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Cancer is a severe threat to human health. Early detection is considered the 

best way to increase the chance for survival. While the traditional cancer detection 

method, biopsy, is invasive, noninvasive optical diagnostic techniques are 

revolutionizing the way that cancer is diagnosed. Reflectance spectroscopy is one of 

these optical spectroscopy techniques showing promise as a diagnostic tool for pre-

cancer detection. When a neoplasia occurs in tissue, morphologic and biochemical 

changes happen in the tissue, which in turn results in the change of optical properties 

and reflectance spectroscopy. Therefore, a pre-cancer can be detected by extracting 

optical properties from reflectance spectroscopy. 

This dissertation described the construction of a fiberoptic based reflectance 

system and the development of a series of modeling studies. This research is aimed at 

establishing an improved understanding of the optical properties of mucosal tissues by 

analyzing reflectance signals at different wavelengths. The ultimate goal is to reveal 

the potential of reflectance-based optical diagnosis of pre-cancer. The research is 

detailed in Chapter 3 through Chapter 5. Although related with each other, each 

chapter was designed to become a journal paper ultimately. In Chapter 3, a multi-

wavelength, fiberoptic system was constructed, evaluated and implemented to 

determine internal tissue optical properties at ultraviolet A and visible wavelengths. A 



  

condensed Monte Carlo model was deployed to simulate light-tissue interaction and 

generate spatially distributed reflectance data. These data were used to train an inverse 

neural network model to extract tissue optical properties from reflectance. Optical 

properties of porcine mucosal and liver tissues were finally measured. In Chapter 4, 

the condensed Monte Carlo method was extended so that it can rapidly simulate 

reflectance from a single illumination-detection fiber thus enabling the calculation of 

large data sets. The model was implemented to study spectral reflectance changes due 

to breast cancer. The effect of adding an illumination-detection fiber to a linear array 

fiber for optical property determination was also evaluated. In Chapter 5, an 

investigation of extracting the optical properties from two-layer tissues was 

performed. The relationship between spatially-resolved reflectance distributions and 

optical properties in two-layer tissue was investigated. Based on all the 

aforementioned studies, spatially resolved reflectance system coupled with condensed 

Monte Carlo and neural network models was found to be objective and appear to be 

sensitive and accurate in quantitatively assessing optical property change of mucosal 

tissues. 
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Chapter 1. INTRODUCTION 

1.1 Overview 

Cancer is any of various malignant neoplasms characterized by the proliferation 

of anaplastic cells that tend to invade surrounding tissue and metastasize to new body 

sites. Most cancers begin with abnormal cell growing to form a lump called tumor until 

the tumor is out of control and spread to other part of the body. The longer the tumor goes 

unnoticed, the smaller the chance that the cancer can be treated effectively. In the USA 

and other developed countries, 25% of all deaths come from cancer. The most fatal 

cancers for males include lung cancer, prostate cancer, colorectal cancer, and pancreatic 

cancer and those for females include lung cancer, breast cancer, colorectal cancer, ovarian 

cancer, and pancreatic cancer. 1 

Cancer is a preventable disease. Early detection of cancer is considered the best 

way to increase the chance for survival. For example, colorectal cancert is reported by the 

American Cancer Society to have a five-year survival rate is 92% if detected and treated 

at an early stage. The rate drops to 64% if the cancer spreads outside the colon to the 

lymph nodes. This number drops dramatically to 7% if the cancer has spread further to 

the liver or other organs. It is clear from these outcomes that early detection is essential to 

patient survival.  Unfortunately, it is also reported that only 37% of colorectal cancer is 

currently found at an early stage. 2 The five-year relative survival rate for cervical cancer 

is 92.2% when it is detected at a localized stage. The survival rate drops to only 16.5% 

when diagnosed with distant metastasis. 3  

The visible inspection of a tissue such as skin has long been use to assess the 

tissue lesions of patients. This is probably the rudiment of modern optical diagnostics. 

Since visible inspection depends on the evaluator’s skill and the evaluations by different 
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observers can be inconsistent, quantitative instrumental methods are necessary to offer a 

more objective means of diagnosis. The traditional method for cancer detection is by a 

surgical procedure which is painful and it takes time for the wound to heal. However, a 

new technique, in vivo optical spectroscopy which use light to detect tissues without 

moving them out of the body, is revolutionizing the way that cancer is diagnosed by 

facilitating the localization of biopsies or, eventually, eliminating their need altogether. 

This technique has great potential to provide rapid, accurate, minimally-invasive disease 

detections.4 When light interacts with a tissue, it could be absorbed, scattered out of the 

tissue, or emit fluorescence after absorbing excitation photons. All these interactions can 

provide useful and critical information about chromospheres, physiological functions and 

structure of the tissue. 

Many researchers are focusing on the research, development and 

commercialization of in vivo technologies which aid in the early detection and 

localization of cancer and several companies have commercialized their own products. 

Xillix® Technologies Corp. (http://www.xillix.com) developed innovative fluorescence 

endoscopy systems including Xillix LIFE-LungTM, Xillix LIFE II TM, and Onco-LIFETM 

which allow physicians to see very small, early stage cancer and even subtle pre-

cancerous lesions especially in lung. MediSpectra (http://www.medispectra.com) has 

commercialized its LUMA® Cervical Imaging System to evaluate the cervix as an aid in 

the early detection of high-grade cervical cancer and its precursors. The LUMA® system 

scans tissue with a combination of fluorescence spectroscopy and white light diffuse 

reflectance spectroscopy to detect pre-cancerous cervical abnormalities that have the 

potential of becoming invasive cancer. TruScreen® by Polartechnics 

(http://www.polartechnics.com.au) is also designed to detect abnormalities of the cervix. 

The WavSTAT™ optical biopsy system by SpectraScience 

(http://www.spectrascience.com) is used to detect colorectal cancer by collecting the 

emitted fluorescent signals. 
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Most of these commercialized instruments mentioned work in the ultraviolet A 

(UVA) and visible (VIS) regions where fluorescence information of the tissue can be 

used in diagnosis. Despite these commercialized instruments, the optical properties (µa 

and µs) of tissues are minimally studied. Most research on determination of µa and µs has 

been carried out in the spectral regions from 600 to 1300 nm and has focused on low and 

moderate absorption coefficient values 5 because the absorption of water and 

chromophores such as hemoglobin, melanin, and nucleic acids is low in this spectral 

range. However, since spectral regions below 600nm are essential for in vivo fiberoptic 

diagnostics, especially for the fluorescence study, improved understanding of the µa and 

µs values of tissues is crucial for these clinical instruments to achieve their full potential. 

Spectroscopy signals from a tissue can be detected as an image or a spectrum 

and the signals can be reflectance or fluorescence. While imaging can visualize lesions 

directly, a spectrum can provide a quantitative understanding on optical properties of the 

tissue by showing the spatial or temporal distribution of the radiance. Some instruments - 

hyperspected imaging system - actually work as a hybrid form by producing a spectrum at 

each pixel in the image. 

1.2 Overall objective 

More than 85% of all cancers originate in the epithelia of mucosa tissues lining 

the internal surface of the human body.6 Reflectance spectroscopy has been demonstrated 

to be useful for providing biochemical and morphological information for minimally-

invasive detection of cancer in these mucosa tissues, including cervix 7-9, esophagus 9-12, 

colon 13, 14 etc. It has also been used for monitoring of tissue oxygenation 15-24 and 

analytes such as bilirubin 25-30 and glucose 31-35.  Furthermore, reflectance-based 

approaches are critical for providing fundamental optical property data on biological 

tissues which can be used in disease diagnosis, disease treatment, theoretical models, or 

to enable extraction of intrinsic signals for disease diagnosis 36-39. These tasks can be 
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accomplished using imaging techniques or fiberoptic probes. Fiberoptic based optical 

systems are essential for in vivo tissue diagnosis since fiber probes can be easily coupled 

with endoscope.   

Although the literature contains a wealth of data on tissue optical properties in 

the far visible (600-750 nm) and near-infrared range (750-1400 nm), there is a lack of 

information in the ultraviolet A (UVA) to short visible (VIS) range where µa and µs′ may 

be high. Furthermore, there is a lack of established experimental and numerical 

approaches that are suitable for use in this spectral range. The data being available is from 

tissue samples that have been sectioned or frozen, which reduce their relevance to the in 

vivo condition.  

The overall objective of my research is to improve quantitative understanding of 

the relationship between reflectance spectroscopy and optical properties of mucosal 

tissues and to obtain optical property data of these tissues from reflectance spectroscopy 

with a fiberoptic reflectance system. The ultimate goal of my research is to know optical 

properties of all relevant human mucosal tissues under in vivo condition.  

1.3 Organization of the dissertation 

My research includes construction, evaluation, and implementation of a 

fiberoptic-based reflectance spectroscopy system, light-tissue interaction modeling, neural 

network model development, probe geometry investigation and single- and multi-layer 

tissue study. This dissertation is organized into the following chapters. Chapter 2 provides 

some background information relevant to the research described in this dissertation, 

including absorption and scattering, tissue optical properties, principle of reflectance 

spectroscopy for diagnosis of pre-cancer, tissue-simulating phantoms, and two common 

spectroscopic techniques for measuring tissue optical properties. Chapter 3 through 

Chapter 5 are arranged in such a way that each chapter will finally become an 

independent journal paper (Chapter 3 has been published.40 Chapter 4 is ready to submit 
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and chapter 5 is in preparation. These chapters are detailed in following paragraphs) 

Chapter 6 summarizes the whole research and recommends several directions for future 

study. 

In Chapter 3, I provide theoretical and experimental evidence of the capability of 

my multi-wavelength fiberoptic reflectance system to yield accurate optical property 

measurements within the UVA-VIS wavelength range. The system was constructed, 

evaluated and implemented to determine internal tissue optical properties. Inverse 

modeling was performed with a neural network algorithm to estimate absorption 

coefficients (µa) and reduced scattering coefficients (µs′) based on spatially-resolved 

reflectance distributions. The inverse models were calibrated with simulated reflectance 

datasets generated using a condensed Monte Carlo approach with µa up to 85 cm-1 and µs′ 

up to 118 cm-1, which covers most of the optical properties of mammalian tissues within 

the UVA–VIS wavelength range. After theoretical and experimental evaluations of the 

system, optical properties of porcine bladder, colon, esophagus, oral mucosa, and liver 

were measured at 325, 375, 405, 445 and 532 nm. These data provide evidence that as 

wavelengths decrease into the UVA, the dominant tissue chromophore shifts from 

hemoglobin to structural proteins such as collagen.  This system provides a high level of 

accuracy over a wide range of optical properties, and should be particularly useful for in 

situ characterization of highly attenuating biological tissues in the UVA-VIS. 

Based on the study of condensed Monte Carlo model in Chapter 3, I extended 

the model so that it could facilitate computation of large sets of reflectance data for single 

illumination-detection fiber (a fiber that both illuminates and detect the signal) probes in 

biological tissues in Chapter 4. The model was validated against results from a standard 

Monte Carlo model and implemented to perform four tasks involving large numbers of 

individual simulations. First, by performing simulations at a wide range of optical 

property combinations, I was able to characterize the effect of fiber diameter on the 

relationship between reflectance and tissue optical properties. Secondly, I simulated 
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reflectance over a range of wavelengths from 400 to 500 nm based on the optical 

properties of malignant and adipose breast tissues to elucidate the effect of fiber diameter 

on reflectance spectra. The third task involved evaluating the effect of adding an 

illumination-detection fiber to a linear array fiber probe for optical property determination. 

The implications of this approach for optimization of probe geometries are discussed. 

Finally, I developed a scaling equation to calculate the maximum penetration depth of a 

photon. Influence of optical properties, detection distance from the illumination point, 

and size of an illumination-detection fiber on detection depth were studied. My results 

show that this approach represents a powerful technique for rapid simulation of light-

tissue interactions when combined with existing methods for condensed modeling with 

separated fiber geometries.  

While Chapter 3 and Chapter 4 were focused on single-layer tissue, the two-

layer tissue situation was investigated in Chapter 5. In order to elucidate light propagation 

mechanisms involved in optical spectroscopy devices, the optical properties of layered 

mucosal tissues at UVA and VIS wavelengths are needed.  Previous approaches to 

measuring these data have typically been based on spatially-resolved reflectance. 

However, these approaches have limitations, some of which are not well understood.  

Therefore, the objectives of Chapter 5 were (1) to elucidate the relationship between 

spatially-resolved reflectance distributions and optical properties in two-layer tissue 

models and (2) to introduce and assess an unconstrained approach to optical property 

measurement.  The first part of this study involved calculating reflectance from two-layer 

tissues for a wide variety of optical property combinations (µa= 1-22.5 cm-1, µs′= 5-42.5 

cm-1)  using a Monte Carlo scaling technique.  In the second part, a neural network 

inverse model trained with the aforementioned results was evaluated using simulated 

reflectance data. The relationship between optical properties and reflectance provides 

fundamental insights into the strengths, weaknesses and potential limitations of strategies 

for optical property measurement based on spatially-resolved reflectance.  The neural 
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network approach estimated optical property values with a degree of accuracy that 

depended on the probe geometry (5-, 6-, 10- and 11-fiber probes were simulated). The 

average error in µa determination ranged from 15 to 51% and average error for µs′ ranged 

from 8 to 32%.  While computationally expensive to develop, neural network models 

calibrated with simulation data may prove to be a highly effective approach for rapid, 

unconstrained estimation of the optical properties of two-layer tissues. 
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Chapter 2. BACKGROUND 

This chapter provided some background information relevant to the research 

described in this dissertation, including interaction of light with tissue, significance of 

study of tissue optical properties, tissue-simulating phantoms, and two common 

spectroscopy techniques for measuring tissue optical properties. 

2.1 Interaction of light with tissue 

2.1.1 Absorption and scattering – the basic 

An atom can have many states which are defined by the arrangement of electrons 

in atomic orbits and these states have different energy levels. When an atom interacts 

with an incoming photon, the photon can be either absorbed or scattered depending on its 

energy (E=hv). If the photon’s energy matches the energy difference between an excited 

state and current state of the atom, the atom will absorb the photon and jump to the 

excited state. The excitation energy will then either be rapidly transferred, via collisions, 

to random atomic motion or thermal energy, before a lower energy photon can be emitted 

41,  or vice versa. The process of “taking up” a photon and consuming its energy is called 

absorption. The whole process from the hitting of a photon on an atom, to the transfer of 

the excitation energy to other energy, to the final discharge of another photon with lower 

energy is called inelastic scattering. Inelastic scattering is also the principle of 

fluorescence. In contrast to the inelastic scattering, if the atom radiates a photon with the 

same frequency as the incident one without transferring the excitation energy to other 

energy, the whole process is called elastic scattering or coherent scattering. In the elastic 

scattering process, the energy (and therefore the wavelength) of an incident photon is 

conserved and only its direction is changed. To be precise, scattering is seldom complete 

elastic and absorption always goes with some degree of scattering. On a macroscopic 
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scale, however, treating them separately is often convenient especially for the theoretical 

study. We can think that “absorption” and “scattering” take place independently without 

any appreciable contribution from the other process. 

The theory of absorption and scattering by an atom can be extended to a big 

molecule. Similar as an atom, a molecule also have many energetic states which are 

defined by the energy states of one or more atoms of the molecule or by the molecule’s 

modes of vibration and rotation. A large molecule’s energetic state can be looked as being 

packed on top of each of its small components such as different functional groups. Like 

atomic orbital, these energetic states are also quantized and have discrete energy levels. 

Light can be absorbed by a molecule through electronic transitions or vibrational 

transitions which will excite a molecule from a less energetic state to a more energetic 

one. Electronic transitions change the energetic state of a molecule by exciting its 

electrons to a higher energy level. Such transitions are relatively energetic and hence are 

often associated with absorption of ultraviolet, visible and near-infrared wavelengths. 

Vibrational transitions change the energetic state of a molecule by changing the ways of 

vibration and rotation of a molecule’s bonds. Such transitions are not as strong as 

electronic transitions and are hence associated with absorption of infrared wavelengths. 

Same as the atomic case, the excited states usually do not persist. They will revert back to 

lower energy states and emit photons. If the emitted photons have the same energy level 

as the exciting ones, this process is called elastic scattering. Otherwise, it is called 

inelastic scattering.  

2.1.2 Tissue absorption 

As shown in Fig. 1, when a photon enters a tissue, quite a large number of 

scattering events by cell constituents, tissue fibers, intercellular structures, organelles in 

cells and the interfaces between structural components will occur. Besides scattering, the 

photon can also be absorbed by chromophores such as water, hemoglobin, melanin, etc. 
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The photon will then be remitted from the tissue as diffuse reflectance, be totally 

absorbed inside the tissue or lose some energy becoming fluorescence signal. All of these 

signals carry useful biochemical and morphological information about the tissue.  

 

 
Fig. 1 Propagation of photons in a tissue 

In a biological tissue, molecules that absorb light are called biological 

chromophores or biological absorbers. A biological chromophore can (1) absorb radiant 

energy in the far-infrared and microwave regions, converting it to rotational kinetic 

energy; (2) absorb infrared photons, transforming its energy into vibrational motion of the 

molecule; (3) absorb energy in the visible and ultraviolet regions through the mechanism 

of electron transitions, much like that of an atom. Biological chromophores that can 

absorb energy in the visible and ultraviolet regions generally have a string of double 

bonds whose pi-orbital electrons behave as a small antenna which can “receive” the 

electromagnetic wave of a passing photon. Porphyrins, including hemoglobin, vitamin 

B12, cytochrome C and P450, are a main group of biological chromophores. 42 As the 

main composition of tissue, water is a main chromophore in the near-infrared 

wavelengths. Fig. 2 and Fig. 3 show the absorption spectra of hemoglobin and water 

respectively. 
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The parameter that describes the absorption property of tissue is the absorption 

coefficient, µa. When a photon propagates over infinitesimal distance ds, the probability 

for an absorption event is µa
.ds. In other words, the mean free path for an absorption 

event is 1/µa. On a macro scale, the absorption coefficient is the fraction of light absorbed 

per unit distance in a participating medium. The absorption coefficient of a tissue varies 

strongly over the wavelength ranging from ultraviolet to visible light. 

