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Chapter 1

Introduction

Electronic Cash is a form of payment that is exchanged electronically. Cus-

tomers withdraw electronic coins from a bank and pay merchants with them.

The Merchants then deposit the coins to the Bank. This system involves com-

puter networks over which the payment is made. In the field of cryptography,

the topic has gained much attention over the past few decades. However, the use

is still relatively limited and small in scale.

One example is the Octopus card system in Hong Kong. The system began as

a public transit payment scheme and is now used more generally as an electronic

cash system. Singapore also has the same type of public transportation card. For

general purposes, the Netherlands has implemented an electronic cash system,

Chipknip.

There are many important features to an ideal electronic cash system. One

of them is providing anonymity to the customers as in the case of real cash.

Customers should be able to engage in transactions without having their identities

revealed. It is also critical that two transactions made by the same person are

not traceable by either the bank or the merchant.

1



Another important aspect of electronic cash is prevention of duplication. Un-

like real cash, it is possible to make identical duplicates of electronic coins. In

fact, this is relatively easy, whereas duplicating real cash is quite difficult. This

creates the problem of double-spending in electronic schemes. An ideal electronic

cash system, therefore, should secure the anonymity of honest customers, while

revealing the identity of cheating customers and merchants.

Another major concern is divisibility of the electronic coins. Divisible elec-

tronic cash schemes allow a customer to withdraw a coin of worth $2`, to divide

the value, and then to spend the pieces. We will examine this feature in detail

shortly.

Overall, there are many aspects to observe in the electronic cash schemes.

Different authors have proposed various electronic cash systems, claiming to pro-

vide certain sets of features. In this thesis, we concentrate on studying the main

two aspects, divisibility and prevention of double-spending. A major part of the

thesis will be devoted to adding explicit details to the arguments that are only

sketched in Okamoto-Ohta and Eng-Okamoto. We will also look at some other

papers that use untraceability, unlinkability, transferability, and zero-knowledge

proofs.

In all the cash systems presented in this thesis, we have a set of participants.

Namely, the Bank (B), the Customer (U), and the Merchant (M). Different pro-

tocols are presented for each system, but they serve the same set of purposes.

An Ideal Cash System should have:

1. Independence: The security of an electronic coin should not depend on

physical properties of the coin. It should be possible to transfer it electron-

ically over a secure network.
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2. Security: One should not be able to copy and forge the cash. It is fairly

easy to make exact duplicates of an electronic document. This exposes

the electronic cash systems to the danger of double-spending. Therefore,

making the system secure is directly related to prevention of copying the

coins.

3. Untraceability (privacy): One cannot trace the relationship between the

user and his purchases. In the real cash system, when a customer spends

a bill, neither the bank nor the merchant can trace the identity of the

customer. We want to replicate this feature in the electronic cash system

in such a way that the customer’s identity is revealed only if he cheats.

4. Off-line payment: The merchant doesn’t need to be linked to the Bank

before accepting a coin from the Customer. M can simply collect coins

from different customers and deposit them later with B, when he brings

them to exchange e-cash for cash. Even though he accepted the coins from

customers without verifying with the Bank, he is ensured that the coins

will be accepted by the Bank if legitimate, or the cheating Customer will be

identified. Off-line schemes should also protect against cheating Merchants

who try to deposit a coin twice.

5. Transferability: Once an electronic coin is issued to a Customer, he should

be able to transfer all or a portion of the coin’s value to another customer.

The system must protect both the first and the second customers from

cheating against each other.

6. Divisibility: The Customer should be allowed to divide the value of an

electronic coin in any number of pieces he wants and to spend it one piece
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at a time.

7. Unlinkability: If the Customer U spends a portion of an electronic coin

with one Merchant, and then spends another portion of the same coin with

a different Merchant, the two transactions should not enable the Bank to

tell whether the two were made by the same person.

Okamoto-Ohta [9] lists the first six requirements. The unlinkability requirement

has been studied more recently. Note that credit cards do not satisfy (3). Prepaid

cards do not satisfy (1) and (7).

A company, DigiCash, is creating an electronic cash system that enables is-

suers to sell electronic coins at some value to individuals, who store them in

their own computers. However, it is not clear how this system could guarantee

untraceability since a third party records all transactions.

Digital cash provides many obvious benefits. But the solutions so far proposed

still leave room for further developments and improvement.
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Chapter 2

Universal Electronic Cash:

Okamoto-Ohta

2.1 Introduction

The paper [9] proposes the first ideal untraceable electronic cash system. This

system satisfies all six criteria that were mentioned earlier. The main feature of

the new system is the divisibility of the customer’s coin into many pieces in any

way he wants. The security of the system lies in the difficulty of factoring.

In using a cut-and-choose methodology, Okamoto and Ohta use a technique

involving square roots modulo N , where N is a Williams integer, and a binary

tree.

2.2 Preliminaries

Definition 1. N is called a Blum integer if N = pq, where p and q are primes,

p ≡ 3 (mod 4) and q ≡ 3 (mod 4). N is called a Williams integer if N = pq,

where p and q are primes, p ≡ 3 (mod 8) and q ≡ 7 (mod 8).
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Observe that a Williams integer is also a Blum integer.

Definition 2. Let p be an odd prime and let a 6≡ 0 (mod p). Define the Legendre

symbol (a/p) = +1, if x2 ≡ a (mod p) has a solution, −1 if x2 ≡ a (mod p) has

no solution.

Some properties of the Legendre symbol are:

Proposition 1. Let p be an odd prime.

