
ABSTRACT

Title of dissertation: Enhancing Privacy
in Cryptographic Protocols

Ji Sun Shin, Doctor of Philosophy, 2009

Dissertation directed by: Professor Virgil D. Gligor
Department of Electrical and Computer Eng.
Professor A. Udaya Shankar
Department of Computer Science

For the past three decades, a wide variety of cryptographic protocols have been

proposed to solve secure communication problems even in the presence of adver-

saries. The range of this work varies from developing basic security primitives pro-

viding confidentiality and authenticity to solving more complex, application-specific

problems. However, when these protocols are deployed in practice, a significant

challenge is to ensure not just security but also privacy throughout these protocols’

lifetime. As computer-based devices are more widely used and the Internet is more

globally accessible, new types of applications and new types of privacy threats are

being introduced. In addition, user privacy (or equivalently, key privacy) is more

likely to be jeopardized in large-scale distributed applications because the absence

of a central authority complicates control over these applications.

In this dissertation, we consider three relevant cryptographic protocols facing

user privacy threats when deployed in practice. First, we consider matchmaking

protocols among strangers to enhance their privacy by introducing the “durability”

and “perfect forward privacy” properties. Second, we illustrate the fragility of for-

mal definitions with respect to password privacy in the context of password-based

authenticated key exchange (PAKE). In particular, we show that PAKE protocols

provably meeting the existing formal definitions do not achieve the expected level

of password privacy when deployed in the real world. We propose a new definition

for PAKE that is tightly connected to what is actually desired in practice and sug-

gest guidelines for realizing this definition. Finally, we answer to a specific privacy

question, namely whether privacy properties of symmetric-key encryption schemes

obtained by non-tight reduction proofs are retained in the real world. In particular,

we use the privacy notion of “multi-key hiding” property and show its non-tight

relation with the IND$-CPA property of symmetric-key schemes. We use the ex-

perimental result by Gligor et al. to show how a real attack breaks the “multi-key

hiding” property of IND$-CPA symmetric-key encryption schemes with high prob-

ability in practice. Finally, we identify schemes that satisfy the “multi-key hiding”

and enhance key privacy in the real world.

Enhancing Privacy in Cryptographic Protocols

by

Ji Sun Shin

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2009

Advisory Committee:
Professor Virgil D. Gligor, Chair/Advisor
Professor A. Udaya Shankar, Co-Advisor
Professor Donald Perlis
Professor Gang Qu
Professor Lawrence C. Washington

c© Copyright by
Ji Sun Shin

2009

Dedication

To my parents — my father, Nyun Shik and my mother, Soonja.

ii

Acknowledgments

I want to thank all the people who supported me during my life as a Ph.D.

student. First of all, I want to thank the committee members. I thank my advisor,

Virgil D. Gligor who patiently guided me and taught me what it is to be a true

researcher. I also want to thank A. Udaya Shankar for being my department advisor

during my program and for continuing on to be the committee chair. I thank

Lawrence C. Washington for introducing cryptography to me and for being the

Dean’s representative. I thank Donald Perlis for guiding and trusting me when I

was a teaching assistant for his courses. I thank Gang Qu for accepting to be a

committee member even though he is on sabbatical and was in China when I asked

him.

The work in this thesis was supported in part by US Army Research Labora-

tory and the UK Ministry of Defence under Agreement Number W911NF-06-3-0001

and by the US Army Research Office under Contract W911NF- 07-1-0287 at the

University of Maryland.1 I am grateful for their generosity.

I want to thank all of my friends and colleagues throughout my time as a Ph.D.

student. First, I want to thank Taekyoung Kwon who gave me an opportunity to

work with him on such an interesting problem. It was one of the most enjoyable

research experiences in my life. I thank Maryland research mates Chiu Yuen Koo,

1The views and conclusions contained in this thesis are those of the author and collaborators

and should not be interpreted as representing the official policies, either expressed or implied,

of the US Army Research Laboratory, US Army Research Office, the U.S. Government, the UK

Ministry of Defense, or the UK Government.

iii

Omer Horvitz, Ruggero Morselli, Adam Bender, Soo Bum Lee, Jaehwan Lee and

Gelareh Taban for supporting me and sharing with me so many important moments.

I also thank Carnegie Mellon University CyLab mates Bryan Parno, Hayan Lee and

Hyun Jin Kim for being friends to me, a short-time visitor from Maryland. I thank

all my Korean graduate friends, especially Hyun Young Song.

I thank my parents and my sister for all their support and endless love.

iv

Table of Contents

List of Figures vii

List of Abbreviations ix

1 Introduction 1
1.1 A New Privacy-Enhanced Matchmaking Protocol 2

1.1.1 Our Contributions . 5
1.2 Enhancing Password Privacy of Password-Based Authenticated Key

Exchange in the Real World . 7
1.2.1 Our Contributions . 10

1.3 Retaining Non-tightly Reduced Privacy Properties of Secure Encryp-
tion Schemes in the Real-World . 12
1.3.1 Our Contributions . 13

1.4 Thesis Organization . 15

2 Preliminaries 16
2.1 Notations . 16
2.2 The Adversarial Model . 16
2.3 Basic Primitives . 18
2.4 Password-based Authenticated Key Exchange (PAKE). 23

2.4.1 Previous Works . 23
2.4.2 Efficiency of PAKE . 24

3 A New Privacy-Enhanced Matchmaking Protocol 26
3.1 Outline of the Chapter . 26
3.2 Related Work . 26
3.3 Preliminaries and Assumptions . 29
3.4 Security of Privacy-Enhanced Matchmaking 30

3.4.1 Security Properties that Counter On-line Adversaries 33
3.4.2 Security Properties that Counter Off-line Adversaries 36

3.5 Protocol Design . 39
3.5.1 Relevant PAKE Security Properties 41
3.5.2 Generalizing Passwords as Low-entropy Secrets and Adding

Perfect Blindness . 45
3.5.3 Final Step of Building a Privacy-enhanced Matchmaking Pro-

tocol . 47
3.6 PAKE security implies forward security 52

4 Enhancing Password Privacy of Password-Based Authenticated Key Exchange
in the Real World 58
4.1 Outline of the Chapter . 58
4.2 Background of Our Attacks . 58
4.3 Delay-Based Attacks . 59

v

4.3.1 Counting Attack Queries: Login Requests or Failed Logins? . 60
4.3.2 Timeout-Delay Attack . 62
4.3.3 Synchronization-Delay Attack 67
4.3.4 Multi-Domain Attacks . 71

4.4 Security Definitions for PAKE Protocols 71
4.4.1 The Formal Definition . 72
4.4.2 A Concrete Security Definition 75

4.5 Analysis of the Delay-Based Attacks and Recommendations 77
4.5.1 Timeout-based Attacks . 77
4.5.2 Representation of Synchronization-based Attacks 80
4.5.3 Recommendations for Existing PAKE Protocols 81

4.5.3.1 Enhancement 1 . 81
4.5.3.2 Enhancement 2 . 83
4.5.3.3 Fully Concurrent PAKE in TLS 85

4.6 Conclusion . 85
4.7 Simple Experiments with Delay-Based Attacks 86

5 Retaining Non-tightly Reduced Privacy Properties of Secure Encryption Schemes
in the Real-World 90
5.1 Outline of the Chapter . 90
5.2 Security Properties of Encryption Schemes 90

5.2.1 Non-tight Reductions . 92
5.2.2 Security Properties Obtained by Tight and Non-Tight Re-

ductions . 95
5.3 Attacks against Secure Encryption Schemes 100

5.3.1 Overview of Attack Strategies 101
5.3.2 What Enables Network Attacks in Practice? 102
5.3.3 Vulnerability Examples: Nonce-based IND$-CPA Schemes . . 105

5.3.3.1 Key-Collision Attacks against EKRp-KPA/-PPA Se-
curity . 106

5.3.3.2 Breaking the EKRp-CPA property implies breaking
the KHp-CPA property 113

5.3.3.3 Examples of Secure Schemes that withstand Key-
Collision Attacks . 114

5.4 Related Work . 115
5.5 Proofs of Claims . 117

5.5.1 Proof of Claim 5.1 . 117
5.5.2 Proof of Claim 5.2 . 122

Bibliography 126

vi

List of Figures

1.1 List of Each Chapter Topic and Considered Privacy Properties. . . . 2

3.1 Overview of Our Security Properties and Attacks Countered 32

3.2 Transformations to obtain Privacy-enhanced Matchmaking π′′ from
PAKE π . 40

3.3 Compiler to be applied to PAKE protocol π to yield privacy-enhanced
matchmaking protocol π′′. 49

4.1 Login failures : Incorrect authentication vs. Time-out. 62

4.2 Timeout-delay attack against the JG protocol: a single protocol in-
stance. 63

4.3 Experimental results of timeout-delay attacks against two provably
secure PAKE protocols. (X-axis shows the different duration of time-
out ∆ in milliseconds, while y-axis shows the number of server au-
thentication messages that allow password-candidate verification by
an adversary.) . 66

4.4 Experimental results of synchronization-delay attacks against the KOY
protocol. (X-axis shows the delay in synchronization in milliseconds,
while y-axis shows the number of server authentication messages that
allow password-candidate verification by an adversary.) 68

4.5 Sets of instances representing login failures and online attacks. (r =
|R|, rh = |Rh|, qo = |Qo|, qco = |Qco|, and quo = |Quo |) 78

4.6 Enhancing PAKE protocol π with implicit authentication into a pro-
tocol π′′ secure against timeout-delay attacks. 82

4.7 Switching roles of client and server of protocol π to have a protocol
π′ secure against timeout-delay attacks. 83

4.8 The full handshake for PAKE-TLS ciphersuites in the full concurrency
model. 84

4.9 Expanded experimental results of concurrent attacks on provably se-
cure PAKEs. 87

4.10 Experiment of JG protocol. 88

vii

4.11 Experiment of PAK-Z+ protocol. 88

5.1 Scheme CTR1. The nonce space is Nonce={0, 1}l/2 [Rog04a]. 109

5.2 Scheme CTR2. The nonce space is Nonce={0, 1}l [Rog04a]. Unlike
CTR1, CTR2 encrypts the nonce before using it as a counter. This
scheme is similar to the XOR Scheme with Random Counters [Gli98],
which outputs (S,C) at encryption. 109

5.3 Scheme CBC2. The nonce space is Nonce={0, 1}l [Rog04a]. 112

viii

List of Abbreviations

PPT Probabilistic Polynomial-Time
pk public key
sk secret (private) key
Π pi
Σ sigma

PAKE Password-based Authenticated Key Exchange
MAC Message Authentication Code

SSL Secure Sockets Layer
TLS Transport Layer Security
IPsec Internet Protocol Security

KPA Known Plaintext Attack
PPA Predictable Plaintext Attack
CPA Chosen Plaintext Attack
CCA Chosen Ciphertext Attack

IND Indistinguishability
IND$ Random-String Indistinguishability
KR Key Recovery
KH Key Hiding
EKR Existential Key Recovery

CTR Counter
CBC Cipher Block Chaining

ix

Chapter 1

Introduction

Secure communication problems pose challenges when two (or more) parties

participate to complete predefined tasks in a certain desired secure way, even in the

presence of adversaries. For the past two decades, to solve secure communication

problems, cryptography has provided work by (1) establishing a concrete frame-

work to formally define the adversarial model and security model, (2) designing and

developing protocol constructions for the real world, and (3) guaranteeing these con-

structions satisfy the security model via rigorously driven proofs. The solutions pro-

vided by cryptography range from basic primitives to complex application-specific

problems; fundamental primitives include encryption schemes [GM84, NY90, RS91,

BDPR98, BDJR97, KY00, BHSV98, IL89, DDN00], message authentication codes

[BKR00] and digital signature schemes [GMR88, NY89, Rom90]. These primitives

form the base for more complex, application-specific problems such as password-

based authenticated key exchange [BPR00, CHK+05, GL03, GL01, KOY01, MPS00,

NV04] and on-line matchmaking [BG85, Mea86, ZN01].

Nevertheless, for those cryptographic protocols that are already developed

and currently deployed, it is still a challenging task to ensure not only security

but also privacy throughout the protocols’ lifetime. As computer-enhanced sys-

tems become ubiquitous and the Internet becomes more universally accessible, new

1

Chapter 3. Chapter 4. Chapter 5.
A New Privacy-Enhanced Enhancing Password Privacy Retaining Non-tightly Reduced

Matchmaking Protocol of PAKE in the Real World Privacy Properties of
Secure Encryption Schemes

in the Real-World

User Privacy and Password Privacy Symmetric-Key Privacy
Wish Privacy

Figure 1.1: List of Each Chapter Topic and Considered Privacy Properties.

advertising

types of applications and new types of privacy threats can be introduced. Moreover,

new Internet-enabled, computer-embedded systems may have a decentralized or dis-

tributed architecture. The absence of a single central authority complicates control

over system managements. The more systems are distributed, the more likely user

privacy (or equivalently, password privacy or secret key privacy) will be jeopardized.

In this dissertation, we consider three problems and in each we take a relevant

cryptographic protocol facing privacy threats, identify them and provide necessary

security enhancements. We describe our contributions in the next sections (also, see

Figure 1.1).

1.1 A New Privacy-Enhanced Matchmaking Protocol

The notion of on-line matchmaking was introduced by Baldwin and Gramlich

in 1985 [BG85] anticipating a now-common type of internet service: a job-referral

service matching a company that wants to hire an employee having certain char-

acteristics or “wishes” (e.g., skills, level of experience, salary level, credentials),

without advertising the job publicly, with an applicant who wants to find a new

2

job without revealing her/his plan to leave the current job. Currently, many other

internet services require different forms of on-line matchmaking capabilities; e.g.,

internet dating services. Further, applications of mobile ad-hoc networks, such as

dynamic discovery of peer nodes with identical characteristics (e.g., provenance,

configuration, capabilities, level of trust) may benefit from private matchmaking

capabilities.

Baldwin and Gramlich provided a solution for on-line matchmaking intended

to support (1) anonymity of users (i.e., protecting company and job seekers’ iden-

tities), (2) authentication of matches, and (3) joint notification to users only in the

event of a positive match (i.e., a job seeker’s identity is authenticated to the company

and vice-versa only when the job-seeker’s wishes match the company job require-

ments). Their solution required a trusted matchmaker who learned the identities of

the protocol users and their wishes was relied upon not to reveal them. Analysis of

the Baldwin-Gramlich protocol shows that their solution can be broken via a simple

message replacement attack (viz., Zhang and Needham’s attack [ZN01]) revealing

users’ identities and their desired characteristics to an adversary.

In 1986, Meadows introduced a correct protocol for on-line matchmaking that

is independent of an on-line trusted matchmaker [Mea86] beyond the initialization

step. Although Meadows’ solution provides privacy for the users’ credentials, it

does not aim at providing anonymity of protocol users, and hence cannot be used

for private matchmaking.

More recently, Zhang and Needham [ZN01] developed a simple protocol for on-

line matchmaking providing some degree of user anonymity and privacy of matching

3

wishes. Their protocol removes any direct interaction between users and requires

an untrusted on-line matchmaker that acts as a public bulletin-board which posts

encrypted user wishes for retrieval by all interested users. Specifically, a user U

hashes his/her wish w using a public hash function to generate an encryption key

K. Using this key, the user encrypts w and, separately, identity information and a

session key for future communication, and submits the two ciphertexts to the public

bulletin board for posting. Any user can download any pair of posted ciphertexts and

verify whether his/her wishes match the posted ones and, if so, can obtain the session

key for communicating with the matching partner. Although this simple protocol

satisfies the first two requirements of Baldwin and Gramlich, it does not support

joint notification of matches, since this property would require the (re)introduction

of trusted third-parties [ZN01].

The Zhang-Needham protocol faces two significant privacy challenges. First,

an adversary can launch an off-line dictionary attack to discover the identity of a

user who posted wishes on the public bulletin board. Because the wish space must

be relatively small to allow straightforward user specification of wishes and clear-cut

matches, an adversary can choose any set of possible wishes, hash them to produce

an encryption key, and then decrypt the pairs of posted ciphertexts [ZN01]. Thus,

exhaustive use of all possible wishes is guaranteed to uncover a matching wish and

the identities of the users posting it. Second, even if we make the (unrealistic)

assumption that user wishes have large entropy, it is sufficient for an adversary

to break the privacy of a posted wish to enable the compromise of all previous

protocol executions containing that wish. In other words, this protocol does not

4

provide forward privacy of users’ identities and their wishes.

1.1.1 Our Contributions

We define the goals of privacy-enhanced matchmaking protocols by augmenting

the original two requirements (i.e., anonymity of protocol users and authentication of

wish matches1) with new security goals, which appear to be fundamental to private

matchmaking. Our overall set of security goals comprises:

• authenticity of users and wish matches;

• privacy of users’ identities and of their wishes; in particular:

– anonymity of users and privacy of wish matches;

– privacy resistance to off-line dictionary attacks; and

– forward privacy of users’ identities and their wishes.

These security goals are fundamental to privacy-enhanced matchmaking (and

other similar) protocols. Authenticity is the basis for trust between users that

matched their wishes as it prevents impersonation of legitimate users. Lack of wish

privacy can lead to breaches of user privacy since wishes are typically specific to

classes of users (e.g., known specific skill sets and other user characteristics, such

as desired security clearances, can be linked with certain users and organizations).

Resistance to off-line dictionary attacks is also fundamental because, in practice,

1As pointed out by Zhang and Needham [ZN01], support of joint notification of users only in

the event of a positive match requires an on-line trusted authority, which we also want to avoid.

5

wish entropy is fairly low: the space of user wishes is rather limited and fairly

predictable thereby enabling potent off-line attacks. Finally, forward privacy is also

important due to the durability of privacy concerns: a breach of privacy in a current

protocol run should not cause the break of privacy of older runs (i.e., by analogy to

the basic notion of perfect forward security of key exchange protocols).

We also present a privacy-enhanced matchmaking protocol that provably coun-

ters any adversary that attempts to violate the privacy goals stated above. The

protocol is based on a very simple construction that is efficiently implemented using

a password-based authenticated key exchange (PAKE) protocol [BPR00, CHK+05,

GL03, GL01, KOY01, MPS00, NV04]. In addition, and as a side result of inde-

pendent theoretical interest, we show that for any user authentication problem in

which secrets are chosen from low entropy sets, two notions related to our last two

goals, namely security against off-line dictionary attacks and forward security in the

corruption model, are equivalent.2

A preliminary version of this work appeared previously [SG08].

2Since it is already known that forward security in the corruption model is stronger than

security against off-line dictionary attacks in the non-corruption model, we only need to show that

security definition of password-based authenticated key exchange in the non-corruption model

implies forward security in the corruption model (viz., Section 3.6).

6

1.2 Enhancing Password Privacy of Password-Based Authenticated

Key Exchange in the Real World

The introduction of formal definitions of security marked a turning point in

cryptographic-protocol analysis, and has proved to be extremely beneficial in prac-

tice. Formal definitions are useful in their own right: they force precise specification

of desired goals; enable comparisons between protocols meeting different notions of

security; and offer guidance as to what protocols are appropriate to achieve a desired

level of security when used as a building block of a larger system. Formal defini-

tions have also made possible rigorous mathematical proofs of protocol security,

and provide distributed system and network designers with increased confidence in

real-world protocols that can be proven secure in this manner.

What is sometimes not sufficiently appreciated, however, is that translating

from formal definitions of protocol security to real-world privacy guarantees can be

an extremely delicate exercise. Mismatches between formal definitions of protocol

security and real-world implementations often lead to unanticipated attacks and

potential privacy vulnerabilities. We illustrate the fragility of formal definitions

with respect to password privacy in the context of password-based authenticated key

exchange (PAKE).

Password-Based Key Exchange. Authentication is impossible without sharing

some information in advance. Perhaps the minimal such information that still pro-

vides a useful level of authentication is a short, easy-to-memorize password. Pro-

tocols for password-based authenticated key exchange (PAKE) allow two entities

7

who have shared a low-entropy password to ensure that they are communicating

with each other (that is, to perform mutual authentication), as well as to establish

a high-entropy (cryptographic) session key that can be used to encrypt and authen-

ticate their subsequent communication. Though password-based systems have their

drawbacks — their security is inherently limited and this is only exacerbated by

users’ poor choice of passwords — their convenience (e.g., no special devices need

to be carried by users) and ease of deployment (e.g., no public-key infrastructure to

support use of public key primitives needed) seem to ensure their widespread use for

the foreseeable future. Indeed, chances of large-scale deployment of PAKE protocols

are greatly enhanced by their recent IEEE standardization [IEE05] and proposed

use for Web applications within the SSL/TLS suite [ABC+06].

Definitions for PAKE protocols are somewhat atypical in that they must ex-

plicitly take into account the fact that an adversary can “break” any protocol with

“high” probability by either making a lucky guess of the correct password or by

performing an on-line dictionary attack in which it repeatedly attempts to imper-

sonate the client. (This is in contrast to typical cryptographic definitions which

require that an adversary’s probability of breaking some scheme be “negligible”.)

Informally, existing definitions take the following form. Let N denote the size of the

space from which passwords are chosen, and assume for simplicity that passwords

are chosen uniformly at random. Then a PAKE protocol is said to be “secure” if for

any Q and any (polynomial-time) adversary making at most Q login attempts, the

probability that the adversary succeeds in falsely authenticating as the client is at

most (negligibly better than) Q/N . In particular, this implies the desirable property

8

that off-line dictionary attacks – a major concern for PAKE security – succeed with

only negligible probability, and the best attack an adversary can launch is an on-line

dictionary attack.

The Problem with Existing Definitions. Our research shows that the existing,

widely-accepted formal definitions of security for PAKE protocols are inadequate in

that they do not match, nor do they provide any way to achieve, the level of security

desired in practice. Specifically, these definitions bound the security of a protocol

(formally, the probability of an adversary’s “breaking” the scheme) as a function

of the number of on-line attacks that occur, whereas in practice one would prefer

an absolute bound on the security of the protocol independent of the number of

on-line attempts. (Note that this implies some mechanism for limiting the number

of on-line attacks that an adversary can carry out.) The natural way to translate

from one to the other is to lock a user’s account once a pre-specified number Q∗ of

failed log-in attempts occur; indeed, this was suggested as the “obvious” approach

in several of the aforementioned works. In other words, to achieve security ε one

would set Q∗ = ε·N and refuse any login requests once Q∗ failed attempts have been

made on any given user’s account. We argue that this does not work for any PAKE

protocol implemented in large-scale networks, such as the Internet. Moreover, we

show that certain protocols fare worse than others in this regard.

Put differently, the fault is that the existing formal definitions are descriptive

rather than prescriptive; i.e., they tell us after the fact what security we can expect

when faced with an adversary who carries out a certain number of on-line attacks,

9

but do not provide any way of bounding the number of on-line attacks so as to

obtain a certain level of security.

1.2.1 Our Contributions

Overview of Our Attacks. In Chapter 4, we justify the claims made in the above

and show two general classes of attacks that enable an adversary to exceed Q∗ on-

line attacks even if user accounts are locked after Q∗ failed attempts. The first

attack, which we call a timeout-delay attack, applies to any PAKE protocol where

the server authenticates first. For any such scheme, we show that an adversary can

carry out password guesses without causing an explicit authentication failure by

simply aborting the protocol before sending its final message. Even if such “timed-

out” sessions are eventually recorded by the server as failed log-in attempts, the

(necessarily) long delay introduced before the failure is recorded allows an adversary

to test many more than Q∗ passwords. Thus, from a practical perspective, PAKE

protocols in which the client authenticates first should be preferred (even though

there is no difference vis-a-vis the formal definitions).

Our second attack, is a well-known synchronization-delay attack found in other

areas of password protection. This attack applies even to PAKE protocols where

the client authenticates first. Here, the attack relies on the fact that any real-world

PAKE implementation will be distributed across multiple servers. The reason for

this is that all server registries that store account/password information must be

replicated for reasons of availability and responsiveness (viz., the replication of the

10

Kerberos Key Distribution Center databases, as a typical well-known example).

Because of this, there will be a noticeable delay from the time the Q∗th failed login

attempt occurs and the time this information is propagated to all server replicas.

Once again, an adversary can exploit this delay to exceed the pre-specified bound

Q∗ on the number of on-line attacks tolerated.

Although, in practice, synchronization-delay attacks have had limited impact

in the past,3 we nevertheless present these attacks for three reasons. First, formal

definitions are supposed to capture adversary bounds precisely, rather than ap-

proximately, and independently of an adversary’s attack strategy; these definitions

would be inadequate if they applied only to some attack strategies, but not others.

Second, if these attacks unaccounted, formal PAKE definitions may become incon-

sistent with practical use of these protocols. Third, synchronization-delay attacks

could be amplified in large-scale PAKE deployment to the point of non-compliance

with published password standards and guidelines (discussed in Chapter 4).

