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Revealing the gene regulation network has been one of the main objectives of 

biological research. Studying such a complex, multi-scale and multi-parametric 

problem requires educated fingerprinting of cellular physiology at different 

molecular levels under systematically designed perturbations. Conventional 

biology lacked the means for holistic analysis of biological systems. In the post-

genomic era, advances in robotics and biology lead to the development of high-

throughput molecular fingerprinting technologies. Transcriptional profiling 

analysis using DNA microarrays has been the most widely used among them.  

      My Ph.D. thesis concerns the dynamic, transcriptional profiling analysis of a 

systematically perturbed plant system. Specifically, Arabidopsis thaliana liquid 

cultures were subjected to three different stresses, i.e. elevated CO2 stress, salt 

(NaCl) stress and sugar (trehalose) applied individually, while the latter two 

stresses were also applied in combination with the CO2 stress. The transcriptional 

profiling of these conditions involved carrying out 320 microarray hybridizations, 

generating thus a vast amount of transcriptomic data for Arabidopsis thaliana 

liquid culture system. To upgrade the dynamic information content in the data, I 

developed a statistical analysis strategy that enables at each time point of a time-



series the identification of genes whose expression changes in statistically 

significant amount due to the applied stress. Additional algorithms allow for 

further exploration of the dynamic significance analysis results to extract 

biologically relevant conclusions. All algorithms have been incorporated in a 

software suite called MiTimeS, written in C++. MiTimeS can be applied 

accordingly to analyze time-series data from any other high-throughput molecular 

fingerprint.  

      The experimental design combined with existing multivariate statistical 

analysis techniques and MiTimeS revealed a wealth of biologically relevant 

dynamic information that had been unobserved before. Due to the high-

throughput nature of the analysis, the study enabled the simultaneous 

identification and correlation of parallel-occurring phenomena induced by the 

applied stress. Stress responses comparisons indicated that transcriptional 

response of the biological system to combined stresses is usually not the 

cumulative effect of individual responses. In addition to the significance of the 

study for the analysis of the particular plant system, the experimental and 

analytical strategies used provide a systems biology methodological framework 

for any biological system, in general.  
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11 INTRODUCTION 
 

 

1.1 Background and Motivation 
 

Better understanding of the biological systems requires them to be studied 

in their entirety. Rather than investigating small and isolated sections, systems 

engineering approaches should be applied to biological systems to reveal the 

functionality and interaction between different parts of the system [Klapa and 

Quackenbush, 2003]. For the implementation of systems engineering approaches 

in complex biological systems, high resolution maps of cellular fingerprints are 

required. Indeed, in the post genomic era, analysis of biological systems has 

moved from measuring a small set of biological markers, to the measurement of 

entire cellular fingerprints. This was made possible due to the development of 

high-throughput technologies, like DNA microarrays [Schena et al., 1995; Brown 

et al., 1999; Fodor 1997], mass spectral analysis of proteins [Gevaert et al., 2003; 

Lopez et al., 2003; Manabe et al., 2003; Wang et al., 2003] and metabolites 

[Roessner et al., 2000; Fiehn, 2000; Taylor, 2002].  

 Gene expression analysis using DNA microarrays being the most widely 

used “omics”, it is becoming increasingly clear that comprehensive picture of a 

biological system requires the integrated high-throughput analysis of multiple 

levels of cellular function [Ideker et al., 2001, Hwang et al 2005 a and b, Hirai et 

al. 2004, Dutta et al. 2007a]. In a systematically perturbed system, integrated 
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analyses can provide insight about the function of unknown genes, the 

relationship between gene and metabolic regulation, and even the reconstruction 

of gene regulatory networks [Klapa et al., 2003]. 

Selection of model system is one of the most important parameters of the 

systems biology experimental design. Arabidopsis thaliana liquid cultures were 

selected as the model system in the proposed research. Beyond the traditional role of 

plant in providing food, neutraceuticals and natural polymers, for commercial, 

environmental and (bio)ethical reasons, plants are now taking central stage in bio-

fuel [Ragauskas et al., 2006], engineered bio-polymer [Slater et al., 1999] and 

chemical [Oksman-Caldentey and Inze, 2004] industry. Research efforts to 

engineer plants to produce desired products are increasing considerably. Plants 

are complex eukaryotic systems, so it is also expected that the developed/ applied 

experimental and computational techniques and the conclusions about 

transcriptional regulation might be easily extended to other higher organisms. A. 

thaliana, which is a model system for plant research, was chosen as it has a small 

genome constituting of 5 chromosomes which is fully sequenced and best 

annotated. It has a small growth cycle of 3-6 weeks making it an ideal for 

conducting experiments. Though most of the plant physiology research was 

carried out in soil grown plants, liquid culture was chosen for this experiment as it 

provides a more controllable growth environment. Liquid culture also allows the 

perturbations applied to the growth media to get homogeneously and immediately 

distributed.  
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 In order to study the regulation mechanisms those are active in any 

biological system, it needs to be systematically perturbed from different 

perspectives and its responses should be analyzed and compared. In case of the 

transcriptional response of a systematically perturbed biological system, this can 

provide information about function of unknown genes and structure of gene 

regulation network. Comparing the change in transcriptional profile over a large 

set of perturbations, it might be possible to differentiate between stress specific 

and common stress activated genes. Specifically in A. thaliana from multiple 

stress studies [Kreps et al., 2002; Cheong et al., 2002] it was observed that 

common stress induced gene expression is predominant as acute effect, whereas 

the stress specific changes in gene expression is more delayed effect. Studying the 

response of combination of stresses is even more interesting because comparing 

the combined stress response with respect to its constitutive ones can reveal part 

of the regulatory network that remains conserved for a particular stress. Multiple 

stress response studies can help to identify a core gene regulatory network 

involved in general stress response of the system under investigation.  

 To compare the transcriptomic data sets obtained from two different 

physiological conditions statistical methods like Fold Change (FC), t-test [Wang 

et al., 2004], SAM [Tusher  et al., 2001; Saidi et al., 2004; Tian et al., 2004], one-

way and multi-way ANOVA  [Orlando et al., 2004; Zhao et al., 2002] are 

commonly used. FC is a crude measure to identify the differentially expressed 

genes. SAM is a modified t-test [Tusher et al., 2001] which also provides false 

detection rate (FDR) which is a measure of how reliable the test is. Yang et al. 
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[2004] provides a comprehensive comparison of different statistical methods used 

for testing differentially expressed genes. A statistic, derived from different 

statistics, was shown to give a better measure of the difference in gene 

expressions. 