1. If a ≡ b 6≡ 0 (mod p), then (a/p) = (b/p).

2. If a 6≡ 0 (mod p), then (a/p) ≡ a(p−1)/2 (mod p).

3. If ab 6≡ 0 (mod p), then (ab/p) = (a/p)(b/p).

4. (−1/p) = (−1)(p−1)/2.

We are now ready to define Jacobi symbol, which extends the Legendre symbol

from primes p to composite odd integers n.

Definition 3. Let n be an odd positive integer and let a be a nonzero integer

with gcd(a, n) = 1. Let n = pb1
1 pb2

2 ....pbr
r be the prime factorization of n. Then

(a/n) = (a/p1)
b1(a/p2)

b2 ....(a/pr)
br .

If N = pq (where p, q are primes), we can classify the elements of Z∗
N into

four classes:

Z(1,1) = {x ∈ Z∗
N | (x/p) = 1, (x/q) = 1}

Z(1,−1) = {x ∈ Z∗
N | (x/p) = 1, (x/q) = −1}

Z(−1,1) = {x ∈ Z∗
N | (x/p) = −1, (x/q) = 1}

Z(−1,−1) = {x ∈ Z∗
N | (x/p) = −1, (x/q) = −1}

6



Proposition 2. Let N be a Blum integer, and let x be an element of Z(1,1). Then,

for any integer t ≥ 1, there are four values y1, y2, y3, y4 such that y2t

i ≡ x (mod N)

and such that y1 ∈ Z(1,1), y2 ∈ Z(1,−1), y3 ∈ Z(−1,1), y4 ∈ Z(−1,−1). In addition,

y1 ≡ −y4 and y2 ≡ −y3. Also, (y1/N) = (y4/N) = 1 and (y2/N) = (y3/N) = −1.

The proposition is proved using by working mod p and q separately, then

using the Chinese remainder theorem.

A consequence of this proposition is that four values of a 2t-th root y of x can

be uniquely specified by two bits of information; the value of (y/N) and whether

0 < y < N/2 or not.

Proposition 3. Let N = pq be a Williams integer. Then, for any x ∈ Z∗
N , there

is a unique a ∈ {±1,±2} such that ax ∈ Z(1,1).

This follows immediately from the facts

(−1/p) = (−1/q) = −1, (2/p) = −1, (2/q) = 1.

Definition 4. Let N be a Williams integer and let x ∈ Z(1,1). Let t ≥ 1. Let

[x1/2t

]QR

denote the value of y ∈ Z(1,1) such that y2t ≡ x (mod N). Let

[x1/2t

]1

denote the value of y ∈ Z∗
N such that (y/N) = 1 and 0 < y < N/2. Let

[x1/2t

]−1

denote the value of y ∈ Z∗
N such that (y/N) = −1 and 0 < y < N/2. For z ∈ Z∗

N ,

let

〈z〉QR = dz mod N,

7



where d ∈ {±1,±2} is chosen so that dz ∈ Z(1,1), and let

〈z〉1 = d′z mod N,

where d′ ∈ {1, 2} is chosen so that (d′z/N) = 1.

The following are the main keys to catching double spenders in the Okamoto-

Ohta scheme.

Factorization principle. Let n be an integer and suppose there exist integers

x and y with x2 ≡ y2 (mod n), but x 6≡ ±y (mod n). Then n is composite, and

gcd(x − y, n) gives a nontrivial factor of n.

For a proof, see [12].

Proposition 4. Let N be a Williams integer and let x, y ∈ Z∗
N . If (x/N) 6= (y/N)

then x 6≡ ±y (mod N).

Proof. Suppose x ≡ ±y (mod N). Then

(x/N) = (±y/N) = (±1/N)(y/N) = (y/N),

since (−1/N) = (−1/p)(−1/q) = (−1)(−1) = 1.

2.2.1 The Binary Tree

A binary tree allows the bill C to be subdivided into pieces such that each sub-

divided piece is worth any desired value less than C and the total value of all

pieces is equal to C. The table is a tree of t levels, in which each node has two

offspring nodes. The root node is located at the top of the tree. At the ith level,

there are 2i−1 nodes. To demonstrate how the tree works in this cash system,

Okamoto uses the tree with three levels, and the value of the issued bill is $100.
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The nodes of the ith level correspond to $100/2i−1, so the amounts that can be

spent are $25, $50, $75, and $100.

Suppose Alice uses $75 first and then uses $25. For spending the $75, she can

use node n00 worth $50 and node n010 worth $25. She then uses node n011 to

spend the remaining $25.

The restrictions to the bill spending are as follows:

1. The value of a node n is the total of the values of the nodes that are the

direct offsprings of n.

2. When a node is spent, all descendant nodes and all ancestor nodes of this

node cannot be used.

3. No node can be used more than once.

2.3 The Electronic Cash Scheme

2.3.1 Initialization

The bank (B) generates RSA keys

(eB, nB; dB), (e′B, n′
B; d′

B), . . . ,

where (eB, nB), (e′B, n′
B), . . . are public keys and dB, d′

B, . . . are the corresponding

secret keys. (eB, nB) corresponds to the electronic license that B issues, and

(e′B, n′
B), . . . correspond to the values of the electronic bills that B issues. Each

possible value of a coin has a different signature key. A security parameter K

(for example, K = 40) and cryptographic hash functions, fΓ, fB, fΩ, g are set by

the Bank. The hash functions are used to generate the numbers associated to

the binary tree.

10



2.3.2 Opening an Account and Obtaining an Electronic

License

The Customer U has identification number IDU . The Customer generates an

RSA key (eU , nU ; dU ), and publishes it. When the Customer opens an account

at the bank B, the bank issues an electronic license L. The Customer U obtains

L while opening the account by the following protocol.