The effects of these two attacks can be amplified by launching multi-domain

attacks, in which a user has accounts with several distinct domains and he uses

3In practice, synchronization-delay attacks have been ignored for three reasons: (1) synchroniza-

tion delays are unlikely to be the weakest link in password authentication (e.g., password guesses

against multiple accounts may be more damaging); (2) their attack effectiveness, measured as the

difference between between bound Q∗ and password guesses allowed by synchronization delays, is

relatively small when compared with other attacks (viz., time-delay attacks in Section 4.3.2), and

hence more difficult to exploit on a large scale in practice; and (3) simple, obvious synchronization

solutions do not work well in large-scale Internet deployment (explained in Section 4.3.3 below).

Hence, the cost-effectiveness case for eliminating such delays may not be compelling.

11

the same (or related) password in all accounts. Unless synchronized cross-domain

enforcement of failed-login bounds can be negotiated – a virtually impossible propo-

sition for both administrative and technical reasons (discussed in Section 4.3.4) the

effective number of queries the adversary can use reaches nQ, for n domains, far

exceeding any reasonable security bound Q∗ even for relatively small n (e.g., half a

dozen domains).

Summary of Contributions. In Chapter 4, we specifically describe the attacks

outlined above, and provide analytical and experimental evidence backing up our

claims. Faced with a significant gap between what existing definitions guarantee

and what is actually desired, we propose a new definition of security. The goal

of the new definition is to specify a precise bound on the probability of success

of the adversary, rather than to simply analyze the behavior of the protocol as a

function of the number of queries the adversary makes. We analyze our attacks in

light of the new definition, and provide privacy enhancements for realizing the new

definition. Finally, we show how to apply these privacy enhancements in particular

to the PAKE protocols currently proposed for TLS [ABC+06].

1.3 Retaining Non-tightly Reduced Privacy Properties of Secure En-

cryption Schemes in the Real-World

The asymptotic approach to proving the security of encryption schemes has

two remarkable benefits: (1) unprecedented precision in defining goals and capa-

bilities of adversary attacks and countermeasures, and (2) generality of security

12

definitions and proofs; i.e., independence of application area, adversary strategies

and technology advances in computing and communications. In short, the undeni-

able appeal of asymptotic security definitions and reduction proofs lies in their long-

lasting value. Detailed accounts of these benefits are found in a recent book by Katz

and Lindell [KL08] and in earlier work by Bellare and Rogaway [Bel98, Rog04b].

However, it is generally known that the asymptotic approach fails to account

for practical attacks enabled by non-tight proof results, since it does not distinguish

between tight and non-tight proofs. In contrast, the concrete security approach

[BDJR97, Bel98] recognizes this difference between proof results and prescribes pre-

cise bounds on the non-tightness factors (defined in Chapter 5). However, in Chap-

ter 5, we show that these bounds can be circumvented in the context of symmetric

key encryption schemes.

1.3.1 Our Contributions

In Chapter 5, we show that privacy properties of symmetric-key encryption

schemes that are obtained by non-tight reduction proofs are not retained in the real

world when those schemes are implemented with standard block ciphers. In partic-

ular, we illustrate this by introducing “multi-key hiding” property of symmetric-key

encryption schemes. Intuitively, key hiding property captures the key privacy con-

cern: ciphertexts produced by encryption with the same key cannot be distinguished

from those produced by encryption with different keys. The “multi-key hiding”

property defined in Chapter 5, allows the adversary to more than 2 oracles where

13

as the ordinary “key hiding” property allows only 2 oracles (of encryptions with

the same key or encryptions with different keys). This property was parenthetically

suggested by Abadi and Rogaway [AR00] who observed that it is indistinguishable

from the ordinary “key hiding” property, from the point of view of adversary power;

i.e., an adversary gains no extra power by accessing more than 2 oracles instead

of just two. We show that these observations while correct in the asymptotic and

formal-methods approach, do not hold in practice.

To show this, we prove the non-tight reduction of showing that IND$-CPA

implies “multi-key hiding” property. Then, we use the notion of network adversary

initially introduced by Gligor et al. [Gli08, GPS09] to conduct key-collision attacks

and show that “multi-key hiding” property of IND$-CPA secure encryption scheme

is broken in practice, while the ordinary “key hiding” property of the scheme with-

stands the attacks. To realize the key-collision attacks, the network adversary takes

advantage of (1) the lack of a “security parameter” to strengthen the security of a

real-world encryption scheme during much of its lifetime, and the longevity of stan-

dard block-cipher parameters (e.g., the lifetimes of two-key triple DES and AES-128

[BBB+07] are measured in decades rather than a few years); and (2) the continu-

ous availability of multiple encryption oracles and attack nodes in the Internet at

essentially zero marginal cost during the lifetime of block-cipher parameters. The

salient feature of the network attacks is that the adversary amplifies its advantage

in attacking these schemes quadratically by increasing the amount of (commercially

available) computational resources only linearly, while the unit cost of the dominant

resource (storage) continues drop by 37 - 50% every year [GH03, Gil08].

14

Our results also show that the adversary goals of “existential key recovery”

(e.g., some arbitrary key can be recovered) and “key recovery” (e.g., a specific

challenge key can be recovered) are not equivalent. In the real world this means

that, while all US national and international standard encryption schemes (modes)

[Dwo01] are secure against “key recovery” attacks, some (e.g., nonce-based counter

mode and CBC implementations) fail to exhibit both the “existential key recov-

ery” security and “multi-key hiding” (e.g., no bit of a set of keys may be leaked)

property, whenever these modes are implemented with standard block ciphers (i.e.,

two-key 3DES, AES-128). We illustrate several practical encryption schemes that

are vulnerable to our network-adversary attacks. This suggests that either these

schemes replace vulnerable US standards or the 128 bit AES key size be increased

in the near future. We also illustrate some symmetric-key encryption schemes with-

standing key-collision attacks, present common characteristics of such schemes and

suggest them as solutions enhancing key privacy in the real-world.

A preliminary version of this work appeared previously [GPS09].

1.4 Thesis Organization

In Chapter 2, we introduce notations used throughout the dissertation, the

adversarial model for defining security and privacy models, and basic primitives for

constructing solutions. We also discuss the notion of password-based authenticated

key exchange (PAKE), previous works related to PAKE and the efficiency of existing

solutions. Our main work is contained in Chapters 3, 4 and 5 as described earlier.

15

Chapter 2

Preliminaries

2.1 Notations

Here we introduce some notations that are commonly used throughout the

paper. Let |x| denote the length of string x. If S is a set, x
r← S means x is an

element chosen uniformly at random from S. Also, x1, ..., xm
r← S means x1

r←

S;x2
r← S; ...;xm

r← S. {0, 1}∗ is the set of all finite, binary strings and {0, 1}n

is the set of all binary strings of length n. MAPs(X, Y) is the set of all functions

mapping from set X to set Y .

PPT stands for probabilistic polynomial-time. A function ε is negligible if for

all positive t, there exists an nt such that ε(n) < 1/nt for all n > nt.

2.2 The Adversarial Model

For our problems considering secure communications, we do not assume any

security for communication channels; in particular, we do not assume any confiden-

tiality or authenticity for communication channels. We assume that the adversary

is given complete control over communication channels; more specifically, the ad-

versary is able to :

• eavesdrop on messages between parties.

16

• modify, insert or drop messages, in particular, the adversary may change the

content of messages or change the source of messages (e.g., impersonate the

source).

• simply deliver messages (i.e., forward messages).

Our adversarial model over communication channels is referred to “man-in-the-

middle” adversaries.

For the adversary attacking encryption schemes, the adversary is given cipher-

texts and may try to reveal plaintexts, or discover secret keys. No matter what the

adversary’s strategies and goals are, the adversary can have several different levels

of capabilities and can be categorized as follows [WT02]:

1. Ciphertext-only attack: this type of adversary is only able to obtain cipher-

texts.

2. Predictable plaintext attack (PPA): in this case, the adversary is given a copy

of a ciphertext and a set of candidate plaintexts such that the ciphertext is an

encryption of one of the candidate plaintexts. Therefore, the adversary, given

a ciphertext C, may not know exactly what is the corresponding plaintext, but

can predict possible candidates of plaintexts corresponding to the ciphertext C.

A good example is weather. If the adversary knows that a given ciphertext is

an encryption of a weather description, the adversary can predict the plaintext

might be “sunny”, “rainy”, “cloudy”, or something else depending on the word

format of terminologies used to describe the weather.

17

3. Known plaintext attack (KPA): in this case, the adversary can obtain a ci-

phertext and the corresponding plaintext. For example, the adversary knows

that the letter always starts with “Dear Officer” and obtains its corresponding

ciphertext [Bel97, HS93].

4. Chosen plaintext attack (CPA): in this case, the adversary is allowed to access

to the encryption oracle for a limited amount of time, without the secret key

being revealed. The adversary can submit a plaintext chosen by herself and

obtain the corresponding ciphertext.

5. Chosen ciphertext attack (CCA): in this case, the adversary is allowed to

access the decryption oracle; the adversary submits a ciphertext chosen by

herself and obtains the corresponding plaintext.

2.3 Basic Primitives

We now review definitions of basic cryptographic primitives for constructing

the solutions in this dissertation.

Pseudorandom Functions [GGM86]. Informally, pseudorandom function family

is a set of functions, each of which is identified by a random key. Given the key,

it is easy to compute the function. However, without the key, the function looks

like a random function even when you can observe the input-output behavior of the

function.

Definition 2.1. Let F : {0, 1}∗ × D → R be a family of functions. Then, F is a

18

pseudorandom function family if for any PPT algorithm A, the following is negligible

in n:

∣∣∣Pr
[
k

r← {0, 1}n : AFk(·) = 1
]
− Pr

[
g

r← MAPs(D,R) : Ag(·)(1n) = 1
]∣∣∣

where MAPs(D,R) denotes the set of functions mapping from D to R.

Symmetric-Key Encryption [GM84, BDJR97]. Intuitively, an encryption

scheme provides confidentiality of a message when a party A sends the message

to another party B. In particular, anyone E except B cannot reveal the contents of

the message even if E is eavesdropping on the communications between A and B.

A symmetric-key encryption scheme is an encryption scheme in which two parties

(A and B) share a private key k in advance. Below, we define a symmetric encryp-

tion scheme and provide its security definitions under different levels of adversarial

capabilities.

Definition 2.2. A symmetric encryption scheme Π = (K, E ,D) consists of three

PPT algorithms such that:

• The randomized key generation algorithm K takes a security parameter 1n as

input and returns a key k. We denote it by k
r← K(n).

• The encryption algorithm E takes a security parameter 1n, a message m ∈

{0, 1}∗ and a key k as input and outputs a ciphertext C. We denote it by

C ← Ek(m).

• The deterministic decryption algorithmD takes a key and a ciphertext C{0, 1}∗

and returns a string m ∈ {0, 1}∗ ∪ {⊥}. We denote it by m← Dk(C).

19

The scheme is required to have correctness, satisfying that for any key k
r←

K(1k), if C ← Ek(m) and m′ ← Dk(C), then m′ = m (i.e., Dk(Ek(m)) = m) for any

message m ∈ {0, 1}∗.

Definition 2.3. The symmetric encryption scheme Π = (K, E ,D) has indistin-

guishability under a chosen-plaintext attack (or, is IND-CPA secure) if for every

PPT adversary A, the following is negligible in n:∣∣∣∣∣∣∣∣Pr

 k
r← K(1n); (m0,m1)← AEk(·)(1n);

b← {0, 1}, C ← Ek(mb)

: AEk(·)(mb) = b

− 1/2

∣∣∣∣∣∣∣∣
Definition 2.4. The symmetric encryption scheme Π = (K, E ,D) has indistin-

guishability under a chosen-ciphertext attack (or, is IND-CCA secure) if for every

PPT adversary A, the following is negligible in n:∣∣∣∣∣∣∣∣Pr

 k
r← K(1n); (m0,m1)← AEk(·),Dk(·)(1n);

b← {0, 1}, C ← Ek(mb)

: AEk(·),D∗k(·)(mb) = b

− 1/2

∣∣∣∣∣∣∣∣
where D∗k(·) is the decryption oracle Dk(·) except answering to a query C.

Message Authentication Code (MAC) [BKR00]. Message authenticate codes

allow two parties, sharing a private key k, to communicate each other in an authen-

ticated way. In particular, in a communication, a party sends a tag along with a

message so that the other party can verify the validity of the message by using the

tag and their sharing key k. For this, it is required that the adversary who obtains

many tags corresponding to her choice of messages is not able to forge a valid tag

for a new message. Below, we provide a definition of message authentication codes

and its security definition.

20

Definition 2.5. A message authentication code (MAC) Π = (K,S,V) consists of

three PPT algorithms such that:

• The randomized key generation algorithm K takes a security parameter 1n as

input and returns a key k. We denote it by k
r← K(n).

• The authentication algorithm S takes 1n, the key k and message m ∈ {0, 1}∗

and outputs a tag τ ∈ {0, 1}∗. We denote it by τ ← Sk(m).

• The deterministic verification algorithm V takes a message m, a tag τ and the

key k and outputs a bit. We denote it by b← Vk(m, τ).

The scheme is required to be correct satisfying for every k
r← K(1n), if τ ←

Sk(m), then Vk(m, τ) = 1 holds for all m ∈ {0, 1}∗.

Definition 2.6. A message authentication code Π = (K,S,V) is secure under adap-

tive chosen message attack if for any PPT algorithm A, the following is negligible

in n:

Pr[k ← K(1n); (m, τ)← ASk(·)(1n) : Vk(m, τ) = 1]

where m was not queried to the oracle Sk(·).

Signature Scheme [GMR88]. A signature scheme provides authenticity of mes-

sages. Informally, a message sender A is given a pair of keys (pk, sk) and makes pk

public and keeps sk in secret. A signs a signature σ of a message m with its secret

key sk. Then, anyone who is given message m, its associated signature σ and A’s

public key pk, can verify if m is the message signed by A. For this, it is required

that no one except A can forge a new signature that is valid under A’s public key pk.

21

It should hold even when the adversary is allowed to obtain many valid signatures

corresponding to her choice of messages. Below, we provide a formal definition of

signature schemes and its security definition of unforgeability under adaptive chosen

message attacks.

Definition 2.7. A signature scheme Σ = (K,S,V) consists of three PPT algorithms

such that:

• The randomized key generation algorithm K takes a security parameter 1n as

input and returns the public key pk and the secret key sk. We denote it by

(pk, sk)
r← K(1n).

• The signing algorithm S takes 1n, the secret key sk, and a message m ∈ {0, 1}∗

and outputs a signature σ ∈ {0, 1}∗. We denote it by σ ← Ssk(m).

• The deterministic verification algorithm V takes a public key pk, a message

m and a signature σ and outputs a bit. We denote it by b← Vpk(m,σ).

The scheme is required to have the correctness property satisfying that for

every (pk, sk)
r← K(1n), if σ ← Ssk(m), then Vpk(m,σ) = 1 holds for any m ∈

{0, 1}∗.

Definition 2.8. The signature scheme Σ = (K,S,V) is existentially unforgeable

under adaptive chosen message attacks if for any PPT algorithm A, the following is

negligible in n:

Pr[(pk, sk)← K(1n); (m,σ)← ASsk(·)(1n, pk) : Vpk(m,σ) = 1]

where m was not queried to the oracle Ssk(·).

22

2.4 Password-based Authenticated Key Exchange (PAKE).

Password-based authenticated key exchange allows two parties holding only

short, human-memorable passwords to establish a secure session key of high-entropy

when they share the same password. Such a key exchange is authenticated in a sense

that it is secure against man-in-the-middle adversaries. While on-line attackers can

guess a password with non-negligible probability, prevention of on-line attackers is

straightforward with other mechanism (e.g., access block after consecutive log-in

failures), it is not easy to prevent off-line attacker from enumerating all possible

passwords of small space into execution transcripts. Therefore, essentially, major

security property of password-based authenticated key exchange is security against

off-line dictionary attackers. The formal definition of PAKE is provided in Sec-

tion 4.4.1.

2.4.1 Previous Works

Clearly, “standard” shared-key authentication protocols (e.g., CHAP) are not

suitable for PAKE since such protocols allow a passive eavesdropper who monitors

even a single execution to mount an off-line dictionary attack and recover a low-

entropy password. Lomas et al. [LGSN89a, GLNS93] (see also [HK99, Boy99])

gave the first password-based protocols resistant to such attacks, but in a “hybrid”

model where a client and server share a password and the client additionally stores

the server’s public key. The seminal work of Bellovin and Merritt [BM92, BM93]

was the first to consider a pure, password-only model and to propose protocols for

23

this setting. Formal definitions for this problem were given by [BPR00, BMP00,

GL06b, CHK+05], and by now numerous provably-secure protocols are known in

both the random oracle [BPR00, BMP00, MPS00, Mac02, BCP03] and the so-called

“standard” [GL06b, KOY01, JG04, CHK+05, GL06a, Gen08] cryptographic models.

2.4.2 Efficiency of PAKE

Although very efficient PAKE constructions exist [BPR00, BMP00], they rely

on the idealized assumptions such as the ideal cipher and random oracle model.

Those solutions only provide heuristic security when the random oracle is replaced

by a public function such as SHA-1.

The KOY protocol by Katz et al. [KOY01] and the GL protocol by Gennaro and

Lindell — a generalization of the KOY protocol [GL03] — are PAKE constructions

in the common reference string model and do not require any idealized assumptions.

According to the efficiency analyze in [KOY01], each user only needs roughly

7-8 exponentiation computations. The cost is around 4 times greater than standard

Diffie-Hellman key exchange that provides no authentication (i.e., no security against

man-in-the middle attackers).

Very recently, Gennaro [Gen08] provided ways of improving the efficiency of

the KOY protocol and the GL protocol. They pointed out that both of the KOY and

the GL protocols use one-time signatures to provide authentication (against man-

in-the-middle attack) which increases the bandwidth requirement for the message

transmission. They improve the efficiency of those protocols by replacing one-time

24

signatures with faster and shorter message authentication codes. Consequently,

assuming a security parameter of 128, such an improvement saves as much as 12

Kbytes of bandwidth; while one-time signature schemes require around 12 Kbytes

key and signature transmission, only 256 bits transmission is necessary for the MAC.

25

Chapter 3

A New Privacy-Enhanced Matchmaking Protocol

3.1 Outline of the Chapter

In Section 3.2 we explore a variety of related problems and explain the dif-

ferences between these problems and ours. In particular, we argue that solutions

to these related problems are insufficient to solve our problem. In Section 3.3 we

introduce preliminaries and assumptions. In Section 3.4 we present security prop-

erties necessary to provide user privacy and wish privacy. Then, enhanced with

these security properties, we give a new definition for matchmaking protocols. In

Section 3.5 we construct an efficient solution satisfying our security definition.

3.2 Related Work

Secret Handshakes. The problem of secret handshakes is directly related to our

problem. Secret handshakes allow two parties, which are suspicious about each

other’s affiliation, to securely recognize each other only if they have the same af-

filiation [BDS+03, CJT04, TX06]. When compared to our problem, one can easily

see secret handshakes is a specific instance of a privacy-enhanced matchmaking pro-

tocol (in other words, the latter is more general problem than the former). All

secret handshake problems studied to date assume that each party uses classical

26

cryptographic (i.e., high-entropy) keys that are distributed by a group manager

prior to any execution of the protocol. In contrast, the use of low-entropy secrets

(i.e., wishes) in our problem is an important practical requirement. Hence, in any

secret-handshake setting where members in a same group are sharing a low-entropy

password, our problem can provide a practical solution. Moreover, a secret hand-

shake implemented from our solution can enjoy different flavors of communications

as follows:

• with full anonymity: users communicate each other as long as they are con-

vinced that they belong to a same group without ever being traced (i.e., iden-

tified), or

• with privacy-preserving entity authentication: once users are convinced they

belong to the same group, they identify each other prior to further communi-

cation. or

• with traceability and anonymity: users can be traced by the group manager

while full anonymity is preserved among users.1

However, existing solutions of secret handshakes do not fit into our problem as we

cannot assume the use of high-entropy secrets, which is a fundamental requirement

of all secret-handshake solutions.

1If we equip our protocol with a group signature scheme, we can implement a secret handshake

protocol based on low-entropy passwords that fully satisfies the security properties of the extant

notion of secret handshakes [BDS+03, CJT04, TX06].

27

Set Intersection. Set intersection allows two or more parties, each having a set of

elements, to securely learn the intersection of their sets without revealing elements

not in the intersection [KS04, FNP04]. The major difference between our problem

and set intersection is that set intersection is not necessarily an exact matching.

Therefore, by engaging in an interaction with an honest user on an input of a set

including all possible elements, an adversary can determine the honest user’s input

with probability one. Therefore, set interaction cannot provide a secure solution for

our problem.

Trust-Negotiation. Trust negotiation allows a client to access a server’s resources

without having to reveal all the client’s credentials and disclose the complete server’s

access policy, provided by the server’s policy is satisfied [BS00, WSJ00, SWY01,

YWS01, YW03, WL04]. Within an appropriate setting, our problem can be applied

to each step of gradual negotiation to see whether each of a client’s credentials ex-

actly satisfies each access check of the server’s policy. Furthermore, our solution can

enhance client and server privacy so that their identities are not revealed until the

last step of trust-negotiation is satisfied. Their identities are also kept anonymous

to passive eavesdroppers. However, trust-negotiation solutions do not consider user

(i.e., clients and servers) anonymity.

Other Privacy-Preserving Problems. Several problems have been introduced in the

privacy-preserving area of access control. Hidden credentials [HBStKO03, BHS04],

oblivious envelopes [LDB03, NT06, LL05, LL06] and policy-based encryptions [BM05,

BMC06] are relevant examples. However, they focus mainly on the privacy of en-

28

tity’s attributes, for example, affiliation, policy, etc., and do not consider all users’

privacy concerns. In particular, all problems assume that users know each other’s

identity, while in our problem users’ identities are not revealed unless they have a

common (i.e., a matching) wish. For similar reasons, it is doubtful whether generic

two-party secure computation protocols [Yao86, GMW87, Gol04] can provide a solu-

tion of our problem; i.e., to date, all generic two-party secure computation protocols

are carried out in settings where identities of two parties are known to each other

(Nevertheless, the possibility of applying generic secure two-party computation pro-

tocols to solve anonymous communication problems represents an interesting open

research problem).

3.3 Preliminaries and Assumptions

Anonymous Communication Channels. Like most other privacy-preserving proto-

cols, privacy-enhanced matchmaking requires the use of anonymous communication

channels. Use of ordinary communication channels is inadequate because anonymity

and hence identity privacy (e.g., linking user actions) can be simply broken via eaves-

dropping on communication messages. Among other measures, anonymous commu-

nication relies on pseudonym-naming – a feature commonly provided by most pri-

vacy protocols. In practice, low-latency anonymous channels exist (e.g., Tor, JAP

[DMS04, HFW]).

Untrusted Matchmaker. A matchmaker publishes description of matchmaking,

roles and wishes. Also, the matchmaker binds a pseudonym to a user’s address of

29

anonymous communication channel and signs, distributes and revokes pseudonyms.

However, the matchmaker is not trusted with the privacy of users. We assume that

the matchmaker functions correctly.

Protocol Users and Secret Wishes. Let U be a fixed set of users who may participate

in protocol executions. Although U is public information, we assume that users start

communicating without knowing any information about each other’s real identity

but only know pseudonyms which are generated from a set of pseudonyms I. Let

W be a pre-defined set of publicly known wishes. We assume that a wish is a low-

entropy secret and hence that 1/|W| is small but non-negligible. For simplicity and

clarity, we assume that a user chooses a wish uniformly at random. However, even

when any arbitrary relation exists between wishes and users, and such relations are

known to the adversary, security definitions can be adjusted appropriately as long

as the following assumption holds: for each wish w ∈ W , there exist at least two

users U1 and U2 such that they are equally likely to use wish w as an input.

3.4 Security of Privacy-Enhanced Matchmaking

We separate security requirements of our protocol into two classes namely those

addressing on-line and off-line adversaries. Their goals and the means of countering

them are different. While on-line attacks that try to break the protocol through

“on-line” interaction have a non-negligible probability of success in discovering low-

entropy secrets, their handling is provided by attack detection and prevention of

further protocol executions (discussed in Section 3.4.1 below). In contrast, off-

30

line adversaries are substantially more challenging since such adversaries’ off-line

attacks can neither be detected nor blocked. For example, off-line adversaries can

launch dictionary attacks by trying all possible wishes fromW on information that is

obtained via passive eavesdropping. Hence, by separating the two types of adversary,

we can focus primarily on handling the more potent off-line adversaries. 2

Definitions. An honest user is allowed to execute an unlimited number of protocol

instances. Further, a user has a unique pseudonym for each execution (i.e, for each

session). Therefore, without loss of generality, we assume that a pseudonym assigned

to each execution represents the instance of the execution. Although not specifically

stated, an instance of a user execution of our protocol is always performed with a new

user pseudonym (Also, we use the notions of sessions and instances interchangeably).

