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An abstract elementary class is a class K of structures for some vocabulary L

together with a “strong substructure” relation ≺K on K satisfying certain axioms.

Abstract elementary classes include elementary classes with elementary substructure

and classes axiomatizable in L∞,ω with elementary substructure relative to some

fragment of L∞,ω. For every abstract elementary class there is some number κ,

called the Löwenheim-Skolem number, so that every structure in the class has a

strong substructure of cardinality ≤ κ.

We study abstract elementary classes with Löwenheim-Skolem number κ, where

κ is cofinal with ω, which have finite character. We generalize results obtained by

Kueker for κ = ω. In particular we show that K is closed under L∞,κ-elementary

equivalence and obtain sufficient conditions for K to be L∞,κ-axiomatizable. The

results depend on developing an appropriate concept of κ-a.e.
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Chapter 0

Preface

In model theory, the term elementary class refers to the class of all models of a

first order theory. The class of all infinite sets, the class of all torsion-free, divisible

abelian groups and the class of all algebraically closed fields in a fixed characteristic

are all examples of elementary classes. Much work in model theory over the past 50

years has focused on the study of elementary classes and their structure. This field

of study has yielded strong results such as Morley’s categoricity theorem ([12]) and

brand new areas of research such as geometric stability theory. One weakness of

elementary classes is that there are mathematically interesting classes of structures

that first order logic is not sufficiently strong to define. Examples of such classes

include Zilber’s class of algebraically closed fields with pseudo-exponentiation ([15])

and the class of all solvable groups, among others. Infinitary logics were later in-

troduced to deal with such classes of structures because of their greater expressive

power. While there have been some results using infinitary logics, they appear to

have very little structure and no single non-first order logic is suitable to define all

mathematically interesting classes of structures.

Abstract elementary classes were introduced in the 1980’s by Saharon Shelah

([14]) as generalizations of elementary classes. Abstract elementary classes, which

consist of a class of models along with a notion of a strong substructure, were pro-
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posed as the broadest possible class of structures to potentially have a feasible model

theory. In particular, Shelah conjectured that Morley’s categoricity theorem could

be generalized to abstract elementary classes. That is, if an abstract elementary

class, K, is categorical in some sufficiently large cardinal, then it is categorical in all

sufficiently large cardinals. In the past decade there has been an explosion of work

exploring the potential of these classes, thanks in part to Baldwin ([1]), Grossberg

and VanDieren ([4]).

In 2005, Tapani Hyttinen and Meeri Kesälä introduced finitary abstract el-

ementary classes ([5]) which require, among other things, that the corresponding

notion of strong substructure is a local property. This criteria of finitary abstract

elementary classes is referred to as finite character. The assumption of finite char-

acter has proven very fruitful towards the analysis of abstract elementary classes.

Many of the non-elementary classes that are of mathematical interest exhibit finite

character and thus the assumption is not overly restrictive.

Recently, Kueker has employed the techniques of infinitary logics and count-

able approximations to analyze abstract elementary classes ([10]). This technique

has been very successful and has proven a large variety of results. The most notable

results that Kueker has recently proven relate to abstract elementary classes that

have Löwenheim-Skolem number ω and exhibit finite character. Letting (K,≺K)

be an abstract elementary class with a Löwenheim-Skolem number of ω and finite

character, we list some of the major results.

1. K is closed under L∞,ω-equivalence.

2



2. If M∈ K and M≺∞,ω N then M≺K M.

3. K is axiomatizable by a sentence of the game theoretic logic L(ω).

4. (AP, etc.) If K is λ-categorical for some λ ≥ ω then there is a complete

sentence σ of Lω1,ω such that for every M with |M| ≥ λ, M∈ K IFF M |= σ.

In this paper we endeavor to show that most of the recent results of Kueker’s

were not dependent on the Löwnheim-Skolem number being countable, but simply

that the Löwenheim-Skolem number had a countable cofinality. The main crux of

this program is determining an appropriate analogue to a higher cardinality of what

it means for a property to occur in almost all approximations.

In chapter 1 we introduce the background necessary for this material. We

provide a brief overview of abstract elementary classes and some of the more im-

portant corresponding properties. We also define the terminology used in first order

infinitary logics and the game theoretic characterizations of some of these concepts.

Finally, we discuss the definitions, techniques and results of Kueker’s countable

approximations.

In chapter 2 we define κ-approximations and a filter on subsets of size κ using

the game theoretic characterization of Kueker’s filter. We go on to prove that this

filter exhibits many of the desirable properties of Kueker’s filter and use it to prove

many of our intended results. The main results of this chapter are:

Theorem 0.0.1. Assume (K,≺K) is an abstract elementary class with finite char-

acter and a Löwenheim-Skolem number of κ, where κ has a countable cofinality.. If

M∈ K and M≡∞,κ N then N ∈ K.
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Theorem 0.0.2. Assume (K,≺K) is an abstract elementary class with finite char-

acter and a Löwenheim-Skolem number of κ, where κ has a countable cofinality. If

M∈ K and M≺∞,κ N then M≺K N .

Theorem 0.0.3. Assume (K,≺K) is an abstract elementary class with finite char-

acter and a Löwenheim-Skolem number of κ, where κ has a countable cofinality. If

K has at most λ-many models of cardinality λ for some λ such that λ<κ = λ then

K = Mod(σ) for some σ ∈ L∞,κ.

In chapter 3 we demonstrate that having a Löwnheim-Skolem number with

countable cofinality and having finite character is enough to prove axiomatizability

by a sentence in a game theoretic logic. To achieve this result, we first define an

appropriate game theoretic logic, L(κ), which extends L∞,κ. We then proceed to use

L(κ) to write formulas stating that almost all approximations of a model are in the

abstract elementary class. Using our game theoretic logic and our game theoretic

definition of a filter, we’re able to prove the following axiomatizability result:

Theorem 0.0.4. Let (K,≺K) be an abstract elementary class with finite character

and a Löwenheim-Skolem number of κ, where κ has a countable cofinality. There is

a sentence θ ∈ L(κ) such that for all structures N , N |= θ IFF N ∈ K.

In chapter 4 we provide a new definition of a galois saturated model over

sets (consistent with the older definitions). In this context we use infinitary log-

ics to analyze galois saturated models and provide biconditional strengthenings of

many our previous theorems (in particular, Theorems 0.0.1 and 0.0.2). Using these

results and assuming categoricity at a cardinal with a cofinality bigger than the
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Löwenheim-Skolem number we are able to prove there is a complete L∞,κ-sentence

closely approximating the abstract elementary class.

Theorem 0.0.5. (AP, etc.) Let (K,≺K) be an abstract elementary class with a

Löwenheim-Skolem number of κ, where κ has a countable cofinality. Assume K is

λ-categorical for λ > κ and cof(λ) > κ. Then there is a complete sentence σ ∈ L∞,κ

such that:

1. Mod(σ) ⊆ K and σ has a model of cardinality κ+.

2. K and Mod(σ) contain precisely the same models of cardinality ≥ λ.

3. If M, N |= σ then M≺K N IFF M≺∞,κ N .
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Chapter 1

Introduction

Throughout this paper we assume a basic knowledge of model theory which can

be found in [11] and [2] among other places. We also assume a minimal knowledge

of set theory. Background on the necessary set theory can be found in [3]. The

notation used is consistent with the notation found in these books.

1.1 Abstract Elementary Classes

The major results of this paper concern abstract elementary classes. We begin

by defining an abstract elementary class and the corresponding definition of an

embedding. These definitions are due to Saharon Shelah and can be found in [14].

Definition 1.1.1. For a given vocabulary L, an Abstract Elementary Class (or

AEC), (K,≺K), is a family of L-structures together with a binary relation on K,

≺K, satisfying the following axioms:

(1) If M∈ K and N ∼= M then N ∈ K; if M≺K N and (N ,M) ∼= (N ′,M′) then

M′ ≺K N ′.

(2) If M≺K N then M⊆ N .

(3) If M∈ K then M≺K M; if M0 ≺K M1 and M1 ≺K M2 then M0 ≺K M2.

(4) (Löwenheim-Skolem Axiom) There is an infinite cardinal number called the
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Löwenheim-Skolem number, denoted LS(K), such that for every M ∈ K and

for every subset A ⊆ M there is some M′ ≺K M such that A ⊆ M′ and

|M′| ≤ max{|A|, LS(K)}.

(5) (Union Axiom) Let {Mi}i<δ be a continuous ≺K-chain. Then:

(i)
⋃

i<δ Mi ∈ K.

(ii) For each j < δ, Mj ≺K
⋃

i<δ Mi.

(iii) If Mi ≺K N for all i < δ then
⋃

i<δ Mi ≺K N

(6) (Coherence Axiom) If M0,M1,M2 ∈ K, M0 ≺K M2, M1 ≺K M2 and

M0 ⊆M1 then M0 ≺K M1.

Definition 1.1.2. Let (K,≺K) be an AEC. If M,N ∈ K and f : M → N is an

embedding such that f(M) ≺K N then we say that f is a K-embedding of M into

N .

Shelah proved in [14] that if a class of L-structures satisfies the axioms of 1.1.1

then the union axiom can be generalized to unions of ≺K-directed families. We refer

to a set of models S as a ≺K-directed family if for any M0, M1 ∈ S there exists

M2 ∈ S such that M0, M1 ≺K M2.

Lemma 1.1.3. Let (K,≺K) be an AEC and let S be a ≺K-directed family of models

from K. Let N =
⋃
S. Then the following hold:

(a) N ∈ K.

(b) M≺K N for all M∈ S.
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(c) Given a model A ∈ K, if M≺K A for all M∈ S then N ≺K A.

In the study of AECs, we frequently restrict ourselves to AECs with two

additional “nice” properties.

Definition 1.1.4. Let K be an Abstract Elementary Class.

1. K has the amalgamation property if for all models M,N1,N2 ∈ K such that

M ≺K N1 and M ≺K N2 there is a model N ∈ K and K-embeddings f1, f2

such that fi maps Ni into N and f1(M) = f2(M).

2. K has the joint embedding property if for all M1,M2 ∈ K, there is a model

N ∈ K and K-embeddings fi of Mi into N .

Abstract Elementary Classes are not guaranteed to have arbitrarily large mod-

els in the way Elementary Classes are. However, as a consequence of Shelah’s Pre-

sentation Theorem for AECs (see [1], [14]), it can be shown that for every abstract

elementary class K, there is a number H (the Hanf number of K), which depends

only on LS(K) and |L|, such that if K has a model of at least size H then K has

arbitrarily large models.

Under the assumptions of amalgamation, joint embedding and arbitrarily large

models we can prove the existence of strongly homogeneous models. The following

definitions of homogeneity are from [1], though the concepts originate from other

sources.

Definition 1.1.5. Let (K,≺K) be an abstract elementary class and µ be a cardinal

number bigger than LS(K).
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1. A model M ∈ K is µ-model homogeneous iff for every M0 ≺K M and every

N ∈ K such that M0 ≺K N and |N | < µ there is a K-embedding of N into

M fixing M0 pointwise.

2. A model M∈ K is strongly µ-model homogeneous iff for every M0,M1 ≺K M

such that |M0|, |M1| < µ any isomorphism from M0 onto M1 extends to an

automorphism of M.

3. A model M∈ K is strongly model homogeneous iff it is strongly homogeneous

in its own cardinality.

We will use (AP, etc.) throughout this paper to denote that the AEC in

question is assumed to satisfy amalgamation, joint embedding and arbitrarily large

models. Under these assumptions, we can assume that all K-structures in question

are K-substructures of a monster model, C. The following Theorem from [1] along

with (AP, etc.) allows this assumption.

Theorem 1.1.6. (AP, etc) For each cardinal number λ, and each model M ∈ K

of cardinality λ, there is a strongly λ-model homogeneous model N ∈ K containing

M.

In addition to the above properties, most of the AECs that we will consider in

this paper will have finite character. Finite character was introduced by Hyttinen

and Kesala ([5]) in order to indicate that the definition of strong substructure in the

AEC is a local property. The following definition, formulated by Kueker ([10]), is

not the same as the notion introduced by Hyttinen and Kesala, but it’s equivalent

under the assumption of amalgamation.
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Definition 1.1.7. An AEC (K,≺K) has finite character iff for all modelsM,N ∈ K,

M ≺K N whenever M ⊆ N and for every finite tuple a0, . . . , an ∈ M there is a

K-embedding of M into N fixing a0, . . . , an pointwise.

Many useful and mathematically interesting classes of structures have finite

character. For instance, any class where the strong substructure notion ≺K is either

first order elementary substructure, ≺, or basic substructure, ⊆, since both of these

notions of substructure are only dependent on checking a finite amount of informa-

tion at a time. In addition, excellent classes, homogeneous classes and classes of

structures modeling a sentence or sentences from Lλ,ω (where ≺K=≺λ,ω) all exhibit

finite character. However, it’s important to note that many AECs do not satisfy

finite character. The following example, due to Kueker, illustrates a very simple

case of an AEC where finite character fails.

Example 1.1.8. Define the vocabulary L = {P} where P is a unary predicate

symbol and let µ be an infinite cardinal number. Let K = {M : M is an L-

structure, |PM| = µ, |¬PM| ≥ µ}. In addition, define ≺K as M ≺K N IFF

M⊆ N and PM = PN .