1. For 1 ≤ i ≤ K, Customer U chooses a random value ai and a Williams

integer Ni = piqi, where pi ≡ 3 (mod 8) and qi ≡ 7 (mod 8).

2. U chooses random integers ri ∈ ZnB
and forms the numbers

Si = IDU‖ai‖(g(IDU‖ai))
dU mod nU

S1,i‖S2,i = Si

I1,i ≡ S2
1,i, I2,i ≡ S2

2,i mod Ni

Ii = I1,i‖I2,i

Wi = reB
i g(Ii‖Ni) mod nB,

where ‖ denotes concatenation. U sends the numbers Wi to the bank B.

3. B chooses some random set of K/2 indices i1, . . . , iK/2, with 1 ≤ ij ≤ K,

and sends these to U .

4. U sends the following to B:

ai, pi, qi, (g(IDU‖ai))
dU mod nU , IDU , ri

for all i 6∈ {ij | 1 ≤ j ≤ K/2}. B checks that they are valid.
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5. B sends 


K/2∏

i=1

Wi




dB

mod nB

to U .

6. U computes

L =




K/2∏

j=1

g(Iij‖Ni)




dB

mod nB

by dividing by
∏

rij .

It is important to observe that B has signed the numbers g(Iij‖Nij) without

knowing their values. U had disguised these values with reB
i . This is called a

blind signature and is a key point in protecting anonymity of U . If B knows the

values of g(Iij‖Nij), then B can identify U as follows: When the coin is spent,

U sends Iij and Nij to B. B is then able to compute
∏

g(Iij‖Nij ) and compare

it with the stored list of values produced from creating the coins. He can then

determine which user corresponds to this value.

2.3.3 Creating a Coin

The Customer U wants to receive an electronic bill C worth $100 from the Bank

B. The value of the bill corresponds to (e′B, n′
B). The following protocol is

conducted to create the coin:

1. U chooses a random number b. He then sends the following Z to the bank:

Z = re′Bg(L‖b) mod n′
B,

where r ∈R Zn′
B
, where ∈R means a random choice.

2. B gives Zd′B mod n′
B to U and charges $100 to U’s account.

12



3. U extracts the electronic bill

C = (g(L‖b))d′B mod n′
B.

2.3.4 Spending the Coin

To illustrate the spending protocol easily, we will follow an example from [9] of

the Customer paying $75 to the Merchant M out of the $100 he had received

from the Bank. The protocol is based on a binary tree of three levels, as shown

in Figure 2.1.

1. The Customer computes

Γij ,0 = 〈fΓ(C‖0‖Nij)〉QR

for 1 ≤ j ≤ K/2.

2. U computes

Xij ,00 = [Γ
1/4
ij ,0 mod Nij ]−1 (corresponding to $50),

and

Xij ,010 = [(Ω2
ij,0Γij ,0)

1/8 mod Nij ]−1 (corresponding to $25),

where Ωij,0 = 〈fΩ(C‖0‖Nij)〉1, for 1 ≤ j ≤ K/2.

3. U sends (Iij , Nij ,Xij ,00,Xij ,010) for 1 ≤ j ≤ K/2, and (L,C) to the Mer-

chant.

Figure 2.3 depicts the procedure.
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Figure 2.3: The X values

Here are the definitions in the general case:

Ωi,j1...jt = 〈fΩ(C‖j1‖ · · · ‖jt‖Ni)〉1

Xi,j1 ···jt =
[
(Ω2t−1jt

i,j1 ···jt−1
Ω

2t−2jt−1

i,j1···jt−2
· · ·Ω2j2

i,j1
Γi,0)

1/2t
]
−1

.

The computation of the 2tth root is done by taking successive square roots

mod Ni. At each stage except the last, the square root is chosen so as to

be the one that is a square mod Ni.

4. M verifies the validity of the license L for (Iij , Nij ), and the signature C

for L. The Merchant computes Ωij ,0 and fγ(C‖0‖Nij) for 1 ≤ j ≤ K/2. He

also verifies the validity of Xij ,00, and Xij ,010 by checking that the following

statements hold:

(Xij ,00/Nij ) = (Xij ,010/Nij ) = −1

X4
ij,00 = dijfΓ(C‖0‖Nij) mod Nij

X8
ij,010 = dijΩ

2
ij ,0fΓ(C‖0‖Nij) mod Nij ,

where dij ∈ {±1,±2}.
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5. The Merchant randomly selects bits Eij,00, Eij ,010 ∈ {0, 1} for 1 ≤ j ≤ K/2.

He sends them to U .

6. The Customer computes

Λij,00 = 〈fΛ(C‖00‖Nij )〉QR

Λij,010 = 〈fΛ(C‖010‖Nij )〉QR

Yij ,00 = [Λ
1/2
ij,00](−1)

Eij,00

Yij ,010 = [Λ
1/2
ij,010](−1)

Eij,010

and sends Yij ,00, Yij ,010 to M , for 1 ≤ j ≤ K/2.

7. M verifies that

(Yij,00/Nij ) = (−1)Eij,00

(Yij ,010/Nij ) = (−1)Eij,010

Y 2
ij ,00 = d′

ij
fΛ(C‖00‖Nij) mod Nij

Y 2
ij ,00 = d′

ij
fΛ(C‖00‖Nij ) mod Nij ,

where d′
ij

and d′′
ij

are chosen in {±1,±2} so that the right-hand sides are

squares mod Nij . If these equations are valid, M accepts the $75 coin from

the Customer.

