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1. Introduction. Consider the two–dimensional convection–diffusion equation�"∆u+ � �ru = f in Ω;(1) u = g on @Ω;(2)

where � = (�1; �2) is a flow velocity field, " is a diffusion or viscosity coefficient, and f; g
are given functions. Our concern in this paper is the efficient solution of discrete versions
of this problem by iterative methods, with emphasis on the effect of discretization strategy
on the overall cost of achieving a specified accuracy. We are particularly interested in cases
where the solution contains steep gradients, i.e. boundary layers or internal layers.

In such cases, it is known that standard discretization techniques such as Galerkin finite
elements yield inaccurate oscillatory solutions [18], [29, p. 259]. Various approaches for
handling this problem, based on the addition of a judicious amount of upwinding, have
been proposed. They include the streamline diffusion method [20] and variants that contain
additional crosswind diffusion [23] and shock–capturing terms [8, 21, 38]. These strategies all
in some way attempt to enhance the coercivity of the standard Galerkin discretization and are
referred to as stabilized discretizations. These modified discretizations change the properties
of the algebraic systems being solved, and therefore in all likehood they will affect the cost
of solving these systems. The latter (shock–capturing) techniques are noteworthy in that the
added diffusive term depends on the unknown solution, leading to a nonlinear discrete system
even though the original problem is linear.

In this paper, we make a comparison of the cost effectiveness of a collection of such
discretization strategies, for solving a set of benchmark problems of the form (1)–(2). In
identifying cost effectiveness, our aims are twofold:

1. To compare and contrast the different discretization strategies in their capability to
compute accurate solutions of benchmark problems;

2. To identify efficient solution algorithms for each discretization.
For solution algorithms, we use preconditioned Krylov subspace methods, including Newton–
Krylov variants of these ideas to handle nonlinear algebraic systems. Our results indicate
that the nonlinear shock–capturing discretizations yields significantly more accurate solutions
than linear stabilization methods. However, the cost of solving the nonlinear systems also
tends to be high. Although linear stabilizations require finer grids than nonlinear ones to
achieve comparable accuracy, the overall solution costs of using linear discretizations (which
include components of both streamline and crosswind diffusion) are lower.

The contents of the rest of the paper are as follows. In Section 2, we describe the linear
stabilized finite element discretizations of (1)–(2) that we consider, and in Section 3, we
describe the nonlinear discretizations. In Section 4, we briefly describe the Krylov subspace
methods that we use to solve the discrete problems, and in Section 5, we describe some
preconditioners used to speed convergence. In Section 6, we examine the results of numerical
experiments on the benchmark problems.

2. Linear stabilized discretizations. In this section we describe the three linear sta-
bilized discretizations of the problem (1)–(2) that we consider. For simplicity, we assume
homogeneous Dirichlet boundary conditions on all boundaries; the ideas considered here
generalize in a straightforward manner to other boundary conditions. Let (�; �) denote the
usual scalar L2 inner product. The weak formulation of (1)–(2) is then: find u 2 H1

0 (Ω) such
that Bg(u; v) = (f; v) for all v 2 H1

0(Ω);
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where Bg(u; v) = "(ru;rv) + (u�; v)
and v� = ��rv denotes the derivative in the streamline direction. LetTh denote a triangulation
of Ω and Th = f�hg. We will restrict our attention to low order finite element spaces on Th.
In particular, letV 0h = fv j v 2 P1(�h); 8�h 2 Th; v is continuous at the nodes and v = 0 on @Ωg ;
where P1(�h) is the space of either linear or bilinear functions defined on �h.

2.1. Streamline diffusion method. The streamline diffusion method (SD) is defined
[22, p. 185] as: find uh 2 V 0h such thatBsd(uh; v) = Fv 8v 2 V 0h ;(3)

where Bsd(�; �) is the bilinear formBsd(uh; v) = Bg(uh; v) + �s(uh� ; v�)(4) Fv = (f; v) + �s(f; v�);(5)

On a uniform grid with mesh parameter h for which the mesh Péclet number Pe = j�jh
2" is

greater than 1, the parameter �s is given by�s = !sh(6)

where !s is a fixed positive constant.1 In practice, when using SD to solve problems with
characteristic internal and boundary layers, the choice of !s is important. Fischer, Ramage,
Silvester and Wathen [16] show that if % is the angle of flow to the horizontal, the choice!s = 1j�j �1

2
� "h j cos%j�(7)

is a good one with respect to both clustering of the spectrum of the discrete operator and
performance of the GMRES iterative solution algorithm.

Under the assumption �r � � � d0 for nonnegative constant d0, consider the energy
norm jjjvjjj2sd = "krvk2L2(Ω) + �skv�k2L2(Ω) + d0

2
kvkL2(Ω) 8v 2 Vh:(8)

The form Bsd satisfies the coercivity conditionBsd(v; v)� jjjvjjj2sd(9)

in which the lower bound is positive in the limit " & 0. In particular, the finite element
discretization matrix has positive definite symmetric part and the discrete solution uh of (3)
is unique. If f 2 L2(Ω) and u is the strong solution, then Axelsson [1] and Nävert [28] have

1 If Th is not uniform or � is a variable, then let h represent the diameter of a local element, and determine �s
elementwise as in (6) (see [22, p. 186]).
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shown that for a piecewise linear finite element space there is a constant C (independent ofh; �s and ") such that jjju� uhjjjsd � C �"1=2h+ �1=2s h� juj2;
where k � k and j � j2 denote the usualL2 norm and H2 seminorm respectively. It is also shown
in [3] that if �s = O(h), " � ch and �r � � � d0 > 0 for positive constant d0, then the error
for SD satisfies ku� uhk � Ch3=2juj2;(10)

this is shown without a duality argument or elliptic regularity.

