
Magi Matter, the Computational �ther, and the Miner's CanaryCharles W. MisnerAlbert Einstein Institute/Max Plank InstituteD-14476 Golm, GermanyandDepartment of Physis, University of Maryland,College Park MD 20742-4111 USAe-mail: misner�aei-potsdam.mpg.demisner�physis.umd.edu(W O R K I N G D R A F T, 26 January 2001; Revision 0.8)Several viewpoints are proposed with the aim of promoting further approahes to the numerialintegration of Einstein's equations, espeially in support of attempts to detet astrophysially sig-ni�ant gravitational waves. Magi Matter suggests that one should instrut omputer programsto ignore Einstein's equations inside the horizons of blak holes, and to instead produe omputa-tionally onvenient metris there that will not interfere with the orret solution of the equationsin the physially observable regions of the simulation. The Computational �ther is the spatialgrid of oordinate verties, oneived as an imaginary substane whih spreads itself onvenientlyover the urved spaetime in ways that should simplify the omputational e�ort. The dynamis ofmagi matter and the omputational �ther represent instanes of Applied Siene Fition wherephysial laws inonsistent with our knowledge of nature are used in aspets of simulations that haveno observable onsequenes, but are expeted to improve omputational eÆieny. The Miner'sCanary gives notie in suh omputations, not that the air in the mine is beoming poisoned, butthat some regions of the omputational grid probably lie inside apparent horizons so that one maytake liberties with the Einstein equations to preserve the life of the omputation. Satisfatory im-plementations of these three ideas are not provided here; rather some �rst steps toward suh areproposed to stimulate further researh.I. INTRODUCTIONWords inuene our reativity (Wheeler, Feynman).So here some ways of thinking about blak hole alula-tions are proposed. Although I will use several di�erentath phrases to desribe these approahes, they eahattak one of two diÆulties in numerial omputation.One diÆulty is the formation of spaetime singularitiesinside the horizon of any blak hole that our in the om-putation. The seond is the likelihood that injudiiouslyhosen oordinates my require extreme omputational ef-forts that halt the omputation. These two diÆultiesare losely related sine urrent experiene has found o-ordinate distortions most prevalent near the horizons ofblak holes.Applied Siene Fition (AFS) refers to the use ofphysially absurd dynamis where it has no observableonsequenes. On suh plae is inside blak hole hori-zons where one may stu� a gravitating substane, MagiMatter, whih allows singularities to be suppressed. Theuid version of Magi Matter may be alled Aquavit(aqua vit�, preserving the life of the omputation) whenit an be treated as a uid. Another ase of AppliedSiene Fition is in assigning the dynamis of a possi-bly viso-elasti substane to the spatial oordinates (orgrid verties in a disrete omputational approximation)| the Computational �ther. This dynamis is �tionalbeause the motions of the oordinate grid should, fromgeneral ovariane, have no inuene on the geometry of

the resulting spaetime. The stress-energy tensor of theomputational �ther may be a useful prop to our inven-tiveness in hoosing a useful dynamis, but does not enterthe Einstein equations or generate gravitational �elds.Before eletrohemial tehnology supplied patentabledevies, miners were said to arry a aged anary into themines whih, by showing sign of illness, would warn ofpoisoned air. A similar signal is needed by omputationalalgorithms to warn that setors of the grid lie withinblak holes, so that lifesaving siene �tion should beinvoked to preserve the omputation. A salar �eld play-ing the role that � = �M=r does in the Shwarzshildsolution would be the ideal suh Canary. Although a fullsalar �eld dynamis might be invented to provide thisservie, our preliminary example of a dynamis for theomputational �ther suggests that suh a salar india-tor may arise from some theories of the omputational�ther.These ideas are partly an outgrowth of the Fat Par-tile idea (developed with Conrad Shi�, ref) whih anbe onsidered a �rst example of Applied Siene Fition.But some inspiration to use reative and (reativity pro-duing) names ame from the Lazarus Projet [BBCL00℄whih showed that a blak hole omputation that wasdesending into omputational hell ould be resurretedby transforming to a fresh algorithm.