 For systems biology experiments time-series is preferable compared to 

snapshot experimets because a snapshot experiment can not reveal the causality 

among the variables and usually insufficient to capture the full picture of the 

change initiated from this perturbation. This is true, because gene expression 

inherently is a temporal process. Different proteins that are required for 

performing different functions are produced from gene expression [Lewin et al., 

2000]. Even under normal condition, due to degradation of proteins, mRNA is 

continuously transcribed and new proteins are generated. One of the major ways 

this process is regulated is by using a feedback loop. Genes are transcribed to lead 

to the production of proteins, some of which, like transcription factors (TF) can in 

turn regulate the transcription of other genes [Alberts et al., 2003]. So the 

causality in gene expression can lead to a time lag or dependencies in temporal 

expression profiles [Bar-Joseph et al., 2004]. When cells are exposed to a new 

condition (treatment or stress) they respond to the situation; thus by changing 

their gene expression. In most of the cases, the gene expression process starts by 

activating few transcription factors, which in turn activate the other genes that 

will respond to the new condition. If a snapshot of the new condition is compared 

with old condition, a set of genes in transient state at this time point of change can 

be found. Therefore, in order to determine the complete set of genes that are 
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undergoing change and to explain the interaction between the genes that were 

involved in the process, it is necessary to study the change in expression profile 

over time. This allows us to determine not only the gene expression at the new 

state but also the pathways and networks that were involved to arrive at this new 

state [Bar-Joseph et al., 2004]. Few experiments have been conducted that capture 

the temporal profile of the response of biological systems to perturbations, 

especially in the case of higher eukaryotic organisms. 

 An important problem in the design of the time-series experiments is the 

selection of the proper sampling time. If the experiment is under-sampled (large 

time difference between the samples) then events might be missed on a shorter 

time scale. On the other hand over-sampled experiments are more expensive and 

difficult to carry out for higher eukaryotes as plants or mammalians. Therefore, 

shorter sampling periods usually leads to shorter duration of the experiment, 

missing important events that are occurring at a later stage. Most of the 

experiments conducted for the study of the expression change over time refer to a 

sampling time of 7 to 15 min [Spellman et al., 1998; Chu et al., 1998; Zhu et al., 

2000]. Experiments were conducted to detect the genes that are periodically 

expressed [Spellman et al., 1998]. Identifying such genes is challenging, because 

different genes may have different phase, amplitude and periodicity [Joseph et al., 

2004] of expression.  Another notable effort was made by Holter et al. [2001] to 

build a linear time-delayed model of gene expression for different data sets 

[Spellman et al., 1998; Chu et al., 1998]. A more sophisticated AutoRegressive 

with eXogenous (ARX) model was proposed by Schmitt et al. [2003] for 
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modeling time series gene expression data obtained by subjecting cultures of the 

photosynthetic bacterium Synechocystis to consecutive light-and-dark transitions. 

Akike’s information criterion (AIC) was used for model selecting optimal model 

which gives best prediction without over fitting the data. 

 The methods that have been employed to analyze the difference between 

two transcriptional snapshots can not be used as such to provide conclusions 

about the change between two time profiles. Therefore suitable application of 

time series analysis algorithms to identify differentially expressed genes is 

required.  

In this context of current biological research, my Ph.D thesis addressed 

challenges in the experimental and analytical techniques for high-throughput 

time-series transcriptional profiling analysis of a systematically perturbed A. 

thaliana liquid culture system.  

1.2 Main Objective and Specific Aims 
 

The main objective of my PhD work was the high-throughput, quantitative, time-

series transcriptional profiling analysis of a systematically perturbed Arabidopsis 

thaliana liquid culture system. For this objective to be achieved, the following 

specific aims were pursued: 

Specific Aim 1:  

To develop a methodology for significance analysis of time-series transcriptomic 

data. 
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Specific Aim 2:  

To determine systematic perturbations, to design and carry out the relevant 

experiments. 

Specific Aim 3:  

To apply multivariate statistical analysis of transcriptomic data and interprete the 

results in the context of the known plant (A. thaliana) physiology. 

1.3 Description of the thesis 
 

The thesis is organized into 7 chapters. 

Chapter 1: The background and motivation behind the present work is presented 

and an overview of the main and specific objectives of the research is provided. A 

short description of each chapter of the thesis is also provided. 

Chapter 2: It provides a brief introduction to DNA microarray technology and a 

detailed description of different normalization and clustering techniques used for 

microarray data processing and analysis. The techniques described were used to 

analyze the data of the present study. 

Chapter 3: It describes the algorithms developed for significance analysis of time-

series transcriptomic data. Methods were also proposed for better exploration of 

information contain in any high-throughput time-series molecular fingerprint data.  

Chapter 4: Experimental design was explained. In materials and methods section 

common experimental and computational steps followed for DNA microarray 

analysis is discussed in detail. 

Chapter 5: It contains the results from individual and combined stress response 

studies. Different multivariate statistical analysis was used to compare the stress 
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response. Results were discussed in the context of Arabidopsis thaliana 

physiology. Multiple stress responses were compared to identify if (a) some of the 

stress responses are conserved, (b) there exist a common pool of stress response 

genes (c) the stress responses are additive. 

Chapter 6: The focus of this chapter is to analyze the multiple stress responses 

simultaneously.. Genes were clustered based on all the experiment to reveal 

insight about their regulation. Clustering results were compared in the context of 

metabolic pathways, chromosomal locations and sequence alignment.  

Chapter 7: Based on the conclusion and experience derived from the current 

experiment this chapter provides suggestion for better experimental design and 

methodologies that can integrate gene expression, metabolic and chromosomal 

location data.  
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2 TRANSCRIPTIONAL PROFILING 
 

 

2.1   DNA microarray technology 
Two different technologies are used for microarray slide preparation 

[Vivian et al., 1999]. Commercially it is manufactured by Affymetix 

[http://www.affymetrix.com ]. It is produced by adding nucleotides sequentially 

using photolithographic technique to obtain desired sequence of oligo-nucleotides 

attached to the plate. The other technology cDNAs are printed onto chemically 

modified glass slides with the help of an arraying robot [Brown et al., 1999] and 

called spotted arrays. For this experiment spotted arrays printed in TIGR were 

used. In the rest of the document microarray refers to spotted arrays.  

The first step in the preparation of microarray slides is proper probe (the 

sequence that are arranged on the microarray) selection. Then the probes are 

spotted. The arrayed genes are probes that can be used to query pooled, 

differentially labeled targets derived from RNA samples from different cellular 

phenotypes to determine the relative expression levels of each gene. 

Two mRNA samples, one for control and another for query, from the 

tissues of interest are labeled with two different fluorescent dyes Cy3 and Cy5. 

Then they are purified and hybridized on the arrays. After hybridization, slides are 

scanned and independent images for control and query channels are generated. 

The relative fluorescence intensities give us a measure of relative amount of 

mRNA in control and query. After image processing data are normalized. 

http://www.affymetrix.com/
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Normalization adjusts for differences in labeling and detection efficiencies for 

fluorescent labels and for difference in the quantity of initial mRNA from the two 

samples [Quackenbush, 2001]. 