2.2. Streamline–crosswind diffusion method. SD suffers from excessive overshooting
and undershooting of front following characteristics when discontinuities are present [21].
Johnson, Schatz and Wahlbin [23] introduced a modification of the SD discretization that
improves its performance by adding artificial crosswind diffusion. The streamline–crosswind
diffusion method (SD/CD) as generalized by Lube [26] is as follows: find u 2 V 0h such thatBsd=cd(uh; v) = Fv 8v 2 V 0h ;(11)

where Bsd=cd(uh; v) = Bsd(uh; v) + ("m � ")(uh�; v�);(12)� = (��2; �1) is the crosswind vector and the coefficient of artificial crosswind diffusion is
defined by "m = ( " for " � h3=2h3=2 for " < h3=2:
For this method with piecewise linear elements, pointwise error bounds of order O(h2j loghj)
have been obtained for special meshes in [40], where it is also shown that the width of the
characteristic boundary layers and interior layers along streamlines are of orderO(h5=8 log2 h).
See also [31, pp. 229ff.] for discussion of such results.

In our numerical experiments, we find that this method dramatically reduces the oscil-
lations of discrete solutions near boundary layers and internal layers, but there are problems
with smearing near sharp fronts.

2.3. Two–parameter streamline–crosswind diffusion scheme. In [35], we introduced
a two–parameter variant of the SD/CD discretization. As in (12), we add crosswind diffusion
to the SD operator, producing a parameterized weak formulation (denoted MSD/CD)Bmsd(uh; v) = Fv 8v 2 V 0h ;(13)

where Bmsd(uh; v) = Bsd(uh; v) + �c(uh�; v�):(14)

The two parameters �s (see (4)) and �c determine the amount of streamline diffusion and
crosswind diffusion added to the system, respectively. For constant �1; �2, rather than being
free parameters, these are explicitly determined so that necessary conditions for uniform
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convergence in l2 of uh with respect to " are satisfied; see [35], [37] for discussion of these
conditions. This leads to the values�s = hj�j2  1

2

�3
1 coth �1h

2" � �3
2 coth �2h

2"�2
1 � �2

2
� "! ;(15) �c = hj�j2  1

2

�2
1�2 coth �2h

2" � �2
2�1 coth �1h

2"�2
1 � �2

2
� "! ;(16)

for bilinear elements. For variable flows or irregular quadrilateral grids, we can define local
(to element) values of �s and �c. We follow the approach given in [4]: on any element � , let(x� ; y�) denote the element center, let �� = �(x� ; y�), and let h� be the diameter of �h. Then
these constant values are used to define the parameters in formulas (7), (15)–(16) in the local
matrix computations associated with the element �h.

In [35], we have shown that the form Bmsd satisfies the coercivity conditionBmsd(v; v)� "krvk2 + �skv�k2 + �ckv�k2; 8v 2 V 0h ;
so the finite element matrix has positive definite symmetric part and the discrete solution of
(13) is unique. If uh is the discrete solution obtained by MSD/CD on either bilinear or linear
elements and � 2 W 1;1(Ω) and either r � � = 0 or �r � � � d0 > 0, for constant d0, then
the discretization error satisfiesjjju� uhjjjmsd � C �"1=2h+ �1=2s h+ �1=2c h+ ��1=2s h2 + h2 + �c� juj2;(17)

for constant C > 0, where jjjvjjj2msd = "krvk2 + �skv�k2 + �ckv�k2.

2.4. The algebraic systems. We identify some additional properties of the algebraic
systems of equations obtained from the discretizations above. First, letAu = b;(18)

denote the matrix equation obtained by any of SD, SD/CD or MSD/CD. Following the notation
in [16], the coefficient matrix can be expressed asAsd = "H + S + �sUAsd=cd = "H + S + �sU + ("m � ")CAmsd = "H + S + �sU + �cC;
for SD, SD/CD, MSD/CD, respectively, whereHi;j = (r�j ;r�i); Si;j = (� �r�j; �i); Ui;j = (� �r�j; � �r�i); Ci;j = (��r�j ; ��r�i);
and f�ig(N�1)2i=1 are the finite element basis functions. Ifr�� = 0, then for each basis function�i having value 0 on the boundary, it follows from integration by parts that(� � r�j ; �i) = �(� � r�i; �j);
that is, S is skew-symmetric. It is then easy to see that the symmetric parts of Asd;Asd=cd
and Amsd are positive definite. For constant � and bilinear basis functions, the constituent
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9-point stencils are as follows:H :

0BBBBB@ �1
3 �1

3 �1
3�1

3
8
3 �1

3�1
3 �1

3 �1
3

1CCCCCA
(19) S :

0BBBBB@ h
12(��1 + �2) h

3�2
h
12(�1 + �2)�h

3�1 0 h
3�1� h

12(��1 � �2) �h
3�2

h
12(�1 � �2) 1CCCCCA

(20) U :

0BBBBBBB@ ��2
1��2

2+3�1�2

6
�2

1�2�2
2

3
��2

1��2
2�3�1�2

6�2�2
1+�2

2
3

4(�2
1+�2

2)
3

�2�2
1+�2

2
3��2

1��2
2�3�1�2

6
�2

1�2�2
2

3
��2

1��2
2+3�1�2

6

1CCCCCCCA
(21) C :

0BBBBBBB@ ��2
1��2

2�3�1�2

6
�2�2

1+�2
2

3
��2

1��2
2+3�1�2

6�2
1�2�2

2
3

4(�2
1+�2

2)
3

�2
1�2�2

2
3��2

1��2
2+3�1�2

6
�2�2

1+�2
2

3
��2

1��2
2�3�1�2

6

1CCCCCCCA :
3. Nonlinear stabilized discretizations. In this section, we describe two nonlinear sta-

bilization strategies based on shock capturing, whose discrete solutions display less over-
shooting and undershooting within numerical layers than those produced by the streamline
diffusion method.