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II. APPLIED SCIENCE FICTIONBeause the behavior of spaetime inside an event hori-zon (e.g., inside an apparent horizon) annot inuenethe observable spaetime outside, some omputationalshemes (refs) have tried to avoid the treatment of sin-gularities by exising a singularity prone region from theative omputational grid. ASF similarly seeks to avoidsolving Einstein's equations (with their singular onse-quenes) inside apparent horizons. But omputers don'taept the instrution \I don't are | do anything youlike." So rather than diretly attempting to avoid solv-ing Einstein's equations inside a blak hole, ASF asksthat they be solved, but with some unphysial matter(e.g., Aquavit) replaing the vauum there. Some suit-able kinds of unphysial matter may be suggested by thesiene �tion studies of Thorne and Novikov (refs) ontransversible wormholes.� I explore here some other av-enues. III. AQUAVITAs suggested by the name (Aquavit, Akvavit, aquavit�), a simple example of ASF may be a uid thathas an unphysial equation of state designed to resistollapse to a singularity. Sine the original example ofollapse to form a blak hole [OS39℄ an be reformu-lated [Be62,Mis67,Mis69℄ as a setor of the pressure-free FRW losed universe mathed to a Shwarzshildexterior solution, one �rst looks to avoid the osmolog-ial singularity with a dose of Aquavit. For a homoge-neous isotropi FRW osmology the �eld equations anbe taken, e.g. [MTW73, eqns. (27.39)℄, as(dR=dt)2 � (8�=3)R2�(R) = �k (3.1)where R is the sale fator for the evolving universe(whih we take as a stand-in for the interior of a ollaps-ing star) and � is the density of mass-energy in the restframe of the uid. The properties of the matter are in-orporated in the isentropi equation of state �(n) wheren / 1=R3 is a onserved partile number density. Simplephysial idealizations of matter inlude pressure-free dustwith � / n and massless radiation � / n4=3. But insidean event horizon we are free to postulate any equationof state that might be useful for easing the omputation.From this equation of state the pressure is omputed asP = n(d�=dn)� � (3.2)�The NSF required areful aounting by Calteh to avoidthe possibility that suh ridiulous speulations ould belinked to LIGO funding. Here I suggest that this si-ene �tion an be applied to solve signi�ant LIGO-relatedproblems.

(f. [MTW73, eqn. (22.7)℄) whih gives P = ( � 1)P for� / n . The veloity of sound , for small density per-turbations from a homogeneous uid in speial relativity,is given by 2 = 1�+ P n��P�n�s (3.3)in units where the veloity of light is unity. This evaluatesto 2 =  � 1 when � / n .For an example of a singularity avoiding equation ofstate (for a FRW universe) we suggest� / n(n1 � n) (3.4)whih, for n� n1 gives the familiar ases � / n . Withthis equation of state, and with n / 1=R3, the Friedmannequation (3.1) beomes(dR=dt)2 + V (R) = �K ; (3.5)a form orresponding to [MTW73, eqn. (27.74)℄. Here thee�etive potential V (R) whih allows a rigorous qualita-tive desription of the solutions of this equation isV (R) = �VNR�3+2(1�R�3) : (3.6)This funtion is plotted in Figure 1. [The sale fatorVN = 6�23 � 3�26�2�(2�3)=3 sets the minimum to �1.℄
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FIG. 1. The e�etive potential V (R) plotted for two valuesof the parameter,  = 1 and  = 2. For all values of theonstant energy-analog �K � �1 in equation (3.5) there ex-ist nonsingular solutions with R > 0 for all time. The valueK = +1 orresponds to a stable stati Einstein universe pop-ulated with any  > 2=3 brand of aquavit.The use of unphysial uids in inhomogeneous environ-ments, suh as the interior of blak holes where one hopesthey an be useful omputationally, ould bring in hydro-dynamial problems as a trade-o� for gravitational singu-larities. This an only be deided by omputational tests.One problem that might be addressed is the thermody-namial instability of substanes with negative ompress-ibilities. But self-gravitating relativisti substanes withsti� positive ompressibilites are unstable (e.g., toward2



blak hole formation) so Newtonian intuitions need to beupgraded by further investigation. The loal propertiesof the  = 2 aquavit are plotted in Figure 2.A visous aquavit might work better than the idealuids desribed above. The addition of bulk visosity inthe FRW prototype model for a blak hole interior mightresult in an homogeneous ollapse that was terminated,not by a boune, but by a damped relaxation to the equi-librium Einstein universe represented by the bottom ofthe potential well in Figure 1.As disussed in the next setion, unphysial equationsof state suh as equation (3.4) need not be used only inregions of spaetime oupied by matter. When modi�edto allow � = 0 at low densities n, they an be onsideredeither as modi�ed equations of state for the vauum, oras equations of state for the omputational grid.