  
Fig. 2 Absorption coefficient of hemoglobin 

(http://omlc.ogi.edu/spectra/hemoglobin/summary.gif) 
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Fig. 3 Absorption coefficient of water 

(http://www.lsbu.ac.uk/water/images/watopt.gif) 

2.1.3 Tissue scattering 

As a bulk turbid medium, the most pronounced event of light-tissue interaction 

is scattering. Light propagation in biological tissues is often dominated by scattering 

interactions. Extending from macromolecules to membranes to membrane aggregates to 

collagen fibers to cell organelles such as nuclei to cell, microstructures and ultrastructures 

of a tissue that can scatter light are called biological scatterers. Structures with size 

matching light wavelength scatter the light most strongly.42 The turbidity or apparent 

nontransparency of tissue is caused by multiple scattering of light from these biological 

scatterers. Fig. 4 shows the sizes of some biological scatterers. 
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Fig. 4 Sizes of some biological scatterers 

(http://omlc.ogi.edu/classroom/ece532/class3/scatterers.html) 

Like scattering in any other medium, scattering in a tissue can be inelastic or 

elastic. In inelastic scattering, the incident and scattered photons are of different 

energy/frequencies. If the difference in energy generates acoustic photons, the scattering 

is called Brillouin scattering. If the difference in energy generates a vibrational excitation 

in the molecule, it is called Raman scattering. The inelastic scattering in biological tissues 

is weak. 43 

The elastic scattering, in which the incident and scattered photons are of the 

same energy/frequencies, is strong in a tissue. There are two categories of elastic 

scattering. The first one is Rayleigh scattering, which happens when the size of the 

scatterer is smaller than the wavelength of light (i.e. less than about λ/15). In Rayleigh 

scattering, the intensity of the scattered light is proportional to 1/ λ4 and therefore 

increases with ν4, where λ is wavelength and ν is frequency. 41 The second one is Mie 

scattering, which happens when the scatterer size is comparable to λ. Mie scattering 

depends only weakly on λ with the intensity of the scattered light being proportional to 

1/ λ-X (0.4≤X≤0.5) 43 and becomes independent of it (white light in, white light out) when 

the particle size exceed λ 41.  
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Mie theory, which is named after its developer German physicist Gustav Mie, is 

a complete analytical solution of Maxwell’s equations for the scattering of 

electromagnetic radiation from spherical particles of any size. So Rayleigh scattering is 

the small-size limiting case of Mie scattering. The Mie theory reduces to Rayleigh 

scattering when the particle is much smaller than the wavelength. However, in most 

conditions, Mie theory is used in the intermediate size-to-wavelength ratio range where 

the Rayleigh is not valid. To accurate describe the scattering interactions of light with 

tissue, both Rayleigh scattering and Mie scattering are needed. Rayleigh scattering 

describes the scattering of light by tissue structures much smaller than λ including 

cellular components such as membranes and cell subcompartments, and extracellular 

components such as the banded ultrastructure of collagen fibrils. Mie scattering describes 

the scattering of light by various cellular structures like mitochondria and nuclei, and 

extracellular components like collagen fibers. Even though some biological scatterers are 

not necessarily spherical, their scattering behavior can still be modeled reasonably well by 

Mie theory. 44 

 

  
Fig. 5 A scattering event with a deflection angle and an azimuthal angle  
(http://omlc.ogi.edu/classroom/ece532/class3/gdefinition.html) 
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Scatter angles are important parameters to describe a scattering event. Fig. 5 

shows the deflection angle (θ) and the azimuthal angle (Ψ) of a scattering event. Tissues 

are anisotropic and their optical properties are a function of the incident light direction. 

However, they are often assumed to be isotropic to simplify the conditions. For an 

isotropic medium, scattering depends only on the angle θ between the direction of 

incident light ŝand the direction of reflected light
'ŝ .  The phase function is defined as 

the reflected intensity as a function of angle normalized by the intensity at normal 

incidence. It gives the intensity of reflected light from per unit intensity of incident light 

for a given angle of scattering event. It is also the single scattering probability density 

function p( ŝ,
'ŝ ) which can be written as 

  p( ŝ,
'ŝ )=p( ŝ . 'ŝ )=p(cos θ)=p(v)    (1) 

where v =cos θ. The integral of a density function around the incident point (solid angle 

of 4π steradian) is unit one.  

  ∫
π

ω
4

')'ˆ,ˆ( dssp = ∫
−

1

1

)(2 ννπ dp =1    (2) 

Therefore, for an isotropic scattering event 

  p(v) = 
π4

1
       (3) 

Unfortunately, light scattering in a tissue is far from isotropic. Therefore, the anisotropy 

factor (g) which is the average cosine value of the angle between the incident light and 

the reflected light is defined to describe the direction property of scattered light. The 

anisotropy factor g has a value between -1 and 1. A value of -1 indicates total backward 

scattering and a value of 1 indicates total forward scattering. Isotropic scattering means 

g=0. The anisotropy factor of a tissue, which is a combination number from both 

Rayleigh scattering and Mie scattering ranges from 0.3 to 0.98, but quite often it is around 

0.9 in the visible spectrum.45 The g value of Rayleigh scattering is around zero. While the 

g value of Mie scattering is near one.  
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Fig. 6 shows the phase function of a Rayleigh scattering in air calculated from a 

web site (http://omlc.ogi.edu/calc/mie_calc.html). It describes the angular distribution of 

375 nm light scattered by a 10 nm diameter sphere with reflective index of 1.5. Light is 

incident from the left with the sphere located at the center of the linear polar plot. The 

green and blue curves demonstrate the situations of perpendicular and parallel light 

incident while the red curve demonstrated the situation of unpolarized natural light.  From 

this figure, the forward and backward scattering is the same and the g value is 0.0014. 

However, the scattering is not isotropic. If the sphere diameter is increased to 400 nm, 

then the scattering become Mie scattering as shown in Fig. 7 which shows a strong 

forward scattering pattern. 

 

 
Fig. 6 The phase function of a Rayleigh scattering  
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Fig. 7 The phase function of a Mie scattering  

 

The parameter that describes the absorption property of tissues is the scattering 

coefficient, µs. When a photon propagates over infinitesimal distance ds, the probability 

for an scattering event is µs
.ds. In other words, the mean free path for a scattering event is 

1/µs. On a macro scale, the scattering coefficient is the fraction of light scattered per unit 

distance in a participating medium. The scattering coefficient usually decreases 

monotonically with increasing wavelength.  

The scattering coefficient and the anisotropy factor are sometimes lumped to 

form a new parameter, reduced scattering coefficient (µs'= (1-g) µs). In a multiple 

scattering event in a tissue, an anisotropic scattering process with an anisotropy factor g 

and a scattering coefficient µs appears identical to an isotropic scattering process with an 

anisotropy factor zero and a scattering coefficient µs′.   That means a photon will either 

take one big step of isotropic scattering (anisotropy factor 0) with mean free path 1/µs′ or 

1/(1-g) smaller steps of anisotropic scattering (anisotropy factor g) with mean free path 

1/µs to get to the same position. This is called similarity principle, which is often used in 
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theoretical study. Fig. 8 shows the µs′ of skin dermis, where the read line is tissue data, 

the green line comes from Mie theory based on collagen cylinders, the blue line is from 

Rayleigh scattering due to small-scale structure of collagen fibers, and the black dashed 

line is the combination of the green line and the blue line.  

 
Fig. 8 µs′ of dermis  

(http://omlc.ogi.edu/news/jan98/skinoptics.html) 

2.2 Significance of study of optical properties 

The optical properties of a tissue mainly include µa, µs, g, and n (the index of 

refraction). While the values of g and n of a tissue usually do not change much and can be 

approximated by experience numbers, µa and µs change a lot with tissue type, structure, 

and health condition. Study of µa and µs of tissues can provide valuable information in 

several issues detailed below.  

2.2.1 For disease diagnosis 

As precancers develop, the morphology change of epithelial cells of mucosa 

tissue like cervix is characterized by increased concentration of chromatin, increased 

variation in nuclear size and shape, an increased nuclear to cytoplasmic ratio, roughing of 

the chromatin texture, the margination of nuclear chromatin, and increased metabolic 

activity. Accompanied with the development of intraepithelial neoplasia, stromal layer is 
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also altered with increased angiogenesis, decreased matrix density, and other alterations 

in the epithelial-stromal communication. 6, 46-49 Dysplasia and carcinoma in the oral cavity 

had features including hyperproliferation and nuclear crowding of basal cells. The 

epithelium often showed features like epithelium thickening, loss of cell stratification, 

and enlargement of epithelial cell nuclei. Parts of the basement membrane and underlying 

collagen network (source of scattering) degraded and the volume of fraction of fibers 

decreases, facilitating tumor cell invasion and ultimately metastatic dissemination via the 

lymphatic and vascular systems. 50-54 Milord et al. showed that urothelial neoplasms of 

the urinary bladder were characterized by the presence of numerous cells with large 

irregular and hyperchromatic nuclei that may be present either in the entire thickness of 

the epithelium or only a part of it 55. A study of esophagus indicated that cancer 

esophagus had higher density of cells with irregular cell size and shape and extreme 

heterogeneity. The nucleus cytoplasm ratio was also very irregular. 56 Biochemical 

changes often accompany the morphologic changes. Study shows that blood supply 

increased in dysplastic tissue, which is usually due to the increased microvessel density 

and the angiogenesis in the mucosal and submucosal tissues. 57-59 

As stated above, the tissue’s biochemical and morphological characters will 

change when a tumor formed in a tissue, which in turn results in the change of optical 

properties. For a mucosa tissue, dysplastic changes include increased scattering from 

epithelial cells, decreased scattering from collagen fibers in the stroma, and increased 

absorption in stroma owning to increases in hemoglobin concentration. 60 The change of 

optical properties will then bring change of reflectance spectroscopy. Therefore, by 

extracting optical properties out of reflectance signal, we can diagnose disease 

quantitatively. 
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2.2.2 For disease treatment 

Modeling light propagation in tissues to get the optical properties is essential for 

photochemical reaction in tissue such as in photodynamic therapy. The key dosimetry 

parameter for photodynamic therapy is the fluence rate φ(z) which is a function of depth z. 

For highly scattering tissue, the diffuse light in tissue decreases exponentially with depth 

according to the equation of φ(z) = A exp(-µeff z), where A is a constant and µeff is the 

effective attenuation coefficient with )]1([3 gsaaeff −+= µµµµ . Fluence rates lower 

than expected will not do the therapy job. On the other hand, fluence rates higher than 

expected produce a greater than expected photochemical reaction, rate of heat production, 

and temperature rise, which will in turn damage some health tissue. Therefore, accurate 

µa and µs values are essential for dosimetry in optical therapy.  

2.2.3 For tissue monitoring 

Reflectance spectroscopy together with the extracted optical properties can be 

applied for tissue monitoring, which overlaps with its function of disease diagnosis and 

treatment. It can be used for margin assessment during core needle biopsy 61, monitoring 

tumor respond to therapy 62-65, monitoring tissue oxygenation 15-24, 66 and analytes such as 

bilirubin 25-30 and glucose 31-35 in order to guide future health care.  

2.2.4 For theoretical study 

Optical properties from reflectance-based approaches are critical for providing 

fundamental optical property data on biological tissues which can be used in theoretical 

models or to enable extraction of intrinsic signals for disease diagnosis 36-39.  Further 

more, optical properties can be utilized for probe geometry optimization and accurate 

light-tissue interaction simulation 8, 40, 67, which in turn will facilitate the clinical 

detection and therapy.  
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2.3 Tissue-simulating phantoms 

Mimicking the properties of human or animal tissues, the tissue-simulating 

phantoms play a crucial role in aiding on understanding of light-tissue interaction and on 

developing diagnostic imaging or spectroscopy systems and physical therapeutic 

interventions. Many tissue-simulating phantoms have been proposed in optical 

applications such as spectroscopy and imaging. 68-70 In general, phantoms are used for 

several purposes, including: (1) calibrating and optimizing an instrument; (2) testing of 

stability and reproducibility of an instrument; (3) comparing performances between 

systems; (4) providing a qualitative means of testing mathematical models, simulations, 

and theories. 71 

To achieve these goals, an ideal phantom should have the following properties: 

(1) the optical properties of the phantom (µa, µs′, g and n) are similar to those of the tissue 

at specified wavelengths; (2) the optical properties of the phantom are adjustable to 

mimic different tissues. Molecules of specific interest can be incorporated to mimic those 

in a tissue; (3) The thermal, mechanical, chemical and surface properties of the phantom 

are similar to those of the tissue and stable over time and environmental conditions;  (4) 

The regions in the phantom can be incorporated with different optical properties; (5) The 

phantom can be incorporated with Brownian motion or flow; (6) The phantom is 

inexpensive and easy to manufacture and transport.71 A phantom having above properties 

can be used for any application. However, no single tissue phantom possesses all these 

properties. In real application, only some of these properties are important and the others 

can be neglected. For example, if one wants to calibrate the instrument, the accurate 

optical properties are most important and the other requirements are of low priority.  

2.3.1 Phantom composition 

The basic compositions in a phantom include matrix materials, scatterers and 

absorbers. The matrix materials are typically water, hydrogels (gelatin72, collagen73, 



 

22

agar74, polyacrylamide75-78, poly(vinyl alcohol)79 80) and hard polymers (polyester81, 82, 

epoxy83, polyurethane84). Some novel materials such as soft silicone85, 86 are also used. 

The water and hydrogel based phantoms are usually biologically compatible but can not 

be kept permanently. On the other hand, the polymer based phantoms are not biologically 

compatible but can be kept permanently. The fabrication of a water based phantom is the 

easiest, and that of a polymer based phantom is the most difficult. Since the polymer 

based phantoms can be preserved permanently, they are good for calibrating and 

optimizing the instrument. 

The scatterers typically include lipid based emulsions (Intralipid74, 87, milk88), 

inorganic powders (titanium dioxide, aluminum oxide, gold89) and polymer microspheres 

(polystyrene90). The lipid based emulsions have biologically similar chemical and 

mechanical structure as the bilipid membrane of cells and organelles what is thought to 

cause scattering in a tissue. The disadvantage of such scatterers is that they are not as 

stable as other scatterers. The inorganic powders are the most common choice for 

scatterers because of their wide availability and high scattering coefficients. They can be 

obtained in well-controlled spherical formulations. Titanium dioxide and aluminum oxide 

are two commonly used inorganic scatterers. A primary deference between them is the 

maximum attainable value for the anisotropy factor. Firbank and Deply reported that the 

anisotropy factor of titanium dioxide is limited to 0.7, whereas the anisotropy factor of 

aluminum oxide can reach 0.97 in polyester resin.69 The main downsides of the inorganic 

scatterers are that they subside in suspension in most media due to their high density and 

that they are not exactly representative of tissue scattering spectra. Polymer microspheres 

are also common choices as scatterers, with polystyrene microspheres being the most 

popular. From a scientific perspective, polystyrene microspheres are excellent for a 

standard phantom because they are produced with good quality control over the size and 

index of reflection. Thus, Mie theory can accurately predict the scattering coefficient of 

the phantom with polystyrene microspheres as scatterers. Previous studies show that 
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polystyrene microspheres are less fluorescent and less absorbing compared with other 

microspheres.91  Furthermore, they can suspend in water for longer time because their 

specific density, which ranges from 1.04 to 1.09, is very close to that of water. The 

shortcoming of polystyrene microspheres is that they are expensive.  

The choice for absorbers varies widely from blood, cells, or hemoglobin to 

molecular dyes and inks (black ink74, Protoporphyrin IX90, methylene blue92). The 

absorbers from organisms provide realistic tissue spectra but cost much than the 

molecular dyes and inks. Besides, they are less stable. 

The early studies in tissue phantoms were mainly focused on mimicking the 

reduced scattering coefficient and the absorption coefficient of a tissue at specific 

wavelength. In the past decade, phantoms that can mimic tissue optical properties in a 

wider wavelength range and that are made of biologically important molecules such as 

hemoglobin and melanin and biologically compatible materials such as collagen are of 

interest. Besides, the mass flow in phantoms is also attracting more attentions. Methods 

that image mass flow in tissue include Doppler shift measurements93, 94 and correlation 

analysis of speckle95-98.   

2.3.2 Determination of phantom µa - Beer’s law 

Tissue phantoms with known values of µa and µs are essential to the study of 

tissue optics and calibration of optical instruments. The absorption coefficient of an 

absorber can be determined from the transmittance value or absorbance value of its 

solution by Beer’s law. The law states that the quantity of light absorbed by a substance 

dissolved in a nonabsorbing solvent is directly proportional to the concentration of the 

substance and the path length of the light through the solution. The law is also referred to 

as the Beer-Lambert law or the Bouguer-Beer law. A mutation of Beer’s law is shown as 

following equations. 



 

24

 T = 
0

1

I

I
 = 

dae µ−
     (4) 
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log⋅⋅µ    (5) 

where I0 is the intensity of incident light, I1 the intensity of the transmitted light, T the 

transmittance, A the absorbance, and d the path length. From above equations, the 

absorption coefficient can be calculated as  

 dA
a

/)10ln( ⋅=µ     (6) 

or   dT
a

/ln−=µ     (7) 

From Beer’s law, the absorbance is proportional to the concentration of absorber, 

so is the absorption coefficient. Therefore, the absorption coefficient of an absorber at 

desired wavelength can be calculated from the absorbance measured by a 

spectrophotometer. When light irradiate on the surface of a media with an absorption 

coefficient µa, the light intensity decrease exponentially with depth as shown in Fig. 9. 
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Fig. 9 Light intensity as a function of depth (cm) in media with different µa (cm-1) 

Several sources can cause errors of the Beer’s law. The law is accurate only for a 

dilute solution. Deviations from the law occur in concentrated solutions due to 

electrostatic interactions between solute molecules and changes in refractive index at high 

solute concentration. The linear-range concentration must be determined experimentally. 
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Scattering of light due to particulates in the sample and fluorescence/phosphorescence of 

the sample can also cause error.  

2.3.3 Determination of phantom µs - Mie theory 

Mie theory, which is named after its developer German physicist Gustav Mie, is 

very important in tissue phantom study. The µs of scatterers in tissue phantoms can be 

calculated by this theory. Mie theory is not a theory. Instead, it is a complete analytical 

solution of Maxwell’s equations for the scattering of electromagnetic radiation. Therefore, 

it is called Mie solution sometimes. The theoretical scattering coefficient, absorption 

coefficient, and anisotropy factor of microspheres in a phantom can be accurately 

calculated with the Mie theory. In Mie theory, the imaginary index of refraction which 

indicates the amount of absorption loss when the electromagnetic wave propagates 

through the material is needed. Generally, the imaginary index of reflection is very small 

and neglected. Some on line Mie theory calculators are available (e.g. 

http://www.lightscattering.de/MieCalc/ by Bernhard Michel, 

http://omlc.ogi.edu/calc/mie_calc.html by Scott Prahl). 