First we will show that K satisfies the axioms of an abstract elementary class.

From the definition of (K,≺K) it is pretty clear that axioms 1, 2 and 3 hold. In order

to show the Löwenheim-Skolem axiom holds let N be an arbitrary K-structure and

A ⊆ N be an arbitrary subset. Further, let M ⊆ N such that A ⊆ M, PN ⊆ M

and |¬PM| = max{µ, |A|}. Then M ∈ K, M ≺K N and |M| = max{µ, |A|} and

hence LS(K) = µ.
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To see (K,≺K) satisfies the union axioms, assume Mi ≺K Mi+1 for all i ∈ δ.

Then, Mi ⊆ Mi+1 and PMi = PMi+1 for all i ∈ δ. Hence, Mi ⊆
⋃

j∈δ Mj for all

i ∈ δ and PMi = P
S
Mj for all i ∈ δ. Furthermore, since |¬PMi| ≥ µ for all i ∈ δ,

we get |¬P
S
Mj | ≥ µ. Hence,

⋃
j∈δ Mj ∈ K and Mi ≺K

⋃
j∈δ Mj. Moreover, from

the definition of ≺K it is clear that if Mi ≺K N for all i ∈ δ then
⋃

j∈δ Mj ≺K N .

Finally, for the coherence axiom, assume M0,M1 ≺K M2 and M0 ⊆ M1.

Then, PM0 = PM2 = PM1 and hence M0 ≺K M1.

We should note that (K,≺K) satisfies the amalgamation and joint embedding

properties and has arbitrarily large models. It remains to show that K fails to have

finite character.

Proof.

Let M,N ∈ K be such that M⊆ N and there is just a single element b ∈ PN \PM.

For any n ∈ ω and a0, . . . , an ∈ M there is a K-embedding f : M → N fixing

a0, . . . , an (since |PM \ {a0 . . . an}| = |PN \ {a0 . . . an}| = µ). However, PM 6= PN

and thus M 6≺K N . Therefore, K fails to have finite character.

1.2 Infinitary Logics

Infinitary logics are the primary tools used in this paper to analyze abstract

elementary classes. We will heavily apply concepts of first order infinitary logic al-

lowing either infinitely many conjunctions and disjunctions or infinitely many vari-

ables (or both). The essential definitions and results are given here. Further reading

on this subject can be found in [9] and [6].
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Definition 1.2.1. Given an arbitrary vocabulary L we define the infinitary logic

L∞,µ inductively as follows:

• If ϕ is atomic then ϕ ∈ L∞,µ.

• If ϕ ∈ L∞,µ then ¬ϕ ∈ L∞,µ.

• If Φ ⊆ L∞,µ and Φ has < µ-many free variables then
∨

Φ ∈ L∞,µ and
∧

Φ ∈

L∞,µ.

• If ϕ ∈ L∞,µ and V is a set of variables with cardinality less than µ then ∀V ϕ

and ∃V ϕ ∈ L∞,µ.

We further define the infinitary logic Lχ,µ by restricting formulas of L∞,µ to having

conjunctions and disjunctions of size less than χ.

Remark 1.2.2.

1. Lω,ω is equivalent to the set of formulas in standard first order logic.

2. L∞,µ and Lχ,µ have < µ-many free variables.

The notion of L∞,µ or Lχ,µ-elementary substructure is defined as the natural

extension of first order elementary substructure.

Definition 1.2.3. Given two L-structures M and N , we say M ≺∞,µ N (or

M ≺χ,µ N ) IFF M ⊆ N and for every formula ϕ(x̄) ∈ L∞,µ (or Lχ,µ) and for

any sequence ā ⊆ N such that lh(ā) = lh(x̄), M |= ϕ(ā) iff N |= ϕ(ā).

In L∞,µ and Lχ,µ there are two schools of thought on how to define elementary

equivalence. We will use the more restrictive definition of elementary equivalence
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in which (M, ā) does not add new constants to the language for ā but merely refers

to formulas of L∞,µ (or Lχ,µ) applied to elements of the sequence ā. We state below

the definitions of L∞,µ-elementary equivalence and Lχ,µ-elementary equivalence that

will be used throughout this paper.

Definition 1.2.4. Given L-structuresM andN let ā ⊆M and b̄ ⊆ N be sequences

of the same length. Then (M, ā) ≡∞,µ (N , b̄) IFF for every ϕ(x̄) ∈ L∞,µ with

lh(x̄) = δ, M |= ϕ(
〈
ai(j)

〉
j∈δ

) ⇔ N |= ϕ(
〈
bi(j)

〉
j∈δ

) for every i ∈ δlh(ā). Note that

δ < µ necessarily, since ϕ(x̄) ∈ L∞,µ. We define Lχ,µ-elementary equivalence the

same way except we restrict ϕ to be in Lχ,µ.

For each cardinal κ there is a useful game characterization of L∞,κ-equivalence

that we will implement throughout this paper.

Definition 1.2.5. Let M and N be two L-structures, for some vocabulary L.

1. A map, h, is a partial isomorphism of M into N if:

• h is one-to-one.

• dom(h) ⊆M and ran(h) ⊆ N .

• For any n-ary relation symbol R ∈ L and any a1, . . . an ∈ dom(h),

RM(a1, . . . an) IFF RN (h(a1), . . . h(an)).

• For any n-ary function symbol f ∈ L and any a1, . . . an, a ∈ dom(h),

fM(a1, . . . an) = a IFF fN (h(a1), . . . h(an)) = h(a).

• For any constant symbol c ∈ L and cM ∈ dom(h), cN = h(cM).
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2. A κ-partial isomorphism system, Pκ, is a collection of partial isomorphisms

from M to N such that

• For all f ∈ Pκ and ā ⊆ M of cardinality < κ, there is a partial isomor-

phism g ∈ Pκ such that g ⊇ f and ā ⊆ dom(g).

• For all f ∈ Pκ and b̄ ⊆ N of cardinality < κ, there is a partial isomor-

phism g ∈ Pκ such that g ⊇ f and b̄ ⊆ ran(g).

3. The game Gκ(M,N ) is a 2-person ω-length game such that players I and II

alternately choose sequences ān ⊆M and b̄n ⊆ N of length less than κ. Player

II wins if the map h defined as h(āi) = b̄i for all i ∈ ω is a partial isomorphism.

The following theorem can be found in [9]. Since this will be essential machin-

ery throughout this paper, we work out the details of the proof below.

Theorem 1.2.6. Let κ be an infinite cardinal. For L-structures M and N , M≡∞,κ

N IFF player II has a winning strategy in the game Gκ(M,N ).

Proof. The following claim is essential to proving one direction of this theorem.

Claim: If M ≡∞,κ N then for every ā ⊆ M of length < κ there is a b̄ ⊆ N such

that (M, ā) ≡∞,κ (N , b̄).

Proof.

Let S be the set of all c̄ ⊆ N of length |ā| such that (M, ā) 6≡∞,κ (N , c̄).

For each c̄ ∈ S, let ϕc̄(x̄) ∈ L∞,κ such that M |= ϕc̄(ā) and N |= ¬ϕc̄(c̄).

Let ψ(x̄) =
∧

c̄∈S ϕc̄(x̄). Since M |= ψ(ā) and M ≡∞,κ N there is a

b̄ ⊆ N such that N |= ψ(b̄). Thus, b̄ 6∈ S and (M, ā) ≡∞,κ (N , b̄).
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(⇒): Suppose M ≡∞,κ N . We will construct a winning strategy for player II by

induction.

Base Case: n = 0

Let player I choose ā0 ⊆M (or b̄0 ⊆ N ) of length < κ in the game Gκ(M,N ).

By the previous claim, there is a b̄0 ⊆ N (or ā0 ⊆ M) such that (M, ā0) ≡∞,κ

(N , b̄0). Let player II choose b̄0 (or ā0).

Successor Stage: Suppose āi, b̄i have been chosen for i < n+ 1 such that

(M, ā0, . . . ān) ≡∞,κ (N , b̄0, . . . b̄n).

Let player I choose ān+1 ⊆M (or b̄n+1 ⊆ N ) of length < κ. By the inductive

hypothesis (M, ā0, . . . ān) ≡∞,κ (N , b̄0, . . . , b̄n), the previous claim implies there is a

b̄n+1 ⊆ N (or ān+1 ⊆ M) such that (M, ā0, . . . , ān+1) ≡∞,κ (N , b̄0, . . . , b̄n+1). Let

player II choose b̄n+1 (or ān+1).

By construction, the map defined as h(āi) = b̄i for all i ∈ ω is a partial

isomorphism and thus player II wins the game as desired.

(⇐): Suppose player II has a winning strategy in the game Gκ(M,N ). We first

claim there is a κ-partial isomorphism system, Pκ, from M to N where every f ∈ P

has a domain of cardinality less than κ.

Let Pκ be the set of all maps f(āi) = b̄i where ā0, . . . ān, b̄0, . . . b̄n are the

results of some play of Gκ(M,N ) at a finite stage of the game and player II used

his winning strategy. Since player II used his winning strategy, each f ∈ Pκ is a

partial L-embedding. Additionally, since player I can play any < κ-sequence from
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either M or N at stage n + 1, there is a g ∈ Pκ extending f such that for any

< κ-sequence ā ⊆M (or b̄ ⊆ N ) ā ⊆ dom(g) (or b̄ ⊆ ran(g)).

We show that for every ϕ(x̄) ∈ L∞,κ, for every ā ⊆ M with lh(ā) = lh(x̄)

and for every partial isomorphism h ∈ Pκ, if ā ⊆ dom(h) then M |= ϕ(ā) IFF

N |= ϕ(h(ā)).

Let ϕ ∈ L∞,κ and, without loss of generality, let ā ⊆ M be an arbitrary

sequence of length < κ. By induction on the complexity of formulas we will show

that for any partial isomorphism h ∈ P , if ā ⊆ dom(h) then M |= ϕ(ā) IFF

N |= ϕ(h(ā)).

Atomic Formulas:

Assume ϕ ∈ L∞,κ is atomic. Since atomic formulas are preserved under iso-

morphism, this is clear.

Conjunction/Disjunction:

Assume ϕ =
∧

i∈δ ϕi or ϕ =
∨

i∈δ ϕi where δ is an ordinal. Further assume that

for any ā and any partial isomorphism h ∈ Pκ such that ā ⊆ dom(h), M |= ϕi(ā)

IFF N |= ϕi(h(ā)). Clearly, for any such h, M |= ϕ(ā) IFF N |= ϕ(h(ā)).

Negation:

Assume ϕ = ¬ψ and that for any partial isomorphism h ∈ Pκ, M |= ψ(ā) IFF

N |= ψ(h(ā)). Clearly, for any such h, M |= ϕ(ā) IFF N |= ϕ(h(ā)).

Existential:

Assume ϕ = ∃ȳψ(x̄, ȳ) where ȳ is a sequence of length < κ variables. Further

assume that for any ā, b̄ and any partial isomorphism h ∈ Pκ such that ā, b̄ ⊆

dom(h), M |= ψ(ā, b̄) IFF N |= ψ(h(ā), h(b̄)).
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If M |= ϕ(ā) then M |= ψ(ā, b̄) for some < κ-sequence b̄ ⊆ M. Let h ∈ Pκ

be such that ā ⊆ dom(h). There is a partial isomorphism h′ ∈ Pκ extending h such

that b̄ ⊆ dom(h′). Thus N |= ψ(h′(ā), h′(b̄)) by the inductive hypothesis. Since

h′ ⊇ h, N |= ψ(h(ā), h′(b̄)). Thus, N |= ϕ(h(ā)).

For the converse, let h ∈ Pκ such that ā ⊆ dom(h). If N |= ϕ(h(ā)) then

N |= ψ(h(ā), c̄) for some < κ-sequence c̄ ⊆ N . There is a partial isomorphism

h′ ∈ Pκ with h′ ⊇ h and c̄ ⊆ ran(h′). Let b̄ = h′−1(c̄). Thus M |= ψ(ā, b̄) by the

inductive hypothesis. Hence, M |= ϕ(ā).

Since universal quantification can be defined from negation and existential

quantification, this case is taken care of already. Hence, M≡∞,κ N as desired.

1.3 Countable Approximations

In [8], David Kueker first introduced the idea of a countable approximation

to a model. Recent work of Kueker’s ([10]) has yielded many new results applying

countable approximations to abstract elementary classes. We will define countable

approximations and briefly review a few of his results.

Throughout this paper, for any set s, any countable vocabulary L, and any

L-structure M, we use the notation Ms to denote the substructure of M generated

by (M∩ s). If s is countable then we call Ms a countable approximation to M.

Additionally, for any set C, we construct a filter on Pω1(C) (the set of countable

subsets of C) in order to define a notion of almost all s ⊆ C.

Definition 1.3.1. Fix a set C and let X ⊆ Pω1(C).
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(a) X is ω-closed IFF for all {si}i∈ω ⊆ X such that si ⊆ si+1 for all i ∈ ω,
⋃

i∈ω si ∈

X. (i.e. X is closed under unions of countable chains)

(b) X is ω-unbounded iff for every s0 ∈ Pω1(C) there is an s ∈ X such that s0 ⊆ s.

