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1. Introduction. Consider the two—dimensional convection—diffusion equation

(@D —elu+ -V = f inQ,
2 u = ¢ onoQ,

where § = (31, 82) isaflow velocity field, ¢ isadiffusion or viscosity coefficient, and f, ¢
are given functions. Our concern in this paper is the efficient solution of discrete versions
of this problem by iterative methods, with emphasis on the effect of discretization strategy
on the overall cost of achieving a specified accuracy. We are particularly interested in cases
where the solution contains steep gradients, i.e. boundary layers or internal layers.

In such cases, it is known that standard discretization techniques such as Galerkin finite
elements yield inaccurate oscillatory solutions [18], [29, p. 259]. Various approaches for
handling this problem, based on the addition of a judicious amount of upwinding, have
been proposed. They include the streamline diffusion method [20] and variants that contain
additional crosswind diffusion[23] and shock—capturing terms[8, 21, 38]. Thesestrategiesall
in some way attempt to enhance the coercivity of the standard Galerkin discretization and are
referred to as stabilized discretizations. These modified discretizations change the properties
of the algebraic systems being solved, and therefore in all likehood they will affect the cost
of solving these systems. The latter (shock—capturing) techniques are noteworthy in that the
added diffusive term depends on the unknown solution, leading to anonlinear discrete system
even though the original problemislinear.

In this paper, we make a comparison of the cost effectiveness of a collection of such
discretization strategies, for solving a set of benchmark problems of the form (1)—(2). In
identifying cost effectiveness, our aims are twofold:

1. To compare and contrast the different discretization strategies in their capability to

compute accurate solutions of benchmark problems;

2. Toidentify efficient solution algorithmsfor each discretization.
For solution a gorithms, we use preconditioned Kryl ov subspace methods, including Newton—
Krylov variants of these ideas to handle nonlinear algebraic systems. Our results indicate
that the nonlinear shock—capturing discretizationsyiel ds significantly more accurate solutions
than linear stabilization methods. However, the cost of solving the nonlinear systems also
tends to be high. Although linear stabilizations require finer grids than nonlinear ones to
achieve comparable accuracy, the overall solution costs of using linear discretizations (which
include components of both streamline and crosswind diffusion) are lower.

The contents of the rest of the paper are as follows. In Section 2, we describe the linear
stabilized finite element discretizations of (1)—(2) that we consider, and in Section 3, we
describe the nonlinear discretizations. In Section 4, we briefly describe the Krylov subspace
methods that we use to solve the discrete problems, and in Section 5, we describe some
preconditioners used to speed convergence. |n Section 6, we examinethe results of numerical
experiments on the benchmark problems.

2. Linear stabilized discretizations. In this section we describe the three linear sta-
bilized discretizations of the problem (1)—«2) that we consider. For simplicity, we assume
homogeneous Dirichlet boundary conditions on al boundaries; the ideas considered here
generalize in a straightforward manner to other boundary conditions. Let (-, -) denote the
usual scalar L2 inner product. Theweak formulation of (1)—(2) isthen: find v € H3(Q) such
that

B,(u,v) = (f,v) fordlve HHQ),
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where
By(u,v) = e(Vu, Vo) + (ug,v)

andvg = -V denotesthederivativeinthestreamlinedirection. Let 7;, denoteatriangulation
of Q and 7, = {r,}. We will restrict our attention to low order finite element spaces on 7;,.
In particular, let

V0 ={v|v € Pi(m),Vr, € Ty, v iscontinuousat thenodesand v = 0on9Q},

where P1(7;,) isthe space of either linear or bilinear functions defined on .

2.1. Streamline diffusion method. The streamline diffusion method (SD) is defined
[22, p. 185] as: find u” € V0 such that

© By(u" v)=F, YveV,
where B4(-, -) isthe bilinear form

(4) Bsd(uhvv)
©) F,

Bg(uh,v)—l— 65(ug,v5)
(f7 ?J) + 65(f7 vﬁ)v

On a uniform grid with mesh parameter » for which the mesh Péclet number P, = % is
greater than 1, the parameter 6, isgiven by

(6) 8y = wsh

where w, is a fixed positive constant.! In practice, when using SD to solve problems with
characteristic internal and boundary layers, the choice of w, isimportant. Fischer, Ramage,
Silvester and Wathen [16] show that if ¢ isthe angle of flow to the horizontal, the choice

) o0 = 57 (5 loosel)

is a good one with respect to both clustering of the spectrum of the discrete operator and
performance of the GMRES iterative solution algorithm.

Under the assumption —V - 3 > dp for nonnegative constant dp, consider the energy
norm

do
8 I3y = el Vol Zzq) + &sllvsll7zq) + vl Vo€ Vi
Theform B, satisfies the coercivity condition
©) Bia(v,v) > ol

in which the lower bound is positive in the limit ¢ N\ 0. In particular, the finite element
discretization matrix has positive definite symmetric part and the discrete solution u* of (3)
isunique. If f € L2(Q) and u isthe strong solution, then Axelsson [1] and Navert [28] have

LIf 73, is not uniform or 3 isavariable, then let h represent the diameter of alocal element, and determine 6.
elementwise asin (6) (see[22, p. 186]).



shown that for a piecewise linear finite element space there is a constant ¢’ (independent of
h, 65 and ¢) such that

= wflaa < C (Y20 + 6Y/21) ula,

where|| - || and | - | denote the usual 72 norm and H ? seminorm respectively. It isalso shown
in[3] that if 6, = O(h),e < chand -V - 3 > do > Ofor positive constant do, then the error
for SD satisfies

(10) | — u"|| < CH¥2uly;

thisis shown without a duality argument or eliptic regularity.