The Mie theory dependent on the wavelength in vacuum, the sphere diameter, 

the refractive index of medium, the refractive index of microspheres (both real and 

imaginary), and the sphere density. The refractive indexes of the medium and 

microspheres are usually functions of wavelength and temperature.99 100-103 The refractive 

indexes of polystyrene101 and water102 are show in Fig. 10. 
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Fig. 10 Refractive indexes of polystyrene and water 

2.4 Spectroscopy techniques for measuring tissue optical properties 

Cancer detection with reflectance spectroscopy is based on the fact that tissue 

optical properties, such as absorption coefficient and scattering coefficient, change as 

tissue become dysplastic, which will in turn change the reflectance spectrum. By 

analyzing the reflectance spectrum, optical property change resulting from dysplastic 

change can be quantified.  

The spectroscopy techniques for measuring tissue optical properties can be 

classified in different ways such as in vitro and in vivo or direct and indirect. In vitro 

techniques usually measure tissue sections while in vivo techniques measure tissues on 

living body. Direct techniques are generally performed in vitro and are independent of 

any model of light propagation in tissue. In direct method, the tissue section is thin 

enough that multiple photon scattering is negligible. The optical absorption and scattering 

properties of a tissue can be calculated directly from the fractional light absorbed or 

scatted by the sample.104  Although the principle of the direct method is simple, it is 

extremely difficult to prepare the sample. The thickness of a sample for direct techniques 

should be much smaller than 1/ µs, which is only several microns. Such a sample is 

difficult to make without altering the optical properties. In contrast, an indirect technique 

can be performed either in vitro or in vivo and it highly depends on the models. In an 
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indirect method, the parameters such as reflectance and transmittance of a bulk tissue are 

measured, from which the optical properties are deduced by applying one or more of the 

light propagation models.105 Two prevalent spectroscopy techniques were discussed as 

following. 

2.4.1 Spectrophotometer with an integrating sphere 

One technique for optical property measurement is spectrophotometer with an 

integrating sphere. An integrating sphere, which is typically used with a light source and a 

detector for optical power, is an optical component consisting of a hollow spherical cavity. 

Its inner surface is coated with highly reflective materials such as barium sulfate (BaSO4). 

Its spherical shape and highly reflective inner surface make it a diffuser which preserves 

power but destroys spatial information. Light rays incident on any point of the inner 

surface are distributed equally to all other points by multiple scattering reflections. 

Therefore, effects of the original direction of such light are minimized. An integrating 

sphere usually has several relatively small windows for entrance and exit of light or as a 

sample port. The sizes of these windows should be considered when calibrating the 

system.  

Integrating spheres are often used to measure the reflectance or/and 

transmittance of a tissue. The measurements can be made in different ways. The incident 

light can be either collimated or diffuse and the light beam can be either one or two. The 

reflectance (R) and transmittance (T) of a tissue can be measured using one single 

integrating sphere in two steps or two combining integrating sphere in one step.  

Depending on the experiment design, either total or diffuse reflectance/transmittance can 

be measured as shown in Fig. 11. 
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(a)Total transmittance  (b) Diffuse transmittance 

   

(c) Total reflectance  (d) Diffuse reflectance 

 
Fig. 11 Measurement of reflectance and transmittance with one integrating sphere 

Integrating spheres can be used in different ways such as direct in vitro, indirect 

in vitro, or indirect in vivo. If the sample is thin enough (only several microns) that 

multiple photon scattering is negligible, it is a direct in vitro method. If the sample is 

optically thick tissue section, it is an indirect in vitro method. If the living tissue is 

directly attached to the sphere window, it is an indirect in vivo method. Since the sample 

for direct in vitro method is difficult to prepare and it is not convenient to attach the 

sphere to a living tissue, the indirect in vitro method is used mostly. 

The inverse adding-doubling (IAD) method106 is usually used to extract the 

optical properties from the reflectance and transmittance measured with an integrating 

sphere attached to a spectrophotometer. Therefore, the whole technique which includes 

the measurement of reflectance and transmittance with an integrating sphere and the 

extraction of optical properties from the measured reflectance and transmittance with the 

IAD method is sometimes also called the IAD method.  

Phantom cuvette 

100% Reflectance plate Detector Diffuse light 

Collimated light 
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2.4.2 Fiberoptic-based spectroscopy techniques 

Although the integrating sphere is widely used in optical studies, it is not 

convenient, especially for in vivo measurements. The introduction of optical fibers into 

the tissue optics area makes the real-time diagnosis possible.  In recent years, significant 

progress has been made in the development of fiberoptic techniques for measuring tissue 

optical properties within the UVA-VIS wavelength range.  These approaches make it 

possible to characterize internal tissues in situ, including via endoscopic delivery. They 

also enable measurements of intact ex vivo tissues, as opposed to prior ex vivo techniques 

which involved freezing, sectioning or homogenization, which may change the tissue 

optical properties.  Amelink et al.107 demonstrated the capability of differential path-

length spectroscopy which consisted of two bifurcated optical fibers to determine the 

local optical properties of a tissue.  Moffitt et al.108 constructed a sized-fiber spectroscopy 

system consisting of two fibers with diameters of 200 and 600 µm and tested the system 

in the µa range of 0.1-2.0 cm-1 and µs′ range of 5-50 cm-1. Each fiber emitted and 

collected its own backscattered light. Sun et al.67 developed a diffusion-theory-based 

inversion method for the extraction of tissue optical properties from in vivo spectral 

measurement ranging from 350 nm to 650 nm with a cylindrical optical fiber probe. The 

probe was composed of a central collection fiber surrounded by six hexagononally close-

packed illumination fibers. The tissue optical properties used in their study were µs=40-

100 cm-1, µa=0.1-2.5 mm-1, and g=0.84.  Thueler et al.109 described a fast spectroscopic 

system for superficial and local determination of the absorption and scattering properties 

of a tissue with a probe composed of eleven linearly arranged optical fibers, one for 

illumination and ten for detection. Palmer et al.110 identified an optimal probe geometry 

which consisted of a single illumination and two collection fibers. They found that µa 

ranging from 0 to 80 cm-1 and µs′ ranging from 3 to 40 cm-1 could be extracted from 

reflectance with root-mean-square (RMS) errors of 0.30 cm-1 and 0.41 cm-1 respectively 
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using this probe geometry in conjunction with a neural network algorithm. This was only 

a purely theoretical study without any experiments. 

In prior studies by our group, Pfefer et al.39 developed a neural network 

algorithm for the extraction of µa and µs′ from spatially resolved diffuse reflectance. 

Reflectance datasets for development of the neural network were generated by direct 

measurement of Intralipid-dye tissue phantoms at 675 nm and Monte Carlo simulation of 

light propagation with µa 1-25 cm−1 and µs′ 5-25 cm−1. The algorithm was able to extract 

µa and µs′ of the phantoms to within RMS errors of ±2 and ±3 cm-1, respectively. Sharma 

et al.111 improved on this system by implementing an imaging spectrograph, high 

sensitivity CCD camera and in-line neutral density filters to maximize dynamic range and 

signal to noise ratio. With a similar algorithm the new system estimated µa and µs′ values 

with average errors of 4.0% and 5.5%, respectively. 

Fiberoptic-based systems for tissue optical property measurement often combine 

reflectance spectroscopy hardware with software for forward and inverse modeling.  The 

hardware includes laser105, 108, 112, 113 or broadband36, 67, 107, 114 light sources, a probe with 

multiple optical fibers, one or more detectors, and  a computer.  The design of the probe – 

a bundle of illumination and detection fibers arranged in a well-defined geometry – is a 

key issue during system construction. Forward models can be categorized as analytical or 

numerical. An analytical model is usually an approximation of the radiative transport 

equation.  Light propagation in a tissue can be described by an integrodifferential 

equation of radiative transport whose general analytic solution does not exist115. A 

diffusion approximation of radiative transport is often applied to obtain a closed-form 

analytical solution116, 117. Analytical models are more elegant in principle since 

reflectance/transmittance can be expressed in a closed-form in terms of optical properties. 

However, the specific experimental conditions for which they apply are often simplified 

and the modeling equations are sometimes difficult to solve.  Numerical models, however, 

enable incorporation of any source-tissue-detector geometry.  Monte Carlo modeling, 
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which uses random numbers and statistics to find solutions to mathematical problems that 

cannot be easily solved, is a common numerical model for estimating light propagation in 

a tissue. The Monte Carlo method has long been recognized as a powerful tool to solve 

problems that are too complicated for an analytical solution.  Since the first paper that 

introduced Monte Carlo simulation of laser-tissue interaction118, numerous improvements 

have been made119-122. Published works that provide a detailed description of the Monte 

Carlo approach as applied to light transport are available in the literature45, 123. Because 

the Monte Carlo method is computationally intensive, various techniques have been 

developed to improve its efficiency124, 125. The condensed Monte Carlo simulation 

introduced by Graaff et al.125 is theoretically transparent and relatively easy to implement. 

Palmer and Ramanujam126 extended Graaff et al.’s condensed Monte Carlo method from 

a ray source to a beam source by convolution. 

By training an inverse model on the relationship between optical properties of a 

sample and its reflectance distribution, it is possible to develop a model that can readily 

calculate the optical properties of any sample based on the spatially-resolved reflectance 

distribution measured from that sample.  Neural network is an empirical method that is 

commonly used to develop inverse models for optical property determination39, 111, 127. 

While primarily used as an inverse model, it can also be used as a forward model to 

quickly determine reflectance distributions for arbitrary optical properties. Inverse neural 

network models for optical property determination require calibration with datasets that 

establish the relationship between sample optical properties and reflectance distribution.  

These datasets can come from phantom measurements39, Monte Carlo simulations111, or 

analytical models like diffusion theory127. 
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Chapter 3. OPTICAL PROPERTY MEASUREMENT OF 
SINGLE-LAYER TISSUES WITH A FIBEROPTIC 

REFLECTANCE SYSTEM 

3.1 Introduction 

In order to quantitatively understand light-tissue interaction, accurate 

information on tissue optical properties is essential. To perform an in vivo measurement, 

minimally-invasive systems based on fiberoptic probe measurements have been 

developed105. Previous fiberoptic-based approaches to optical property measurement have 

typically involved wavelengths from visible to near-infrared. Due to the low levels of 

attenuation in this spectral range, measuring reflectance was relatively easy compared to 

highly attenuating at short ultraviolet A (UVA) and visible (VIS) wavelengths. However, 

since most commercialized instruments for cancer detection work in UVA and VIS 

regions where the optical properties such as µa and µs of tissues are limited, further 

understanding of the µa and µs values of tissues in the UVA and VIS regions is crucial for 

the clinical instruments to achieve their full potential. 

The focus in this investigation was on the in vitro determination of tissue optical 

properties, especially µa and µs′. A forward Monte Carlo simulation was run, followed by 

condensed Monte Carlo simulations to extend the datasets. With the datasets from 

condensed Monte Carlo simulations, inverse neural network models were developed. 

Then a fiberoptic reflectance system was constructed and calibrated with phantoms. A 

Matlab® (The MathWorks, Inc.) routine, which would call the inverse neural networks 

and was coupled into the LabView virtual instrument software, was applied to extract µa 

and µs′ from the measured reflectance with the system. The whole system including the 

developed models was in vitro validated with phantoms and was finally used to measure 

porcine tissues ex vivo. Fig. 12 shows the flow chart of this investigation. 
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Fig. 12 Flow chart of the investigation 

3.2 Monte Carlo modeling of light transport in single-layer tissues 

Monte Carlo methods are based on the use of random numbers and probability 

statistics to find solutions to solve problems that are too complicated for a more classical 

approach. They are a class of nondeterministic algorithms being widely used. Because of 

the large number of calculations involved, Monte Carlo methods highly depend on 

computers. Since high-speed computers became widespread in the 1950s, published 

papers about Monte Carlo method explore. Monte Carlo methods have been used in many 

different fields and a great deal of theoretical as well as practical investigations have been 

undertaken. In general, most Monte Carlo models are used to simulate the propagation of 

electron, photon, and neutron.128-130 Gauvin et al developed a new Monte Carlo program 

to compute the X-ray spectra obtained with a scanning electron microscope.131 Similar 

simulations were also carried out by many other groups.132-136  

Monte Carlo simulation of photon propagation simulates the “random walk” of 

photons in a medium. The movement of a photon from one absorption/scattering event to 

another is called one step. As shown in Fig. 13, the main parameters in a Monte Carlo 

simulation include step size s, deflection angle θ, and azimuthal angle Ψ. For every step, 

these parameters are chosen by statistically sampling the probability distribution as 

following equations, where ξ is a random number between [0,1] generated by a 

computer.45  
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Fig. 13 Deflection of a photon by scattering event 

Once a photon begins its travel in the media, its weight will be attenuated due to 

absorption by the media. If the photon weight is W, W is updated after each step according 

the following equation. 

  W � W * (1- µa/µt )    (12) 

Of course, the internal reflectance or escape at the boundary as well as the 

termination of a photon should also be considered.45 Although my focus is on the diffuse 

reflectance signals, the Monte Carlo simulation can also generate transmittance signals as 

well as internal fluence. 

Based on above algorithm, a Matlab program was constructed to do the Monte 

Carlo simulations. Fig. 14 and Fig. 15 show results of two simulations. In each simulation, 

50,000 photons were lunched vertically from a ray source into a tissue with µa value of 

0.5 cm-1, µs′ value of 20 cm-1, g of 0.9, and n of 1.37. The Henyey-Greenstein phase 

function was used to mimic the scattering angle. The tissue thickness in Fig. 14 and Fig. 

15 was 10 cm and 0.3 cm respectively. 

θ 

Ψ 

Absorption/
scattering 
event Scattered 

photon 
trajectory 

s 



 

35

 

0 0.5 1 1.5
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1  
Pobability of a photon being aborbed (1/cm3,logarithmic scale)

z (cm)

 

r 
(c

m
)

-8

-7

-6

-5

-4

-3

-2

-1

0

1

2

 

(a) Absorbance in the tissue 

0 0.5 1 1.5 2 2.5 3
10

-8

10
-6

10
-4

10
-2

10
0

10
2

r (cm)

P
ro

ba
bi

lit
y 

of
 a

 p
ho

to
n 

ab
so

rb
ed

/t
ra

ns
m

itt
ed

 (
1/

cm
2 )

 

 

Diffuse Reflectance

Total Transmitance

 

(b) Diffuse reflectance on the tissue surface 
Fig. 14 Simulation results of a semi-infinite homogeneous tissue 

(µa=0.5 cm-1, µs′=20 cm-1, g=0.9, n=1.37, thickness 10 cm) 
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(b) Diffuse reflectance on the tissue surface 
Fig. 15 Simulation results of a homogeneous bulk tissue 

 (µa=0.5 cm-1, µs′=20 cm-1, g=0.9, n=1.37, thickness 0.3 cm) 

To verify the accuracy of my Monte Carlo program, simulation results was 

compared with literature137. Two simulations were run to obtain radially resolved 
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reflectance of two semi-infinite media. The two media had same µa (0.1 cm-1) and µs′(10 

cm-1) but different g (0.9 and 0 respectively). The Henyey-Greenstein phase function was 

used to mimic the scattering angle. The reflective index of the fibers and media were 1. 

The incident light was a collimated pencil beam from which 500,000 photons were 

launched. All the escaped photons were detected. Fig. 16 shows my MC simulation 

results compared with results from literature. From this figure, both simulation curves 

overlap the curves from literature, which mean the Monte Carlo program is accurate. 

 

 
Fig. 16 Diffuse reflectance as a function of radius (r) - Comparison of MC simulation results with 

results from literature 

3.3 Condensed Monte Carlo modeling of single-layer tissues 

Because the Monte Carlo method is computationally intensive, various 

techniques have been developed to improve its efficiency124, 125. The condensed Monte 

Carlo simulation introduced by Graaff et al.125 is theoretically transparent and relatively 

easy to implement. Palmer and Ramanujam126 extended Graaff et al.’s condensed Monte 

Carlo method from a ray source to a beam source by convolution. They derived a 

g=0.9 (My results)

g=0 (My results)
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convolution equation for the condition that the illumination fiber and the detection fiber 

are different ones.  

Spatially resolved diffuse reflectance was calculated with a condensed Monte 

Carlo approach125, 126 mentioned above. Light propagation in a medium with absorption 

coefficient of 0 cm-1(µa,sim), scattering coefficient of 150 cm-1 (µs,sim), and g=0.9 was 

simulated with a primary Monte Carlo model at first. It should be noted that non-zero 

µa,sim values can also be used in this simulation. The Henyey-Greenstein phase function 

was used to mimic the scattering angle. The index of refraction (n) of fibers was 1.45 and 

n=1.37 for tissues. The numerical aperture (NA) for both the illumination and collection 

fibers was 0.22. The incident light was a ray of “pencil beam” source from which 

40,000,000 photons were launched in a uniform distribution over all angles within the 

cone specified by NA=n·sinθ, where θ is the incident/acceptance angle measured from the 

normal to the tissue surface. For each detected photon which was governed by the 

acceptance angle, the number of interactions with scatterers (N), the distance from 

entrance to exit (rsim), and the weight of the remitted photon (Wsim) were recorded. The 

value of Wsim was determined according to standard Monte Carlo approaches including 

weight reduction due to specular reflectance and absorption (in my case, the latter was 

minimal)45, 123. In order to simulate a medium with new absorption coefficient (µa,new) and 

scattering coefficient (µs,new), scaling was performed for each photon to obtain the new 

distance from entrance to exit (rnew) and the new weight of the remitted photon (Wnew) 

according to following equations (note that the following represent the general forms, 

whereas in my specific case, µa,sim is zero)125, 126: 
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Since the probe’s illumination fiber was not a ray source, the following convolution 

equation126 was used to calculate the probability (p) of a photon being collected by a 
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collection fiber with radius rc  after traveling a distance of rnew from an illumination fiber 

with radius r i.  
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where s was the center to center distance between illumination fiber and detection fiber. 