The normalized value of the expression level for a particular gene in the 

query sample divided by its normalized value for the control is called “expression 

ratio” [Quackenbush, 2001]. The logarithm of the expression ratio is used because 

it is easy to understand. Genes that are up-regulated by a factor of two have a 

expression ratio of 2, hence log2(expression ratio) will have a value of 1. 

Similarly the genes that are down-regulated by the same factor will have a 

expression ratio 0.5 and log2(expression ratio) as -1. If the logarithm of expression 

level ranges between 1 to -1 then the expression level varies within 2 fold. So 

taking the logarithm of the expression makes the expression profile symmetric for 

a certain factor of up and down regulation.  

There are a number of data analysis steps followed in sequence after the 

microarray slides are hybridized and scanned. TIGR TM4 software was used for 

microarray data analysis and the steps will be discussed in this context. 

2.2 Image Processing 
 

 TIGR TM4 software spotfinder was used for image processing. The TIFF 

image files generated from the scanning of hybridized files is used for image 

processing. Image processing software takes the scanned image of both the dyes 

corresponding to each slide. Spotfinder generates TAV file which contains the 
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information like position of the spot on the slide, intensity of the two dyes for 

each spot and whether the spot should be rejected or not.  

2.3 Data Normalization 
 

In many field comparisons are needed to extract conclusions, for an effective 

comparison appropriate normalization of the data is needed. In the context of 

DNA microarray analsis there is need for comparison among  

i. Two different dyes 

ii. Gene spots on the same slide 

iii. Gene spots on different slides 

In this process the source of systematic error that introduces difference between 

comparable data should be taken into consideration, so that data are compared 

only with respect to experimental perturbation. In the case of cDNA microarray 

analysis, such sources of systematic error arise in the experimental process of 

cDNA microarray development and hybridization. Following are sources of 

systematic error: 

• Unequal quantities of starting RNA: in cDNA microarray RNA 

concentration of sample set is measured with respect to a reference. Equal 

amount of sample and reference RNA is taken so that they can be 

compared get relative expression of the sample with respect to reference.  

• Difference in labeling efficiencies: fluorescent dye is attached to a mRNA 

sample through a biochemical reaction. Some dye can have preferential 

binding to one of the mRNA samples. Hence that mRNA sample will 
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always be shown at higher abundance compared to the other mRNA 

sample.  

• Difference in scanning efficiencies: sample and reference are attached 

with two different dyes and after hybridization the slide is scanned for two 

different dye intensities in two different channels. Difference in sensitivity 

of the scanner for the two dyes can cause one of the dyes to be detected 

more effectively.  

• Variation of the intensity across the slide: cDNA microarray is printed by 

a pen assembly and different parts (metablocks) of a microarray are 

printed by different pens. If there is variation among pens, this will 

translate into variation in the spots printed by different pens.  

 

To account for the systematic errors various normalization methods have been 

proposed. In the rest of the text only those used in the present analysis in the 

context of MIDAS (TIGR TM4 software for normalization) are explained in 

greater detail.  

2.3.1 Total intensity normalization 
 
Total intensity normalization can eliminate the biases caused by difference in 

labeling and scanning efficiencies of the two dyes. It can also compensate for the 

unequal quantities of starting mRNA of the two sets. The total intensity 

normalization is based on the following hypothesis [Quackenbush 2002]. If the 

two samples to be compared have equal weight of mRNA, if the average mass of 

each molecule is approximately the same then each sample will have equal 



 13

number of mRNA. It is also assumed that arrayed genes on the microarray slide 

equally interrogate the two mRNA samples. Hence the total number of mRNA 

molecules attached to the microarray slide is same for the two samples. Intensity 

of a spot is proportional to the amount of mRNA bound to the spot. As the total 

amounts of mRNA with two different dies are equal, the total fluorescent intensity 

for each die will also be equal. This can be checked by calculating the ratio of 

sum of intensities of two dyes, called normalization factor and is given by  
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where Ri and Gi corresponds to the intensity of the red and green dye (two dyes 

used for two samples) for ith gene and Narray is total number of genes in the slide. 

In absence of any systematic error Ntotal value should be 1. When the value is not 

1, then one of the samples (depending on which one is taken as reference) is 

scaled up or down depending on the value of Ntotal, so that, after the scaling the 

sum of the intensities of both the dyes are same.  This process is equivalent to 

subtracting a constant from the logarithm of expression ratio.  

log2(ti) = log2(Ti) – log2(Ntotal)         

(2.2) 

where, ti is normalized expression ratio and is given by 
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Ti is expression ratio before normalization and is given by 
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Narray can be the number of genes on a section of the slide, a whole slide or 

number of slides. In the same way as above, in stead of comparing mean 

intensities, median intensities of the two samples can also be equated.  

 

   

 
Figure 2.1: RI plot before after total intensity normalization. (R-I plot obtained from the 
data of one of the time points of the experiment, displaying the ratio of the intensities 
(log2(Ri/Gi) ) as a function of the product of the intensities ( log10(Ri*Gi) ) before and 
after total intensity normalization.)  Figures adopted from a microarray data used for my 
Masters thesis in 2004.  
 
2.3.2 Lowess 
 

It is observed very often that log2(Ri/Gi) values can have a systematic dependence 

on intensity [Yang Y. et al., 2002 and Yang I. et al., 2002], which most commonly 

appears as a deviation from zero for low or high intensity spots. This leads to a 

long tail in R-I plot (plot of ratio of the intensities (log2(Ri/Gi) ) as a function of 

the product of the intensities, log10(Ri*Gi)). Locally weighted regression (Lowess) 
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[Cleveland et al 1979] can take care of this systematic error in microarray data. It 

carries out a locally weighted regression between log10(Ri*Gi)and log2(Ri/Gi) and 

gets the best fit curve which predicts log2(Ri/Gi) as a function of log10(Ri*Gi). 

Best fit curve, which captures the systematic error in the data, is subtracted from 

each data (log2(Ri/Gi)) point to remove the systematic error in the data. The 

weights assigned in this locally weighted regression are function of the distance of 

the data points from the fitted curve. If a point is far from the curve then it has 

very low weight, as the point has more chance of being an outlier. Lowess carries 

out the regression for each block of the microarray slide separately. Lowess can 

also be applied globally by considering whole data set (all the spots of the 

microarray slide).   

 
Figure 2.2: RI plot before and after lowess normalization. Notation and data used were 
same as that of figure 2.1.  
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The data after total intensity normalization in Fig 2.2 shows a systematic bias in 

RI plot. The plot is showing a small tail at low intensity values due to systematic 

error. This error is eliminated in the data after lowess normalization (Fig 2.2).   

 
2.3.3 Standard Deviation Regularization 
 

In the above normalization methods mean intensity of the two sets are equated. 