This protocol, of course, can be generalized to a case of withdrawing and

spending any amount of money (up to the value of the bill C).

2.3.5 The Bank Credits the Merchant’s Account

In order for the Bank to credit the Merchant’s account by the requested amount,

M first sends to B the history of the Customer’s spending protocol shown earlier.

15



B checks the validity of the history and then stores it in its database. As we’ll

see later, if B sees a double payment, B reveals the secret information, Sij for

some j, of the Customer. This contains IDU , so the user is revealed.

2.4 Correctness

The protocol presented in [9] satisfies five of the criteria mentioned earlier, namely,

(1) independence, (2) security, (3) privacy, (4) off-line payment, and (6) divisi-

bility. It is quite obvious that the protocol satisfies (1) and (4).

(3) privacy: Since factoring is difficult for B and M , they cannot obtain any

knowledge about the identity of U with non-trivial probability.

(6) divisibility: If the previously mentioned restrictions on the usage of the

binary tree are satisfied, we have the divisibility condition satisfied.

(2) security: There are two possible types of double spending. First, the

Customer can attempt to spend the same node in the binary tree twice. Second,

he can attempt to spend two distinct nodes, where one node is an ancestor to

the other.

Case I: Two distinct nodes. In this case, one node is a descendant of the

other. We have two subcases. We will illustrate each by an example. For each

node spent, a random set of indices ij was chosen. With high probability there

will be overlap between the sets chosen for each spending. Let i be an index in

the overlap.

(a) The Customer spends nodes n00 and n000. The Customer gave

Xi,00 = [Γ
1/4
i,0 ]−1

Xi,000 = [Γ
1/8
i,0 ]−1

16



to the Merchants, who gave these to the Bank. Note that

X2
i,000 = [Γ

1/4
i,0 ]QR.

since the left side is a square. Then we observe that Xi,00 and X2
i,000 are square

roots of Γ
1/2
i,0 . They cannot differ by sign since their Jacobi symbols are different.

Therefore, the Bank can factor Ni. This allows the Bank to identify U , as follows.

The Customer U has sent Ii to the Merchant. Note that Ii = I1,i‖I2,i. So

the Bank receives I1,i and I2,i. Also, I1,i ≡ S2
1,i mod Ni. B has found the

factorization of Ni, due to double-spending. B can find the square root of I1,i

mod pi and mod qi. By the Chinese Remainder theorem, there are four choices

for the square root of I1,i mod Ni. Hence there are four choices for S1,i and,

similarly, four choices for S2,i. So there are a total of 16 choices for Si = S1,i‖S2,i.

Since Si contains IDU , there are at most sixteen choices for IDU (sixteen can be

reduced because of the structure of Si), and probably only one that corresponds

to a person. Therefore, U is caught.

(b) The Customer spends nodes n00 and n001. The Customer gave

Xi,00 = [Γ
1/4
i,0 ]−1

Xi,001 = [(Ω4
i,00Γi,0)

1/8]−1

to the Merchants, who gave these to the Bank. Note that

X2
i,001 = [Ωi,00Γ

1/4
i,0 ]QR.

since the left side is a square.

Then we observe that Xi,00 and X2
i,000/Ωi,00 are square roots of Γ

1/2
i,0 . Note

that
(
(X2

i,000/Ωi,00)
/
Ni

)
=

(
Ωi,00

/
Ni

)
= 1
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by the choice of Ωi,00. Therefore, the two square roots cannot differ by sign since

their Jacobi symbols are different. Therefore, the Bank can factor Ni. This allows

the Bank to identify U , as before.

Case II: Spending one node twice. For concreteness, call the node n00.

We will illustrate by an example. For each time the node is spent, a random set of

indices ij was chosen. With high probability there will be overlap between the sets

chosen for each spending. For each index i in the overlap, each Merchant chose

a challenge bit Ei. With reasonable probability, one of the indices in the overlap

has different challenges, from different Merchants. Let i be such an index. Say

E′
i = 0 and E′

i = 1. Then, during the spending protocol, the following responses

were sent to the Merchants, who gave them to the Bank:

Y ′
i,00 = [Λ

1/2
i,00]1

Y ′′
i,00 = [Λ

1/2
i,00]−1.

The Bank then obtains two distinct square roots of Λi,00 and can factor Ni. This

allows the Bank to identify U , as before.

2.5 Transferring Cash

Finally, Okamoto and Ohta demonstrate their system satisfying the criterion (5),

transferability. We keep the earlier example used, where the value of the coin

is $100, customer U1, who has spent $75 of it, transfers the remaining $25 to

customer U2 and U2 uses $25 at shop M . The protocol is identical except for

one additional step, in which U1 transfers C to U2. We describe this step in the

following:
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1. U2 assumes the role of the Merchant in the earlier protocol. U1 gives node

n011 to U2.

2. U1 digitally signs a message that includes the coin, the node it corresponds

to, and the license of U2. This information records the transfer in step 1

and protects both Customers.

3. The rest of the protocol is the same as the earlier one without the transfer,

except that now U2, not U1, pays the Merchant $25.
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Chapter 3

Divisible Electronic Coins:

Eng–Okamoto

3.1 Introduction

The paper [7] presents an improvement to the divisible off-line electronic cash

scheme constructed by Okamoto and Ohta earlier. It is based on discrete loga-

rithms rather than factorization.

Okamoto and Ohta’s earlier electronic cash system has two sets of weakness:

the amount of required communication between the bank and the merchant, and

the needed memory size of the bank’s database. Eng and Okamoto reduce the

memory requirement to less than 1/10 of the Okamoto-Ohta system.