Definition 1.3.2. The filter Dω1(C) is the set of all X ⊆ Pω1(C) such that X

contains an ω-closed and ω-unbounded subset.

We note thatDω1(C) is defined in such a way to guarantee ω1-completeness and

closure under diagonalization for sets indexed by finite sequences. These properties

are crucial to most of the results obtained using the filter and analogues of them

will need to hold when defining filters in higher cardinalities.

Definition 1.3.3. A property of one or more models and/or formulas is said to

hold almost everywhere (or a.e.) IFF it holds for all s ∈ X for some X ∈ Dω1(C).

The filter Dω1(C) has a game theoretic characterization that is useful in prov-

ing many results regarding countable approximations and is integral to the general-

ization of the filter to higher cardinalities.

Given a set C and a subset X ⊆ Pω1(C), we define the ω-length game Gω(X)

by having player IX and player IIX alternately choose single elements ai ∈ C. Player

IIX wins the game if {ai}i∈ω ∈ X.

Theorem 1.3.4. [10] Fix a set C and let X ⊆ Pω1(C). X ∈ Dω1(C) IFF player

IIX has a winning strategy in the game Gω(X).

Using countable approximations Kueker proved many results regarding ab-

stract elementary classes with LS(K) = ω. We briefly mention some of his major
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results that we will endeavor to generalize to higher cardinalities. For the following

results, assume (K,≺K) is an AEC with LS(K) = ω.

Theorem 1.3.5. [10] Assume that (K,≺K) has finite character.

(a) If M∈ K and M≡∞,ω N then N ∈ K.

(b) If M∈ K and M≺∞,ω N then M≺K N .

Let L(ω) denote Keisler’s game theoretic logic extending L∞,ω ([7]). Under

the assumption of finite character, K can be axiomatized by a sentence of L(ω).

Theorem 1.3.6. [10] Assume (K,≺K) has finite character. Then K = Mod(θ) for

some θ ∈ L(ω).

A class of structures, K, is called λ-categorical iff for all structures M and N

from K of cardinality λ there is an isomorphism from M to N . Restricting to L∞,ω,

Kueker proved that if (K,≺K) is λ-categorical for some infinite cardinal λ then K is

almost axiomatizable by a sentence of Lω1,ω.

Theorem 1.3.7. [10] Assume (K,≺K) is an AEC satisfying (AP, etc.) and finite

character. In addition, assume (K,≺K) is λ-categorical for some λ ≥ ω. Then there

is a complete sentence σ ∈ Lω1,ω such that for all L-structures M with |M| ≥ λ,

M∈ K IFF M |= σ.
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Chapter 2

κ-Approximations

From now on assume κ is an infinite cardinal with cofinality ω. We

will choose (and fix) a countable, increasing sequence of infinite cardinals

〈κi〉i∈ω such that κ =
⋃

i∈ω κi. Any exceptions to this assumption will be explicitly

noted.

2.1 The Filter

For an arbitrary set C, we will define a filter on Pκ+(C) in an analogous way

to the filter used for countable approximations. In order to do this, we must first

generalize the game Gω(X) that characterized Dω1(C) (Theorem 1.3.4). There are

several natural choices for how to define Gκ(X). We will define the four most likely

choices.

Definition 2.1.1. Let C be a set and X ⊆ Pκ+(C). We define:

1. Gκ(X) as the ω-length game in which players IX and IIX alternately choose

si ∈ Pκ(C). We say player IIX wins the game Gκ(X) iff
⋃

i∈ω si ∈ X.

2. G∗
κ(X) as the ω-length game in which player I∗X and II∗X alternately choose

si ∈ Pκ(C) such that |s2n|, |s2n+1| ≤ κn. We say player II∗X wins iff
⋃

i∈ω si ∈

X.
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3. G†
κ(X) as the κ-length game in which players I†X and II†X alternately choose

single elements ai ∈ C. We say player II†X wins iff {ai}i∈κ ∈ X.

4. Gκ+(X) as the ω-length game in which players I+X and II+X alternately choose

si ∈ Pκ+(X). We say player II+X wins iff
⋃

i∈ω si ∈ X.

Remark 2.1.2. In the previous definition, number 4 is exactly the same as number

1, with κ replaced by κ+.

The following theorem proves that if player II has a winning strategy in any

one these games then player II has a winning strategy in all of the other games.

Theorem 2.1.3. The following are equivalent:

1. Player IIX has a winning strategy in Gκ(X).

2. Player II∗X has a winning strategy in G∗
κ(X).

3. Player II†X has a winning strategy in G†
κ(X).

4. Player II+X has a winning strategy in Gκ+(X).

Proof.

(1 ⇒ 2): Suppose player IIX has a winning strategy in Gκ(X). We use this winning

strategy to define a winning strategy for player II∗X .

Base Case: n = 0

Assume player I∗X chooses s∗0 ∈ Pκ(C) with |s∗0| ≤ κ0. Let player IX choose s0 = s∗0

and player IIX will use his winning strategy to choose s1 ∈ Pκ(C).

• If |s1| ≤ κ0, let player II∗X choose s∗1 = s1.
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• If |s1| > κ0 then player II∗X chooses s∗1 = ∅.

Successor Case: Assume we have defined si and s∗i for all i < 2(n + 1). Further

assume player I∗X has chosen s∗2(n+1) ∈ Pκ(C) with |s∗2(n+1)| ≤ κn+1. Let player

IX choose s2(n+1) = s∗2(n+1) and player IIX will use his winning strategy to choose

s2(n+1)+1 ∈ Pκ(C). Let player II∗X choose s∗2(n+1)+1 =
⋃
{s2i+1 : i ≤ n, |s2i+1| ≤

κn+1}.

Since player IIX used his winning strategy,
⋃

i∈ω si ∈ X. By construction,
⋃

i∈ω si =⋃
i∈ω s

∗
i . Hence, player II∗X has a winning strategy in G∗

κ(X).

(2 ⇒ 3): Suppose player II∗X has a winning strategy in G∗
κ(X). Assume player

I†X has chosen a0 ∈ C. Let player I∗X choose s0 = {a0}. Player II∗X then uses his

winning strategy to choose s1 ∈ Pκ(C) of size ≤ κ0. Player II†X then proceeds to

play the elements of s1 as his next κ0-many moves. In the meantime, player I†X

chooses a2, . . . , a2n, . . . ∈ C for n ∈ κ0. At stage κ0, player I†X chooses aκ0 ∈ C.

Let Player I∗X choose s2 = {a2n}n∈κ0 ∪ {aκ0} (which has cardinality ≤ κ1). Player

II∗X uses his winning strategy to choose s3 ∈ Pκ(C) of size ≤ κ1. Player II†X then

proceeds to play the elements of s3 as his next κ1-many moves. Continue in this

manner for the remaining moves.

Since player II∗X used his winning strategy, s =
⋃

i∈ω si ∈ X. By construction,

s =
⋃

i∈κ{ai}. Hence,
⋃

i∈κ{ai} ∈ X and thus player II†X has a winning strategy.

(3 ⇒ 1): Suppose player II†X has a winning strategy in G†
κ(X). Assume player
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IX has chosen s0 ∈ Pκ(C) such that |s0| = λ0 < κ. Let δ0 = max{λ0, κ0} and de-

note s0 as a sequence indexed by the even numbers less than δ0, {a2i}i∈δ0
(if λ0 < κ0

then repeat an a2i term enough to get a sequence of length κ0).

At this point, players I†X and II†X will play their first δ0-many moves of G†
κ(X).

Player I†X chooses a0 as his first move. Player II†X uses his winning strategy to choose

a1 ∈ C. Then, player I†X chooses a2 as his next move. Player II†X continues to use

his winning strategy to choose a3 ∈ C. This gameplay continues for δ0-many moves.

Player IIX now chooses s1 = 〈a2i+1〉i∈δ0
in response to player IX ’s choice of s0.

Next, assume player IX has chosen s2 ∈ Pκ(C) such that |s2| = λ1 < κ. Let

δ1 = max{λ1, κ1} and continue as before.

Since player II†X used his winning strategy, s =
⋃

i∈κ ai ∈ X. By construction,

s =
⋃

i∈ω si. Hence, player IIX has a winning strategy in the game Gκ(X).

(4 ⇒ 1): Suppose player II+X has a winning strategy in Gκ+(X). Assume player

IX has chosen s0 ∈ Pκ(C). Let player I+X choose s+
0 = s0. Player II+X will then use

his winning strategy to respond with s+
1 ∈ Pκ+(C). Since κ is cofinal with ω, let

s+
1 =

⋃
i∈ω t

i
1 such that ti1 ⊆ ti+1

1 and |ti1| < κ for all i ∈ ω. Player IIX then responds

to player IX with s1 = t01.

For the inductive step, suppose si and s+
i for all i < 2n and tj2i+1 for all

i < n and all j ∈ ω have been determined already. Assume player IX has chosen

s2n ∈ Pκ(C). Let player I+X choose s+
2n = s2n. Player II+X will then use his winning

strategy to choose s+
2n+1 ∈ Pκ+(C). Again, let s+

2n+1 =
⋃

i∈ω t
i
2n+1 such that ti2n+1 ⊆

ti+1
2n+1 and |ti2n+1| < κ for all i ∈ ω. Player IIX then responds to player IX with
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s2n+1 =
⋃

j≤n t
n
2j+1.

By construction, s =
⋃

i∈ω s
+
i =

⋃
i∈ω si and s ∈ X since player II+X used his

winning strategy. Thus player IIX also wins the game, as desired.

(1 ⇒ 4): This proof proceeds exactly as the previous proof, with the roles of

player I and II from the previous proof reversed.

Suppose player IIX has a winning strategy in Gκ(X). Assume player I+X has

chosen s+
0 ∈ Pκ+(C). Since κ is cofinal with ω, let s+

0 =
⋃

i∈ω t
i
0 such that ti0 ⊆ ti+1

0

and |ti0| < κ for all i ∈ ω. Let player IX choose s0 = t00. Player IIX will then use his

winning strategy to respond with s1 ∈ Pκ(C). Player II+X then responds to player

I+X with s+
1 = s1.

For the inductive step, suppose si and s+
i for all i < 2n and tj2i for all i < n and

all j ∈ ω have been determined already. Assume player I+X has chosen s+
2n ∈ Pκ+(C).

Again, let s+
2n =

⋃
i∈ω t

i
2n such that ti2n ⊆ ti+1

2n and |ti2n| < κ for all i ∈ ω. Let player

IX choose s2n =
⋃

j≤n t
n
2j. Player IIX will then use his winning strategy to choose

s2n ∈ Pκ(C). Player II+X then responds to player I+X with s+
2n = s2n.

By construction, s =
⋃

i∈ω si =
⋃

i∈ω s
+
i and s ∈ X since player IIX used his

winning strategy. Thus player II+X also wins the game, as desired.

We can now define the set Dκ+(C), which will be our filter, based on the game

theoretic characterization of the filter Dω1(C) from Theorem 1.3.4. Lemma 2.1.7

will provide the necessary verification that Dκ+(C) is indeed a filter.
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Definition 2.1.4. Given a set C, define the set Dκ+(C) such that:

Dκ+(C) = {X ⊆ Pκ+(C) : IIX has a winning strategy in Gκ(X)}

Remark 2.1.5. By Theorem 2.1.3, for each proof we are free to choose whichever

of the games in Definition 2.1.1 that is most convenient.

Note that it is not true that each X ∈ Dκ+(C) contains a κ-closed and κ-

unbounded subset. However, it is true that if X is a κ-closed and κ-unbounded

subset of Pκ+(C) then X is in the filter. (In fact, this is true if X is merely ω-closed

and κ-unbounded)

Lemma 2.1.6. Let C be a set and X ⊆ Pκ+(C). If X is ω-closed and κ-unbounded,

then X ∈ Dκ+(C).

Proof. Let X ⊆ Pκ+(C) be an ω-closed and κ-unbounded set. It suffices to show

that player IIX has a winning strategy in the game Gκ(X). We describe player IIX ’s

strategy by induction.

Base Case: n = 0.

Assume player IX has chosen s0 ∈ Pκ(C). By the κ-unboundedness of X

there exists t1 ∈ X such that s0 ⊆ t1. Since the cofinality of κ is ω, we may write

t1 =
⋃

i∈ω t
i
1 such that |ti1| < κi and ti1 ⊆ ti+1

1 . Player IIX then responds to player

IX ’s choice of s0 with s1 = t01.

Successor Stage: Suppose we have defined si for i < 2n.

Assume player IX has chosen s2n ∈ Pκ(C). By the κ-unboundedness of X

there exists t2n+1 ∈ X such that s2n ∪ t2n−1 ⊆ t2n+1. Again, we may write t2n+1 =
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⋃
i∈ω t

i
2n+1 such that |ti2n+1| < κi and ti2n+1 ⊆ ti+1

2n+1. Player IIX then responds to

player IX ’s choice of s2n with s2n+1 =
⋃

j≤n t
n
2j+1.