This convolution equation was only used if s ≥ r i+rc and s-ri-rc < rnew < s+ri+r c, otherwise, 

p=0. Therefore, the collected weight (Wcollect) of a photon by the detection fiber was 

calculated by the following equation.  
 Wcollect = Wnew · p      (16) 

The reflectance from a collection fiber was obtained by dividing the sum of total collected 

weight by the total number of launched photon. 

By applying above condensed Monte Carlo technique, reflectance datasets within 

a wide range of optical properties in µa (0.1-85 cm-1) and µs′ (0.1-118 cm-1) were 

generated. In total, 2805 datasets with even spacing of 2.5 cm-1 for both µa and µs′ while 

µa>30 cm-1 and µs′>5 cm-1 and smaller spacing while µa<30 cm-1 or µs′<5 cm-1 were 

obtained, as well as 220 random datasets. 

The geometry used in the condensed Monte Carlo simulations replicated the 

design of my fiberoptic probe. A diagram of the probe face is shown in Fig. 17. The probe 

contains linearly arranged fibers, a single illumination fiber and five detection fibers, 

spaced at consecutive center-to-center distances of 0.5 mm. The core diameter of each 

fiber is 0.2 mm with a NA of 0.22. 

 
Fig. 17 The 4 mm diameter face of the fiberoptic probe 

Illumination fiber 
Detection fiber 1 2 3 4 5  
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Fig. 18 shows the contour curves of dimensionless reflectance from five 

detection fibers from condensed Monte Carlo simulations. Reflectance per unit area can 

be obtained by dividing the dimensionless values by the cross section area of each 

detection fiber. These contour curves indicate that the sensitivity of reflectance to optical 

properties varies with µa and µs′. For each curve, its slope changes continuously. A 

steeper slope at a point means that the reflectance is less sensitive to µs′ there. On the 

other hand, a shallower slope at a point means that the reflectance is less sensitive to µa. 

For example, reflectance is more sensitive to µs′ than to µa when µs′ is less than 5 cm-1. 

This may affect the accuracy of neural networks in different µa and µs′ ranges. For a fixed 

µa, reflectance increases to a maximum value and then decreases with increasing µs′. This 

trend seems to be related to prior findings that for a source-detector separation of 1.7 mm 

both the average photon path length and reflectance intensity are relatively insensitive to 

scattering properties (over a µs′ range of 7.5 to 22 cm-1)138.  A similar insensitivity to 

scattering was also seen in reflectance data presented in my prior study 39.  Although I do 

not show the results for source-detector separation of 1.7 mm here, a similar conclusion 

can still be obtained from Fig. 18 (c) which shows the reflectance for source-detector 

separation of 1.5 mm. From this graph, the contours are roughly vertical when µs′ ranges 

from 7.5 to 22 cm-1, which means the reflectance is insensitive to changes in µs′. 

Furthermore, it is possible to identify similar µs′ range for other source-detector 

separation distance from similar contours in Fig. 18 (a), (b), (d) and (e).  
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(e) 

Fig. 18 Contours of dimensionless reflectance from each detection fiber with radius of 0.1 mm, where 
graphs a, b, c, d and e correspond to center-to-center distances of 0.5, 1.0, 1.5, 2.0 and 2.5  mm, 

respectively, between the illumination and collection fibers. 

Overall, the plots for each fiber are similar. The contours of a nearer fiber 

resemble a close-up of those of a further fiber, except that the absolute values are higher. 

This shows the scaling theory of the condensed Monte Carlo method in another way. The 

irregular contour patterns at high µa and µs′ for farther fibers originate from the fact that 

the quantity of launched photons is insufficient for convergence to an accurate solution 

for reflectance in these regions. Therefore, neural networks trained with these datasets 

may be prone to larger errors. For Fig. 18 (c), (d) and (e), it should be noted that the blank 

areas at the top of each graph indicate regions for which almost no photon were collected. 

3.4 Development and evaluation of neural network models for single-layer tissues 

Traditionally, neural network means a network or circuit of biological neurons. 

Mathematically, neural networks involve a network of simple processing elements 

(artificial neurons or commonly just neurons) which can exhibit complex global behavior, 

determined by the connections between the processing elements and element parameters. 
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A neural network can be trained by adjusting the values of the connections (weights) 

between neurons so that a particular input leads to a specific target output.  

Reflectance datasets generated with the condensed Monte Carlo simulations were 

used to train and evaluate feed-forward back-propagation neural network models with the 

Neural Network Toolbox in Matlab®.  The input vector for each network (sometimes 

referred to as an “input layer”) consisted of 2-5 reflectance values corresponding to the 

number of detection fibers used. The network also contained two hidden layers of seven 

neurons each with logarithmic sigmoid transfer functions, and an output layer of two 

neurons with linear transfer functions.  The output vector consisted of the absorption and 

reduced scattering values. A Levenberg-Marquardt backpropagation training function was 

used. The number of neurons came from my optimization results. The reflectance datasets 

used for training included 2805 optical property combinations determined from the 

condensed Monte Carlo model. Two-thirds of these datasets were used for training and 

one-third of them were used for evaluation during training.  

In order to identify appropriate model designs for performing optical property 

estimations, I evaluated the influence of detection fiber quantity (i.e., the size of the input 

vector).  This analysis was performed using simulation datasets both with and without the 

addition of artificially generated noise. A set of four neural network models, based on 2, 3, 

4 and 5 detection fibers was generated and trained within the optical property range of 

0.1-85 cm-1 for µa and 0.1-118 cm-1 for µs′. 

During initial measurements of highly attenuating tissues, it was found that under 

highly attenuating conditions (tissues, wavelengths) larger separation distance fibers did 

not collect sufficient signal.  In order to assess the accuracy and robustness of my inverse 

modeling approach when fewer than five detection fibers were implemented, I performed 

the following theoretical analysis. Four neural networks based on 2, 3, 4, and 5 detection 

fibers were evaluated with the 220 random datasets generated with condensed Monte 

Carlo simulations. This evaluation was performed both without added noise and with 5% 
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random noise added to the reflectance values at all fibers. The noise level of 5% was 

based on measured variations in ex vivo tissues, which was likely dominated by spatial 

inhomogeneity. Table 1 summarizes the average values of absolute errors from the 

evaluations. The results for 5% noise are the average of three evaluations.  

Table 1. Absolute errors of four neural networks (cm-1) 

No. of Fiber 2 3 4 5 
OP µa µs′ µa µs′ µa µs′ µa µs′ 
No noise 0.32 0.41 0.39 0.38 0.22 0.28 0.24 0.25 
5% noise 0.70 3.13 0.62 2.36 0.52 1.91 0.57 2.12 

From Table 1, the absolute errors of optical properties from the neural networks 

decrease with an increasing number of detection fibers except for the five-fiber network 

which shows similar accuracy with the four-fiber network. This is likely because the 

greater noise in reflectance at high µa and µs′ for fiber No.5 (Fig.4 (e)) render the 

reflectance from detection fiber No.5 of little use. In general, the errors of µs′ are larger 

than the errors of µa, particularly for the 5% noise cases. Although noise increases error, 

the accuracy is still quite good in all cases and compares favorably with peer research to 

date110. Figure 5 shows the calculated µa and µs′ from the neural network based on 4 

detection fibers versus their theoretical values when no noise was added as well as 5% 

noise was added to reflectance. From Fig. 19 (d), the calculated values match the 

theoretical values well even with noise added to the reflectance.  
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(d) 

Fig. 19 The calculated µa and µs′ from the neural network based on four detection 
fibers versus their theoretical values (straight lines indicate where the calculated 

values are equal to the theoretical values). 

To study the sensitivity of neural networks at different optical property ranges, 

3D plots of absolute errors (from the neural network with 4 detection fibers) of µa and µs′ 

of each evaluation dataset are shown in Fig. 20. When no noise is added to the reflectance 

for evaluation, the error of µa is larger when µs′ is less than 10 cm-1 (Fig. 20a). This 
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agrees with Fig. 18 which shows that reflectance is not sensitive to µa at low µs′. In 

general, µs′ is rather accurate when no noise is added to the reflectance (Fig. 20b). When 

5% noise is added to the reflectance for evaluation, the error of µa is larger at regions of 

lower-µa-higher-µs′ and higher-µa-lower-µs′ (Fig. 20c).  From Fig. 20d, the errors of µs′ 

are larger at lower-µa-higher-µs′ region with 5% noise added. All these conclusions can 

also be obtained according to reflectance contours for each µa and µs′ set (Fig. 18)  
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(d) 5% noise 

Fig. 20 Absolute errors of µa and µs′ of each evaluation dataset from neural network 
based on 4 detection fibers 

3.5 Construction of single-layer phantoms 

During the developing of the fiberoptic diffuse reflectance system, phantoms 

with known optical properties are necessary for calibrating and optimizing the instrument 
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and providing a qualitative means of testing the parameters and assumptions made in 

mathematical models and simulations. Since aqueous suspension phantoms are easy to 

make, they are used as my single-layer phantoms.   

Both nigrosine and hemoglobin A0 (Ferrous stabilized human, Sigma H0267) 

were used as absorbers in phantoms. The former is cheaper and more stable while the 

later provides realistic tissue spectra. Their spectrums were measured with a 

spectrophotometer as shown in Fig. 21 and Fig. 23. 

As observed from figures Fig. 22 and Fig. 24 of µa versus concentration, both 

nigrosine and hemoglobin show a linear relation between µa and concentrations. At 

wavelength 415 nm, the absorption coefficient has a minimum value for nigrosine while a 

peak value for hemoglobin. On average, the absorption coefficient of nigrosine is much 

higher than that of hemoglobin with wavelength ranges from 300 nm to 700 nm. 
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Fig. 21 µa of nigrosine as a function of wavelength at different concentrations 
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(a)     (b) 

Fig. 22 µa of nigrosine as a function of concentration at different wavelengths 
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Fig. 23 µa of hemoglobin as a function of wavelength at different concentrations 
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Fig. 24 µa of hemoglobin as a function of concentration at different wavelengths 
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As mentioned before, polystyrene microsphere is an excellent scatterer for a 

standard phantom because 1) it is produced with good quality control over the size and 

index of reflection, 2) it is less fluorescent and less absorbing compared with other 

microspheres, and 3) it has similar density with water. Therefore, polystyrene 

microsphere was chosen for phantom construction. The anisotropy factor of polystyrene 

microsphere is controlled by the sphere diameter, wavelength, refractive index of medium 

(water), and refractive index of sphere (polystyrene). Table 2 shows the refractive index 

of water and polystyrene from Fig. 10. The anisotropy factors of polystyrene microsphere 

with different diameters in water at different wavelengths are shown in Table 3. 

Table 2. Refractive indexes of water and polystyrene at different wavelengths 

Wavelength (nm) 325 375 405 445 543 
Refractive index 
of water 

1.3521 1.3446 1.3417 1.3387 1.3344 

Refractive index 
of polystyrene 

1.6706 1.6390 1.6266 1.6145 1.5968 

Table 3. The anisotropy factors of polystyrene microspheres in water 

Wavelength (nm) 325 375 405 445 543 
 
Diameter 
(µm) 

1.0 0.8305 0.9011 0.9148 0.9207 0.9283 
1.5 0.8347 0.7870 0.8274 0.8485 0.8753 
2.0 0.8331 0.8676 0.8344 0.8275 0.8182 
2.5 0.8844 0.8452 0.8837 0.8761 0.8732 
3.0 0.8953 0.8634 0.8480 0.8454 0.8826 

In order to best approximate biological tissues and satisfy the similarity 

relationship, a scatterer with an anisotropy factor bigger than 0.9 should be used.139 

Therefore, polystyrene microsphere with diameter of 1.0 µm was employed. 

The scattering coefficient of a phantom can be calculated by Mie theory. There 

are many Mie theory programs available. The program used in my research was based on 

a Fortune language program for homogeneous sphere.140 This program was initially 

translated and modified to a Matlab program by Anant Agrawal in our lab. Since the 

program could only calculate one group of input parameters every time, I then wrote 

another one to deal with the data input and output, which called the initial one as a 
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subroutine. The whole program can now input as many data as you want from an Excel 

worksheet simultaneously and output the results to another worksheet in the same file 

after calculation. Fig. 25 and (a)     (b) 

Fig. 26 show the results from these two Mie scattering programs at different 

wavelengths and sphere densities.  
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Fig. 25  µs′ of polystyrene microsphere (0.989 micron diameter) as a function of wavelength 
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(a)     (b) 

Fig. 26 µs′ of polystyrene microsphere (0.989 micron diameter) as a function of density 

Fig. 25 shows the monotonic decrease of µs′ with wavelength except the lobe 

patterns between 300 nm and 350 nm. The lobe patterns come from the similar patterns of 

phase function by Mie theory in this range. (a)     (b) 

Fig. 26 shows that µs′ increases linearly with sphere density. 
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Once the relations between the absorption coefficient/reduced scattering 

coefficient and the concentration/wavelength are known, phantoms with accurate optical 

properties can be constructed from deionized water, polystyrene microspheres, and 

nigrosine or hemoglobin at any desired property values. Fig. 27 shows a series of 

phantoms with polystyrene microspheres as scatterer and nigrosine as absorber.  

 
Fig. 27 Phantoms with increasing µa and µs′ held constant (nigrosine as absorber) 

3.6 Construction and calibration of the fiberoptic diffuse reflectance system 

3.6.1 Light source 

The light source of the fiberoptic diffuse reflectance system can be either a lamp 

or a laser. A lamp emits incoherent photons in almost all directions, usually over a wide 

spectrum of wavelengths. A laser light, however, is typically near-monochromatic and 

emitted as a narrow beam in a specific direction. Besides, the light from a laser source is 

coherent. This means the waves of the laser light are in phase.  

Since µa and µs′ are functions of wavelength, their values are meaningful only at 

given wavelength. When a lamp is used as light source, it is usually used together with a 

spectrometer or a filter to get the desired wavelength, which makes the system clumsy 

and inefficient.  Besides, it is difficult to couple the light into a fiber efficiently. On the 

other side, a laser source with a small volume can be used as a light source independently. 

And because of its directional property, laser can be coupled into a fiber easily. Therefore, 

laser sources were chosen in my system. 

The spectral region below 600 nm (the UVA-VIS region) is essential for in vivo 

fiberoptic diagnostics especially for the fluorescence study. Besides, it is possible to study 

a smaller area on tissue with light in this region than with light of longer wavelength. 
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Shorter wavelength also means shorter source-detector (SD) separation. Only photons 

experiencing multiple scattering events can provide useful information about the 

scattering coefficient. Since the scattering coefficient of a tissue is higher at shorter 

wavelength, a photon with shorter wavelength will experience a given number of 

scattering events within a shorter SD separation. Since the data about the reflectance 

study in the UVA and VIS regions are limited, I want to fill up this blank. The laser 

wavelengths in our systems are 325 nm, 375 nm, 405 nm, 445 nm, and 543 nm. 

3.6.2 Construction of the fiberoptic diffuse reflectance system 

A multi-wavelength, fiberoptic diffuse reflectance system was developed as 

illustrated in Fig. 28. The system included five laser sources with wavelengths of 325 nm, 

375 nm, 405 nm, 445 nm and 543 nm. The power output of the lasers was approximately 

one milliwatt except the 543 nm laser whose power output was about 50 µW. The laser 

sources were coupled via a fiber switch to a linear array fiberoptic probe (Fig. 17). The 

diffuse reflected light was collected via five detection fibers at different distances from 

the illumination center and recorded as a spectrogram with a high-sensitivity charge-

coupled device (CCD) camera (Princeton Instruments, Inc.). In-line neutral density (ND) 

filters were applied to attenuate signals in some fibers and thus maximize the dynamic 

range. A LabView (National Instruments Corporation) routine was developed to control 

the instrumentation, acquire data and calculate the reflectance based on calibration results 

described below. 
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Fig. 28 Multi-wavelength, fiberoptic diffuse reflectance system for optical property measurement 

3.6.3 Measurement of absolute reflectance intensity 

Fig. 29 shows the light propagation in a turbid media and the detection of 

scattered light with a fiber probe. The intensity of scattered lights at the tissue surface 

decreases exponentially with distance from the illumination point (Fig. 30). The light 

intensity at positions with different distances from the illumination point is collected by 

five detection fibers and transferred to a spectrograph with a high-sensitivity CCD camera. 

CCD is the abbreviation of charge-coupled device which is an image sensor containing an 

array of coupled light-sensitive capacitors.  

The intensity of light collected by each detection fiber could be three to six 

orders of magnitude difference if no filters are installed in the system. Since the intensity 

from each pixel on CCD is recorded by a 2 bytes (16 bits) number, the maximum 

intensity value is 2^16-1=65,535. Therefore, the intensity from the highest detection fiber 

may have saturated the camera while the intensity from the lowest one is still too low. By 

applying the in-line neutral density (ND) filters to attenuate signals in several fibers with 

higher intensity, the light intensity levels through all the detection fibers are homogenized 

and the dynamic range of the CCD camera is broadened. The in-line ND filters in my 

system are optimized in such a way that the system can measure phantoms or tissues with 
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a wide optical property range. Fig. 31 shows a photo of light intensity obtained by a CCD 

camera from five detection fibers.  

 
Fig. 29 Light propagation and the detection of scattered light by a fiber probe 

 
Fig. 30 Light intensity at tissue surface as a function of distance from an illumination fiber 

 

 
Fig. 31 CCD camera image of light intensity obtained by the five detection fibers 

3.6.4 System calibration - Converting intensity to reflectance 

As shown in Fig. 31, data from the CCD camera is a 2-D matrix that represents 

light intensity in each pixel. Since the intensity of light from each detection fiber is 

attenuated differently by the ND filters, the intensity matrix cannot tell us the direct 
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information of the reflectance. The intensity matrix from each fiber should be converted 

to reflectance which is defined as the fraction of incident light from the illumination fiber 

that is collected by this fiber. It is proportional to the ratio of intensity per unit time from 

this fiber to the incident power (measured with a power meter) or the ratio of intensity 

within the exposure time from this fiber to the incident energy within the exposure time. 