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FIG. 2. The properties of the  = 2 uid de�ned by equa-tion (3.4) against a normalized density n=n1. The solid urveis the energy density �, while the dashed urve is the pressureP in the same units. The dotted urve is 2, the dimensionlesssquared sound veloity. Note that the uid beomes loallyunstable (2 < 0) neessarily when 2 = 0 where pressuregradient fores are negligible in the equation for density per-turbations, so that the homogeneous model alulation foran FRW universe may there give meaningful suggestions ofthe behavior under self gravitation. Also the singularity in2, where ��=�n = 0 so � + P = 0, ours at a state wherethe stress energy tensor redues to a false vauum ondition(osmologial `onstant') whih is not obviously troublesome.IV. DYNAMIC GRIDSIt is ommonly taught that the �ther was eliminatedfrom physis by Einstein with the introdution of speialrelativity. But a half entury later it was not unommonfor physiists to talk of the new �ther, the spaetimevauum. Although the speial relativiti �ther had lostone familiar property of a substane | it's use as a ref-erene to or from whih a veloity ould be de�ned | itretained many others. For instane even the speial rela-tivisti vauum ould be deorated with adornments suhas the eletromagneti �eld. It also served as the mediumfor the propagation of eletromagneti waves. But with

relativisti quantum �eld theory, and with lassial gen-eral relativity, the vauum beame a quite substantial�ther. It was visualized as a stew of virtual partiles.It threatened to have a nonzero energy density. And itould bend and wave and deet other types of matter.Now numerial relativity has brought us another �therbeyond the disarded �ther of the 19th entury and theurrent �ther of the 20th entury. This is the omputa-tional �ther | the oordinate system or omputationalgrid | whih is ausing many of the problems faingsientists in the numerial solution of Einstein's gravita-tional equations.Many of the diÆulties whih Einstein and others hadin understanding his theory of general relativity werefounded in a tendeny to attribute physial signi�aneto oordinates. Fifty years after 1915 it beame pos-sible to oneive of a urved spaetime without givingprominene to oordinates, and this is now ommonplaeamong relativists. But numerial relativists are �ndingthat the oordinate system is a sa�olding whih is essen-tial in building a spaetime. I suggest that it be thought aseond �ther interating with the primary �ther, spae-time. The priniple of general ovariane says that thisseond �ther annot inuene the struture of the phys-ial spaetime. But it does not say that the physialspaetime annot inuene the sa�olding. And, whensheltered by an event horizon, this priniple an be vio-lated; the omputational �ther an be allowed to inu-ene the physial �ther.A. Fluid �therFor an example of a omputational �ther whih an a-tively hange the spaetime geometry onsider the equa-tion of state� / � 0; n � n0(n� n0) [(n1 � n0) � (n� n0) ℄; n0 � n (4.1)in whih 0 � n0 < n1 is assumed. This is just equa-tion (3.4) o�set to give � = 0 for n � n0. This is anexample of an (unphysial) equation of state for the va-uum, or an equation of state for a omputational �ther.At low densities n < n0 it has no energy density � and nopressure P and thus is a onventional lassial vauum ora omputational �ther whih does not enter the Einsteinequations. At higher densities, expeted to be found onlyinside blak holes, it might provide the protetion againstsingularities suggested for the simpler aquavit of the pre-vious setion. But if no other matter is introdued, as ina binary blak hole system, what is n?To interpret equation (4.1) as the equation of state of aomputational �ther or of a oordinate system one mustinterpret n as the density of spatial oordinates. In adisrete form this would make 1=n the volume of a gridell in its own rest frame. In the ontinuum desriptionn is de�ned by its onservation law (nu�);� = 0 where3



u� is the 4-veloity of the spatial oordinates, thus ina oordinate system omoving with this omputational�ther one has ui = 0 for i = 1; 2; 3. The onservationlaw for n then reads�0[np�g=p�g00℄ = 0 (4.2)and de�nes n diretly in terms of the metri and some(arbitrary) initial density assignment. The ovariant spa-tial omponents of the �ther's 4-veloity ui = u0g0i areessentially the shift vetor. In regions where � + P > 0the ui will be determined algebraially by the momentumonstraints G0i / T 0i = (�+P )u0ui = (�+P )g0i=(�g00).This simple piture of the grid as a uid omputational�ther is likely inadequate. The properties of the uid ofequation (4.1) are too violent at the transition n = n0from test matter to