How the points are scattered around the mean is also an important criterion to 

study. In a spotted array different meta-blocks are printed by different pens, so the 

spots may vary slightly from meta-block to meta-block due to difference in pen. 

Standard deviation regularization scales the data so that there is same variation for 

all the meta-blocks. [Yang Y. et al., 2002], 

It is assumed that the mean of log2(ratio) is already zero for each meta block, by 

applying the normalization methods discussed above. So the variance of the nth 

meta-block will be given by 
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where Nmetablock is the number of meta-blocks in a slide. All the elements of the jth 

meta-block is scaled by dividing them with the scaling factor. Hence  
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Where, Ti is the ratio of red to green dye intensity for the ith gene in the jth meta-

block. This is same as taking the aj th root of all the intensities of the jth meta 

block. So the transformed intensities after the normalization become:  
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Figure 2.3: RI plot before and after standard deviation normalization.  Notation and data 
used were same as that of figure 2.1.  
 
2.3.4 Flip dye analysis 
 
By performing a flip dye analysis biases that may occur during labeling and 

scanning, for example, some die may preferentially bind to mRNAs, can be 

eliminated [Quackenbush, 2002]. If one of the dyes has higher average intensity 
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over the other, then the sample tagged with that dye will show higher expression, 

which is misleading. So the same experiment is carried out by swapping the dyes 

among the samples. If there are two samples A and B, then they can be tagged by 

two possible combinations, red and green or green and red dye respectively. In the 

first case when A and B are attached with red and green dye respectively, the ratio 

will be given by 
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After the dyes are reversed the ratio will become 
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As the same experiment is being performed and only the dyes are reversed, 
i

i

B
A

1

1  

and 
i

i

B
A

2

2  are expected to be same. Hence 

1)*( 21
2

2

1

1 == ii
i

i

i

i TT
A
B

B
A

       (2.12) 

0)*(loglog 212
2

2

1

1
2 ==⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
ii

i

i

i

i TT
A
B

B
A

      (2.13) 

If the measurements are consistent then the value of log2(Ti1*Ti2) is expected to be 

zero, if it is not zero then close to zero. But if the value is far from zero, then the 

measurements are inconsistent. Either one of the measurements or both could be 

erroneous. The user can decide how stringent the rejection criteria of the 

erroneous data would be. Stringent criteria means only a small range of values 

around zero is acceptable.  
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Figure 2.4: RI plot before and after flip dye normalization. Before normalization the RI 
plots has long tails and look like mirror image with respect to the line y =0 line. After 
normalization the dye based bias is gone. Notations and data used were same as that of 
figure 2.1.  
 

2.4 Clustering Methods/ Statistical Analysis of DNA 
Microarray Data 
 
Several clustering algorithms are used for the identification of the patterns in the 

gene-expression data. Clustering techniques can be classified as decisive or 

agglomerative [Quackenbush 2001]. A decisive method begins with all elements 

in one cluster that is gradually broken down into smaller and smaller clusters. 
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Agglomerative techniques start with single member clusters and gradually fuse 

them together. There are two types of clustering algorithms supervised or 

unsupervised [Quackenbush 2001]. Supervised methods use existing biological 

information about specific genes that are functionally related to ‘guide’ the 

clustering algorithm. Most of the algorithms described in this chapter are 

unsupervised. 

 

2.4.1 Distance Metrics  
 

Suppose N number of experiments are conducted to study the expression profiles 

of M genes. Then the expression of a particular gene in N experiments can be 

represented by a single point in N dimensional space. This is called expression 

space, as it has the same number of dimension as the number of experiments. 

Clustering algorithms group the genes together based on their “distance” from 

each other in the expression space. Distance gives a measure of similarity 

between the genes. There are various methods for calculating distances.  

1. Euclidean distance is the most commonly used distance. It is a metric 

distance. Following are the characteristic of metric distances [Quackenbush 

2001]. If dij is the distance between two vectors i and j, 
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where, ikx and jkx  are expression level of ith and jth genes respectively and n 

is the number of experiments 

• Distance must be positive and definite, dij >o 

• Distance must be symmetric,  dij = dji 
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• An object is zero distance from itself, dii = 0 

• It follows triangular inequality 

2. Manhattan distance is given by:  
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 where n is the dimension of the expression space [Heyer et al., 1999].  

3.     Pearson correlation is given by [Eisen et al., 1998] 
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Gi, offset is the mean and Фi is the standard deviation of observation of the ith 

gene.  

4.     Cosine correlation is given by the following expression [Eisen et al., 1998] 
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Distance between two clusters can be calculated in different ways: 

Average linkage clustering: This is most frequently used. The distance between 

two clusters i and j is calculated by calculating the average of the distance 

between each gene of ith cluster with all other genes in the jth cluster. Two clusters 

with lowest average distance is joined together to form a new cluster. 

Complete linkage clustering: Complete linkage clustering is known as the 

maximum or furthest-neighborhood method. The distance between two clusters is 
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calculated as the greatest distance between the members of relevant clusters. This 

method often produces clusters that are often similar in size.  

Single linkage clustering: The distance between two clusters is calculated as the 

smallest distance between the members of the relevant clusters. In this method 

there is a sequential addition of single samples in to an existing cluster. This 

produces trees with many long, single addition branches representing clusters that 

have grown by accretion. 

 If the expression level of a gene at each time point is viewed as a 

coordinate, then the standardized expression level of each gene at all n time points 

describes a point in n dimensional space, and the Euclidean distance between any 

two points in this space can be computed. It can be shown that the two points for 

which the distance is minimized are precisely the points that have the highest 

correlation. In other words, genes pairs with highly correlated expression pairs are 

close in expression space. It should be noted that simply using Euclidean distance 

without standardizing the data is ineffective, because gene pairs whose expression 

patterns have the same shape but different magnitudes will not score well.  

 To gauge the measure of a performance, one might consider taking gene 

pairs those are known to be co-regulated or functionally related, and computing 

the score (distance or correlation) of each pair. These scores could then be 

compared with the scores of unrelated gene pairs. The measure that gives high 

scores only to related genes would be chosen. Unfortunately neither Euclidean 

distance nor Pearson Correlation consistently gives high scores only to related 

gene pairs. In fact, not all related genes are coexpressed, and some unrelated 
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genes have similar expression patterns. Because there is a connection between 

coexpression and functional relation, coexpressed genes provide excellent 

candidates for further study. However, the connection is complex, and it cannot be 

derived so easily [Heyer et al.,1999]. 

 Two genes may be close according to one distance definition but may be 

far apart according to other. So the way we define distance between two 

expression vectors has a profound effect on the cluster they produce. 

 To study gene expression patterns statistical and clustering techniques 

have been proposed. In the rest of the text only the techniques that were used for 

the resent analysis will be discussed in detail.  

