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Chapter 1: Introduction

For p an odd prime, there are two nonabelian groups of order p3, both arising

as central extensions of Z/p×Z/p by Z/p. The geometry of the classifying stacks of

these groups provides an interesting example for computations in algebraic geometry,

because they are situated right at the edge of what current theories are able to

compute. While the group cohomology with both integral ( [12]) and finite ( [10], [4])

coefficients has been known for a long time, significant recent progress has been made

on computing other invariants of these groups: The Chow groups were computed

by Yagita in 2012 ( [18]); the stable cohomology was computed by Bogomolov and

Böhning in 2014 ( [3]); in 2015 Pădurariu showed that the motives of these groups

are mixed Tate ( [14]).

In this paper we contribute to the endeavor of computing algebraic invariants of

these groups by computing the motivic cohomology rings with coefficients in Z/3 of

the nonabelian groups of order 27. The motivic cohomology ring of a scheme X is a

bigraded ring H∗,∗
′
(X,A) that specializes for certain degrees and coefficients to other

important classical invariants, such as the Chow groups, the Milnor K-theory, and

the étale cohomology with finite coefficients, among other examples. As Voevodsky

describes in the introduction to [13], the power of motivic cohomology comes from
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applying results about the structural properties of the motivic cohomology ring to

the specific cases of these classical invariants, in order to uncover new results about

these invariants. In this paper we exploit exactly that power, combining seemingly

disparate results about the Chow groups and the stable cohomology of these groups

of order 27 in order to deduce the structure of the motivic cohomology ring. We

also compute for general odd p the motivic cohomology modulo the kernel of a map

to the étale cohomology.

The narrative goes as follows: Given an algebraic group G, considered as an

affine group scheme over C, we can define the Chow groups of G (as defined by

Totaro in [15]), the ring of cohomological invariants of G, and the étale cohomology

of BG with finite coefficients. These three invariants are related to each other by

the spectral sequence defined by Bloch and Ogus in [2]. The motivic cohomology

ring of BG with finite coefficients is related by a long exact sequence to the page

two terms of that spectral sequence; there is also a map

×τ ∗−∗′ : H∗,∗
′
(X,Z/p)→ H∗et(X,Z/p)

from the motivic cohomology ring to the étale cohomology, given by multiplying

by a generator τ of H0,1(X,Z/p) ∼= Z/p. For the nonabelian groups of order p3,

Yagita proved in [18] that the map from the Chow groups to the étale cohomology is

injective. We use that result together with the connection between the Chow groups

and the cohomological invariants given by the Bloch-Ogus spectral sequence to show

that these groups have no nontrivial cohomological invariants of degree three. (In

fact we prove a slightly more general result about the vanishing of degree three
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invariants.) The connection between the cohomological invariants and the motivic

cohomology then allows us to prove that for the case p = 3, a certain variety X that

‘approximates’ the classifying space BG has no τ -torsion in its motivic cohomology.

Armed with that fact, we can then leverage structural properties of the motivic

cohomology ring—specifically the existence of a localization sequence relating the

motivic cohomology of a scheme to that of its subschemes—to prove that BG itself

has no τ -torsion.

For p > 3 there are too many unknown terms on page two of the Bloch-

Ogus spectral sequence to use the same method of proof. However, we still get

the result that G has no nontrivial degree three cohomological invariants, and

that turns out to be the key piece of the puzzle in determining the structure of

H∗,∗
′
(BG,Z/p)/(ker(×τ ∗−∗′)); so although we only prove that this kernel is trivial

in the case p = 3, we’re still able to make progress in the computation for general p.

In chapter 2 we review background on the definition and properties of Chow

groups of a scheme, including the equivariant Chow groups for a scheme equipped

with an action by a group G; this leads to Totaro’s definition of the Chow ring of an

algebraic group. Chapter 3 defines the motivic cohomology ring as Bloch’s higher

Chow groups, and surveys some basic properties. We also describe in more detail

the ×τ map on motivic cohomology and its relationship to the étale cohomology

and the Bloch-Ogus spectral sequence. In chapter 4 we describe the two nonabelian

groups of order p3 in more detail and give the known results about their ordinary

cohomology and representation theory. Chapter 5 switches gears a bit to define the

ring of cohomological invariants and discuss its connection to the Bloch-Ogus spec-
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tral sequence; here we prove a theorem on sufficient conditions for the vanishing of

degree three cohomological invariants. These conditions are satisfied by our groups

of order p3. In chapter 6 we put the pieces together to show that in the case p = 3

there is no τ -torsion in the motivic cohomology of either group. Finally in chapter

7 we describe the ring H∗,∗
′
(BG,Z/p)/(ker(×τ ∗−∗′)) for each of the two groups for

general odd p.

Unless otherwise specified, p is always an odd prime, and finite groups are

considered as affine algebraic groups defined over C.
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Chapter 2: Chow groups

Before moving up in life to higher Chow groups and motivic cohomology, we

should quickly review the classic Chow groups of a smooth scheme X, following the

development in Fulton [6]. Let Zi(X) be the group of dimension i algebraic cycles

on X, that is, finite Z-linear combinations of dimension i subvarieties of X. For W

a dimension i+ 1 subvariety and f a rational function, define the divisor of f as

(f) =
∑
D

ordD(f)D,

where the sum is taken over all codimension 1 subvarities of W , and ordD(f) is

the order of vanishing of f along D (see [6] section 1.2). The subgroup of Zi(X)

generated by the divisors of functions as W ranges over all (i + 1)-dimensional

subvarieties is the subgroup of cycles rationally equivalent to zero. Define the Chow

group CHi(X) to be the group Zi(X) modulo this equivalence.

2.1 Properties of Chow groups

We’ll briefly survey some of the properties of the Chow groups that will ulti-

mately generalize to the motivic cohomology ring (higher Chow groups). For more

details and proofs of these properties see for example [6].
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• Functoriality. There are two ways in which maps between varieties lead to

maps on the corresponding Chow rings. For a proper map f : X → Y there

is a proper pushforward f∗ : CHi(X) → CHi(Y ), which can be thought of as

essentially mapping a dimension i cycle to its image under f . If f : X → Y

is a flat morphism with fibers of dimension d, then there is a pullback map

f ∗ : CHi(Y ) → CHi+d(X), which can be thought of as essentially taking the

preimage of cycles of Y . (Again see [6] for all the technical details.)

• Localization sequence. One specific example of the pullback and pushfor-

ward maps is the case where we have a closed subvariety Z ⊂ X. Then the

inclusion map i : Z → X is proper, and the map j : X − Z → X is flat. In

this case the pushforward and pullback fit into an exact sequence

CHi(Z)→ CHi(X)→ CHi(X − Z)→ 0

called the localization sequence.

• Ring structure. In the case that X is smooth, the intersection product of

cycles (see [6]) gives a ring structure on the Chow groups graded by codimen-

sion. In other words, letting CH i(X) be the group generated by codimension

i cycles up to rational equivalence, there is a product map

CH i(X)× CHj(X)→ CH i+j(X)

that makes the Chow groups into a graded commutative ring CH∗(X).

• Cycle map. For X a smooth variety over C, there is a map

CH∗(X)→ H2∗(X,Z)
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called the cycle map.

2.2 Equivariant Chow groups and CH(BG)

Let G be an affine group scheme of finite type over a field k. (For our purposes,

we will typically be taking G to be a finite group thought of as a scheme over the

complex numbers.) LetX be a smooth k-scheme with an action byG. For i ≥ 0, pick

a representation V of G over k such that there is a closed G-invariant subset S ⊂ V

with codimV S > i such that G acts freely on V − S (see discussion in Totaro [16]

for why this is possible for all i). Suppose that the quotient (X×k (V −S))/G exists

as a scheme. With this set-up, we can define the equivariant Chow group CH i
GX as

CH i
GX = CH i(X ×k (V − S)/G).

Of course, we have to check that this is well-defined and does not depend on

the choices of V and S, and that we can find appropriate representations for any

codimension i. See for example [16] (section 2.3) or [15] for these details. Fortunately

it turns out that this definition gives rise to a well-defined equivariant Chow ring

CH∗GX. That these equivariant Chow rings satisfy the same properties of the Chow

ring discussed above, such as functoriality and the existence of a cycle map, follows

from the fact that they’re defined as the Chow groups of quotient varieties.

The special case we’re most interested in is when the variety X is just a point.

Definition 2.2.1. For G an affine group scheme of finite type over a field k and

i > 0, let V be a representation of G over k, and S ⊂ V a G-invariant closed
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subset with codim(S) > i such that G acts freely on V −S. Then define CH iBG =

CH i(V − S)/G.
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Chapter 3: Higher Chow groups

3.1 Definition

In this section we define the higher Chow groups of a scheme, following Bloch’s

construction in [1]. One way to motivate this construction is to think of it as a way

to extend the localization sequence for Chow groups to the left.

For a positive integer n, define the standard n-simplex as the affine space

∆n := Spec
(
k[x0, . . . , xn]/

((∑
xi

)
− 1
))
∼= An.

The faces of ∆n are the subvarieties given by setting some subset of the vari-

ables equal to zero. For i = 0, . . . , n, let fi : ∆n−1 → ∆n denote the face map that

sends xi to zero.