self-gravitating matter. And the shiftvetor ontrol enters too abruptly as � + P inreases ordereases from zero. But further attempts an be madeto de�ne shift onditions by thinking of the grid (spatialoordinates) as a kind of �ther or test (nongravitating)matter. From this viewpoint the 4-veloity of the grid,u� with ui = 0 for i = 1; 2; 3, would play an inreasedrole in our thinking.B. Elasti �therAn �ther oneived as a material substane with time-like 4-veloity u� has as an important desriptor thestrain of its rest frame. This strain is desribed by theprojetion tensor h�� and by the strain rate L�� whereyh�� = g�� + u�u� and L�� = � 12Luh�� : (4.3)These learly depend only on the hoie of spatial oor-dinates and their world lines to whih u� is tangent. Inoordinates tied to this �ther so that ui = 0 these tensorssatisfy h0� = 0 = L0� and have spatial omponents hjkand Ljk = � 12��0hjk. Here � � u0 = 1=p�g00. An al-ternative de�nition of hjk in these oordinates is that it isthe 3�3matrix inverse of the matrix gjk, the spatial om-ponents of the ontravariant 4-metri. Thus these om-ponents, like h�� and L�� , are independent of hanges inthe time sliing (hoie of the x0 oordinate) and dependonly on the hoie of spatial grid. Using these desiptorsas tools, one ould imagine ontrolling the grid (and thusthe shift vetor) by requiring this �ther to at as a viso-elasti solid or even a kind of Silly Putty (i.e., uid onlarge sales, but solid for some higher frequenies). How-ever, some onsiderations of even a simple ShwarzshildyIn oordinates with zero shift so g0k = 0 the strain param-eters hjk and Ljk redue to the omponents of the �rst andseond fundamental forms of a time slie as used by Dedonderand ADM.

blak hole with its singularity tamed by unphysial mat-ter shows that a pratial omputational �ther needs tobe made of grid points that an move above the speed oflight, i.e., with spaelike worldlines.C. Magi MatterTo get some idea of the kind of unphysial matterneeded to tame a omputed blak hole model we mod-ify the Shwarshild metri and learn what it osts. Ina long known but little used form of the Shwarzshildmetri one hasds2 = �dt2 + dxi + xir2Ur2 dt!2 (4.4)where a Eulidean sum of squares ours on the spaeindies. This form is losely related to the ingo-ing Eddington-Finkelstein oordinates (e.g., [MTW73,Box 31.2℄) and satis�es the vauum Einstein equationswhen U =M=r with r2 = xi xi. It allows one to desribeinfalling matter or light and the formation of the singu-larity and has the onveniene of a unit lapse, Eulideangeometry on the t = onstant slies and p�g = 1. Animportant Kerr generalization of this presentation of ablak hole has been given reently by Doran [Dor00℄. Wewill modify this metri in the region r � M , well insidethe horizon, to tip the light ones bak to a nonsingularon�guration there. The inward and outward edges ofthe light ones in this metri are given by the radial nullvetors ` = �t + (xi=r)(1�p2U)�iand (4.5)n = �t � (xi=r)(1 +p2U)�iso one sees that the entire light one tips inward (to-ward smaller r) whenever 2U > 1. For this metri tobe di�erentiable at the origin r = 0 one needs thatpU(r)=r2 be di�erentiable there. But pf(u) is dif-ferentiable provided f(u) is and while also f(u) > 0.So with r2 = xi xi di�erentiable (whih r is not at theorigin r = 0), we easily ahieve a di�erentiable metriby hoosing U(r)=r2 = f(r2) > 0 for any di�erentiablefuntion f(u). This requirement inludes U(0) = 0 so thelight ones at the origin are oriented just as in Minkowskispaetime.The Einstein tensor omputed for this metri(in spherial oordinates) we write as G�� =diagd��; Pr; P?; P?) suggesting its interpretation, whennonzero, as generated by a stress-energy tensor for someexoti matter. The omputed values are� = �Pr = 2(rU)0=r2 ; P? = �(r2U 0)0=r2 (4.6)and are all zero when U = M=r. It is, however, notdiÆult to \draw by hand" values of U for r � M that4



smoothly join to the Shwarzshild values at larger r butleave the metri nonsingular. An example with M=1 isU = � 1=r if r � 1r2(35� 42r2 + 15r4)=8 if r � 1 (4.7)This hoie makes all metri omponents in equa-tion (4.4) C1 funtions everywhere exept at r = 1 wherethey are only C2. The nonzero omponents of G�� forthis example are plotted in Figure 3.It is not possible to state that this magi matter ismoving at veloities greater than light. This for the rea-son that, as with false vauum, the rest frame of thematter is not de�ned. One would normally de�ne the4-veloity u� of matter as the timelike eigenvetor of thematter stress-energy tensor, T ��u� = ��u�, as for anideal uid. But every vetor v� in the rt plane satis�esG��v� = ��v� for the metri of equation (4.4), and suhvetors an be spaelike or null as well as timelike.