3.2 Preliminaries

Let p and q be large primes where q | (p − 1). Let x ∈R X indicate that x is

randomly and uniformly selected from X. Concatenation is denoted by ‖. If b

is a bit, b is the negation of b. Let H : {0, 1}∗ → {0, 1}2|q| be a polynomial-time
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Figure 3.1: The nodes

computable one-way hash function.

Eng and Okamoto use a binary tree approach as Okamoto and Ohta did.

The root node of a binary tree is denoted by n0, and the remaining nodes are

represented with subscripts 0s and 1s, where “0” represents a left branch and “1”

represents a right branch. For example, the root node’s children are written as

n00 and n01. And their children are expressed as n000 and n001, and n010 and n011,

respectively.

Similar to what Okamoto and Ohta did, each coin of worth w is represented

by a tree of (1 + log2w) levels and w leaves. The leaves are nodes that are at

the bottom level of the binary tree, and the root node at the top represents the

value w of the coin. As one goes down each level, each node at the next level

represents half of the value of its parent’s node. This construction is repeated

until the bottom row consists of nodes of worth $1. For example, if a coin is

worth $8, then the tree has four levels and 8 bottom-nodes of $1 each.

We will show later that we can extend this binary structure to dividing a coin

into any number of pieces. For example, we could imitate the decimal structure

of ordinary cash systems. However, this would be much harder to do in Okamoto

and Ohta’s system.
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Divisibility can now be implemented under one rule: Once a node is spent,

neither its parent nor any of its children nodes is available to be spent. This rule

prevents double spending. If double spending occurs, the perpetrator is identified

by the route that defines the node being double-spent.

3.3 The Electronic Cash Scheme

3.3.1 Initialization

The initialization is based on the Okamoto–Ohta scheme.

1. The Customer U has a public key m = gx1
1 gx2

2 mod p.

2. U proves to the bank that it knows the private key (x1, x2) using the fol-

lowing protocol:

(a) The customer randomly selects (r1, r2) and calculates β = gr1
1 gr2

2 mod p.

(b) The Bank B returns a challenge message α, which is different each

time. Note that the bank has no information about (x1, x2).

(c) The Customer sends y1 = r1 + αx1 mod q and y2 = r2 + αx2 mod q

to the bank who verifies that

gy1
1 gy2

2 ≡ βmα mod p.

3.3.2 Creating a Coin

A spender wants to withdraw w = 2` from his account. The protocols are based

on an earlier scheme of Brands.
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Let p, q, g, g1, g2 be system parameters provided by the Bank B, where g, g1,

and g2 have order q mod p. Let I = gu
1 mod p be the identity of the Customer

U , where u is U ’s secret key. Let h = gx mod p be the public key of the Bank,

where x is B’s secret key.

The protocol proceeds as follows:

1. U conducts the initialization stage and obtains T = g
r0,1

1 g
r0,2

2 mod p. The

Customer U sends his identity, I = gu
1 mod p, to Bank B. Here, u is the

secret identity number of U , and I is his public number. If someone finds

u, they can identify U .

2. B subtracts w = 2L dollars from U ’s account. B chooses w ∈R Zq and

sends z = mx mod p, a = gw mod p, b = mw mod p to U .

3. U randomly selects s, t, v ∈R Zq and calculates m′ = ms mod p, z′ = zs

mod p, a′ = atgv mod p, b′ = bst(m′)v mod p, c′ = H(m′, z′, a′, b′, T ), and

c = c′/t mod q. Then U sends c to B. Note that s is used to mask m.

4. B sends r = xc + w mod q to U .

5. U verifies the validity of z, a, b by checking that mr = zcb mod p and

gr = hca mod p, and then calculates r′ = rt + v (mod q).

3.3.3 Computation of t-values and r-values for Leaf Nodes

The Customer chooses a random value e as a secret seed value. Every node is

assigned a t-value. Let n0j1j2...jv , where ji ∈ {0, 1}, be a node. Its t-value is

denoted by t0j1j2···jv . If n0j1j2 ···j`
is a leaf of the tree, its t-value is defined to be

t0j1j2···j`
= H(e‖0j1j2 · · · j`).
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If we have defined the t-values of a node, we can define two “r-values” of the

node by

t0j1j2···jv = (r0j1j2 ···jv ,1‖r0j1j2···jv ,2) where r0j1j2 ···jv ,i ∈ {0, 1}|q|.

The t-values of non-leaf nodes are determined inductively from the r-values

of their children. If the t-values of a non-leaf node’s left and right children are

t0j1j2 ···jv0 = (r0j1j2···jv0,1‖r0j1j2···jv0,2)

t0j1j2 ···jv1 = (r0j1j2···jv1,1‖r0j1j2···jv1,2)

then its t-value is defined to be

t0j1j2···jv = H(H(g
r0j1j2···jv0,1

1 g
r0j1j2 ···jv0,2

2 )‖H(g
r0j1j2···jv1,1

1 g
r0j1j2···jv1,2

2 )).

In this fashion, we obtain t-values for all nodes, all the way up to the root node.

3.3.4 Spending the Coin

Spending the coin requires two stages in Eng and Okamoto’s scheme. The first

stage is coin authentication.

1. The Customer U gives m′ = gus
1 gs

2 mod p, T (computed when the coin was

created), and the signature sign(m′, T ) = {z′, a′, b′, r′} to the Merchant.

2. M checks that m′ 6= 1 mod p.

3. M computes c′ and verifies that the following three equations hold:

gr′ ≡ hc′a′ mod p

mr′ ≡ (z′)c′b′ mod p

c′ ≡ H(m′, z′, a′, b′, T )
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This completes the Merchant’s verification of the Bank’s signature on m′ and T .