Since t2i+1 ⊆ t2(i+1)+1 and X is ω-closed,
⋃

i∈ω t2i+1 ∈ X. By construction,⋃
i∈ω si =

⋃
i∈ω t2i+1. Hence,

⋃
i∈ω si ∈ X and player IIX has a winning strategy in

the game Gκ(X) as desired.

We proceed to show some other desirable properties that our filter exhibits.

First we show that it is closed under κ-many intersections.

Lemma 2.1.7. Dκ+(C) is κ+-complete.

Proof. Let Xα ∈ Dκ+(C) for α ∈ κ and let Y =
⋂

α∈κXα. It suffices to show

that player II∗Y has a winning strategy in the game G∗
κ(Y ). We will do this by

playing κ-many concurrent games and use these to describe player II∗Y ’s strategy.

It is important to note how this gameplay proceeds. At the time player I∗Y plays

his first move, we start the first κ0-many games, G∗
κ(Xα) for α < κ0. When player

I∗Y plays his second move, the first κ0-many games continue and the games G∗
κ(Xα)

start for κ0 ≤ α < κ1. We continue to stagger the beginning of each game G∗
κ(Xα)

in this manner.

Base Case: n = 0

Assume player I∗Y has chosen s0 ∈ Pκ(C) with |s0| ≤ κ0. We break our gameplay

into 2 cases.

• For α < κ0, let player I∗Xα
choose sα

0 = s0. Player II∗Xα
then uses his winning

strategy to choose sα
1 ∈ Pκ(C) of cardinality ≤ κ0.
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• For α ≥ κ0, player I∗Xα
doesn’t start playing the game yet. For the sake of

simplicity, we will denote this as sα
0 = ∅ and sα

1 = ∅.

Player II∗Y now chooses s1 =
⋃

α∈κ0
sα
1 in response to player IY ’s choice of s0. Note

that |s1| ≤ κ0.

Successor Stage: Suppose we have defined si and sα
i for all i < 2n.

Assume player I∗Y has chosen s2n ∈ Pκ(C) with |s2n| ≤ κn. Again we consider 2

cases.

• For α < κn, let player I∗Xα
choose sα

2n =
⋃

i≤2n si (note that |sα
2n| ≤ κn). Player

II∗Xα
then uses his winning strategy to choose sα

2n+1 ∈ Pκ(C) with |sα
2n+1| ≤ κn.

• For α ≥ κn, player IXα still hasn’t started playing the game. Again, for

simplicity sake, we denote this as sα
2n = ∅ and sα

2n+1 = ∅.

By construction, s =
⋃

i∈ω si =
⋃

i∈ω s
α
i for all α ∈ κ. Since each player II∗Xα

used his winning strategy once the game started, s ∈ Xα for all α ∈ κ. Hence, s ∈ Y

as desired.

Next we show that our filter is closed under the diagonalization of sets indexed

by finite sequences. When considering AECs with finite character, the following

lemma will prove very useful.

Lemma 2.1.8. Dκ+(C) is closed under diagonalization for sets indexed by finite

sequences. That is, if X〈i0,...in〉 ∈ Dκ+(C) for all n ∈ ω and for every i0, . . . in ∈ I,

where I ⊆ C, then X̄ ∈ Dκ+(C) where X̄ = {s ∈ Pκ+(C) : s ∈ X〈i0,...in〉 for all n ∈

ω and for all i0, . . . in ∈ (I ∩ s)}.
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Proof. We will construct a winning strategy for player IIX̄ in Gκ(X̄) by playing

ω-many games.

Base Case: m = 0

Assume player IX̄ has chosen s0 ∈ Pκ(C). Let Y 0 =
⋂
{X〈i0,...in〉 : n ∈

ω and i0, . . . in ∈ (I ∩ s0)}. Y 0 ∈ Dκ+(C) by κ+-completeness. Hence, player

IIY 0 has a winning strategy in the game Gκ(Y
0). Let player IY 0 choose t00 = s0.

Player IIY 0 then uses his winning strategy to choose t01 ∈ Pκ(C). Player IIX̄ finally

responds to player IX̄ with s1 = t01 ∪ t00.

Successor Stage: Suppose we have defined si for each i < 2m and both tj2i and tj2i+1

for (i+ j) < m.

Assume player IX̄ has chosen s2m ∈ Pκ(C). Let Y m =
⋂
{X〈i0,...in〉 : n ∈ ω,

i0, . . . in ∈ (I ∩ (
⋃

j≤2m sj))}. Y m ∈ Dκ+(C) by κ+-completeness. Let player IY m

choose tm0 =
⋃

j≤2m sj, player IY m−1 choose tm−1
2 =

⋃
j≤2m sj, . . ., and player IY 0

choose t02m =
⋃

j≤2m sj. Players IIY k for k ≤ m then use their winning strategies

to choose tm1 , . . . t
0
2m+1 ∈ Pκ(C). Player IIX̄ finally responds to player IX̄ with

s2m+1 = tm1 ∪ . . . ∪ t02m+1.

By construction, s =
⋃

i∈ω si =
⋃

i∈ω t
j
i for all j ∈ ω. If i0, . . . in ∈ I ∩ s then

there is a k0 ∈ ω such that i0, . . . in ∈ I ∩ (
⋃

j≤2k sj) for all k ≥ k0. Thus, s ∈ Y k for

all k ≥ k0. Hence s ∈ X〈i0,...in〉 for all i0, . . . in ∈ I ∩ s and s ∈ X̄ as desired.
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2.2 Closure under ≡∞,κ

Now that we have defined a filter on Pκ+(C), we are able to define what it

means for a property to hold almost always on κ-size approximations.

Definition 2.2.1. For any set s, any countable vocabulary L, and any L-structure

M, we define the L-structure Ms to be the substructure of M generated by M∩ s.

If s is of size κ then we call the structure Ms a κ-approximation of M.

Definition 2.2.2. A property of approximations to one or more models and/or

formulas is said to hold κ-almost everywhere (or κ-a.e.) iff it holds for all s ∈ X

for some X ∈ Dκ+(C), where C is large enough to approximate all the structures

and/or formulas involved.

An interesting initial consequence of these definitions is that if two structures

are L∞,κ-equivalent then their κ-approximations are almost always isomorphic.

Lemma 2.2.3. If M and N are L-structures and M≡∞,κ N then Ms ∼= N s κ-a.e.

Proof. Without loss of generality, we may assume M ∩ N = ∅. Let X = {s ∈

Pκ+(M ∪ N ) : Ms ∼= N s}. It suffices to prove that player IIX has a winning

strategy in the game Gκ(X).

Assume player IX begins by choosing s0 ∈ Pκ(M∪N ). We can write s0 =

sM0 ∪sN0 where sM0 ⊆M and sN0 ⊆ N . SinceM≡∞,κ N , by Theorem 1.2.6 we know

there exists sN1 ∈ Pκ(N ) such that (M, sM0 ) ≡∞,κ (N , sN1 ). In addition, there exists

sM1 ∈ Pκ(M) such that (M, sM0 , sM1 ) ≡∞,κ (N , sN1 , sN0 ). Player IIX now responds

to player IX with s1 = sM1 ∪ sN1 . Players IX and IIX continue in this manner for the
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rest of the game.

Let s =
⋃

i∈ω si. We can write s = sM ∪ sN where sM =
⋃

i∈ω s
M
i and

sN =
⋃

i∈ω s
N
i . Denote sM as 〈ai〉i∈κ and sN as 〈bi〉i∈κ in such a way so that

(M, 〈ai〉i∈κ) ≡∞,ω (N , 〈bi〉i∈κ), which player IIX made possible with his strategy.

Note that we can not conclude L∞,κ-elementary equivalence because of the cofinality

of κ, but we can conclude L∞,ω-elementary equivalence because L∞,ω formulas only

have finitely many free variables. However, L∞,ω-elementary equivalence is sufficient

for our proof. From it, we get that the map f defined as f(ai) = bi is a partial

isomorphism which will extend uniquely to an isomorphism of Ms and N s, since

Ms and N s are generated by 〈ai〉i∈κ and 〈bi〉i∈κ, respectively. Thus, s ∈ X as

desired.

The following application of κ-approximations is implied by the Löwenheim-

Skolem axiom, but will be more helpful to us stated in this form. For the following

proof it will be useful to note that given a model M of cardinality greater than or

equal to κ, the set {s : (M∩ s) = Ms} is ω-closed and κ-unbounded. Hence, by

Lemma 2.1.6, {s : (M∩ s) = Ms} ∈ Dκ+(M).

Lemma 2.2.4. Let (K,≺K) be an AEC.

1. If M∈ K then Ms ≺K M, κ-a.e.

2. If M∈ K and M0 ≺K M such that |M0| = κ then M0 ≺K Ms, κ-a.e.

Proof.

1. Let X = {s ∈ Pκ+(M) : Ms ≺K M,M ∩ s = Ms}. By Lemma 2.1.6 it
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suffices to show X is ω-closed and κ-unbounded.

Let 〈si〉i∈ω be an increasing sequence in X. That is, Msi ≺K M for all i ∈ ω

and Msi ⊆Msi+1 . Then Msi ≺K Msi+1 for all i ∈ ω by the coherence axiom

(Axiom 6 of Definition 1.1.1). By the chain axiom,
⋃

i∈ωMsi ≺K M. Since

Msi = M∩ si for all i ∈ ω,
⋃

i∈ωMsi = M∪si . Hence,
⋃

i∈ω si ∈ X and X is

ω-closed.

Let s ∈ Pκ+(M). By the Löwenheim-Skolem axiom, there exists M′ ∈ K

of size ≤ κ such that M∩ s ⊆ M′ ≺K M. Let s′ = ran(M′) ∈ Pκ+(M).

Ms′ = M∩ s′ = M′ and Ms′ ≺K M. Thus, s′ ∈ X and X is κ-unbounded.

2. Note that M0 ⊆Ms κ-a.e. From part (a) we have that Ms ≺K M κ-a.e. By

the coherence axiom, M0 ≺K Ms κ-a.e as desired.

Lemma 2.2.5. Assume M∈ K, M0 ≺K M of cardinality κ, n ∈ ω and ā0, . . . ān−1

⊆M0 are sequences of length < κ. Let N be an arbitrary L-structure and b̄0, . . . b̄n−1

⊆ N be such that (M, 〈āi〉i<n) ≡∞,κ (N ,
〈
b̄i

〉
i<n

). Then [there is a K-embedding h

of M0 into N s such that h(āi) = b̄i for all i < n] κ-a.e.

Proof. Let Y = {s ∈ Pκ+(N ) : there is a K-embedding h of M0 into N s s.t.

h(āi) = b̄i∀i < n}. We will show player IIY has a winning strategy in the game

Gκ(Y ).

By Lemma 2.2.4, we know that M0 ≺K Ms κ-a.e. Therefore X = {s ∈

Pκ+(M) : M0 ≺K Ms,Ms = s} ∈ Dκ+(M). Thus, player IIX has a winning
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strategy in the game Gκ(X). We will use this winning strategy to construct a

winning strategy for player IIY .

Assume player IY has chosen d̄0 ∈ Pκ(N). Note that d̄0 can be viewed as a

sequence from N of length < κ (arrange it in any order). By Theorem 1.2.6, there

exists c̄0 ⊆M such that (M, 〈āi〉i<n , c̄0) ≡∞,κ (N ,
〈
b̄i

〉
i<n

, d̄0). Let player IX choose

ran(c̄0) in the game Gκ(X). Player IIX then uses his winning strategy to choose c̄1 ⊆

M. By Theorem 1.2.6 again, there exists d̄1 ⊆ N such that (M, 〈āi〉i<n , c̄0, c̄1) ≡∞,κ

(N ,
〈
b̄i

〉
i<n

, d̄0, d̄1). Now, let player IIY choose ran(d̄1) in response to player IY ’s

choice of d̄0. Continue this process for all i ∈ ω.

Let c̄ =
⋃

i∈ω c̄i ⊆ M. Similarly, let d̄ =
⋃

i∈ω d̄i ⊆ N . Since cof(κ) = ω,

it is not necessarily true that (M, 〈āi〉i<n , c̄) ≡∞,κ (N ,
〈
b̄i

〉
i<n

, d̄). However, we

can say that (M, 〈āi〉i<n , c̄) ≡∞,ω (N ,
〈
b̄i

〉
i<n

, d̄) since L∞,ω-formulas only have

finitely many free variables and (M, 〈āi〉i<n , c̄0, . . . c̄k) ≡∞,κ (N ,
〈
b̄i

〉
i<n

, d̄0, . . . d̄k)

for every k ∈ ω. Since player IIX used his winning strategy, ran(c̄) = s0 ∈ X. Thus

M0 ≺K Ms0 and Ms0 = s0 = ran(c̄).

Let s1 = ran(d̄). Define g : Ms0 → N by g(c̄i) = d̄i for all i ∈ ω. Then g is

an isomorphism of Ms0 onto a substructure N s1 of N such that N s1 = s1. If we

let N0 = g(M0) then N0 ≺K N s1 because ≺K is preserved under isomorphism and

M0 ≺K Ms0 . In addition, g(āi) = b̄i for all i < n. If we let h = g � M0 then h is a

K-embedding of M0 into N s1 such that h(āi) = b̄i for all i < n. Therefore s1 ∈ Y

and player IIY has a winning strategy as desired.