3.1. Shock capturing. Hughes, Mallet and Mizukami in [21] introduced a shock–
capturing finite element method (SC) which adds an extra discontinuity capturing term to
SD. Let �k denote the projection of the flow field onto the gradient of the discrete solutionuh, that is, �k = � � ruhjruhj2 ruh; for jruhj 6= 0.

The SC method for (1) is: find uh 2 V h
0 such thatBsc(uh; v) = Fv for all v 2 V h

0 ;(22)

where Bsc(uh; v) = Bsd(uh; v) +Bdc(uh; v);(23) Bdc(uh; v) = �r(uh); �sc�k � rv�(24)
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and r(uh) = �"∆uh + � � ruh � f is the discrete residual of (1). The shock capturing term
of (24) depends on the residual of discrete solution, and it tends to add diffusion in regions
where the gradient is large, that is, near internal and boundary layers. However, because the
discontinuity capturing term depends on the discrete solution, the discrete algebraic system
derived from this strategy is nonlinear. In [21], �s; �sc are chosen by the following formulas:

let Pk = hj�kj
2" denote the mesh Péclet number for the vector �k and let�s = 
 hj�j; for 
 = 
0 min

�
1; P

3

� ;(25) �sc = max
�

0; �k��s� ; for �k = 
0
hj�kj min

�
1; Pk

3

� ;(26)

where 
0 = 1=2 for linear and bilinear elements. The values of �s; �sc of (25), and (26) are
determined locally in each element �h, using the element diameter h� for h and the values of� and �k at the element center.

Johnson, Szepessy and Hansbo [24] and Szepessy [39] have shown that the accuracy
of SC for conservation laws is of order of O(h3=2) for smooth solutions if piecewise linear
functions are used.

3.2. Shock capturing with crosswind dissipation. It may happen that for some uh 2V h
0 , the discontinuity capturing termBdc(uh; uh) of (24) is negative, so that negative numerical

diffusion may be added to the system. An alternative that avoids this difficulty is as follows.
Galeão and Dutra do Carmo in [17] modified (24) usingBdc(uh; v) = �r(uh); �sc�r � rv� = ��scj�rj2ruh;rv� ;(27)

where �r = r(uh)jruh j2ruh. For this choice, Bsc(uh; uh) � 0 for all uh 2 V h
0 , and (27) is

identical to (24) when f = 0. Codina [8] refined this approach further by incorporating the
crosswind direction into the discontinuity capturing term. The resulting shock capturing with
crosswind dissipation method (SC/CD) is defined via (22)–(23) andBdc(uh; v) = (�scj�rjuh�; v�):(28)

Here, � is the crosswind vector as defined in Section 2.2 and �scj�rj is evaluated within each
element by setting �sc = ( 
0hmaxf0; C0 � 1=Pkg ifruh 6= 0

0 otherwise,
(29)

and C0 = 0:7 for both linear and bilinear elements.
For completeness, we show that SC/CD discretization satisfies an error bound like those

derived for SD in [1], [39], [40]. Assume that the quantity j�rj satisfiesq0 � j�rj � q1(30)

for q0; q1 > 0, and for �r � � � d0 � 0, letjjjvjjj2sc = "krvk2 + �skv�k2 + q0�sckv�k2 + 1
2
d0kvk2:(31)

The following result establishes the stability of Bsc defined by (22)–(23), (28).
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LEMMA 3.1. The bilinear form Bsc satisfiesBsc(v; v)� jjjvjjj2sc for any v 2 V 0h :(32)

Proof. From (8), we haveBsc(v; v) � "krvk2 + �skv�k2 + 1
2
d0kvk2 +Bdc(v; v);

and from (28), Bdc(v; v) � q0�sckv�k2:
The result follows from the definition (31).

The error estimate showing for SC/CD is as follows. The proof is as in [35]. A similar
result for SC can be found in [24], [39].

THEOREM 3.2. Let u be the solution of (1)–(2) with g = 0 and u 2 H2(Ω)\H1
0(Ω). Let� 2 W 1;1(Ω) and eitherr � � = 0 or �r � � � d0 > 0, for constant d0, and let the residualr(uh) satisfy (30), for constants q0; q1. If uh is the discrete solution obtained by SC/CD, on

either bilinear or linear elements, then there is a constant C such thatjjju� uhjjjsc � Ch3=2juj2:(33)

Proof. Let � = uI � u, where uI is the bilinear (or linear) interpolant of u. It follows
that k�k � ch2juj2; kr�k � chjuj2(34) jjj�jjjsc � c �"1=2h + �1=2s h+ �1=2sc h+ h2

� juj2(35)

(see [22, p. 176], [31, p. 232]). Setting � = uI � uh yieldsjjj�jjj2sc � Bsc(�; �) = Bsc(�; �) +Bsc(u� uh; �):(36)

The quasi–orthogonality relation holds,Bsc(u� uh; v) = Per(u; v) for all v 2 V 0h ;
where Per(u; v) is the truncation errorPer(u; v) = "(∆u; �sv�):
But the Poincaré inequality leads toBsc(u� uh; �) � "�1=2s k∆uk�1=2s k�� � "�1=2s juj2 jjj�jjjsc(37)

and Bsc(�; �) = "(r�;r�) + �s(�� ; ��) +Bdc(�; �)� (�; ��)� Z
Ω
(r � �)�� dΩ:

If r � � = 0 (divergence free case), thenBsc(�; �) � "kr�k kr�k+ �sk��k k��k+ q1�sck��kk��k+ k�k k��k� �"1=2kr�k+ �1=2s k��k+ �1=2sc q�1=2
0 q1k��k+ ��1=2s k�k� jjj�jjjsc:
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If �r � � � d0 > 0, thenZ
Ω
(r � �)�� dΩ � ck�k k�k � c0k�kjjj�jjjsc

andBsc(�; �)� �"1=2kr�k+ �1=2s k��k+ �1=2sc q�1=2
0 q1k��k+ ��1=2s k�k+ c0k�k� jjj�jjjsc:

Use (34) to getBsc(�; �)� c �"1=2h+ �1=2s h+ ��1=2s h2 + h2 + �1=2sc h� juj2jjj�jjjsc:(38)

Combining (36), (37) and (38) givesjjj�jjjsc � c �"1=2h + �1=2s h+ ��1=2s h2 + h2 + �1=2sc h� juj2:
Thus, using the triangle inequality and (35) – (36), it follows thatjjju� uhjjjsc � jjj�jjjsc + jjj�jjjsc� C �"1=2h+ �1=2s h+ ��1=2s h2 + h2 + �1=2sc h� juj2:
The result follows by taking �s; �sc to be of magnitude O(h).

3.3. The algebraic systems. The nonlinear discrete systems above can be expressed asF(u) = Asdu � b+R(u) = 0(39)

where R(u) is the nonlinear shock–capturing term derived fromRi(uh) = 8<: �sc �r(uh); �k � r�i� for SC�sc �j�rjuh�; � � r�i� for SC/CD,

where uh is the discrete solution. Note that the nonlinear discrete function F(u) is not
differentiable because it contains absolute value and maximum functions. This will influence
the convergence behavior of solution algorithms for these systems; see Section 4.2.

4. Solution algorithms. In this section, we briefly review some linear and nonlinear
solution algorithms based on Krylov subspace methods for solving the systems obtained from
the discretized schemes of Sections 2–3.

4.1. GMRES method. For the linear problems (18), we use the generalized minimal
residual method (GMRES) developed by Saad and Schultz [32, 33]. Given an initial valueu0, let Ki(A; r0) denote the Krylov subspaceKi(A; r0) = span

nr0;Ar0; :::;Ai�1r0

o :(40)

GMRES constructs ui 2 u0 +Ki(A; r0) whose residual norm is minimal. It constructs an
orthonormal basis forKi(A; r0) by the Arnoldi process, which can be viewed as a variant of
the Gram-Schmidt orthogonalization procedure. A statement of the algorithm is as follows:
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Algorithm 2: GMRES
Choose u0, compute r0 = b� Au0

Let i = 0; � = kr0k2; v0 = r0=�
While � does not satisfy the stopping criterion, doi = i+ 1; � = �

The Arnoldi process/modified Gram-Schmidt orthogonalization:w = Avi�1

For j = 1; :::; ihj;i = wTvjw = w � hj;ivjhi+1;i = kwk2vi+1 = w=hi+1;i
Compute � = minyi 


 �e1 � Ĥiyi 




2
, for Ĥi = �hi;j� ; e1 2 IRi

Enddoui = u0 + Viyi, for Vi = [v1; : : : ; vi]
4.2. The Newton–GMRES algorithm. For the nonlinear system (39),we use a Newton–

like iteration in which the system of equations to be solved at each Newton step is solved
approximately by a Krylov subspace method [5, 11, 14, 25]. We use Newton–GMRES as in
[11]. That is, for the system F(uk) + F 0(uk)sk = 0;(41)

we compute sk such that kF(uk) + F 0(uk)skk2 � �kkF(uk)k2;(42)

where a GMRES-like iteration is used to enforce the criterion (42). Moreover, rather than
use true GMRES of Algorithm 2, we approximate the matrix vector product by a directional
derivative [7]. That isF 0(uk)v � D�F(uk; v) � F(uk + �v)� F(uk)� = Asdv + R(uk + �v)�R(uk)� :(43)

In practice, most entries of R are zero, except where the discrete residual r(u) does not
vanish. Note that we are avoiding evaluation of the Jacobian for the nonlinear system, both
because it is not well–defined everywhere and because it is expensive.

The Newton–GMRES algorithm is as follows:
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Algorithm 4: Inexact Newton–GMRES
Choose u0; 
 and let k = 0; r = �F(u0)
While kF(uk)k2 does not satisfy the stopping criterion, do

Let k = k + 1; � = krk2; v1 = r=krk2 and choose �k
While � > �kkF(uk)k2, do

Use GMRES as in Algorithm 3 with (43) for the matrix–vector product
Enddo
Let ∆uk = Vmym after m GMRES steps
Let uk = uk�1 + ∆uk ; � = 1; % = 1� �k and evaluate F(uk)
While kF(uk)k2 > (1� 
%)kF(uk�1)k2, do

Choose � 2 (0; 1)� = ��; % = �%uk = uk�1 + �∆uk and evaluate F(uk)
Enddo

Enddo

The third while loop is for backtracking and forces a minimal improvement in the solution
before a step is performed. For the forcing sequence f�kg, we use the choice�k = min

��max;max
��ck; �

2kF (uk)k2

�� ;(44)

where �ck = 8>>>><>>>>: min
��max; 
 kF (uk)k2

2kF (uk�1)k2
2

� ; if 
�2k�1 � 0:1
min

��max; 
max
� kF (uk)k2

2kF (uk�1)k2
2
; �2k�1

�� ; if 
�2k�1 > 0:1(45)

for given �max; 
. The strategy (45) is taken from Eisenstat and Walker [14] with modification
(44) due to Kelley [25]. This prohibits the computation of an overly accurate linear solution
when uk is far from the solution. For the other parameters, we use 
 = 0:9; �max = 10�4, �
from [12], and choose � to minimize a quadratic polynomial function as suggested in [12, p.
126], [25, p. 142].