2.4.2 Hierarchical Clustering  
 

Hierarchical clustering is one of the first and widely used clustering 

techniques for expression data. The reason being, it is simple and the results can 

be visualized easily. Hierarchical clustering is an agglomerative approach in 

which expression profiles are joined in groups, which are further joined and this 

continues till completion, so that finally it forms a single tree. The algorithm of 

Hierarchical clustering is as follows. Initially each cluster contains a single gene. 

Then the pair-wise distance is calculated for all of the genes to be clustered. If 

they are formulated in a matrix form it forms a square matrix which is symmetric. 

This matrix is called distance matrix or similarity matrix. This matrix is scanned 

to figure out smallest value (if Euclidean distance is used, because it selects the 

genes that are closest in the expression space) or highest value (if Pearson 

correlation distance is used, because it finds the genes that have most similar 

expression profile). These two genes are most similar or closest, hence they are 
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clustered together. If several pairs have the same separation distance, a 

predetermined rule is used to decide between alternatives [Quackenbush, 2001].  

A node is created joining these two genes, and gene expression profile is 

computed for the node by averaging observations for the joined elements [Eisen et 

al., 1998]. The similarity matrix is updated with this new node replacing the two 

joined element and the process for any set of n genes the process repeated n-1 

times until only a single cluster remains.  

There are several variations in Hierarchical clustering that differs in the rule 

governing how distances should be calculated among the clusters as they are 

constructed. There are three ways of calculating distances between two clusters, 

they are average linkage, complete linkage and single linkage. They are explained 

in detail in section 2.5.1.  

There are several limitations of hierarchical clustering. Decisions to join 

two elements are based only on the distance between the two elements, and once 

the elements are joined they can not be separated [Tamayo et al., 1999]. This is a 

local decision making scheme that doesn’t consider the data as a whole, and it 

may lead to mistakes in the overall clustering. 
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Figure 2.5: Limitation of hierarchical clustering. Hierarchical cluster start growing from 
the genes closest to each other, but they may belong to different cluster if overall picture 
is considered. 
 

The Fig 2.5 shows there are two distinct clusters and the red points belong 

to different clusters but close to each other in expression space. Hierarchical 

clustering will join the points which are closest to each other in expression space. 

So the red points will be clustered together. But these points belong to two 

different clusters. So two points might have minimum distance but that doesn’t 

necessarily mean that they have to belong to the same cluster. Hierarchical 

clustering has a shortcoming of suffering from lack of robustness and non-

uniqueness problems [Tamayo et al., 1999]. An alternative approach to avoid 

some of the shortcomings are to use decisive clustering approach, such as k-

means or self organizing maps, to partition data into groups which has similar 

expression pattern.  

2.4.3 k- means clustering  
 

This is a statistical algorithm [Velculescu et al., 1995] by which objects are 

partitioned into a fixed number (k) of clusters, such that the clusters are internally 

similar but externally dissimilar. If the advance knowledge of the number of 

clusters is known then k-means can separate the objects effectively. K-means 

clustering uses a supervised clustering algorithm that is conceptually simple but 

computationally intensive [Quackenbush 2001]. First all initial objects are 

randomly assigned to one of the k clusters. Then an average expression vector is 

calculated for each cluster which is eventually used to compute the distance 

between the clusters. Using an iterative method, objects are moved between 
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clusters and intra and inter cluster distances are measured with each move. 

Objects are allowed to remain in the new cluster only if they are closer to it than 

to their previous cluster. After each move, the expression vectors for each cluster 

are recalculated. The shuffling proceeds until moving any more objects will 

increase the intra-cluster distances and decrease inter-cluster dissimilarity.  

Tavazoie (1999) used data gathered by Cho (1998) and applied k-means 

clustering algorithm and found the members of each cluster to be significantly 

enriched for genes with similar functions. They used k means algorithm to cluster 

3000 genes into different regulation classes. Algorithm was repeated for 200-400 

iterations and partitioned the data into 10, 30 and 60 clusters. It was observed that 

by 200 iterations the algorithm was converged. They finally chose 30-cluster 

partitioning because it provided the best compromise between number of clusters 

and separation between them. 

2.4.4 Principal Component Analysis (PCA)  
 

Principal Components Analysis (PCA) is a statistical technique that allows the 

key variables (or combination of variables) in a multidimensional data set to be 

identified. PCA determines those key variables in the data set that best explains 

the difference in the observations [Raychaudhuri et al., 2000].  

PCA is very effective when some of the data might contain redundant 

information. For example if a group of experiments are more closely related than 

we had expected, we could ignore some of the redundant experiments or can take 

some average vale of the data without losing any information[Qucakenbush 

2001]. PCA projects a high dimensional data into a lower dimensional space so 
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that we can find the view, that gives the best separation of the data. Given a 

matrix of expression data, A, where each row corresponds to a different gene and 

each column corresponds to one of several different experimental conditions. The 

ait entry of the matrix corresponds to ith gene’s relative expression ratio with 

respect to a control population under condition t. Using PCA each of the n 

components can be calculated for a given gene. To compute the principal 

components, the n (smallest of the number of experiments or number of genes) 

eigenvalues and their corresponding eigenvectors are calculated from the n x n 

covariance matrix of experimental conditions or time points. Each eigenvector 

defines a principal component. 

 
Figure 2.6: PCA of data (generated using TIGR TM4 software).  
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A component can be viewed as a weighted sum of the conditions (or time 

points) where the coefficients of the eigenvectors are the weights. Consequently, 

the eigenvectors with large eigenvalues are the once that contain most of the 

information; eigenvectors with small eigenvalues are uninformative 

[Raychaudhuri et al., 2000]. Data can be converted in terms of principal 

components from the following relation 

  ∑
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where tjv is the tth coefficient of the jth principal component. ita  is the expression 

measurement for gene i under tth condition. A’ is the data in terms of principal 

components and V is the set of ortho-normal eigenvectors.   

2.4.5 Statistical analysis using Significance Analysis of Microarrays 
(SAM) 
 

SAM is a statistical method to identify the genes that are undergoing 

considerable change in expression between two sets of microarray data [Tusher et 

al., 2001]. SAM is a hypothesis testing based on student t test. Suppose n1 

observations of xi and n2 observations of yi are given. It is assumed that xi and yi 

are normally distributed. Then a hypothesis is created that the population means 

are equal. Then it can be found out if the observations are consistent with the 

hypothesis [Meyer, 1975]. For unpaired SAM, a statistic is defined [Tusher et al., 

2001] based on the ratio of change in gene expression to standard deviation in 

data for that gene.   
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where )(ix  and )(iy  are defined as the average levels of expression for gene i 

in two different sets. s(i) is the standard deviation of repeated expression 

measurements.  