Lemma 2.2.6. Assume (K,≺K) has finite character. Let M∈ K, M0 ≺K M where
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|M0| ≤ κ and ā ⊆ M such that ran(ā) = M0. Let N be an arbitrary L-structure

and let b̄ ⊆ N such that ā and b̄ have the same length. If (M, ai0 , . . . ain) ≡∞,κ

(N , bi0 , . . . bin) for all i0, . . . in ∈ |ā| and for all n ∈ ω then ran(b̄) = N0 where

N0 ≺K N s κ-a.e. and M0
∼= N0.

Proof. Let Y bi0
,...bin = {s ∈ Pκ+(N ) : there exists a K-embedding h : M0 →

N s s.t. h(aik) = bik ∀k ≤ n}. Lemma 2.2.5 implies that Y bi0
,...bin ∈ Dκ+(N ) for

all finite sequences 〈bi0 , . . . bin〉 ⊆ b̄. Thus Z =
⋂
Y bi0

,...bin ∈ Dκ+(N ) by κ+-

completeness.

Define the map g : M0 → N as g(ai) = bi for all i ∈ κ. As in the previous

proofs, we know (M, ā) ≡∞,ω (N , b̄) and thus g is an isomorphism of M0 onto some

substructure N0 ⊆ N where ran(b̄) = N0. Fix s ∈ Z then for any finite sequence

〈bi0 , . . . bin〉 ⊆ N0 the map h ◦ g−1 is a K-embedding of N0 into N s fixing bi0 , . . . bin .

Hence, by finite character, N0 ≺K N s. Therefore N0 ≺K N s κ-a.e., as desired.

Lemma 2.2.7. Assume (K,≺K) has finite character. Let M ∈ K and assume

M ≡∞,κ N for some L-structure N . Then for every subset B0 ⊆ N of cardinality

≤ κ, there is a substructure N0 ⊆ N of cardinality κ such that B0 ⊆ N0 and

N0 ≺K N s κ-a.e.

Proof. Let X = {s ∈ Pκ+(M) : Ms ≺K M and Ms = s}. Lemma 2.2.4 implies

that X ∈ Dκ+(M) and thus player IIX has a winning strategy in the game Gκ(X).

Enumerate B0 as
〈
b̄2i

〉
i∈ω

such that b̄2i ⊆ b̄2(i+1) and |b̄2i| < κ for all i ∈ ω.

This is possible since cof(κ) = ω.

By Theorem 1.2.6 we can pick ā0 ⊆M such that (M, ā0) ≡∞,κ (N , b̄0). Have

33



player IX choose ā0 as his first move in the game Gκ(X). Player IIX will then use

his winning strategy to choose ā1 ∈ Pκ(M). By Theorem 1.2.6 again we can pick

b̄1 ⊆ N such that (M, ā0, ā1) ≡∞,κ (N , b̄0, b̄1). Continue in this manner for all

n ∈ ω.

Since player IIX used his winning strategy we know {āi}i∈ω ∈ X. Thus,

ran(ā) = M0 where M0 = Ms ≺K M.

By construction, B0 ⊆ ran(b̄) and for any i0, . . . in ∈ κ and any n ∈ ω we

know that (M, ai0 , . . . ain) ≡∞,κ (N , bi0 , . . . bin). By Lemma 2.2.6 we can conclude

that ran(b̄) = N0 where N0 ≺K N s κ-a.e. and B0 ⊆ N0 as desired.

We are now able to use κ-approximations to prove that AECs with finite

character and a Löwenheim-Skolem number of κ are closed under L∞,κ-equivalence.

Theorem 2.2.8. Assume (K,≺K) has finite character. Let M ∈ K and N be an

arbitrary L-structure. If M≡∞,κ N then N ∈ K.

Proof. Let S = {N0 ⊆ N : |N0| = κ, N0 ≺K N s κ-a.e.}. By Lemma 1.1.3(a),

it suffices to show that S is a family of K-structures directed under ≺K and that⋃
S = N .

Assume N0,N1 ∈ S. By Lemma 2.2.7 there is a K-structure N2 such that

N2 ⊆ N , N0,N1 ⊆ N2, |N2| = κ and N2 ≺K N s κ-a.e. Thus N2 ∈ S and it

follows that S is a family of κ-size K-structures directed under ⊆. Furthermore, if

N0, N1 ∈ S and N0 ⊆ N1 then there will be some N s ⊆ N such that N0 ≺K N s,

and N1 ≺K N s. Hence, N0 ≺K N1 by the coherence axiom. Therefore, S is a

family of κ-size K-structures directed under ≺K. In addition, by Lemma 2.2.7, for
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every b ∈ N there exists N0 ∈ S such that b ∈ N0. Hence
⋃
S = N and S is as

desired.

Under the assumption of finite character we also get that ≺K is preserved by

L∞,κ-equivalence.

Corollary 2.2.9. Assume (K,≺K) has finite character. Further assume M0 ≺K M

and ā ⊆ M such that ran(ā) = M0. If b̄ is a sequence of length |ā| from a model

N and (M, ai0 , . . . ain) ≡∞,κ (N , bi0 , . . . bin) for all i0, . . . in ∈ |ā| and for all n ∈ ω

then N0 ≺K N where ran(b̄) = N0 and M0
∼= N0.

Proof. Since we assume M ≡∞,κ N , Theorem 2.2.8 implies N ∈ K. Thus, by

Lemma 2.2.4, X = {s ∈ Pκ+(N ) : N s ≺K N} ∈ Dκ+(N ). We break this up into 2

cases.

Case 1: |M0| = κ

Lemma 2.2.6 implies that ran(b̄) = N0, M0
∼= N0 and N0 ≺K N s κ-a.e. Let

Z = {s ∈ Pκ+(N ) : N0 ≺K N s}.

Since X and Z are in Dκ+(N ), X∩Z ∈ Dκ+(N ). Therefore, for any s ∈ X∩Z,

N0 ≺K N s and N s ≺K N . Hence N0 ≺K N as desired.

Case 2: |M0| > κ

M0 =
⋃
S where S = {Ai ≺K M0 : |Ai| = κ}. Note that S is a directed

family of K-structures under ≺K. For each Ai ∈ S, let Ai = ran(
〈
aij

〉
j∈κ

). By

case 1, there exists Bi ≺K N such that Bi = ran(
〈
bij

〉
j∈κ

). Define S ′ as the family

consisting of the Bi’s corresponding to each Ai ∈ S. S ′ is then also a directed family

of K-structures under ≺K. Let N0 =
⋃
S ′. Then ran(b̄) = N0 and N0 ∈ K. Lemma
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1.1.3(b) implies N0 ≺K N and thus N0 is as desired.

A final corollary of Theorem 2.2.8 is that L∞,κ-substructures are also K-

substructures assuming only that K-substructure exhibits finite character.

Corollary 2.2.10. Assume (K,≺K) has finite character. If M∈ K and M≺∞,κ N

then M≺K N .

Proof. In the context of Corollary 2.2.9, let ā = b̄ list all the elements of M0 = M.

Since M ≺∞,κ N , (M, ai0 , . . . ain) ≡∞,κ (N , bi0 , . . . bin) for all i0, . . . in ∈ |ā| and

all n ∈ ω. Corollary 2.2.9 implies that M ≺K N as desired (since M0 = M ≺K

M).

2.3 Examples

In this section we will provide several examples to show that the assumptions

made in the previous section are necessary and that closure under L∞,κ-equivalence

is the best possible result.

First, we will show that if we remove the assumption of finite character, we

can not assure closure under L∞,κ-equivalence.

Example 2.3.1. Define (K,≺K) as in Example 1.1.8 with µ = κ. We have already

shown that this is an AEC satisfying (AP, etc.) and does not have finite character.

We claim K is not closed under L∞,κ-equivalence.

Let M, N be L-structures such that |PM| = κ and |¬PM| = κ+ but |PN | =

κ+ and |¬PN | = κ+. Thus, M ∈ K and N 6∈ K. However, M≡∞,κ N . Therefore,

K is not closed under L∞,κ-equivalence.
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Next we will show that the singularity of κ is essential to assuring closure

under L∞,κ-equivalence. Michael Morley ([13]) provided the following example of 2

models of size ℵ1 that are L∞,ω1-equivalent but are not isomorphic. We will use this

example to construct an AEC with LS(K) = ℵ1, that has finite character but is not

closed under L∞,ω1-equivalence. Similar examples will work for any regular κ.

Example 2.3.2. There exists a well-founded tree of cardinality ℵ1, M, such that:

1. Every element has exactly ω1 immediate successors.

2. For every a0 ∈M, M∼= M � {a : a0 ≤ a}.

3. Every branch is countable but there are arbitrarily long countable branches.

Define N by starting with (ω1, <) and putting a copy of M above every

element of ω1. Thus, |N | = ℵ1, M ≡∞,ω1 N by a back-and-forth argument which

we omit, but M 6∼= N (since M has only countable branches, but N has one branch

of length ω1).

Let K = {A : N ∼=⊆ A} and define ≺K as A ≺K B if A ⊆ B (i.e. ordinary

substructure).

We first claim (K,≺K) is an AEC satisfying amalgamation, joint embedding

and arbitrarily large models. Clearly K is closed under isomorphism, LS(K) = ℵ1,

≺K is transitive and reflexive and A ≺K B implies A ⊆ B. In addition, since ≺K

is the same as substructure, the coherence axiom clearly holds. It remains to show

that (K,≺K) satisfies the union axioms. To do this assume Ai ∈ K and Ai ≺K Ai+1

for all i ∈ δ. Therefore N ∼=⊆ Ai for all i ∈ δ. In particular, there exists a map
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f : N ∼=⊆ A0 and this same map is an isomorphic embedding of N into Ai for all

i ∈ δ. By definition of substructure, this same map f isomorphically embeds N

into
⋃

i∈δ Ai. Hence,
⋃

i∈δ Ai ∈ K. Furthermore, Ai ≺K
⋃

i∈δ Ai for all i ∈ δ, and

if Ai ≺K B for each i ∈ δ then
⋃

i∈δ Ai ≺K B because ≺K=⊆. Thus (K,≺K) is an

AEC.

(K,≺K) also has finite character since ≺K=⊆ and substructure has finite char-

acter. In addition, (K,≺K) clearly has arbitrarily large models and exhibits both

the amalgamation and joint embedding.

Note that M 6∈ K since there is no copy of N in M. Hence K is not closed

under L∞,ω1-equivalence.

Finally, we provide an example illustrating that under the assumptions in the

previous section, closure under L∞,κ-equivalence is the best possible result. In par-

ticular, we can find an example of an AEC with finite character, arbitrarily large

models and Löwenheim-Skolem number κ (where cof(κ) = ω) admitting amalgama-

tion and joint embedding that is not closed under L∞,τ -equivalence for any ordinal

τ < κ.

Example 2.3.3. Define (K,≺K) in a similar manner to examples 2.3.1 and 1.1.8

with K = {M : |PM|, |¬PM| ≥ κ}, but define ≺K as ordinary substructure. (K,≺K)

can be show to be an AEC with (AP, etc.) in an almost identical proof to that of

Example 1.1.8. Also, (K,≺K) has finite character since ≺K=⊆. Thus, by Theorem

2.2.8, K is closed under L∞,κ-equivalence.

We claim that K is not closed under L∞,τ -equivalence for τ < κ. To show
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this, let M and N be L-structures such that |PM| = κ, |¬PM| = κ, |PN | = τ and

|¬PN | = κ. Thus M∈ K and N 6∈ K. However, M≡∞,τ N and therefore (K,≺K)

is not closed under L∞,τ -elementary equivalence.

2.4 Axiomatizability

In this section we raise the question of whether or not Theorem 2.2.8 can be

improved to yield axiomatizability. First we we will prove that there are 22κ
-many

AECs with Löwenheim-Skolem number κ and finite character, and thus too many

for every one to be axiomatizable in Lκ+,κ. First observe that, regardless of the

cofinality of κ, Shelah’s Lemma 1.1.3 implies that there are at most 22κ
-many such

AECs.

Theorem 2.4.1. There are 22κ
-many AECs with LS(K) = κ and finite character

and satisfying (AP, etc.).

Proof. Let L0 be a language consisting solely of κ-many unary predicates Ri for

each i ∈ κ. For every infinite A ⊆ κ, let the first order theory TA have the following

axiom scheme:

• ∀x(¬(Ri(x) ∧Rj(x))) for each i 6= j with i, j ∈ κ.

• Ri(x) is infinite for each i ∈ A.

• Rj(X) is empty for each j 6∈ A.

For A 6= B ⊆ κ, TA and TB are distinct, complete first order L0-theories. Conse-

quently we have created 2κ-many complete first order L0-theories. Let E be a new
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binary predicate and let L = L0 ∪ {E}. For every non-empty S ⊆ 2κ, we will con-

struct an AEC (KS,≺KS
) with finite character so that different S’s define different

AECs.