TABLE 1
Operation counts (multiplications) for GMRES and Newton–GMRES with matrix of dimensions N�N.

Cost at step k for linear GMRES (k+3+1/k)N +NZ
Cost at k-th GMRES step of one inexact
Newton step without backtracking

(k+4+1/k)N+Fev+NZ

Let NZ denote the number of nonzero elements in A, and let Fev represent the required
operation counts for evaluating the shock capturing term R(uh). Here, NZ is approximately
9N for the matrix of dimensions N�N, and Fev is only counted where ruh 6= 0. A summary
of operation counts for GMRES and inexact Newton–GMRES is shown in Table 1.

5. Preconditioning. Convergence of Krylov subspace methods can be significantly en-
hanced using preconditioners. In this section, we outline the preconditioning strategies we
use. Because we are solving problems with large Reynolds numbers, we restrict our attention
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to easy-to-implement preconditioners of algebraic type derived from relaxation methods and
incomplete factorization. (See [10], [30], for examples of alternative approaches based on
multigrid.)

We consider six preconditioning strategies, for problems with an underlying rectangular
grid. The first two of these could be implemented efficiently on parallel computers; the latter
four take some account of the orientation of flow in the problem.

1. Horizontal line Jacobi (HJ). Let the grid points be ordered in a natural left-to-right,
bottom-to-top ordering. Then the coefficient matrix has formA = D + L+ U ;(46)

where D is a tridiagonal matrix representing the connections within each equation
in the horizontal direction, and L and U are strictly lower and upper triangular,
respectively. The horizontal line Jacobi preconditioner is M = D.� � �
 
 
� � �

(a) horizontal ordering

� 
 �� 
 �� 
 �
(b) vertical ordering

FIG. 1. Grid points used for line Jacobi preconditionings.

2. Vertical line Jacobi (VJ). Alternatively, if the grid points are ordered first from
bottom-to-top and then from left to right, this corresponds to a permutation of A,PAPT = DV + LV + UV(47)

and the vertical line Jacobi preconditioner is M = PTDV P . This preconditioning
can be implemented efficiently without explicit use of the permutation.

Symbolic representations of the line Jacobi operators are shown in Fig. 1.� � �
 
 

 
 

(a) horizontal ordering


 
 �
 
 �
 
 �
(b) vertical ordering

FIG. 2. Grid points used for line Gauss–Seidel preconditionings.

3. Horizontal line Gauss–Seidel (HGS). The preconditioner is defined byM = D�L,
where D;L are as in (46).

4. Vertical line Gauss–Seidel (VGS). The preconditioner is defined byM = PT (DV�LV )P , where DV ;LV are as in (47).
The line Gauss–Seidel preconditioners are represented symbolically in Figure 2.
5. Incomplete block factorization (IB1). If there are n horizontal grid lines, then the

coefficient matrix has the form A = �Ai;j�1�i;j�n :
11



The incomplete block factorization of Concus, Golub and Meurant [9] isM = (X + L)X�1 (X + U ) :
Here X = blockdiag [X1; : : : ; Xn]

is defined by the recurrence below, where [�](p) denotes the matrix with half–
bandwidth p. X1 = A1;1

For i = 1; 2; : : : ; n� 1; doYi = [Xi](p)Xi+1 = Ai+1;i+1 � �Ai+1;iYiAi;i+1
�(p).

Enddo

Since A is a positive real matrix, the sequence matrices fXig, fYig remain positive
real and nonsingular, for sufficient large p (see [3]). In our numerical tests, we letp = 1 for simplicity.

6. Incomplete block factorization 2 (IB2). In this variant of incomplete factorization,
due to Axelsson [2], the factors are expressed in term of the inverse of the block
diagonal, i.e., M = �Y �1 + L� Y �Y �1 + U� ;
where Y = blockdiag [Y1; : : : ; Yn]

is defined as above.

TABLE 2
Operation counts (flops) for preconditioners with matrix of dimensions N�N.

VJ HJ VGS HGS IB1 IB2

Preprocessing
cost per step

2N 2N 2N 2N 31N 31N

Substitutions 3N 3N 6N 6N 12N 12N

The operation counts for these preconditioners are shown in Table 2. The first line of
the table reflects the cost of factorization (for example, of the tridiagonal matrix D in Jacobi
preconditioning), assuming no pivoting is needed. Under this assumption, the preconditioners
all have essentially the same sparsity requirements as the coefficient matrix.

For the linear discretizations of Section 2, we apply the preconditioning on the right, and
solve AM�1û = b; û =Mu;
where M is the preconditioning matrix. For the nonlinear problems, we precondition by
replacing the directional derivative in the direction of vi with D�F(u;M�1vi), and define
the correction to be

∆uk =M�1Vkyk:
12



We take as preconditioners for the nonlinear iteration approximations to the streamline dif-
fusion operator Asd; these approximations are determined using the six approaches listed
above.

