumination-detection filkath radius of 0.5 mm as an example:
the detection depths as shown in Fig. 58 are 0ch40.044 cm, 0.034 cm and 0.021 cm
respectively. These small numbers explains whyllamination-detection fiber is idea
for optical property measurement of superficiaduiss. Graphs in Fig. 58 also show that

detection depth is sensitive to optical properties.
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(Legends in graphs are the radii of illumination-deection fibers. )
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4.7 Conclusions

In this study | have developed and evaluated twovalution equations for
reflectance calculation of an illumination-detentiiber. Simulations with the condensed
Monte Carlo model show that:

(1) Reflectance from an illumination-detection fibenst sensitive tq, at lows' values.
There is a relative increase in sensitivitytpwhen the radius of an illumination-
detection fiber increases, likely due to the gregbability of detecting longer
pathlength photons.

(2) Neural network results within the optical properyge ofil, up to 85 crit andps’ up
to 118 cm show that more accurate optical property resudts loe obtained if the
reflectance values from the illumination-detectiiper are added into the neural
network.

(3) Simulated reflectance spectra indicate that maatiios in fiberoptic probe geometry
may lead to enhanced discrimination between adipoge malignant breast tissue.
Increasing fiber radius tended to exaggerate lat@ima and minima and increase
collection efficiency. The former effect is similer that seen for multiple fiber probes
at different separation distances and most likely tb increased sensitivity to longer
photon trajectories, which are more strongly a#ddiy absorption.

(4)By introducing the maximum penetration depth intondensed Monte Carlo
simulations, | developed the idea of percentageatien depth. For instance, 90%
detection depth was defined as the largest valtlieeoinaximum depth that 90% of the
total detected photon (in term of weight) can pexiet For any tissue with given
optical properties, the detection depth of any @et@age number can be quantitatively
determined with a condensed Monte Carlo simulatiorgeneral, the detection depth
decreases with increasing, or ys' value. The detection depth by an illumination-

detection fiber is significant shallower than otdetection fibers.
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(5) The detection depth by a fiber with a distané@m the illumination point has a linear
relationship withr”? whenp, andpy’ are small.

(6) The detection depth by an illumination-detectidvefiincreases with increasing fiber
size. However, their relation is not linear. Therease of detection depth with
increasing fiber size is more significant while fiteer size is smaller. In general, an
illumination-detection fiber is idea for optical gmerty measurement of superficial

tissues since the detection depth by an illumimatietection fiber is small.

104



Chapter 5. OPTICAL PROPERTY MEASUREMENT OF
LAYERED TISSUES

5.1Introduction

In prior light-tissue interaction studies, it haffea been assumed that the
investigated tissue is homogeneous. However, mateynal tissues such as esophagus,
colon, and bladder consist of two or more layerng.(59). Optical properties from a
homogenous model for a layered tissue reflect sbolk or average values of the
tissue!’® However, these optical properties are not accwaliges of any specific layer.
Since neoplasia originates in the epithelial lagéudying light-tissue interaction in this
layer will likely provide insights into early opat detection of neoplasia. On the other
hand, complete optical isolation of the epithelaler is nearly impossible. Therefore,

techniques capable of determining the optical ptegse of multiple tissue layers are

needed in order to elucidate light propagation utasal tissues.

Overall
What if detection improved? Early ~ Stagel  Lung Cancer
Pre-invasive Survival  Survival 15%
0,
PROGRESSION OF CANCER Stage 0 70% R
Survival

74% - 92%
precancer o om

(STAGE O)

GENETICALLY MILD MODERATE SEVERE
ALTERED CELL HYPERPLASIA DYSPLASIA

[re »

T

Early detection allows early intervention.
Both are key to improved lung cancer survival.
Fig. 59 Cancer developed from superficial layer

Monte Carlo based models are the most accurateafdrwnodels for light
propagation in tissues although they are computaliyp intensive. The methods to

increase the efficiency of Monte Carlo modelinglude two categories: the methods
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accelerating a single Monte Carlo simulation and thethods taking advantage of
information generated by a small set of Monte Canimary simulations (also called
baseline simulationsf* Of the two groups, the latter has the advantagiasiér speed
for a number of simulations. Two representative hods of the second group are
perturbation methdd® " and multi-layer scaling methdd'.