An input of the protocol consists of a user wish, a user pseudonym, (real) user

identity, and a partner’s pseudonym. For simplicity, we say a user U uses a wish

w if U takes w as an input secret of the protocol. We say a user A accepts a user

B if A outputs B at the end of the protocol execution, and it means that A has

recognized and authenticated B as a matching-wish partner. We say users A and B

interact when they are informed of each other’s pseudonym and engage in a protocol

execution.

2We choose to model our security requirements using game conditions [DDM+06] rather than

realizing ideal functionality. Our choice is motivated by the fact: (1) sometimes, additional message

steps are necessary to realize ideal functionality [Can01, CK01, CHK+05] and (2) sometimes,

it is impossible to realize ideal functionality without extra set-up assumptions [Can01, CKL03,

DDM+06].

31

Security Properties

• Impersonation resistance counters on-line adversary attacks against user

authentication.

• Detector resistance counters on-line adversary attacks against user and wish

privacy, and match authentication (i.e., unless a match occurs, privacy of users’

identities and their wishes are preserved).

• Security properties that counter off-line adversary attacks, namely matching-

result privacy, user unlinkability and wish unlinkability provide privacy resistance

to off-line dictionary attacks and forward privacy of users’ identities and their

wishes. In particular, wish unlinkability captures forward privacy of wishes and

user unlinkability captures forward privacy of users’ identities.

Figure 3.1: Overview of Our Security Properties and Attacks Countered

We say that an adversary A is given an interaction with an honest user U who

is running the protocol on input w, when (1) an instance of U is initiated with inputs

of wish w, its pseudonym I, its real identity U and A’s (i.e., partner’s) pseudonym

I ′ and I is known to A; and further, (2) whenever upon receiving a message from

A, the next message of the instance is computed according to the protocol and sent

to A.

Concrete Security Properties. The security goals for private matchmaking are

supported by several concrete security properties that counter both on-line and off-

line adversary attacks. The concrete properties are summarized in Figure 3.1 and

defined below.

32

3.4.1 Security Properties that Counter On-line Adversaries

An on-line adversary can use a private matchmaking protocol to detect the

identity of a honest user by guessing correctly a user’s wishes with small but non-

negligible probability (e.g., the probability of a correct guess can be lowered, but

only to a limited degree, by extending the size of the wish space). By requiring that

the adversary present his/her non-anonymous credentials to an honest user after any

wish match, the protocol ensures that the user can detect an unwarranted match (or

an on-line attack); i.e., a match whereby the adversary cannot present valid identity

and wish credentials. Upon detection of an on-line attack, the user can request

the revocation of the adversary’s (anonymous) credentials from the matchmaker.

Using a signed transcript of the adversary-user interaction, the matchmaker requests

revocation from the certification authority which issued the adversary’s anonymous

credentials. A valid user revocation request, would cause the matchmaker to deny

issue of a valid (signed) pseudonym to the adversary since the adversary could

no longer produce the necessary (anonymous) credentials to the matchmaker after

revocation. Thus, further, on-line, anonymous wish guessing by an adversary is

blocked. Of course, an honest user would not initiate the matchmaking protocol

unless the adversary (or any honest user) produces a matchmaker-signed pseudonym.

Limiting an on-line adversary’s protocol execution after an unwarranted wish

match requires an initial user interaction with a trusted certification authority. We

use an anonymous credential system (e.g., [Cha85, CL01]) so that the user (or

adversary) can prove the validity of his/her credentials without revealing his/her

33

identity to the matchmaker. This ensures that user privacy is protected with respect

to the matchmaker. All the matchmaker knows is the identity of a certification

authority it trusts. Upon receiving a valid anonymous credential from the user,

the matchmaker produces a signed pseudonym for a single protocol execution. The

matchmaker also keeps a log of the user’s proof transcripts (T) along with the

corresponding pseudonym (p).

Anonymous credentials are revoked as follows: if the matchmaker receives a

report (i.e., signed transcript by a reporter and encrypted with CA’s public key)

that a user with a pseudonym p guessed a wish but lacked appropriate credentials,

the matchmaker finds the proof-transcript T corresponding to the pseudonym p and

forwards the report along with T to the certification authority with a signed request

to revoke the credential of the user identified in T . The certification authority

verifies the validity of the report (e.g., verifies the signatures) and revokes the user’s

credentials. Note that at no point of the revocation protocol does the matchmaker

discover the identities of the user and adversary.

In the above revocation scenario, we did not distinguish between an adversary’s

non-anonymous identity and wish credentials required by an honest user upon a

wish match. In the rest of this chapter, we assume that the adversary is only

required to produce a valid non-anonymous identity credential. An attack in which

an adversary fails to produce such a credential to an honest user after a match

would be significantly more likely than one in which the adversary produces a valid

non-anonymous identity and invalid non-anonymous wish credentials. Nevertheless,

we note that requiring verification of the adversary’s (or any user’s) non-anonymous

34

wish credentials upon a wish match does not introduce any additional protocol

interaction or complexity, and for this reason we ignore this case for the balance of

the chapter.

In the rest of this section, we define two security properties that counter on-line

adversaries, namely impersonation resistance and detector resistance. Essentially,

the former captures entity authenticity and the latter captures identity privacy.

Impersonation Resistance. Intuitively, impersonation resistance requires that an

adversary who is not a legitimate user cannot authenticate itself as a legitimate

user to any honest user. This property should hold no matter what secret wish the

adversary uses in the impersonation attack (e.g., even when wishes are matching,

the adversary should not be able to impersonate a legitimate user).

Definition 3.1. Formally, we say a matchmaking protocol has impersonation resis-

tance if, for any probabilistic polynomial-time (PPT) adversary A, the probability

that A wins in the following experiment is negligible:

1. A selects a victim user V and a target user T from U and a wish w from W

(A will try to impersonate V to T).3

2. Then, A is given an interaction with T who is running the protocol on input

w.

In the experiment, if T accepts V as a matching partner, we say A wins.

3We allow A to choose the wish w, because we want impersonation resistance property to hold

even when the adversary impersonating V uses a same wish that T uses.

35

Detector Resistance. Intuitively, detector resistance captures the identity-privacy

concern: given a single interaction of the adversary A with an honest user, H, ad-

versary A cannot learn the real identity of H unless A and H execute the interaction

on a same wish. We model this as an indistinguishability property.

Definition 3.2. We say a matchmaking protocol has the detector resistance prop-

erty if for any PPT adversary A, the probability that A wins in the following

experiment is negligibly close to 1
2

+ 1
2|W| :

1. A random coin b is flipped. Two random users U0 and U1 are selected from U

and a random wish w is chosen from W .

2. If b = 0, A is given an interaction with U0 who is running the protocol on input

w. If b = 1, A is given an interaction with U1 who is running the protocol on

wish w.

3. When the interaction is complete, A is given the real identities of users, (U0,

U1) and w.

4. Finally, A outputs b′ (guessing whether A has an interaction with U0 or U1)

and if b′ = b, we say A wins.

3.4.2 Security Properties that Counter Off-line Adversaries

An off-line adversary is eavesdropping on honest executions and then trying

off-line dictionary attacks on the obtained information. In this adversarial model, we

introduce three relevant security properties, namely matching-result privacy, wish

36

unlinkability, and user unlinkability.

Matching-result Privacy. Intuitively, when given a transcript of an honest execution

between two users, the adversary cannot learn anything about the matching result

of the execution; i.e., whether two users engaged in the execution on a common

wish.

Definition 3.3. We say a matchmaking protocol has matching-result privacy if for

any PPT adversary A, the probability that A wins in the following experiment is

negligibly close to 1
2
:

1. Two random users U1 and U2 are selected from U . A coin bit b is flipped.

• If b = 0, a random wish w is chosen. Then, an honest interaction between

users U1 and U2, both on input wish w, is executed and the execution

transcript is given to A.

• If b = 1, two random wishes w1 and w2 are chosen from W . Then,

an honest interaction between U1 and U2, on input wishes w1 and w2,

respectively, is executed, and the execution transcript is given to A.4

2. Finally, A outputs a bit b′ and if b′ = b, we say A wins.

Wish Unlinkability. Wish unlinkability captures forward privacy of wishes. Intu-

itively, wish unlinkability requires that the adversary cannot tell in which executions

w has been used as an input wish.

4A stronger notion of matching-result privacy is possible by letting the adversary know secret

wishes and it is achievable by our construction. However, the current notion is sufficient for our

purposes.

37

Definition 3.4. We say a matchmaking protocol has wish unlinkability if for any

PPT adversary A, the probability that A wins in the following experiment is negli-

gibly close to 1
2
:

1. Two different wishes w and w′ are randomly selected from W and given to A.

Four users U0, U1, U2 and U3 are chosen from U . A coin bit b is flipped.

• If b = 0, an honest interaction between users U0 and U1 on input wish w,

and another honest interaction between U2 and U3 on input wish w are

executed and the execution transcripts are given to A.

• If b = 1, an honest interaction between U0 and U1 on input wish w

and another honest interaction between U2 and U3 on input wish w′ are

executed, and the execution transcripts are given to A.

2. Finally, A outputs a bit b′, and if b′ = b, we say A wins.

User Unlinkability. User unlinkability captures forward privacy of users’ identities.

Intuitively, user unlinkability requires that, when given a transcript of an execution

run by a particular user whose real identity is U , the adversary cannot detect whether

a new execution transcript belongs to the user U . It should hold even though the

adversary has learned wishes used in the executions.

Definition 3.5. We say a matchmaking protocol has user unlinkability if for any

PPT adversary A, the probability that A wins in the following experiment is negli-

gibly close to 1
2
:

38

1. Four different users U,U0, U1, U2 are randomly selected from U and two wishes

w,w′ are randomly selected from W . U , w and w′ are given to A. A coin bit

b is flipped.

• If b = 0, an honest interactions between users U and U0 on input wish w,

and another honest interaction between U and U1 on input wish w′ are

executed and the execution transcripts are given to A.

• If b = 1, an honest interaction between U and U0 on input wish w,

and another honest interaction between U2 and U1 on input wish w′ are

executed and the execution transcripts are given to A.

2. Finally, A outputs a bit b′, and if b′ = b, we say A wins.

Given all the security properties, we define a privacy-enhanced matchmaking

protocol.

Definition 3.6. We say a matchmaking protocol is a privacy-enhanced if the proto-

col has impersonation resistance, detector resistance, matching-result privacy, wish

unlinkability and user unlinkability.

3.5 Protocol Design

We design a privacy-enhanced matchmaking protocol in a multi-step modular

way. First, we take a password-based authenticated key exchange (PAKE) protocol

π satisfying certain properties that are useful in building our solution. Then, we

generalize passwords into low-entropy secrets (i.e., wishes) and add perfect blindness

39

PAKE π (1) replace real ID Blind Key Exchange based
with pseudonym on Low-entropy Secrets π′


Forward Security
Result Privacy
IND-CCA

=⇒


Perfect Blindness
Forward Security
(wrt Execution Transcripts)

(2) apply compiler Privacy-enhanced
in Figure 3.3 Matchmaking π′′

=⇒



Impersonation Resistance
Detector Resistance
Matching-result Privacy
Wish Unlinkability
User Unlinkability

Figure 3.2: Transformations to obtain Privacy-enhanced Matchmaking π′′ from

PAKE π

by simply replacing user identity field with pseudonym. It will result in a protocol

named “blind key exchange based on low-entropy secrets” or BKE-LS in short.

Finally, we transform a BKE-LS to a privacy-enhanced matchmaking protocol by

adding back entity authentication (which was removed by adding perfect blindness)

in a way of providing entity privacy (i.e., confidentiality). For an overview, our

procedure to obtain a solution is illustrated in Figure 3.2. We describe each step in

detail in the following sections. Note that we omit the revocation protocol for on-line

adversaries and assume that such an adversary is limited to a single unwarranted

wish match (viz., Section 3.4 above).

40

3.5.1 Relevant PAKE Security Properties

The PAKE security properties relevant to our protocol are forward security,

result privacy, and tight IND-CCA of session key encryption.5 For these proper-

ties, we only focus on off-line dictionary attackers which are given transcripts of

executions between honest players. We show that these properties provided by a

password-based key exchange protocol (PAKE) and hence a PAKE proven secure

in the non-corruption model is sufficient to our solution.

Forward Security [BPR00, KOY01]. Intuitively, forward security implies that cor-

ruption of a user’s password does not break the security of sessions keys used prior

to the corruption. This notion has already been introduced in the authenticated

key exchange problem where a long-standing belief has been that forward security

in the weak corruption model (where the adversary is allowed to corrupt a user’s

long-term key, or password)6 is strictly stronger than security in the non-corruption

model (where corruption of long-term key, or password, is not allowed). However, in

a password-only (i.e., low-entropy secret) setting, we show that any PAKE protocol

secure in the non-corruption model also has forward security in the weak corruption

model.

Theorem 3.1. PAKE security in the non-corruption model implies forward security

in the weak corruption model.

5We assume that the reader is familiar with the definition of secure PAKE protocols and related

notation. For details, we refer the reader to references [BPR00, KOY01].
6Here, we only consider the weak corruption which, in contrast with the strong corruption

model, does not allow the adversary to have a complete control over users.

41

The proof of this theorem is provided in Section 3.6.

Result Privacy. Intuitively, result privacy captures the following property: when the

adversary passively observes an interaction between two honest users where the ad-

versary does not know whether the users’ passwords are equal, the adversary should

not be able to tell whether the two honest users have accepted the same session key.

If the adversary can learn that the two honest users have not accepted the same

session key, then the adversary knows that the users’ passwords are different. This

notion of result privacy has not received attention before, because for the authenti-

cation problem, (1) it is natural for two parties to share the same password (e.g., in

advance, by registration), to interact with each other, and (2) two parties who have

already had a successful interaction are likely to have further communication, so the

success of the result matching would become known to the adversary, anyway. In

contrast, the notion of matching-result privacy is an important security property of

our problem. Also, in further contrast with traditional PAKE applications, subse-

quent communication between two users who had a successful match of wishes is also

supposed to be anonymous. Therefore, in our problem the result of an interaction

between two users cannot possibly become trivially learnable information by an ad-

versary. Hence, result privacy is a relevant property for a PAKE protocol whenever

that protocol is used as a building block for privacy-enhanced matchmaking.

Definition 3.7. We say a protocol has result privacy if, for any PPT adversary A,

the probability that A wins in the following game is negligibly close to 1
2
: a coin b

is flipped; if b = 0, a transcript of an honest execution between two random users

42

such that their passwords are different is given to A. If b = 1, a transcript of an

honest execution between two random users such that their passwords are same is

given to A. Finally, A outputs a guess bit b′ and wins if b′ = b.

PAKE protocols without explicit authentication (i.e., with only implicit au-

thentication) satisfy the result privacy as shown by the following theorem.

Theorem 3.2. Any PAKE protocol with implicit authentication satisfies result pri-

vacy. 7

The proof of this theorem is similar to that of Theorem 3.1 (except for some

technical details) and hence is omitted.

Tight IND-CCA of Session Key-based Encryption. It is well-known (e.g., [BPR00])

that a common session key established between two parties via authenticated key

exchange, allows them to have a secure future communication enhanced with either

authenticity or confidentiality (or both). For example, by applying the common ses-

sion key to a symmetric key encryption scheme that has indistinguishability against

chosen ciphertext attack (IND-CCA), two parties can communicate each other with-

out losing confidentiality.

7So far, our result privacy notion only considered security against passive eavesdroppers explic-

itly. However, result privacy against active adversaries (i.e., impersonators) is clearly satisfied by

the definition of on-line adversaries. Intuitively, the definition of on-line attack captures that once

the adversary carried out an on-line attack against an honest user by guessing a password and

engaging in an execution with the user, the adversary cannot tell whether the guess was correct

until the adversary corrupts either the user or the session key that the user has accepted in protocol

execution [KOY01, BPR00].

43

Let (G, E ,D) denote any IND-CCA symmetric key encryption scheme. Infor-

mally, tight IND-CCA with respect to (G, E ,D) implies that no PPT adversary can

distinguish a ciphertext of m0 from a ciphertext of m1, where the ciphertexts are

encrypted with a session key sk (i.e., Esk(mb)) and messages m0 and m1 are chosen

by the adversary. In particular, we want the highest probability that the adversary

breaks this property to be negligibly close to the probability that the adversary

distinguishes a real session key from a random key. In PAKE protocol definitions

[KOY01, BPR00], this corresponds to the event that the adversary succeeds with

probability negligibly close to 1
2

+ 1
2N

, where N is the size of low-entropy secret

set, whenever the protocol is a secure.8 More formally, we define a new experiment

where adversary A is given all the oracles except the Test oracle ; viz., the experi-

ment of the PAKE security definition [BPR00, KOY01]. Additionally, we define a

new oracle TestIND-CCA as follows:

• TestIND-CCA(m0,m1,Π
i
U): Upon receiving two messages m0 and m1 and an

instance Πi
U from A, a bit b is flipped and Eski

(mb) is given to A where ski is

the session key of Πi
U .

Finally, in the experiment, A outputs a bit b′ and wins if b′ = b.

Definition 3.8. We say a protocol π has tight IND-CCA with respect to an encryp-

tion scheme (G, E ,D) if for any PPT adversary A, the probability that A wins in the

game of π with the TestIND-CCA and given encryption scheme (G, E ,D) is negligibly

close to 1
2

+ 1
2N

, where N is the size of low-entropy secret set.

8This is a standard result of secure PAKE protocols; viz., [BPR00, KOY01].

44

Authenticated key exchanges based on high-entropy secrets (e.g., symmetric-

key based key exchange and public-key based key exchange) easily imply the tight

IND-CCA property, because the probability that A breaks the protocol is negligible.

However, this is not trivially true in the case of password-based key exchange where

passwords are low-entropy secrets because the probability that A breaks the protocol

is non-negligibly high. However, it can be shown that most of existing solutions

satisfy the tight IND-CCA property in a non-black box way.

3.5.2 Generalizing Passwords as Low-entropy Secrets and Adding

Perfect Blindness

In this section, we modify a password-based authenticated key exchange to

obtain a blind key exchange based on low-entropy secrets (BKE-LS). Our main

task is providing a perfect blindness by breaking the binding between secrets (e.g.,

passwords, wishes) and user IDs. Blind key exchange based on low-entropy secrets

is obtained by adding perfect blindness to a password-based authenticated key ex-

change so that it will provide no entity authentication. Here, we focus on providing

anonymity ; however, we do add back entity authentication as the final step of our

protocol design (viz., the next section).

In the password-based authenticated key exchange protocol, authentication is

provided upon the assumption that there is a binding between user and user ID (a

user has a unique ID value), and a binding between user and password (each user

has one password). (Typically these bindings are the result of the user registration

45

process.) Therefore, a user identified by an user ID can be authenticated by password

verification. In contrast, in our problem the low entropy secret, namely the “wish”,

is not used for user authentication. In particular, a user’s wish is not necessarily

fixed or registered in advance. Here, we generalize passwords as low-entropy secrets

and we call them “wishes”. We allow a user to use a different secret (i.e., a wish)

for each execution and remove the restriction that the low-entropy secret has to be

initialized prior to protocol execution (as in the case of passwords).

Finally, to provide perfect blindness, we remove the binding between user IDs

and secret wishes by breaking the connection between user and user ID. In particular,

we let a user have a new pseudonym instead of its (real) user ID for the ID field

in each execution of the protocol. Hence the user ID field does not reveal anything

about either the user or the secret (i.e., wish) used.9

To provide wish unlinkability in our solution, we introduce the notion of for-

ward security with respect to execution transcripts. Intuitively, for any particular

secret wish w, the adversary should not be able to tell whether an execution tran-

script has resulted from input w.

Definition 3.9. We say a key exchange protocol has forward security with respect to

transcripts if for any PPT adversary A, the probability that A wins in the following

game is negligibly close to 1
2
: (1) Two different secrets s0, s1 are randomly selected

from W and given to A. (2) A coin bit b is flipped and two users U1 and U2 are

selected. If b = 0, an execution between U1 and U2 on s0 is simulated and the

9In fact, the real user ID is never used in an execution of the BLK-LS protocol. However, the

real user ID will be added in a privacy-preserving way later in the last step of our protocol.

46

transcript is given to A. If b = 1, an execution between U1 and U2 on input secret

s1 is simulated and the transcript is given to A. (3) Finally, A outputs b′ and we

say A wins if b′ = b.

Theorem 3.3. If a protocol π is a secure PAKE protocol, a BKE-LS protocol π′

obtained from π has forward security with respect to transcripts.

The proof of this theorem is similar to the of Theorem 3.1 and hence is omitted.

3.5.3 Final Step of Building a Privacy-enhanced Matchmaking Pro-

tocol

The compiler transforming a PAKE protocol π into a BKE-LE protocol π′ and

then into a PMM protocol π′′ is illustrated in Figure 3.3. In this section, we briefly

describe the last transformation from a BKE-LE protocol to a privacy-enhanced

matchmaking protocol. The compiler essentially adds secure authentication between

two parties, U and U ′. User U runs BKE-LS π′ until it computes a session key sk.

Then, U computes a digital signature σ on transcripts of the execution of π′ (i.e.,

ordered concatenation of all the messages sent and received during the execution)

and its real identity information including its real identity, its public key and the

certificate of the public key. Further, user U encrypts all the transcript, its real

identity and the signature σ with key sk, and sends the ciphertext to party U ′ with

whom U interacted during the execution of π. Upon receiving a ciphertext from

U ′, U decrypts it with key sk and, if the plaintext is valid, U verifies that (1) the

decrypted transcript is the same as the original, and (2) the digital signature is valid

47

using public key of U ′. If the verification is all correct, U accepts U ′ as a matching

partner. Otherwise, U accepts no one.

Theorem 3.4. If π is a secure PAKE protocol, then protocol π′′ obtained by applying

the compiler of Figure 3.3 to π is a secure privacy-enhanced matchmaking protocol.

Proof. We give a sketch of the proof that each security property of privacy-enhanced

matchmaking protocol is satisfied.

Impersonation Resistance. If there exists an adversary A that can break the im-

personation resistance property of π′′ with non-negligible probability δ, then we can

easily construct an algorithm F that breaks the underlying signature scheme Σ with

a probability at least δ. Basically, F simulates a view for A and outputs a forged

signature σ′, whenever A, impersonating V to an honest player T , outputs a forged,

but valid signature σ′ for a uncorrupted user V . Then, the probability:

Pr[F forges a valid signature σ′ with respect to V ’s public key]

is at least Pr[T accepts V], which is equal to δ(k). Since we assumed that δ(k) is

non-negligible, it contradicts the assumption of security of the underlying digital

signature scheme Σ.

Detector Resistance. If there exists an adversary A that can break the detector

resistance property of π′′ (nb. in a single interaction) with probability 1
2

+ 1
2|W| + δ

for a non-negligible function δ(k), then we can construct an algorithm B that breaks

the tight IND-CCA property of π. B is given Execute, Send,Reveal and TestIND-CCA

and proceeds as follows:

48

Compiler

Let k be a security parameter. Let Σ = (Gen, Sign,Vrfy) be a signature scheme
which is existentially unforgeable against adaptive chosen-message attack. Let
{PKUi , SKUi}Ui∈U be a list of public/secret key pairs generated from Gen(1k),
and assume U , {PKUi}Ui∈U is publicly-known. Let (G, E ,D) be a symmetric-key
encryption scheme that is IND-CCA secure.

The Protocol π′: In π, let IDU be a variable indicating the identity of user U and
pwU be a variable indicating the password of U , and pid be a variable indi-
cating partner ID. Given the input values, namely a wish w, a pseudonym
I and a partner’s pseudonym pI, user U verifies if the partner’s pseudonym
pI is valid (signed by the matchmaker). If it is valid, user U sets IDU = I,
pwU = w, and pid = pI and runs protocol π on those inputs.

The Protocol π′′: In π′, if U terminates accepting a session key sk, U keeps sk.
Otherwise, U obtains a random key r through G(1k), and sets sk = r.
Given sk, U performs the following additional steps:

1. Let T be a concatenation of messages that U has sent and received
during the execution of π′. U computes:

(a) a signature σ by signing a message T ||U , where || denotes a
concatenation of messages (i.e., SignSKU

(T ||U)).

(b) a ciphertext C by encrypting a plaintext M = T ||U ||σ||info with
sk (i.e., Esk(M)), where info is U’s information that includes U’s
public key and the certificate of the public key.

2. U sends ciphertext C to a partner whose pseudonym is pI.

3. Upon receiving a ciphertext C ′ from partner pI, U decrypts it with
sk, obtains T ′||U ′||σ′||info′, and proceeds as follows:

(a) If there is no public key for U ′ or T ′ 6= T , U terminates with
a private output ⊥. Otherwise, U verifies σ′ by computing
VrfyPKU′

(T ′||U ′, σ).

(b) If the signature is not valid, U terminates with a private output
⊥. Otherwise U terminates with a private output U ′ (i.e., U
accepts U ′ as a matching partner).