Let KS = {M|M is an L-structure, EM is an equivalence relation and every

EM class is a model of TA for some A ∈ S}. If M ∈ KS and a ∈ M, we define

Ma as the L0-reduct of the substructure of M whose universe is the equivalence

class EM(x, a). Each Ma |= TA for some A ∈ S. For M,N ∈ KS define ≺KS
as

M≺Ks N IFF M⊆ N and Ma ≺ Na for all a ∈M.

(KS,≺KS
) clearly has finite character since ≺KS

only depends on first order

substructure and first order elementary substructure, both which have finite char-

acter. Additionally, it is easy to see that (KS,≺KS
) is an AEC and that if S, S ′ ⊆ 2κ

such that S 6= S ′ then KS 6= KS′ . Since there are 22κ
-many such S, we get 22κ

-many

KS’s, as desired.

By the previous theorem, we know there are AECs, (K,≺K), with finite char-

acter and LS(K) = κ that are not axiomatizable in Lκ+,κ. The next theorem will

provide sufficient conditions to axiomatize such an AEC with a sentence from L∞,κ.

This will be the first of several axiomatizability results in this paper.

Theorem 2.4.2. Assume κ is cofinal with ω. Let (K,≺K) be an AEC with LS(K) =

κ and satisfying finite character. Assume that K has at most λ-many models of

cardinality λ for some λ such that λ<κ = λ. Then K = Mod(σ) for some σ ∈ L∞,κ.

The proof of Theorem 2.4.2 depends on two previously proven results. For the

first theorem, we reference a result of Kueker’s and use the notation λ∗-a.e. This is
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not the obvious generalization of κ-a.e. as previously defined. Instead, we define the

filter D∗
λ+(C) to be the set of all X ⊆ Pλ+(C) such that player II†X has a winning

strategy in the λ-length game G†
λ(X). Thus a property occurs λ∗-a.e. iff it occurs

for all s ∈ X for some X ∈ D∗
λ+(C). The only important property of this definition

of the filter is that every λ-closed and λ-unbounded subset of Pλ+(C) is in D∗
λ+(C).

See [8] for details.

Theorem 2.4.3. [8] Let σ ∈ Lµ+,κ and let λ be such that λ ≥ µ and λ<κ = λ. Then

M |= σ IFF Ms |= σ λ-a.e.

An easy generalization of Scott’s Theorem shows that for every κ ≥ ω and

every M there is some σ ∈ L∞,κ such that for every N , N |= σ iff M ≡∞,κ N . In

fact we have the following theorem.

Theorem 2.4.4. [9] Let M be an infinite model for a language with at most |M|-

many symbols, and let λ = |M|<κ, where κ ≥ ω. Then there is a sentence θ of Lλ+,κ

such that for every N , N |= θ IFF N ≡∞,κ M.

Using these theorems we can now proceed to prove our axiomatizability result.

Proof. (Theorem 2.4.2)

Let {Mi : i ∈ I} list all models of K of cardinality λ, up to isomorphism.

By Theorem 2.4.4, since λ<κ = λ, for each i ∈ I, let θi ∈ Lλ+,κ determine Mi up

to L∞,κ-elementary equivalence. Let σ1 =
∨

i∈I θi, which is in Lλ+,κ since |I| ≤ λ.

Clearly every model in K of cardinality λ models σ1. We claim that every model in

K of cardinality greater than λ also models σ1.
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Let N ∈ K such that |N | > κ. Suppose N 6|= σ1. Then N |= ¬σ1. Theorem

2.4.3 implies that N s |= ¬σ1 λ
∗-a.e. However, N s ∈ K λ∗-a.e. and |N s| = λ,

λ∗-a.e because {s : N s ∈ K, |N s| = λ} is λ-closed and λ-unbounded. Thus there

is a substructure N s such that N s |= ¬σ1, N s ∈ K and |N s| = λ, which is a

contradiction.

Let {Aj : j ∈ J} list all models K of cardinality less than λ, up to isomorphism.

By Theorem 2.4.4, let θ′j determine Aj up to L∞,κ-elementary equivalence. Let

σ2 =
∨

j∈J θ
′
j. Finally, let σ = σ1 ∨ σ2. It is clear that any structure in K models σ.

Conversely, suppose M |= σ, for some L-structure M. Then M ≡∞,κ N for some

N ∈ K, by the definition of σ. Since (K,≺K) has finite character, Theorem 2.2.8

implies that M∈ K, as desired.
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Chapter 3

Infinitary Game Logic

For the entirety of this chapter, assume (K,≺K) is an abstract elementary class

with a Löwenheim-Skolem number of κ where κ is cofinal with ω. The main goal

of this chapter is to find an axiomatization of K by a sentence incorporating game

quantification.

3.1 L(κ)

The following definition is a generalization of Keisler’s game logic L(ω) ([7]).

Definition 3.1.1. Define the infinitary game logic L(κ) as follows:

1. All atomic formulas are in L(κ).

2. If ϕ ∈ L(κ) then ¬ϕ ∈ L(κ).

3. If Φ ⊆ L(κ) then
∧

Φ,
∨

Φ ∈ L(κ).

4. If ϕ ∈ L(κ) then ∃x̄ϕ, ∀x̄ϕ ∈ L(κ) where |x̄| < κ provided they have just

finitely many free variables.

5. If ϕ ∈ L(κ) then Q0x̄0 . . . Qnx̄n . . . ϕ ∈ L(κ) for n < ω where each Qn is either

∀ or ∃ and |x̄i| < κ provided the formula has just finitely many free variables.

Let M0 be an arbitrary K-structure of cardinality κ and let ā be a κ-sequence

from M0 such that ran(ā) = M0. The following two lemmas prove the existence of
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specific quantifier-free formulas in L(κ) necessary to create the sentence axiomatizing

K.

Lemma 3.1.2. There exists a quantifier-free formula αM0,ā(x̄, ȳ) ∈ L(κ) such that

for every L-structure N and all κ-sequences c̄, d̄ from N , N |= αM0,ā(c̄, d̄) IFF

the map defined by h(ai) = ci for all i ∈ κ defines an isomorphism of M0 onto

N0 = ran(c̄) and N0 ≺K N1 where N1 = ran(d̄) and is of cardinality κ.

Proof. Let {(Ai,M0) : i ∈ I} list, up to isomorphism, all pairs of K-structures such

that M0 ≺K Ai and |Ai| = κ. For any i ∈ I and b̄i ⊆ Ai a κ-sequence such that

ran(b̄i) = Ai, define:

αb̄i
i (x̄, ȳ) =

∧
{β(x̄, ȳ) : β is a basic open formula and Ai |= β(ā, b̄i)}

Observe that an L-structureN |= αb̄i
i (c̄, d̄) if and only if ran(c̄) = N0, ran(d̄) =

Bi and (Ai,M0) ∼= (Bi,N0) under the map defined by h(bij) = dj for all j ∈ κ

(which, of course, implies h(ai) = ci for all i ∈ κ).

Let {b̄ji : j ∈ J} list all enumerations of Ai. Define αM0,ā
i (x̄, ȳ) =

∨
{αb̄j

i
i (x̄, ȳ) :

j ∈ J}. Furthermore, define αM0,ā =
∨
{αM0,ā

i (x̄, ȳ) : i ∈ I}. This formula then

clearly has the desired properties.

Lemma 3.1.3. For each n ∈ ω and i0 < . . . < in < κ, there is a quantifier-

free formula γM0,ā
i0,...in

(xi0 , . . . xin , ȳ) ∈ L(κ) such that for any L-structure N , N |=

γM0,ā
i0,...in

(c0, . . . cn, b̄) IFF ck = bik for all k ≤ n, ran(b̄) = N0 and (M0, ai0 , . . . ain) ∼=

(N0, c0, . . . cn).
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Proof. As in the previous lemma, define:

γM0,ā
i0,...in

=
∧
{β(xi0 , . . . xin , ȳ) : β basic open formula s.t. M0 |= β(ai0 , . . . ain , ā)}

By construction, if N |= γM0,ā
i0,...in

(c0, . . . cn, b̄) then ran(b̄) = N0 such that

(M0, ai0 , . . . ain) ∼= (N0, c0, . . . cn). Furthermore, the ck’s must correspond to the

same positions in the sequence b̄ that the aik ’s do in the sequence ā. Thus, ck = bik

for all k ≤ n.

Conversely, if ran(b̄) = N0, (M0, ai0 , . . . ain) ∼= (N0, c0, . . . cn) and ck = bik for

all k ≤ n then M0 |= β(ai0 , . . . ain , ā) IFF N |= β(c0, . . . cn, b̄) for every β. Thus,

N |= γM0,ā
i0,...in

(c0, . . . cn, b̄).

The following lemma combines the formulas from the previous two lemmas

to show the existence of a formula determining that almost all κ-approximations

contain a copy of M0 and and the elements satisfying the formula are the images

of ai0 , . . . ain .

Lemma 3.1.4. For each n ∈ ω and i0 < . . . < in < κ, there exists a formula

ϕM0,ai0
,...ain ∈ L(κ) such that for every L-structure N and c0, . . . cn ∈ N , N |=

ϕM0,ai0
,...ain (c0, . . . cn) IFF [there exists a K-embedding h of M0 into N s such that

h(aik) = ck for all k ≤ n] κ-a.e.

Proof. Define the following quantifier-free formula from L(κ):

χM0,ā
i0,...in

(xi0 , . . . xin , ȳ) =
∨

f :κ→κ

[
γM0,ā

i0,...in
(xi0 , . . . xin , yf(0), . . .) ∧ αM0,ā(yf(0), . . . , ȳ)

]
Observe that N |= χM0,ā

i0,...in
(c0, . . . cn, b̄) if and only if for some function f :

κ → κ, ck = bf(ik) for all k ≤ n, ran(bf(0), . . .) = N0, the map h(ai) = bf(i) is an
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isomorphism of M0 onto N0 and N0 ≺K N1 where N1 = ran(b̄) by the previous 2

lemmas.

Define:

ϕM0,ai0
,...ain (xi0 , . . . xin) = ∀ȳ0∃ȳ1 . . . ∀ȳ2n∃ȳ2n+1 . . . χ

M0,ā
i0,...in

(xi0 , . . . xin , ȳ)

where |ȳ2j| = |ȳ2j+1| = κj for all j ∈ ω.

(⇒): AssumeN |= ϕM0,ai0
,...ain (c0, . . . cn). We desire to show [there is a K-embedding

h of M0 into N s such that h(aik) = ck for all k ≤ n] κ-a.e.

Let X = {s ∈ Pκ+(N ) : there exists a K-embedding h of M0 into N s s.t.

h(aik) = ck}. We will show X ∈ Dκ+(N ) by demonstrating a winning strategy

for player II∗X in the game G∗
κ(X). We proceed by playing 2 parallel games and

describing the strategy by induction.

Base Case: n = 0

Assume player I∗X has chosen s0 ∈ Pκ(N ) of cardinality ≤ κ0. Without loss

of generality we may assume |s0| = κ0 (if |s0| < κ0 then allow an element of s0 to

repeat κ0-many times in ȳ0 below). Since N |= ϕM0,ai0
,...ain (c0, . . . cn), player IIϕ has

a winning strategy in the ω-length game defined by ϕM0,ai0
,...ain (c0, . . . cn). Allow

player Iϕ to choose ȳ0 = s0 (in any order). Player IIϕ can then use his winning

strategy to choose ȳ1 ⊆ N of cardinality κ0. Player II∗X will then respond to player

I∗X with s1 = ran(ȳ1).

Successor Stage: Suppose si and ȳi have been chosen for each i < 2n.

Assume player I∗X has chosen s2n ∈ Pκ(N ) of cardinality κn. Allow player Iϕ

to choose ȳ2n = s2n (in any order) and player IIϕ will use his winning strategy to
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respond with ȳ2n+1 ⊆ N of cardinality κn. Player II∗X will then respond to player

I∗X with s2n+1 = ran(ȳ2n+1).

Let s =
⋃

n∈ω sn. By our observation above, there is a K-embedding h of M0

into N1 such that h(aik) = ck for all k ≤ n and N1 = N s. Thus s ∈ X as desired.

(⇐): Fix c0, . . . ck ∈ N . Let

X = {s ∈ Pκ+(N ) : ∃ K-embedding h of M0 into N s s.t. h(aik) = ck}

We assume X ∈ Dκ+(N ) and thus player II∗X has a winning strategy in the game

G∗
κ(X). We desire to show that player IIϕ has a winning strategy in the ω-length

game defined by ϕM0,ai0
,...ain (c0, . . . cn) which will imply N |= ϕM0,ai0

,...ain (c0, . . . ck).

We again proceed by playing 2 parallel games and defining the strategy by induction.

Base Case: n = 0

Assume player Iϕ has chosen ȳ0 ⊆ N of length κ0. Allow player I∗X to choose

s0 = ran(ȳ0) and player II∗X will use his winning strategy to respond with s1 ∈

Pκ(N ) of cardinality ≤ κ0 (again, without loss of generality, we may assume |s1| =

κ0). Player IIϕ will then respond to player Iϕ with ȳ1 = s1 (in any order).

Successor Stage: Suppose si and ȳi have been chosen for each i < 2n.