These relations can be expressed by the following equations: 

0000 *

/

E

I

tP

I

P

tI

P

P
R ==∝=     (17) 

where P is the power of light collected through a detection fiber in watts, P0 the incident 

power from the illumination fiber in watts, I the dimensionless intensity from CCD 

camera, t the exposure time in seconds, and E0 the incident energy within the exposure 

time in joules.  Therefore, there is a linear relation between the reflectance and the 

intensity per unit energy of illumination light for each detection fiber as shown below: 
  

0
E

I
kR ⋅=

      (18) 

where k is a constant for a given detection fiber at a given wavelength in joules.  

The value of k for each detection fiber and at each wavelength was obtained during 

calibration. For a phantom with known µa and µs′, R from each detection fiber and at each 

wavelength was calculated from the condensed Monte Carlo simulation and I was 

measured by the CCD camera. E0 was the product of the incident power P0 and the 

exposure time t.  Then, k was calculated according to equation 6 and should remain 

constant for samples with different µa and µs′.  During calibration, a series of phantoms 

were constructed as described in section 2.4 and measured to determine I for each 

phantom and fiber. For each fiber, a graph of R versus I /E0 was constructed and used to 

determine a linear best fit. The slope of this line was k. In all cases, the r2 values were 

above 0.99. Once k for each detection fiber at each wavelength was obtained, the 

reflectance of a phantom with unknown optical properties could be calculated according 

to equation 6. This process was performed with a Matlab® routine coupled into the 
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LabView virtual instrument software. The k values were calculated once and occasionally 

verified using phantoms. Drift of k from its original value was not significant. Fig. 32~Fig. 

36 show the relation between R and I / E0. The slopes of each trendline in these figures 

are the k values. The whole process of dealing with data was achieved by a Matlab 

routine coupled in the LabView control program.  
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Fig. 32 Reflectance versus intensity per mJ of illumination light at 325 nm 
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Fig. 33 Reflectance versus intensity per mJ of illumination light at 375 nm 
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Fig. 34 Reflectance versus intensity per mJ of illumination light at 405 nm 
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Fig. 35 Reflectance versus intensity per mJ of illumination light at 445 nm 
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Fig. 36 Reflectance versus intensity per mJ of illumination light at 543 nm 

3.7 In vitro validation of the reflectance system 

To evaluate the performance of the fiber optic reflectance system and the 

mathematical models, tissue phantoms were constructed from deionized water, 

polystyrene microspheres (Polybead® Microspheres 1.00 µm, Polysciences, Inc.) and 

hemoglobin (Hb) (hemoglobin A0, ferrous stabilized human, Sigma H0267). 

Microspheres and Hb were chosen for their optical similarity to tissue scatterers and 

chromophores within the UVA-VIS spectral range. Microspheres of 1 µm diameter have 

commonly been used to simulate the cellular and structural protein scatterers in tissue141. 

Theoretical estimates of phantom µa and µs′ were determined according to Beer’s law and 

Mie theory. From the spatially-resolved reflectance, µa and µs′ were calculated by the 

developed neural network based on 4 collection fibers. System accuracy was evaluated by 

comparing the theoretical µa and µs′ with the values predicted from diffuse reflectance 

measurements. 
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Results for four tissue phantoms measured at all five wavelengths are shown in 

Fig. 37.  The phantoms included two levels of absorption and scattering, as indicated in 

the graphs by Hb and polystyrene sphere concentrations. Figures 7 (a) and 7 (b) came 

from the neural network based on two detection fibers. Figures 7 (c) and 7 (d) came from 

the neural network based on four detection fibers. In general, these graphs show good 

agreement between theoretical and measured data, especially for µa.  Absorption 

coefficient data display the well-known absorption signature of oxyhemoglobin, including 

a strong peak at 415 nm. While the 405 nm wavelength used in my measurements does 

not coincide with the peak of the oxyhemoglobin absorption curve, the phantom µa values 

at this wavelength are more than 3 times greater than at any of the other four wavelengths 

studied.  The average error in predicting µa is 1.0 cm-1 for both Fig. 37 (a) and Fig. 37 (c).  

Figures 7 (b) and 7 (d) display the expected monotonic decrease in µs′ with wavelength.  

It is worth noting that the greatest errors in µs′ occur at 325 nm – where µa is low and µs′ 

is high, which agrees with Fig. 20.  The average error for µs′ estimates are 3.0 cm-1 for Fig. 

37 (b) and 2.7 cm-1 for Fig. 37 (d). Data points in Fig. 37 (a) and Fig. 37 (c) appear in 

pairs due to the fact that for each µa, two different µs′ were investigated, and vice versa in 

Fig. 37 (b) and Fig. 37 (d). 
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  (a) From 2-fiber neural network           (b) From 2-fiber neural network 
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 (c) From 4-fiber neural network    (d) From 4-fiber neural network 

Fig. 37 Comparison of theoretical optical properties (curves in the graphs) with estimates based on 
reflectance measured with the fiberoptic system 

3.8 Ex vivo tissue measurements 

Fresh porcine esophagus, bladder, colon, oral mucosa, and liver tissues were 

brought back to my lab in a cooler filled with ice immediately after animals were 

sacrificed. The colon, esophagus, and bladder were dissected longitudinally. All tissues 

were placed in a Petri dish and covered with gauze moistened with saline to prevent 

desiccation after they were flushed with saline to remove excess materials on the surface. 

The time between sacrifice and commencement of measurements was approximately 

three hours.  According to a recent study 142, these tissue handling procedures should have 

been sufficient to avoid significant changes in reflectance, which can be altered by 



 

63

processes such as freezing and thawing. To perform a measurement, the fiber-optic probe 

was placed gently on a tissue such that the tip was flush with the tissue surface. 

Reflectance data were collected at three different sites on each tissue. At each site, three 

measurements were taken followed by a background measurement with the light source 

blocked. Each site was moistened with saline before measurements. All tissue samples 

were measured within four hours of sacrifice. Typical measurement-to-measurement 

variation at a single site was approximately 1%. The tissue optical properties were 

determined from reflectance datasets with inverse neural network models (based on 2 

collection fibers for liver and 4 collection fibers for other tissues). To evaluate the optical 

property results, forward condensed Monte Carlo simulations were run with the optical 

properties obtained from neural networks. The generated reflectance values for tissues at 

different wavelengths were then compared with the measured values. 

Average µa and µs′ values measured in porcine liver and mucosal tissues of the 

bladder, colon, esophagus and oral cavity from three swine are displayed in Fig. 38. Data 

in these graphs were calculated by the neural network based on reflectance from four 

detection fibers, except for the liver data which was based on two detection fibers because 

of its high absorption. When the two fiber approach and four fiber approach were 

compared during mucosal tissue measurements, the former was shown to have 7% greater 

variability. However, very highly attenuating tissue measurements are limited by the 

detector noise floor and the potential for thermal damage due to higher irradiation levels. 

The ex vivo tissues show relatively consistent spectral trends in µa and µs′, 

specifically, a decrease in µa from 325 nm to 375 nm, followed by an increase to 405 nm 

and consecutive decreases to 445 and 543 nm.  Estimates of µs′ showed a monotonic 

decrease with wavelength, although the magnitude of this decrease varied from tissue to 

tissue.  

Exceptions to these trends are also evident, most notably, the minimal decrease 

in µs′ with wavelength for colon tissue (Fig. 8 (d)) and a higher than expected µa value at 
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543 nm for esophageal tissue (Fig. 8 (e)).  These results may be due to significant tissue 

inhomogeneities, irregularities in placement of the probe (e.g., an air bubble between the 

probe and tissue), variations in laser power or some combination of these issues. 

The similarities in results are even greater for the epithelial tissue samples: 

bladder, colon, esophagus, and oral mucosa. These tissues show similar optical property 

magnitudes as well, with µa ranging from 1 cm-1 to 15 cm-1 and µs′ ranging from 15 cm-1 

to 65 cm-1. In general, µa of bladder and colon is higher than µa of esophagus and oral 

mucosa, µs′ of bladder is higher than µs′ of other tissues at 325 nm. While the µs′ level of 

the one non-epithelial tissue – liver – is similar to other tissues, its µa is significantly 

higher, likely due to high blood content.  

The error bars in Fig. 8 demonstrate the significant variation in optical 

properties found in this study. It is worth noting that these error levels are approximately 

equal to or less than the levels documented in the literature143-145.  For example, Zonios et 

al. showed that the typical standard deviation of optical properties of colons from 

different animals were in the ±30-50% range145.  This level of standard deviation helps to 

explain the wide variations in the optical properties reported in different papers, such as 

µa values of human colons at 475 nm measured as 12 cm-1 and 2 cm-1 in two different 

papers 112, 143.  Our preliminary findings in comparing repeat measurements at a single 

location to measurements at different sites and in different animals indicate that a 

significant portion of this variation may be due to local, regional or animal–to-animal 

variations (e.g. collagen fibers, animal growth stage). One possible source of error is 

discrete blood vessels which it may be possible to account for using correction factors 146. 

Another variable may be the presence, thickness and optical properties of mucosal 

epithelia. 13, 147  While several techniques for measuring the optical properties of multi-

layer tissues have been proposed, there is no consensus in the literature as to the best way 

to accomplish this task, nor is there significant tissue data using these proposed methods. 

52, 148  
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Fig. 38 Optical properties of porcine tissues (average values of three animals) 

To evaluate the optical property results in Fig. 38 in a direct way, forward 

condensed Monte Carlo simulations were run with the optical properties obtained from 

tissues using neural networks. The generated reflectance values were then compared with 

the measured ones. Data on oral mucosa and liver are presented in Fig. 39. In general, the 

reflectance values from Monte Carlo simulation matched very well with the measured 

values, providing further validation of my approach in nonhomoneneous tissue. 
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(c) Oral mucosa    (d) Oral mucosa 

Fig. 39 Reflectance as a function of distance from center of illumination 
fiber (r) (Hollow symbols indicate the values from forward condensed Monte Carlo 

simulations. Solid symbols indicate the measured values.) 

Table 4 provides a summary of relevant published data on tissue optical 

properties. Some data in this table were estimated from printed graphs.  The µs′ of human 

esophagus in Holmer et al.’s paper 144 roughly matches my value at 325 nm. However, 

the µa is about six times higher than my value. The results of human esophagus by 

Georgakoudi et al. 12 agree with my porcine results. The µa and µs′ of human colon in 

Wei et al.’s paper 112 match my results of porcine colon, while the µa values of human 

colon in Zonios et al.’s paper145 are higher than my porcine colon results and their µs′ 

values are lower. From Ritz et al.’s paper 149,  their µa values of porcine liver are lower 

than mine and µs′ values are higher. The µa values in Parsa et al.’s paper 150 is consistent 
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with my porcine results. Their µs′ values are higher than mine. When comparing these 

results, it is important to note that the optical properties may change during tissue 

preparation142.  

As noted previously, the curves in Fig. 8 have several features in common.  The 

peak in µa at 405 nm is consistent with the established concept that Hb is the dominant 

chromophore for most tissues in the visible range.  However, the intensity of this peak 

relative to values at nearby wavelengths is much less than shown in tissue phantoms, and 

the decrease in µa from 325 nm to 375 nm is not consistent with the Hb-dominated 

phantom results.  These findings support the idea that at short visible wavelengths other 

chromophores become increasingly significant.  According to the literature, tissue 

constituents such as collagen, elastin, DNA and some other proteins (especially those 

with high aromatic amino acid content such as tryptophan and tyrosine) also contribute to 

the absorption of UVA light151-153.   

Table 4. Optical properties from literature 

Tissue Wavelengt
h (nm) 

µa 
(cm-1) 

µs′ 
(cm-1) 

Tissue 
preparation 

Reference 

Human 
esophagus 

330 24.7 30.5 Frozen, 
homogenized 

Holmer et al. 
144 

Human 
esophagus 

405 
445 
543 

 23 
21 
20 

Fresh, bulk, ex 
vivo 

Georgakoudi 
et al. 12 

Human colon 476-532 2.3-3.3 24.6-
19.1 

Fresh, sliced, ex 
vivo 

Wei et al. 112 

Human colon 325 
375 
405 
445 
543 

13 
9 
21 
7 
4 

22 
15 
14 
10 
8 

Frozen, sliced Zonios et al. 
145 

Porcine liver 405 
445 
543 

45 
20 
13 

30 
18 
12 

Frozen, 
homogenized 

Ritz et al. 149 

Rat liver 375 
405 
445 
543 

57 
60 
42 
20 

23 
20 
19 
15 

Fresh, sliced, ex 
vivo 

Parsa et al. 
150 
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In order to clarify the role of structural proteins such as collagen, I have 

performed preliminary spectrophotometric measurements of collagen (type I, bovine, BD 

Biosciences 354231) absorption.  These data are graphed in Fig. 40 along with the µa of 

Hb (hemoglobin A0, ferrous stabilized human, Sigma H0267).  The µa of collagen 

increases exponentially with decreasing wavelength within the UVA range. Although the 

absolute value of collagen µa is two magnitudes less than that of Hb, the contribution of 

other chromophores such as collagen and elastin to µa of tissues can still be remarkable 

considering the higher concentration of these chromophores relative to Hb. Therefore, it 

is likely that the µa distributions in Fig. 38 are due to the superposition of Hb and other 

chromophores such as collagen and elastin. In the future, it may be possible to determine 

the concentrations of these chromophores through fitting algorithms. 

0

1

2

3

4

5

6

7

8

9

300 400 500 600
Wavelength(nm)

µa
 o

f H
b 

(c
m

-1
)

0

0.01

0.02

0.03

0.04

0.05

µa
 o

f c
ol

la
ge

n 
(c

m
-1

)

1mg/mL Hb
1.0mg/mL Collagen

  

Fig. 40 Absorption coefficient of Hb and type I collagen 

3.9 Conclusion 

Towards the goal of accurate in vivo measurements of tissue optical properties, I 

have constructed and evaluated a novel fiberoptic-based system for optical property 

measurement within the UVA-VIS wavelength range. My approach involves a neural 

network-based inverse model calibrated with reflectance datasets simulated using a 

condensed Monte Carlo approach with µa up to 85 cm-1 and µs′ up to 118 cm-1. 
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Theoretical evaluation of the inverse model showed good agreement between calculated 

and theoretical values. Experimental evaluation on tissue phantoms showed average 

errors in predicting µa and µs′ of 1.0 cm-1 and 2.7 cm-1.  

Optical property data collected in unprocessed mucosal and liver tissues ex vivo 

provide evidence that the current approach can produce useful data on tissue optical 

properties over a wide range of optical characteristics. Significant tissue-specific 

variations in scattering and absorption were found.  Scattering coefficients decreased 

monotonically with wavelength.  Variations in absorption with wavelength indicate a 

shift in primary chromophore from hemoglobin at visible wavelengths to other 

components, likely other proteins, in the ultraviolet.  While significant variability in 

optical properties was found for individual tissue types, this variability tended to be less 

than in prior studies. However, additional research is needed to investigate their origin. 
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Chapter 4. OPTICAL STUDY OF SINGLE-LAYER 
TISSUES WITH AN ILLUMINATION-DETECTION FIBER 

4.1 Introduction 

Reflectance spectroscopy has been demonstrated to be useful for providing 

biochemical and morphological information for minimally-invasive detection of cancer in 

mucosal tissues such as the cervix7, 8, esophagus9, 11, colon13, 14, as well as breast tissue154, 

155. It has also been used for monitoring of tissue oxygenation17, 20 and analytes such as 

bilirubin 25, 29 and glucose32, 35.  Furthermore, reflectance-based approaches are critical for 

providing fundamental optical property data on biological tissues which are used in 

theoretical models and to extract intrinsic optical signals for disease diagnosis 36-39. These 

tasks can be accomplished using imaging techniques or fiberoptic probes. Non-imaging 

systems based on fiberoptic probes can be categorized into two groups: those with 

separate fibers for illumination and detection 39, 67, 110 and those in which the illumination 

and detection regions overlap, such as with a single fiber 107, 108, 156, 157 . In this 

dissertation I use the term “illumination-detection fiber” to denote this latter geometry. 

While my study in Chapter 3 mainly focuses on the first group of fibers, I will focus on 

illumination-detection fibers in this chapter. 

Illumination-detection fiber geometries have been implemented in clinical 158-161 

and theoretical 162-164 studies of fluorescence spectroscopy, as well as a variety of studies 

involving reflectance measurement from tissue. Moffitt et al. developed a sized-fiber 

probe for measuring local optical properties. The probe included two fibers with different 

diameters. Each fiber illuminated and detected its own backscattered light at 632.8 nm. 

108 Bargo et al. studied how the collection efficiency of a single optical fiber depended on 

the optical properties of turbid media 157. Amelink et al. measured the local optical 

properties of tissue with an approach that included an illumination-detection fiber and a 
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detection fiber 107. Papaioannou et al. investigated effects of fiber-optic probe design and 

probe-to-target distance on diffuse reflectance measurement of turbid media with a single 

fiber probe 156.  

Calculation of light propagation and reflectance distribution in a tissue is 

commonly performed using Monte Carlo modeling. While accurate, this approach can be 

computationally inefficient. Various techniques have been developed to improve its 

efficiency 124, 125. The condensed Monte Carlo simulation introduced by Graaff et al. 125 is 

theoretically transparent and relatively easy to implement. Palmer and Ramanujam 126 

extended Graaff et al.’s condensed Monte Carlo method from a ray source to a beam 

source and from the total reflectance to the reflectance with a detection fiber by 

convolution. This condensed Monte Carlo method has been applied to accelerate the 

simulation of reflectance by detection fibers 40. However, these prior studies did not 

address the single fiber approach.   

In Chapter 3, I implemented a condensed MC method to accelerate the 

simulation of reflectance measured by detection fibers. In this chapter, I have derived and 

validated two convolution equations for the condensed Monte Carlo simulation to 

calculate the reflectance from an illumination-detection fiber. I also developed a scaling 

equation to scale the maximum penetration depth of a photon. These equations, together 

with those described in earlier paper 125, 126 extend the simulation capability of condensed 

Monte Carlo method and can generate theoretical reflectance of media with different 

optical properties from both an illumination-detection fiber and several detection fibers 

based on one primary Monte Carlo simulation. With the extended Monte Carlo method, I 

studied the influence of illumination-detection fiber size on the reflectance in a wide µa 

and µs′ range. The method was then implemented to study the effect of illumination-

collection fiber diameter on the ability to distinguish between normal and cancerous 

breast tissues using reflectance spectra. The method was also used to evaluate the additive 

benefit of illumination-detection fiber data to improve the accuracy of diffuse-reflectance 
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based tissue optical property measurements. Finally, effect of optical properties, detection 

distance from the illumination point, and size of an illumination-detection fiber on 

detection depth were studied. 