6. Numerical experiments. In this section, we compare the performance of the dis-
cretization strategies of Sections 2-3 and the solution algorithms of Sections 4-5 for solving a
set of benchmark problems. All experiments use bilinear shape functions on square elements
on a uniform N �N element grid with h = 1=N , and they were performed with MATLAB
Version 4.2c on a SUN SPARC–20 workstation. All discretizations were employed with 2�2
Gauss quadrature. The coefficient �s = !sh of the streamline diffusion term for both SD and
SD/CD was chosen using (7). We use u0 = 0 as initial guess for solving all linear systems
of equations and u0 = usd for all nonlinear systems of equations where usd is the solution of
the discrete problem on the given grid obtained from SD discretization.2

We present two types of results. First, we examine the behavior, i.e., iteration counts and
operation counts, of various solution algorithms for a series of choices of parameters and mesh
sizes, without regard to quality of solution. This gives a general idea of the costs of solving the
discrete problems, but it ignores the fact that certain discretizations such as shock–capturing
may produce more accurate solutions on a given mesh. In a second set of tests, we attempt to
factor solution quality into our assessment. We define criteria to measure solution accuracy,
use these criteria to identify mesh sizes for which each discretization achieves a specified
accuracy, and then use “good” choices of algorithms (determined by the first set of results) to
assess the effectiveness of the discretizations.

6.1. Benchmark problems. We consider two benchmark problems.

Problem 1: Characteristic and downstream boundary layers. This problem was first
considered in [20] for studying a downstream boundary layer and a characteristic internal layer
that propagates along the characteristics when inflow boundary conditions are discontinuous.
The velocity field � is given by (cos �; sin �), and the boundary values are as follows:u = (

1 if 0 � y < 1=2; x = 0 or y = 0; 0 � x < 1
0 otherwise.

The reduced problem (i.e., where " = 0 in (1)) has discontinuous solutionu = (
1 y < �2�1

x+ 1
2

0 y > �2�1
x+ 1

2 :
For " > 0, there is an internal layer of width O(p") across the characteristic y = �2�1

x + 1
2 ,

and a boundary layer of width O(") at x = 1 [13]. Figure 3 depicts the three–dimensional
structure and contour plots of the numerical solutions obtained by the six methods tested, for" = 10�6; h = 1=20 and � = (cos 10o; sin 10o). The three-dimensional plots are rotated 110o
to give a clearer picture of the layers.

Problem 2: Variable flow field. For our second benchmark problem, we consider a
variant of the “IAHR/CEGB” workshop problem [36] in common use for testing discretization
strategies (see e.g. [19], [27]). The domain is the rectangular region

Ω = f(x; y) j � 1 < x < 1; 0 < y < 1g ;
2 We also tried u0 = 0 as an initial guess for solving the nonlinear systems of equations and found that this

requires more Newton steps and more operation counts than those using usd. The costs of generating usd are
included in all performance assessments.
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FIG. 3. Numerical solutions and contours for Problem 1 with " = 10�6; h = 1=20 and � = 10o.

and the velocity field is � = (2y(1� x2); �2x(1� y2)):
The inflow boundary is the interval f(x; 0) j �1 � x � 0g, and Dirichlet conditions specified
there represent an inlet temperature which is convected in a circular flow to the outflow
boundary f(x; 0) j 0< x < 1g, where natural boundary conditions@u(x; 0)@n = 0; for 0 < x < 1

are assigned. Dirichlet boundary conditions are given on the remainder of @Ω. There is a
discontinuity in the inlet profileu(x; 0) = (

0 �1 � x < �0:5
1 �0:5 � x � 0:(48)

together with Dirichlet conditions u = 0 at x = �1, u = 0 at y = 1 and the value u = 1 (a
hot wall) at x = 1 as in [27]; the discontinuity introduces a thin boundary layer at the right
boundary. Representative pictures of the three-dimensional structure and contour plots of the
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FIG. 4. Numerical solutions and contours for Problem 2, second variant with " = 10�6 and h = 1=20.

numerical solutions obtained by the six methods tested, for " = 10�6 and h = 1=20; are
shown in Figure 4.

Consideration of Figures 3 and 4 gives a qualitative picture of the effectiveness of the
six discretization strategies. In particular, SD without additional stabilization yields solutions
with oscillations near internal layers. Linear crosswind diffusion diminishes (but does not
eliminate) these overshoots and undershoots, but it also leads to excessive smearing. The
parameterized MSD/CD method is somewhat more effective (less smearing) in this regard than
SD/CD. The nonlinear discretizations, especially SC, yield the qualitatively best solutions,
with considerably less oscillation than pure SD and less smearing of fronts than the linear
crosswind diffusion schemes.

6.2. Computational results for selected example problems. We first examine the be-
havior of various discretizations and solution algorithms on a fixed set of meshes. In these
tests, the stopping criterion was kb�Aukk2 � �rkbk2;
for all linear problems, and kF(uk)k2 � �rkbk2
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for nonlinear problems, where �r = 10�5. Tables 3 and 4 show the iteration counts needed by
GMRES for the three linear discretizations of Section 2. In all cases, we permit a maximum

TABLE 3
Iterations of GMRES for Problem 1 using SD, SD/CD, MSD/CD to discretize with various meshes, " = 10�6

and � = 10o.

Preconditioner
h Discretization I HJ VJ HGS VGS IB1 IB2

SD 33 27 14 9 7 6 9
1/16 SD/CD 21 19 14 7 4 3 4

MSD/CD 22 23 10 5 5 4 6
SD 58 49 21 15 9 8 16

1/32 SD/CD 39 37 19 8 4 4 5
MSD/CD 40 41 13 5 5 5 10

SD 100 89 33 23 13 12 30
1/64 SD/CD 72 73 26 8 5 5 10

MSD/CD 74 75 22 6 5 6 14

TABLE 4
Iterations of GMRES for Problem 2 using SD, SD/CD, MSD/CD to discretize with various meshes, " = 10�6.

Results marked “(�)*” did not satisfy stopping tolerance after 200 iterations.