Assume player Iϕ has chosen ȳ2n ⊆ N of length κn. Allow player I∗X to

choose s2n = ran(ȳ2n) and player II∗X will use his winning strategy to respond

with s2n+1 ∈ Pκ(n) of length κn. Player IIϕ will then respond to player Iϕ with

ȳ2n+1 = s2n+1 (in any order).

Let s =
⋃

i∈ω si. Note that N s = ran(ȳ) and there is a K-embedding h of M0

into N s such that h(aik) = ck for all k ≤ n. Thus we get a function f : κ→ κ such
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that ck = yf(ik) for all k ≤ n and ran(yf(0), . . .) = h(M0). From our observation

above, it is clear that player IIϕ has a winning strategy in the game defined by

ϕM0,ai0
,...ain (c0, . . . cn).

3.2 Axiomatizability

For the remainder of the chapter we continue to assume that (K,≺K) is an

AEC with LS(K) = κ and cof(κ) = ω and we further assume that K has finite

character. With this assumption, we will be able to use the formula from Lemma

3.1.4 to axiomatize K by a sentence of L(κ). The following lemma is the key step

to proving this result.

Lemma 3.2.1. There is a formula ϕM0,ā(x̄) ∈ L(κ) such that for every L-structure

N and every κ-sequence b̄ from N , N |= ϕM0,ā(b̄) IFF the mapping g defined by

g(ak) = bk for all k ∈ κ is an isomorphism of M0 onto some N0 such that N0 ≺K N s

κ-a.e.

Proof. Let ϕM0,ā(x̄) =
∧

n∈ω

∧
i0<...in<κ ϕ

M0,ai0
,...ain (xi0 , . . . xin).

(⇒): Assume N |= ϕM0,ā(b̄). By Lemma 3.1.4 and κ+-completeness the map g is a

K-embedding of M0 into N s κ-a.e. Then N0 = g(M0) is as desired.

(⇐): By assumption X ∈ Dκ+(N ) where:

X = {s ∈ Pκ+(N ) : N0 ≺K N s where N0 = g(M0) defined by g(ak) = bk ∀k ∈ κ}

Hence for any n ∈ ω and i0 < . . . < in < κ, g defines a K-embedding of

M0 into N s such that g(aik) = bik for all k ≤ n, κ-a.e. Lemma 3.1.4 implies
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N |= ϕM0,ai0
,...ain (bi0 , . . . bin) for all n ∈ ω and i0 < . . . < in < κ. Hence, N |=

ϕM0,ā(b̄).

Lemma 3.2.2. There exists a formula ϕ(x̄) ∈ L(κ) such that for every L-structure

N and every κ-sequence b̄ from N , N |= ϕ(b̄) IFF ran(b̄) = N0 for some N0 such

that N0 ≺K N s κ-a.e.

Proof. Let ϕ(x̄) =
∨
{ϕM0,ā(x̄) : M0 ∈ K, |M0| = κ and ran(ā) = M0}. By

Lemma 3.2.1 we obtain the desired result.

Theorem 3.2.3. There exists a sentence θ ∈ L(κ) such that for any L-structure,

N , N |= θ IFF N ∈ K.

Proof. Let θ = ∀x̄0∃x̄1 . . . ∀x̄2n∃x̄2n+1 . . . ϕ(x̄) where |x̄2j| = |x̄2j+1| = κj for all

j ∈ ω.

(⇒): Assume N |= θ. This means that player IIθ has a winning strategy in the

ω-length game defined by θ. Let S = {N0 ⊆ N : N0 ≺K N s κ-a.e.}. We desire to

show that S is a directed family under ≺K and that
⋃
S = N .

First we claim that S is a directed family under ⊆. Assume M0,M1 ∈ S. It

suffices to show that there is a model M2 ∈ S such that M0, M1 ⊆ M2. To do

this, let player Iθ play the game defined by θ by listing all the elements of M0∪M1

while player IIθ always uses his winning strategy. As a result, we obtain b̄ ⊆ N such

that M0 ∪M1 ⊆ ran(b̄) and N |= ϕ(b̄). By Lemma 3.2.2, ran(b̄) = M2 such that

M2 ≺K N s κ-a.e. Hence, M2 ∈ S and is as desired.

Next we claim S is a directed family under ≺K. By the previous claim, it

suffices to show that if M0, M1 ∈ S and M0 ⊆ M1 then M0 ≺K M1. Since
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M0 ≺K N s κ-a.e. and M1 ≺K N s κ-a.e., there exists a κ-approximation N s0 such

that M0, M1 ≺K N s0 . By the coherence axiom, we can conclude M0 ≺K M1.

Since player IIθ has a winning strategy in the game defined by θ, it is clear

that for any b ∈ N there exists N0 ∈ S such that b ∈ N0. Therefore, N =
⋃
S and

hence N ∈ K by Lemma 1.1.3.

(⇐): Assume N ∈ K. We will demonstrate a winning strategy for player IIθ in the

game defined by θ (and thus N |= θ). We proceed by induction.

Base Case: n = 0

Assume player Iθ has chosen x̄0 a sequence from N such that |x̄0| = κ0. By the

Löwenheim-Skolem axiom, there exists a model N0 ≺K N such that ran(x̄0) ⊆ N0

and |N0| = κ. Since cof(κ) = ω, we can let N0 =
⋃

i∈ω b̄
0
i such that b̄0i ⊆ b̄0i+1 and

|b̄0i | = κi for all i ∈ ω. Player IIθ then responds with x̄1 = b̄00 (in any order).

Successor Stage Suppose x̄i has been determined for each i < 2n.

Assume player Iθ has chosen x̄2n a sequence from N such that |x̄2n| = κn.

By the Löwenheim-Skolem axiom again, there exists a model Nn ≺K N such that

Nn−1 ∪ ran(x̄2n) ⊆ Nn and |Nn| = κ. Let Nn =
⋃

i∈ω b̄
n
i such that b̄ni ⊆ b̄ni+1 and

|b̄ni | = κi for all i ∈ ω. Player IIθ then responds with x̄2n+1 = b̄0n ∪ . . . ∪ b̄nn (in any

order).

By construction,
⋃

i∈ω ran(x̄i) =
⋃

i∈ωNi = M ∈ K and M is of cardinality

κ. Furthermore, by the union axiom we get M ≺K N . Lemma 2.2.4 tells us that

M ≺K N s κ-a.e. Lemma 3.2.2 further implies N |= ϕ(b̄) where b̄ =
⋃

i∈ω ran(x̄i)

(in any order). Hence, N |= θ, as desired.

50



Chapter 4

Type Saturation and Categoricity

For the duration of this chapter, we assume that (K,≺K) is an AEC satisfying

the amalgamation and joint embedding properties and has arbitrarily large models.

We will still assume that LS(K) = κ but we will no longer make the assumption

that κ has a cofinality of ω unless explicitly stated. Furthermore, we will always

assume that all models from K are K-substructures of the monster model, C.

4.1 Types and Saturation

In [14], Shelah defined a galois type of a sequence over a K-structure as a

generalization of first order types. We provide a more general definition of a galois

type of a sequence over a set.

Definition 4.1.1. For a small sequence ā from the monster model C (sufficiently

smaller than |C|) and a small subset B of C, the galois type of ā over B, denoted

tpg(ā/B), is the set of images of ā under automorphisms of C fixing B pointwise.

In addition, Shelah provided a definition of λ-galois saturated structures over

models when λ > κ. We will also extend this definition of λ-galois saturated models

to include the case where λ = κ. The case where λ = κ = ω can be found in both

[5] and [10]. We provide both definitions below.

Definition 4.1.2.
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1. (Model Saturation) A model M is λ-galois saturated for λ > κ if for every

N ≺K M with |N | < λ and for every element a ∈ C, M |= tpg(a/N ).

2. (Set Saturation) A model M is λ-galois saturated for λ ≥ κ if for every < λ-

sequence ā ⊆M and every < λ-sequence b̄ ⊆ C, there exists c̄ ⊆M such that

tpg(āb̄/∅) = tpg(āc̄/∅).

It is necessary now to show that the two definitions of galois saturation stated

above are equivalent when λ > κ. The following lemma is essential to the proof.

Details on this lemma can be found in [1].

Lemma 4.1.3. A model M∈ K is λ-galois saturated as in definition 4.1.2(1) IFF

M is λ-model homogeneous.

Lemma 4.1.4. For λ > κ, the two definitions from 4.1.2 agree.

Proof.

(1 ⇒ 2): Assume M is λ-galois saturated as in definition 4.1.2(1). Then M is

λ-model homogeneous by Lemma 4.1.3. Let ā ⊆ M and b̄ ⊆ C be < λ-sequences.

Since the Löwenheim-Skolem number is less than λ, there exists N ≺K M such

that ā ⊆ N and |N | < λ. By the same reasoning there exists N ′ ∈ K such that

N ≺K N ′ ≺K C and b̄ ⊆ N ′ and |N ′| < λ. By the λ-model homogeneity of M,

there is a K-embedding h of N ′ into M fixing N (and thus fixing ā) pointwise. This

isomorphism naturally extends to an automorphism of C. Let c̄ = h(b̄) ⊆M. Thus,

by definition, tpg(āb̄/∅) = tpg(āc̄/∅).

(2 ⇒ 1): Assume M is λ-galois saturated as in definition 4.1.2(2). Assume further

that N ≺K M with |N | < λ and b ∈ C. Write N as a sequence ā such that
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|ā| < λ. Since M is λ-galois saturated in the sense of (2), there exists c ∈ M

such that tpg(āb/∅) = tpg(āc/∅). Hence there exists h ∈ aut(C) such that h fixes ā

pointwise (and thus fixes N pointwise) and sends b to c. Therefore, M |= tpg(b/N )

as desired.

Remark 4.1.5. While model saturation and set saturation agree when λ > κ, set

saturation is usually a stronger assumption when λ = κ, since K may contain no

models of cardinality less than λ.

We proceed to develop properties of κ-galois saturated models.

Theorem 4.1.6. (cof(κ) = ω) Let M, N ∈ K and ā, b̄ be < κ-sequences of the

same length from M and N , respectively. If (M, ā) ≡∞,κ (N , b̄) then tpg(ā/∅) =

tpg(b̄/∅).

Proof. By assumption, M, N ≺K C and (M, ā) ≡∞,κ (N , b̄). From Lemma 2.2.3

applied to (M, ā) and (N , b̄), we obtain (Ms, ā) ∼= (N s, b̄) κ-a.e. In addition,

by Lemma 2.2.4, Ms ≺K M κ-a.e. and N s ≺K N κ-a.e. Thus, for some s,

Ms ≺K M, N s ≺K N and (Ms, ā) ∼= (N s, b̄). This isomorphism of K-structures

naturally extends to an automorphism of C since Ms, N s ≺K C and C is strongly

homogeneous. Hence, tpg(ā/∅) = tpg(b̄/∅).

The following lemma will enable us to prove many properties using back-and-

forth arguments.

Lemma 4.1.7. Assume M ∈ K is κ-galois saturated. Let N ∈ K, and let ā ⊆ M

and b̄ ⊆ N be < κ-sequences of the same length. Further assume that tpg(ā/∅) =
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tpg(b̄/∅). Then, for any < κ-sequence d̄ ⊆ N there exists c̄ ⊆ M such that

tpg(āc̄/∅) = tpg(b̄d̄/∅).

Proof. By assumption, M, N ≺K C and tpg(ā/∅) = tpg(b̄/∅). Thus there exists

h ∈ aut(C) such that h(ā) = b̄. If we let c̄′ = h−1(d̄) then tpg(āc̄′/∅) = tpg(b̄d̄/∅).

Since M is κ-galois saturated, there exists c̄ ⊆M such that tpg(āc̄/∅) = tpg(āc̄′/∅),

as desired.

Assuming that M is κ-galois saturated, we are now able to prove the following

biconditional strengthening of Theorem 2.2.8.

Theorem 4.1.8. (Finite Character) Assume that M∈ K is κ-galois saturated.

1. If N ∈ K is κ-galois saturated then M≡∞,κ N

2. (cof(κ) = ω) If N ≡∞,κ M then N is a κ-galois saturated K-structure.

Proof.

(1): Assume N ∈ K is κ-galois saturated. By Theorem 1.2.6 it suffices to show that

player II always has a winning strategy in the ω-length game Gκ(M,N ).

Base Case: n = 0

Assume player I has chosen ā0 ⊆ M (or b̄0 ⊆ N ) a sequence of length < κ.

Since M and N are both κ-galois saturated, there exists b̄0 ⊆ N (or ā0 ⊆M) such

that tpg(ā0/∅) = tpg(b̄0/∅). Player II will then choose b̄0 (or ā0) in response to player

I’s move.

Successor Stage: Suppose āi and b̄i have been chosen already for i ≤ n so that

tpg(ā0 . . . ān/∅) = tpg(b̄0 . . . b̄n/∅).
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Without loss of generality, assume player I has chosen ān+1 ⊆ M a sequence

of length < κ. By the inductive hypothesis, tpg(ā0 . . . ān/∅) = tpg(b̄0 . . . b̄n/∅).