2.2. Streamline—crosswind diffusion method. SD suffersfrom excessive overshooting
and undershooting of front following characteristics when discontinuities are present [21].
Johnson, Schatz and Wahlbin [23] introduced a modification of the SD discretization that
improvesits performance by adding artificial crosswind diffusion. The streamline—crosswind
diffusion method (SD/CD) as generalized by Lube[26] isas follows: find u € V0 such that

(11) Bsd/cd(uhvv) =F, Vve Vf?v
where
(12) Bsd/cd(uhv ?J) = Bsd(uhv ?J) + (gm - 5)(“27 voz)v

a = (—[32, #1) isthe crosswind vector and the coefficient of artificial crosswind diffusionis
defined by

e for e > h8/2
™) B32 fore < B3/2,

For thismethod with piecewise linear elements, pointwiseerror bounds of order O(h2|logh|)
have been obtained for special meshesin [40], where it is aso shown that the width of the
characteristic boundary layersandinterior layersal ong streamlinesareof order O(15/8log? h).
See adso [31, pp. 229ff.] for discussion of such results.

In our numerical experiments, we find that this method dramatically reduces the oscil-
lations of discrete solutions near boundary layers and internal layers, but there are problems
with smearing near sharp fronts.

2.3. Two—parameter streamline—crosswind diffusion scheme. In[35], weintroduced
atwo—parameter variant of the SD/CD discretization. Asin (12), we add crosswind diffusion
to the SD operator, producing a parameterized weak formulation (denoted M SD/CD)

(13) Bsa(u",v)=F, Yoe VP,
where
(14) Bmsd(uh, v) = Bsd(uh, v)+ 6C(ug, Vo).

The two parameters 6, (see (4)) and 6. determine the amount of streamline diffusion and
crosswind diffusion added to the system, respectively. For constant /31, 32, rather than being
free parameters, these are explicitly determined so that necessary conditions for uniform
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convergence in [ of " with respect to ¢ are satisfied; see [35], [37] for discussion of these
conditions. Thisleads to the values

15 5 h (133 coth 2 — 35 coth 22
( ) s W E ﬁz_ﬁz —&],
1 2
_h [132B;coth 2" — 333 coth 2
(16) 60 - W E ﬁz ﬁz —&,
1 M2

for bilinear elements. For variable flows or irregular quadrilatera grids, we can define loca
(to element) values of é; and ¢.. We follow the approach givenin [4]: on any element 7, let
(z,y,) denotethe element center, let 5. = 5(z,, y,), and let i, bethe diameter of 7;,. Then
these constant values are used to define the parameters in formulas (7), (15)—(16) in the loca
matrix computations associated with the element 7.

In [35], we have shown that the form B, ;4 satisfies the coercivity condition

Brsa(v,0) 2 el |Voll? 4 6slosl1® + bcllval|?, Yo € V3,

so the finite element matrix has positive definite symmetric part and the discrete solution of
(13) isunique. If «” isthe discrete solution obtained by MSD/CD on either bilinear or linear
elementsand 3 € W1>(Q) and either V- 3 = 0or —V - 3 > do > 0, for constant do, then
the discretization error satisfies

A7) Ju— s < C (Y2 + 8220 + 6220 + 67202 + 12 + 6. ) ula,

for constant C' > 0, where [|v]|2,., = £ [|Vo||2 + 6,|vs]|? + 8] vall2.

24. The algebraic systems. We identify some additiona properties of the algebraic
systems of equations obtained from the discretizations above. First, let

(18) Au = b,

denotethematrix equation obtained by any of SD, SD/CD or M SD/CD. Following thenotation
in [16], the coefficient matrix can be expressed as

Asgg = eH+S+6,U
Asijed = eH+S+ 00U+ (e —€)C
Amsda = eH+S+6U+6.C,

for SD, SD/CD, MSD/CD, respectively, where
Hi; = (Vo;, Vi), Si; = (8:-Vo;,0:), Ui ; = (3-V;,8-V;), Cij = (a-V;,a-V;),

and {@}55{”2 arethefiniteelement basisfunctions. If V- 3 = 0, thenfor each basisfunction
¢; having value 0 on the boundary, it follows from integration by parts that

that is, S is skew-symmetric. It is then easy to see that the symmetric parts of Ay, Asq/ca
and A,, ;4 are positive definite. For constant 5 and bilinear basis functions, the constituent
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9-point stencils are as follows:

21 1 _1
3 3 —3
108 1
H -3 3 ~3
1 _1 _1
3 3 —3
(19
b h h
B(—=B1+082) 362 (814 B2)
S: —461 0 Lo
—L(—BL—B2) —%B2 L(B1- Bo)
(20)
—B2-B2+3618,  [2-2p2 —B2—35—3061
6 3 6
U: —262+53 4(52+53) —262463
3 3 3
—32-(32-3p16,  B2-2p2 — 32— 32+36162
5 3 5
(21)

—B2-B3-30182 —2074B —pi-B5+30152
6 3 6

o

pi-263 A(BE+53) pi-263
3 3 3

—B2-B3+30182  —2054B5  —pi-B5-301f2
6 3 6
3. Nonlinear stabilized discretizations. In this section, we describe two nonlinear sta-
bilization strategies based on shock capturing, whaose discrete solutions display less over-
shooting and undershooting within numerical layers than those produced by the streamline
diffusion method.