Preconditioner
h Discretization I HJ VJ HGS VGS IB1 IB2

SD 88 42 46 22 16 9 17
1/16 SD/CD 65 34 33 18 9 6 10

MSD/CD 66 28 27 17 6 5 14
SD 158 68 67 39 22 12 29

1/32 SD/CD 115 59 55 32 12 7 14
MSD/CD 119 46 43 32 6 5 20

SD (200)* 110 96 72 27 17 53
1/64 SD/CD (200)* 88 80 58 15 9 21

MSD/CD (200)* 81 77 64 6 5 35

of 200 GMRES steps. The results indicate that the differences in the algebraic systems caused
by the introduction of artificial diffusion do in fact influence the performance of iterative
algorithms. In particular, the extra (crosswind) diffusion included in SD/CD and MSD/CD
leads to linear systems that in every case require fewer iterations to solve than those produced
by pure streamline diffusion. We attribute this to the enhanced coercivity produced by
crosswind diffusion. It is also clear that preconditioning significantly enhances convergence
speed. Among the preconditioners considered, VGS and IB1 are most effective. For both
problems, these strategies correspond most closely to “flow following” computations.3 The
line Jacobi methods are largely ineffective.

Figure 5 expands on these results by plotting the residual norm kb � Aukk2 against
multiplications, for several choices of the angle of the flow for Problem 1 with MSD/CD
discretization. Here, we see that the general trends observed for � = 10o carry over. We have

3 In the case of IB1, this is true for the forward substitution involving (X + L)�1.
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FIG. 5. Convergence behavior of GMRES for Problems 1 – 2 with h = 1=64, various "; �, and MSD/CD
discretization.
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also observed similar trends for different (larger) choice of ", and for different mesh sizes.
Tables 5 and 6 show the performance of the inexact Newton–GMRES algorithm for the

nonlinear discretizations of Section 4. For the GMRES computations, we allow a maximum
of 50 steps and then restart. Some of the trends displayed here are similar to those observed

TABLE 5
Summary of results for shock capturing discretization for Problem 1 with various meshes, " = 10�6 and� = 10o. NS, GN and FE refer to numbers of Newton steps, GMRES steps and function evaluations, respectively.

Results marked “(�)*” failed during backtracking.

Preconditioner
h Discretization I HJ VJ HGS VGS IB1 IB2

NS 9 16 7 8 8 7 10
SC GS 83 97 37 37 42 29 42

FE 258 763 72 96 97 52 162
1/16 NS 7 8 8 6 7 7 7

SC/CD GS 51 69 35 23 31 30 36
FE 134 212 115 49 79 77 94
NS (20)* (21)* 17 8 8 8 9

SC GS (145)* (194)* 121 51 46 43 68
FE (1717)* (2051)* 2269 163 134 133 274

1/32 NS 8 9 9 8 8 7 10
SC/CD GS 105 125 52 37 42 29 42

FE 294 461 200 96 97 52 162

TABLE 6
Summary of results for shock capturing discretization for Problem 2 with various meshes, " = 10�6. NS, GN

and FE refer to numbers of Newton steps, GMRES steps and function evaluations, respectively. Results marked
“(�)*” failed during backtracking.

Preconditioner
h Discretization I HJ VJ HGS VGS IB1 IB2

NS 12 23 16 10 14 11 11
SC GS 947 2558 1061 511 337 248 332

FE 1035 2917 1228 567 467 316 400
1/16 NS 9 14 14 12 9 9 8

SC/CD GS 517 972 1038 583 107 142 163
FE 539 1084 1135 663 145 190 190
NS 22 24 33 25 19 14 15

SC GS 5238 10345 4826 5738 863 555 1205
FE 5571 5124 11310 6108 1128 672 1341

1/32 NS 15 19 14 20 10 12 9
SC/CD GS 2370 2438 1535 3165 202 324 376

FE 2534 2686 1642 3418 255 411 418

for linear discretization: inclusion of crosswind–diffusion leads to problems that are easier to
solve, and “flow following” preconditioners (VGS and IB1) tend to be most effective. It is
clear, however, that the nonlinear discretizations lead to much more difficult problems than
the linear ones, requiring many more GMRES steps to satisfy similar stopping criteria on
common meshes. We will include solution accuracy in our considerations in the next section.
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We comment on the convergence rate of the Newton–GMRES solver. As observed in
Section 4.4, the nonlinear function F(u) is not differentiable. In some tests with a stringent
forcing tolerance, � = 10�8, we observed a linear convergence rate and not the quadratic rate
achievable for smooth functions. This accounts for the relatively large number of Newton
steps required for solution. We tested several other nonlinear solvers, including Broyden’s
method [6], [12, p. 195] and integration of a transient problem to steady state using a forward
Euler method, and found them to be both slower and less robust (see [34]). We also note that
the nonlinearity in these problems is due exclusively to the (nondifferentiable) discretizations.
Cf. [15] for results with similar discontinuous discretizations applied to the Euler equations;
for this nonlinear problem, Newton’s method converges more rapidly.

6.3. Solution quality. For both benchmark problems, the steep gradients in both internal
layers and boundary layers correspond to changes in function values u � 0 and u � 1. We
can measure the width of the internal layer usingyu = min

0�y�1

ny j uh(xi; y) � #io ; yl = max
0�y�1

ny j uh(xi; y) � 1� #io ; for small #i > 0:
That is ∆y = yu � yl is a measure of the width of the numerical internal layer and the effect
of crosswind smearing at x = xi. Similarly,

∆x = 1� max
0<x<1

nx j juh(x; yb)j � #bo ;
is a measure of the width of the numerical boundary layer at y = yb. We will use these
quantities to specify the accuracy of the discrete solutions. In particular, for Problem 1, letxi = 1=2 (so that we are measuring crosswind smear at the midpoint of the internal layer),
and let #i = 10�3. For this problem with the choices of parameters via (7), (15)–(16), (26),
and (29), the accuracy of the layer is restricted by the mesh size, i.e., ∆x = h for all h and
discretizations considered (see Figure 3). That is, this numerical boundary layer provides no
useful information. Therefore, we restrict our attention to the internal layer for this problem.
For any discretization, we can then find the largest mesh parameter h such that ∆y � 0:2,
and then examine the cost of solving each problem to within this specified accuracy.4 For
Problem 2, we use both criteria with xi = 0; #i = 10�2; yb = 0:2; #b = 10�2.