The next stage is what Eng-Okamoto call “denomination revelation,” where

the Customer U reveals information on the nodes of the tree that represent the

coin. Suppose he spends the node n0j1j2...jk
.

1. U reveals

β0j1j2 ···jk
= g

r0j1j2···jk,1

1 g
r0j1j2···jk,2

2 mod p,

which is the node’s contribution to the t-value of its ancestor node.

2. U then reveals the information that is used to compute the t-values for all

ancestor nodes of n0j1j2.jk
. Namely,

H(g
r0j1j2···jk,1

1 g
r0j1j2···jk,2

2 )

H(g
r0j1j2···jk−1,1

1 g
r0j1j2···jk−1,2

2 )

.

.

.

H(g
r0j1j2,1

1 g
r0j1j2,2

2 )

H(g
r0j1 ,1

1 g
r0j1,2

2 ).

3. Then M travels up the tree from the node n0j1j2 ...jk
. He is able to compute

all its ancestors’ t-values including the root t-value t0. Then he can verify

T and the signature of m′.

4. M presents a challenge α ∈ Z∗
p, which is a function of the date, time,

Merchant’s identity, and other variants.
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5. U responds with

y1 = r0j1j2 ...jk ,1 + αus mod q

y2 = r0j1j2 ...jk ,2 + αs mod q

6. M verifies that

(g1)
y1(g2)

y2 ≡ β0j1j2...jk
(m′)α mod p.

This technique is quite similar to a zero knowledge proof, where the Customer is

able to prove that he has a legitimate coin without revealing too much informa-

tion. Only the t-values and r-values of the ancestor nodes of n0j1j2 .jk
are revealed

to M and B.

Suppose the coin (m′, T, sign(m′, T )) is worth 2` and that U wants to spend

$x from it. We suppose that the binary representation of x is b1b2 . . . b`+1 in the

` + 1 level binary tree.

Let ν = #{bi | bi = 1, 1 ≤ i ≤ `+1} be the Hamming weight of x. It indicates

the number of nodes that will be used for spending $x. Whenever bi = 1, it says

that a node at the i-th level is used. For example, if x = 0100100, then ` = 6

and ν = 2. So, he can use a node at the 2nd level, say, n00, and a node at the

5th level, say, n01000.

U sends the following to the Merchant.

β00 = g
r00,1

1 g
r00,2

2 mod p

β01000 = g
r01000,1

1 g
r01000,2

2 mod p

H(g
r01001,1

1 g
r01001,2

2 mod p)

H(g
r0101,1

1 g
r0101,2

2 mod p)

H(g
r011,1

1 g
r011,2

2 mod p)
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Observe that there will be ν values of β from Step 1 of this protocol. In the

example of x = 0100100, there will be two β values. If `′ is the smallest value for

which bi = 0 for all i > `′, and if the ν nodes that are used are optimally selected,

then (`′ − ν) hashed values are revealed. In the example of x = 0100100, three

(= 5 − 2) hash values are revealed.

3.3.5 The Bank Credits the Merchant’s Account

Crediting the Merchant’s account is done the same way as in Okamoto and Ohta’s

scheme, by sending the transcript of the transaction to the Bank.

3.4 Security

The goal of the security is to ensure that the Customer’s identity is protected,

except when a coin is incorrectly spent. There are two possible types of double

spending. First, the Customer can attempt to spend the same node in the binary

tree twice. Second, he can attempt to spend two distinct nodes, where one node

is an ancestor to the other. We use an example of spending $1 out of a $4-coin

to illustrate how both types of double spending are caught by the Eng-Okamoto

scheme.

Since the coin is worth $4, there are four leaf-nodes and their t-values are

computed in the following way:

t000 = H(e‖000), t001 = H(e‖001), t010 = H(e‖010), t011 = H(e‖011).

for a randomly selected value e. As shown earlier, the t-values of the remaining
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nodes are computed as follows:

t0j1j2 = (r0j1j2 ,1‖r0j1j2,2) for all j1, j2 ∈ {0, 1}

t01 = H(H(g
r010,1

1 g
r010,2

2 )‖H(g
r011,1

1 g
r011,2

2 ))

= (r01,1‖r01,2)

t00 = H(H(g
r000,1

1 g
r000,2

2 )‖H(g
r011,1

1 g
r011,2

2 ))

= (r01,1‖r01,2)

t0 = H(H(g
r00,1

1 g
r00,2

2 )‖H(g
r01,1

1 g
r01,2

2 ))

We can now proceed to examine two possible scenarios of double spending.

Case 1. Spending the same node twice. Suppose U tries to spend n001

twice. During the spending protocol, we saw that n001’s contribution to the t-

value of its ancestor node, β001, is revealed. We also note that hash values of

its sibling and of the siblings of all its ancestor nodes are also revealed, namely,

H(g
r000,1

1 g
r000,2

2 ) and H(g
r01,1

1 g
r01,2

2 ). When the Merchant presents a challenge, α,

in the first spending, and another challenge, α′, in the second spending, the

Customer returns two sets of responses. In the first spending, he returns y1 =

r001,1 + αus mod q and y2 = r001,2 + αs. In the second spending, he returns

y′
1 = r001,1 + α′us mod q and y′

2 = r001,2 + α′s. Then by solving the system of

equations, the Merchant and the Bank can retrieve u and s.

Case 2. Spending a node’s child node. Suppose U spends n00 and then

tries to spend its child node, n001. From the spending of n00, the Customer

returns the response to a challenge. Namely, y1 = r00,1 +αus and y2 = r00,2 +αs.