      
⎭
⎬
⎫

⎩
⎨
⎧

−+−= ∑∑
n

n
m

m )]i(y)i(y[)]i(x)i(x[a)i(s 22       

(2.22) 

 

where, 

 2
1*11

2121 −+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

nnnn
a           (2.23)  

 

so is a positive constant which ensures the variance of d(i) is independent of gene 

expression.  

Genes are ranked according to the magnitude of their d(i) values, therefore d(1) 

has the largest relative difference, d(2) has the second largest and d(i) has ith 

largest difference.   

A large number of surrogate data is generated by permutation of the data used for 

analysis. For each of the permutations relative differences dp(i) were also 

calculated and the genes were ranked in the same way, so that dp(i) has the ith 
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largest relative difference for pth permutation. Expected relative difference was 

calculated by  
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Where N is the total number of permutations. To identify the significant changes 

in expressions, observed relative difference d(i) is plotted against the expected 

relative difference dE(i). For vast majority of the genes d(i) and dE(i) values are 

expected to be same, hence they should be close to d(i) = dE(i) line. Some genes 

can also be far from the line. If the distance of a gene from the line is greater than 

a threshold value, say delta (Δ), that gene can be called significant [Tusher et al., 

2001].  

 

Δ 

Δ

Positively Significant 

Negatively Significant

 
 
Figure 2.7: SAM graph showing the genes identified as positively and negatively 
significant marked with red and green respectively.  
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SAM can also give a measure of false discovery rate (FDR). It’s a measure 

of percentage of genes identified as significant by chance. To determine the 

number of falsely significant genes generated by SAM, two parallel cutoffs were 

defined. 

Cutoffs are lines on both sides of d(i) = dE(i) and parallel to it. The distance of the 

parallel lines from the line d(i) = dE(i) is given by the threshold value. The genes 

that are above the upper line can be called significantly induced and the genes 

which are lying below the lower line are called significantly repressed. The 

number of falsely significant genes corresponding to each permutation was 

computed by counting the number of genes that exceeded the horizontal cutoffs 

for that permutation. The estimated number of falsely significant genes is the 

average of the significant genes found in all the permutations. 

 
2.4.5 Paired SAM 
 

In control and perturbed experiments plants were harvested at same time points. 

So the difference in expression level of the perturbed and control samples should 

be compared for each time points separately. If unpaired SAM (explained in 

2.4.5) is used, then it calculates the average expression level of the control and 

perturbed sets separately and finds the genes that are differentially expressed 

based on the averages calculated. Here we lose the information of individual time 

points by taking the average. Paired SAM computes the difference in expression 

of a gene between controlled and perturbed at each time point and calculates the 

statistic based on that. If there are K time points [1, 2, 3,… k] and xij of control  
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pairs with yij of perturbed, ri  and si  are calculated from the following equations 

[Stanford SAM manual]: 

 ijijij yxz −=         (2.25) 
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Paired SAM can only be used if there is equal number of observations (time 

points) in the two sets to be compared and the samples are collected at the same 

time points. 
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33 ANALYSIS OF TIME-SERIES 
TRANSCRIPTOMIC DATA 
 

 

3.1 Introduction:  
In our effort to identify the mechanisms and networks underlying cellular 

function, biological studies have traditionally involved the perturbation of a 

cellular system in multiple ways and the monitoring of its response through 

various markers. Prior to the genomic revolution, these markers were mainly 

macroscopic. The high-throughput post-genomic era provided the tools, DNA 

microarrays (Brown and Botstsein, 1999; Schena et al., 1995) being the most 

often utilized among them, to also monitor simultaneously a great number of 

molecular markers (Klapa and Quackenbush, 2003). The computational problems, 

therefore, that biology has often to solve concern the identification of 

differentially expressed markers due to the applied perturbation(s). In the case of 

transcriptional profiling, in particular, these problems refer to the identification of 

differentially expressed genes between transcriptional profile populations 

representing different sets of physiological conditions. There are two types of 

experiments: “snapshot” and “time-series”. In the first type, each population 

comprises the same with respect to time transcriptomic snapshot of the cellular 

function under the particular set of conditions, but in different biological and/or 

experimental (i.e. injections of the same sample) replicates. In the time-series 

experiments, however, the transcriptional profiles that are acquired under each of 

the examined sets of conditions correspond to different, sequential in time 
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snapshots of the biological process/system under investigation. In this case, it is of 

interest to identify the genes whose expression profile over time changes 

drastically due to the applied perturbation. Moreover, it would be of interest to 

compare the various time points with respect to the change in their transcriptional 

profile due to the applied perturbation, taking, however, into consideration that 

they are components of the same time-series.   

The identification of differentially expressed genes in “snapshot” experiments 

is achieved using hypothesis testing methods like t-test (Pan, 2002; Korn et al., 

2001; Baldi et al., 2001; Wang et al., 2004), F-test (Chen et al., 2005; Cui et al., 

2005), ANOVA (Zar, 1999; Draghici et al., 2003; Orlando et al., 2004; Zhao et al., 

2002), non-parametric t-test and Wilcoxon rank sum test (Troyanskaya et al., 

2002), and the Significance Analysis of Microarrays (SAM) (Tusher et al., 2001; 

Larsson et al., 2005; Wu, 2005), a recent permutation estimation method tailored 

for the analysis of transcriptional profiling data. Permutation-based (non-

parametric) compared to parametric hypothesis testing methods have the 

advantage of not requiring the data to follow a particular distribution. They also 

provide an estimation of the “False Discovery Rate (FDR)”, i.e. the probability 

that a given gene identified as differentially expressed is a false positive. SAM 

provides an additional benefit: the flexibility for the user to adjust the threshold of 

significance and observe the sensitivity of FDR and number of significant genes 

to the threshold change.  

 The application, however, of these hypothesis testing techniques for the 

significance analysis of time-series data is not straightforward. They cannot 
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directly take into consideration the specific order of the transcriptional profiles in 

time. For example, based on them, the change in the expression of the gene shown 

in Figure 3.1 from the physiological state 1 to states 2, 3 and 4 would be 

considered identical. While this is true for the gene’s average change in time, it 

does not reflect its dynamic expression change. In this context, to upgrade the 

time-related information content of the measurements requires particular 

handling. 
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Figure 3.1 Paired-SAM bases conclusions on the average and not the dynamic gene 
expression profile. Paired-SAM allocates the same significance score to all three depicted 
changes in the expression profile of a gene over time due to three different perturbations.  
 