Let X be a scheme of finite type over a field k. Bloch’s key insight for gen-

eralizing the Chow groups is the following equivalent characterization of rational

equivalence of cycles, which is proved in [6] (as proposition 1.6). First, a bit of nota-

tion: If V ⊆ X×P1 is a subvariety such that projection onto P1 induces a dominant

map f : V → P1, and P ∈ P1 is any point, then denote by V (P ) the projection of

f−1(P ) ⊆ X × {P} onto X.

Proposition 3.1.1. A cycle α ∈ Zk(X) is rationally equivalent to zero if and only
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if there exist (k + 1)-dimensional subvarieties V1, . . . , Vn ⊆ X × P1 such that

α =
n∑
i=1

[V (0)]− [V (∞)],

where [Z] denotes the class of Z in Zk(X).

In other words, a cycle is rationally equivalent to zero essentially if it can be

expressed in terms of differences of fibers of maps to P1. It’s this conception that

Bloch generalizes.

Let zi(X, j) be the free abelian group generated by codimension i cycles of the

product X×k ∆j that intersect each face X×k ∆r in codimension i, where ∆r ⊆ ∆j

is the image of a face map as defined above. (In other words, we want to toss out

any cycles of X ×k ∆j that contain faces of ∆j; our interest is in cycles more native

to X, in a sense.) For these cycles the pullback along the face maps is well defined:

Let δm = f ∗m : zi(X, j)→ zi(X, j − 1) for m = 0, . . . , j.

We can now re-frame rational equivalence in terms of these face maps. By

proposition 3.1.1, a cycle on X is rationally equivalent to zero precisely when it lies

in the image of the map

δ0 − δ1 : zi(X, 1)→ zi(X, 0).

Here for a cycle Z ∈ zi(X, 1) we’re thinking of δm(Z) as essentially the fiber over

m ∈ ∆1 ∼= A1 for m = 0, 1. Hence we can think of the Chow group CH i(X) as

being cycles on X modulo the image of δ0 − δ1. This formulation now generalizes

naturally:

Definition 3.1.2. Let X be a scheme of finite type over a field k and ∆n and
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zi(X, j) as above. The face maps δi give rise to a simplicial complex of abelian

groups:

· · · → zi(X, 2)→→→ zi(X, 1) ⇒ zi(X, 0).

Define the higher Chow groups of X as the homology of this complex. Specif-

ically,

CH i(X, j) :=
ker (

∑
(−1)mδm : zi(X, j)→ zi(X, j − 1))

im (
∑

(−1)mδm : zi(X, j + 1)→ zi(X, j))
.

It follows from the discussion above that CH i(X, 0) is the normal Chow group

CH i(X).

3.2 Properties of higher Chow groups

This section summarizes the main properties of the higher Chow groups that

we will make use of. All of these are extensions of similar properties for the classic

Chow groups. See Bloch’s original paper [1] as well as the corrections to a couple of

the proofs given by Levine [11] for more details.

• Ring structure. In the case that X is a smooth scheme of finite type over

k, the higher Chow groups have the structure of a bigraded commutative ring

(see [1]). The product map

CHp(X, q)⊗ CHr(X, s)→ CHp+r(X, q + s)

comes from composing the natural map

CHp(X, q)⊗ CHr(X, s)→ CHp+r(X ×X, q + s)
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with the pullback of the diagonal ∆ : X → X ×X.

• Localization sequence. As mentioned above, one of the main useful things

about higher Chow groups is that they provide a way to extend the localization

sequence for Chow groups to the right. For a closed subvariety Z ⊂ X of

codimension d and U = X − Z, the localization sequence takes the form

· · · → CH i(U, j + 1)→ CH i−d(Z, j)→ CH i(X, j)→ CHj(U, j − 1)→ · · · .

For a scheme X with an action of a group scheme G, we can define equivariant

higher Chow groups analogously to how we defined the equivariant Chow ring above;

see [5] for details.

3.3 Connection to motivic cohomology

For schemes X of finite type over a field, Bloch’s higher Chow groups coincide

with the motivic cohomology groups of X as defined by Voevodsy (see [17] and [13]),

but with annoyingly different indexing. Specifically, the conversions are as follows:

CH i(X, j) ∼= H2i−j,i(X,Z);

Hm,n(X,Z) ∼= CHn(X, 2n−m).

For the remainder of this paper we will use the motivic cohomology indexing.

Define the weight of an element of the motivic cohomology group of bidegree (m,n)

to be w = 2n−m. It follows from the relationship to higher Chow groups that the

weight zero motivic cohomology corresponds to the normal Chow groups. It further

follows that the motivic cohomology groups vanish for w < 0, as well as for n < 0.
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3.4 Connection to étale cohomology

In the case of finite coefficients, the Beilinson-Lichtenbaum conjecture, proven

by Voevodsky in [17], provides an identification of certain motivic cohomology

groups with the étale cohomology groups of X. For X a smooth scheme of finite

type over k and n an integer invertible in k, there is a cycle map

Hm,n(X,Z/n)→ Hm
et (X,µ⊗nn ).

The Beilinson-Lichentenbaum conjecture asserts that this map is in fact an isomor-

phism in a wide range of degrees.

Theorem 3.4.1 (Voevodsky). Let X be a smooth scheme of finite type over a field

k, and suppose that n is invertible in k. Then the cycle map

Hm,n(X,Z/n)→ Hm
et (X,µ

⊗n
n )

is an isomorphism for m ≤ n, and is injective for m = n+ 1.

Note that for k = C, the étale cohomology is identified with the ordinary

cohomology Hm(X,Z/n).

Since we know by the identification with higher Chow groups that motivic

cohomology is trivial for m > 2n, in the case of finite coefficients this creates a

wedge in which potentially interesting behavior can occur, namely bidegrees with

m/2 ≤ n < m.

13



3.5 The ×τ map

We are now ready to introduce the main protagonist (or antagonist?) of our

story. For a field k of characteristic not p and containing a pth root of unity, we

have (by theorem 3.4.1 or corollary 4.9 in [13]) that H0,1(Spec k,Z/p) ∼= µp ∼= Z/p.

Fix a generator τ ∈ Z/p of this group. For an irreducible variety X over k, we also

have that H0,1(X,Z/p) ∼= H0
et(X,Z/p) ∼= Z/p, and by slight abuse of notation we’ll

also write τ for the image of τ under the map H0,1(Spec k,Z/p) → H0,1(X,Z/p)

induced by the structure map X → Spec k.

By the product structure on the motivic cohomology, multiplication by τ gives

a map of bidegree (0, 1). It turns out that understanding this map is key to under-

standing the structure of the motivic cohomology ring with finite coefficients. We

know by the Beilinson-Lichtenbaum conjecture that for fixed m, as n increases we

eventually hit a point where Hm,n(X,Z/p) is isomorphic to the étale cohomology

(specifically when n ≥ m). In other words, given a nontrivial class α ∈ Hm,n(X,Z/p)

where n < m, we can identify τm−nα with a class in Hm
et (X,Z/p). To the extent

that there are interesting ‘extra’ classes in the motivic cohomology that are invisible

in the étale cohomology ring, those classes must get sent to zero by some power of

τ . Hence to study the information contained in the motivic cohomology ring that’s

absent from the étale cohomology, we want to zoom in and focus on the τ -torsion

elements.

Yagita [18] makes this precise as follows, in the case that k = C: In this case

the étale cohomology is the same as the ordinary cohomology, and the ×τm−n map
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composed with the isomorphism from the Beilinson-Lichtenbaum conjecture can be

identified with the cycle map cl : Hm,n(X,Z/p) → Hm(X,Z/p). Yagita defines

the motivic filtration of H∗(X,Z/p) by griH∗(X,Z/p) = F ∗i /F
∗
i−1, where a class

x is in F ∗i if it is equal to τ ry for some class y with w(y) ≤ i. (Recall that for

y ∈ Hm,n(X,Z/p), the weight w(y) is w(y) = 2n−m.) In other words, to find the

grading of a class x, ‘divide out’ powers of τ as much as possible, and when you

can’t go any further take the weight. Defining the ring

h∗,∗
′
(X,Z/p) = H∗,∗

′
(X,Z/p)/(ker(×τ ∗−∗′),

we get that

hm,n(X,Z/p) ∼=
⊕
i

gr2(n−i)−mHm(X,Z/p)τ i.

For example, h2n,n(X,Z/p) ∼= gr0H2n(X,Z/p) is the image of the cycle map

H2n,n(X,Z/p) ∼= CHn(X)⊗Z/p→ H2n(X,Z/p) (in other words, the classes in the

regular cohomology that come from weight zero classes, i.e. the Chow ring).

Computation of the motivic cohomology group, then, can be broken down into

steps:

• Understand ker
(
×τ ∗−∗′ : H∗,∗

′
(X,Z/p)→ H∗,∗(X,Z/p) ∼= H∗et(X,Z/p)

)
;

• Understand the ‘motivic grading’ on H∗et(X,Z/p).