Figure 6 plots the width of crosswind smear in Problem 1 for various mesh sizes. These
results indicate that solutions obtained from the nonlinear shock capturing discretizations
exhibit considerably less smearing than for the linear schemes, and that MSD/CD is the most
effective among the linear strategies.

The required mesh sizes for various choices of " and both benchmark problems are shown
in Table 7. These results indicate that when " is small, the nonlinear discretizations require
considerably less resolution to achieve accuracy. (Note that the mesh sizes in Table 7 are not
increasing in a regular manner as " increases; we believe this is due to discontinuities in this
dependence, as evidenced by the nonsmooth curves in Figure 6.) Now, identification of the
cost of solving each discrete problem on the mesh determined by the entries of Table 7 gives
an indication of the costs to compute solutions of similar accuracy. Here, we have observed
that the stopping criteria for the iterative solvers used in Section 6.1 are too stringent, in the
sense that the accuracy requirements used here are satisfied for less accurate discrete solutions.
Therefore, in these tests, the stopping criteria are

4 Computations with fine meshes indicate that the true layers are actually much narrower than those quantities,
so that we are examining numerical effects here. See Figure 6. The choice ∆y = 0:2 was determined from the
value of ∆y for SC on a 25 � 25 grid for Problem 1 with " = 10�6.
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FIG. 6. Crosswind smear width (∆y) when mesh is refined for Problem 1 with " = 10�6; � = 10o and#i = 10�3.

TABLE 7
The required mesh sizes h when setting ∆y � 0:2 at xi = 0:5 in Problem 1, and ∆y � 0:2 at xi = 0 and

∆x � 0:1 at yj = 0:1 in Problem 2.

Discretization" SD SD/CD MSD/CD SC SC/CD

Pb. 1

10�6

10�5

10�4

10�3

1/102
1/90
1/66
1/30

1/90
1/86
1/86
1/87

1/55
1/55
1/51
1/51

1/25
1/34
1/35
1/30

1/30
1/31
1/30
1/35

Pb. 2

10�6

10�5

10�4

10�3

<1/110
<1/110

1/60
1/25

1/90
1/90
1/90

<1/110

1/75
1/65
1/65
1/86

1/21
1/25
1/25
1/20

1/30
1/30
1/30
1/24

1. the accuracy requirements8><>: ∆y(xi) � 0:2 for Problem 1

∆y(xi) � 0:2;∆x(yb) � 0:1 for Problem 2

2. decrease in the residual norm [25, p. 146]8><>: kb�Aukk � �a + �rkbk for the linear discretizationskF(uk)k � �a + �rkbk for the nonlinear discretizations,

where �a = �r = 0:1h2. The latter criterion ensures that the discrete solution achieves
accuracy comparable to the truncation error of the discretization, and it is less stringent than
that used in the previous section. We find the second criterion takes longer to be satisfied.
We then solved each problem using a “good” solution algorithm, as determined by the results
of the previous section; that is, we restrict our attention to the block incomplete factorization
preconditioner IB1. The results of these tests are shown in Tables 8 and 9. The results indicate
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that when " is small, despite the fact that the nonlinear discretizations use fewer mesh points,
the overall solution costs are higher because of slow convergence of the solution algorithms.
These results also demonstrate the robustness and stability of the MSD/CD discretization over
a variety of values of ". The solution costs for SD discretization are large for small ", although
this method is effective for larger values of ".

TABLE 8
The required iterations (GMRES steps) when setting ∆y � 0:2 at xi = 0:5 in Problem 1, ∆y = 0:2 at xi = 0

and ∆x = 0:1 at yb = 0:1 in Problem 2. “(.)” refers to numbers of nonlinear function evaluations.

Discretization" SD SD/CD MSD/CD SC SC/CD

Pb. 1

10�6

10�5

10�4

10�3

18
18
14
5

7
11
10
5

6
5
5
5

21 (54)
23 (107)
21 (102)
11 (54)

23 (56)
18 (74)
17 (94)
13 (65)

Pb. 2

10�6

10�5

10�4

10�3

31
23
14
7

11
11
10
14

5
5
5
9

66 (83)
58 (85)

166 (220)
14 (28)

63 (90)
67 (94)
55 (82)
7 (16)

TABLE 9
The required operations (Mflops) when setting ∆y = 0:2 at xi = 0:5 in Problem 1, ∆y = 0:2 at xi = 0 and

∆x = 0:1 at yb = 0:1 in Problem 2.

Discretization" SD SD/CD MSD/CD SC SC/CD

Pb. 1

10�6

10�5

10�4

10�3

8.03
4.46
1.57
0.15

1.96
1.27
1.27
1.30

0.53
0.51
0.44
0.51

3.08
8.49
8.35
3.68

5.62
6.94
6.51
6.90

Pb. 2

10�6

10�5

10�4

10�3

>84.7
>26.8
4.02
0.30

6.70
6.70
5.98

>13.56

1.97
1.48
1.48
4.82

17.7
26.0
14.1
4.17

45.0
26.8
23.1
4.83
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