4.2 Condensed Monte Carlo simulation for an illumination-detection fiber 

4.2.1 Convolution equations for an illumination-detection fiber 

I have derived two convolution equations for an illumination-detection fiber . 

They can be used to convert data from a primary MC simulation of a ray source 

illumination in a tissue with absorption coefficient of µa,sim and scattering coefficient of  

µs,sim to a new set of data for a beam source in tissue with absorption coefficient of µa,new 

and scattering coefficient of  µs,new.  I assume that the system is circularly symmetric, i.e., 

the illumination-detection fiber is normal to a homogeneous medium and the system is 

symmetric about the central axis of the fiber.  Let the fiber be centered at the origin with 

radius r i. Because the system is symmetric, a photon launched at (x,0) with a net travel 

distance of r t may exit the surface anywhere along the circle centered at (x,0) with radius 

r t (blue circle in Fig. 41) with equal probability. All photons launched from the circle 

centered at origin with radius x (red circle in Fig. 41) have the same p0 value. Therefore, 

the probability that a photon launched from a circular fiber will be collected by the same 

fiber after traveling a net distance r t can be calculated by 

∫ ⋅⋅
⋅

=
ir

i

dxxp
r

p
0 02

)2(
1

π
π

   (19) 

where p0 is the probability that the photon launched at (x,0) (blue point) is collected by 

the fiber and (2π x)·dx is the differential element of a small area. Since p0 is a function of 

r t and x, p can be expressed in different ways under different conditions: 

(1) r t ≥≥≥≥ 2r i 

In this case, the photon can not be detected by the fiber, p = 0. 
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(2) 0 < r t ≤≤≤≤  r i 

If 0 ≤ x ≤ r i-r t, p0=1. Therefore, 
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Fig. 41 Schematic of the fiber configuration (0 < rt ≤≤≤≤  r i) 

 

If r i-r t < x ≤ r i, probability of a photon launched at (x,0) is collected by the fiber 

(Fig. 41) is 
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Substitution of Eq. 21 into Eq. 19 yields 
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Therefore, the probability that a photon launched from the circular fiber will be collected 

by the same fiber after traveling a net distance r t, in the whole range of 0 ≤ x ≤ r i and 

under the condition of  0 < r t ≤ r i, can be calculated by combining Eq.(20) and Eq.(22) as 

following:  
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(3) r i < r t ≤≤≤≤ 2r i 

 
Fig. 42 Schematic of the fiber configuration (r i < rt ≤≤≤≤ 2r i) 

Probability of the photon launched at (x,0) is collected by the fiber is: 
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If x < r t - r i, p = 0. To make sure a photon can be collected, the relations of r t - r i 

< x < r i, r i+r t > x, r i+x > r t and r t+x > r i should be satisfied. In sum, the range of x should 

be r t - r i < x < r i. Therefore, 
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Eq. 23 and Eq. 24 can be used to convert data from a primary Monte Carlo 

simulation of a ray source illumination in a tissue to a new set of data for a beam source 

in the tissue.  

4.2.2 Scaling equation for maximum penetration depth 

Eq. 13 in Chapter 3 shows the scaling equation to calculate the distance from 

entrance to exit of a photon in a tissue with given optical properties according to data 

from a primary Monte Carlo simulation with optical properties of µa,sim and µs,sim. In the 
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same way, the maximum depth that a photon penetrates into a tissue with optical 

properties of µa,new and µs,new can also be calculated with a similar equation as following 

)(
,,

,,

newanews

simasims
simnew dd

µµ

µµ

+

+
⋅=      (25) 

where dsim is the maximum penetration depth of a photon from the primary Monte Carlo 

simulation and dnew is the maximum penetration depth of this photon in a tissue with 

different optical properties from the primary one.  

4.2.3 Condensed Monte Carlo model 

The principle of condensed Monte Carlo modeling has been described in 

Chapter 3. In this chapter, convolution equations of Eq. 23 and Eq. 24 were coupled into 

the condensed Monte Carlo model developed in Chapter 3 to calculate reflectance values 

from illumination-detection fibers. The parameter of r t in these equations has the same 

meaning as rnew in Chapter 3. Besides, the scaling equation of Eq. 25 was also coupled 

into the model to calculate the maximum penetration depths of detected photons. The 

geometry used in the simulations replicated the design of my fiberoptic probe. A diagram 

of the probe face is shown in Fig. 43. The probe contains linearly arranged fibers, a single 

illumination-detection fiber and five detection fibers, spaced at consecutive center-to-

center distances of 0.5 mm. The core diameter of each fiber is 0.2 mm with a numerical 

aperture (NA) of 0.22. This model was used throughout this chapter and parameters and 

details of this model are the same as those in Chapter 3 if not otherwise specified. 

 
Fig. 43 The 4 mm diameter face of the fiberoptic probe 

Illumination-detection fiber 
Detection fiber 1 2 3 4 5  
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4.2.4 Evaluation of convolution equations for an illumination-detection fiber and 
the scaling equation for maximum penetration depth of a photon 

The accuracy of Eq. 23 and Eq. 24 was evaluated by comparing the reflectance 

from condensed Monte Carlo simulations with that from standard Monte Carlo 

simulations. A series of optical properties with µa values as 1, 10, 20, 30, and 40 cm-1 and 

µs′ values as 5, 15, 25, 37.5, 50, 62.5, 75, 87.5 and 100 cm-1 (Fig. 44) were employed to 

evaluate the equations for two illumination-detection fibers with radii of 0.1 mm and 0.5 

mm respectively. Fig. 45 shows the evaluation results in the form of reflectance from 

condensed Monte Carlo simulations versus reflectance from standard Monte Carlo 

simulations. The dashed line in Fig. 45 is where the results from both methods are same 

(0% error). The average errors from the condensed Monte Carlo simulations were found 

to be 6.3% for the fiber with radius of 0.1 mm and 5.1% for the fiber with radius of 0.5 

mm. In general, less reflectance signal will be detected with smaller µs′, larger µa, and 

smaller fiber radius, which in turn will bring larger error. The effect of small µs′ on the 

average error of condensed Monte Carlo simulations is significant. If the evaluation 

results from µs′ of 5 cm-1 (grey symbols in Fig. 44) are excluded, the average error will 

become 5.1% for the fiber with radius of 0.1 mm and 3.2% for the fiber with radius of 0.5 

mm. 

The condensed Monte Carlo simulations are not only accurate, but also fast. The 

calculation time of both standard and condensed Monte Carlo models is proportional to 

the number of photons. Fig. 46 shows the calculation time of both methods for 40 million 

photons using a computer with 2992 Mhz processor and 1 GB physical memory. For the 

standard Monte Carlo simulation, smaller µa and/or bigger µs′ can significantly slow 

down the speed (Fig. 46a). For the condensed Monte Carlo simulation, however, the 

speed will be reduced mainly by bigger µs′ (Fig. 46b) and bigger radius. For illumination-

detection fibers with radii of 0.1 mm and 0.5 mm, condensed Monte Carlo reduced the 
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calculation time by three orders of magnitude and two orders of magnitude respectively, 

compared with the standard Monte Carlo model. 
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Fig. 44 Optical properties for evaluation of Eq. 23 and Eq. 24 
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(a) radius = 0.1 mm 
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(b) radius = 0.5 mm 

Fig. 45 Reflectance from condensed MC simulations versus reflectance from standard MC 
simulations 
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(b) condensed Monte Carlo 

Fig. 46 Simulation speeds of (a) standard Monte Carlo (in minutes) and (b) condensed Monte Carlo 
(in seconds) models for an illumination-detection fiber with radius of 0.1 mm 

To evaluate Eq. 25, the average values of maximum penetration depths of 

detected photons from condensed Monte Carlo simulations were compared with those 

from standard Monte Carlo simulations. Maximum detection depths of twelve tissues 

with optical properties shown in Table 5 were simulated. The average maximum 

penetration depth of photons detected by the illumination-detection fiber and detection 

fibers (Fig. 43) were calculated with both condensed Monte Carlo simulations and 
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independent Monte Carlo Simulations (Fig. 47). Again, the line in Fig. 47 is where the 

standard Monte Carlo results are the same as condensed Monte Carlo results. The legend 

in the figure shows the fiber center distance from the illumination point. Since all points 

fall right on the line or close to the line, the scaling equation for maximum penetration 

depth of a photon is proven to be accurate. Also, from different symbols for each 

detection fiber, we can see that a fiber further from the illumination point usually detects 

photons that penetrate deeper into the tissue. 

Table 5. Optical properties for evaluation of the scaling equation 

µa (cm-1) 1 1 1 1 5 5 5 5 10 10 10 10 
µs′ (cm-1) 1 10 15 20 1 10 15 20 1 10 15 20 
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Fig. 47 Average values of maximum penetration depth from condensed MC simulations versus the 

values from standard MC simulations 

Accuracy of the condensed Monte Carlo technique was further evaluated by 

simulating reflectance values of tissues with different optical properties from both the 

illumination-detection fiber and detection fibers. Fig. 48 shows the reflectance values 

from a fiber probe shown in Fig. 43. In this figure, hollow symbols are from condensed 

Monte Carlo simulations and solid symbols are from standard Monte Carlo simulations. 

The legend shows the different optical properties in simulations. From the figure, results 
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from the condensed Monte Carlo simulations almost overlap with those from the standard 

Monte Carlo simulations. Fig. 49 shows the reflectance from condensed Monte Carlo 

simulations versus that from standard Monte Carlo simulations, the same data as in Fig. 

48 but shown in a different way. The dash line is where the values from condensed Monte 

Carlo simulations are equal to those form standard Monte Carlo simulations. There is 

only 1% deference in reflectance values between the condensed Monte Carlo simulations 

and the standard Monte Carlo simulations except the values from the fourth and fifth 

detection fibers when µa is 30 cm-1 and µs′ is 15 cm-1 (There is 27% difference at these 

two points, which means the error in reflectance increases with distance from the 

illumination site and with absorption coefficient). Fig. 48a shows that the reflectance 

from the illumination-detection fiber is not sensitive to µa while µs′ is smaller than15 cm-1.  
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(a) µs′ is constant 

  
(b) µa is constant 

Fig. 48 Reflectance of the illumination-detection fiber and other detection fibers from condensed 
Monte Carlo simulations (hollow symbols) and standard Monte Carlo simulations (solid symbols) at 

different optical properties  
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Fig. 49 Reflectance from condensed Monte Carlo simulations versus reflectance from standard 

Monte Carlo simulations 

4.3 Effect of fiber diameter on reflectance from an illumination-detection fiber 

Based on condensed Monte Carlo simulations, the logarithmic contour curves of 

reflectance values from illumination-detection fibers were obtained for fiber radii of 0.05, 

0.1, 0.2, 0.3, 0.4, 0.5 and 5 mm. Totally 37 µa values ranged from 0.1 cm-1 to 40 cm-1 and 

44 µs′ values ranged from 0.1 cm-1 to 100 cm-1 were applied for each fiber size. In other 

words, 1628 simulations were performed for each contour graph. Fig. 50 shows the 

results for fiber radii of 0.05, 0.2, 0.5 and 5 mm respectively. Fig. 51 shows the 

reflectance of four optical property sets as a function of radius. 

Fig. 50 indicates that the sensitivity of reflectance to optical properties varies 

with µa and µs′ (similar contour figures for detection fibers as shown in Fig. 43 are 

available in Fig. 18). A steeper slope at a point implies that the reflectance is less 

sensitive to µs′ at that point. On the other hand, a shallower slope at a point implies that 

the reflectance is less sensitive to µa. The figure shows that reflectance from an 

illumination-detection fiber is not sensitive to µa at low µs′ values, especially for a fiber 

with small radius. The same conclusion can also be drawn from the fact that the 

difference between the two dashed lines is smaller that the difference between the two 
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solid lines in Fig. 51. Unlike the reflectance from other detection fibers which was not 

sensitive to µs′ at all at certain optical ranges as shown in Fig. 18, the reflectance from the 

illumination-detection fiber is sensitive to µs′ over the entire optical range of µa from 0.1 

cm-1 to 40 cm-1 and µs′ from 0.1 cm-1 to 100 cm-1. 

 Graphs in Fig. 50 provide quantitative insight into the effect of fiber size on 

sensitivity of reflectance to optical properties. From Fig. 50, there is an increase in 

“slope” of the contour lines with fiber radius, which translates to an increase in sensitivity 

to changes in µa, likely due to the greater probability of detecting longer pathlength 

photons. For example, when  µa is 10 cm-1 and µs′ changes from 10 cm-1 to 30 cm-1, the 

change in reflectance is  6.9x10-4 for the 0.1 mm radius fiber and 1.2x10- 3 for the 0.2 mm 

radius fiber. Fig. 51 also shows that bigger fiber size can distinguish the reflectance 

difference more significantly.  

Since the condensed model can be used to build up large data sets such as these, 

this approach may help to facilitate the development of rapid optical approaches based on 

extensive “lookup tables” such as that recently proposed by Rajaram et al.165.  



 

86

0 5 10 15 20 25 30 35 40
0

20

40

60

80

100

1e-005 1e-005 1e-0050.0001 0.0001 0.0001

0.001
0.001

0.001

µ
a
 (cm-1)

µ s/
 (c

m
-1

)

   

0 5 10 15 20 25 30 35 40
0

20

40

60

80

100

1e-005 1e-005 1e-0050.0001 0.0001 0.0001
0.001

0.001
0.001

0.001

µa
 (cm-1)

µ s/
 (c

m
-1

)

 
  (a) r = 0.05 mm     (b) r = 0.2 mm 

   

0 5 10 15 20 25 30 35 40
0

20

40

60

80

100

1e-005 1e-005 1e-0050.0001 0.0001 0.0001
0.001

0.001
0.001

0.
01

0.
01

µ
a
 (cm-1)

µ s/
 (c

m
-1

)

0 5 10 15 20 25 30 35 40
0

20

40

60

80

100

1e-005 1e-0050.0001 0.0001 0.0001
0.001

0.001
0.001

0.
01

0.
01

0.
01

µa
 (cm-1)

µ s/
 (c

m
-1

)

 
  (c) r = 0.5 mm     (d) r = 5 mm 

Fig. 50 Contours of dimensionless reflectance from illumination-detection fibers with different radii 
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Fig. 51 Reflectance as a function of fiber radius 
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4.4 Reflectance from an illumination-detection fiber to improve the accuracy of 
neural network 

By applying the condensed Monte Carlo technique, reflectance datasets within a 

wide range of optical properties in µa (0.1-85 cm-1) and µs′ (0.1-118 cm-1) were generated. 

In total, 2805 datasets with an even 2.5 cm-1 spacing for both µa and µs′ while µa>30 cm-1 

and µs′>5 cm-1 and a smaller spacing while µa<30 cm-1 or µs′<5 cm-1 were obtained, as 

well as 220 random datasets. There were 8 values in each dataset - µa, µs′, reflectance 

values from five detection fibers, and the reflectance value from an illumination-detection 

fiber (There was no this value in Chapter 3). The 2805 datasets were used to train and 

evaluate feed-forward back-propagation neural network models. Each network consisted 

of an input layer, a hidden middle layer and an output layer. The input data were a matrix 

of reflectance values. Of the 2805 datasets generated from condensed Monte Carlo 

simulations, two-thirds were used for training and one-third was used for evaluation 

during training. The 220 random datasets were used to evaluate the trained neural 

networks. 

In order to evaluated influence of the illumination-detection fiber and quantity of 

other detection fibers (i.e., the matrix size of the reflectance datasets as input) for 

performing optical property estimations with a neural network, two sets of neural network 

models (NNset1 & NNset2) were generated according to the 2805 datasets. Reflectance 

values from different fibers were used in different neural network models. NNset1 was 

based on reflectance values from the illumination-detection fiber and 1, 2, 3, 4 and 5 

detection fibers respectively (In other words, there were respectively 2, 3, 4, 5 and 6 

reflectance values in the feed in matrix to each neural networks.). NNset2 was based on 

reflectance values from 2, 3, 4 and 5 detection fibers respectively (In other words, there 

were respectively 2, 3, 4, and 5 reflectance values in the feed in matrix to each neural 

networks.). These neural network models were then evaluated with the 220 random 

datasets from condensed Monte Carlo simulations.  
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To test the robustness of these neural networks, noise was added to the 

reflectance values of the 220 random datasets. In Chapter 3, up to 5% random noise was 

added to the reflectance. For any reflectance R0, the feed value to a neural network will be 

R = R0 * (1+ 5% * Rand ), where Rand was an evenly distributed random real number 

greater than -1 and less than 1. However, the noise from an actual optical system may not 

behave this way. To simulate the actual noise of my optical system, tissue phantoms were 

constructed from deionized water, polystyrene microspheres (Polybead® Microspheres 

1.00 µm, Polysciences, Inc.) and hemoglobin (Hb) (hemoglobin A0, ferrous stabilized 

human, Sigma H0267). The reflectance of each phantom was then measured three times 

with the system. The reflectance values from each detection fiber in each measurement 

were recorded and their standard deviations were calculated. By analyzing the 

relationship between the reflectance values and their standard deviations, the noise 

characteristics of the optical system can be determined. Fig. 52 shows the standard 

deviation characteristics of the optical system. The figure shows that the standard 

deviation has a power relation with the reflectance: 

   SD = 0.00027 * R0
0.85    (26) 

where SD is standard deviation and R0 is reflectance. This standard deviation might be 

the results of noise from the CCD camera, shot noise and laser noise from the system. 

Therefore, noise can be added to the reflectance with following equation 

   R = R0 + SD * RandN   (27) 

where R is the reflectance with noise and RandN is a random number drawn from a 

normal distribution with mean zero and deviation one.  

Table 6 summarizes the absolute errors from the evaluations. From this table, the 

absolute errors of optical properties from NNset2 decrease with an increasing number of 

detection fibers except for the five-fiber network which shows similar accuracy with the 

four-fiber network. This is likely because the greater noise in reflectance at high µa and 

µs′ for fiber No.5 renders the reflectance from detection fiber No.5 of little use. On the 
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other hand, the absolute errors of optical properties from NNset1 have almost the same 

level of error for all the neural networks and the level is significantly less than that from 

NNset2, which means accurate optical properties can be extracted just from the 

reflectance of the illumination fiber and one separate detection fiber. However, at least 

three fibers (one illumination and two detection fibers) are needed to measure optical 

properties if the illumination fiber does not measure reflectance signal. Probe with less 

optical fibers could be coupled into an endoscope easier. 