If we’re lucky (or unlucky, depending on our goals) the answer to the first ques-

tion will be that the ×τ map is in fact injective in all degrees, so that h∗,∗
′
(X,Z/p) ∼=

H∗,∗
′
(X,Z/p), and we can focus on just understanding the motivic grading. For fu-

ture convenience, we’ll give this property the rather uninspired name of τ -injectivity.
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Definition 3.5.1. Let X be a smooth scheme separated and of finite type over

a field k of characteristic not equal to p and containing a pth root of unity. Call

X τ -injective if the map ×τ : Hm,n(X,Z/p) → Hm,n+1(X,Z/p) is injective in all

degrees. Call an algebraic group over k τ -injective if BG is τ -injective.

In order for this definition to be meaningful, it would be nice to know that

there exist cases in which τ -injectivity fails. Fortunately such examples have been

computed; for instance, in [9] Kameko defines for each prime p a family of groups

H, the smallest of which is order pp+3, such that the cycle map

cl : CH2(BH)⊗ Z/p→ H4(BH,Z/p)

fails to be injective. (Here BH is thought of as an affine group scheme over C.)

In fact his proof is constructive, in the sense that his proof works by constructing

a class as a Chern class of a specific so-called virtual complex representation and

then proving that it is in the kernel of the mod p cycle class map. Since we can

identify that map with the ×τ 2 map on motivic cohomology, the class constructed

in that paper must be τ -torsion. Kameko’s construction generalizes a family of

examples of larger order described by Totaro in [16], and Kameko conjectures that

his examples of order pp+3 are in fact the smallest examples where the cycle map

fails to be injective in degree 2.

3.6 Connection to the Bloch-Ogus spectral sequence

One computational tool for connecting the Chow ring of a variety to the co-

homology with finite coefficients is the spectral sequence constructed by Bloch and

16



Ogus in [2]. For a variety X over an algebraically closed field k, the first page of

this spectral sequence is given by

Ers
1 =

∐
x∈X(r)

Hs−r(k(x),Z/p),

where the sum is taken over points x ∈ X such that {x} has codimension r, and

Hs−r(k(x),Z/p) is the mod p Galois cohomology of the residue field of the stalk at x.

Let Hd denote the sheafification of the Zariski presheaf given by U 7→ Hd
et(U,Z/p).

In their 1974 paper Bloch and Ogus showed that the rows

Hs(k(X),Z/p)→
∐

x∈X(1)

Hs−1(k(x),Z/p)→ · · · →
∐

x∈X(s)

H0(k(x),Z/p)→ 0

are the global sections of a flasque resolution of the sheaf Hs, with the differentials

given by sums of residue maps. Therefore taking homology to turn the page amounts

to computing the sheaf cohomology of the sheaves Hs, and page two looks like

Ers
2 = Hr(X,Hs).

It follows naturally from the construction that the diagonal entries on the second

page are the mod p Chow groups CHrX ⊗ Z/p, and Bloch and Ogus showed that

this spectral sequence converges to the étale cohomology H∗et(X,Z/p).

As we’ve seen, the motivic cohomology ring also provides a connection between

the Chow ring and the étale cohomology ring, as it specializes to each in specific

degrees. Therefore it’s natural to expect some sort of close relationship between the

motivic cohomology ring and the terms of this spectral sequence; that relationship

is given by the following long exact sequence (see [18]):
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· · · → Hm,n−1(X,Z/p) ×τ−→Hm,n(X,Z/p)→ Hm−n(X,Hn)→

Hm+1,n−1(X,Z/p) ×τ−→ H4,3(X,Z/p)→ · · · . (3.1)

Hence the kernel of the ×τ map that we’re interested in is intimately related

to the page two terms of the Bloch-Ogus spectral sequence.

The following lemma follows immediately from this sequence and the fact that

the Galois cohomology of the function field vanishes above dim(X), and is proved

as lemma 5.4 in [18].

Lemma 3.6.1. Let X be a smooth variety over C of dimension two. Then X is

τ -injective; in other words, H∗,∗
′
(X,Z/p) ∼= h∗,∗

′
(X,Z/p).
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Chapter 4: Extraspecial groups of order p3

For p an odd prime, there are precisely two nonabelian groups of order p3,

both arising as central extensions of Z/p × Z/p by Z/p. Throughout, let Gi be

the nonabelian group of order p3 and exponent pi, for i = 1, 2. (These groups

go by various notations and names; my notation here is by no means standard,

but hopefully the subscripts provide a bit of a mnemonic.) These groups have the

presentations

Gi = 〈a, b, c : cp = bp = [a, c] = [b, c] = 1, [a, b] = c, ap = ci−1〉.

In other words, c generates the center, and a and b generate the two factors under

the projection map to Z/p× Z/p.

Both the integral and mod p cohomology of these groups have been computed

(see for example [10] and [12]), as have the Chow groups [18]. In this section we

summarize those results, since we will be building off of them to do computations

of the motivic cohomology.
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4.1 Mod p cohomology

In [10], Leary computes the mod p cohomology of G1 using the method of first

computing the cohomology of a group G̃1 fitting into the exact sequence

0→ G1 → G̃1 → S1 → 0,

where S1 is the unit circle considered as a subgroup of C. The following (with

modified notation) is Theorem 6 of [10].

Theorem 4.1.1. Let p > 3 be prime, and G1 be the nonabelian group of order p3

and exponent p. Then H∗(BG1,Z/p) is generated by elements

y, y′, x, x′, Y, Y ′, X,X ′, d4, . . . , dp, c4, . . . , cp−1, z;

writing y∗, x∗ etc. to stand at once for y and y′, x and x′, and so on, we have

deg y∗ = 1, deg x∗ = deg Y ∗ = 2, degX∗ = 3,

deg di = 2i− 1, deg ci = 2i, deg z = 2p;

and these are subject to the following relations, organized by degree (here when ∗
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appears in a relation it has a consistent value, e.g. y∗x∗ means yx and y′x′):

Degree Relations

2 yy′ = 0

3 xy′ = x′y, yY ′ = y′Y, y∗Y ∗ = 0

4 (Y ∗)2 = Y Y ′ = 0, y∗X∗ = x∗Y ∗, Xy′ = 2xY ′ + x′Y, X ′y = 2x′Y + xY ′

5 X∗Y ∗ = 0, XY ′ = −X ′Y, xX ′ = −x′X

6 x∗(xY ′ + x′Y ) = 0

2p− 1 cp−1y
∗ = −(x∗)p−1y∗

dp−1x
∗ = −(x∗)p−1y∗

2p dpy = −xp−1Y, dpy
′ = x′p−1Y ′, cp−1x

∗ = −(x∗)p

cp−1Y
∗ = −(x∗)p−1Y ∗, dp−1X

∗ = −(x∗)p−1Y ∗

2p+ 1 xpy′ = x′py, cp−1X
∗ = −(x∗)p−1X∗

dpx = xp−1x, dpx
′ = −x′p−1X ′

2p+ 2 xpx′ = x′px, xpY ′ = −x′pY

2p+ 3 xpX ′ = −x′pX

4p− 5 dp−1cp−1 = x2p−3y + x′2p−3y′ − xp−1x′p−2y′

4p− 4 c2
p−1 = x2p−2 + x′2p−2 − xp−1x′p−1

dpdp−1 = x2p−3Y − x′2p−3Y ′ + xp−1x′p−2Y ′

4p− 3 dpcp−1 = −x2p−3X + x′2p−3X ′ − xp−1x′p−2X ′

Additionally if not specified on this list ci(anything) = di(anything) = 0 for ‘any-

thing’ 6= z, and (y∗)2 and d2
p are expressible in terms of the other generators.1 The

Bockstein acts by β(y∗) = x∗, β(Y ∗) = X∗, β(di) = ci for i < p, and β(dp) = 0.

1As far as I can tell, Leary’s computation doesn’t discuss relations for y2, (y′)2, or d2p, but it’s
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For the case p = 3, which will be the focus of much of this thesis, the following

appears as Theorem 7 in [10].

Theorem 4.1.2. Let G be the nonabelian group of order 27 and exponent 3. Then

H∗(BG,Z/p) is generated by elements y, y′, x, x′, Y, Y ′, X,X ′, and z, with

deg y∗ = 1, deg x∗ = deg Y ∗ = 2, degX∗ = 3, deg z = 6,

and relations

Degree Relations

2 yy′ = 0

3 xy′ = x′y, yY ′ = y′Y, y∗Y ∗ = xy′

4 Y Y ′ = xx′, Y 2 = xY ′, Y ′2 = x′Y

xx′ = x∗Y ∗ − y∗X∗, Xy′ = x′Y − xY ′, X ′y = xY ′ − x′Y

5 XY = x′X, X ′Y ′ = xX ′, XY ′ = −X ′Y, xX ′ = −x′X

6 XX ′ = 0, x(xY ′ + x′Y ) = −xx′2, x′(xY ′ + x′Y ) = −x′x2

7 x3y′ = x′3y

8 x3x′ = x′3x, x3Y ′ + x′3Y = −x2x′2

9 x3X ′ = −x′3X

As before we have that β(y∗) = x∗ and β(Y ∗) = X∗.