Figure 3.3: Compiler to be applied to PAKE protocol π to yield privacy-enhanced

matchmaking protocol π′′.

49

1. B uses its own oracle Send to initiate an instance Π′ for a new random identity

I ′ and simulates A’s view until the instance outputs a session key sk in the

execution.

2. To simulate the last outgoing message (of π′′), B carries out the following

actions:

(a) Obtain the secret pw′ of I ′ by calling Corrupt(I ′).

(b) Choose two different users U0 and U1 from U at random.

(c) For each case of b = 0 and b = 1:

i. Compute a signature σb by signing a message T ||Ub, where T is the

transcript of Π′.

ii. Compose a message mb = T ||Ub||σb||infob where infob denotes user

Ub’s information.

(d) Then, obtain a challenge ciphertext C by calling TestIND-CCA(m0,m1,Π
′)

and finish the interaction by sending the last message C to A.

3. Finally, B gives (U0, U1) and pw′ to A and outputs whatever A outputs.

The simulation by B is perfect from A’s perspective for the following two

reasons. First, the parts of π′ are simulated by asking queries to Send oracle. Second,

for the part of π′′ (i.e., producing the ciphertext C), B itself learns the secret of I ′ via

Corrupt oracle query and so B computes a correct form of plaintext message (which

is perfect since U0 and U1 are totally independent from I ′, the pseudonym used

in π′) and obtains a correct form of ciphertext C via the TestIND-CCA(m0,m1,Π
′)

50

query. Also, since B queries Corrupt(I ′) only after B finishes queries to the Send

oracle, Π′ (i.e., instance of I ′) is fresh. Moreover, by the definition of on-line attacks

[BPR00, KOY01], B makes only one on-line attack.

For the analysis, let Enc0 denote the case that TestIND-CCA oracle returns en-

cryption of m0 and Enc1 denote the case that TestIND-CCA oracle returns encryption

of m1. Then, since we have

Pr[B = 0|Enc0] = Pr[A = 0|Enc0], and (3.1)

Pr[B = 1|Enc1] = Pr[A = 1|Enc1], (3.2)

the probability that B wins equals the probability that A wins, which is non-

negligibly higher than 1
2

+ 1
2|W| (by the assumption), and it contradicts the fact

that π has the tight IND-CCA property with respect to (G, E ,D). (If π has the

tight IND-CCA property, an on-line attack can be successful only with a probability

negligibly close to 1
2

+ 1
2|W|).

Security against off-line Adversaries. Matching-result privacy, wish unlinkability

and user unlinkability are clearly satisfied by security properties of the underly-

ing PAKE (and so BKE-LS) protocol. In particular, matching-result privacy is

guaranteed by result privacy of π. Wish unlinkability is preserved due to forward

security with respect to execution transcripts and perfect blindness of π′. Finally,

user unlinkability is obtained by perfect blindness of π′, forward security and tight

IND-CCA property with respect to (G, E ,D) that π has.

51

3.6 PAKE security implies forward security

In this section, we show that any password-based authenticated key exchange

protocol secure in the standard model (or in the non-corruption model as opposed to

the corruption model where password corruption is allowed) is also forward secure

in weak-corruption model (where compromise of a password is allowed but complete

control over users is not allowed). The formal definition of PAKE is provided in

Section 4.4.1. Recall that we only consider off-line dictionary attackers for forward

security.

Theorem 3.1. If a protocol π is a secure password-based authenticated key

exchange protocol in the non-corruption model, π is forward secure against off-line

attackers in the weak-corruption model.

Proof. Assume that there exists an adversaryA breaking forward security of π in the

weak-corruption model. Because we consider only off-line dictionary attackers for

forward security, A is not allowed to access Send oracle. Then, by the assumption,

A attacks π in the weak corruption model and succeeds in the experiment with

probability 1
2
+δ(k), for a non-negligible function δ(k). Given A, we can construct an

adversary A′ that attacks protocol π in the non-corruption model by eavesdropping

on the executions of π, and then outputs a pair of a password and a user, (pw, U),

for some user U that A′ has chosen, such that probability of pw being U ’s correct

password is non-negligibly higher than 1
|W| . The existence of A′ is sufficient to show

that protocol π is an insecure password-based authenticated key exchange protocol

in the non-corruption model. The reason for this is as follows: informally, if there

52

exists an adversary M who can correctly guess the password of any user of M’s

choice with probability non-negligibly higher than 1
|W| , then we can construct an

on-line adversary O who usesM to break π in the non-corruption model, with one

on-line attack, and achieves an advantage non-negligibly higher than 1
|W| . Basically,

O simulates the view ofM and whenM outputs (pw, U) for some user U , O carries

out an on-line attack against U with password pw and asks for a Test query for the

instance. Given a challenge key as a response to a Test query, if the key is the

same as the key that O computed in the on-line attack, O outputs 1. Otherwise, O

outputs 0. Then, if pw was a correct password for U , O always succeeds. Otherwise,

O succeeds with probability exactly 1
2
. Therefore, the advantage of O’s in breaking

protocol π in the non-corruption model with one on-line attack is non-negligibly

higher than 1
|W| (the advantage of O obtained by usingM is the difference between

the probability thatM guesses a password correctly and the probability 1
|W|). Then,

it leads a contradiction and the proof is complete.

Now, let’s see how A′ can guess a password of a user with probability non-

negligibly higher than 1
|W| , by using A. Adversary A′, playing in the non-corruption

model, has access to the Execute and Reveal oracles, and A, playing in the weak-

corruption model, has access to the Execute,Reveal,Corrupt and Test oracles. Ad-

versary A′ proceeds as follows:

1. Let L be a maximum number of users that A will ask for Execute query (L

is polynomial in k since A is a PPT adversary). Choose an integer ` from

{1, ..., L} at random.

53

2. Whenever A asks a query in a form of Execute(C, i, S, j),10 if C is the `-th

new user that has been queried in such a form, keep C as a target user T and

answer to A by forwarding the same query to its own oracle and returning

the response from the oracle. Otherwise, choose a random password (or find

a stored password for C, if one exists), and simulate an execution according

to π, and return the resulting transcript to A.

3. WheneverA asks a query in a form of Corrupt(U), if U is not T , find a password

chosen for U and answer with it (if there is no record, answer with a random

password and record it). Otherwise (if U is T), choose a random password

pw1 and answer with pw1.

4. Upon receiving a Test(Πi
U ′) query from A, adversary A′ proceeds as follows:

• If U ′ is not T , A′ selects a random password pw and outputs (pw, T).

Let NoUseA denote this event.

• Otherwise, if U ′ is T , A′ proceeds as follows:

(a) Flips a random coin b. If b = 0, A′ chooses a random session key r

and provides it to A.

(b) If b = 1, A′ sends a Reveal(Πi
U ′) query to its own oracle, obtains the

real session key skiU ′ , and provides A with it.

(c) If A aborts, A′ chooses a random password pw2, different from pw1,

and outputs (pw2, T). Let AbortA denote this event.

10S is a server who keeps all the passwords of clients C.

54

(d) Finally, when A outputs b′, if b′ = b, adversary A′ outputs (pw1, T).

Otherwise, A′ chooses a random password pw3, different from pw1,

and outputs (pw3, T).

Next, we analyze the probability that A′ correctly guesses the password of a

user. For a better understanding, we introduce some additional notation. We let

SuccA (resp., SuccA′) denote the event that A (resp., A′) succeeds in the experiment

of breaking forward security of π (resp., guesses a correct password of a user). Also,

we let pw1 (resp., pw2, or pw3) denote the event that T ’s password is equal to pw1

(resp., pw2, or pw3).

Then, the success probability of A′ is the following:

Pr[SuccA′] ≥ Pr[SuccA′ |NoUseA]× Pr[NoUseA] +

Pr[SuccA′ |NoUseA]× Pr[NoUseA]

≥ 1

|W|
×
(

1− 1

L

)
+ Pr[SuccA′|NoUseA]× 1

L

=
1

|W|
+

1

L
·
(

Pr[SuccA′ |NoUseA]− 1

|W|

)
(3.3)

Then, we can bound the probability Pr[SuccA′|NoUseA] as follows (nb., for simplicity,

we omit the conditional event NoUseA for the right hand side) :

Pr[SuccA′ |NoUseA] = Pr[pw2 ∧ AbortA] +

Pr[SuccA ∧ pw1 ∧ AbortA] +

Pr[SuccA ∧ pw3 ∧ AbortA]

Next, we bound each term of the right hand side in the above equation. First, we

55

bound the probability Pr[pw2 ∧ AbortA] as follows:

Pr[pw2 ∧ AbortA] = Pr[pw2 ∧ pw1 ∧ AbortA]

= Pr[pw2 ∧ pw1]× Pr[AbortA|pw1 ∧ pw2]

= Pr[pw2]× Pr[AbortA|pw1]

=
1

|W|
× Pr[AbortA|pw1]

=
1

|W|
×
(
1− Pr[AbortA|pw1]

)
Second, we bound the probability Pr[SuccA ∧ pw1 ∧ AbortA] as follows:

Pr[SuccA ∧ pw1 ∧ AbortA] = Pr[SuccA|pw1 ∧ AbortA]×

Pr[AbortA|pw1]× Pr[pw1]

=

(
1

2
+ δ(k)

)
×

Pr[AbortA|pw1]× 1

|W|

Finally, the last term of probability Pr[SuccA ∧ pw3 ∧AbortA] is bounded as follows:

Pr[SuccA ∧ pw3 ∧ AbortA] = Pr[SuccA|pw3 ∧ AbortA]×

Pr[AbortA|pw3]× Pr[pw3]

=
(
1− Pr[SuccA|pw3 ∧ AbortA]

)
×

Pr[AbortA|pw1]× 1

|W|

≥ 1

2|W|
× Pr[AbortA|pw1]

Let p denote the probability Pr[AbortA|pw1] and q denote the probability Pr[AbortA|pw1].

56

Then, by combining three probabilities that we computed so far, we have:

Pr[SuccA′ |NoUseA] ≥ 1

|W|
× (1− p) +(

1

2
+ δ(k)

)
× q × 1

|W|
+

1

2|W|
× p

=
1

|W|
+

q

|W|
× δ(k) +

(q − p)
2|W|

(3.4)

In the event of pw1, the simulated view for A is perfect. Therefore, the probability

that A aborts in the conditional event of pw1 (i.e., q) is negligibly close to 1 (i.e.,

q ≈ 1). Also, no matter how close the probability p is to q, q is greater than or

equal to p. Therefore, by applying Equation (3.4) into Equation (3.3), we obtain:

Pr[SuccA′] ≥
1

|W|
+

1

L
× q

|W|
× δ(k)

≥ 1

|W|
+

1

2|W|L
× δ(k)

which is non-negligibly higher than 1
|W| since L is polynomial in k. This completes

the proof.

57

Chapter 4

Enhancing Password Privacy of Password-Based Authenticated Key

Exchange in the Real World

4.1 Outline of the Chapter

In Section 4.2 we discuss the significance of our attacks in practice. In Section

4.3 we describe the details of the attacks with analytical and experimental evidence.

In Section 4.4 we propose a new definition of security. In Section 4.5 we analyze

our attacks and conclude with recommendations on ways to bound the probability

of failure of PAKE protocols. Our recommendations can be applied in particular to

the PAKE protocols currently proposed for TLS [ABC+06].

4.2 Background of Our Attacks

Practical Significance. The significance of the results reported herein, particu-

larly of the timeout-delay and multi-domain attacks, goes beyond merely providing

practical attacks against protocols proven secure in a well-accepted theoretical set-

ting. The security exposures created by these attacks cannot be overlooked given

that the effective space of user-chosen passwords, N, is generally small. For ex-

ample, the NIST Electronic Authentication Guideline - Special Publication 800-63

(Appendix A.3 - Examples), April 2006, recommends that, for ”level 1” password

58

security, the password strength should limit an adversary success to Q∗/N = 2−10,

whereas at ”level 2,” Q∗/N = 2−14, during a password’s lifetime. Our simulations

show (viz., Figure 4.3 below) that the bound of Q∗ = 5 failed-login attempts of a

PAKE protocol proven secure can be circumvented to allow an adversary 200− 500

login attempts per domain in a 5 second interval, which would be non-compliant with

the NIST guidelines. In a five-domain attack this can be amplified to 2500 attempts

in 5 seconds, which would obviously be non-compliant. Even synchronization-delay

attacks, if amplified in multiple domains, could result in non-compliance (e.g., with

”level 1”) password-security guidelines.

4.3 Delay-Based Attacks

In this section we illustrate the inadequacy of counting login failures to bound

the security of a PAKE protocol. That is, we show on-line attacks against PAKE

protocols for which setting up a specific bound of Q∗ for the number of login failures

does not result in a failure probability of ε ≤ Q∗/N (where N is the size of the

password space).

We show further that our attacks can be easily launched in current client-server

applications that run in both distributed systems and the Internet. In particular, we

argue that the ease of such attacks is enhanced by current multi-tiered applications

that require large-scale, multi-threaded constructions of the client-server model for

use over the Internet. This represents a significant concern as these protocols have

been recently standardized [IEE05].

59

4.3.1 Counting Attack Queries: Login Requests or Failed Logins?

In a typical Internet-level deployment, PAKE protocols would run in an dis-

tributed environment where a multi-tasked server responds to multiple client re-

quests concurrently. Multiple server instances of the PAKE protocol can be dis-

tributed over a number of servers controlled by load balancers, such as layer 4-7

(L4-L7) switches in the Internet, in the same manner as in most large-scale, per-

sonalized services are implemented currently. In fact, most large-scale, personalized

services implemented by Google, Yahoo, Microsoft Hotmail, and Skype follow this

model.

Counting Login Requests. In any environment where concurrent login requests

are possible, counting such requests as attack queries would require either synchro-

nization of all PAKE servers for real-time enforcement of bound Q∗ or synchroniza-

tion of load balancing (L4-L7) switches in the Internet to filter out clients that issue

concurrent PAKE requests to individual accounts. Either could lead to substan-

tial, user-visible login delays. For this reason, in such environments it is preferable

to limit concurrent login requests to the same account early, at the client side,

before they reach PAKE servers or Internet switches, by challenging them using

CAPTCHAs [vABHL03].

However, exclusive reliance on CAPTCHAs to limit the number of concurrent

login requests to the same account is an insufficient solution. An (human) ad-

versary could request multiple logins via multiple clients, redirect the CAPTCHA

challenges for those clients to himself, respond to those challenges correctly outside

60

the http sessions, and then pipe the responses concurrently into the correspond-

ing sessions. Note that CAPTCHA challenges do not time out before their http

sessions since human-level response delays are not indicative of automated attacks,

which CAPTCHAs attempt to prevent. Further, two or more human users could

collude and amplify concurrent attacks against a PAKE protected account protected

by CAPTCHAs. In either case, a concurrent attack would certainly exceed the given

bound on Q∗.

The only practical alternative for the enforcement of a bound Q∗ on the num-

ber of on-line attacks against a user’s account would be to require server-side en-

forcement of a bound on failed login attempts, which are invariably categorized as

an adversary’s attack queries. Reasonable bounds of this type can account for

legitimate-user errors and, at the same time, allow the authentication of concurrent

client requests. Almost all large-scale deployment of personalized services, including

by Google, Yahoo, Microsoft Hotmail, and Skype, and all theoretical PAKE models,

also use this approach.

Counting Login Failures. Counting login failures causes, by definition, a time

delay between (1) the instance an adversary query is issued and (2) the instance

when the authentication of that query is completed and counted as a login failure.

It is this time delay that can be exploited by an adversary to launch concurrent

attacks. However, different provably secure PAKE protocols with similar security

bounds react differently to concurrent attacks. We partition the PAKE protocol

space into two large classes depending on which entity, client or server, initiates

61

Server

Client
(?)

failure

wait

Server

Client
(?)

time-out

wait ∆
authentication

message
wrong

authentication
message

no response

(a) Login failure by wrong authentication (b) Login failure by time-out

δ

login
request

authentication
message

login
request

Figure 4.1: Login failures : Incorrect authentication vs. Time-out.

the authentication exchange and illustrate the reaction to two different types of

concurrent attacks.

4.3.2 Timeout-Delay Attack

We consider in this section protocols in which the server authenticates first.

At a high level, such protocols have the following structure: the client sends some

information to which the server responds; at this point the client can tell whether it

is interacting with the legitimate server (holding the same password) or not. Then

the server sends some information to the client (this can, of course, be piggy-backed

on the previous exchange). The server than either (1) receives a response and, if the

response is incorrect, counts this session as a a login failure (viz., Figure 4.1-(a)) or

(2) waits for a response until a time-out occurs (viz., Figure 4.1-(b)). The crucial

point is that by aborting after running the first phase, an adversary gets a password

guess that is not counted as a failure until the time-out occurs. In the latter case,

the adversary can open multiple client-server instances within a server’s timeout

interval (denoted by ∆ in Figure 4.1-(b)). This, in turn, means that the adversary

receives multiple concurrent authentication queries, each of them allowing her to

62

verify a separate password guess, without raising the login failure counter.

Client C Server S
(password pw) (password pw)

Public: g, h, e, p, g,H, F

x
R←− Zq

X ← gx

Y ← hxgpw X,Y,C
−−−−−−−−−−−−−−→ λ1, λ2

R←− Zq
µ← gλ1hλ2

Y ′ ← Y g−pw, σ ← Xλ1Y ′λ2

r ← Fσ(3), ω ← Ee[Σ; r]
Σ← H(µ,X, Y ′, S, C)

Y ′ ← hx, σ ← µx, r ← Fσ(3) µ, ω, S
←−−−−−−−−−−−−−

Σ← H(µ,X, Y ′, S, C)
Verify ω = Ee[Σ; r]

Abort if verification fails.
Else: τ ← Fσ(2), sk ← Fσ(1) τ−−−−−−−−−−−−−→︸ ︷︷ ︸

(a) No Reply with τ (b) In case Reply

(τ is received):

Verify τ = Fσ(2)
Abort if verification fails.
Else: sk ← Fσ(1)

(c) In case of No Reply

(τ not received):

May do nothing
Wait for ∆ until timeout

Figure 4.2: Timeout-delay attack against the JG protocol: a single protocol instance.

Within the time-out delay, an adversary may initiate multiple interactions with

distinct server instances, each enabling a different password guess. For example, in

the normal (non-attack) mode of operation a client’s reply to a server’s authen-

tication message arrives to the server after a delay δ, as shown in Figure 4.1-(a).

In contrast, in an attack, the client’s authentication-message reply does not arrive

63

before a timeout period ∆, if at all, as shown in Figure 4.1-(b). Since, by definition,

δ << ∆, an adversary has numerous chances to verify password candidates, one per

client-server instance, without responding to authentication messages initiated by

a server instance in each protocol run. Meanwhile each server instance must wait

until the timeout internal is exhausted to count its client’s lack of reply as a login

failure and increase the failure count. Note that the time delay within which an ad-

versary can open many protocol instances and verify multiple password candidates

can be substantially larger than ∆; i.e., it can be ∆ + γ, where γ denotes the time

interval from the adversary’s protocol-initiation message to the server’s reply with

an authentication message to the adversary.

Timeout-delay attacks succeed for all existing PAKE protocols in which server-

authentication occurs first. Figure 4.2 illustrates an attack on the JG protocol [JG04].1

An adversary can pose as a client in the JG protocol and open many concurrent

sessions similar to the one illustrated in Figure 4.2. In each such session it can pick

a random password from the password space and then run the client-side of the

protocol honestly. Upon receiving the second message of the protocol from the server

(computed using the correct password), the adversary can tell whether its password

guess was correct. Message flow (a) of this figure shows that the adversary does

not reply to the authentication message issued by a server instance with message

τ . The server instance will then have to wait for some timeout interval ∆, as

1Although the notation we use in this figure is very close to the original one, we do not cover

all protocol flows of the JG protocol. We refer the readers to [JG04] for the detailed description

of this protocol.

64

shown in box (c) of the figure, rather than performing the normal authentication

verification illustrated in box (b), to determine whether an adversary attempts to

impersonate a legitimate client. Obviously, a server could not possibly conclude that

an adversary impersonates a legitimate client before performing that verification.

Since the precondition of that verification is provided by adversary replies modeled

as Send queries, adversary impersonation attacks, called ITri are counted as Send

queries in the JG proof, regardless of whether authentication verification succeeds.

Hence, a server has to wait until a Send query arrives to determine that an attack

in taking place. This enables the timeout delay attack described above despite the

correct proof provided for the JG protocol in the standard model. Similar attacks

can be generated using the PAK-Z+ [Mac02] protocol, whose security was proved

correctly in the random-oracle model.

Figure 4.3 shows the experimental results of timeout-delay attacks against the

JG and PAK-Z+ [JG04, Mac02] protocols. These experiments are performed on a

Windows platform and are described in more detail in Section 4.7. We set the practi-

cal login-failure limit to Q∗ = 5 and synchronize the counting of login failures across

server instances2 simply by using a global variable for multi-threads. We have an

adversary attempt to open 1000 concurrent sessions for the same account, and vary

the length of the time-out interval, ∆, in each experiment. As we increase ∆ from

500 ms to 5000 ms in the experiment, a growing number of authentication messages

that exceed the failure-limit bound Q∗ = 5 are obtained by the adversary who could

2In the real world, there could be a time delay for synchronizing such a count over multiple

server hosts in real time. See the following subsection.

65

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

100

200

300

400

500

600

Time out (ms)

Th
e

nu
m

be
r o

f s
uc

ce
ss

es

JG
PAK!Z+

Figure 4.3: Experimental results of timeout-delay attacks against two provably se-

cure PAKE protocols. (X-axis shows the different duration of time-out ∆ in millisec-

onds, while y-axis shows the number of server authentication messages that allow

password-candidate verification by an adversary.)

verify a correspondingly increased number of password candidates. For example,

when ∆ = 500 ms, protocol JG allows 152 guesses and PAK-Z+ 221 guesses on

average, far exceeding the bound Q∗ = 5. However, when ∆ = 5000 ms, protocol

JG allows 336 guesses and PAK-Z+ 540 guesses on average further exceeding the

bound Q∗ = 5. If the length of the time-out interval is set to a high value, or not

set at all, then all adversary’s concurrent requests for authentication to servers will

be satisfied, thereby leading to a massive circumvention of the login-failure bound

Q∗. In such attacks it is unlikely that any low-entropy password will be safe. The

results of a wider range of experiment parameters for timeout-delay attacks against

JG and PAK-Z+ protocols are shown in Section 4.7.

As we show in Section 4.3.4, the problem is magnified in multi-domain settings.

66

4.3.3 Synchronization-Delay Attack

A way to avoid timeout-delay attacks, is to require the client to send the

initial authentication message to the server. This message allows the server to

verify client’s knowledge of the account password before the server replies with its

own authentication message to the client. This authentication exchange, which is

similar to the ”client pre-authentication” in Kerberos version V and its derivatives

(e.g., DCE), denies an adversary’s client the possibility of avoiding to reply to a

server’s authentication message and exploiting the timeout delay in login-failure

counting to launch concurrent attacks. Practical PAKE protocols that prescribe

client initiation of the authentication exchange have been proposed in the past (e.g.,

KOY [KOY01]).

However this introduces a different type of complication. In processing a

client’s pre-authentication message, a server instance must first check whether the

failure count for an account/password exceeds the bound Q∗ and, if the bound is

not exceeded, whether the client’s pre-authentication message is valid (i.e., it reveals

client’s knowledge of the account password).3 To check whether the current failure

3Note that if the failure-count check is performed after the validity check for the pre-

authentication message, then adversary’s clients could always verify multiple password guesses

concurrently by observing a delay in the server instance reply. Such a delay would indicate a

failed password guess since a correct password would not require a failure-count check and hence

would not incur any synchronization delay. (Artificially delaying a server instance’s authentication-

message reply that corresponds to a correct password guess could not prevent an adversary’s veri-

fication of multiple concurrent guesses that exceed bound Q∗ since one of adversary’s clients would

eventually receive the positive reply among all negative ones.)

67

0 15 50 100 150 200 250 300 350 400 450 500

2

4

6

8

10

12

14

16

18

20

22

24

Delay in synchronization

Th
e

nu
m

be
r o

f v
er

ifie
d

gu
es

se
s

KOY

Figure 4.4: Experimental results of synchronization-delay attacks against the KOY

protocol. (X-axis shows the delay in synchronization in milliseconds, while y-axis

shows the number of server authentication messages that allow password-candidate

verification by an adversary.)

count for a password exceeds bound Q∗ requires the exclusive locking of the failure-

count variable even for concurrent read operations – not just for concurrent write or

read and write operations – by multiple clients. (Shared-read operations would allow

multiple concurrent guesses of password by an adversary’s clients before a server

instance would be able to signal that the failure count has exceeded bound Q∗.)