The perturbation method begins with a primary Mo@t&lo simulation of a
multi-layer tissue and records the number of doltis and the total path length of each
photon in each layer, from which the photon weifybtn tissues with different optical
properties can be calculated through a perturbaggoation. The limitation of
perturbation method is that it is only effectiveeo\a range of absorption (50 - 400% of
baseline values) and scattering (70-130% of basalalues) perturbatiof$. When a
neoplasia develops in a tissue, the scatteringgptypphange can be far beyond this range.
Collier et al reported thafis of normal cervical tissue was 22 ¢rwhile ps of cervical
intraepithelial neoplasia Ill was 117 &t Therefore, the perturbation method may not
be valid for many tissue conditions.

The multi-layer scaling method begins with a priynisionte Carlo simulation of
a homogeneous tissue with tens of imaginary layenshich the exit weight, the x and y
offsets and the number of collisions of each phatozach layer were recorded. From the
primary simulation data, the trajectory informatioh photons in multi-layer tissues is
derived through several scaling equations. The cwenprequirement is high for the
scaling method since huge amounts of data need podressed and stored.

Optical properties of layered tissues such as nauebaultraviolet and visible
wavelengths are needed to elucidate light propaganechanisms involved in optical
spectroscopy devices. Prior approaches to megstinis data have typically been based
on spatially-resolved reflectance. However, thagproaches have limitations, some of
which are not well understood. Therefore, the cbjes of this study were (1) to

elucidate the relationship between spatially-restlveflectance distributions and optical
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properties in two-layer tissue and (2) introducd assess an unconstrained approach to
optical property measurement. The first part &f gtudy involved calculating reflectance
from two-layer tissue for a wide variety of optigabperty combinationguf = 1-22.5,u¢

= 5-42.5 cri) using a Monte Carlo scaling technique. Subsetfyiea Neural Network
inverse model trained with the aforementioned teswlas evaluated using simulated
reflectance data. This relationship between oppcaperties and reflectance provides
fundamental insights into the strengths, weaknessdgotential limitations of strategies

for optical property measurement based on spatieiglved reflectance.

5.2 Multi-layer Monte Carlo simulation

Multi-layer Monte Carlo model is similar with sirgglayer Monte Carlo model.
The main difference is that the program should guddnether a photon will cross the
interface between two layers and calculate the dewection and step size when the
crossing occurs. Although the simulation speed witiflayer Monte Carlo is relative low,
it is still essential to develop an accurate progta evaluate the simulation results of
other methods. Also, such an accurate programeiduhdament of Monte Carlo based
fast simulation.

A Matlab program was constructed to do the muiteta Monte Carlo
simulations. The results of one simulation are showFig. 60 and Fig. 61. Parameters of
this simulation are shown in Table 8. In the sirtiala 2,000,000 photons were lunched
vertically into the tissue. The Henyey-Greenstdiage function was used to mimic the
scattering angle. All the escaped photons werectizte

Table 8. Monte Carlo simulation parameters of a 3dyer tissue

Top layer Middle layer Bottom layer
n 1.37 1.37 1.37
Ha (cm?) 1 1 2
He (e 100 10 10
g 0.9 0 0.7
Thickness (cm) 0.1 0.1 0.2
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Light Intensity (1/cm3,logarithmic scale)
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Fig. 61 Reflectance signal on top of a 3-layer tiss
To verify the accuracy of this multi-layer Monte l@amodel, a simulation was
run with the same parameters as in litterafliré"2and their results were compared (Fig.
62 and Fig. 63). From these figures, both simutattorves overlap the curves from

literatures, which imply the accuracy of the midtrer Monte Carlo program.
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Fig. 62 Diffuse reflectance as a function of radius a 3-layer Monte Carlo simulation
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Fig. 63 Transmittance as a function of radius in 8-layer Monte Carlo simulation

5.3 Multi-layer fast Monte Carlo simulation

The multi-layer fast Monte Carlo simulatitf is similar with the scaling

method for a single-layer tissue described in $act3.3 of Chapter 3. The main
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difference is that more data must be recordedarmptimary Monte Carlo simulation and
the scaling equation must be applied in each layerthe current study, a primary
simulation was run at first, in which the Henyeye@nstein phase function was use to
simulate the scattering angles. The baseline medimsmmhomogeneous and semi-infinite
with optical properties ofiag, Mso @and g and was divided into ), fundamental layers as
shown in Fig. 64. A total of Mown photons were launched. For each photon, its exit
weight (w), its x offset (%, Xy, ...), y offset (% Vb, ...) and the number of collisions {N
Np, ...) within each fundamental layer were recordeal.c@lculate the exit position and
exit weight of this photon out of an n-layer tissuéh total attenuation coefficient ofig,