 Classical statistical methods for the modelling of time-series data that have 

been successfully applied to other fields, e.g. Moving Average, Auto Regressive 

or Auto Regressive Moving Average Modeling (Chatfield, 2003), are not usually 

expected to be equally effective within the context of transcriptional profiling data 

in particular or any other high-throughput biological dataset in general. This is 

true, because the number of time-points in biological experiments is most of the 

times – due to current experimental limitations - much smaller than the number of 
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variables, the latter being equal to the number of monitored gene expressions in 

the case of transcriptional profiling analysis. A recent publication (Ernst et al., 

2005) pointed out that more than 80% of the reported time-series gene expression 

datasets, referring to thousands of genes, involves fewer than 9 time points. In 

these cases, the derived statistical models are expected to be rudimentary and 

simplistic. In this context, there are currently few reported algorithms for the 

significance analysis of dynamic gene expression data. Specifically, Bar-Joseph et 

al. (2003a) proposed a method for the analysis of time-series transcriptional 

datasets, based on fitting a continuous curve to the discrete data to describe the 

time profile of a gene’s expression. Then, the two curve sets, each representing 

the time profiles of all genes’ expressions under each of the examined 

experimental conditions, are compared to conclude whether they are independent 

or a noisy realization of each other (2003b). On a similar basis, Storey et al. 

(2005) proposed a model that describes each gene’s expression as function of 

time; subsequently they test for which genes the model parameters are 

significantly different between the two investigated experimental conditions. In 

the time-series feature that is incorporated in SAM software (Chu et al.), the area 

under the time profile of each gene’s expression is calculated for each biological 

sample in any of the two examined physiological conditions. Then, the area 

datasets referring to the two compared physiological conditions are analysed 

using SAM. These methods are quite significant as they allow for the 

identification of differentially expressed genes based on their expression profile 

over time. They do not enable, however, the comparison between the various 
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timepoints. In a different approach, Park et al. (2003) used 2-way ANOVA to 

study how stress, but also time, affect the transcriptional profile, individually and 

in combination. Kamimura et al. (2000), in the context of fermentation process 

data, used mean hypothesis testing to identify the most discriminatory variables 

and time windows. Liu et al. (2005), on the other hand, compared the time-points 

of a plant growth process directly through the SAM-identified differentially 

expressed genes at each time point, considering, however, each time-point as an 

independent “snapshot” experiment. Consequently, each SAM analysis was 

conducted independently, without using a common reference for normalization 

among the time points. 

 A SAM-based algorithm is presented here [Dutta et al., 2007] that enables the 

identification of the differentially expressed genes at each timepoint of a time 

sequence, taking, however, into consideration that they correspond to sequential 

snapshots of the same biological process. This is achieved by comparing the gene 

expression profile of all timepoints with a common reference distribution and by 

identifying the differentially expressed genes at each timepoint based on a 

common threshold of significance. The extracted information is further explored 

to obtain insight about the regulation of gene networks. No similar type of time-

series data analysis exists currently in the literature. Specifically, I present a 

systematic methodology that allows for (a) deducing and appropriately storing the 

individual gene and gene class variability in significance level with time, and (b) 

comparing genes, gene classes and time points based on (a). The derived 

information is expected to unravel significant characteristics of a biological 
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system’s dynamic response to particular perturbation(s). This is demonstrated in 

chapter 5 and 6 of this thesis. The applicability of the proposed algorithm and 

subsequent data analysis methodology is not limited to transcriptomic data, but 

they could be accordingly applied to time-series high-throughput biological data 

of any other type (e.g. proteomic or metabolomic), as it has been demonstrated in 

(Dutta et al., 2007). 

3.2 Proposed Algorithms 
 
3.2.1 SAM-based algorithm for the identification of differentially 
expressed genes at each timepoint  
 

SAM identifies the genes that are differentially expressed between two 

experimental groups based on whether the difference between a gene’s observed 

(d(i)) and expected (de(i)) “relative differences” is greater than a significance 

threshold ‘delta’ (Tusher et al., 2001). Paired-SAM, in particular, deals with the 

analyses in which the samples of the two experimental groups can be paired 

according to the experimental design, time-series analyses being a characteristic 

example. In these cases, the “per pair” information is used in the estimation of the 

relative differences d(i) and de(i). Specifically, d(i) is defined as follows: 
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where: )i(Xk  represents the mean expression of gene i in experimental group k (k 

= 1 or 2); S(i) represents the standard deviation of the per pair differences in 

expression of gene i between the two experimental groups; and So depicts a 

positive fudge factor used to eliminate numerical biases at low values of S(i). The 
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observed scores are ranked in decreasing order and d(i) corresponds to the i-th 

ranked gene of the distribution. de(i) is also estimated from Equation 3.1, but in 

this case the samples are multiple times divided into two groups of the same size 

as the original by random sampling permutations. For each permutation, the 

calculated based on Equation 3.1 gene scores are also ranked in decreasing order. 

The average of the scores in the i-th position among all permutations is 

considered as de(i). Finally, the two distributions are plotted in a quantile-quantile 

plot and the genes whose absolute difference between the observed and the 

expected scores is larger than delta are identified as differentially expressed. FDR 

is estimated based on two cuttoffs defined by the minimum and maximum (least 

negative) d(i) values from the cluster of positively and negatively significant 

genes, respectively (Tusher et al., 2001). For each permutation of the expected 

distribution, the number of genes “laying outside” the cutoff region is determined; 

the median of this number over all permutations is multiplied by a correction 

factor to estimate FDR.  

Hence, in the case of time-series analysis, SAM identifies as differentially 

expressed the genes whose average over time expression has changed due to the 

applied perturbation to a greater than delta extent than what it would have been 

anticipated due to random differences among samples, the latter being quantified 

by the relative expected difference distribution, de. In the context of this analysis, 

the expression of a gene at any time point is represented by its average expression 

over all sampled biological and experimental replicates at this time point. 

Following the same concept, I define as differentially expressed at a particular 
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time point the genes whose expression at this time point has changed due to the 

applied perturbation to a greater than delta extent than what it would have been 

expected based on the null distribution de.  In this way, I use the same reference 

distribution of expected gene expression differences and the same significance 

threshold delta for all time points, taking inherently into consideration that they 

are part of the same time sequence. Specifically, the “time-dependent” statistic 

that is proposed for the new algorithm is the observed score of gene i at a 

particular time point t, which is defined based on Equation 3.1 as follows:  
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where: ))()(( iXiX tt
21 −  represents the difference in the expression of gene i 

between the two experimental groups at timepoint t; the rest of the symbols 

represent the same quantities as in Equation 3.1. For each timepoint, the 

distribution of observed scores is separately ranked in the decreasing order and 

dt(i) represents the observed score of the i-th ranked gene at the t-th timepoint. At 

a particular time point t, gene i is identified as differentially expressed, if the 

absolute difference between its observed score at this time point and the i-th 

expected score is larger than delta (see schematic diagram in Figure 3.2).  
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Figure 3.2 - Schematic representation of the presented time-dependent modified SAM 
algorithm. d(i), de(i), dt(i), NT, NG depict, respectively, the observed relative difference of 
gene i based on the SAM definition as described in Equation 3.1, the expected relative 
difference of gene i based on the SAM definition as described in the text, the observed 
relative difference of gene i at time point t according to the proposed algorithm as 
described in Equation 3.2, the total number of time points and the total number of gene 
expressions included in the significance analysis. 
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There have been concerns regarding the use of the same expected 