In the case of the group G2 of exponent p2, the mod p cohomology was com-

puted by Diethelm in [4], and is significantly simpler to write down than the expo-

nent p case. The following (with modified notation) is theorem 2(a) in [4].

clear from counting dimensions and comparing to the integral cohomology that they must not be

independent generators.
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Theorem 4.1.3. Let p be an odd prime and let G2 be the nonabelian group of order

p3 and exponent p2. Then H∗(G2,Z/p) is generated by elements

a1, . . . , ap−1, b, y, v, w,

with

deg ai = 2i− 1, deg b = 1, deg y = 2, deg v = 2p− 1, degw = 2p,

with relations

aiaj = aiy = aiv = b2 = v2 = 0.

4.2 Integral Cohomology

We will also make use of the structure of the integral cohomology rings of Gi,

which were computed by Lewis in [12]. The following appeared as theorems 5.2 and

6.26 respectively in that paper.

Theorem 4.2.1. Let p be an odd prime and G2 be the nonabelian group of order p3

and exponent p2. Then H∗(G2,Z) has generators α, χ, ζ, β1, . . . , βp−1, with

degα = 2, deg βi = 2i, deg ζ = 2p, degχ = 2p+ 1,

and satisfying the following relations:

p2ζ = pα = pχ = pβi = 0;

χ2 = βiα = βiχ = βiβj = 0 for all i, j.

As with the mod p cohomology, the integral cohomology of G1 is more com-

plicated to write down:

23



Theorem 4.2.2. Let p be an odd prime and G1 be the nonabelian group of order p3

and exponent p. Then H∗(G1,Z) has generators α, β, µ, ν, χ2, . . . , χp−2, γ, with

degα = deg β = 2, deg µ = deg ν = 3, deg ζ = 2p, degχi = 2i, deg γ = 2p−2,

and

p2ζ = pα = pβ = pν = pµ = pχi = pγ = 0,

and satisfying relations

Degree Relations

5 αµ = βν

6 µ2 = ν2 = 0

χ2 = dµν (for p > 3)

pζ = eµν (for p = 3)

2p αγ = αβp−1, βγ = βαp−1

2p+ 1 µγ = µαp−1, νγ = νβp−1

2p+ 2 αβp = βαp

2p+ 3 αpµ = βpν

4p− 4 γ2 = αp−1βp−1

where d, e denote some element of Z∗p; in addition for all i, j,

χiχj = αχi = βχi = µχi = νχi = γχi = 0.

Our interest in the integral cohomology comes mainly from the fact that, as

proven by Yagita in [18], for these two groups the Chow groups (and hence the
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weight zero motivic cohomology groups) are isomorphic to the even degree inte-

gral cohomology. The tool we’ll use in the computation of the motivic filtration

is the universal coefficients sequence for motivic cohomology: from the short exact

sequence

0→ Z ×p−→ Z→ Z/p→ 0

we get a long exact sequence in motivic cohomology, which gives the following key

fact:

Key Fact 4.2.3.

dimHm,n(X,Z/p) = dim(Hm,n(X,Z)/p) + dim(p-torsion(Hm+1,n(X,Z)).

To that end, the information that we really care about is the dimension of

the integral cohomology in each degree. For simplicity of bookkeeping, I’ll record

dimensions of the cohomology groups modulo the generator ζ of degree 2p; note

that with the exception of the case G = G1 and p = 3, which we’ll discuss in detail

later, we have that

H∗(G,Z) = R[ζ]/(p2ζ),

where R is the ring given by the other generators and relations, so we can focus our

attention on understanding that R.

Corollary 4.2.4. For each n, let Rn be the degree n graded piece of H∗(G2,Z)/(ζ).

Then we have

Rn
∼=


0 n = 2i− 1, 1 ≤ i ≤ p;

Z/p⊕ Z/p n = 2i, 1 ≤ i < p;

Z/p n ≥ 2p

25



Proof. Since βiα = 0, below degree 2p each even degree has generators αi and βi,

and clearly there are no odd degree generators below degree 2p + 1. Since we are

working modulo powers of ζ, the only generator in degree 2p is αp. In higher degree,

again since βiχ = χ2 = 0, the only generators that aren’t multiples of ζ are of the

form αiχj for j = 0, 1, meaning there is exactly one generator in each degree.

Taking multiples of ζ into account, we get the following for each degree:

Corollary 4.2.5.

Hn(G2,Z) ∼=


(Z/p)i ⊕ Z/p2 n = 2ip, i > 0;

(Z/p)b
n
2p
c n odd;

(Z/p)b
n
2p
c+2 n even, 2p - n.

Proof. For degrees n ≥ 2p + 1, a set of generators is given by α1χj as discussed

above along with ζ multiplied by each of the generators of degree n − 2p, which

leads to the given pattern of degrees.

We can do the same thing in the case of G1, first counting generators modulo

multiples of the class ζ and then using that to find the dimensions of each degree of

the cohomology.

Corollary 4.2.6. For each n, let Rn be the degree n graded piece of H∗(G1,Z)/(ζ).
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Then we have

Rn
∼=



0 n = 1;

Z/p⊕ Z/p n = 2;

(Z/p)i+2 n = 2i, 2 ≤ i < p;

(Z/p)i n = 2i− 1, 2 ≤ i ≤ p;

(Z/p)p+1 n ≥ 2p.

Proof. The dimensions for n = 1, 2, 3 are clear from the generators of the rings. We

break the rest into cases:

(i) Even degrees n = 2i, 2 ≤ i < p. In this case generators are given by αjβi−j

for 0 ≤ j ≤ i and χi, for a total of i + 2 independent generators. For p > 3,

the fact that µν is a multiple of χ2 means that it does not contribute an extra

dimension.

(ii) Odd degree n = 2i−1, 3 ≤ i ≤ p. Since αµ = βν, we can consider all multiples

of βν redundant, and χi−2µ = χi−2ν = 0, generators are given by multiplying

each generator of degree n − 3 other than χi−2 by µ, and additionally ναi−2.

Since there are i total generators of degree 2i − 4 by the above, this gives a

total of i generators of degree n.

(iii) Even degree n = 2i, i ≥ p. Because of the relation αβp = βαp, we can reduce

all generators that are multiples of β so that the power on α is less than p.

Hence a generating set is given by βi, αβi−1, . . . , αp−1βi−p+1 and αi. Note that

for p = 3 the generator µν in degree 6 is a multiple of ζ so is trivial in R6.

(iv) Odd degree n = 2i+ 1, i ≥ p. In this case there are p+ 1 generators of degree
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n − 3, and as before generators of degree n are given by multiplying these

by µ and ν and applying the relations αµ = βν and αpµ = βpν. Hence a

generating set is given by µβi−1, µαβi−2, . . . , µαp−1βi− p, ναi−1, for a total of

p+ 1 generators.

As before we can use this to compute the total rank of Hn(G1,Z) for each

n, which tells us the dimension of the Chow groups or equivalently the weight zero

motivic cohomology.

Corollary 4.2.7. For each n ≥ 1, let sn = d n
2p
e − 1, let in = n − 2psn, and let dn

be the dimension of Rin from the previous corollary. Then

Hn(G1,Z) ∼=


(Z/p)dn+sn(p+1) ⊕ Z/p2 n = 2ip, i > 0;

(Z/p)dn+sn(p+1) else.

4.3 Representations of Gi

Write ζ = exp(2πi/p2) and ω = exp(2πi/p). There are p-dimensional complex

representations ρi of the groups Gi given explicitly as follows:

For G1, the representation ρ1 is given by sending

a 7→ diag(1, ω, ω2, . . . , ωp−1),

b 7→ (δi,j−1),

c 7→ diag(ω, . . . , ω),

where δi,j = 1 if i ≡ j (mod p) and 0 else.
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For G2, the representation ρ2 is given by sending

a 7→ diag(ζ, ζ1+p, ζ1+2p, . . . , ζ1+p(p−1)),

b 7→ (δi,j−1),

c 7→ diag(ω, . . . , ω).

In both cases, the action is free outside of a finite number of lines. Thinking

of Gi as a complex algebraic group, the representation ρi gives a free action of Gi

on the variety U = Ap
C − S, where S is the set on which the action has nontrivial

stabilizers.

Understanding the structure and the cohomology of this set S on which the

action is not free will be key to understanding the cohomology of BG; specifically

we will prove as a lemma that (for both groups Gi) the motivic cohomology of S

is τ -injective. First we describe the structure of this set for each group of order

p3 separately, then we present Yagita’s computation of the ordinary cohomology of

these sets (spoiler: the cohomology is the same for both groups) and use that to

compute the motivic cohomology.

4.3.1 The group G1

Let V = Cp−{0} have the action of G1 given by restricting the representation

ρ1. Denote by ei = (0, . . . , i, . . . , 0) the ith standard basis vector of Cp. Let

S0 =
∐
i

C∗{ei}

be the disjoint union of the span of each basis vector intersected with V (here

C∗ = C− {0}).
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Proposition 4.3.1. G1 acts on S0 via the restriction of ρ1.

Proof. This is clear since the generators a and c act via diagonal matrices and hence

simply scale each ei, and the generator b acts by permuting the ei.

The stabilizer for any point s ∈ S0 is the subgroup 〈aci〉 for some i; for example

any point in C∗{e1} is stabilized by 〈a〉.