If U then spends n001, the Customer reveals β001 and H(β000). Note that

H(H(β000)‖H(β001)) = t00 = (r00,1‖r00,2).
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Figure 3.2: Node n001 is spent

This enables the Merchant to deduce the values of u and s, since he now knows

y1, y2, r00,1 and r00,2. So the violation is caught.

Figure 3.2 shows what is revealed when node n001 is spent.

3.5 Higher Divisibility

We now extend the Eng-Okamoto scheme to a more general case. Suppose we

divide each node into three children. We will demonstrate the analogous two

cases of double spending. Observe that the t-values of non-leaf nodes are now

computed by three beta-values of their children, while each node still has only

two r-values.

More generally, a similar technique can be applied to dividing a coin into any

number of pieces, where the number of pieces does not have to be the same at

each node. This allows us to mimic the real cash system of U.S. dollars, quarters,

dimes, nickels, and pennies.

The Customer chooses a random value e as a secret seed value. Every node

is assigned a t-value. Let n0j1j2...jv, where ji ∈ {0, 1, 2}, be a node. Its t-value is
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U M B

Creating

Coin

u, T,m, z, a,

b, s, t, v,m′,

z′, a′, b′c, c′,

t-values,

r-values,

β-values

I,m,w, z,

a, b, c, r

Spending

Coin
α, y1, y2

m′, T,

sign(m′, T ),

t-values

above node,

r-values

above node,

β of the node,

α, y1, y2

Depositing

Coin

m′, T,

sign(m′, T ),

t-values

above node,

r-values

above node,

β of the node,

α, y1, y2

Table 3.1: Who knows what during the Eng-Okamoto protocol
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denoted by t0j1j2···jv . If n0j1j2 ···j`
is a leaf of the tree, its t-value is defined to be

t0j1j2···j`
= H(e‖0j1j2 · · · j`).

If we have defined the t-values of a node, we can define two “r-values” of the

node by

t0j1j2···jv = (r0j1j2 ···jv ,1‖r0j1j2···jv ,2) where r0j1j2 ···jv ,i ∈ {0, 1}|q|.

The t-values of non-leaf nodes are determined inductively from the r-values of

their children. If the t-values of a non-leaf node’s left, middle, and right children

are

t0j1j2 ···jv0 = (r0j1j2···jv0,1‖r0j1j2···jv0,2)

t0j1j2 ···jv1 = (r0j1j2···jv1,1‖r0j1j2···jv1,2)

t0j1j2 ···jv2 = (r0j1j2···jv2,1‖r0j1j2···jv2,2)

then its t-value is defined to be

t0j1j2 ···jv =

H(H(g
r0j1j2···jv0,1

1 g
r0j1j2···jv0,2

2 )‖H(g
r0j1j2···jv1,1

1 g
r0j1j2···jv1,2

2 )‖H(g
r0j1j2···jv2,1

1 g
r0j1j2···jv2,2

2 )).

In this fashion, we obtain t-values for all nodes, all the way up to the root node.

The spending protocol is identical to the binary structure, except that the

hash values of both its siblings and of both of the siblings of each of its ancestor

nodes are also revealed.

We can now proceed to examine two possible scenarios of double spending.

Case 1. Spending the same node twice. Suppose U tries to spend n000

twice. During the spending protocol, we saw that n000’s contribution to the t-

value of its ancestor node, β000, is revealed. We also note that hash values of both
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of its siblings and of both of the siblings of each of its ancestors are also revealed,

namely, H(g
r001,1

1 g
r001,2

2 ), H(g
r002,1

1 g
r002,2

2 ), H(g
r01,1

1 g
r01,2

2 ), and H(g
r02,1

1 g
r02,2

2 ). When

the Merchant presents a challenge, α, in the first spending, and another challenge,

α′, in the second spending, the Customer returns two sets of responses. In the

first spending, he returns y1 = r000,1 + αus mod q and y2 = r000,2 + αs. In the

second spending, he returns y′
1 = r000,1 +α′us mod q and y′

2 = r000,2 +α′s. Then

by solving the system of equations, the Merchant and the Bank can retrieve u

and s.

Case 2. Spending a node’s child node. Suppose U spends n00 and then

tries to spend its child node, n000. From the spending of n00, the Customer

returns the response to a challenge. Namely, y1 = r00,1 +αus and y2 = r00,2 +αs.

If U then spends n000, the Customer reveals β000, H(β001), and H(β002). Note

that

H(H(β000)‖H(β001)‖H(β002)) = t00 = (r00,1‖r00,2).

This enables the Merchant to deduce the values of u and s, since he now knows

y1, y2, r00,1 and r00,2. So the violation is caught.
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Chapter 4

Some Other Systems

4.1 Introduction

We will now look at a few more systems where they claim to provide untraceabil-

ity or unlinkability. We will then study some papers that found flaws in these

systems.

4.2 Damg̊ard’s Scheme

In Crypto ’90, Damg̊ard [5] presented an untraceable online payment system

with provable security against abuse by individuals. Pfitzmann and Waidner [11]

show how to break the untraceability of Damg̊ard’s payment system. They also

introduce possibilities to improve it further with new features.

In untraceable payment systems, the Bank is needed to approve each payment.

However they do not allow the Bank to observe the activities of the individuals.

For example, when individuals withdraw money from one account and deposit it

into another account, the Bank should not be able to trace the activity to find

out the identities of the sender and the receiver. The security of the systems
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relies, for example, on an RSA scheme so that one cannot double spend or create

coins themselves. Pfitzmann and Waidner show that Damg̊ard’s payment system

is not untraceable at all.