Unfortunately, placing exclusive locks on a failure-count variable associated with

a password to ensure correct counting incurs non-negligible synchronization delays

whenever replicas of server registries, which store account/password information, are

concurrently accessible to PAKE protocol instances. While an exclusive-lock request

propagates to all registry replicas, concurrent password guesses can still be made by

an adversary’s clients, since their server instances can still read failure-count copies

of yet-to-be-updated registry replicas.

In Figure 4.4 we illustrate the experimental results of our synchronization-

68

delay attacks again the Katz, Ostrovsky, and Yung (KOY) protocol [KOY01]. These

experiments are also performed on a Windows platform. We set the practical login-

failure limit to Q∗ = 5 but allow possible delays in synchronizing the login failure

counts across server instances. We have an adversary attempt to open 1000 concur-

rent sessions for the same account and vary the delay in each experiment. As we

increase the delay from 0 ms to 800 ms4 in the experiment, a growing number of

authentication messages that exceed the failure-limit bound Q∗ = 5 are obtained by

the adversary who could verify a correspondingly increased number of password can-

didates. When the delay is set as 15 ms, the protocol at last loses the failure-limit

bound by allowing one more instance to send out the server authentication message

than the bound. As we can see in Figure 4.4, the KOY protocol allows 20 guesses

when the delay is 400 ms and 26 guesses when it is 800 ms. We expect the number

of verified guesses will increase more as we enlarge the delay in synchronization.

Simple, Obvious Solutions are Ineffective. Simple, obvious solutions to remove

synchronization delays by serializing access to account/password information (e.g.,

by testing and updating a failed-login counter in a, possibly distributed, critical

section), do not work in large-scale deployment of PAKE protocols. For example,

restricting the access of concurrent protocol instances to a single server that main-

tains a critical section for the failed-login counter and its bound Q∗ could serialize

4The experiments are done with 5 ms scales between 0 and 50 ms interval, while done with

100 ms scales between 100 and 800 ms interval for visuality. We set the upper end of the delay

interval as 800 ms by assuming the average message delay is between 50 and 200 ms. Note that

the delay interval would be typically {2T, 4T} where T is the average message delay [CLLZ05].

69

access to the failed-login counter and thus eliminate exploitable synchronization

delays, but would be highly impractical. Although the server availability could be

assured by mirroring the server’s content, in Internet-scale deployment login respon-

siveness would drop below any acceptable level since the single server would have

to respond to all login requests; e.g., delays would reach 1.5 - 2 minutes at login

rates that often exceed 200 requests per second and typical server response rates of

about 500 ms per login request. Similarly, small-scale solutions where a single server

allows only a single login session at a time would obviously not work in Internet-

scale deployment. Alternate solutions that seek to serialize access to the failed-login

counter and its bound Q∗ in a critical section distributed across multiple servers,

which would also eliminate exploitable synchronization delays, would not improve

login responsiveness: the lower bound on the access latency of all distributed critical-

section implementations resilient to failure is between 2T and 4T [CLLZ05], where T

is the average message delay in the Internet (currently between 50 and 200 ms), plus

the delay in accessing and verifying password information on any server replica. At

login rates that often exceed 200 requests per second such implementations would

also limit user-login responsiveness by causing 1.5 - 2 minute delays (e.g., 4*200 ms

latency per request plus 100ms request processing would mean that, again, a typical

request would be processed in 500ms.) Other synchronization solutions, possibly

based on hierarchical account locking, may be effective. (The evaluation of such

solutions are beyond the scope of this paper, however.)

70

4.3.4 Multi-Domain Attacks

Enforcement of the bound Q∗ on the adversary’s queries to different user ac-

counts in n > 1 different domains having the same (or related) passwords is all but

impossible since an adversary can launch a concurrent attack against that password

without exceeding bound Q∗ in any single domain. Thus an adversary could effec-

tively issue nQ∗ attack queries, far exceeding any reasonable security bound Q∗ for

large n. Unfortunately, it would be virtually impossible to enforce bound Q∗ across

multiple domains, since (1) it would be impossible to know all domains where a user

may have an account unless users would reveal this information, which users might

not do for privacy reasons; and (2) it would be necessary to authenticate every cross-

domain bound update. This would not only amplify adversary-exploitable synchro-

nization delays but would also cause unacceptable login delays for such users. An

adversary could further amplify her attack by verifying nṁ passwords using n clients

per domain in m domains and exploiting either timeout-based or synchronization-

based delays to launch concurrent attacks. Of course, multi-domain attacks could

be eliminated if users would resist the temptation to choose the same password in

multiple domains.

4.4 Security Definitions for PAKE Protocols

As illustrated above, in practice, the number of on-line adversary attacks (i.e.,

password guesses) far exceeds the bound of consecutive log-in failures. As we dis-

cussed in the Introduction, these attacks have been overlooked in all PAKE protocol

71

analyses to date because the current adversary models neither count login failures

nor enforce a bound on them. The current formal definition for PAKE security

simply correlates the probability of success of the adversary to the number of online

attacks s/he can launch.

We conclude that we would be better served by a definition that concretely

bounds the adversary’s advantage with a hard bound ε. We then analyze protocols

in light of both timeout-based and synchronization-based delays to make sure the

probability of failure stays below ε.

We stress that in doing so, the current theoretical definition remains crucially

important, as it allows us to tightly bound the failure probability to the number of

actual queries made by an adversary. The second part of the task (which has been

overlooked so far) is to make sure to get a correct estimate on the number of such

queries.

Note that we do not claim to make fundamental changes to the definition of

security of PAKE protocols, but rather to point out that more concrete definitions

are necessary for security engineers to understand and ensure the security of PAKE

protocols more exactly in the real world.

4.4.1 The Formal Definition

We briefly review the security notions for PAKE protocol models [BPR00,

KOY01].

Protocol Entities and Identifiers. Each protocol participant is either a client

72

(denoted by C) or a server (denoted by S). Each client selects a secret password

from a small set Password of size N and registers it with a server. For simplicity, we

assume that the distribution of the password is uniform. Each participant can run

as many protocol instances as s/he likes, and each client instance is denoted by Ci

and server instances by Sj, for any integers i and j.

Each protocol instance is denoted by U i, for any i, and has a unique session

identifier denoted by sidiU . Given a participant in a protocol instance U i, we denote

by pidiU the identifier of a partner with whom the participant intends to establish a

shared session key, skiU . After a participant computes a session key, the participant

may accept it by setting a boolean variable acceptiU = true. Acceptance of a session

key occurs only once per protocol instance, and the lifetime of that key ends when

the session terminates.

Basic Oracle Queries. The adversary has complete control over the communi-

cation network and his behavior is modeled via queries to a set of oracles, briefly

reviewed below.

• Execute(Ci, Sj) runs an execution of the protocol between new instances Ci

and Sj and outputs the transcript of the protocol execution. This models

passive eavesdropping.

• Send(U i,m) sends messagem to instance U i (if there is no instance U i, initiates

a new one) and returns the response according to the protocol. This models

active attacks.

• Reveal(U i) outputs the session key of instance U i, if U i has accepted a session

73

key.

• Test(U i) measures the adversarial advantage in attacking the protocol and is

queried for an accepted session key in instance U i. A random bit b is flipped;

if b = 0, a random session key is returned. If b = 1, the session key of instance

U i is returned.

Partnering. We say instances Ci and Sj are partnered if (1) sidiC = sidjS 6= NULL,

and (2) pidiC = S and pidjS = C.

Freshness. We say an instance is fresh if the instance has accepted and neither of

the instance and the partnered instance have been queried via Reveal.

Correctness. We always assume a correct protocol, where this is defined as follows:

if two partnered instances Ci and Sj accept, then they must both conclude with the

same session key.

Defining Security. We say the adversary wins in the Test experiment if the ad-

versary correctly guesses the bit b used in the Test oracle and the instance queried

at the Test oracle is fresh. More formally:

We say an adversary wins in the Test experiment if the following conditions

are satisfied: (1) the adversary queries Test oracle for a fresh instance U i which has

accepted a session key skiU ; (2) the adversary outputs a bit b′ and b′ is equal to b

used in the Test oracle. This event is denoted by Succ and the advantage of the

adversary A attacking protocol P is defined as:

AdvA,P (k) = 2 · Pr[Succ]− 1, (4.1)

74

where k is the security parameter and the probability is taken over the random coins

used by the oracle queries and the adversary. Now, we can provide a new security

definition for PAKE protocols as follows:

Definition 4.1. We say a protocol P is a secure password-based authenticated key

exchange protocol if for all password spaces of size N and for all polynomial-time

adversaries A making at most Q Send queries we have that AdvA,P (k) ≤ Q
N

+negl(k)

where negl(·) is a negligible function.

4.4.2 A Concrete Security Definition

Notice that the above definition simply bounds the probability of failure of

the protocol as a function of number of queries made by the adversary, and the size

of the dictionary space. It does not put a “hard” concrete bound on such failure

probability.

What follows is a concrete-security version of the above definition. We con-

sider a specific adversary A which runs in time T , and consider its advantage in

a specific instantiation of the protocol (notice that we remove “asymptotic” secu-

rity parameters and negligible functions here). We also impose a bound ε on the

acceptable probability that the protocol can fail.

Definition 4.2. We say a protocol P is a (T, ε)-secure password-based authenticated

key exchange protocol if for all probabilistic adversaries A which run in time T , we

have that AdvA,P ≤ ε.

In practice one fixes an reasonable bound on the computation time T of the

75

adversary (say sufficient not to break Diffie-Hellman on groups of 160-bit prime

order), and an acceptable probability of failure ε and determines under which con-

ditions the protocol satisfies Definition 4.2. In particular one could try to set the

size N of the password space so as to match the level of security desired.

If a protocol is proven secure according to the theoretical Definition 4.1, then

bounding the probability of failure with ε in a concrete instantiation means that

one must bound Q/N ≤ ε.5 Usually this is done by bounding the number Q∗ of

failed login attempts allowed before locking a user’s account. Since this would seem

to bound the number of possible queries of an adversary, it would therefore seems

that setting Q∗ ≤ ε ·N would suffice. But as we have shown in the previous section

this is not that simple, and in some cases it is not going to work.

In the next section we show better ways to analyze PAKE protocols, in the

face of timeout-delay and synchronization-delay attacks, so that a more realistic

estimate of the failure probability ε can be achieved.

5Actually it must be Q/N ≤ ε−ε′ where ε′ is the value assumed by the “asymptotic” negligible

function negl(k) when the protocol is instantiated with a concrete security parameter k. One can

estimate ε′ by carefully analyzing the proof of security of the protocol and using appropriate key-

sizes (for example in the KOY protocol one would look at the time T of the best current algorithm

for solving the Decisional Diffie-Hellman Assumption for the concrete parameters chosen by the

protocol). In the rest of this chapter ignore the factor of ε′, as it is not relevant to the discussion

at hand and is anyway many order of magnitude smaller than ε.

76

4.5 Analysis of the Delay-Based Attacks and Recommendations

In this section, we formally analyze both timeout-delay and synchronization-

delay attacks and show how to keep the failure probability bound by ε even in the

presence of such attacks. In Section 4.5.3 we then show a generic transformation as

countermeasures that can be taken to neutralize or minimize such attacks.

4.5.1 Timeout-based Attacks

In this section, we distinguish between instances representing on-line attacks

and log-in failures and present their relationship.

On-line Attacks. Although the notion of on-line attacks is essential to the security

definition of any PAKE protocol, previous work has defined it only in the context

of the implicit authentication model [BPR00, KOY01]. Here we define the notion

of on-line attacks for the explicit authentication model.

Intuitively, a protocol instance is an on-line attack if it satisfies two condi-

tions, namely (1) the adversary actively sent a message to the instance, and (2) the

adversary can tell whether a password guess in the instance is successful.

Log-in Failures. Intuitively, we say a protocol instance represents a log-in failure if

the instance rejects the session key, regardless of the cause for rejection; i.e., incorrect

authentication message received, timeout, number of login attempts exceeded. Note

that an instance can be a log-in failure and an on-line attack at the same time.

Conversely, we say a protocol instance represents a log-in success if the instance

accepts the session key. Ultimately, all instances become either a log-in success or

77

honest
user's
failure

counted uncounted

Qc
o Qu

o

R Qo

Rh

login failure on-line attack

Figure 4.5: Sets of instances representing login failures and online attacks. (r = |R|,
rh = |Rh|, qo = |Qo|, qco = |Qco|, and quo = |Quo |)

a log-in failure, due to the use of timeouts.

On-line Attacks vs. Log-in Failures. The difference between on-line attacks

and login failures is illustrated in Figure 4.5 and explained below.

Let R denote set of protocol instances representing log-in failures, and Qo de-

note set of instances representing on-line attacks. Then, R comprises log-in failures

caused either by an honest user (i.e., via an incorrect password) or by an adver-

sary (i.e., via a password-guessing attack). Clearly, instances of the latter must be

included in the count of on-line attacks. We let Rh denote set of instances of the

former (i.e., honest user’s log-in failures) and let Qco denote set of instances of the

latter. In particular, instances of the latter represent both of log-in failures and

on-line attacks. We call them counted on-line attacks.

Furthermore, in contrast with the counted on-line attacks, there may exist

on-line attacks that do not represent log-in failures, which we call uncounted on-line

attack. We also have:

qo = qco + quo . (4.2)

78

Timeout-based Attacks. In principle, the advantage of an adversary in breaking

a PAKE protocol is proportional to the number of on-line attacks launched by that

adversary. The security of a PAKE protocol is preserved only when the number

of on-line attacks allowed is bounded. In practice, the only method to bound the

number of such attacks is to count consecutive log-in failures for each client account.

Hence, in our model, qo ≤ r.

However, as we have seen earlier (Equations 4.1, 4.2 and Figure 4.5) for r to be

close to qo, we need to have a small rh and quo . Fortunately, without loss of generality,

we can assume that rh is small since honest users are unlikely to make continuous

login mistakes). However, as illustrated in the experiments shown in Section 4.3 , quo

can be very large, and this enables concurrent attacks. (Without loss of generality,

we only need to consider a restricted concurrency model for user logins on the client

side. A client bounds user-login attacks by counting login failures within the range

of those counted by the server side.)

We consider now the cases when quo can become large. Mutual authentication

can be achieved in two different ways: Either the server sends the authentication

message first, or the client sends the authentication message first. These two differ-

ent forms of explicit authentication have different practical consequences; i.e., the

former allows the existence of uncounted on-line attacks while the latter case does

not. Clearly, timeout-based attacks are possible whenever quo > 0; i.e., instances

representing uncounted-online attacks exist. Therefore if client authentication pre-

cedes server authentication timeout-delay attacks can be prevented. As a practical

example, we illustrate the introduction of client pre-authentication in extant PAKE

79

protocols, such as those suggested for TLS integration, in the recommendations

Section 4.5.3 below.

4.5.2 Representation of Synchronization-based Attacks

Client pre-authentication, however, does not prevent synchronization based,

on-line attacks. These attacks are possible due to inherent delays in updating copies

of failed-login counters in server replicas. To capture this fact, we introduce the

following variables.

Let r[C] be the global counter of login failures for all server replicas that share

account information for a client C. Let r[C]i be a counter of login failures of a server

replica Si. Upon a new session requested by C, each server replica Si updates r[C]i

by setting it to r[C]. Additional sessions cannot be initiated by C whenever r[C]i

reaches Q∗. The global counter rC to be increased by 1 whenever a client session

fails; i.e., a session key is not accepted. Clearly, we have:

r[C]i ≤ rC . (4.3)

Synchronization-based attacks are possible whenever rC − r[C]i ≥ 0. This

difference can be non-negligibly large when several server replicas are used since the

synchronization delays increase.

In other words, to neutralize the effects of synchronization-delay based attacks

one needs to estimate the number of protocol instances, δ, that an adversary can

invoke during the maximum synchronization delay ∆ of a system. If the PAKE

protocol is secure according to Definition 4.1 then the probability of success of the

80

adversary can only be bounded by Q+δ
N

+ negl(k). At this point the only way to

reduce this probability to below the acceptable ε threshold of Definition 4.2 is to

try to minimize δ (by minimizing ∆) or increasing the size of the required password

space (e.g., via password complexity rules), to N ′ ≥ N .

4.5.3 Recommendations for Existing PAKE Protocols

In this section, we provide a generic method of enhancing (or fixing) PAKE

protocols so that they achieve security against delay-based attacks, in the client-

server model. An exceptional case that a single session is only allowed at a time is

out of concerns. First, we consider PAKE protocols that are provably secure in the

implicit authentication model by Bellare, et al. [BPR00]. Then, we consider PAKE

protocols that are provably secure in the explicit authentication model [BPR00,

BR93]. We then describe a fixed PAKE protocol for SSL/TLS.

In fact, this method is a sort of simple, low-tech fix, but should work as a

generic transformation for enhancing the security against delay-based attacks in the

client-server model. Note that anyway protocols where the client authenticates first

already exist, e.g., KOY [KOY01] and even in the IEEE standardization [IEE05].

4.5.3.1 Enhancement 1

First we consider PAKE protocols that are proven secure in the implicit au-

thentication model. Our enhancement is essentially the transformation by Bellare,

Rogaway and Pointcheval [BPR00] that adds mutual authentication to a PAKE pro-

81

Enhancement 1

Let H be the random hash functiona

Client to Server Authentication: In π, if client C accepts sk′C and terminates,
do the following:

1. compute s̃kC = H(C||S||T) where T denotes the protocol transcript
resulted from the execution of π.

2. compute skC = H(s̃kC ||0), authC = H(s̃kC ||1), and authS =
H(s̃kC ||2).

3. send an additional flow, authC and set compute = true.

Server to Client Authentication: Upon receiving auth′C from C, in π, if server S
accepts sk′S and terminates, do the same thing analogously as follows:

1. compute s̃kS = H(C||S||T) where T denotes the protocol transcript
resulted from the execution of π.

2. compute skS = H(s̃kS ||0), authC = H(s̃kS ||1), and authS = H(s̃kS ||2).

3. verify if auth′C = authC , and if it is true, do the following: (a)
send an additional flow, authS and, (b) set compute = true, accept =
true, determine = true and terminate.

4. Otherwise, set compute = true, accept = false, determine = true and
terminate.

Client verification: Upon receiving auth′S from S, verify if auth′S = authS , and
do the following:

1. if the verification comes out true, set accept = true, determine = true

and terminate.

2. otherwise, set accept = false, determine = true and terminate.

� Restricted concurrency is allowed to client-side protocol executions and full
concurrency is allowed to server-side protocol executions.

aAs described in [BPR00], a pseudo random function is sufficient for adding authen-
tication, for simplicity, we follow them to assume the random oracle model for H.

Figure 4.6: Enhancing PAKE protocol π with implicit authentication into a protocol

π′′ secure against timeout-delay attacks.

82

Enhancement 2

Let π be a PAKE protocol satisfying (a) it is proven secure in the explicit au-
thentication model; (b) in π, server-to-client authentication step proceeds client-
to-server authentication step; and (c) both of client and server keep the password
(symmetric setting)a

Initialization: In π, if client C is supposed to send the first message to initialize
a communication with server S, send the first flow, Hello(C, S, init).

Switching roles: C runs a protocol execution following server-side of π and S

runs a protocol execution following client-side of π.

� Restricted concurrency is allowed to client-side protocol executions and full
concurrency is allowed to server-side protocol executions.

aThis is the opposite to the asymmetric setting where server keeps image of password
for a certain function.

Figure 4.7: Switching roles of client and server of protocol π to have a protocol π′

secure against timeout-delay attacks.

tocol. However, we carefully fix the order of authentication so that client-to-server

authentication occurs prior to server-to-client authentication.6 The enhancement is

illustrated in Figure 4.6 in detail.

4.5.3.2 Enhancement 2

Next, we consider PAKE protocols which are proven secure in the explicit au-

thentication model. In these protocols, mutual authentication is composed of server-

to-client authentication prior to client-to-server authentication. Such a composition

makes PAKE protocol vulnerable to concurrent attacks when full concurrency is

6In [BPR00], a transformation for adding mutual authentication is described without carefully

specifying whether the client or server authenticates first.

83

Client C Server S
(password pw) (password pw)

accept, compute
determine

}
← false

accept, compute
determine

}
← false

Choose ciphersuite:

choose Nc
R←− {0, 1}∗ ClientHello: (Nc, C, ...)−−−−−−−−−−−−−−−−−−−→

ServerHello: (Ns, ...)←−−−−−−−−−−−−−−−−−−− choose Ns
R←− {0, 1}∗

Compute Diffie-Hellman secret:
ServerKeyExchange:(S, Y ?) choose y R←− Z∗q ,

compute Y ← gy,
encrypt Y ? ← Y × Upw

ServerHelloDone←−−−−−−−−−−−−−−−−−−−−
choose x R←− Z∗q ,

compute X ← gx,
decrypt Y ← Y ?/Upw ClientKeyExchange: (X)

−−−−−−−−−−−−−−−−−−−−→
compute ← true Z = Y x = Xy compute ← true

Compute pre-master secret and authentication key:
PreMasterSecret = Hash(C, S, pw, X‖Y ?‖Z)

AuthKey = PRF1(PreMasterSecret, Nc‖Ns)

Compute authenticators:
AuthC=MAC.SignAuthKey(“client finished”,...) AuthS=MAC.SignAuthKey(“server finished”,...)

Authenticator : AuthC

[ChangeCipherSpec]
−−−−−−−−−−−−−−−−−→

determine← true
Abort if verification fails.
Else: accept← true

Authenticator: AuthS

[ChangeCipherSpec]
←−−−−−−−−−−−−−−−−−

determine ← true
Abort if verification fails.

Else: accept ← true

Compute master secret and key material as in standard TLS:
MasterSecret = PRF2(PreMasterSecert, Nc||Ns)

KeyBlock = PRF3(MasterSecret, Ns||Nc)

←−−−−−−−−−−− Secure Channel −−−−−−−−−−−→

Figure 4.8: The full handshake for PAKE-TLS ciphersuites in the full concurrency
model.

84

allowed for server executions. Our enhancement is simply to swap the roles of the

parties so that the client authenticated first; see Figure 4.7.

4.5.3.3 Fully Concurrent PAKE in TLS

Provably secure PAKE in TLS proposed recently by Abdalla et al. [ABC+06]

shows a practical application of provably secure PAKE. This work represents a sound

attempt to replace a widely used AKE with provably secure PAKE. However, this

protocol is also vulnerable to concurrent attacks since the authentication message

of server precedes that of client.

We can apply our enhancement 2 to this protocol, and then obtain the new

provably secure PAKE in TLS, as illustrated in Figure 4.8. (Let us borrow the

depicting style of this Figure from [ABC+06].) The original protocol of [ABC+06]

switches the roles of participants and lets the authentication message of client pre-

cede that of server. The recent standardization [BWNH+03] of PAKE lets the

ClientHello message include the ID of client in its extension field.

4.6 Conclusion

We have shown that existing formal definitions for PAKE do not provide a good

model for the real-world security of a given implementation of a PAKE protocol. In

particular, the definition – while theoretically sound – does not tightly address real-

world concerns, and naive solutions to bridge this gap do not work. We hope our

results and recommendations will influence the standardization of PAKE protocols

85

going forward, and the better understanding of security engineers with regard to

the security of PAKE protocols in the real world.

Taking a broader viewpoint, we can also ask: for what other cryptographic

protocols do current formal definitions not adequately match practical needs?

4.7 Simple Experiments with Delay-Based Attacks

The delay-based attacks on PAKE protocols show that even provably secure

protocols cannot bound on-line attacks as assumed in the previous adversary models.

In other words, these models are fragile in the sense that a rigid bound cannot be

obtained in practice. In this section, we illustrate practical attacks for the generic

scenarios presented in Section 4.3.

Figure 4.9 shows the experimental result of concurrent attacks on two provably

secure PAKE protocols, JG and PAK-Z+ [JG04, Mac02], with a wider spectrum of

waiting time ∆. We perform the experiments in the Windows XP SP2 PC platforms

having P4 2.6GHz CPUs and 2GB memory. The server implementation is multi-

threaded as usual, while our adversary client is also multi-threaded for launching

concurrent attacks. In the server threads of our experiments, every login failure

(including wrong password and time-out) of the same account is counted and shared

as a global variable. This is an emulation of multiple servers7. In a real-world

attack, each client might be distributed in a Trinoo style. In these experiments,

7In reality, there would be a synchronization delay for such a count over multiple server hosts

but this delay is an order of magnitude smaller than a timeout delay and would not affect the

results of our experiments; this simple experiment illustrates our claim clearly.

86

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

100

200

300

400

500

600

700

800

900

1000

Time out (ms)

Th
e

nu
m

be
r o

f s
uc

ce
ss

es

JG
PAK!Z+

Figure 4.9: Expanded experimental results of concurrent attacks on provably secure

PAKEs.

we emulate the timeout delay attack within a single host. Each client thread pre-

computes the challenge messages off-line with different password guesses, and sends

them out concurrently on-line. Each of invoked server instances then responds with

authentication messages for respective guesses unless the number of consecutive

login failures exceeds the limit Q∗.