For each 1 ≤ j < p we can define a similar set Sj as follows: the matrix ρ1(a)

is conjugate to the matrix ρ1(abj) for 1 ≤ j < p and to ρ1(b); let Mj ∈ GLp(C) be

such that M−1
j ρ1(a)Mj = ρ1(abi) for j < p and M−1

p ρ1(a)Mp = ρ1(b). Then the set

Sj = M−1
j S0 is G1-equivariant, and the stabilizer of any point in Sj is the subgroup

〈abjci〉 for j < p and 〈bci〉 for j = p. Write S for the disjoint union of the Sj. (Think

of the sets S0, . . . , Sp as essentially corresponding to the p+ 1 automorphisms of the

quotient group G/〈c〉 = 〈a, b〉 ∼= Z/p× Z/p.)

Since no point in V is stabilized by 〈c〉, this in fact exhausts the points with

nontrivial stabilizers; the following is lemma 3.1 in [18]:

Proposition 4.3.2. The group G1 acts freely on V − S.

4.3.2 The group G2

Again let V = Cp − {0} and consider V as a G2-space under the restriction

of the action given by ρ2. Let v = (1, . . . , 1) ∈ V ; clearly all multiples of v are

stabilized by b, since b acts by permuting the basis vectors of Cp. Define

vi = ρ2(ai)v
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for 0 ≤ i ≤ p− 1 (so v = v0). Then

bc−i · vi = bc−iai · v = aib · v = aiv = vi,

since aiba−i = bc−i. So the span of vi is stablized by 〈bc−i〉 and G2 acts on the

disjoint union

H =
∐

C∗{vi}.

Since for 1 ≤ i ≤ p − 1 we have (aibjck)p = ci, and no point is stabilized by

〈c〉, no point can be stabilized by 〈aibjck〉. Hence we’ve found all the points with

nontrivial stabilizers, and G2 acts freely on V −H (see [18]).

4.3.3 Equivariant motivic cohomology of S and H

Yagita computed the mod p equivariant cohomology of the varieties S and H

defined above.

Theorem 4.3.3. Let S0, . . . , Sp, H be as defined above. Then we have the following:

(a) H∗G1
(S0,Z/p) ∼= H∗G1

(Si,Z/p) for i = 1, . . . , p;

(b) H∗G1
(S0,Z/p) ∼= H∗G2

(H,Z/p) ∼= Z/p[y] ⊗ Λ(x, z), where deg(y) = 2 and

deg(x) = deg(z) = 1.

Here in both cases the class y is the top Chern class of a one-dimensional

representation G→ C∗ taking a non-central generator of order p to the pth root of

unity ω and the other two generators to 1. (Because of exactly how we’ve defined

the sets H and S0, in the former case this representation takes b to ω and in the

latter case it takes a to ω, but the only importance of that is that it makes the
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notation slightly more confusing; the important information is that the element y is

a Chern class.)

Theorem 4.3.4. The ×τ map is injective on the equivariant motivic cohomology

rings H∗,∗
′

G1
(S0,Z/p) and H∗,∗

′

G2
(H,Z/p). This gives the isomorphisms

H∗,∗
′

G1
(S0,Z/p) ∼= H∗,∗

′

G2
(H,Z/p) ∼= Z/p[τ ]⊗ Z/p[y]⊗ Λ(x, z).

Proof. This argument follows the structure of the proof of lemma 6.4 in [18], which

deals with the case G = D8. We begin with the case of S0. Consider the localization

sequence in motivic cohomology induced by the inclusion S0×{0} ↪→ S0×C, where

the G1 action on S0 × C is given by

(aibjck) · (r, s) = (ρ1(aibjck)r, ωis),

where again ω is a primitive pth root of unity. Importantly, since the stabilizer of

every point in S0 is 〈ack〉 for some k, this action is free on the complement S0×C∗.

Therefore the localization sequence looks like

· · · → Hm−2,n−1
G1

(S0 × {0},Z/p)
×y−→ Hm,n

G1
(S0 × C,Z/p)→

Hm,n ((S0 × C∗)/G1,Z/p)→ · · · .

The variety (S0 × C∗)/G1 is not difficult to understand: the element b ∈ G1

acts on the first factor by transitively permuting the p disjoint lines that make up

S0, so modding out by the action of b we may take a representative of each orbit on

C∗{e1}×C∗ where e1 is the first standard basis vector in Cp as defined earlier. Now
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c acts as multiplication by ω on the first factor and trivially on the second, while a

acts trivially on the first factor and by multiplication by ω on the second. In other

words we have

(S0 × C∗)/G1
∼= C∗/〈c〉 × C∗/〈a〉.

The ordinary cohomology, then, is the cohomology of S1 × S1:

H∗((S0 × C∗)/G1,Z/p) ∼= Λ(x, z),

where x, z are generators in degree 1 and Λ is the exterior algebra over Z/p. Since

the variety (S0×C∗)/G1 is two-dimensional, by corollary 3.6.1 it is τ -injective; since

both generators are degree 1, this means the only question about the motivic grading

is whether the element xz ∈ H2,2((S0 × C∗)/G1,Z/p) is a multiple of τ or not, a

question which will turn out not to matter for the following computation.

We can now leverage this in the localization sequence to understand the equiv-

ariant motivic cohomology of S0 itself. Of course up to homotopy S0×{0} and S0×C

are just S0 in disguise, so we get the following diagram, writing X for (S0×C∗)/G1:

· · · Hm−1,n(X,Z/p) Hm−2,n−1
G1

(S0,Z/p) Hm,n
G1

(S0,Z/p) Hm,n(X,Z/p) · · ·

· · · Hm−1,n+1(X,Z/p) Hm−2,n
G1

(S0,Z/p) Hm,n+1
G1

(S0,Z/p) Hm,n+1(X,Z/p) · · ·

×τ

×y

×τ ×τ ×τ

×y

The plan of attack is to use the four lemma and induction on m. We first

recall the relevant lemma:

Lemma 4.3.5. Given the commutative diagram of groups

A B C D

A′ B′ C ′ D′

a b c d
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suppose that the rows are exact and that the vertical map a is surjective and the

maps b and d are injective. Then c is injective.

For any m ≤ 2, let n be such that 2n −m ≥ 0; then the four lemma applies

to the diagram above to give us that ×τ : Hm,n
G1

(S0,Z/p) → Hm,n+1
G1

(S0,Z/p) is

injective. Since the map is trivially injective if 2n−m < 0 (because the domain is

zero), this gives that S0 is τ -injective for m ≤ 2. Now for m = 3, the only cases in

which the leftmost map might fail to be surjective are (m,n) = (3, 0), (3, 1), which

again are trivial. For all other values of n the four lemma again applies, meaning

that S0 is τ -injective for m ≤ 3. Now induction fully kicks in, since the leftmost

map is surjective in all degrees when m > 3. Hence the result for m ≤ 3 implies the

result for m ≤ 5, which implies the result for m ≤ 7, and so on.

The argument for H is essentially identical, with the action of G2 on H × C

given by

(aibjck) · (r, s) = (ρ2(aibjck)r, ωjs).

Recall that the stabilizer of any point in H is the subgroup 〈bck〉 for some k, meaning

that again this action is free on H ×C∗. In this case by construction the element a

acts to permute the p disjoint lines that make up H, and the rest of the argument

goes through exactly as above.
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Chapter 5: Cohomological Invariants

In this chapter we define the notion of a cohomological invariant of a group—

briefly, a natural transformation from G-torsors over a field extension K/k to abelian

Galois cohomology of K. (See below or [7] for details.) As before we assume for

simplicity that the base field k is algebraically closed. We are interested in the ring

of cohomological invariants of G because its graded pieces appear on the second

page of the Bloch-Ogus spectral sequence (defined in [2]), and the terms on that

page slot into a long exact sequence with motivic cohomology groups. Therefore

understanding the ring of cohomological invariants of G can be leveraged to gain

information about the motivic cohomology.

The main result in this section that will be useful to us is theorem 5.3.1, which

gives conditions under which a group G has no nontrivial degree three cohomological

invariants. This result will serve as a lemma in our computation of the motivic

cohomology of the nonabelian groups of order 27.

5.1 Definition and versal torsors

A cohomological invariant of G is a natural transformation of functors

η : H1(−, G)→ H∗(−,Z/p),
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where H1(K,G) is the first nonabelian Galois cohomology set (which can be thought

of as isomorphism classes of G-torsors over K), and H∗(K,Z/p) is the abelian Galois

cohomology ring. For our purposes, however, this is not the most convenient way

to think of cohomological invariants. Given a quotient variety X = (V − S)/G as

above, with codimS ≥ 2, the generic fiber T of the map V − S → X is a versal

G-torsor, meaning that any given cohomological invariant is actually completely

defined by its value on that specific torsor (see discussion in [8]). Since T is defined

over Spec k(X), its image under an invariant η will lie in the Galois cohomology

group Hd(k(X), Z/p) for some degree d. Hence we can identify the group of degree

d cohomological invariants of G with a certain subset of Hd(k(X),Z/p).