3.1. Shock capturing. Hughes, Malet and Mizukami in [21] introduced a shock—
capturing finite element method (SC) which adds an extra discontinuity capturing term to
SD. Let 3 denote the projection of the flow field onto the gradient of the discrete solution
ul, that is,

B Vuh

The SC method for (1) is: find u" € V{§ such that

(22) By (u",v)=F, fordlve Vi,
where
(23) Bsc(uh,v) = Bsd(uh,v) + Bdc(uh,v),

(24)

oy
2
O
~~

=
\'ﬁ
~—

ll

(r(uh), seh)) - Vv)
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and r(u") = —eAu" + 3 - Vu" — fisthediscrete residua of (1). The shock capturing term
of (24) depends on the residual of discrete solution, and it tends to add diffusion in regions
where the gradient islarge, that is, near internal and boundary layers. However, because the
discontinuity capturing term depends on the discrete solution, the discrete agebraic system
derived from this strategy isnonlinear. In[21], é,, é5. are chosen by the following formulas:

let Py = W”' denote the mesh Péclet number for the vector 3 and let
h P
(25) 6 = y—, fory=-+omin (1, —) ,
3] 3
(26) 60 = max(0,6—4,), forf = 50— min (1 ﬂ)
|ﬁ|||

where vo = 1/2 for linear and bilinear elements. The values of é;, §,. of (25), and (26) are
determined locally in each element 7, using the element diameter /.. for & and the values of
f and ), at the element center.

Johnson, Szepessy and Hansbo [24] and Szepessy [39] have shown that the accuracy
of SC for conservation laws is of order of O(1%/2) for smooth solutions if piecewise linear
functions are used.

3.2. Shock capturing with crosswind dissipation. It may happen that for some u* ¢
V', thediscontinuity capturing term B,.(u”, u™) of (24) isnegative, so that negativenumerical
diffusion may be added to the system. An aternative that avoids thisdifficulty is as follows.
Galedo and Dutrado Carmo in [17] modified (24) using

(27) Bao(u"v) = (r(u"). 8,08, - Vo) = (6|8, PV, V),

where 3, = L V. For this choice, By(u”, u*) > O for all u € V{, and (27) is
identical to (24) when f = 0. Codina [8] refined this approach further by incorporating the
crosswind direction into the discontinuity capturing term. The resulting shock capturing with
crosswind dissipation method (SC/CD) is defined via (22)—(23) and

(28) BdC(uhvv) = (650|ﬁr|ugvva)'

Here, o isthe crosswind vector as defined in Section 2.2 and é,.|3,| is evaluated within each
element by setting

(29) 8,0 = ’}/Qh max{O, Co— 1/P||} if Vuh.;é 0
0 otherwise,

and Cg = 0.7 for both linear and bilinear elements.
For compl eteness, we show that SC/CD discretization satisfies an error bound like those
derived for SD in [1], [39], [40]. Assumethat the quantity |3, | satisfies

(30) q < 16, < ¢
for go, q1 > 0,andfor —V - 3 > dp > 0, let
1
(31) I0]13. = IV ol? + 65llosll? + qobscllvall® + QdoHsz-

Thefollowing result establishes the stability of B;. defined by (22)—23), (28).
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LEMMA 3.1. Thebilinear form B, satisfies
(32) Buolv,0) > o] forany v e V.

Proof. From (8), we have

1
Byo(0,0) > e[| Vo] + & os]|* + QdoHsz + Bice(v, ),
and from (28),
Bdc(vvv) Z qoéschaHZ-

Theresult follows from the definition (31). |

The error estimate showing for SC/CD is as follows. The proof isasin [35]. A similar
result for SC can befound in [24], [39].

THEOREM 3.2. Letu bethesolutionof (1)—(2) withg = O andu € H2(Q)N HY(Q). Let
B e Whe(Q)andeither V-3 =00r—V -3 > do > 0, for constant do, and let the residual
r(u”) satisfy (30), for constants qo, q1. If u” isthe discrete solution obtained by SC/CD, on
ather bilinear or linear elements, then there is a constant C' such that

(33) llu = w"llse < CR¥[ul2.

Proof. Let ¢ = u! — u, where «! isthe bilinear (or linear) interpolant of «. It follows
that

(34) 1K < eh®lula, [V < ehlulz
(35) Ichse < e (M2 + 8320 + 6220 + 1) |ul
(see[22, p. 176], [31, p. 232]). Setting p = u! — u” yields
(36) Il2. < Bae(n,n) = BuelC.1) + Biolu = u" ).

The quasi—orthogonality relation holds,
Bio(u —u",v) = Per(u,v) fordlve VY,
where Per(u,v) isthe truncation error
Per(u,v) = e(Du, b,v3).
But the Poincaré inequality leads to
(37) Bie(u—u", ) < 32| 0ullé32ng < e632ulz e

and

BulGon) = (V6. V) + u(Govie) + Baol o) = (Cons) = (V- 5y
If V- 3 = 0 (divergence free case), then

Bue(G,m) < el VN IVmll + 8liGsll Imal + abcllCalllimall + 1] l1msl
(M219¢) + 82201¢ll + 6 2a5 2 qallCall + 8572111) Wl
7
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If =V -3 > dp > 0, then

LV Bcna@ < clcl il < Il
and
Baol Con) < (Y2IVCI] + 61201 Call + 64205 2anl|Call + 670K + ¢CI) Nl e
Use (34) to get
(38) Bae(Cm) < ¢ (Y2h + 6320 + 67212 + 12 4 63120 [ulall ] e
Combining (36), (37) and (38) gives
Iillee < ¢ (Y20 + 632 4 874202 4 12 1 6420 [ulz.
Thus, using the triangleinequality and (35) — (36), it follows that

flu — uhmsc < llse + € se
< C (M2 4 612+ 67202 + b2 4 6Y2h) [ula.