 
Fig. 52 Standard deviation of reflectance with trend line 

Table 6. Absolute errors of neural networks (cm-1) 

Illumination fiber 
used for 
detection? 

Number of detection fibers except the illumination fiber 

 1 2 3 4 5 
 µa µs′ µa µs′ µa µs′ µa µs′ µa µs′ 
Yes (NNset1) 0.03 0.06 0.03 0.06 0.03 0.06 0.03 0.06 0.03 0.06 
No (NNset2) - - 0.32 0.41 0.39 0.38 0.22 0.28 0.24 0.25 

4.5 Reflectance spectra of breast tissues from illumination-detection fibers 

Any structural and biochemical changes associated with abnormal changes in a 

tissue will result in its optical property changes, which will in turn result in the changes of 
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reflectance spectroscopy. Because of its fast speed, the condensed Monte Carlo method I 

developed can help us to quantitatively understand the specific contributions of changes 

in optical properties by a pre-cancer to the overall spectral response. Parameters and 

details in the primary MC simulation were the same as those in our previous paper40.  
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Fig. 53 Optical properties of breast tissue from literature 

The reflectance spectra of adipose and malignant breast tissues were simulated 

with condensed Monte Carlo model according to the µa and µs′ data as shown in Fig. 53 

from a prior paper166. The µa and µs′ data were read every 5 nm from 400 nm to 500nm 

from the paper. The influence of fiber radius on reflectance spectra of the adipose tissue 

was also studied. Fig. 54 shows the reflectance spectra of adipose and malignant breast 

tissues for illumination-detection fibers with radii of 0.05, 0.2, 0.5 and 5 mm. The 5 mm 

radius fiber is to simulate an imaging probe which can collect more reflectance signal and 

detect deeper into tissues. Each reflectance spectrum was normalized to the total detected 

reflectance, Rt. Increasing fiber radius tended to exaggerate local maxima and minima 

and increase collection efficiency. The former effect is similar to that seen for multiple 

fiber probes at different separation distances and most likely due to increased sensitivity 

to longer photon trajectories, which are more strongly affected by absorption.  While 

spectra calculated for adipose and malignant tissues both show the effects of strong HbO2 
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absorption near 415 nm, significant differences exist between these tissue types. Fig. 55 

shows the percentage change of reflectance of malignant breast tissue compared with that 

of adipose breast tissue. The figure shows that larger radius fibers increased the 

percentage change which may help to distinguish small changes in a tissue.  
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Fig. 54 Reflectance spectra of adipose and malignant breast tissues from illumination-detection fibers 



 

92

-80%

-60%

-40%

-20%

0%

20%

40%

60%

400 420 440 460 480 500
Wavelength (nm)

R
e
fle

ct
a
n
ce

  c
h
a
n
g
e
  o

f  
m

a
lig

n
a
n
t  

tis
su

e r= 0.05mm
r= 0.2  mm
r= 0.5  mm
r= 5     mm

 
Fig. 55 Percentage change of reflectance of malignant breast tissue 

4.6 Maximum penetration depth of a photon and detection depth of a fiber 

It is known that the signal detected at a location further from the illumination 

point usually travels a longer distance and penetrates deeper in the tissue. While some 

researchers have engaged in the depth-resolved fluorescence measurement with fiber-

optic probes 162, 163, 167, the study about depth-resolved reflectance detection with a fiber-

optic probe is insufficient. Papaioannou et al. have investigated effects of fiber-optic 

probe design and probe-to-target distance on diffuse reflectance measurements. They got 

the internal flux distributions of photons collected in the form of contours.156 Amelink et 

al. developed a differential path-length spectroscopy which included an illumination-

detection fiber and was sensitive to the optical properties in the most superficial layer of 

the tissue. 107  However, they did not study the probing depth. Moffitt et al. constructed a 

sized-fiber reflectometry for measuring local optical properties. They showed a few data 

about the depth where an absorbing plane embedding in a phantom absorbed 50% of the 

reflectance signal. However, these data only show a specific case and is not a profound 

study about probing depth.108  

In this section, I systematically study the detection depth by both illumination-

detection fibers and detection fibers. The method of expressing detection depth by the 
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maximum penetration depth of detected photons was investigated with the condensed 

Monte Carlo model. Weiss et al. introduced the idea of penetration depth with a statistical 

method on the basis of a lattice random-walk model168. Their results showed that the 

average of the maximum depth probed by photons that exit the media at a distance r from 

the illumination point had a linear relationship with r1/2 at sufficiently great r value. 

While being a pioneer study, this research only focus on the average of the maximum 

penetration depth and the so called ‘sufficiently great r value’ is not a precise definition. 

Besides, they did not prove that this conclusion held true for all optical ranges.  

In my simulations, new convolution equations for the illumination-detection 

fiber (Eq. 23 and Eq. 24) and scaling equation for maximum probing depth (Eq. 25) were 

coupled with the condensed Monte Carlo simulation based on our initial study40.  The 

parameters in simulations are the same as those in Chapter 3 except those otherwise 

specified. For each escaping photon which was governed by the acceptance angle, its 

maximum penetration depth (dsim) was recorded besides the number of interactions with 

scatterers (N), the distance from illumination point to exiting point (rsim), and its weight 

(Wsim). To simulate a medium with new absorption coefficient (µa,new) and scattering 

coefficient (µs,new), scaling was performed for each photon to obtain new maximum 

penetration depth (dnew), new distance from illumination point to exiting point (rnew) and 

new weight of the remitted photon (Wnew) according to scaling equations. Convolution 

equations were used to calculate the possibility that an escaping photon was detected by a 

fiber. The probe geometry was same as shown in Fig. 43. After scaling and convolution 

calculation, the new database was sorted based on dnew in ascending order. Wnew was then 

numerically integrated with dnew and normalized to the maximum value and shown as a 

function of depth. Fig. 56 shows the simulation results in four different optical property 

ranges: low-µa-low-µs′, low-µa-high-µs′, high-µa-low-µs′ and high-µa-high-µs′.  
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(2) µa=1 cm-1, µs′=35 cm-1 
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(3) µa=20 cm-1, µs′=5 cm-1 
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(4) µa=20 cm-1, µs′=35 cm-1 
Fig. 56  Percentage detection depth of as a function of maximum penetration depth 

(Legends in graphs are the center positions of detection fibers from the illumination point. 
The radius of each fiber is 0.1 mm. ) 

Fig. 56 shows the normalized integration of reflectance from top to bottom as a 

function of maximum penetration depth. Similar with depth-resolved fluorescence 
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study163, 167, 169, we defined a percentage detection depth of diffuse reflectance. A 90% 

detection depth was defined as the largest value of the maximum penetration depth that 

90% of the total detected photon (in term of weight) can penetrate, etc. From Fig. 56, the 

detection depth of any percentage can be read. In general, the detection depth decreases 

with increasing µa or µs′ value. Fig. 56(1) and (3) implies that the detection depth by the 

illumination-detection fiber is significant shallower than other detection fibers when µs′ is 

low. Table 7 shows some data read from Fig. 56. Fig. 57 shows detection depth as a 

function of square root of center position of detection fibers according to Table 7. Weiss 

et al.’s conclusion of “the average of the maximum depth probed by photons that exit the 

media at a distance r from the illumination point have a linear relationship with r1/2 ”168  

can be drawn from the curve of 50% detection depth in Fig. 57 (1) which shows the case 

of  low µa and low µs′ values. Even more, this conclusion can be extended to other 

percentage detection depth. However, this conclusion is not true for other optical property 

ranges as show in Fig. 57 (2)-(4) since lines in these graphs are not straight.  
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Table 7. Detection depth of fibers into different tissues (cm) 

 Percentage of detection signal from top to bottom 

Tissue 
optical 
properties 
(cm-1) 

Fiber 
center 
position 
(mm) 

 
 
10% 

 
 
20% 

 
 
30% 

 
 
40% 

 
 
50% 

 
 
60% 

 
 
70% 

 
 
80% 

 
 
90% 

µa µs′ 
 
 
1 

 
 
5 

0 0.004 0.007 0.012 0.016 0.020 0.025 0.034 0.045 0.067 
0.5 0.038 0.053 0.066 0.079 0.091 0.105 0.124 0.148 0.194 
1.0 0.050 0.070 0.087 0.100 0.116 0.134 0.157 0.192 0.241 
1.5 0.063 0.083 0.102 0.119 0.139 0.158 0.183 0.216 0.279 
2.0 0.075 0.099 0.117 0.137 0.160 0.181 0.208 0.243 0.307 
2.5 0.087 0.112 0.136 0.156 0.175 0.199 0.232 0.267 0.337 

 
 
1 

 
 
35 

0 0.002 0.004 0.006 0.008 0.010 0.013 0.016 0.021 0.031 
0.5 0.017 0.022 0.027 0.031 0.036 0.042 0.049 0.059 0.079 
1.0 0.031 0.039 0.045 0.052 0.059 0.067 0.078 0.093 0.117 
1.5 0.042 0.052 0.061 0.071 0.081 0.091 0.104 0.121 0.149 
2.0 0.056 0.070 0.083 0.093 0.102 0.116 0.132 0.150 0.184 
2.5 0.071 0.085 0.096 0.107 0.119 0.134 0.149 0.171 0.201 

 
 
20 

 
 
5 

0 0.002 0.004 0.006 0.009 0.011 0.014 0.017 0.023 0.032 
0.5 0.016 0.023 0.030 0.035 0.041 0.048 0.056 0.064 0.080 
1.0 0.022 0.031 0.035 0.042 0.049 0.057 0.066 0.077 0.094 
1.5 0.025 0.037 0.047 0.054 0.064 0.071 0.078 0.088 0.108 
2.0 0.034 0.047 0.056 0.062 0.070 0.080 0.093 0.104 0.121 
2.5 - - - - - - - - - 

 
 
20 

 
 
35 

0 0.001 0.003 0.004 0.005 0.007 0.009 0.011 0.013 0.018 
0.5 0.012 0.015 0.018 0.021 0.024 0.027 0.030 0.035 0.042 
1.0 0.020 0.025 0.029 0.032 0.035 0.039 0.043 0.049 0.057 
1.5 0.026 0.032 0.036 0.040 0.044 0.049 0.054 0.061 0.072 
2.0 0.031 0.037 0.042 0.047 0.053 0.060 0.065 0.071 0.082 
2.5 0.038 0.046 0.047 0.055 0.062 0.069 0.076 0.087 0.099 
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(4) µa=20 cm-1, µs′=35 cm-1 
Fig. 57 Detection depth as a function of square root of center position of detection fibers 

(Center of the illumination fiber is origin.) 
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To study the influence of an illumination-detection fiber’s size on detection 

depth, similar simulations as described above were carried out. The only different is that a 

series of illumination-detection fibers with different sizes were used instead of a fiber 

probe as shown in Fig. 43. A group of graphs similar with Fig. 56 were obtained as 

shown in Fig. 58. Again, the simulation results are in four different optical property 

ranges: low-µa-low-µs′, low-µa-high-µs′, high-µa-low-µs′ and high-µa-high-µs′. From Fig. 

58, the detection depth by an illumination-detection fiber increases with increasing fiber 

size. However, their relation is not linear. The increase of detection depth with increasing 

fiber size is more significant while the fiber size is smaller. In general, the detection depth 

by an illumination-detection fiber is small in all the optical ranges. Take the 80% 

detection depth by an illumination-detection fiber with radius of 0.5 mm as an example: 

the detection depths as shown in Fig. 58 are 0.104 cm, 0.044 cm, 0.034 cm and 0.021 cm 

respectively. These small numbers explains why an illumination-detection fiber is idea 

for optical property measurement of superficial tissues. Graphs in Fig. 58 also show that 

detection depth is sensitive to optical properties. 
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(4) µa=20 cm-1, µs′=35 cm-1 
Fig. 58  Percentage detection depths of illumination-detection fibers with different sizes 
(Legends in graphs are the radii of illumination-detection fibers. ) 
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4.7 Conclusions 

In this study I have developed and evaluated two convolution equations for 

reflectance calculation of an illumination-detection fiber. Simulations with the condensed 

Monte Carlo model show that: 

(1) Reflectance from an illumination-detection fiber is not sensitive to µa at low µs′ values. 

There is a relative increase in sensitivity to µa when the radius of an illumination-

detection fiber increases, likely due to the greater probability of detecting longer 

pathlength photons. 

(2) Neural network results within the optical property range of µa up to 85 cm-1 and µs′ up 

to 118 cm-1 show that more accurate optical property results can be obtained if the 

reflectance values from the illumination-detection fiber are added into the neural 

network. 

(3) Simulated reflectance spectra indicate that modifications in fiberoptic probe geometry 

may lead to enhanced discrimination between adipose and malignant breast tissue. 

Increasing fiber radius tended to exaggerate local maxima and minima and increase 

collection efficiency. The former effect is similar to that seen for multiple fiber probes 

at different separation distances and most likely due to increased sensitivity to longer 

photon trajectories, which are more strongly affected by absorption. 

(4) By introducing the maximum penetration depth into condensed Monte Carlo 

simulations, I developed the idea of percentage detection depth. For instance, 90% 

detection depth was defined as the largest value of the maximum depth that 90% of the 

total detected photon (in term of weight) can penetrate. For any tissue with given 

optical properties, the detection depth of any percentage number can be quantitatively 

determined with a condensed Monte Carlo simulation. In general, the detection depth 

decreases with increasing µa or µs′ value. The detection depth by an illumination-

detection fiber is significant shallower than other detection fibers.  
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(5) The detection depth by a fiber with a distance r from the illumination point has a linear 

relationship with r1/2 when µa and µs′ are small. 

(6) The detection depth by an illumination-detection fiber increases with increasing fiber 

size. However, their relation is not linear. The increase of detection depth with 

increasing fiber size is more significant while the fiber size is smaller. In general, an 

illumination-detection fiber is idea for optical property measurement of superficial 

tissues since the detection depth by an illumination-detection fiber is small. 
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Chapter 5. OPTICAL PROPERTY MEASUREMENT OF 
LAYERED TISSUES 

5.1 Introduction 

In prior light-tissue interaction studies, it has often been assumed that the 

investigated tissue is homogeneous. However, many internal tissues such as esophagus, 

colon, and bladder consist of two or more layers (Fig. 59). Optical properties from a 

homogenous model for a layered tissue reflect some bulk or average values of the 

tissue.170 However, these optical properties are not accurate values of any specific layer. 

Since neoplasia originates in the epithelial layer, studying light-tissue interaction in this 

layer will likely provide insights into early optical detection of neoplasia. On the other 

hand, complete optical isolation of the epithelial layer is nearly impossible. Therefore, 

techniques capable of determining the optical properties of multiple tissue layers are 

needed in order to elucidate light propagation in mucosal tissues. 

 
Fig. 59 Cancer developed from superficial layer 

Monte Carlo based models are the most accurate forward models for light 

propagation in tissues although they are computationally intensive. The methods to 

increase the efficiency of Monte Carlo modeling include two categories: the methods 
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accelerating a single Monte Carlo simulation and the methods taking advantage of 

information generated by a small set of Monte Carlo primary simulations (also called 

baseline simulations).124 Of the two groups, the latter has the advantage of faster speed 

for a number of simulations. Two representative methods of the second group are 

perturbation method148, 171 and multi-layer scaling method 124. 

The perturbation method begins with a primary Monte Carlo simulation of a 

multi-layer tissue and records the number of collisions and the total path length of each 

photon in each layer, from which the photon weight from tissues with different optical 

properties can be calculated through a perturbation equation. The limitation of 

perturbation method is that it is only effective over a range of absorption (50 - 400% of 

baseline values) and scattering (70-130% of baseline values) perturbations148. When a 

neoplasia develops in a tissue, the scattering property change can be far beyond this range. 

Collier et al. reported that µs of normal cervical tissue was 22 cm-1 while µs of cervical 

intraepithelial neoplasia III was 117 cm-1.46 Therefore, the perturbation method may not 

be valid for many tissue conditions. 

The multi-layer scaling method begins with a primary Monte Carlo simulation of 

a homogeneous tissue with tens of imaginary layers, in which the exit weight, the x and y 

offsets and the number of collisions of each photon in each layer were recorded. From the 

primary simulation data, the trajectory information of photons in multi-layer tissues is 

derived through several scaling equations. The computer requirement is high for the 

scaling method since huge amounts of data need to be processed and stored. 

Optical properties of layered tissues such as mucosa at ultraviolet and visible 

wavelengths are needed to elucidate light propagation mechanisms involved in optical 

spectroscopy devices.  Prior approaches to measuring this data have typically been based 

on spatially-resolved reflectance.  However, these approaches have limitations, some of 

which are not well understood.  Therefore, the objectives of this study were (1) to 

elucidate the relationship between spatially-resolved reflectance distributions and optical 
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properties in two-layer tissue and (2) introduce and assess an unconstrained approach to 

optical property measurement.  The first part of this study involved calculating reflectance 

from two-layer tissue for a wide variety of optical property combinations (µa = 1-22.5, µs′ 

= 5-42.5 cm-1)  using a Monte Carlo scaling technique.  Subsequently, a Neural Network 

inverse model trained with the aforementioned results was evaluated using simulated 

reflectance data.  This relationship between optical properties and reflectance provides 

fundamental insights into the strengths, weaknesses and potential limitations of strategies 

for optical property measurement based on spatially-resolved reflectance.   

5.2 Multi-layer Monte Carlo simulation 

Multi-layer Monte Carlo model is similar with single layer Monte Carlo model. 

The main difference is that the program should judge whether a photon will cross the 

interface between two layers and calculate the new direction and step size when the 

crossing occurs. Although the simulation speed of multi-layer Monte Carlo is relative low, 

it is still essential to develop an accurate program to evaluate the simulation results of 

other methods. Also, such an accurate program is the fundament of Monte Carlo based 

fast simulation. 

A Matlab program was constructed to do the multi-layer Monte Carlo 

simulations. The results of one simulation are shown in Fig. 60 and Fig. 61. Parameters of 

this simulation are shown in Table 8. In the simulation, 2,000,000 photons were lunched 

vertically into the tissue. The Henyey-Greenstein phase function was used to mimic the 

scattering angle. All the escaped photons were detected. 