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FIG. 3. The properties of some magi matter whih re-moves the singularity in a Shwarzshild blak hole are plot-ted here. These are the nonzero (diagonal) omponents of theEinstein tensor for (the spherial oordinate version of) themetri de�ned by equations (4.4) and (4.7), plotted againstr=M . The solid urve is the implied energy density �, whilethe dashed urve is the radial stress (pressure) Pr in the sameunits. The dotted urve is P?, the required stress in thetransverse (�; �) diretions.D. A Computational �therAlthough the above example of a nonsingular blakhole stu�ed with magi matter did not require the matterto move faster than light, its presentation as a stationarymetri did require | most importantly in the vauumregions just inside the horizon | that the verties xi =onst of the spatial grid move faster than light. Thus the4-veloity of the spatial grid, the omputational �ther,annot be assumed to be a unit vetor. We therefor pro-pose to desribe the motion of this omputational �therby a vetor v� whose diretion in spaetime is tangent tothe world lines of this �ther, so vi = 0, but whose mag-nitude will be normalized by the hosen time oordinateso that we set v0 = 1. Then v�v� = g00 � �� has an

unspei�ed sign even when we restrit the hoie of timeoordinate x0 � t to ones that make onstant t hyper-surfaes spaelike so that t;�t;� = g00 is always negative.[In the preeding example one had � = �g00 = 1 � 2Ubut t;�t;� = g00 = �1.℄ Assoiated with this measure ofthe grid veloity v� are two tensors whih we hope willbe useful in de�ning a dynamis for the grid that willhelp omputer programs lay out onvenient oordinateson the spaetimes they are being asked to generate. Onesuh tensor tries to measure the strains in the �ther. Itis p�� = v�v� � (v�v�)g�� : (4.8)The other measures the strain rate��� = � 12Lvp�� : (4.9)These two tensors live essentially on the spaelike hyper-surfaes t = onst sine one �nds thatv�p�� = 0 = v���� (4.10)The �rst of these equations is just simple algebra; theseond follows by taking the Lie derivative Lv of the �rstand using Lvv� = 0. In the assoiated oordinates wherev� = Æ�0 these read p0� = 0 = �0�.An important feature of ��� is that when v� is aKilling vetor, as in the stu�ed blak hole example, then��� = 0. A Killing vetor satis�es Lvg�� = 0 and,with Lvv� = 0 plus derivative produt rules, the formulap�� = (g��g���g��g��)v�v� immediately gives ��� = 0.Consequently, with a visous stress proportional to thisstrain rate, one ould hope to write a dynamis for thegrid motion v� that would damp toward ��� = 0 whenthe geometry of the spaetime permitted a stationary so-lution. A possible dynamis for study ould be(v�;� + v�;�)v� + 2���� ;� = 0 (4.11)where � > 0 is a oeÆient of visosity. Another prospe-tive dynamis would be�(v�;� + v�;�);� + 2���� ;� = 0 : (4.12)Eah of these equations is satis�ed when v� is a Killingvetor. The �rst is probably a paraboli equation, theseond probably hyperboli. They ould be ombined togive a damped wave equation. Their relations to the shiftonditions introdued by Alubierre (refs) have not yetbeen established.Although the grid veloity v� and its assoiated strainand strain rate may be the appropriate �elds for formu-lating a dynamis for the omputational �ther, it willstill be important to be able to desribe independentlythe hoies being made for the time sliing x0 = t andfor the spae oordinates or omputational grid. Thusit is important to reognize that the gjk omponents ofthe 4-metri are independent of the time sliing ondi-tion. Consider the inner produt �;�	;� = �;�	;�g�� in5