Theresult follows by taking é,, 6. to be of magnitude O(h). il

3.3. Thealgebraic systems. The nonlinear discrete systems above can be expressed as
(39) F(u)=Aqu—>b+R(u)=0

where R(u) isthe nonlinear shock—capturing term derived from

Ry bse (T(Uh)aﬁn : V@) for SC
RZ(U ) B { bse (|ﬁr|u27a . V(bz) for SC/CD,

where " is the discrete solution. Note that the nonlinear discrete function F(u) is not
differentiable because it contains absol ute val ue and maximum functions. Thiswill influence
the convergence behavior of solution algorithmsfor these systems; see Section 4.2.

4. Solution algorithms. In this section, we briefly review some linear and nonlinear
solution a gorithms based on Krylov subspace methodsfor solving the systems obtained from
the discretized schemes of Sections 2-3.

4.1. GMRES method. For the linear problems (18), we use the generalized minimal
residual method (GMRES) developed by Saad and Schultz [32, 33]. Given an initia vaue
ug, let K;(A, ro) denote the Krylov subspace

(40) K;(A, 1) = span{ro, Aro, ..., Ai_lro} .

GMRES constructs u; € ug + K;(.A, 7o) whose residual norm is minimal. It constructs an
orthonormal basis for K;(.A, o) by the Arnoldi process, which can be viewed as a variant of
the Gram-Schmidt orthogonalization procedure. A statement of the algorithm is as follows:



Algorithm 2: GMRES
Choose ug, compute rg = b — Aug
Leti=0,p = [[roll2,vo = ro/p
While p does not satisfy the stopping criterion, do
The Arnoldi process/modified Gram-Schmidt orthogonalization:
w = Av,_1
Forj=1,....7
hi; = wij
w=w— h;;v;
hiy1i = |lw(]2
vip1 = w/hipay
Compute p = min,, H Ber — Hiyi
Enddo
w; = uo+ Viy;, for Vi=[vg,..., 0]

5 for ﬁZ = (hi,j) ,€e1 € R

4.2. TheNewton-GMRESalgorithm. Forthenonlinear system (39), weuseaNewton—
like iteration in which the system of equations to be solved at each Newton step is solved
approximately by a Krylov subspace method [5, 11, 14, 25]. We use Newton—GMRES as in
[11]. That is, for the system

(41) F(ug) + F'(ug)s, = 0,
we compute s, such that
(42) [ (wg) + F'(wn)sgll2 < nell F (up)ll2,

where a GMRES-like iteration is used to enforce the criterion (42). Moreover, rather than
use true GMRES of Algorithm 2, we approximate the matrix vector product by a directional
derivative[7]. Thatis

@3 () & Dy Flugv) = TLFTNZ Iy RO 00) 2 Riwe),

g g

In practice, most entries of R are zero, except where the discrete residua r(u) does not
vanish. Note that we are avoiding evaluation of the Jacobian for the nonlinear system, both
becauseit is not well-defined everywhere and because it is expensive.

The Newton—-GMRES algorithmis as follows:



Algorithm 4: Inexact Newton—-GMRES
Choose ug,y andletk =0, r = —F(up)
While ||F(uy)||2 does not satisfy the stopping criterion, do
Let k=k+ 1, p=||r||2, v1 = r/||r||2 and choose 7
While p > n||F(uy)l|2, do
Use GMRES asin Algorithm 3 with (43) for the matrix—vector product
Enddo
Let Au; = V3, after m GMRES steps
Letup =up_1+Aup, A=10=1—1; and evaluate]—"(uk)
While || 7 (ug)[l2 > (1 — 7o) [|F (we-1)||2, do
Chooser € (0,1)

A=vA,o=vp
u;, = u;_1 + AMu, and evaluate f(uk)
Enddo

Enddo

Thethirdwhileloopisfor backtracking and forces aminimal improvement in the solution
before a step is performed. For the forcing sequence {7}, we use the choice

-
44 :min{ mw,max( Cvi)},
0 " ! " 2wl
where
i LIS i€ 2
min (77maXv7||F(uk_1)||§) ’ if YMie1 < 0.1
(45) ne =

; F 2 .
mln{nmax,vmax (%,ng_l) } , if 777,3_1 > 0.1

for given nmax, 7. Thestrategy (45) istaken from Eisenstat and Walker [14] with modification
(44) dueto Kelley [25]. This prohibits the computation of an overly accurate linear solution
when uy, isfar from the solution. For the other parameters, we usey = 0.9, 77,4, = 1074, &
from [12], and choose v to minimize a quadratic polynomial function as suggested in[12, p.
126], [25, p. 142].

TaBLE 1
Operation counts (multiplications) for GMRES and Newton—-GMRESwith matrix of dimensionsNx N.

Cost at step £ for linear GMRES (k+3+1/k)N +NZ
Cost at k-th GMRES step of one inexact
Newton step without backtracking (k+a+ LN +F., +NZ

Let NZ denote the number of nonzero elementsin A, and let F.,, represent the required
operation counts for eval uating the shock capturing term R (u”). Here, NZ is approximately
9N for the matrix of dimensionsNxN, and F.,, is only counted where V" # 0. A summary
of operation counts for GMRES and inexact Newton—-GMRES is shown in Table 1.