In Figure 4.9, we set the synchronized bound Q∗ to 5 and distinct timeout

delays ∆ in a larger range than in Section 4.3. We implement the timeouts by

asynchronous sockets; i.e., a non-blocking socket in Visual Studio 6.0. In each ex-

periment, we have an adversary open 1000 concurrent sessions for the same account

while we vary ∆. As we increase ∆ from 500 ms to 10000 ms, a growing number

of authentication messages that exceed bound Q∗ significantly are obtained by the

adversary. For example, when ∆ = 500ms, the JG protocol allows 152 guesses and

PAK-Z+ protocol 221 guesses, on the average. However, when ∆ = 5000ms, JG al-

lows 366 guesses and PAK-Z+ 540 guesses on the average, and when ∆ = 10000ms,

87

50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

300

350

400

The number of attacking instances

Th
e

nu
m

be
r o

f v
er

ifi
ed

 p
as

sw
or

ds

Waiting time ! 1000ms
Waiting time ! 2000ms
Waiting time ! 3000ms
Waiting time ! 4000ms
Waiting time ! 5000ms

Figure 4.10: Experiment of JG protocol.

50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

300

350

400

The number of attacking instances

Th
e

nu
m

be
r o

f v
er

ifi
ed

 p
as

sw
or

ds

Waiting time ! 1000ms
Waiting time ! 2000ms
Waiting time ! 3000ms
Waiting time ! 4000ms
Waiting time ! 5000ms

Figure 4.11: Experiment of PAK-Z+ protocol.

JG allows 552 guesses and PAK-Z+ 878 guesses on the average. Here the average

is computed over 10 consecutive experiments.

Figure 4.9 shows that if the time-out duration is set loosely or never set at

all, then almost all of concurrent requests cause servers to send out authentication

messages. We observe that the difference between JG and PAK-Z+ results from the

distinct computational loads placed on the server. (JG needs more computation than

PAK-Z+ on a server when manipulating authentication messages, and this delays

88

the handling of many requests until the failure count exceeds the security bound.)

Interestingly, when we reduce the computation load on the server, by making the

adversary send fewer requests concurrently, the results obtained are nearly linear

between ∆ = 1000 and 5000. Figure 4.10 and Figure 4.11, respectively, illustrate

the experimental results with fewer attack instances. Here, the number of verified

passwords (i.e., successes of concurrent attacks) is almost linear in the number of

attack instances when the number of attack instances is relatively small.

89

Chapter 5

Retaining Non-tightly Reduced Privacy Properties of Secure

Encryption Schemes in the Real-World

5.1 Outline of the Chapter

In Section 5.2.2 we introduce security properties of encryption schemes and

present important claims and theorem for security properties obtained by non-tight

reduction proofs. In Section 5.3 we demonstrate specific attacks against secure

encryption schemes. In particular, we describe details of our attacks, argue the

feasibility of these attacks in practice, and show vulnerability examples. We also

give examples of schemes withstanding our attacks and analyze their characteristics.

In Section 5.4 we discuss related work. In Section 5.5 we provide full proofs of claims

appeared in Section 5.2.

5.2 Security Properties of Encryption Schemes

Security-Property Definitions. In the asymptotic approach, an adversary is defined

in terms of the possible attacks it can launch under a given computational model. An

attack consists of a well-defined goal, such as the ability to distinguish encryptions

of an adversary-supplied plaintext from those of a random string of the same length

as that of the plaintext, and a set of attack capabilities. The attack capabilities

90

enable an adversary to obtain ciphertexts of predictable, known or chosen plain-

texts [HS93, Bih96, Bel97, SM00], and to use chosen ciphertexts [BDJR97, Rog04a].

The capabilities are typically denoted by PPA (predictable plaintext attacks), KPA

(known plaintext attacks), CPA (chosen plaintext attacks) and CCA (chosen cipher-

text attacks). Thus, a security property of an encryption scheme can be expressed

as the pair <denial of an adversary goal - attack capability>.

For example, a strong adversary goal in attacking an encryption scheme ex-

presses the ability to distinguish ciphertexts produced by encryption from random

bits [AR00, Rog04b]. The security property expressing the ability of an encryption

scheme to withstand an attack with such a goal using chosen plaintexts is denoted

by “indistinguishability from random bits in a (adaptive) chosen-plaintext attack,”

or IND$-CPA. Similarly, the ability of an encryption scheme to withstand an attack

that attempts to distinguish between encryptions of real and random plaintexts, or

between encryptions of two different plaintexts, of the same length, using chosen

plaintexts is denoted by IND-CPA.

Formal definitions of an adversary’s advantage in attacking different security

properties of an encryption scheme are provided by the work of Bellare and Rogaway

[BDJR97, Bel98, Rog04b, BR05]. The reader is referred to this body of work for

in-depth coverage of these definitions. Examples of formal definitions for several

security properties are given in Section 5.2.2 below. We present these definitions as

background to the illustration of non-tight reduction results and their implications.

Security of an encryption scheme, Π(n), is formally defined in the asymptotic

approach by introducing the notion of an adversary A’s advantage in attacking a

91

security property of that scheme, sec-prop, and requiring that the advantage be

bounded from above by a negligible function, ε(n)1, where n is the security param-

eter; i.e.,

Advsec-prop

Π(n) (A) ≤ ε(n).

Reductions. Let A, B be security properties of an encryption scheme. Suppose

that the advantage of any probabilistic, polynomially time (PPT) adversary B in

attacking security property B, in qB queries and time tB, is known (i.e., explicitly

assumed, proven) to be bounded by εB from above. Let A denote some PPT ad-

versary program whose advantage in attacking security property A, in qA queries

and time tA, exceeds εA. Then, the reduction B⇒A is a new PPT adversary pro-

gram that gains an advantage greater than εB in attacking security property B by

invoking an adversary A, possibly a polynomially-bounded number of times.

5.2.1 Non-tight Reductions

A reduction is said to be tight if εA ≈ εB and tA ≈ tB (qA ≈ qB).2 A reduction

is non-tight if εA � εB or tA � tB (qA � qB). In typical tight reductions among

properties of encryption schemes, εA(n) ≤ c · εB(n) + negligible(n), where c is a

small positive constant and negligible(n) is a negligible function in the security

parameter n. In contrast, results of non-tight reductions are illustrated by the

following two examples:

1A function ε(n) is negligible if for every polynomial P (·) there exists an N such that for all

integers n > N (i.e., for sufficiently large values of n) ε(n) < 1
P (n) .

2More precisely, by a ≈ b we mean that |a− b| ≤ c ·min(a, b) for a small positive constant c.

92

1. εA(n) ≤ P (n) · εB(n) + negligible(n), and

2. εA(n) ≤ c · εB(n) +Q(n) · 2−L(n),

where c is a small positive constant, P (n), Q(n) are positive polynomials, and L(n)

is the size of a block cipher. Of course, other inequalities for non-tightness follow,

such as

3. εA(n) ≤ P (n) · εB(n) +Q(n) · 2−L(n).

A source of non-tight reduction results of type 1 is the application of the hy-

brid techniques to proofs of indistinguishability; viz., Claim 5.1 where P = p + 1

and p is the number of oracles for chosen-plaintext encryption available to an ad-

versary. Hybrid reduction proofs are typically used when a basic cryptographic

primitive that exhibits property B is applied multiple times to obtain property A.

For example, non-tight reductions appear in cases when property B is “there ex-

ists a PPT adversary that distinguishes a single sample from distribution X from a

single sample of distribution Y with non-negligible success” and A is “there exists

another PPT adversary that distinguishes a polynomial number, P > 2, of indepen-

dent samples efficiently obtained from distribution X from P independent samples

efficiently obtained from distribution Y with non-negligible success.”

Multiple sources of non-tight reduction results of type 2 appear in typical

proofs. For example, in Claim 5.2 below, Q = p and p is the number of oracles

for chosen-plaintext encryption available to an adversary. Also, in reductions from

a block cipher modeled as a secure family of pseudorandom functions (PRF) to a

93

security property (e.g., real-or-random, left-or-right indistinguishability) of a prob-

abilistic encryption scheme, such as CBC$ or CTR$ [BDJR97], it is possible that

Q(n) · 2−L(n) = q2(n) · 2−L(n) � c · εB(n), where q is the number of queries to the

block cipher used by that scheme. This would increase non-tightness almost pro-

portionally to Q(n). Furthermore, the non-tightness of this example is (slightly)

increased in practice, when the block cipher is implemented with a family of secure

pseudo-random permutations (PRPs), as in the case of AES and 3DES. In this case,

switching from a PRF to a PRP family increases Q by a q2

2l+1 term, where l is the

size of the block cipher.

An example of non-tight reduction of type 3 is provided by results of the

Theorem 5.1 of Section 5.2.2. Here, P = p + 1 and Q = p and p is the number of

oracles for chosen-plaintext encryption available to an adversary.

Security Relevance. Non-tightness of a reduction proof is security-irrelevant in the

asymptotic approach. The closure properties of negligible functions (viz., Fact 5.1

below) imply that a distinction between tight and non-tight reductions need not be

made to guarantee a security property of an encryption scheme.

Fact 5.1. (closure properties of negligible functions [KL08, Chapter 3])

1. If negligiblei(n), i = 1, 2, are negligible functions in the parameter n, then

negligible3(n) = negligible1(n) + negligible2(n) for a sufficiently large

n.

2. If negligible1(n) is a negligible function in the parameter n, then negligible2(n) =

P ·negligible1(n) is negligible for a sufficiently large n whenever P is a pos-

94

itive polynomial.

Regardless of how large positive polynomials P (n) and Q(n) may become as

the result of a non-tight reduction of types 1 – 3 illustrated above, the negligibility

of εA(n) is assured by a sufficiently large security parameter n. Furthermore, any

increase in P and Q, which increases the non-tightness of a reduction, can be offset

by increasing the security parameter n, which causes an automatic decrease of εB(n)

and 2−L(n). In short, in the asymptotic approach, the non-tightness of a reduction

proof B ⇒ A is irrelevant to the security property A obtained from that reduction.

The only relevance of non-tightness in practice is on a scheme’s performance, as a

larger security parameter typically requires a larger key and, possibly, cipher-block

size, which implies lower block-cipher performance [Bel98].

The key assumption that underlies the asymptotic approach, namely that an

immediate increase of the security parameter offsets any increase of non-tightness

factors, proves to impractical, as shown in Section 5.3.2 below. In the real world, a

security parameter does not exist for symmetric-key block ciphers, and block-cipher

parameters (i.e., the key and block sizes) cannot be increased for decades, not years.

Thus, the results of non-tight reduction proofs become security-relevant in practice.

5.2.2 Security Properties Obtained by Tight and Non-Tight Reduc-

tions

In this section, we review literature definitions of properties obtained by tight

and non-tight reductions, which we use in our illustrations. The proofs of the claims

95

and theorem of this section are found in the Appendix.

Definition 5.1. (IND$-CPA) [AR00, Rog04a] Let Π(n) = (K, E ,D) be an encryp-

tion scheme, let n be a security parameter, and let A be a chosen plaintext attack

adversary. Define

AdvIND$-CPA
Π(n) (A)

def
= Pr

[
k

r← K(n) : AEk(·)(n) = 1
]
− Pr

[
k

r← K(n) : A$|Ek(·)|
(n) = 1

]
Encryption scheme Π(n) is IND$-CPA secure if for every probabilistic polynomial-

time adversary A, AdvIND$-CPA
Π(n) (A) ≤ ε(n), where ε(n) is a negligible function of

n.

Definition 5.2. (KH-CPA) [Fis99] Let Π(n) = (K, E ,D) be an encryption scheme,

let n be a security parameter, and let A be a chosen plaintext attack adversary.

Define

AdvKH-CPA
Π(n) (A)

def
= Pr

[
k, k′

r← K(n) : AEk(·),Ek′ (·)(n) = 1
]

−Pr
[
k

r← K(n) : AEk(·),Ek(·)(n) = 1
]

Encryption scheme Π(n) is key-hiding in a chosen-plaintext attack (or KH-CPA) if

for every probabilistic polynomial-time adversary A, AdvKH-CPA
Π(n) (A) is negligible (as

a function of n).

The “key hiding” property, KH, conveys a sense of key privacy as cipher-

texts produced by encryption with the same key cannot be distinguished from those

produced by encryption with different keys.

The “multi-key hiding” property, KHp, defined below, allows the adversary to

access p > 2 oracles. This property was parenthetically suggested by Abadi and

96

Rogaway [AR00] who observed that it is indistinguishable from the ordinary “key

hiding” property, KH, from the point of view of adversary power; i.e., an adversary

gains no extra power by accessing p > 2 oracles instead of just two. It is interesting

to note that a similar observation regarding the power of an adversary was made for

the formal approach to adversary definition, as illustrated by the Dolev-Yao model

[DY83]. Micciancio [Mic05] shows that the Dolev-Yao adversary needs no more than

two parties to break a cryptographic protocol, and hence the availability of a larger

number of protocol parties adds no power to that adversary.

The attacks presented in the next section show that these observations, while

correct in the asymptotic and formal-methods approach, do not hold in practice.

Definition 5.3. (KHp-CPA) Let Π(n) = (K, E ,D) be an encryption scheme, let n

be a security parameter, and let A be a chosen plaintext attack adversary. Define

Adv
KHp-CPA

Π(n) (A)
def
= Pr

[
k1, k2, ..., kp

r← K(n) : AEk1
(·),Ek2

(·),...,Ekp (·)(n) = 1
]

−Pr
[
k

r← K(n) : AEk(·),...,Ek(·)(n) = 1
]

Encryption scheme Π(n) is “multi-key hiding” in a chosen-plaintext attack with

p oracles (or KHp-CPA) if for every probabilistic polynomial-time adversary A,

Adv
KHp-CPA

Π(n) (A) is negligible (as a function of n).

Definition 5.4. (KR-CPA) [BR05, Chapter 5.12] Let Π(n) = (K, E ,D) be an en-

cryption scheme, let n be a security parameter, and let A be a chosen plaintext

attack adversary. Define

AdvKR-CPA
Π(n) (A)

def
= Pr

[
k

r← K(n), AEk(·)(n) = k′ : k′ = k
]

97

Encryption scheme Π(n) is secure against key-recovery in a chosen-plaintext attack

(or has the KR-CPA property) if for every probabilistic polynomial-time adversary

A, AdvKR-CPA
Π(n) (A) is negligible (as a function of n).

The following property is informally described in [KM06] and formally defined

here:

Definition 5.5. (EKRp-CPA) Let Π(n) = (K, E ,D) be an encryption scheme, let

n be a security parameter, and let A be a chosen plaintext attack adversary. Define

Adv
EKRp-CPA

Π(n) (A)
def
= Pr

[
k1, ..., kp

r← K(n), AEk1
(·),...,Ekp (·)(n) = k′ : k′ ∈ {k1, ..., kp}

]
Encryption scheme Π(n) is secure against “existential-key-recovery” in a chosen-

plaintext attack with p oracles (or has EKRp-CPA property) if for every probabilistic

polynomial-time adversary A, Adv
EKRp-CPA

Π(n) (A) is negligible (as a function of n).

Note that the EKRp property is exactly the KR property when p = 1.

Fact 5.2. [IND$-CPA⇒ KR-CPA] [Rog04a] [BR05, Chapter 5.12] Let Π(n) be an

IND$-CPA secure encryption scheme. That is, for every PPT adversary A attacking

the IND$-CPA property of Π(n), there exists a negligible function ε(·) such that

AdvIND$-CPA
Π(n) (A) ≤ ε(n)

Then, for every PPT adversary B attacking the KR property of Π(n), we have:

AdvKR-CPA
Π(n) (B) ≤ ε(n) +

1

2l(n)

where l(n) is the block size used in the encryption scheme Π(n).

98

Claim 5.1. [IND$-CPA⇒ KHp-CPA] Let Π(n) be an IND$-CPA secure encryption

scheme. That is, for every PPT adversary A attacking the IND$-CPA property of

Π(n), there exists a negligible function ε(·) such that

AdvIND$-CPA
Π(n) (A) ≤ ε(n).

Then, for every PPT adversary B attacking KHp-CPA property of Π(n), we have:

Adv
KHp-CPA

Π(n) (B) ≤ (p+ 1) · ε(n).

Claim 5.2. [KHp-CPA⇒ EKRp-CPA] Let Π(n) be an encryption scheme. Then,

for any PPT adversary A attacking the EKRp-CPA property of Π(n), there exists a

PPT adversary B attacking the KHp-CPA property of Π(n) such that:

∣∣∣Adv
EKRp-CPA

Π(n) (A)− Adv
KHp-CPA

Π(n) (B)
∣∣∣ ≤ p

2l(n)

where l(n) is the block size of encryption scheme Π(n).

An obvious corollary of this claim can be summarized as follows:

KHp-CPA security ⇒ KH-CPA security ⇒ KR-CPA security.

Also, it is easy to show that KR-CPA 6⇒ KH-CPA security.3

By Claims 5.1 and 5.2, we easily obtain the following theorem.

Theorem 5.1. [IND$-CPA⇒ EKRp-CPA] Let Π(n) be an IND$-CPA secure en-

cryption scheme. That is, for every PPT adversary A attacking the IND$-CPA

3In constructing a counterexample, use an IND$-CPA secure scheme that appends the least

significant bit of the encryption key to each ciphertext. This scheme preserves the KR-CPA

security but not KH-CPA.

99

property of Π(n), there exists a negligible function ε(·) such that

AdvIND$-CPA
Π(n) (A) ≤ ε(n)

Then, for every PPT adversary B attacking the EKRp-CPA property of Π(n), we

have:

Adv
EKRp-CPA

Π(n) (B) ≤ (p+ 1) · ε(n) +
p

2l(n)

5.3 Attacks against Secure Encryption Schemes

In this section we describe specific attacks against the “existential key recov-

ery” (EKRp) property of IND$-CPA secure schemes. Essentially, our attacks are

known/predictable plaintext attacks and so the success of these attacks against the

EKRp property automatically implies breaking the EKRp property under chosen

plaintext attacks (i.e., EKRp-CPA). Detailed attacks are presented later in Section

5.3.3.

We stress that our attacks break the EKRp property and KRp property while

they do not break the IND$ and KH and KR properties. In effect the attack shows

that:

1. The properties (EKRp and KHp) obtained by non-tight reduction are not re-

tained in the real-world.

2. The adversary does obtain more power by accessing p > 2 oracles instead of

just two (as mentioned in Section 5.2.2)

100

3. Universal property is not equivalent to existential property; namely, “exis-

tential key recovery” (EKRp) and “key recovery” (KR) properties are not

equivalent.

In practice, this means that, while all US national standard encryption schemes

(modes) [Dwo01] are IND-CPA secure, and hence secure against “key recovery”

attacks, some fail to exhibit not just “existential key recovery security” but also

“multi-key hiding,” whenever these modes are implemented with standard block

ciphers. In Section 5.3.3, we illustrate practical attacks against two schemes that

are proved IND$-CPA secure. An immediate consequence of our attacks is that

either the vulnerable IND$-CPA schemes must be replaced with schemes that with-

stand such attacks, or the key lengths of standard block ciphers [BBB+07] must be

increased.

5.3.1 Overview of Attack Strategies

EKRp Attack. In contrast with the asymptotic approach where non-tight reduction

results have no vulnerability significance, in the real-world, an adversary can ex-

ploit such results to attack properties of encryption schemes proven secure in the

asymptotic approach.

The network adversary’s strategy is to increase the non-tightness factor P =

p + 1 (viz., Theorem 5.1) to a level necessary for non-negligible advantage. At

that level, these security properties are vulnerable and lose all their value. To

increase P to that level, the network adversary needs to find an abundance of pre-

101

dictable/known plaintext-ciphertext pairs. How to do that has been known and

demonstrated in practice for more than six decades (viz., discussion below). Briefly,

the adversary precomputes a table containing the ciphertexts and keys used to

encrypt a known constant plaintext. The adversary harvests known/predictable

plaintext-ciphertext pairs from P continuously-available Internet oracles and de-

rives ciphertexts that encrypt the known constant. Finally the adversary searches

the precomputed table for a collision between the derived ciphertexts and the table

entries. A collision reveals the key that encrypted the harvested ciphertext. In Sec-

tion 5.3.3, we give the details of such attacks, compute the adversary’s advantage,

and illustrate the vulnerability of some secure encryption schemes implemented with

standard block ciphers.

5.3.2 What Enables Network Attacks in Practice?

As shown in Section 5.2.1 above, the asymptotic approach assumes that the

security parameter of can be increased at any time to offset an attack that increases

the non-tightness factors P and Q. In this section we show that in practice (1)

neither a security parameter nor block-cipher parameters can be increased during

the lifetime of an attack; and (2) the non-tightness factors P and Q can be increased

at zero, or near-zero, marginal cost by the adversary. This enables successful attacks

with non-negligible advantage (viz., Section 5.3.3).

Lack of a Security Parameter. In the real world, a security parameter cannot be used

to offset increases in the non-tightness factors P and Q for obvious reasons: neither

102

block ciphers nor encryption schemes have a security parameter [KL08, Rog04a].

Furthermore, block-cipher parameters, namely the key and block sizes, cannot be

increased to compensate for a possible weakness of an encryption scheme in an

attack, since these sizes are kept constant for decades, not years. For example,

based on the NIST Key Management guidelines regarding the longevity of different

key sizes[BBB+07], the 112-bit key size of 3DES will have lasted for over three

decades and its 64-bit block size for over five decades by year 2030, when this block

cipher will be phased out from use. Similarly, the 128-bit AES block and key sizes

would have lasted for at least three decades by year 2030 and beyond. Block-cipher

parameters are often hard-coded in both object code and hardware, and thus their

Internet-wide replacement becomes an extremely costly exercise. For all practical

purposes, the key and block sizes of a cipher are constant during the lifetime of any

network-adversary attack.

Continuous Availability of Multiple Oracles. Consider a network of nh nodes (hosts)

each having r compatible communication links, where typically r ≥ nh (i.e., two

hosts may have multiple links between them). Each compatible link represents

the use of the same protocol and secure encryption scheme, and each link uses

an independently generated encryption key. In such a network, the adversary can

use each of the P = r · nh links as a freely available oracle for predictable/known

plaintext-ciphertext pairs, whenever the communication protocol encrypts a pre-

dictable/known plaintext.

A vast and continuous supply of oracles that encrypt predictable/known plain-

103

text is available in the Internet. For example, the headers of the TCP/IP proto-

col suite, which are universally deployed in the Internet, offer no fewer than 88

known bits [Bel97, MF01] that are encrypted by the IPsec suite using a different

key per communication link. Application-level protocols that encrypt files (e.g.,

postscript file) produce globally-known constant headers encrypted in different keys

[Bih96, Bih02], as do HTTP and e-mail applications. Similarly, message padding

[Dwo01] offers predictable plaintext and sometimes known constant plaintext (e.g.,

for same-size messages) encrypted in different keys. In fact, oracles that produce

encryptions of known (constant) plaintext in different keys have been exploited for

more than six decades; i.e., since World War II. For example, messages encrypted

with the Naval Enigma in different keys (e.g., by different U-boats, in different re-

gions of the Atlantic ocean and Baltic sea), contained globally known constants like

the sender’s rank “Offizer” and weather report “Wettervorhersage Deutsche Bucht.”

[Bel97, HS93].

Oracles produced by standard protocols (e.g., known header/trailer fields)

cannot be eliminated in practice, and are continuously available to an adversary

at near-zero marginal cost (discussed below). Equally importantly, the number of

oracles available in the Internet is not just large, but it grows quadratically in the

number of the network nodes over time; i.e., P ≥ n2
h. This is very significant, as

the number of network nodes, nh, is expanding at a reasonably fast rate. This can

be inferred from the real-life Internet experience: in 2008 the number of Internet

users (and presumably nodes) grew by 89%. Between 1997 and 2008, Internet traffic

doubled every 6 months. The Internet is expected to grow from nearly 1 billion hosts

104

today to 2 billion hosts in 2011 [LB06]. Rapid growth in the number of Internet

nodes can be anticipated for years to come given the anticipated growth of Internet-

enabled phones.

Zero Marginal Cost. The network adversary exploits the availability of P oracles

appropriate for the attack at zero, or near-zero, marginal cost. This means that once

the adversary “pays” the initial cost of network access it only needs to passively

collect4 ciphertext for known/predictable plaintext from various freely available P

oracles. However, it need not expend any resources to generate the ciphertexts;

i.e., the adversary can simply find and exploit a large number of oracles in current

protocols [SM00]. Furthermore, the adversary does not need to harvest, transfer

and store all of the ciphertexts at once. Instead, the continuous availability of P

oracles allows an adversary to harvest ciphertext, transfer it at Internet speed and

buffer it incrementally at essentially zero cost [GH03, Gil08] during the lifetime of

block-cipher parameters [BBB+07]. Hence, communication costs, whose unit costs

are typically higher than those of storage, will be insignificant.