In fact, we can say much more about that certain subset: Given a point x ∈ X

with codim {x} = 1, we get a residue map

νx : Hd(k(X),Z/p)→ Hd−1(k(x),Z/p),

where k(x) is the stalk at x. If a class ηT ∈ Hd(k(X),Z/p) is the image of a versal

torsor under an invariant, then νx(ηT ) = 0 for all such x; conversely, Totaro shows

that if codimS ≥ 2, every class in the kernel of νx for all x does in fact define a

cohomological invariant (letter to Serre, reprinted in [7]). Therefore we have the

identification

InvdG = ker

Hd(k(X),Z/p)→
∐

x∈X(1)

Hd−1(k(x),Z/p)

 ,

where x ∈ X(1) ranges over all codimension one points.

36



5.2 Bloch-Ogus spectral sequence and stable cohomology

In their 1974 paper, Bloch and Ogus showed that the product of residue maps

considered above is part of a flasque resolution of the sheaf Hd on X, defined as the

sheafification of the Zariski presheaf U 7→ Hd
ét(U,Z/p). Therefore we can actually

think of the kernel as a sheaf cohomology group, and we get

InvdG = H0(X,Hd).

This sheaf cohomology group appears as the E0,d
2 term of the Bloch-Ogus spectral

sequence for X, which converges to the étale cohomology H∗et(X,Z/p). With our

assumptions on X and the base field k, we can in fact identify these étale cohomology

groups with the group cohomology H∗(G,Z/p) in low degree.

The diagonal entries Er,r
2 are isomorphic to the mod p Chow groups CHrX ⊗

Z/p ∼= CHrG⊗Z/p. Hence the differential δ : E0,3
2 → E2,2

2 combined with the maps

to and from the abutment give an exact sequence:

H3(G,Z/p)→ Inv3G
δ−→ CH2G⊗ Z/p→ H4(G,Z/p).

The kernel of the differential δ is composed of the classes that survive the turn-

ing of the page of the spectral sequence and hence appear in the étale cohomology;

in other words, this kernel is the stable cohomology as discussed by Bogomolov and

Böhning in [3]. In that paper they prove that the two groups we are interested in

have stable cohomological dimension 2, meaning that no classes from Inv3G sur-

vive to the cohomology, so the kernel of δ is trivial. Combining this with the fact

that the cycle map out of the Chow group is injective, which follows from [18], is
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enough to give that Inv3Gi = 0 for our groups of order p3. However, we can use the

connection between the Bloch-Ogus spectral sequence and the motivic cohomology

ring to prove a more general result that doesn’t rely on the results of [3].

5.3 Vanishing of degree three invariants

In this section we prove the following theorem, which gives conditions on the

integral cohomology and integral Chow groups that guarantees the vanishing of

degree three invariants of G.

Theorem 5.3.1. Let X be a variety over SpecC satisfying the following two prop-

erties:

(i) CH2X ∼= H4(X,Z);

(ii) There is some power pn with pnH3(X,Z) = 0.

Then H0(X,H3) = 0. In particular, if X is an approximation of the classifying

stack BG for an algebraic group G such that the above two conditions hold, then

Inv3G = 0.

Proof. The group H0(X,H3) fits into the following long exact sequence:

· · · → H3,2(X,Z/p) ×τ−→H3,3(X,Z/p)→ H0(X,H3)→

H4,2(X,Z/p) ×τ−→ H4,3(X,Z/p)→ · · · .

Therefore, we get our result if we can show that

(a) ×τ : H4,2(X,Z/p)→ H4,3(X,Z/p) is injective, and
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(b) ×τ : H3,2(X,Z/p)→ H3,3(X,Z/p) is surjective.

The injectivity is easier to show, so we will do that first. We know thatH4,2(X,Z/p) ∼=

CH2X ⊗ Z/p is the mod p Chow group. The kernel of the map

c : CH2X → H4(X,Z/p)

that comes from composing the cycle map with the change of coefficients map

H4(X,Z) → H4(X,Z/p) is exactly pCH2X, since we are assuming the cycle map

is an isomorphism. This means the mod p cycle map

cp : CH2X ⊗ Z/p→ H4(X,Z/p)

is injective. Since we can identify c with the map ×τ 2 on motivic cohomology, we

have shown (a).

For (b), denote by β the connecting homomorphism β : H3(X,Z/p)→ H4(X,Z);

the plan of attack is first to show that

ker(β) ⊆ im(τ) ⊆ H3,3(X,Z/p) ∼= H3(X,Z/p),

and then to show that any class in H3(X,Z/p) is equivalent to a class in ker(β) mod

the image of τ .

The key to the first step is that, for any exponent n the short exact sequence

0→ Z/p→ Z/pn+1 → Z/pn → 0

induces connecting maps on both étale cohomology and motivic cohomology:

βmot : H∗,∗(X,Z/pn)→ H∗+1,∗(X,Z/p);
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βet : H∗(X,Z/pn)→ H∗+1(X,Z/p).

Under the isomorphisms from the Beilinson-Lichntenbaum conjecture, then,

βet maps from H∗,∗(X,Z/pn) to H∗+1,∗+1(X,Z/p), and we have that

βet = τ ◦ βmot.

Therefore, crucially for us, im(βet) ⊆ im(τ).

Now let x ∈ ker(β) ⊆ H3(X,Z/p). Then we can pull x back to a class

x̃ ∈ H3(X,Z). By assumption, H3(X,Z) is pn-torsion for some n, meaning that x̃

in turn comes from a class x ∈ H2(X,Z/pn). Then we have x = βet(x) ∈ im(τ) as

desired.

For the general case, we now assume that β(x) 6= 0 ∈ H4(X,Z). Recall that

by assumption H4(X,Z) ∼= CH2X ∼= H4,2(X,Z); we write y ∈ H4,2(X,Z) for the

image of β(x) under this isomorphism. Since py = 0, we have y = β(x′) for some

x′ ∈ H3,2(X,Z/p). Then β(τx′) = β(x) ∈ H4(X,Z) (where we abuse notation a bit

by conflating τx′ and its image under the isomorphism H3,3(X,Z/p) ∼= H3(X,Z/p)).

By the previous case, then, β(x − τx′) = 0, so x − τx′ ∈ im(τ); therefore we also

have x ∈ im(τ) as desired.

In the case that X = (V − S)/G is an approximation to BG as described

above, with |G| = pn, we do automatically have that H3(X,Z) ∼= H3(G,Z) is pn-

torsion, so the second condition of the theorem is automatically satisfied. Therefore

we have shown that for finite p-groups G, if the degree two cycle class map is an

isomorphism then G has no nontrivial degree three cohomological invariants. For
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example, Yagita proved that the cycle class map is an isomorphism in all degrees for

the two nonabelian groups of order p3 for odd primes p [18], meaning by our result

these groups have no cohomological invariants of degree three. Since we’ll use it in

computations later on, we record that fact here as a corollary:

Corollary 5.3.2. Let G be either of the nonabelian groups of order p3. Then

Inv3(G) = 0.
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Chapter 6: Motivic Cohomology of BGi

In this chapter we prove the main result, which states that the motivic coho-

mology of the nonabelian groups of order 27 is τ -injective. The fact that enables

this conclusion for p = 3 is that in that case the groups Gi have irreducible three-

dimensional representations, letting us define a variety X = (V −S)/Gi that serves

as an approximation to BG with dim(X) = 3. By the following lemma, that nar-

rows the degrees in which the ×τ map on the motivic cohomology of X could fail

to be injective down enough that we can use previous results to show that X is in

fact τ -injective. In order to use the same method for p > 3 we would need to know

more about the terms on page two of the Bloch-Ogus spectral sequence.

Lemma 6.0.1. Let X be a complex variety with dimX = n. Then the ×τ map on

the motivic cohomology H∗,∗
′
(X,Z/p) can only fail to be injective in bidegrees (i, j)

satisfying 2 ≤ j ≤ n− 1 and j + 2 ≤ i ≤ 2j.

Proof. This follows directly from the long exact sequence 3.1:

· · · → H i−j−2(X,Hj+1)→ H i,j(X,Z/p)→ H i,j+1(X,Z/p)→ · · · .

The sheaf cohomology group H i−j−2(X,Hj+1) is trivial if j+1 > n or if i−j−2 < 0.

Therefore in order for the ×τ map to have a nontrivial kernel, we must have j ≤ n−1
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and j+ 2 ≤ i. If i > 2j then the motivic cohomology group H i,j(X,Z/p) = 0 so the

map is trivially injective. And finally, for j < 2, the set of i with j + 2 ≤ i ≤ 2j is

empty. Therefore the given bidegrees are the only ones in which ×τ can fail to be

injective.

In the case that n = 3, the only bidegree that we have to worry about is (4, 2).

This leads to the following corollary:

Corollary 6.0.2. Let X be a complex variety with dimX = 3, and assume that

H0(X,H3) = 0. Then X is τ -injective.

6.1 The p = 3 case

Theorem 6.1.1. Let G be a nonabelian group of order 27, thought of as an affine

group over C. Then the map

×τ : H∗,∗
′
(BG,Z/p)→ H∗,∗

′+1(BG,Z/p)

is injective.