5. Preconditioning. Convergence of Krylov subspace methods can be significantly en-
hanced using preconditioners. In this section, we outline the preconditioning strategies we
use. Because we are solving problems with large Reynolds numbers, we restrict our attention
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to easy-to-implement preconditioners of algebraic type derived from relaxation methods and
incompl ete factorization. (See [10], [30], for examples of alternative approaches based on
multigrid.)

We consider six preconditioning strategies, for problems with an underlying rectangul ar
grid. Thefirst two of these could be implemented efficiently on parallel computers; the latter
four take some account of the orientation of flow in the problem.

1. Horizontal line Jacobi (HJ). Let the grid points be ordered in a natural left-to-right,
bottom-to-top ordering. Then the coefficient matrix has form

(46) A=D+L+U,

where D is atridiagona matrix representing the connections within each equation
in the horizontal direction, and £ and ¢/ are strictly lower and upper triangular,
respectively. The horizontal line Jacobi preconditioneris M = D.

X X X X X X
& & & X ® X
X X X X X X

(a) horizontal ordering (b) vertical ordering

FiG. 1. Grid points used for line Jacobi preconditionings.

2. Vertical line Jacobi (VJ). Alternatively, if the grid points are ordered first from
bottom-to-top and then from left to right, this corresponds to a permutation of A4,

(47) PAPT =Dy + Ly + Uy

and the vertical line Jacobi preconditioner is M = P7Dy P. This preconditioning
can be implemented efficiently without explicit use of the permutation.
Symbolic representations of the line Jacobi operators are shown in Fig. 1.

X X X ® & X

& & & & ® X

& & & & ® X
(a) horizontal ordering (b) vertical ordering

FIG. 2. Grid points used for line Gauss—Seidel preconditionings.

3. Horizontal line Gauss-Seidel (HGS). The preconditionerisdefinedby M = D — L,
where D, £ are asin (46).

4. Vertical line Gauss-Seidel (VGS). Thepreconditioner isdefined by M = PT(Dy —
Ly )P, where Dy, Ly areasin (47).

The line Gauss-Seidel preconditioners are represented symbolically in Figure 2.

5. Incomplete block factorization (1B1). If there are n horizonta grid lines, then the
coefficient matrix has the form

A= [Ai7]]1§i,j§n :
11



Theincomplete block factorization of Concus, Golub and Meurant [9] is
M=X+L)XNX+U).

Here
X = blockdiag[ X7, ..., X,]

is defined by the recurrence below, where [-](*) denotes the matrix with half—
bandwidith p.

X1=A11
Fore=1.2,....,n—1,do

Y; = [X;]®)

Xiv1 = Aiprir1 — [Air1 Yo A i) ®),
Enddo

Since A isapositivereal matrix, the sequence matrices { X; }, {Y; } remain positive
real and nonsingular, for sufficient large p (see [3]). In our numerica tests, we let
p = 1 for simplicity.

. Incomplete block factorization 2 (IB;). In thisvariant of incomplete factorization,
due to Axelsson [2], the factors are expressed in term of the inverse of the block
diagond, i.e.,

M = (Y—1+£) Y (Y—1+u) :
where
Y = blockdiag[Y1, ..., Y,]
is defined as above.

TABLE 2
Operation counts (flops) for preconditionerswith matrix of dimensions Nx N.

VJ HJ VGS HGS 1B, 1B,
Peprocessing | o\ o 2N 2N 31N 3IN
cost per step

Substitutions | 3N 3N 6N 6N 12N 12N

The operation counts for these preconditioners are shown in Table 2. The first line of
the table reflects the cost of factorization (for example, of the tridiagonal matrix D in Jacobi
preconditioning), assuming no pivoting isneeded. Under thisassumption, the preconditioners
all have essentially the same sparsity requirements as the coefficient matrix.

For thelinear discretizations of Section 2, we apply the preconditioning on the right, and

AM Y =0, 4= Mu,

where M is the preconditioning matrix. For the nonlinear problems, we precondition by
replacing the directional derivative in the direction of v; with D, F(u; ./\/l_lvi), and define
the correction to be

Aug = ./\/l_lvkyk.
12



We take as preconditioners for the nonlinear iteration approximations to the streamline dif-
fusion operator A,; these approximations are determined using the six approaches listed
above.

6. Numerical experiments. In this section, we compare the performance of the dis-
cretization strategies of Sections 2-3 and the solution al gorithms of Sections 4-5 for solving a
set of benchmark problems. All experiments use bilinear shape functions on square elements
onauniform N x N element grid with » = 1/N, and they were performed with MATLAB
Version 4.2c on a SUN SPARC-20 workstation. All discretizationswere employed with 2 x 2
Gauss quadrature. The coefficient 6, = w,h of the streamline diffusion term for both SD and
SD/CD was chosen using (7). We use ug = O asinitia guess for solving all linear systems
of equationsand ug = u,, for al nonlinear systems of equations where u,, isthe solution of
the discrete problem on the given grid obtained from SD discreti zation.?

We present two types of results. First, we examine the behavior, i.e., iteration counts and
operation counts, of various solution a gorithmsfor a series of choices of parameters and mesh
sizes, without regard to quality of solution. Thisgivesageneral ideaof the costs of solvingthe
discrete problems, but it ignores the fact that certain discretizations such as shock—capturing
may produce more accurate solutionson agiven mesh. In a second set of tests, we attempt to
factor solution quality into our assessment. We define criteria to measure sol ution accuracy,
use these criteria to identify mesh sizes for which each discretization achieves a specified
accuracy, and then use “good” choices of agorithms (determined by thefirst set of results) to
assess the effectiveness of the discretizations.