5.3.3 Vulnerability Examples: Nonce-based IND$-CPA Schemes

Nonce-based IND$-CPA Encryption. Rogaway introduced the notion of nonce-based

schemes, illustrated their practical benefits, and proved their IND$-CPA security.

Briefly, a nonce is “a value, like a counter that is used only once within a ses-

4Recent studies indicate that a tier-1 Autonomous System (AS) can hijack 60-70% of the traffic

destined to the top 100 websites [BFZ07], and companies such as Akamai claim to deliver 10-20%

of all web traffic.

105

sion” [Rog04b]. Nonces can be used as initialization vectors, not just counters, and

have a fundamental property: as long as they do not repeat on any message encryp-

tion, they could be chosen by an adversary. Hence, they need not be secret and need

not be part of the definition of the encryption or decryption algorithms of secure

schemes.

In this section we describe two attacks that succeed with non-negligible and

uncomfortably-high probability against the EKRp-KPA (and KHp-KPA) security of

two nonce-based IND$-CPA schemes implemented with standard block ciphers (e.g.,

AES-128 and 2-key 3DES); i.e., schemes CTR1 and CTR2 of Figures 5.1 and 5.2.

While the security of these schemes is broken with high probability, other nonce-

based IND$-CPA schemes such as CBC2 (viz., Figure 5.3) fare better, as their

security properties are left intact. We note that neither the asymptotic nor the

concrete security approach distinguish between the vulnerable and non-vulnerable

schemes illustrated in Figures 5.1–5.3. All are provably secure in both approaches

[BDJR97, Rog04b].

5.3.3.1 Key-Collision Attacks against EKRp-KPA/-PPA Security

The attacks presented below fall into the broad category of “key-collision”

attacks that use known and predictable plaintexts obtained with standard commu-

nication protocols. The differences between these attacks and those that have been

successfully launched since World Was II [HS93], most recently by Biham and others

[Bih96, Bih02, Gli98, MF01], are discussed in Section 5.4.

106

1. The EKRp-KPA Attack. In the CTR1 scheme illustrated in Figure 5.1 below,

the input to the encryption algorithm EK(·), namely (S+i) is known to an adversary.

Assume that, in a communication protocol using this scheme, some plaintext block xi

in fixed message position i is known for P communication links and their keys. This

is a common case, since communication protocols use highly formatted messages.

For example, this block could be part of a message header containing the protocol

and other identifiers; e.g., identifiers for the encryption, message authentication

code, and compression algorithms used. Of course, knowledge of the plaintext block

xi can be acquired from the protocol definition and operational use.

When used with communication protocols such as the ones mentioned above,

scheme CTR1 produces a large number of known plaintext-ciphertext pairs< xi, EKj
(S+

i) ⊕ xi > corresponding to the known value and fixed position of block xi, i =

0, · · ·m − 1, for all keys Kj, j = 1, ..., P . Now the adversary uses these pairs to

construct constant plaintext-ciphertext pairs. Recall that in nonce-based encryp-

tion schemes the nonce, N , and hence S in CTR1, is initialized to the same known

constant for all keys. This implies that the adversary can easily construct plaintext-

ciphertext pairs < (S + i), EKj
(S + i) > where (S + i) is a constant for all P keys,

Kj.

In anticipation of harvesting ciphertexts for known plaintexts and constructing

the constant pairs, the adversary enciphers the constant (S + i) in T distinct keys

K1, · · · , KT and precomputes a table comprising entries < EK1(S+ i), K1 >, · · · , <

EKT
(S + i), KT > indexed by these ciphertexts.

The adversary searches this table with the harvested ciphertext EKj
(S + i) of

107

unsuspecting network nodes (i.e., r · nh oracles) to find key collisions. A collision

would break EKRp-KPA security since the adversary would discover one of the P

keys used in the network.

Similar attacks also work against the CTR2 scheme (viz., Figure 5.2). For

CTR2, assume that the adversary’s known plaintext-ciphertext pair is block xi at

index i. Hence, the adversary can easily construct the known constant plaintext-

ciphertext pairs < N+i, EKj
(EKj

(N)+i) > where nonce N is initialized to a known

constant for all P keys, Kj. Note that the ciphertext entries in the precomputed

table require double encryption (with the same key, Kj) in the P distinct keys. This

means that he adversary need only double its effort expended in breaking CTR1 to

break CTR2.

2. The EKRp-PPA Attack. Schemes CTR1 and CTR2 allow successful key-

collision attacks even if the adversary can only predict, but not know with certainty,

the value of xi prior to actual attack. That is, the adversary would know that

plaintext block xi has one of the possible xij values, j = 1, · · · , s for some (small)

value of s. Informally, we say that such a plaintext xi is predictable if the value of s

is small compared with that of the block-cipher parameters.

In attacking CTR1, the adversary harvests the ciphertexts EKj
(S + i) ⊕ xi

for keys Kj. For each ciphertext produced by some unknown key K, the adversary

constructs s candidate pairs < (S + i), EK(S + i)⊕ xi ⊕ xij >, where one such pair

is guaranteed to be the constant plaintext-ciphertext pair < (S + i), EK(S + i) >.

This is the case since, by definition, xi = xij for one of the s values of j. Then the

adversary searches the precomputed table (described above) using the s candidate

108

Algorithm CTR1.EncryptN
K(M)

S ← N ||0l/2

m← d|M |/le
P ← EK(S + 0)|| · · · ||EK(S +m− 1)
C ←M ⊕ P [first |M | bits]
return C

Algorithm CTR1.DecryptN
K(C)

S ← N ||0l/2

m← d|M |/le
P ← EK(S)|| · · · ||EK(S +m− 1)
M ← C ⊕ P [first |C| bits]
return M

Figure 5.1: Scheme CTR1. The nonce space is Nonce={0, 1}l/2 [Rog04a].

Algorithm CTR2.EncryptN
K(M)

S ← EK(N)
m← d|M |/le
P ← EK(S + 0)|| · · · ||EK(S +m− 1)
C ←M ⊕ P [first |M | bits]
return C

Algorithm CTR2.DecryptN
K(C)

S ← EK(N)
m← d|M |/le
P ← EK(S)|| · · · ||EK(S +m− 1)
M ← C ⊕ P [first |C| bits]
return M

Figure 5.2: Scheme CTR2. The nonce space is Nonce={0, 1}l [Rog04a]. Unlike

CTR1, CTR2 encrypts the nonce before using it as a counter. This scheme is

similar to the XOR Scheme with Random Counters [Gli98], which outputs (S,C)

at encryption.

ciphertexts. If one of these s ciphertexts collides with a ciphertext entry EKj
(S+i) in

the precomputed table, the adversary will obtain the key collision between unknown

key K and known key Kj in the table. The adversary repeats this process for

all P unknown keys that encrypt predictable plaintext xi. In attacking CTR2,

the adversary uses predictable plaintexts and follows the attack for CTR1 after

double encryption (with the same key, Kj) in the P distinct keys to construct the

precomputed table.

Adversary Advantage in attacking EKRp-KPA security. Let k be the length of the

block-cipher keys used by the IND$-CPA scheme Π = CTR1. Assume that each

of the nh nodes has r communication links. Let T be the number of entries in the

table that the adversary precomputes and P = r · nh ≥ T be the number of oracles

109

available to the adversary (and the non-tightness factor). In this case,

Adv
EKRp-KPA
Π (A) =

r · nh · T
2k

=
P · T

2k
≥ T 2

2k
.

Thus the adversary can increase its advantage5 quadratically, while increasing

its resource expenditures only linearly, in the size of the precomputed table T . The

adversary need only “pay” for storing T ciphertexts and their distinct keys in the

precomputed table.6

Note that if r ≥ nh, then this advantage becomes:

Adv
EKRp-KPA
Π (A) ≥ n2

h · T
2k

.

This shows that an adversary’s advantage increases quadratically7 over time

in the number of Internet hosts, nh, that use a vulnerable scheme with a protocol

that produces predictable/known plaintext-ciphertext pairs, without the adversary

expending any extra effort and resources.

The cost of harvesting P target ciphertexts from Internet sessions is relatively

small, compared with the table precomputation and storage, and is adjustable as

ciphertext harvesting can be done incrementally and continuously; i.e., ciphertexts

for known or predictable plaintexts in the same message position encrypted in dif-

ferent keys are produced continuously by Internet protocols [Bel97]. This has two

positive consequences for assuring near zero marginal cost to the adversary:

5A similar advantage can be derived for the attack against EKRp-PPA security.
6If Π = CTR2, the advantage of the adversary is half the above value, as the adversary can

build a table of size T/2 with the same resources as those for the CTR1 attack.
7This adversary earns its name as it takes advantage of the “network effect” suggested by

Metcalfe’s Law [Gil93].

110

1. Unlike a KR attack where the adversary focusses exclusively on a single oracle

at a time, in an EKRp or KHp attack the adversary can use any stream of

P oracles at any time. Hence, the adversary need not harvest and buffer

large amounts of ciphertexts at any time, and can adjust its communication

and buffering needs to ensure zero-marginal costs. Thus communication and

buffering costs are not dominant in this attack.

2. Over time, the adversary’s advantage (i.e., probability of a key collision) grows

quadratically in nh (since r ≥ nh) for the same initial investment of precom-

puting a table of T entries. Hence, the adversary’s advantage grows naturally

in time, without appreciable increase in the dominant cost (e.g., storage).

According to [GPS09], in practice, the parameters defining the adversary’s ad-

vantage above are currently in the following Internet-scale ranges: 224 ≤ nh ≤ 226,

which represents only about 2 - 7% of the Internet hosts now, and 226 ≤ r ≤ 238

represents a range of per-year connections to various Internet sites, from moder-

ately “popular” to highly visited ones (e.g., Craig’s list, Google). Given the current

speed of AES encryption with commercially available devices, the size of the ta-

ble the adversary precomputes, T , can reach 254 AES cipherblocks in one year of

computing, using either one Helion Giga card [Hel08] on a PC or 64 quadcore, 2.6

GHz Apple Macs. Thus, for the implementation of Π = {CTR1, CTR2} with the

block cipher AES-128, we can use a variety of network and attack capabilities rep-

resenting different points on the adversary’s advantage curve. As an example, for

111

Algorithm CBC2.EncryptN
K1,K2

(M)
if |M | 6∈ {l, 2l, 3l, ...} then return ∗
Parse M into M1 · · ·Mm where |Mi| = l

C0 ← EK1(N)
for i← 1 to m do
Ci ← EK2(Ci−1 ⊕Mi)
return C1 · · ·Cm

Algorithm CBC2.DecryptN
K1,K2

(C)
if |C| 6∈ {l, 2l, 3l, ...} then return ∗
Parse C into C1 · · ·Cm where |Ci| = l

C0 ← EK1(N)
for i← 1 to m do
Mi ← Ci−1 ⊕ E−1

K2
(Ci)

return M1 · · ·Mm

Figure 5.3: Scheme CBC2. The nonce space is Nonce={0, 1}l [Rog04a].

(r = 228, nh = 224, T = 248) and (r = 231, nh = 227, T = 250) we obtain:

2−28 ≤ Adv
EKRp-KPA
Π−AES (A) ≤ 2−20

for CTR1 and half that for CTR2. A similar attack against the implementation

of Π with 112-bit 3DES (2TDES) would yield:

2−12 ≤ Adv
EKRp-KPA
Π−2TDES (A) ≤ 2−4.

Clearly, the adversary advantage in these attacks is decidedly non-negligible.

Attack Cost Points. The adversary can adjust the attack cost points as a function

of the dominant cost beyond taking advantage of yearly drops in memory costs (i.e.,

37 - 50% per year). The dominant cost of this attack is the storage for the 248 -

250 AES block ciphers and keys. For AES, we estimate the wholesale cost to range

between $0.5 M - $2 M in early 2009 (at $65 per TB) and $62.5 K - $250 K in

2012 (at $8 per TB).8 In early 2009, the energy costs of running and cooling the

storage would likely add $4-$9/TB9. The cost of the two-key 3DES attack is about

half that of the AES. Note that the adversary can perform its attack by building

8Our cost figures are fairly conservative. More optimistic cost projections for the period 2008

- 2023 are $38.56 per TB in 2009 and $6.42 in 2012 [Gil08].
9At 10 W per active disk [RSRK07], each disk will consume 87.7 kWh in a year.

112

the precomputed table incrementally and still take advantage of the continuous

availability of predictable/known plaintext. For example, the adversary can start

the attack well before T reaches 248 key-ciphertext entries and continue to build the

table as storage costs decrease.

5.3.3.2 Breaking the EKRp-CPA property implies breaking the KHp-CPA

property

By Claim 5.2, given an adversary A attacking the EKRp-CPA with a non-

negligible advantage, we can obtain an adversary B attacking the KHp-CPA with a

non-negligible advantage such as:

Adv
EKRp-CPA

Π(n) (A)− p

2l(n)
≤ Adv

KHp-CPA

Π(n) (B) ≤ Adv
EKRp-CPA

Π(n) (A) +
p

2l(n)

Thus, if we consider the earlier example (in Section 5.3.3.1) of the implementation of

Π = {CTR1,CTR2} with the block cipher AES-128, for (r = 228, nh = 224, T = 248)

and (r = 231, nh = 227, T = 250) we obtain:

2−28 − 2−80 ≤ Adv
KHp-KPA
Π−AES (A) ≤ 2−20 + 2−78, or

2−29 < Adv
KHp-KPA
Π−AES (A) < 2−19

for CTR1 and half the value for CTR2. A similar attack against the implementation

of Π with 112-bit 3DES (2TDES) would yield:

2−13 < Adv
KHp-KPA
Π−2TDES(A) < 2−3.

Clearly, the adversary B’s advantage is also decidedly non-negligible. However, such

an implication does not apply for the case of the IND$-CPA property. As shown

113

in Theorem 5.1, the advantage of attacking EKRp-CPA is bounded by the multi-

plication of the non-tightness factor p and the advantage of attacking IND$-CPA.

The advantage of attacking IND$-CPA is linear (in p) and remains negligible while

the advantages of attacking EKRp and KHp increase quadratically (in p) and are

non-negligible.

5.3.3.3 Examples of Secure Schemes that withstand Key-Collision

Attacks

Scheme CBC2 (viz., Figure 5.3) is not subject to the key-collision attacks

described above. The reason is that this scheme (1) does not use unencrypted

nonces directly as counters, and (2) does not make nonce encryptions available to

an adversary. Thus knowledge of a nonce does not enable the adversary to collect

ciphertexts for known- or predictable-plaintexts. Other schemes exist that have

similar characteristics; e.g., stateful XECB [GD01]. Note that CBC2 uses two keys,

while CTR1 and CTR2 only use one.

All schemes that withstand the key-collision attacks share the common trait:

they randomize every input plaintext block using a pseudo-random value that re-

mains unknown to the adversary before enciphering that block. Input randomization

makes it impossible to construct constant plaintext - ciphertexts pairs, as required

by the key-collision attacks above. Hence, the adversary would have to launch a

verifiable-plaintext attack [LGSN89b, Gon90]; i.e., it must decrypt every harvested

ciphertext using all T candidate keys, remove randomization, and check that the

114

result is the known plaintext block. If the check passes for a candidate key, that key

is a candidate for the encryption key. However, if the randomization value is un-

known to the adversary, the verifiable-plaintext attack fails, since the randomization

cannot be removed upon block decryption.

5.4 Related Work

Similarities and differences among various attacks become evident when one

considers their definitions (e.g., differences in attack capabilities and strategy), scope

(e.g., specific schemes and properties targeted), and cost of attack resources. We

review related work in this light.

Key-Collision Attacks. The first attack described above is based on key collisions.

These att acks, which require theability to exploit known- and predictable-plaintext

capabilities, were successfully used against various ciphers during WW II [HS93].

Although similar capabilities were used (cal led “cribs” then),these attacks differ

in scope and strategy from the ones presented in this paper, as they targeted only

stateless deterministic encryption(now known to be broken in other ways).

The key-collision attacks described here also differ from Biham’s atta cks

[Bih96, Bih02]in three ways. First, Biham’s attacks that can be used in practice

(vs. his theoretical attacks)10 have a different scope: they target stateless determin-

istic schemes, such as ECB, which cannot possibly be (IND$-CPA or IND-CPA)

10We note that Biham’s attacks against probabilistic schemes and multiple encryptions are in-

tended to be theoretical, as they could not possibly work in practice for standard block ciphers;e.g.,

two-key 3DES, AES-128.

115

secure. In contrast, our attacks are against properties of IND$-CPA schemes that

have security proofs in both the asymptotic and concrete approaches. Second, in

contrast to Biham’s deterministic-scheme attack, our attacks work with predictable

plaintext, not only wi th known, constant plaintext. Third, our attacks do not seek

“birthday collisions” in keys. Such attacks would not be practical for today’s stan-

dard key lengths; e.g. 128-bit AES keys. Instead, we tailor our attack parameters to

obtain a non-negligible probability of collisions in these keys, since this is sufficient

to show that these schemes are vulnerable.

Reduction Proofs. Recently, Koblitz and Menezes conjectured that non-tight re-

duction proofs for security-protocol properties defined in the asymptotic approach

(viz., Section 5.2) leave unaddressed vulnerabilities to attack when these protocols

are implemented in practice. They posed the following open problem: “Find an

example of a natural and realistic protocol that has a plausible (non-tight) reduc-

tionist proof of security, and is also insecure when used with commonly accepted

parameter sizes [KM06].” We answer this open question by demonstrating attacks

against symmetric encryption schemes proven secure in the asymptotic approach

and instantiated with standard block ciphers.

Koblitz and Menezes also define the goal of “existential key recovery” security

informally and offer an intuitive explanation as to why it might be desirable that it

be equivalent to that of “(universal) key recovery security”. The attacks presented in

this paper show that these two properties are not equivalent, despite of the intuitive

appeal of such equivalence.

116

5.5 Proofs of Claims

5.5.1 Proof of Claim 5.1

Proof. To prove this claim, we first define an IND$p-CPA property as follows:

Definition 5.6. (IND$p-CPA) Let Π(n) = (K, E ,D) be an encryption scheme, let

n be a security parameter, and let A be an adversary. Define

Adv
IND$p-CPA

Π(n) (A)
def
= Pr

[
k1, ..., kp

r← K(n) : AEk1
(·),...,Ekp (·)(n) = 1

]
−Pr

[
k

r← K(n) : A$|Ek(·)|,...,$|Ek(·)|
(n) = 1

]
Encryption scheme Π(n) is IND$p-CPA secure if for every probabilistic polynomial-

time adversary A, Adv
IND$p-CPA

Π(n) (A) is negligible (as a function of n).

Then, we show the following lemma:

Lemma 5.1. For any PPT adversary B, we have:

Adv
IND$p-CPA

Π(n) (B) ≤ p · ε(n)

We prove Lemma 5.1 by induction and a hybrid argument.

(1) For the base case where p = 2, we construct two adversaries A1 and A2

attacking IND$-CPA of Π(n) as follows:

A1

1. A1 chooses a random key k1 from K(n) and whenever B sends a query m for

the first oracle, returns Ek1(m) to B.

117

2. Whenever B sends a query m for the second oracle, A1 forwards m to A1’s

own oracle and returns the answer to B.

3. When B outputs a bit b, A1 outputs b.

Then, the advantage of A1 is as follows :

AdvIND$-CPA
Π(n) (A1) = Pr

[
k1, k2

r← K(n) : BEk1
(·),Ek2

(·)(n) = 1
]

−Pr
[
k1

r← K(n) : BEk1
(·),$|Ek1

(·)|
(n) = 1

]
Similarly, we construct A2 as follows:

A2

1. Whenever B sends a query m for the first oracle, A2 forwards m to A2’s own

oracle and returns the answer to B.

2. Whenever B sends a query m for the second oracle, A2 chooses a random

string of length |Ek(·)| and returns it to B.

3. When B outputs a bit b, A2 outputs b.

Then, the advantage of A2 is as follows:

AdvIND$-CPA
Π(n) (A2) = Pr

[
k

r← K(n) : BEk(·),$|Ek(·)|
(n) = 1

]
− Pr

[
k

r← K(n) : B$|Ek(·)|,$|Ek(·)|
(n) = 1

]

118

Then, we have:

AdvIND$2-CPA
Π(n) (B) = Pr

[
k1, k2

r← K(n) : BEk1
(·),Ek2

(·)(n) = 1
]
−

Pr
[
k

r← K(n) : B$|Ek(·)|,$|Ek(·)|
(n) = 1

]
= Pr

[
k1, k2

r← K(n) : BEk1
(·),Ek2

(·)(n) = 1
]

−Pr
[
k

r← K(n) : BEk(·),$|Ek(·)|
(n) = 1

]
+ Pr

[
k

r← K(n) : BEk(·),$|Ek(·)|
(n) = 1

]
−Pr

[
k

r← K(n) : B$|Ek(·)|,$|Ek(·)|
(n) = 1

]
= AdvIND$-CPA

Π(n) (A1) + AdvIND$-CPA
Π(n) (A2) ≤ 2 · ε(n)

(2) For the inductive hypothesis where p = `, for any PPT adversary B, we assume

the following:

AdvIND$`-CPA
Π(n) (B) = Pr

[
k1, ..., k`

r← K(n) : BEk1
(·),...,Ek`

(·)(n) = 1
]

−Pr
[
k

r← K(n) : B$|Ek(·)|,...,$|Ek(·)|
(n) = 1

]
≤ ` · ε(n)

Then, (3) for the inductive step where p = `+ 1, we prove the following :

Adv
IND$`+1-CPA

Π(n) (B) = Pr
[
k1, ..., k`+1

r← K(n) : BEk1
(·),...,Ek`+1

(·)(n) = 1
]

−Pr
[
k

r← K(n) : B$|Ek(·)|,...,$|Ek(·)|
(n) = 1

]
≤ (`+ 1) · ε(n)

Again, to use a hybrid argument, we construct two adversaries — an IND$-CPA

adversary A1 (working in much the same way as in the base case proof) and an

119

adversary A2 trying to break our inductive hypothesis. First, we describe how A1

runs.

A1

1. A1 chooses ` random keys k1, ..., k` from K(n).

2. Whenever B sends a query m for any of i-th oracles where i ∈ [1, `], A1 returns

Eki
(m) to B.

3. Whenever B sends a query m for (`+ 1)-th oracle, A1 forwards m to its own

oracle and returns the answer to B.

4. When B outputs a bit b, A1 outputs b.

Then, the advantage of A1 is as follows:

AdvIND$-CPA
Π(n) (A1) = Pr

[
k1, ..., k`+1

r← K(n) : BEk1
(·),...,Ek`+1

(·)(n) = 1
]

−Pr
[
k1, ..., k`

r← K(n) : BEk1
(·),...,Ek`

(·),$|Ek1
(·)|

(n) = 1
]

Next, we construct A2 as follows:

A2

1. Whenever B sends a query m for any of the i-th oracles where i ∈ [1, `], A2

forwards m to its own i-th oracle and returns the answer to B.

2. Whenever B sends a query m for (`+1)-th oracle, A2 chooses a random string

of length |Ek(·)| and returns it to B.

3. When B outputs a bit b, A2 outputs b.

120

Then, the advantage of A2 is as follows:

AdvIND$`-CPA
Π(n) (A2) = Pr

[
k1, ..., k`

r← K(n) : BEk1
(·),...,Ek`

(·),$|Ek1
(·)|

(n) = 1
]

−Pr
[
k

r← K(n) : A$|Ek(·)|,...,$|Ek(·)|
(n) = 1

]
Now we let the advantage of B be expressed in terms of the advantages of A1

and A2, and then apply the inductive hypothesis as follows:

Adv
IND$`+1-CPA

Π(n) (B) = Pr
[
k1, ..., k`+1

r← K(n) : BEk1
(·),...,Ek`+1

(·)(n) = 1
]

−Pr
[
k

r← K(n) : B$|Ek(·)|,...,$|Ek(·)|
(n) = 1

]
= Pr

[
k1, ..., k`+1

r← K(n) : BEk1
(·),...,Ek`+1

(·)(n) = 1
]

−Pr
[
k1, ..., k`

r← K(n) : BEk1
(·),...,Ek`

(·),$|Ek1
(·)|

(n) = 1
]

+ Pr
[
k1, ..., k`

r← K(n) : BEk1
(·),...,Ek`

(·),$|Ek1
(·)|

(n) = 1
]

−Pr
[
k

r← K(n) : B$|Ek(·)|,...,$|Ek(·)|
(n) = 1

]
= AdvIND$-CPA

Π(n) (A1) + AdvIND$`-CPA
Π(n) (A2)

≤ (`+ 1) · ε(n)

Therefore, the induction holds for p = `+ 1. The induction is complete.