Proof. We’ve already done much of the work of the proof; what remains is to put

the pieces together. Let G act on the space V = C3 − {0} via the faithful three-

dimensional representation of G as described in section , and let S ⊂ V be the

closed subset on which the stabilizers of the G-action are nontrivial. By theorem

4.3.3, we know the motivic cohomology ring of S and that it is τ -injective. Let

X = (V −S)/G be the quotient variety. Since X is three-dimensional, by corollaries

5.3.2 and 6.0.2 X is also τ -injective.
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The structure of the argument is to use the localization sequence in equivari-

ant motivic cohomology induced by the inclusion S ⊂ V , combined with what we

know about S and X, to obtain the result for BG. The first step is to prove

τ -injectivity for H∗,∗
′

G (V,Z/p); the second step is to use this result and the lo-

calization sequence coming from the inclusion {0} ⊂ C3 to get τ -injectivity for

H∗,∗
′

G (C3,Z/p) = H∗,∗
′
(BG,Z/p).

Step 1. We first focus on the following commutative diagram of exact se-

quences, coming from the localization sequence (3.1) from S ⊂ V :

· · · Hm+3,n+2(X,Z/p) Hm,n
G (S,Z/p) Hm+4,n+2

G (V,Z/p) Hm+4,n+2(X,Z/p) · · ·

· · · Hm+3,n+3(X,Z/p) Hm,n+1
G (S,Z/p) Hm+4,n+3

G (V,Z/p) Hm+4,n+3(X,Z/p) · · ·

×τ ×τ ×τ ×τ

As in the four lemma above, refer to the vertical maps from left to right as

a, b, c, and d. Since the action of G on V − S is free, the equivariant cohomology

H∗,∗
′

G (V − S,Z/p) is the cohomology of the quotient variety X. We know that

the vertical maps b and d are both injective. What we need in order for the four

lemma to kick in and prove that c is also injective is to show that the map a

is surjective. This is not true for general m and n. Going back to our trusty

sequence 3.1, we can see that the map a = ×τ : Hm,n−1(X,Z/p) → Hm,n(X,Z/p)

is surjective if and only if the map Hm−n(X,Hn)→ Hm+1,n−1(X,Z/p) is injective.

Hence we only have to worry about bidegrees in which Hm−n(X,Hn) is nonzero.

Since X is three-dimensional, this is a finite list. For each degree (m,n), the map

a : Hm,n−1(X,Z/p)→ Hm,n(X,Z/p) corresponds in the diagram above to the map

c : Hm+1,n−1
G (V,Z/p) → Hm+1,n

G (V,Z/p). For each case that a might fail to be
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surjective, we can check that in fact the domain of c is trivial and therefore its

injectivity is ensured:

(m,n) (m+ 1, n− 1) 2(n− 1)− (m+ 1) ≥ 0?

(0, 0) (1,−1) No

(1, 1) (2, 0) No

(2, 2) (3, 1) No

(3, 1) (4, 0) No

(3, 2) (4, 1) No

(4, 2) (5, 1) No

(4, 3) (5, 2) No

(5, 3) (6, 2) No

(6, 3) (7, 2) No

Well, that’s convenient. Since these are the only cases in which the injec-

tivity isn’t guaranteed by the four lemma, this shows that the map c = ×τ :

Hm,n
G (V,Z/p)→ Hm,n+1

G (V,Z/p) is injective in all degrees, as desired.

Note that the result that H0(X,H3) = 0 is a key corollary here: Without

knowing this, it would be possible that a : H4,2
G (V,Z/p) → H4,3

G (V,Z/p) could fail

to be injective.

We now use a similar diagram coming from the localization sequence for the

inclusion {0} ⊂ C3, following the structure of the argument in [18]. Since the

single point {0} and the space C3 are both homotopic to a point, the equivariant

cohomology of both is by definition H∗,∗
′
(BG,Z/p). In this case we circumvent the
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issue of surjectivity of the first vertical map in the diagram a different way: Instead

of considering the ×τ map itself, we take the vertical maps to be quotienting out

by the kernel of ×τ ∗−∗′ (a la the method in [18]). We can do this since in this case

the map H∗G({0},Z/p) → H∗+6
G (C3,Z/p) is given by multiplication by the Chern

class z of a three-dimensional representation (see [10] or theorems 4.1.2 and 4.1.3

above), which comes from the Chow ring and is therefore weight zero, so preserves

the grading. This map is injective, so we get a diagram

Hm,n(BG,Z/p) Hm+6,n+3(BG,Z/p) Hm+6,n+3
G (V,Z/p)

hm,n(BG,Z/p) hm+6,n+3(BG,Z/p) hm+6,n+3
G (V,Z/p)

We proceed by induction on m, applying the five lemma: For m < 0, the

×τ map is injective since the domain is trivial; since we know the first and last

vertical arrows in the above diagram are isomorphisms, by induction we can apply

the five lemma to the above diagram to get that the ×τ map is injective for m < 6.

Proceeding inductively, this gives injectivity for m < 12, and so on.
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Chapter 7: Computing h∗,∗
′
(BG,Z/p)

Now that we know that there are no motivic cohomology classes that are killed

by τ and hence ‘hidden’ from the étale cohomology ring, the work that remains is

to understand the ring h∗,∗
′
(BG,Z/p) with

hm,n(X,Z/p) ∼=
⊕
i

gr2(n−i)−mHm(X,Z/p)τ i.

Our main tools will be the universal coefficients sequence that links the mod p

cohomology with the integral cohomology and the fact that we know the Chow

groups of G agree with the integral cohomology.

The computation proceeds in steps. First, for each generator of the ordinary

cohomology ring, we determine which graded piece of gr∗H∗
′
(BG,Z/p) it appears

in (in other words, how many powers of τ we can divide out by). Second, we use

the knowledge of the integral cohomology and the Chow groups to determine what

rank over Z/p we expect each bidegree to be. Finally we piece the information to-

gether to give generators of the motivic cohomology and their images in the ordinary

cohomology.

Theorem 7.1. Let G2 be the nonabelian group of order p3 and exponent p2. Then

the ring h∗,∗
′
(G2,Z/p) is generated by elements τ, a1, . . . , ap−1, u1, . . . , up, b, y, v, and
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w, with bidegrees

deg τ = (0, 1), deg ai = (2i− 1, i), deg ui = (2i, i), deg b = (1, 1),

deg y = (2, 1), deg v = (2p− 1, p), degw = (2p, p),

and relations

τui = aib

in addition to the relations corresponding to those of the ordinary cohomology.

Proof. By theorem 4.1.3, the ordinary cohomology ofG2 is generated by a1, . . . , ap−1,

b, y, v, and w. For ease (or extra confusion?) of notation we will sometimes below

use the notation v = ap. The relations give that in degrees i < 2p there are two

independent generators:

H i(G2,Z/p) ∼=


ajZ/p⊕ yj−1bZ/p for i = 2j − 1;

ajbZ/p⊕ yjZ/p for i = 2j.

By the integral cohomology, which is isomorphic to the (integral) Chow groups, we

have that

H2n,n(G2,Z/p) ∼= CHn(G2)⊗ Z/p ∼= H2n(G2,Z)⊗ Z/p,

which we know from corollary 4.2.4 has dimension two over Z/p for n < p. Since

×τn maps H2n,n(G2,Z/p) injectively to H2n(G2,Z/p), which is also dimension two,

the ×τ map must be an isomorphism at every stage of that map. In other words,

for n < p,

H2n(G2,Z/p) ∼= gr0H2n(G2,Z/p).
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In particular this implies that we can take the generator y to have bidegree (2, 1) in

the motivic cohomology.

Turning to the odd degrees less than 2p, by our Key Fact we have that

dim(H2n−1,n(G2,Z/p)) = dim(H2n−1,n(G2,Z)/p) + dim(p-torsion(H2n,n(X,Z)) ≥ 2.

(Note that for n = p here the Chow group CHp(G2,Z) is generated by αp and

χ, so is rank two.)

Since for n ≤ p, dimH2n−1(G2,Z/p) = 2, again we have that ×τ is an isomor-

phism at every step starting at degree (2n− 1, n), in other words

H2n−1(G2,Z/p) ∼= gr1H2n(G2,Z/p).

Specifically, we can take the generators ai, b and v to have weight one. The ele-

ments yjb then naturally have weight one as well. By these dimensional arguments,

there must be for each i < p an element ui ∈ H2i,i(G2,Z/p) with τui = aib ∈

H2i,i+1(G2,Z/p).

The generator w is the top chern class of a dimension p representation (see

the computations in [4]) and hence lies in the Chow ring; it is the image of the

generator ζ ∈ CHp(G2,Z). Ignoring multiples of w for the moment, each degree for

n ≥ 2p of the mod p cohomology has two generators: for n = 2i these generators

are yi (weight zero) and yi−pvb (weight two); for n = 2i + 1 they are yib (weight

one) and yi−p+1v (weight one). The only mystery about these generators, then, is

whether yi−pvb is a multiple of τ . The answer is no: we know from the integral

cohomology that the dimension of H2n,n(G2,Z/p) is dn
p
e + 1, and that is precisely
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how many independent generators are accounted for by yn and each generator of

H2(n−p),n−p(G2,Z/p) multiplied by w.

To summarize, we have the following:

degree dim generators

(0, 1) 1 τ

(1, 1) 2 a1, b

(2, 1) 2 y, u1

(2, 2) 2 τy, τu1 = a1b

(3, 2) 2 a2, yb

...
...

...