the ase � = xj and 	 = xk. The result is �;�	;� = gjkwhih is learly independent of one's hoie of sliing fun-ion t = x0. Still another way to interpret the gjk is toonsider the distane from one grid point to a neigh-bor. To be dynamially important in the reation ofthe �ther to distortions in the grid, this distane shouldbe measured in the rest frame of the grid, i.e., alonga small vetor s� orthogonal to the grid 4-veloity v�.But sine vi = 0, the orthogonality ondition v�s� = 0gives s0 = 0. Consequently, the invariant norm of thisvetor is just s2 = s�s�g�� = sjskgjk whih redues tosums only over the spatial indies. Inner produts amongsuh vetors to worldlines of nearest neighbor grid ver-ties similarly involve only gjk, again establishing thesemetri omponents as the desriptors of grid ell shapes.When grid verties move at greater than the veloity oflight, this 3 � 3 matrix gjk ould have a non-Eulideansignature or be degenerate with vanishing determinant.The simplest property of the time oordinate is thenorm of its gradient t;�t;� = g00 � �1=N2 whih isusually reported via the lapse funtion N . As long asthis gradient is timelike (N real), the indued metri3gjk = 4gjk will have a Eulidean signature and the t =onst surfaes will be spaelike.E. The Miner's CanaryNotie of the formation and loation of blak holesin urrent numerial omputations is obtained primar-ily through the use of apparent horizon �nders. It ispossible that less aurate but more eonomial identi�-ation of the grid setors inside blak holes might be ob-tained from the behavior of test �elds propagating on theevolving bakground. One possible diretion for studywould be the onstrution of salar �eld theories wherethe salar �eld for a suitable self-interation potentialmight want to fall into any blak hole and reveal theblak hole's presene by some harateristi values or be-haviours. A simple useful salar �eld in the Kerr met-ri is any funtion 	(r) where r is the usual Kerr andBoyer-Lindquist oordinate as in [MTW73, Box 33.2℄.Sine grr vanishes at the horizon in these metris, onehas 	;�	;� = 0 at the horizon, and this might serve asan horizon alarm even in metris that were only approxi-mately Kerr blak holes. But for this thought to be fruit-ful, one would need a way to haraterize suh �elds 	.A simple wave equation 	;�;� = 0 has, in the Kerr metri,solutions 	(r) whih are unfortunately singular at thehorizon: 	 = 	0+ln[(r�r+)=(r�r�)℄ where r� are thehorizon loations. A funtion 	 = (r�r+)=(r�r�) whihis well behaved from spatial in�nity down through theouter horizon satis�es an equation whih, while meaning-ful in other metris, appears diÆult to handle numeri-ally, namely (	2);�;� � 4	;�	;� = 0. Were it possible to�nd a wave equation for 	 whih (with suitable bound-ary onditions) stably evolves to a funtion of r alone in

the Kerr geometry, and whih was meaningful in othergeometries, then the ondition 	;�	;� = 0 might warnthat one was in the neighborhood of an apparent horizon.Another possibility is that the 4-veloity v� of the om-putational �ther itself, for a suitable dynamis, oulddetet the presene of blak holes. As a �rst attemptin this diretion I suggest the study of �ther dynamisbased on equations similar to (4.11) and (4.12). If thevisosity drives ��� toward zero it should also be driv-ing v� toward an approximate Killing vetor. But someKilling vetors in the Shwarzshild and Kerr metris be-ome null vetors with �� � v�v� = 0 at the horizon.It would suÆe for many purposes if regions with, say� < �1 (or some other onstant) were normally withinblak hole horizons. At the least suh a signal ouldprovide a starting point for apparent horizon searhes toverify the presene of a blak hole.
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