Finally, we go back to our claim. For any PPT adversary B attacking the

KHp-CPA property of Π(n), we can construct an adversaryA1 attacking the IND$p-CPA

property (from Lemma 5.1) and an IND$-CPA adversary A2 (we skip the details

of those constructions, due to the similarity to the previous case). Then, we apply

121

Lemma 5.1 and obtain:

Adv
KHp-CPA

Π(n) (B) = Pr
[
k1, k2, ..., k`

r← K(n) : BEk1
(·),Ek2

(·),...,Ek`
(·)(n) = 1

]
−Pr

[
k

r← K(n) : BEk(·),...,Ek(·)(n) = 1
]

= Pr
[
k1, k2, ..., k`

r← K(n) : BEk1
(·),Ek2

(·),...,Ek`
(·)(n) = 1

]
−Pr

[
k

r← K(n) : B$|Ek(·)|,...,$|Ek(·)|
(n) = 1

]
+ Pr

[
k

r← K(n) : B$|Ek(·)|,...,$|Ek(·)|
(n) = 1

]
−Pr

[
k

r← K(n) : BEk(·),...,Ek(·)(n) = 1
]

≤ Adv
IND$p-CPA

Π(n) (A1) + AdvIND$-CPA
Π(n) (A2)

≤ (p+ 1) · ε(n)

5.5.2 Proof of Claim 5.2

Proof. Given a PPT adversary A attacking the EKRp-CPA security of Π(n), we

construct a KHp-CPA adversary B as follows.

B is given a set of p oracles that is either (Ek1(·), ..., Ekp(·)) for k1, ..., kp
r← K(n),

or (Ek(·), ..., Ek(·)) for k
r← K(n). B must then determine which set of oracles it was

given. B runs as follows:

B

1. If A requests a query m for i-th oracle, B forwards m to B’s own i-th oracle,

obtains an answer c, and returns c to A.

2. When A outputs a key k′,

122

(a) B selects a message m′ different from any query received from A.

(b) for each of p oracles given to B, B sends m′ to the oracle and receives

answer c.

(c) B decrypts c with k′ and checks whether Dk′(c) = m′. If the condition is

true, B sets flag fi = true. Otherwise, B sets flag fi = false.

3. Then, B outputs a bit as follows:

• If fi = true for all i ∈ [1, p], B outputs 0.

• Otherwise if fi = true for any i ∈ [1, p], B outputs 1.

• Otherwise (i.e., fi = false for all i ∈ [1, p]), B outputs 0.

Clearly, the advantage of B is as follows:

Adv
KHp-CPA

Π(n) (B) = Pr

 k1, k2, ..., kp
r← K(n),

AEk1
(·),Ek2

(·),...,Ekp (·)(n) = k′
:
Dk′(Eki

(m′)) = m′ for i ∈ [1, p]

but not for all i ∈ [1, p]



−Pr

k r← K(n), AEk(·),...,Ek(·)(n) = k′ :
Dk′(Eki

(m′)) = m′ for i ∈ [1, p]

but not for all i ∈ [1, p]


Let us consider the probabilities on the right hand side. Clearly, the second proba-

bility term is zero, since when A is given (Ek(·), ..., Ek(·)) for k
r← K(n), we have:

either fi = true for all i ∈ [1, p], or

fi = false for all i ∈ [1, p]

123

due to the correctness of the encryption scheme Π. Then, we have:

Adv
KHp-CPA

Π(n) (B) = Pr

 k1, k2, ..., kp
r← K(n),

AEk1
(·),Ek2

(·),...,Ekp (·)(n) = k′
:
Dk′(Eki

(m′)) = m′ for i ∈ [1, p]

but not for all i ∈ [1, p]



= Pr

 k1, k2, ..., kp
r← K(n),

AEk1
(·),Ek2

(·),...,Ekp (·)(n) = k′
:
Dk′(Eki

(m′)) = m′ for i ∈ [1, p]

∧k′ ∈ {k1, ..., kp}



+ Pr

 k1, k2, ..., kp
r← K(n),

AEk1
(·),Ek2

(·),...,Ekp (·)(n) = k′
:
Dk′(Eki

(m′)) = m′ for i ∈ [1, p]

∧k′ 6∈ {k1, ..., kp}



= Pr

 k1, k2, ..., kp
r← K(n),

AEk1
(·),Ek2

(·),...,Ekp (·)(n) = k′
: k′ ∈ {k1, ..., kp}



+ Pr

 k1, k2, ..., kp
r← K(n),

AEk1
(·),Ek2

(·),...,Ekp (·)(n) = k′
:
Dk′(Eki

(m′)) = m′ for i ∈ [1, p]

∧k′ 6∈ {k1, ..., kp}


where the last equation holds due to the correctness of Π. Then, since we have:

Adv
EKRp-CPA

Π(n) (A) = Pr

 k1, k2, ..., kp
r← K(n),

AEk1
(·),Ek2

(·),...,Ekp (·)(n) = k′
: k′ ∈ {k1, ..., kp}

 ,

124

by applying a union bound, we obtain:

∣∣∣Adv
EKRp-CPA

Π(n) (A)− Adv
KHp-CPA

Π(n) (B)
∣∣∣ = Pr



k1, k2, ..., kp
r← K(n),

AEk1
(·),Ek2

(·),...,Ekp (·)(n) = k′
:

(Dk′(Eki
(m)) = m for i ∈ [1, p])

∧ (k′ 6∈ {k1, ..., kp})



≤
⋃
i

Pr



k1, k2, ..., kp
r← K(n),

AEk1
(·),Ek2

(·),...,Ekp (·)(n) = k′
:

(Dk′(Eki
(m)) = m)

∧ (k′ 6= ki)


≤

∑
i

1

2l(n)
=

p

2l(n)

125

Bibliography

[ABC+06] Michel Abdalla, Emmanuel Bresson, Olivier Chevassut, Bodo Moller,
and David Pointcheval. Provably secure password-based authentica-
tion in TLS. In ACM Symposium on Information, Computer, and
Communications Security, pages 35–45. ACM, 2006.

[AR00] Mart́ın Abadi and Phillip Rogaway. Reconciling two views of cryptog-
raphy (the computational soundness of formal encryption). In IFIP
TCS, pages 3–22, 2000.

[BBB+07] E. Barker, W. Barker, W. Burr, W. Polk, and M. Smid (eds.). Rec-
ommendation for key management - part 1: General (revised). NIST
Special Publication 800-57, March 2007. Table 4.

[BCP03] Emmanuel Bresson, Olivier Chevassut, and David Pointcheval. Se-
curity proofs for an efficient password-based key exchange. In ACM
Conference on Computer and Communications Security, pages 241–
250. ACM Press, 2003.

[BDJR97] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A concrete security
treatment of of symmetric encryption. In Proceedings of the Sympo-
sium on Foundations of Computer Science, 1997.

[BDPR98] Mihir Bellare, Anand Desai, David Pointcheval, and Phillip Rogaway.
Relations among notions of security for public-key encryption schemes.
In CRYPTO, pages 26–45, 1998.

[BDS+03] Dirk Balfanz, Glenn Durfee, Narendar Shankar, Diana Smetters, Jes-
sica Staddon, and Hao-Chi Wong. Secret handshakes from pairing-
based key agreements. In SP ’03: Proceedings of the 2003 IEEE Sym-
posium on Security and Privacy, page 180, Washington, DC, USA,
2003. IEEE Computer Society.

[Bel97] Steven M. Bellovin. Probable plaintext cryptanalysis of the IP se-
curity protocols. In Proceedings of the Symposium on Network and
Distributed System Security, 1997.

[Bel98] Mihir Bellare. Practice-oriented provable-security. In Proc. of the
Workshop on Information Security, 1998.

[BFZ07] Hitesh Ballani, Paul Francis, and Xinyang Zhang. A study of prefix
hijacking and interception in the internet. In Proceedings of the ACM
SIGCOMM, 2007.

[BG85] R.W. Baldwin and W.C. Gramlich. Cryptographic protocol for
trustable match making. In IEEE Security and Privacy, 1985.

126

[BHS04] Robert W. Bradshaw, Jason E. Holt, and Kent E. Seamons. Concealing
complex policies with hidden credentials. In CCS ’04: Proceedings of
the 11th ACM conference on Computer and communications security,
pages 146–157, New York, NY, USA, 2004. ACM.

[BHSV98] Mihir Bellare, Shai Halevi, Amit Sahai, and Salil P. Vadhan. Many-to-
one trapdoor functions and their ralation to public-key cryptosystems.
In CRYPTO, pages 283–298, 1998.

[Bih96] E. Biham. How to forge DES-encrypted messages in 228 steps. TR
CS0884, Technion Computer Science Department, 1996. (available at
http://www.cs.technion.ac.il/~biham/publications.html).

[Bih02] E. Biham. How to decrypt or even substitute DES-encrypted messages
in 228 steps. In Information Processing Letters, volume 84, pages 117–
124, 2002.

[BKR00] Mihir Bellare, Joe Kilian, and Phillip Rogaway. The security of the
cipher block chaining message authentication code. J. Comput. Syst.
Sci., 61(3):362–399, 2000.

[BM92] Steven M. Bellovin and Michael Merritt. Encrypted key exchange:
Password-based protocols secure against dictionary attacks. In IEEE
Symposium on Research in Security and Privacy, pages 72–84, 1992.

[BM93] Steven M. Bellovin and Michael Merritt. Augmented encrypted key
exchange: A password-based protocol secure against dictionary attacks
and password file compromise. In ACM Conference on Computer and
Communications Security, pages 244–250, 1993.

[BM05] Walid Bagga and Refik Molva. Policy-based cryptography and appli-
cations. In Financial Cryptography, pages 72–87, 2005.

[BMC06] Walid Bagga, Refik Molva, and Stefano Crosta. Policy-based encryp-
tion schemes from bilinear pairings. In ASIACCS, page 368, 2006.

[BMP00] Victor Boyko, Philip MacKenzie, and Sarvar Patel. Provably se-
cure password-authenticated key exchange using Diffie-Hellman. In
Advances in Cryptology — Eurocrypt 2000, pages 156–171. Springer-
Verlag, 2000.

[Boy99] Maurizio Boyarsky. Public-key cryptography and password protocols:
The multi-user case. In ACM Conference on Computer and Commu-
nications Security, pages 63–72. ACM Press, 1999.

[BPR00] Mihir Bellare, David Pointcheval, and Phillip Rogaway. Authenticated
key exchange secure against dictionary attacks. In Advances in Cryp-
tology — Eurocrypt 2000, pages 139–155. Springer-Verlag, 2000.

127

[BR93] Mihir Bellare and Phillip Rogaway. Entity authentication and key
distribution. In Advances in Cryptology — Crypto ’93, pages 232–249.
Springer-Verlag, 1993.

[BR05] Mihir Bellare and Phillip Rogaway. Introduction on Modern Cryptog-
raphy, 2005. (available at http://www-cse.ucsd.edu/users/mihir/
cse207/classnotes.html).

[BS00] Piero Bonatti and Pierangela Samarati. Regulating service access and
information release on the web. In CCS ’00: Proceedings of the 7th
ACM conference on Computer and communications security, pages
134–143, New York, NY, USA, 2000. ACM.

[BWNH+03] S. Blake-Wilson, M. Nystrom, D. Hopwood, J. Mikkelsen, and
T. Wright. Transport Layer Security (TLS) extensions. IETF RFC
3546 — Standards Track, 2003.

[Can01] Ran Canetti. Universally composable security: A new paradigm for
cryptographic protocols. In FOCS, pages 136–145, 2001.

[Cha85] David Chaum. Security without identification: transaction systems to
make big brother obsolete. Commun. ACM, 28(10):1030–1044, 1985.

[CHK+05] Ran Canetti, S. Halevi, J. Katz, Y. Lindell, and P. MacKenzie. Uni-
versally composable password-based key exchange. In Advances in
Cryptology — Eurocrypt 2005, pages 404–421. Springer-Verlag, 2005.

[CJT04] Claude Castelluccia, Stanislaw Jarecki, and Gene Tsudik. Secret hand-
shakes from ca-oblivious encryption. In ASIACRYPT, pages 293–307,
2004.

[CK01] Ran Canetti and Hugo Krawczyk. Analysis of key-exchange protocols
and their use for building secure channels. In EUROCRYPT, pages
453–474, 2001.

[CKL03] Ran Canetti, Eyal Kushilevitz, and Yehuda Lindell. On the limita-
tions of universally composable two-party computation without set-up
assumptions. In EUROCRYPT, pages 68–86, 2003.

[CL01] Jan Camenisch and Anna Lysyanskaya. An efficient system for non-
transferable anonymous credentials with optional anonymity revoca-
tion. In EUROCRYPT, pages 93–118, 2001.

[CLLZ05] Wei Chen, Shiding Lin, Qiao Lian, and Zheng Zhang. Sigma: A fault-
tolerant mutual exclusion algorithm in dynamic distributed systems
subject to process crashes and memory losses. In PRDC ’05: Proc.
11th Pacific Rim Intl. Symposium on Dependable Computing, pages
7–14. IEEE Computer Society, 2005.

128

[DDM+06] Anupam Datta, Ante Derek, John C. Mitchell, Ajith Ramanathan,
and Andre Scedrov. Games and the impossibility of realizable ideal
functionality. In TCC, pages 360–379, 2006.

[DDN00] Danny Dolev, Cynthia Dwork, and Moni Naor. Nonmalleable cryp-
tography. SIAM J. Comput., 30(2):391–437, 2000.

[DMS04] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: the
second-generation onion router. In SSYM’04: Proceedings of the 13th
conference on USENIX Security Symposium, pages 21–21, Berkeley,
CA, USA, 2004. USENIX Association.

[Dwo01] Morris Dworkin. Special Publication 800-38A: Recommendation for
block cipher modes of operation. National Institute of Standards, U.S.
Department of Commerce, December 2001.

[DY83] D. Dolev and A. Yao. On the security of public key protocols. Infor-
mation Theory, IEEE Transactions on, 29(2):198–208, 1983.

[Fis99] Marc Fischlin. Pseudorandom function tribe ensembles based on one-
way permutations: Improvements and applications. In EUROCRYPT,
pages 432–445, 1999.

[FNP04] M. Freedman, K. Nissim, and B. Pinkas. Efficient private matching
and set intersection. In Advances in Cryptology — EUROCRYPT
2004., 2004.

[GD01] Virgil D. Gligor and Pompiliu Donescu. Fast encryption and authenti-
cation: XCBC encryption and XECB authentication modes. In FSE,
2001.

[Gen08] Rosario Gennaro. Faster and shorter password-authenticated key ex-
change. In Theory of Cryptography Conference — TCC 2008, pages
589–606. Springer-Verlag, 2008.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct
random functions. J. ACM, 33(4):792–807, 1986.

[GH03] E. Grochowski and R. D. Halem. Technological impact of magnetic
hard disk drives on storage systems. IBM Syst. J., 42(2):338–346,
2003.

[Gil93] George Gilder. Metcalfe’s law and legacy. Forbes, 1993.

[Gil08] Steve Gilheany. The decline of magnetic disk storage cost over the next
25 years, 2008. http://www.berghell.com/whitepapers/Storage%

20Costs.pdf accessed 03/10/09.

129

[GL01] Oded Goldreich and Yehuda Lindell. Session-key generation using
human passwords only. In CRYPTO, pages 408–432, 2001.

[GL03] Rosario Gennaro and Yehuda Lindell. A framework for password-based
authenticated key exchange. In EUROCRYPT, pages 524–543, 2003.

[GL06a] Rosario Gennaro and Yehuda Lindell. A framework for password-based
authenticated key exchange. ACM Trans. Information and System
Security, 9(2):181–234, 2006.

[GL06b] Oded Goldreich and Yehuda Lindell. Session-key generation using
human passwords only. J. Cryptology, 19(3):241–340, 2006.

[Gli98] Virgil D. Gligor. Symmetric encryption with random counters. TR
3968, Department of Computer Science, University of Maryland, Dec.
1998.

[Gli08] Virgil D. Gligor. On the Evolution of Adversary Models
in Cryptographic Protocols (Part II: the Fragility of Adversary
Definitions), June 2008. Invited talk at FCS-ARSPA-WITS
(http://profs.sci.univr.it/ vigano/fcs-arspa-wits08/).

[GLNS93] Li Gong, T. Mark A. Lomas, Roger M. Needham, and Jerome H.
Saltzer. Protecting poorly chosen secrets from guessing attacks. IEEE
Journal on Selected Areas in Communications, 11(5):648–656, 1993.

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. J. Com-
put. Syst. Sci., 28(2):270–299, 1984.

[GMR88] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital sig-
nature scheme secure against adaptive chosen-message attacks. SIAM
J. Comput., 17(2):281–308, 1988.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any
mental game or a completeness theorem for protocols with honest ma-
jority. In STOC, pages 218–229, 1987.

[Gol04] O. Goldreich. Foundations of Cryptography: Volume 2 - Basic Appli-
cations. Cambridge University Press, 2004.

[Gon90] Li Gong. Verifiable-text attacks in cryptographic protocols. In INFO-
COM, pages 686–693, 1990.

[GPS09] Virgil D. Gligor, Bryan Parno, and Ji Sun Shin. From asymp-
totic proofs to network-adversary attacks against secure encryption
schemes. CyLab Technical Report CMU-CyLab-09-003, Carnegie Mel-
lon University, CyLab, Pittsburgh, PA, March 2009.

130

[HBStKO03] Jason E. Holt, Robert W. Bradshaw, Kent E. Seamons, and tilarie
K. Orman. Hidden credentials. In WPES, pages 1–8, 2003.

[Hel08] Helion Technology Limited. AES cores. http://www.heliontech.

com/aes.htm, 2008.

[HFW] S. Kopsell H. Federrath and R. Wendolsky. Project: An.on -
anonymity.on-line, jap. http://anon.inf.tu-dresden.de/.

[HK99] Shai Halevi and Hugo Krawczyk. Public-key cryptography and pass-
word protocols. In ACM Transactions on Information and System
Security, pages 230–268. ACM Press, 1999.

[HS93] F.H. Hinsley and A. Stripp. Codebrakers: The inside Story of Bletchley
Park. Oxford Univ. Press, 1993.

[IEE05] IEEE P1363.2: Standard specifications for password-
based public-key cryptographic techniques, 2005. See
http://grouper.ieee.org/groups/1363/passwdPK/.

[IL89] Russell Impagliazzo and Michael Luby. One-way functions are essential
for complexity based cryptography (extended abstract). In FOCS,
pages 230–235, 1989.

[JG04] Shaoquan Jiang and Guang Gong. Password-based key exchange with
mutual authentication. In Selected Areas in Cryptography 2004, pages
267–279. Springer-Verlag, 2004.

[KL08] J. Katz and Y. Lindell. Introduction to Modern Cryptography. Chap-
man and Hall/CRC, 2008.

[KM06] Neal Koblitz and Alfred Menezes. Another look at “Provable Secu-
rity”. II. In INDOCRYPT, 2006.

[KOY01] Jonathan Katz, R. Ostrovsky, and M. Yung. Efficient password-
authenticated key exchange using human-memorable passwords. In
Advances in Cryptology — Eurocrypt 2001, pages 475–494. Springer-
Verlag, 2001.

[KS04] L. Kissner and D. Song. Private and threshold set-intersection. Tr,
Carnegie Mellon University, 2004.

[KY00] Jonathan Katz and Moti Yung. Complete characterization of security
notions for probabilistic private-key encryption. In STOC, pages 245–
254, 2000.

[LB06] Thomas M. Lenard and Daniel B. Britton. The Digital Economy Fact
Book. The Progress & Freedom Foundation, eighth edition, 2006.

131

[LDB03] Ninghui Li, Wenliang Du, and Dan Boneh. Oblivious signature-based
envelope. In PODC ’03: Proceedings of the twenty-second annual sym-
posium on Principles of distributed computing, pages 182–189, New
York, NY, USA, 2003. ACM.

[LGSN89a] T. Mark A. Lomas, Li Gong, Jerome H. Saltzer, and Roger M. Need-
ham. Reducing risks from poorly chosen keys. In ACM Symposium on
Operating System Principles, pages 14–18. ACM Press, 1989.

[LGSN89b] T. Mark A. Lomas, Li Gong, Jerome H. Saltzer, and Roger M. Need-
ham. Reducing risks from poorly chosen keys. In SOSP, 1989.

[LL05] Jiangtao Li and Ninghui Li. Oacerts: Oblivious attribute certificates.
In ACNS, pages 301–317, 2005.

[LL06] Jiangtao Li and Ninghui Li. A construction for general and efficient
oblivious commitment based envelope protocols. In ICICS, pages 122–
138, 2006.

[Mac02] Philip MacKenzie. The PAK suite: Proto-
cols for password-authenticated key exchange, 2002.
http://citeseer.ist.psu.edu/mackenzie02pak.html.

[Mea86] Catherine Meadows. A more efficient cryptographic matchmaking pro-
tocol for use in the absence of a continuously available third party. In
IEEE Symposium on Security and Privacy, pages 134–137, 1986.

[MF01] David A. McGrew and Scott R. Fluhrer. Attacks on additive encryp-
tion of redundant plaintext and implications on internet security. In
Proceedings of the Workshop on Selected Areas in Cryptography, 2001.

[Mic05] Daniele Micciancio. The Dolev-Yao model, Lecture Notes, UC San
Diego, 2005. (available at http://www-cse.ucsd.edu/classes/

sp05/cse208/lec-dolevyao.html).

[MPS00] Philip Mackenzie, Sarvar Patel, and Ram Swaminathan. Password-
authenticated key exchange based on RSA. In Advances in Cryptology
— Asiacrypt 2000, pages 599–613. Springer-Verlag, 2000.

[NT06] Samad Nasserian and Gene Tsudik. Revisiting oblivious signature-
based envelopes. In Financial Cryptography, pages 221–235, 2006.

[NV04] Minh-Huyen Nguyen and Salil P. Vadhan. Simpler session-key gener-
ation from short random passwords. In TCC, pages 428–445, 2004.

[NY89] Moni Naor and Moti Yung. Universal one-way hash functions and
their cryptographic applications. In STOC, pages 33–43, 1989.

132

[NY90] Moni Naor and Moti Yung. Public-key cryptosystems provably secure
against chosen ciphertext attacks. In STOC, pages 427–437, 1990.

[Rog04a] Phillip Rogaway. Nonce-based symmetric encryption. In FSE, pages
348–359, 2004.

[Rog04b] Phillip Rogaway. On the role definitions in and beyond cryptography.
In ASIAN, pages 13–32, 2004.

[Rom90] John Rompel. One-way functions are necessary and sufficient for secure
signatures. In STOC, pages 387–394, 1990.

[RS91] Charles Rackoff and Daniel R. Simon. Non-interactive zero-knowledge
proof of knowledge and chosen ciphertext attack. In CRYPTO, pages
433–444, 1991.

[RSRK07] S. Rivoire, M. A. Shah, P. Ranganathan, and C. Kozyrakis. Joule-
Sort: A balanced energy-efficient benchmark. In ACM International
Conference on Management of Data (SIGMOD), June 2007.

[SG08] Ji Sun Shin and Virgil D. Gligor. A new privacy-enhanced matchmak-
ing protocol. In 15th Annual Network and Distributed System Security
Symposium, February 2008.

[SM00] Stuart G. Stubblebine and Catherine A. Meadows. Formal characteri-
zation and automated analysis of known-pair and chosen-text attacks.
IEEE Journal on Selected Areas in Communications, 18(4):571–581,
April 2000.

[SWY01] Kent E. Seamons, Marianne Winslett, and Ting Yu. Limiting the dis-
closure of access control policies during automated trust negotiation.
In NDSS, 2001.

[TX06] Gene Tsudik and Shouhuai Xu. A flexible framework for secret hand-
shakes. In Privacy Enhancing Technologies, pages 295–315, 2006.

[vABHL03] L. von Ahn, M. Blum, N. Hopper, and J. Langford. CAPTCHA: Using
hard AI problems for security. Advances in Cryptology - Eurocrypt,
pages 294–311, 2003.

[WL04] William H. Winsborough and Ninghui Li. Safety in automated trust
negotiation. In IEEE Symposium on Security and Privacy, pages 147–
160, 2004.

[WSJ00] W. H. Winsborough, K. E. Seamons, and V.E. Jones. Automated
trust negotiation. DARPA Information Survivability Conference and
Exposition, 1:88–102, 2000.

133

[WT02] Lawrence C. Washington and Wade Trappe. Introduction to Cryptog-
raphy: With Coding Theory. Prentice Hall PTR, Upper Saddle River,
NJ, USA, 2002.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (ex-
tended abstract). In FOCS, pages 162–167, 1986.

[YW03] Ting Yu and Marianne Winslett. A unified scheme for resource protec-
tion in automated trust negotiation. In IEEE Symposium on Security
and Privacy, pages 110–122, 2003.

[YWS01] Ting Yu, Marianne Winslett, and Kent E. Seamons. Interoperable
strategies in automated trust negotiation. In ACM Conference on
Computer and Communications Security, pages 146–155, 2001.

[ZN01] Kan Zhang and Roger Needham. A private matchmaking protocol,
2001. http://citeseer.nj.nec.com/71955.html.

134