Lemma 4.1.7 implies that there exists b̄n+1 ⊆ N such that tpg(ā0 . . . ān+1/∅) =

tpg(b̄0 . . . b̄n+1/∅). Player II will then choose b̄n+1 in response to player I’s move.

At any finite stage there is an automorphism of C sending ā0, . . . ān to b̄0, . . . b̄n,

hence the map h such that h(āi) = b̄i for all i ∈ ω is a partial isomorphism and thus

player II wins. Hence, M≡∞,κ N .

(2): Assume M≡∞,κ N and thus N ∈ K by Theorem 2.2.8.

Let b̄ ⊆ N and d̄′ ⊆ C be sequences of length < κ. By Theorem 1.2.6 there

exists ā ⊆ M such that (M, ā) ≡∞,κ (N , b̄). Hence, by Theorem 4.1.6, tpg(ā/∅) =

tpg(b̄/∅). SinceM is κ-galois saturated, by Lemma 4.1.7 we know there exists c̄ ⊆M

such that tpg(āc̄/∅) = tpg(ād̄′/∅). Using Theorem 1.2.6 again, we can find d̄ ⊆ N

such that (M, āc̄) ≡∞,κ (N , b̄d̄). Theorem 4.1.6 implies tpg(āc̄/∅) = tpg(b̄d̄/∅). Thus

d̄ is as desired to show N is κ-galois saturated.

Under the assumption that M and N are κ-galois saturated, we can also find

a biconditional strengthening of several of our previous theorems. The following is

a strengthening of Theorem 4.1.6

Corollary 4.1.9. Let M, N ∈ K be κ-galois saturated. Also, let ā ⊆M and b̄ ⊆ N

be sequences of length < κ.

1. If tpg(ā/∅) = tpg(b̄/∅) then (M, ā) ≡∞,κ (N , b̄).

2. (cof(κ) = ω) If (M, ā) ≡∞,κ (N , b̄) then tpg(ā/∅) = tpg(b̄/∅).
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Proof.

(1): The proof is identical to the proof of part (1) of Theorem 4.1.8. Following the

same steps it can easily be seen that we can construct a winning strategy for player

II in the game Gκ((M, ā), (N , b̄)). Hence (M, ā) ≡∞,κ (N , b̄).

(2): Done by Theorem 4.1.6

The next corollary strengthens Theorem 2.2.9

Corollary 4.1.10. (Finite Character) Let M∈ K be κ-galois saturated and M0 ≺K

M. Further let ā be a sequence from M such that ran(ā) = M0. Finally, let N be

an arbitrary L-structure and b̄ ⊆ N be a sequence of length |ā|.

1. (cof(κ) = ω) If (M, ai0 , . . . ain) ≡∞,κ (N , bi0 , . . . bin) for all i0, . . . in ∈ |ā| and

for all n ∈ ω then the map defined by h(ai) = bi for all i ∈ |ā| is a K-embedding

of M0 into N .

2. If the map defined by h(ai) = bi for all i ∈ |ā| is a K-embedding of M0 into

N and N is κ-galois saturated then (M, ai0 , . . . ain) ≡∞,κ (N , bi0 , . . . bin) for

all i0, . . . in ∈ |ā| and for all n ∈ ω.

Proof.

(1): Done by Theorem 2.2.9

(2): Since h is a K-embedding by assumption, for all n ∈ ω tpg(ai0 , . . . ain/∅) =

tpg(bi0 , . . . bin/∅). By Corollary 4.1.9 (M, ai0 , . . . ain) ≡∞,κ (N , bi0 , . . . bin).

The final corollary is a strengthening of Corollary 2.2.10.
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Corollary 4.1.11. (Finite Character) Assume that M, N ∈ K are κ-galois satu-

rated.

1. If M≺K N then M≺∞,κ N .

2. (cof(κ) = ω) If M≺∞,κ N then M≺K N .

Proof.

(1): Assume M ≺K N . Let ā ⊆ M be an arbitrary sequence of length < κ.

Since M is a K-substructure of N , tpg
M(ā/∅) = tpg

N (ā/∅). Corollary 4.1.10 implies

(M, ā) ≡∞,κ (N , ā). Since ā was an arbitrary < κ-sequence, we get M≺∞,κ N .

(2): Done by Corollary 2.2.10.

4.2 Categoricity And Axiomatizability

In this section we will prove that under the assumptions of finite character,

cof(κ) = ω, (AP, etc.) and categoricity, we can find a complete sentence of L∞,κ

closely approximating (K,≺K). First, we define the notion of stability in the context

of an AEC.

Definition 4.2.1. Let λ ≥ κ. We say that (K,≺K) is λ-galois stable IFF for every

structure N ∈ K such that |N | ≤ λ, there are at most λ-many galois types of finite

tuples over N .

The following technical lemma about stability can be found in [1]. We state

it without proof.
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Lemma 4.2.2. (AP, etc.) If K is λ-categorical for λ > κ then K is σ-galois stable

for all σ < λ.

If (K,≺K) is σ-galois stable for LS(K) ≤ σ, then for every K-structure M0

of cardinality σ, there is a σ-universal model over M0 of cardinality σ. We provide

the definition and proof of existence below, which can also be found in [1].

Definition 4.2.3. Let M0, M1 ∈ K. We say M1 is σ-universal over M0 if M0 ≺K

M1 and whenever M0 ≺K N with |N | ≤ σ, there exists a K-embedding of N into

M1 fixing M0.

Theorem 4.2.4. Let (K,≺K) be an AEC that is κ-galois stable for LS(K) ≤ κ.

Assume M0 ∈ K of cardinality κ. Then there exists a model M ∈ K that is κ-

universal over M0 and of cardinality κ.

Proof. Fix M0 ≺K C of cardinality κ. By κ-galois stability and the Löwenheim-

Skolem axiom we can find a model M1 ∈ K such that M0 ≺K M1 ≺K C, |M1| = κ

and M1 realizes all 1-galois types over M0. Continue this construction for κ-many

steps, taking unions at limits, and let M =
⋃

i∈κMi. We claim M is as desired.

Let N ∈ K be such that M0 ≺K N ≺K C and |N | = κ. Enumerate N \M0

as {aj}j∈κ. We will create a κ-chain of isomorphisms extending each other and find

the desired K-embedding by taking the union. We proceed by induction.

Base Case: Let N0 = M0 and f0 = idM0 . Let f̂0 = idC.

Successor Stage: Suppose we have constructed and defined Ni ≺K C and an

isomorphism fi of Mi onto Ni. Let f̂i be an automorphism of C extending fi.
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Let j be the least such that aj 6∈ Ni. Note that tpg(f̂−1
i (aj)/f

−1
i (Ni)) =

tpg(f̂−1
i (aj)/Mi). By construction there exists an element bj ∈ Mi+1 such that

bj |= tpg(f̂−1
i (aj)/Mi). Hence there exists an automorphism g of C extending fi

and sending bj to aj. Let fi+1 = g � Mi+1 and Ni+1 = fi+1(Mi+1).

Limit Stage: For δ < κ a limit ordinal, let Mδ =
⋃

i<δ Mi, fδ =
⋃

i<δ fi and

Nδ =
⋃

i<δ Ni = fδ(Mδ).

Let f =
⋃

i<κ fi and N ′ =
⋃

i<κNi. Then M0 ≺K N ≺K C and M0 ≺K N ′ =

f(M) ≺K C and N ⊆ N ′. The coherence axiom implies that N ≺K N ′. Then f−1

is the desired map because M0 ≺K f
−1(N ≺K M = f−1(N ′).

The next lemma can also be found in [1]. We provide the details of the proof

below to both illustrate the standard techniques used in AECs to prove saturation

and to incorporate our new (equivalent) definition of galois saturation.

Lemma 4.2.5. Assume K is λ-categorical for λ > κ and cof(λ) ≥ κ. Then the

model of size λ is κ-galois saturated.

Proof. Choose M0 ≺K C of cardinality less than λ, by the Löwenheim-Skolem

axiom.

By Lemma 4.2.2 K is σ-galois stable for each σ < λ, thus by Lemma 4.2.4

we can find M1 ∈ K such that M1 is universal over M0 and also has the same

cardinality as M0. Continue this process, taking unions at limits, for each i < λ

and let M =
⋃

i∈λMi (note that |M| = λ).

Let ā ⊆ M be a sequence of length less than κ and b̄ ⊆ C be another se-

quence of length less than κ. Since cof(λ) ≥ κ, for some i ∈ λ, ā ⊆ Mi. Let
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Mi ≺K N ≺K C such that b̄ ⊆ N and |N | = |Mi| by the Löwenheim-Skolem

axiom. By construction, |Mi+1| = |Mi| and Mi+1 is universal over Mi. Let f be

a K-embedding of N into Mi+1 fixing Mi pointwise (and, in particular, fixing ā

pointwise). Thus, tpg(āb̄/∅) = tpg(āf(b̄)/∅) and f(b̄) ⊆ M. Hence M is κ-galois

saturated, as desired.

Remark 4.2.6. In the previous lemma, the same proof will show that the model

of size λ is cof(λ)-galois saturated. In particular, if λ is regular, then the model of

size λ is λ-galois saturated.

From these lemmas we can show that all models at or above the categoricity

cardinal, λ, are κ-galois saturated when cof(λ) ≥ κ. As in the remark, if the

cofinality of λ is regular then all models at or above the categoricity cardinal are

λ-galois saturated.

Theorem 4.2.7. Assume K is λ-categorical for λ > κ and cof(λ) ≥ κ. If M ∈ K

and |M| ≥ λ then M is κ-galois saturated.

Proof. Let ā ⊆M and b̄ ⊆ C be sequences of length less than κ. By the Löwenheim-

Skolem axiom, there exists M0 ≺K M of size λ such that ā ⊆ M0. By Lemma

4.2.5, M0 is κ-galois saturated. Hence, there exists c̄ ⊆ M0 such that tpg(āc̄/∅) =

tpg(āb̄/∅). Clearly c̄ ⊆M and thus M |= tpg(āb̄/∅).

Corollary 4.2.8. Assume K is λ-categorical for λ > κ and cof(λ) ≥ κ. If M,

N ∈ K and |M|, |N | ≥ λ then M≡∞,κ N .

Proof. By Theorem 4.2.7, M and N are both κ-galois saturated. Since Theorem
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4.1.8(1) didn’t require any assumption on the cofinality of κ, it follows that M≡∞,κ

N .

We continue to work towards our next axiomatizability result with the follow-

ing lemma.

Lemma 4.2.9. Assume (K,≺K) has finite character and the cofinality of κ is ω. If

K is λ-categorical for λ > κ and cof(λ) > κ then there exists a sentence σ ∈ L∞,κ

such that for every L-structureM, M |= σ IFFM∈ K andM is κ-galois saturated.

Proof. Let N be the unique model in K of cardinality λ. By Lemma 4.2.5, N is

κ-galois saturated. Let σ ∈ L∞,κ describe N up to L∞,κ-equivalence by Theorem

2.4.4.

(⇒): Suppose M |= σ. Then M≡∞,κ N by Theorem 2.4.4. Hence, M ∈ K and is

κ-galois saturated by Theorem 4.1.8.

(⇐): Suppose M∈ K and κ-galois saturated. Then M≡∞,κ N by Theorem 4.1.8.

Hence M |= σ by Theorem 2.4.4.

The following theorem is implied by Lemma 4.2.9 and the results of section 1.

Theorem 4.2.10. Assume (K,≺K) has finite character and cof(κ) = ω. Let K be

λ-categorical for λ > κ and cof(λ) > κ. Then there is a complete sentence σ ∈ L∞,κ

such that:

1. Mod(σ) ⊆ K and σ has a model of cardinality κ+.

2. K and Mod(σ) contain precisely the same models of cardinality ≥ λ.
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3. If M,N |= σ then M≺K N IFF M≺∞,κ N .

Proof. Define σ as in Lemma 4.2.9

1. If M |= σ then M ∈ K and M is κ-galois saturated by Lemma 4.2.9. In

addition, since λ > κ, Lemma 4.2.2 implies that K is κ-galois stable. In the

same manner of the proof of Lemma 4.2.5, we can construct a model, M, of

cardinality κ+ that is κ-galois saturated (this is also proved in [1]). Lemma

4.2.9 then implies that M |= σ, as desired.

2. If M ∈ K and |M| ≥ λ then M is κ-galois saturated by Theorem 4.2.7. By

Lemma 4.2.9 again implies that M |= σ. Part (1) of this theorem implies that

if M |= σ and |M| ≥ λ then M∈ K.

3. IfM,N |= σ thenM andN are κ-galois saturated by Lemma 4.2.9. Corollary

4.1.11 implies that M≺K N IFF M≺∞,κ N .

Remark 4.2.11. It is still an open question as to whether or not σ must have a

model of cardinality κ.

We can now axiomatize K by taking our sentence σ from Lemma 4.2.9 and dis-

juncting it with each sentence describing the models below the categoricity cardinal.

This will be the same argument as the proof of Theorem 2.4.2.

Theorem 4.2.12. Assume (K,≺K) has finite character and cof(κ) = ω. Let K

be λ-categorical for λ > κ and cof(λ) > κ. Then there is θ ∈ L∞,κ such that

K = Mod(θ).
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