M2, ..., Uin), @lbedo of ¢, ay, ..., ap), the thickness of each layer,(d,, ..., d)) should be
converted to thicknesses of pseudolayers @4, ..., dy’) corresponding to the baseline

medium according to following equations:
d, "= dyx s,/ g

d,"=d,x .,/ 1 (28)

d,'=d xu,/ 1,
Fundamental layers can then be classified into ougg, each corresponding to a
pseudolayer layer thickness of the n-layer tisdtig. (64). The photon’s x offset {x
Xz, ...), y offset (y, y», ...) and the number of collisions {NN,, ...) within each
pseudolayer are the sum of these values of eadmpgod fundamental layers. The
horizontal exit distance of the photon out the tagletissue (r) can be calculated

according to following scaling equations:

X:Zn:(xi@

i=1 ti
_ Ny, Mo
y ;(y' m

r=+x°+y° (29)

The exit weight of the photon out of the layeredie (w) can be calculated according to
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W= W, - f[ (%) N (30)

According to r and w values of all the exit phototis reflectance values at different
positions and by different fiber geometries cancakulated with the same convolution
equation in Chapter 3 (Eqg.15 and Eqg.16) by sultstgure, With r and Wey With w. To
calculate reflectance value from an illuminatiortedéion fiber {.e. the illumination fiber

is also a detection fiber), | developed two newwvobation equations to calculate the
probability*® that a photon launched from a fiber will be caketby the same fiber after
traveling a net distanag (wherer; is the radius of the fiber):

r—r 2 Lriex?or?
p=(—)+ zj cos[+——1] - x-dx
I Al

i— T 2Xrt ’ |fO<rt£ ri (31)
2 X’
p= 2_[ COSl[tZ—']'X'dX
.r I, LY.
7 X ifr<r.<2n (32)
Photon
X I Launching
y IZ v | dv
(Foozzzziioiozioozozzooogosooiooiioooioos
[IIIIIIIIIIIIIIIIIIIIIIIRIIIIIIIIIIIIIY d
[ooooIoIoooooIIozooooooofliociioIioziiooic
Niayer Rt LT s
fundamental) p---------------------o-fpffooiiorlooctoolge
layers [oIIIIIIIIIIIioIiiIiiiiifoctiioilociiociet
e :

Fig. 64 Baseline simulation and number of fundameat layers corresponding to each layer in a
layered tissue

In my study, the homogeneous baseline medium usedhé primary Monte
Carlo simulation had optical properties pf=1 cm®, ps=100 cm', and g=0.9. The

index of refraction (n) of the fibers was 1.46 ar¥d..34 for the tissue. The core diameter
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for both the illumination and collection fibers w822 mm. In the baseline simulation
6,000,000 photons were launched in a uniform dhgtion over angles within the cone
specified by NA=n-sify wheref is the incident/acceptance angle measured from the
normal to the tissue surface and NA is the numkaparture of fiber. NA=0.22 in my
simulations. The Henyey-Greenstein phase functias wsed to mimic the scattering
angle. Fig. 65 shows the results comparison betwaestandard Monte Carlo simulation
as described in Section 4.2 and a scaling MonteoGamulation of a 2-layer tissue. The
tissue parameters are shown in Table 9. The welthed results in Fig. 65 provide
evidence that the scaling Monte Carlo method iscaarate as the standard Monte Carlo
method while the calculation speed is improved onaers of magnitude.

Table 9. Monte Carlo simulation parameters of a 2dyer tissue

Top layer | Bottom layer
n 1.34 1.34
Ha (cmY) 2.3 7.0
He (crm?) 86.8 242.5
g 0.9 0.9
Thickness (cm) 0.05 50.1
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B Fast Monte Carlo

1.E04
1.E-05
@ 1.E06
1.E-07

1.E-08 -

1609 ‘ ‘ ‘ |
0 1 2 3 4 5
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Fig. 65 Comparison of standard Monte Carlo result&nd scaling Monte Carlo results
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5.4Influence of optical properties of each layer on reflectance