(2p, p) 2 y3, w

(2p, p+ 1) 3 τy3, τw, vb

(2p+ 1, p+ 1) 4 wa1, wb, y
pb, yv

(2p+ 2, p+ 1) 3 wu1, wy, y
p+1

(2p+ 2, p+ 2) 4 τwu1, τwy, τy
p+1, ybv

...
...

...

Continuing these patterns shows that all odd degree classes are generated in

weight one, and even degree classes are generated in either weight zero or two; no

additional generators are needed other than the ones we’ve mentioned. Since the

cycle maps are injective, the relations from ordinary cohomology hold true for the

corresponding generators in motivic cohomology as well, where applicable.

For G1, the relations in the cohomology look slightly different for the p = 3
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and p > 3 cases, so we treat those separately.

Theorem 7.2. Let p > 3 be an odd prime and let G1 be the nonabelian group of

order p3 and exponent p. Then the ring h∗,∗
′
(G,Z/p) is generated by elements

τ, y, y′, x, x′, Y, Y ′, X,X ′, c2, . . . , cp−1, d3, . . . , dp, z,

with bidegrees

deg τ = (0, 1), deg y∗ = (1, 1), deg x∗ = (2, 1), deg Y ∗ = (2, 2),

degX∗ = (3, 2), deg ci = (2i, i), deg di = (2i− 1, i), deg z = (2p, p),

and relations

τc2 = xY ′ + x′Y

τd3 = XY ′

τc3 = XX ′

in addition to the relations corresponding to those of the ordinary cohomology.

Proof. As before, the plan is to use the knowledge of the integral cohomology and

Chow groups in order to determine the weight zero motivic cohomology. The rela-

tions of the cohomology ring are much messier than in the case of G2, so we start by

recording what we know about generators of the ordinary cohomology in each degree

less than 2p. This comes from a careful examination of the relations. The dimension

of H2n,n(G1,Z/p), or equivalently the zeroth graded piece of H2n(G1,Z/p), comes

from the isomorphism to the mod p Chow group, which we know from the integral

cohomology.
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degree dim generators dim(gr0)

1 2 y, y′

2 4 x, x′, Y, Y ′ 2

3 6 X,X ′, xy, xy′, x′y′, y′Y

4 7 x2, xx′, (x′)2, xY, xY ′, x′Y, x′Y ′ 4

5 8
X ′Y, xX ′, xX, x′X ′,

x2y, x2y′, (x′)2y, (x′)2y′

6 9
XX ′, x3, x2x′, x(x′)2, (x′)3,

x2Y, x2Y ′, (x′)2Y, (x′)2Y ′
5

...
...

...

2i− 1 2i+ 2
xi−1y, xi−2X, (x′)i−1y′, x(x′)i−2y′, . . . ,

xi−1y′, (x′)i−2X ′, . . . , xi−2X ′, di

2i 2i+ 3
xi, xi−1x′, . . . , (x′)i,

xi−1Y ′, . . . , (x′)i−1Y ′, xi−1Y, ci

i+ 2

For degrees 2p and above, the generators that are multiples of the generators

in degree three or less (in other words, not multiples of z) are given by

xi−1y, xi−2X, (x′)i−1y′, x(x′)i−2y′, . . . , xp−1(x′)i−py′,

(x′)i−2X ′, . . . , xp−1(x′)i−p−1X ′ for n = 2i− 1, i > p;
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xi, (x′)i, x(x′)i−1, . . . , xp−1(x′)i−p+1,

(x′)i−1Y ′, . . . , xp−1(x′)p−iY ′, xi−1Y for n = 2i, i ≥ p.

The key to the whole computation is the fact that H0(G1,H3) = 0, since

that implies that ×τ : H3,2(G1,Z/p) → H3,3(G1,Z/p) is surjective and hence an

isomorphism. This allows us to conclude that

H3(G1,Z/p) ∼= gr1H3(G1,Z/p) ∼= h3,2(G1,Z/p),

so specifically we may take the generators X,X ′ to be weight one. In lower degrees,

clearly y, y′ have no choice but to be weight one; since by [10] we have x∗ = βy∗

we may take x, x′ to be the two generators of h2,1(G1,Z/p), meaning we must have

Y, Y ′ ∈ gr2H2(G1,Z/p).

From the computations in [10], the classes ci are in the Chow ring and therefore

weight zero. Since β(di) = ci we may take the classes di to be in weight one. The

lists of generators above, combined with the fact that z, being a Chern class, can be

taken as weight zero, show that the even degree cohomology is completely generated

in weights zero and two, and the odd degree cohomology is completely generated in

weight one except possibly for the class X ′Y .

In even degrees greater than six, the number of weight zero generators modulo

z that we can enumerate from the given lists matches what we expect to see from the

dimension of the integral cohomology. The degrees that we have to think a bit harder

about are four and six. Again turning to the details of Leary’s computation for

guidance, he shows that the classes xY ′+x′Y in degree four andXX ′ in degree six are

in fact the images of Chern classes, so these give the missing weight zero generators.
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In other words, we may take generators c2 ∈ h4,2(G1,Z/p) and c3 ∈ h6,3(G1,Z/p)

with τc2 = xY ′ + x′Y ∈ h4,3(G1,Z/p) and τc3 = XX ′ ∈ h6,4(G1,Z/p). This

completes the picture we expect from the dimensions of the integral cohomology in

even degrees.

The existence of c3 with τc3 = XX ′ allows us to solve the remaining mystery,

namely the weight of the element X ′Y . Since β(Y ) = X and β(X ′) = 0, we

have that β(X ′Y ) is a multiple of XX ′. The class c3 should be in the image of

β, since β(c3) = 0 and we know H6,3(G1,Z) is exponent p, but is not hit by any

combination of the other generators of degree five. Therefore we get that there must

be a d3 ∈ h5,3(G1,Z/p) with β(d3) = c3 and τd3 a multiple of X ′Y .

Finally, we can prove a similar result for G1 in the case that p = 3. In this

case we also know by theorem 6.1.1 that H∗,∗
′
(BG1,Z/p) ∼= h∗,∗

′
(BG1,Z/p).

Theorem 7.3. Let G be the nonabelian group of order 27 and exponent 3. Then

the motivic cohomology ring H∗,∗
′
(G,Z/p) is generated by elements

τ, y, y′, x, x′, Y, Y ′, X,X ′, c2, d3, z,

with bidegrees

deg τ = (0, 1), deg y∗ = (1, 1), deg x∗ = (2, 1), deg Y ∗ = (2, 2),

degX∗ = (3, 2), deg c2 = (4, 2), deg d3 = (5, 3), deg z = (6, 3),

and relations

τ(c2 − x2 − (x′)2) = xY ′ + x′Y

τd3 = XY ′
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in addition to the relations corresponding to those of the ordinary cohomology.

Proof. The proof follows the same plan as the p > 3 case. Up to degree five generat-

ing sets for the ordinary cohomology look the same as above, and in degree six the

difference is that there is an extra generator z and we have the relation XX ′ = 0.

Above degree six, as per the computations in [10] we again have that modulo z

everything is generated by terms of the form

xi−1y, (x′)i−1y′, x(x′)i−2y′, x2(x′)i−3y′,

xi−2X, (x′)i−2X ′, x(x′)i−3X ′, x2(x′)i−4X ′ for n = 2i− 1;

xi, (x′)i, x(x′)i−1, x2(x′)i−2,

xi−1Y, (x′)i−1Y ′, x(x′)i−2Y ′, x2(x′)i−3Y ′ for n = 2i.

Again these line up with the dimensions we are expecting in weights zero, one, and

two from the integral cohomology. Similar to the p > 3 case, Leary’s computations

tell us that the class xY ′+x′Y +x2 + (x′)2 is the image of a Chern class, so we may

take a generator c2 ∈ h4,2(G,Z/p) with τ(c2−x2−(x′)2) = xY ′+x′Y ∈ h4,3(G,Z/p).

The final piece of the puzzle is the weight of the class XY ′. Unlike the p > 3

case, here we have that β(XY ′) = XX ′ = 0 ∈ H6(G,Z/p), so the reasoning that

we employed in the previous proof doesn’t work. This is where the fact that in the

integral cohomology we have the relation

µν = 3ζ ∈ H6(G,Z)

comes into play. What’s going on here is that at the level of ordinary cohomology,

the universal coefficients sequence takes the class XY ′ to µν = 3ζ. Changing coef-
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ficients back to Z/p, that class vanishes, giving β(XY ′) = XX ′ = 3z = 0. (That

relation that XX ′ = 3z ∈ H6(G,Z/p) is trivially true since both are equal to zero,

but is somehow more meaningful than that: it’s the reflection in the mod p coho-

mology of the equivalent relation in integral cohomology.) Since we do have that

H6,3(G,Z) ∼= CH3(G) ∼= H6(G,Z), the class 3ζ ∈ H6,3(G,Z) must be in the image

of the connecting map from H5,3(G,Z/p), so let d3 be a preimage; then τd3 will be

a multiple of XY ′.

56



Bibliography

[1] S. Bloch. Algebraic cycles and higher k-theory. Adv. Math., 61:267–304, 1986.

[2] S. Bloch and A. Ogus. Gersten’s conjecture and the homology of schemes. Ann.
Sci. Ecole Norm. Sup., 4(7):181–201, 1974.
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