6.1. Benchmark problems. We consider two benchmark problems.

Problem 1: Characteristic and downstream boundary layers. Thisproblem wasfirst
consideredin[20] for studyingadownstream boundary layer and acharacteristicinterna layer
that propagates along the characteristics when inflow boundary conditions are discontinuous.
Thevelocity field 3 isgiven by (cos#é, sind), and the boundary values are as follows:

1 ifO<y<1l/2,z=00ry=0,0<2<1
u = .
0 otherwise.

The reduced problem (i.e., where e = 0in (1)) has discontinuous solution

"y 1 y<%x+%
0 y>%x—|—%.

For ¢ > 0, thereis an internal layer of width O(,/c) across the characteristic y = %x + 3
and a boundary layer of width O(¢) at = = 1[13]. Figure 3 depicts the three-dimensional
structure and contour plots of the numerical solutions obtained by the six methods tested, for
e =10"%h = 1/20and 3 = (cos10°,sin10°). Thethree-dimensional plotsare rotated 110°
to give aclearer picture of the layers.

Problem 2: Variable flow field. For our second benchmark problem, we consider a
variant of the*| AHR/CEGB” workshop problem [36] in common usefor testing discretization
strategies (see eg. [19], [27]). The domainisthe rectangular region

Q={(z,y)| —1<z<1 0<y<1},

2 We also tried up = 0 as an initial guess for solving the nonlinear systems of equations and found that this
requires more Newton steps and more operation counts than those using u.q. The costs of generating u.q are
included in all performance assessments.
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(e) SC/CD

Fic. 3. Numerical solutions and contours for Problem1 with e = 1075, & = 1/20 and 4 = 10°.

and the velocity field is

g =(2y(1- xz), —2z(1- yz))

Theinflow boundary istheinterval {(z,0)| — 1 < z < 0}, and Dirichlet conditions specified
there represent an inlet temperature which is convected in a circular flow to the outflow
boundary {(z,0)|0< z < 1}, where natural boundary conditions

Jdu(z,0)
dan

are assigned. Dirichlet boundary conditions are given on the remainder of 0Q. Thereisa
discontinuity in theinlet profile

=0, for0<z<1

0 —1<z<—05
(48) u(z,0) = { 1 —05<z<0.

together with Dirichlet conditionsu = Oatz = —1, v = Oat y = 1and thevaueu = 1 (a
hot wall) at = = 1 asin [27]; the discontinuity introduces a thin boundary layer at the right
boundary. Representative pictures of the three-dimensional structure and contour plots of the

14



(e) SC/CD

FiG. 4. Numerical solutions and contoursfor Problem 2, second variant withe = 10~® and » = 1/20.

numerical solutions obtained by the six methods tested, for ¢ = 108and h = 1/20, are
shown in Figure 4.

Consideration of Figures 3 and 4 gives a qualitative picture of the effectiveness of the
six discretization strategies. In particular, SD without additional stabilization yields solutions
with oscillations near internal layers. Linear crosswind diffusion diminishes (but does not
eliminate) these overshoots and undershoots, but it also leads to excessive smearing. The
parameterized M SD/CD method issomewhat more effective (lesssmearing) inthisregard than
SD/CD. The nonlinear discretizations, especialy SC, yield the qualitatively best solutions,
with considerably less oscillation than pure SD and less smearing of fronts than the linear
crosswind diffusion schemes.

6.2. Computational resultsfor selected example problems. We first examine the be-
havior of various discretizations and solution agorithms on a fixed set of meshes. In these
tests, the stopping criterion was

16— Augll2 < 7[|]l2,
for al linear problems, and

17 (up)ll2 < 7 [|b]]2
15



for nonlinear problems, where 7, = 10~°. Tables 3 and 4 show the iteration counts needed by
GMRESfor the three linear discretizations of Section 2. In all cases, we permit a maximum

TABLE 3
Iterations of GMRESfor Problem1 using SD, SD/CD, MSD/CD to discretize with various meshes, ¢ = 10-©
and 6§ = 10°.

Preconditioner

h | Discretization | | HJ VJ HGS VGS 1IB; 1By
SD 33 27 14 9 7 6 9
116 SD/CD 21 19 14 7 4 3 4
MSD/CD 2 23 10 5 5 4 6
SD 58 49 21 15 9 8 16
1/32 SD/CD 39 37 19 8 4 4 5
MSD/CD 40 41 13 5 5 5 10

SD 100 89 33 23 13 12 30
1/64 SD/CD 72 73 26 8 5 5 10
MSD/CD 74 75 22 6 5 6 14

TABLE 4
Iterations of GMRESfor Problem?2 using SD, SD/CD, MSD/CD to discretizewith variousmeshes, ¢ = 106,
Resultsmarked “ (-)*” did not satisfy stopping tolerance after 200 iterations.