Most mucosal tissues consist of two layers (e.gthelal and stromal layers in
cervical tissue). Since most cancers originatehie epithelial layer, any change of
reflectance signal may come from a tumor in thigetaTherefore, the multi-layer fast
Monte Carlo model discussed above was employeditty $he influence of top layer and
bottom layer optical properties on reflectance.c8ithe thickness of the epithelial layer
of a mucosal tissue ranges from 25 to %> *2* 1”3 we used a top layer thickness of
0.2 mm. Reflectance from an illumination-detectitver and twelve detection fibers was
simulated with the multi-layer fast Monte Carlo mbdkeveloped. Center-to-center
distances of the twelve detection fibers from therination detection fiber were 0.25,
0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00, 2.25),25/5 and 3.00 mm respectively. Radius
of all the fibers was 0.1 mm. Four sets of simoladi were designed to isolate the effect
of four parameters: top layer, top layerps, bottom layeru, and bottom layefs
(designated aspi, Tus, Bua and Bis' in the following tables and graphs). In each $et o
simulations, the influence of each parameter olectfnce was investigated with eight
simulations in different ranges of the other thpaeameters. Parameter details in each
simulation are list in Table 10.

Table 10. Parameters of fast Monte Carlo simulatios

112|3|4| 5| 6| 7| 8 11 2| 3 4 8§ ¢ [ B
Changel Tua |V |V |V [V |V [V |V |V |Changel]L |H |L |H|L |H|L |H
topua | Tps'| L |H|L [H]L |H|L |H]topuy [V IV |V [V |V [V |V |V
Bua |H |H|L |[L |H|H]JL |L H|H]|JL |L |H|H]JL |L
Bus'| L |[L|L|L |H|H]|H]|H L (L |L |L |H|H|H]H
Changel Twua |H |H |L |L |H|H|L |[L |Change]L |H |L |H|L |H|L |H
bottom | Tps'| L |H |L |H |L |H|L |H |bottom|L |L |L |L |H|H|H|H
Ha Bua |V [V |V |V |V |V |V |V | H|H|L (L |H|H]|L |L
Bpus'| L |L|L|L|H|H]|H]|H VIV |V |V |V |V |V |V

Note: ‘V’ means varying values. Forik and Bia, ‘L’ represents low value of 1 ¢hand ‘H’ represents
high value of 20 ci For Tus' and Bs', ‘L’ represents low value of 5 ¢hand ‘H’ represents high value of
35 cni'.
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Fig. 66 Influence of top layem, on reflectance
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Fig. 69 Influence of bottom layems on reflectance
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Fast Monte Carlo results shown in Fig. 66 - Figdétnonstrate the influence of
top pa, top s, bottomp, and bottomug'. All numbers in the legends of these figures have
units of cm'. From these figures, reflectance values from lthenination-detection fiber
are around the level of 1xE0This value is sensitive to teR when the bottoms' is low
or to bottomus when the topus' is low (Fig. 67 (a)-(d) and Fig. 69 (a)-(d)). Retance
from fibers at further distance from the illumiratidetection fiber carries more
information about botton,. Higher bottomu, results in a significant lower reflectance
(Fig. 66 (a), (b), (e), (f) and Fig. 68 (a), (),((f)). High attenuation in the bottom layer
reduced the collection efficiency of the distatiefis to the point where the results often
show significant noise levels. When bottaghis small, reflectance signal decays faster
near the illumination point compared with when bottug' is large (Fig. 66 and Fig. 68).
When bottomys' is high, effect of topis on reflectance is concealed (Fig. 67 (e)-(h)).
This effect is very clear in Fig. 67 (g). From tlgisaph, reflectance curves from different
top us almost totally overlapped. This means that sohgiof optical properties from an
inverse model are not unique and the error willldvge. On the other hand, effect of
bottom s’ on reflectance from further detection fibersasger than effect of tops' in
general when the top layer thickness is 0.2 mm. fgand Fig. 69), which implies that
the error of topus from an inverse model will be larger than theoemf bottomyps.
Graphs in Fig. 68 show an interesting ‘broom’ shapjee handle part of the ‘broom’
indicates that reflectance at short separatiomuicgts is not sensitive to bottechange,
especially when tops is high (Fig. 68 (b),(d),(f) &(h)). Comparison Bfg. 66 and Fig.
68 shows that reflectance is more sensitive toptpphange for nearer fibers and more
sensitive to bottomu, change for further fibers. For detection fiberghwseparation
distance of 0 to 3 mm, the influence of bottpgon reflectance is larger than influence of
top pa in general, which means the error of fgpralues estimated from an inverse model

will likely be higher. Under highly attenuating ahtions (tissues, wavelengths), larger
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separation distance fibers did not collect suffitiegnal (Fig. 66(e), Fig. 67(e), Fig. 68(Q)
and Fig. 69 (a)).