Damg̊ard’s system uses a provably secure signature scheme. The Customer

gives m′ and the signature (m′, T, sign(m′, T )) to the Merchant, who gives it to

B. During the depositing protocol, the Bank is able to obtain these numbers,

m′ and (m′, T, sign(m′, T )). Then B can store the history and would be able to

trace the identity of the Customer.

Essentially, the system enables the Bank to see the signature. This gives the

Bank ways of tracing the coin in some cases.

Pfitzmann and Waidner repair the untraceability flaw of Damg̊ard’s system

by requiring the Customer to use a zero-knowledge proof to show that he has the

signature during the deposit protocol.

4.3 D’Amiano and Di Crescenzo’s Cash System

D’Amiano and Di Crescenzo [6] claim to present an electronic cash system that

provide complete untraceability. They also claim that the cash maintains its

size as it gets transferred from one person to another. Pfitzmann, Schunter, and

Waidner [10] break this system and show that D’Amiano and Di Crescenzo’s

scheme does not provide any untraceability. They identify how untraceability is

not secured in D’Amiano and DiCrescenzo’s system without any growth in size

of the coin.
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4.3.1 The System

The initialization and the withdrawal protocols are almost identical to those of

Okamoto-Ohta and Eng-Okamoto. When a double-spending occurs, the Bank

receives the same coin twice in two different deposits. B can then broadcast a

request for all previous users of the coin to send in the transcripts or information

they have about the coin. Then the Bank is able to determine all previous owners

of the coin. Either

1. one of the users who does not cooperate is detected,

2. one of the users who paid the coin twice is detected, or

3. two withdrawals of the same coin are detected.

In case (1), the attacker who does not cooperate is presumed to be guilty. In case

(2), the Bank has detected what it had hoped to find, whereas case (3) does not

pose any problem since the money has been withdrawn from the account.

4.3.2 The Untraceability Flaw

Pfitzmann and Waidner show that the untraceability is not ensured at all in this

system. Suppose that there are two attackers in the system. In Figure 4.1, the

attackers are denoted as A1 and A2, and the honest customers are U1, U2, U3,

and U4. Each arrow indicates a payment. Suppose A2 tries to double-spend, as

indicated by two arrows originating from A2. When the Bank traces the coin

back, A2 and U4 both show they received the coin from U2. The coins that came

from A1 are completely identical, so U2 cannot prove that the coin was given to

him twice. A1 remains quiet without revealing that he got the coin from A2, so
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Figure 4.1: A double-spending scenario

A2 is completely free of risk. So, U1 is incorrectly detected to be double-spending

and punished.

Note that if A2 did not double-spend, U2 would still have been given the same

coin twice as shown in Figure 4.1. This would have been a normal transaction.

Even if U2 detects that a coin he once spent came back to him, he would not find

it suspicious. In real paper cash system, the same can occur. Once the Customer

spends a paper bill, it may come back to him at one point.

Pfitzmann and Waidner argue that a different signature must be given when

paying a coin to the same person. Interactively, this can be done with a challenge

or a transaction number. Transaction numbers and comparing a coin with all

previously received ones are less efficient but are possible ways to prevent this

type of attack. Non-interactively, time stamps can be used.

It is important to note that Chaum and Pedersen [4] make an even stronger

36



observation about the size of the cash. They show that it is impossible to en-

sure the transferability without growing the size of the coin. This shows that

D’Amiano-Di Crescenzo’s scheme is fundamentally flawed.

4.4 Canard and Gouget’s Scheme

Canard and Gouget [2] present an off-line divisible e-cash scheme with unlink-

ability. They present security tags that can protect that anonymity of honest

customers and that can reveal the identity only when the Customer cheats. This

is done without using a trusted third party.

The main feature of their scheme is the use of non-interactive zero-knowledge

proofs. They are used to verify the possession of various information without

transferring any content information. The beauty of the non-interactive proofs is

that they can be reproduced. The transcripts of the proofs that the Customer has

the information are sent. This solves the linkability problem, commonly found

in other systems. It is not obvious, however, how we can improve this system to

make the cash transferable.
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Chapter 5

Multiply Spendable Coins

The paper [8] by Ferguson presents the idea of n-spendable coins, where each

coin can be spent up to n times without revealing the Customer. U is revealed,

however, when the coin is used for the n + 1st time.

The advantage of allowing U to spend a coin several times by this scheme

is its efficiency. It requires less storage than using multiple 1-spendable coins.

Especially for systems like subway fare, the idea is useful, even though linkability

is not prevented.

Ferguson generalizes the case of 1-spendable coins by using a secret sharing

scheme. The generalization introduces the use of a higher degree polynomial to

mask the identity of U .

U has a polynomial u +
∑n

i=1 kiX
i mod a prime q, where u is the secret

identity number of U and the secret numbers k1, . . . , kn are produced during the

initialization stage.

Then the challenge-response consists of the following steps:

1. M sends a challenge x ∈R Zq.

2. U sends a value of the polynomial: r = u +
∑n

i=1 kix
i.
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If the coin is spent ` times, U reveals ` points on the graph of the polynomial.

If ` ≤ n, this information does not reveal u. However, if U spends the coin for

the n + 1st time, his identity is easily revealed by being able to construct the

polynomial from the n + 1 points.

Eng-Okamoto’s case is a variation of the case when n = 1. M sends a challenge

α to U . Then U sends the value at X = α of the linear polynomials r000,1 + sX

and r000,2 + usX. Suppose U double-spends the coin. Then, with the second

challenge α′, the coefficients of the polynomial are revealed.
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