Preconditioner
h | Discretization | HJ VJ HGS VGS IB; 1By
SD 88 42 46 22 16 9 17
1/16 SD/CD 65 34 33 18 9 6 10
MSD/CD 66 28 27 17 6 5 14
SD 158 68 67 39 22 12 29
1/32 SD/CD 115 5 55 32 12 7 14
MSD/CD 119 46 43 32 6 5 20
SD (200 110 9% 72 27 17 53
1/64 SD/CD (200 88 80 58 15 9 21
MSD/CD (200 81 77 64 6 5 35

of 200 GMRES steps. Theresultsindicate that the differences in the algebrai c systems caused
by the introduction of artificial diffusion do in fact influence the performance of iterative
algorithms. In particular, the extra (crosswind) diffusion included in SD/CD and MSD/CD
leadsto linear systemsthat in every case require fewer iterationsto solvethan those produced
by pure streamline diffusion. We attribute this to the enhanced coercivity produced by
crosswind diffusion. It isaso clear that preconditioning significantly enhances convergence
speed. Among the preconditioners considered, VGS and IB; are most effective. For both
problems, these strategies correspond most closely to “flow following” computations.® The
line Jacobi methods are largely ineffective.

Figure 5 expands on these results by plotting the residual norm [|b — Auy || against
multiplications, for severa choices of the angle of the flow for Problem 1 with MSD/CD
discretization. Here, we see that the genera trends observed for 8 = 10° carry over. We have

% Inthe case of 1By, thisis true for the forward substitution involving (X + 7).
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FiG. 5. Convergence behavior of GMRES for Problems 1 — 2 with & = 1/64, various ¢, ¢, and MSD/CD
discretization.
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also observed similar trends for different (larger) choice of ¢, and for different mesh sizes.
Tables 5 and 6 show the performance of the inexact Newton—-GM RES algorithm for the

nonlinear discretizations of Section 4. For the GMRES computations, we allow a maximum

of 50 stepsand then restart.  Some of the trends displayed here are similar to those observed

TABLES
Summary of results for shock capturing discretization for Problem 1 with various meshes, ¢ = 10~° and
# = 10°. NS, GN and FE refer to numbers of Newton steps, GMRES steps and function evaluations, respectively.
Resultsmarked “ (-)*” failed during backtracking.

Preconditioner

h | Discretization I HJ VJ HGS VGS IB; IB;
NS 9 16 7 8 8 7 10

SC GS 83 97 37 37 42 29 42
FE 258 763 72 96 97 52 162

116 NS 7 8 8 6 7 7 7
SC/CD GS 51 69 35 23 31 30 36

FE | 134 212 115 49 79 77 9%
NS| (20 (20)* 17 8 8 8 O

sc GS| (145* (194 121 51 46 43 68
FE | (1717)* (2051)* 2269 163 134 133 274
1/32 NS| 8 9 9 8 8 7 10

SC/CD GS 105 125 52 37 42 29 42
FE 294 461 200 96 97 52 162

TABLE6
Summary of resultsfor shock capturing discretization for Problem?2 with various meshes, e = 107°. NS, GN
and FE refer to numbers of Newton steps, GMRES steps and function evaluations, respectively. Results marked
“(-)*" failed during backtracking.

Preconditioner

h | Discretization I HJ V3 HGS VGS IB; IB;
NS | 12 23 16 10 14 11 11
SC GS| 947 2558 1061 511 337 248 332
FE | 1035 2917 1228 567 467 316 400
116 NS| 9 14 14 12 9 9 8

SC/CD GS| 517 972 1038 583 107 142 163
FE | 539 1084 1135 663 145 190 190
NS | 22 24 33 25 19 14 15

SC GS | 5238 10345 4826 5738 863 555 1205
FE | 5571 5124 11310 6108 1128 672 1341
1/32 NS | 15 19 14 20 10 12 9

SC/CD GS | 2370 2438 1535 3165 202 324 376
FE | 2534 2686 1642 3418 255 411 418

for linear discretization: inclusion of crosswind—diffusion leadsto problemsthat are easier to
solve, and “flow following” preconditioners (VGS and IB;) tend to be most effective. It is
clear, however, that the nonlinear discretizations lead to much more difficult problems than
the linear ones, requiring many more GMRES steps to satisfy similar stopping criteria on
common meshes. We will include solution accuracy in our considerationsin the next section.
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We comment on the convergence rate of the Newton—-GMRES solver. As observed in
Section 4.4, the nonlinear function F(u) is not differentiable. In some tests with a stringent
forcing tolerance, , = 108, we observed alinear convergence rate and not the quadratic rate
achievable for smooth functions. This accounts for the relatively large number of Newton
steps required for solution. We tested severa other nonlinear solvers, including Broyden's
method [6], [12, p. 195] and integration of atransient problem to steady state using aforward
Euler method, and found them to be both slower and lessrobust (see [34]). We also note that
the nonlinearity in these problemsisdue exclusively to the (nondifferentiabl €) discretizations.
Cf. [15] for results with similar discontinuous discretizations applied to the Euler equations;
for this nonlinear problem, Newton's method converges more rapidly.

6.3. Solution quality. For both benchmark problems, the steep gradientsin both internal
layers and boundary layers correspond to changes in function valuesu ~ O and « ~ 1. We
can measure the width of the internal layer using

— mi hi .. . — hi .. _ 9. .
Yo = 02,'21{@/ [ (eiy) > i}, = o?fé‘l{y | (ziy) <1-9;}, forsmal v, >0,
That isAy = y, — y; isameasure of the width of the numerica internal layer and the effect
of crosswind smearing a = = x;. Similarly,

h
Av=1- max {x|[u" (2. 3)| < 9},
is a measure of the width of the numerical boundary layer at y = ¥,. We will use these
guantities to specify the accuracy of the discrete solutions. In particular, for Problem 1, let
x; = 1/2 (so that we are measuring crosswind smear at the midpoint of the interna layer),
and let ¥; = 103, For this problem with the choices of parameters via (7), (15)—<(16), (26),
and (29), the accuracy of the layer is restricted by the mesh size, i.e., Az = h for al » and
discretizations considered (see Figure 3). That is, this numerical boundary layer provides no
useful information. Therefore, we restrict our attention to the interna layer for this problem.
For any discretization, we can then find the largest mesh parameter & such that Ay < 0.2,
and then examine the cost of solving each problem to within this specified accuracy.* For
Problem 2, we use both criteriawith z; = 0,9; = 1072, y, = 0.2, 9, = 1072,

Figure 6 plotsthe width of crosswind smear in Problem 1 for various mesh sizes. These
results indicate that solutions obtained from the nonlinear shock capturing discretizations
exhibit considerably less smearing than for the linear schemes, and that M SD/CD isthe most
effective among the linear strategies.