5.5Determination of optical properties of a two-layer tissue with neural netork
models

In this investigation, a forward multi-layer Montea® simulation was
developed and run as a primary simulation, follovigdmulti-layer fast Monte Carlo
simulations according to the scaling method to rxtihe datasets. With the reflectance
datasets generated with the fast Monte Carlo simukt four feed-forward back-
propagation neural network models were trainedevaduated with the Neural Network
Toolbox in Matlab® based on four different fiberaptirobe geometries. The input vector
for each network (sometimes referred to as an ftimgyer”) consisted of 5, 6, 10 or 11
reflectance values corresponding to the numbeibef$ used. The probe geometries for
four neural networks are shown in Table 11. Eadiwoek also contained two hidden
layers of seven neurons each with logarithmic signti@nsfer functions, and an output
layer of two neurons with linear transfer functioi$ie output vector consisted of the
values of top layep,, top layerps, bottom layem, and bottom layeps. A Levenberg-
Marquardt backpropagation training function was uskHte number of neurons came
from my optimization results. The reflectance detssised for training included 26500
optical property combinations that were evenlyriisted in the range of 1-22.5 &nfior
top layerpa and bottom layep, and 5-42.5 ci for top layerps and bottom layeps.
Besides, 12800 optical property combinations thateawrandomly distributed within the

same range were used for evaluation during training
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Table 11. Fiber geometries for neural network trairng (radius of each fiber is 0.1 mm)

2.50

Center position 0 0.25| 0.50| 0.7 1.00 1.26 1.0 1.y5 2J00 225
from illumination

point (mm)

Geometry of 5 fibers % v % % %
Geometry of 6 fibers| v v v % % v
Geometry of 10 fibers % v v % % \% % v % \%
Geometry of 11 fibers v % v v % v % % v % %

Note: ‘v’ means this fiber was selected.
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A set of four neural network inverse models weened with reflectance data
based on fiber geometries described in Table 1® ddcuracy of these models was
evaluated with 90 optical property combinationsd@nly distributed within the same
optical range as described in Section 2.3. Figcatdpared the optical property values
determined from the neural network model with theetvalues. These results indicate
that estimates of bottom, are more accurate than tpp However, errors for tops and
bottomps’ are at the same level. Comparison of the graphS-fiber and 10-fiber probes
shows that more fibers can improve the neural nétwocuracy within the same distance
range from the illumination point. Graphs represent-fiber and 11-fiber probes show
that reflectance from the illumination-detectiobér can significantly improve neural
network accuracy particularly the tpg. Table 12 provides a quantitative summary of the
results in Fig. 70. The table shows that the aweegor in determination qf, ranged
from 15 to 51% and average error fgrranged from 8 to 32%.

Table 12. Optical property estimation errors for naural networks based on four different probe

geometries
5 fibers | 6 fibers 10 fiberg 11 fibers
Top Y, 51% 31% 31% 30%
Bottom, 18% 16% 17% 15%
Topyy 32% 8% 12% 8%
Bottomp,’ 20% 11% 12% 11%

5.6 Conclusions

| have presented a fast Monte Carlo method to genardatabase of reflectance
from a two-layer tissue with different optical pespes. The accuracy of this method was
verified theoretically. Using this method, the udhce of optical properties on reflectance
was investigated and data for training a neuralwoed-based inverse model was
generated. The resulting model was evaluated waimdpmly generated reflectance data.

Results show that: (1) in general, the approaelgted here for estimation of
the optical properties can provide accuracy legéB-30% in a two-layer tissue; (2) there

may be several weaknesses to this approach, ingutifficulties in determining top
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layer ps when bottom layerus' is high; (3) a larger number of fibers (e.g.,dver a 3
mm probe), including the use of an illuminationlection fiber (or other approach to
highly superficial signal detection), may improweearacy (4) signal detection for highly
attenuating tissues may present a significant olesta highly accurate measurements.
While computationally expensive to develop, newmetiwork models calibrated
with simulation data may prove to be a highly effexapproach for rapid, unconstrained
estimation of the optical properties of two-laysssties. The current technique is shown
to be theoretically effective, thus representirgggmificant step towards development of a

system for unconstrained determination of opticapprties in layered tissue.
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Chapter 6. CONCLUDING REMARKS