Table 8. Monte Carlo simulation parameters of a 3-layer tissue 

 Top layer Middle layer Bottom layer 
n 1.37 1.37 1.37 
µa (cm-1) 1 1 2 
µs (cm-1) 100 10 10 
g 0.9 0 0.7 
Thickness (cm) 0.1 0.1 0.2 
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Fig. 60 3-D simulation results of a 3-layer tissue  

 

 
Fig. 61 Reflectance signal on top of a 3-layer tissue 

To verify the accuracy of this multi-layer Monte Carlo model, a simulation was 

run with the same parameters as in litterature137, 172 and their results were compared (Fig. 

62 and Fig. 63). From these figures, both simulation curves overlap the curves from 

literatures, which imply the accuracy of the multi-layer Monte Carlo program. 
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Fig. 62 Diffuse reflectance as a function of radius in a 3-layer Monte Carlo simulation 

 
Fig. 63 Transmittance as a function of radius in a 3-layer Monte Carlo simulation 

5.3 Multi-layer fast Monte Carlo simulation 

The multi-layer fast Monte Carlo simulation124 is similar with the scaling 

method for a single-layer tissue described in Section 3.3 of Chapter 3. The main 
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difference is that more data must be recorded in the primary Monte Carlo simulation and 

the scaling equation must be applied in each layer. In the current study, a primary 

simulation was run at first, in which the Henyey-Greenstein phase function was use to 

simulate the scattering angles. The baseline medium was homogeneous and semi-infinite 

with optical properties of µa0, µs0 and g and was divided into Nlayer fundamental layers as 

shown in Fig. 64. A total of Nphoton photons were launched. For each photon, its exit 

weight (w0), its x offset (xa, xb, …), y offset (ya, yb, …) and the number of collisions (Na, 

Nb, …) within each fundamental layer were recorded. To calculate the exit position and 

exit weight of this photon out of an n-layer tissue with total attenuation coefficient of (µt1, 

µt2, …, µtn), albedo of (α1, α2, …, αn), the thickness of each layer (d1, d2, …, dn) should be 

converted to thicknesses of pseudolayers (d1’, d2’, …, dn’) corresponding to the baseline 

medium according to following equations: 
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Fundamental layers can then be classified into n groups, each corresponding to a 

pseudolayer layer thickness of the n-layer tissue (Fig. 64). The photon’s x offset (x1, 

x2, …), y offset (y1, y2, …) and the number of collisions (N1, N2, …) within each 

pseudolayer are the sum of these values of each group of fundamental layers. The 

horizontal exit distance of the photon out the layered tissue (r) can be calculated 

according to following scaling equations: 
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The exit weight of the photon out of the layered tissue (w) can be calculated according to 
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According to r and w values of all the exit photons, the reflectance values at different 

positions and by different fiber geometries can be calculated with the same convolution 

equation in Chapter 3 (Eq.15 and Eq.16) by substituting rnew with r and wnew with w. To 

calculate reflectance value from an illumination-detection fiber (i.e. the illumination fiber 

is also a detection fiber), I developed two new convolution equations to calculate the 

probability40 that a photon launched from a fiber will be collected by the same fiber after 

traveling a net distance r t (where r i is the radius of the fiber): 
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Fig. 64 Baseline simulation and number of fundamental layers corresponding to each layer in a 

layered tissue 

In my study, the homogeneous baseline medium used for the primary Monte 

Carlo simulation had optical properties of µa0=1 cm-1, µs0=100 cm-1, and g=0.9. The 

index of refraction (n) of the fibers was 1.46 and n=1.34 for the tissue. The core diameter 
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for both the illumination and collection fibers was 0.2 mm. In the baseline simulation 

6,000,000 photons were launched in a uniform distribution over angles within the cone 

specified by NA=n·sinθ, where θ is the incident/acceptance angle measured from the 

normal to the tissue surface and NA is the numerical aperture of fiber. NA=0.22 in my 

simulations. The Henyey-Greenstein phase function was used to mimic the scattering 

angle. Fig. 65 shows the results comparison between an standard Monte Carlo simulation 

as described in Section 4.2 and a scaling Monte Carlo simulation of a 2-layer tissue. The 

tissue parameters are shown in Table 9. The well matched results in Fig. 65 provide 

evidence that the scaling Monte Carlo method is as accurate as the standard Monte Carlo 

method while the calculation speed is improved two orders of magnitude. 

Table 9. Monte Carlo simulation parameters of a 2-layer tissue 

 Top layer Bottom layer 
n 1.34 1.34 
µa (cm-1) 2.3 7.0 
µs (cm-1) 86.8 242.5 
g 0.9 0.9 
Thickness (cm) 0.05 50.1 
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Fig. 65 Comparison of standard Monte Carlo results and scaling Monte Carlo results 
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5.4 Influence of optical properties of each layer on reflectance 

Most mucosal tissues consist of two layers (e.g., epithelial and stromal layers in 

cervical tissue). Since most cancers originate in the epithelial layer, any change of 

reflectance signal may come from a tumor in this layer. Therefore, the multi-layer fast 

Monte Carlo model discussed above was employed to study the influence of top layer and 

bottom layer optical properties on reflectance. Since the thickness of the epithelial layer 

of a mucosal tissue ranges from 25 to 750 µm52, 124, 173, we used a top layer thickness of 

0.2 mm. Reflectance from an illumination-detection fiber and twelve detection fibers was 

simulated with the multi-layer fast Monte Carlo model developed. Center-to-center 

distances of the twelve detection fibers from the illumination detection fiber were 0.25, 

0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00, 2.25, 2.50, 2.75 and 3.00 mm respectively. Radius 

of all the fibers was 0.1 mm. Four sets of simulations were designed to isolate the effect 

of four parameters: top layer µa, top layer µs′, bottom layer µa and bottom layer µs′ 

(designated as Tµa, Tµs′, Bµa and Bµs′ in the following tables and graphs). In each set of 

simulations, the influence of each parameter on reflectance was investigated with eight 

simulations in different ranges of the other three parameters. Parameter details in each 

simulation are list in Table 10. 

Table 10. Parameters of fast Monte Carlo simulations 

  1 2 3 4 5 6 7 8  1 2 3 4 5 6 7 8 
Change 
top µa 

Tµa V V V V V V V V Change 
top µs′ 

L H L H L H L H 
Tµs' L H L H L H L H V V V V V V V V 
Bµa H H L L H H L L H H L L H H L L 
Bµs' L L L L H H H H L L L L H H H H 

Change 
bottom 
µa 

Tµa H H L L H H L L Change 
bottom 
µs′ 

L H L H L H L H 
Tµs' L H L H L H L H L L L L H H H H 
Bµa V V V V V V V V H H L L H H L L 
Bµs' L L L L H H H H V V V V V V V V 

Note: ‘V’ means varying values. For Tµa and Bµa, ‘L’ represents low value of 1 cm-1 and ‘H’ represents 
high value of 20 cm-1. For Tµs' and Bµs', ‘L’ represents low value of 5 cm-1 and ‘H’ represents high value of 
35 cm-1. 
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Fig. 66 Influence of top layer µa on reflectance 
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Fig. 67 Influence of top layer µs' on reflectance 
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Fig. 68 Influence of bottom layer µa on reflectance 
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Fig. 69 Influence of bottom layer µs' on reflectance 
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Fast Monte Carlo results shown in Fig. 66 - Fig. 69 demonstrate the influence of 

top µa, top µs′, bottom µa and bottom µs′. All numbers in the legends of these figures have 

units of cm-1. From these figures, reflectance values from the illumination-detection fiber 

are around the level of 1x10-3. This value is sensitive to top µs' when the bottom µs' is low 

or to bottom µs' when the top µs' is low (Fig. 67 (a)-(d) and Fig. 69 (a)-(d)). Reflectance 

from fibers at further distance from the illumination-detection fiber carries more 

information about bottom µa. Higher bottom µa results in a significant lower reflectance 

(Fig. 66 (a), (b), (e), (f) and Fig. 68 (a), (b), (e), (f)). High attenuation in the bottom layer 

reduced the collection efficiency of the distant fibers to the point where the results often 

show significant noise levels. When bottom µs' is small, reflectance signal decays faster 

near the illumination point compared with when bottom µs' is large (Fig. 66 and Fig. 68). 

When bottom µs' is high, effect of top µs' on reflectance is concealed (Fig. 67 (e)-(h)). 

This effect is very clear in Fig. 67 (g). From this graph, reflectance curves from different 

top µs' almost totally overlapped. This means that solutions of optical properties from an 

inverse model are not unique and the error will be large. On the other hand, effect of 

bottom µs' on reflectance from further detection fibers is larger than effect of top µs' in 

general when the top layer thickness is 0.2 mm (Fig. 67 and Fig. 69), which implies that 

the error of top µs' from an inverse model will be larger than the error of bottom µs'. 

Graphs in Fig. 68 show an interesting ‘broom’ shape. The handle part of the ‘broom’ 

indicates that reflectance at short separation distances is not sensitive to bottom µa change, 

especially when top µs' is high (Fig. 68 (b),(d),(f) &(h)). Comparison of Fig. 66 and Fig. 

68 shows that reflectance is more sensitive to top µa change for nearer fibers and more 

sensitive to bottom µa change for further fibers. For detection fibers with separation 

distance of 0 to 3 mm, the influence of bottom µa on reflectance is larger than influence of 

top µa in general, which means the error of top µa values estimated from an inverse model 

will likely be higher. Under highly attenuating conditions (tissues, wavelengths), larger 
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separation distance fibers did not collect sufficient signal (Fig. 66(e), Fig. 67(e), Fig. 68(g) 

and Fig. 69 (a)).   

5.5 Determination of optical properties of a two-layer tissue with neural network 
models 

In this investigation, a forward multi-layer Monte Carlo simulation was 

developed and run as a primary simulation, followed by multi-layer fast Monte Carlo 

simulations according to the scaling method to extend the datasets. With the reflectance 

datasets generated with the fast Monte Carlo simulations, four feed-forward back-

propagation neural network models were trained and evaluated with the Neural Network 

Toolbox in Matlab® based on four different fiberoptic probe geometries. The input vector 

for each network (sometimes referred to as an “input layer”) consisted of 5, 6, 10 or 11 

reflectance values corresponding to the number of fibers used. The probe geometries for 

four neural networks are shown in Table 11. Each network also contained two hidden 

layers of seven neurons each with logarithmic sigmoid transfer functions, and an output 

layer of two neurons with linear transfer functions. The output vector consisted of the 

values of top layer µa, top layer µs′, bottom layer µa and bottom layer µs′. A Levenberg-

Marquardt backpropagation training function was used. The number of neurons came 

from my optimization results. The reflectance datasets used for training included 26500 

optical property combinations that were evenly distributed in the range of 1-22.5 cm-1 for 

top layer µa and bottom layer µa and 5-42.5 cm-1 for top layer µs′ and bottom layer µs′. 

Besides, 12800 optical property combinations that were randomly distributed within the 

same range were used for evaluation during training.  
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Table 11. Fiber geometries for neural network training (radius of each fiber is 0.1 mm) 

Center position  
from illumination 
point (mm) 

0 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 

Geometry of 5 fibers   v  v  v  v  v 
Geometry of 6 fibers v  v  v  v  v  v 
Geometry of 10 fibers  v v v v v v v v v v 
Geometry of 11 fibers v v v v v v v v v v v 

Note: ‘v’ means this fiber was selected.  
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Fig. 70 Neural network results with different probe geometries (The line is where the predicted values are equal to the 

accurate ones.) 
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A set of four neural network inverse models were trained with reflectance data 

based on fiber geometries described in Table 11. The accuracy of these models was 

evaluated with 90 optical property combinations randomly distributed within the same 

optical range as described in Section 2.3.  Fig. 70 compared the optical property values 

determined from the neural network model with the true values. These results indicate 

that estimates of bottom µa are more accurate than top µa. However, errors for top µs′ and 

bottom µs′ are at the same level. Comparison of the graphs for 5-fiber and 10-fiber probes 

shows that more fibers can improve the neural network accuracy within the same distance 

range from the illumination point. Graphs representing 6-fiber and 11-fiber probes show 

that reflectance from the illumination-detection fiber can significantly improve neural 

network accuracy particularly the top µs′. Table 12 provides a quantitative summary of the 

results in Fig. 70. The table shows that the average error in determination of µa ranged 

from 15 to 51% and average error for µs′ ranged from 8 to 32%.   

Table 12. Optical property estimation errors for neural networks based on four different probe 
geometries 

 5 fibers 6 fibers 10 fibers 11 fibers 
Top µa 51% 31% 31% 30% 
Bottom µa 18% 16% 17% 15% 
Top µs′ 32% 8% 12% 8% 
Bottom µs′ 20% 11% 12% 11% 

5.6 Conclusions 

I have presented a fast Monte Carlo method to generate a database of reflectance 

from a two-layer tissue with different optical properties. The accuracy of this method was 

verified theoretically. Using this method, the influence of optical properties on reflectance 

was investigated and data for training a neural network-based inverse model was 

generated.  The resulting model was evaluated using randomly generated reflectance data.   

Results show that: (1)  in general, the approach presented here for estimation of 

the optical properties can provide accuracy levels of 8-30% in a two-layer tissue; (2) there 

may be several weaknesses to this approach, including difficulties in determining top 
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layer  µs' when bottom layer  µs' is high; (3) a larger number of fibers (e.g., 11 over a 3 

mm probe), including the use of an illumination collection fiber (or other approach to 

highly superficial signal detection), may improve accuracy (4) signal detection for highly 

attenuating tissues may present a significant obstacle to highly accurate measurements.  

While computationally expensive to develop, neural network models calibrated 

with simulation data may prove to be a highly effective approach for rapid, unconstrained 

estimation of the optical properties of two-layer tissues. The current technique is shown 

to be theoretically effective, thus representing a significant step towards development of a 

system for unconstrained determination of optical properties in layered tissue.   
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Chapter 6. CONCLUDING REMARKS  

6.1 Summary and contributions 

The whole research include fiberoptic system construction, evaluation, and 

implementation, light-tissue interaction modeling, probe geometry investigation and 

single- and multi-layer tissue study. The goal of this work is to improve quantitative 

understanding of the relationship between reflectance spectroscopy and optical properties 

of mucosal tissues and obtain optical property data of these tissues, which will then (1) 

help use diffuse reflectance for cancer diagnosis, (2) improve understanding of device 

design parameters, (3) and provide valuable optical property data for theoretical modeling.  

This goal has been achieved. The contributions of this work can be summarized as 

follows: 

1.   For the first time, a noninvasive, fiberoptic probe-based approach was 

implemented to measure epithelial tissue optical properties at UVA-VIS 

wavelengths. A novel, multi-wavelength, fiberoptic system was constructed, 

evaluated and implemented to determine internal tissue optical properties. A 

condensed Monte Carlo model and an inverse neural network model were used 

to estimate µa and µs′ based on spatially-resolved reflectance distributions. The 

theoretical and experimental evidence show the capability of our novel system to 

yield accurate optical property measurements within the UVA-VIS wavelength 

range. 

2.   I championed a novel version of the condensed Monte Carlo method for 

illumination-detection fiber probes, thus enabling rapid computation of large sets 

of tissue reflectance data. The effect of fiber diameter on the relationship 

between reflectance and tissue optical properties was characterized, which show 
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that bigger fiber is more sensitive to µa. The simulation of reflectance over a 

range of wavelengths from 400-500 nm based on the optical properties of breast 

tissue elucidated the effect of fiber diameter on reflectance spectra measured in 

malignant and adipose breast tissues. Also, the effect of adding an illumination-

detection fiber to a linear array fiber probe for optical property determination 

was evaluated, which showed a promising accuracy improvement. 

3.   An unconstrained approach for estimating optical properties in a two-layer tissue, 

using a novel condensed Monte Carlo technique and neural network model, was 

developed and validated for the first time. The two-layer tissue situation was 

studied to elucidate light propagation mechanisms during optical spectroscopy 

measurement in epithelial tissue. I characterized the relationship between 

spatially-resolved reflectance distributions and optical properties in two-layer 

tissue models, then formulated and evaluated the unconstrained approach to 

optical property measurement.  While computationally expensive to develop, 

neural network models calibrated with Monte Carlo simulation data proved to be 

a highly effective approach for rapid, unconstrained estimation of the optical 

properties of two-layer tissues. 

In summary, the goal in the initial proposal was achieved. My research shows 

that the combination of condensed Monte Carlo models and neural networks models 

represents a powerful technique for rapid simulation of light-tissue interactions and for 

optical property extraction from reflectance measurement. The fiberoptic diffuse 

reflectance system I developed can potentially be used for in situ cancer diagnosis.  

6.2 Suggestions for future study 

Research will never end. Based on the data in this dissertation, several possible 

future research directions that are mainly natural extensions of this study include: 
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1.   My study shows that absorption by other chromophores besides hemoglobin in 

tissues become increasingly significant in the UVA and short VIS ranges. These 

chromophores could be collagen, elastin, DNA and some other proteins. In the 

future, it may be possible to determine the concentrations of these chromophores 

through fitting algorithms. 

2.   The condensed Monte Carlo simulation for a single illumination-detection fiber 

was demonstrated to be a powerful technique for rapid simulation of light-tissue 

interaction. Theoretically, this technique can improve the accuracy of optical 

detection when combined with separated fiber geometries. However, this 

technique should be evaluated with experiments. A possible problem in 

experiments could be the high intensity of specular reflectance. How to separate 

diffuse reflectance from specular reflectance will be a challenge. Further study 

should be continued on this issue. 

3.   In the two-layer tissue modeling, I have presented a fast Monte Carlo method to 

generate a database for a tissue with given top-layer thickness. The accuracy of 

this method was verified theoretically. The current technique is shown to be 

theoretically effective, thus representing a significant step towards development 

of a system for unconstrained determination of optical properties in layered 

tissue. However, several additional steps will be required before this approach 

can be implemented on a biological tissue.  Perhaps most importantly, the model 

will have to be trained to determine superficial layer thickness.  This 

modification will likely require extensive additional simulations to train the 

model over a variety of thicknesses relevant to normal and cancerous mucosa.  

Experimental validation of this technique in well-controlled tissue-simulating 

samples will also be needed.  
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