The required mesh sizesfor various choices of ¢ and both benchmark problemsare shown
in Table 7. These results indicate that when ¢ is small, the nonlinear discretizations require
considerably less resolution to achieve accuracy. (Note that the mesh sizesin Table 7 are not
increasing in aregular manner as ¢ increases, we believe thisis due to discontinuitiesin this
dependence, as evidenced by the nonsmooth curvesin Figure 6.) Now, identification of the
cost of solving each discrete problem on the mesh determined by the entries of Table 7 gives
an indication of the costs to compute solutions of similar accuracy. Here, we have observed
that the stopping criteria for the iterative solvers used in Section 6.1 are too stringent, in the
sensethat theaccuracy requirementsused here are satisfied for less accurate discrete solutions.
Therefore, in these tests, the stopping criteria are

4 Computations with fine meshesindicate that the true layers are actually much narrower than those quantities,
so that we are examining numerical effects here. See Figure 6. The choice Ay = 0.2 was determined from the
value of Ay for SC on a25 x 25 grid for Problem 1 with e = 1075,
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FiG. 6. Crosswind smear width (Ay) when mesh is refined for Problem 1 with e = 1075 ¢ = 10° and

¥; = 1073,

The required mesh sizes k when setting Ay < 0.2 at z; = 0.5in Problem1, and Ay < 0.2at z; = 0 and

Az < 0.1laty; = 0.1in Problem2.

40 60 80

TABLE 7

100

Discretization
3 SD SD/CD  MSD/CD SC SC/CD
10°° 1/102 1/90 1/55 1/25 1/30
Pb. 1 10-° 1/90 1/86 1/55 1/34 1/31
) 10~4 1/66 1/86 1/51 1/35 1/30
103 1/30 1/87 1/51 1/30 1/35
10 <1/110 1/90 175 1/21 1/30
P, 2 10-° <1/110 1/90 1/65 1/25 1/30
) 104 1/60 1/90 1/65 1/25 1/30
103 1/25 <1/110 1/86 1/20 1/24
1. the accuracy requirements
Dy(z;) < 0.2 for Problem 1

Ay(z;) < 0.2,Az(yy) < 0.1 for Problem 2

2. decrease in theresidua norm [25, p. 146]

16— Aug|| < 74 + 7[|b]]

[F Cup)ll < 7o + 710]]

where 7, = 7, = 0.1h2. The latter criterion ensures that the discrete solution achieves
accuracy comparable to the truncation error of the discretization, and it is less stringent than
that used in the previous section. We find the second criterion takes longer to be satisfied.
We then solved each problem using a“good” solution agorithm, as determined by the results
of the previous section; that is, we restrict our attention to the block incomplete factorization
preconditioner IB;. Theresults of thesetestsare shownin Tables8 and 9. Theresultsindicate

for the linear discretizations

for the nonlinear discretizations,
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that when ¢ is small, despite thefact that the nonlinear discretizations use fewer mesh points,
the overall solution costs are higher because of slow convergence of the solution agorithms.
These resultsal so demonstrate the robustness and stability of the M SD/CD di scretization over
avariety of valuesof ¢. The solutioncostsfor SD discretization arelarge for small ¢, although
thismethod is effective for larger values of ¢.

TABLE 8
Therequirediterations (GMRES steps) when setting Ay < 0.2atz; = 0.5inProblem1,Ay = 0.2atz; =0
andAz = 0.1aty, = 0.1in Problem?2. “(.)" refersto numbersof nonlinear function evaluations.

Discretization
€ SD SD/CD MSD/CD SC SC/CD
10°° 18 7 6 21 (54) 23 (56)
Pb. 1 10> 18 11 5 23 (107) 18 (74)
) 104 14 10 5 21 (102) 17 (94)
103 5 5 5 11 (54) 13 (65)
10°° 31 11 5 66 (83) 63 (90)
P, 2 10~° 23 11 5 58 (85) 67 (94)
) 104 14 10 5 166 (220) 55 (82)
103 7 14 9 14 (28) 7 (16)

TABLE9
The required operations (Mflops) when setting Ay = 0.2at z; = 0.5in Problem1, Ay = 0.2 at z; = Oand
Az = 0.1laty, = 0.1inProblem2.

Discretization
€ SD SD/CD  MSD/CD SC SC/CD
10°° 8.03 1.96 0.53 3.08 5.62
Pb. 1 10~° 4.46 1.27 0.51 8.49 6.94
) 104 1.57 1.27 0.44 835 6.51
103 0.15 1.30 0.51 3.68 6.90
10°° >84.7 6.70 1.97 17.7 45.0
P, 2 10°° >26.8 6.70 1.48 26.0 26.8
) 104 4.02 5.98 1.48 141 23.1
103 0.30 >13.56 4.82 417 4.83
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