6.1 Summary and contributions

The whole research include fiberoptic system costn, evaluation, and
implementation, light-tissue interaction modelingrobe geometry investigation and
single- and multi-layer tissue study. The goal luk twork is to improve quantitative
understanding of the relationship between reflaxaspectroscopy and optical properties
of mucosal tissues and obtain optical property détdese tissues, which will then (1)
help use diffuse reflectance for cancer diagnd&,improve understanding of device
design parameters, (3) and provide valuable oppicgderty data for theoretical modeling.
This goal has been achieved. The contributionshid work can be summarized as

follows:

1. For the first time, a noninvasive, fiberoptic Ipesbased approach was
implemented to measure epithelial tissue opticabperties at UVA-VIS
wavelengths. A novel, multi-wavelength, fiberopggstem was constructed,
evaluated and implemented to determine interngudésoptical properties. A
condensed Monte Carlo model and an inverse neurabrie model were used
to estimateu, andps' based on spatially-resolved reflectance distrdngi The
theoretical and experimental evidence show thehshiyaof our novel system to
yield accurate optical property measurements withean UVA-VIS wavelength
range.

2. | championed a novel version of the condensed ®ldbarlo method for
illumination-detection fiber probes, thus enabliagid computation of large sets
of tissue reflectance data. The effect of fiberntdter on the relationship

between reflectance and tissue optical propertees eharacterized, which show
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that bigger fiber is more sensitive . The simulation of reflectance over a
range of wavelengths from 400-500 nm based on plieab properties of breast
tissue elucidated the effect of fiber diameter efhectance spectra measured in
malignant and adipose breast tissues. Also, tleeteff adding an illumination-
detection fiber to a linear array fiber probe fatical property determination
was evaluated, which showed a promising accurapyawement.

. An unconstrained approach for estimating opficaperties in a two-layer tissue,
using a novel condensed Monte Carlo technique anchheetwork model, was
developed and validated for the first time. The -teyer tissue situation was
studied to elucidate light propagation mechanismnsng optical spectroscopy
measurement in epithelial tissue. | characterized telationship between
spatially-resolved reflectance distributions andiagb properties in two-layer
tissue models, then formulated and evaluated tlemnstrained approach to
optical property measurement. While computatignakpensive to develop,
neural network models calibrated with Monte Carlawdation data proved to be
a highly effective approach for rapid, unconstrdirestimation of the optical

properties of two-layer tissues.

In summary, the goal in the initial proposal wakieged. My research shows

that the combination of condensed Monte Carlo modald neural networks models

represents a powerful technique for rapid simuhatd light-tissue interactions and for

optical property extraction from reflectance measwnt. The fiberoptic diffuse

reflectance system | developed can potentiallydmel dorin situ cancer diagnosis.

6.2 Suggestions for future study

Research will never end. Based on the data indisisertation, several possible

future research directions that are mainly natexénsions of this study include:
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1. My study shows that absorption by other chromoghdresides hemoglobin in
tissues become increasingly significant in the UsM#l short VIS ranges. These
chromophores could be collagen, elastin, DNA andesother proteins. In the
future, it may be possible to determine the comrediohs of these chromophores
through fitting algorithms.

2. The condensed Monte Carlo simulation for a sinlglenination-detection fiber
was demonstrated to be a powerful technique fadrsipulation of light-tissue
interaction. Theoretically, this technique can ioy@ the accuracy of optical
detection when combined with separated fiber geoeset However, this
technique should be evaluated with experiments. gssible problem in
experiments could be the high intensity of spectdiectance. How to separate
diffuse reflectance from specular reflectance Wwél a challenge. Further study
should be continued on this issue.

3. In the two-layer tissue modeling, | have presgr@tdast Monte Carlo method to
generate a database for a tissue with given tag-lyckness. The accuracy of
this method was verified theoretically. The curréethnique is shown to be
theoretically effective, thus representing a sigaifit step towards development
of a system for unconstrained determination of agbtproperties in layered
tissue. However, several additional steps will bguired before this approach
can be implemented on a biological tissue. Perhagst importantly, the model
will have to be trained to determine superficiayela thickness. This
modification will likely require extensive additiah simulations to train the
model over a variety of thicknesses relevant tanrabrand cancerous mucosa.
Experimental validation of this technique in welltrolled tissue-simulating

samples will also be needed.
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