distribution for each time-point and paired-SAM and to what extent this could 

lead to high number of false positives (personal communication). Regarding the 

first concern, the I support that application of the presented methodology enables 

the comparison (a) between time-points, since they are members of the same 

time-series, and (b) of each time-point with paired-SAM. Specifically, it enables 

the identification of the genes whose observed expression at a particular time-

point is larger in absolute value than its expected to an extent higher than the 

threshold delta, the expected value being estimated from permutations of all time-

point samples. If the average over time observed expression of a particular gene 

has this characteristic, this gene’s expression is considered as changing 

significantly between the two time-series groups of samples. In this way, 

application of the presented algorithm enables the comparison between the time-

profile of- with respect to the average over time- significance level of a particular 

gene. Ability to carry out this comparison is important in identifying biologically 

relevant conclusions both with respect to the experimental design and the selected 

time intervals, but mainly regarding the dynamic behaviour of biological 

processes.  

To increase the confidence in the time-point significant genes, a more 

stringent Bonferroni-like (Bland et al., 2003) corrective algorithm could also be 

applied (provided as option to the user in the accompanying software). 

Specifically, if F, F1
0, F2

0, …, Fn
0 are the %FDR(median) of paired-SAM and of 

the significance analyses at time point 1, 2, …, n, respectively, for a particular 
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delta value, Δ0, as presented earlier, this is the starting point of the iterative 

corrective algorithm. Let us define F’j at the j-th iteration of the corrective 

algorithm, j being a nonnegative integer, as follows:  

∏
=

−−=
n

i
j

i
j FF

1
)1(1'                                             (3.3) 

The criterion for the termination of the iterative corrective algorithm is for F’j to 

become equal to F (Figure 3.3). Thus, the corrective algorithm involves carrying 

out the significance analyses at each timepoint iteratively, based on increasing 

delta value at each iteration, until the termination criterion is satisfied (Figure 

3.3).  The relative increment in delta at the jth iteration is proportional to the 

difference between F’j-1 and F as follows: 
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where c is the proportionality constant (0.1. has been identified as optimized 

default value). The delta value used at the last iteration being larger than Δ0, this 

process will certainly result in smaller number of significant genes and lower 

%FDR(median) at each time point [see results in chapter 5 and 6].  The need or 

not of the Bonferroni-type correction can be evaluated each time in the context of 

the particular biological dataset and the biologically relevant conclusions that the 

inclusion of this correction could provide. Finally, after applying the new “time-

dependent” significance analysis algorithm, with or without correction, at each 

time point each gene will belong to a particular significance level. The latter 

might be different from the significance level in which the gene is classified based 

on paired-SAM. In subsequent section, we will discuss some characteristic cases 
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of this difference. The results of the new algorithm could be stored in a matrix, 

which we accordingly called “time-dependent significance matrix” (TDSM). 

TDSM has as many rows as the number of genes (NG) and as many columns as 

the number of time points (NT). The (i,j)-th element of TDSM is equal to +1, 0, -

1, depending on whether the i-th gene’s change in expression between the two 

experimental groups at time point j has been, respectively, identified as positively, 

non or negatively significant. “Augmented” TDSM (A-TDSM) comprises one 

additional column that corresponds to the significance level of the genes based on 

paired-SAM. 
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Figure 3.3 Schematic representation of the iterative corrective algorithm for the 
significance analyses at each time point. Δ0, Δj, F1

0, F2
0,…, Fn

0, F1
j, F2

j,…, Fn depict the 
initial delta value, the delta value at the j-th iteration (where j a nonzero positive integer), 
the %FDR(median) of the significance analysis at time point 1, 2, …, n (where n the total 
number of time points) based on Δ0, the %FDR(median) of the significance analysis at 
time point 1, 2, …, n (where n the total number of time points) based on Δj, respectively. 
The proportionality constant ‘c’ determines the rate of convergence; 0.1. has been 
identified as optimized default value.  
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Clearly, if statistical significance is related to biological significance, the 

information in TDSM or A-TDSM could be the basis for data mining to extract 

time-dependent biologically relevant conclusions, which would have been 

otherwise missed. Obviously, this is true, independent of the algorithm by which 

the information in TDSM, i.e. the significance level of each gene at each time 

point, might have been derived. An obvious data mining exploration of TDSM 

data would be the clustering of the genes based on their significance level profile 

over time. In the next sections, we present a series of methods that allow for 

further use of the information in TDSM towards the extraction of significant 

biological conclusions.   

 

3.2.2 Algorithms for exploring gene variability in significance level over 
time to extract biologically relevant conclusions 
 

A. Significance Variability Score 

The information in TDSM could be used to rank the genes based on their 

variability in significance level over time. For this to become possible, the genes’ 

“significance variability” (SV) score needs to be estimated; we propose the 

following algorithm: 

1.  Use TDSM to construct the “Significance Variability Matrix” (SVM). SVM 

should have as many rows as the number of genes (NG) and columns by one 

fewer than the number of time points (NT-1). The elements of SVM are 

estimated to reflect the number of “significance levels” that a gene ascends or 
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descends from one time point to the next. Specifically, for i = 1, 2, …, NG and 

j = 2, …, NT: 

SVM[i , (j-1)] = ])(,[−][ 1-jiTDSMj,iTDSM                                (3.5) 

Clearly, the genes could be also clustered based on their SVM profile. The 

genes clustering together would have similar dynamic significance profile. In 

this case, genes remaining in the same significance level over time would be 

clustered together independent of the significance level; the same for genes, 

which follow the opposite significance level profile with time, if an absolute 

distance metric is used. An easy way to determine the number of the genes in 

these clusters and focus on a particular cluster of interest is the estimation of 

their “Significance Variability” (SV) score as indicated below. 

 2. Estimate the SV score of the i-th gene as the average of the i-th SVM row’s 

elements: 

SVi   =   
1N

]j,i[SVM

T

1TN

1j

−

∑
−

=
                 (3.6)    

Based on its definition, the SV score could range from 0 to 2. The distribution 

of the genes with respect to their SV score might reveal significant information 

about the biological problem under investigation. For example, the genes whose 

SV score is equal to 2 “fluctuate” between the positively and negatively 

significant levels from one time-point to the next throughout the entire time 

period. Determination of the number and type of these genes could prove 

significant for understanding the response of the biological system to the 

investigated perturbation, but also for correctly selecting the time points in future 
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experiments to capture subtler changes in gene expression. On the other hand, the 

genes whose SV score is equal to zero belong to the same significance level at all 

examined time points. These are the genes whose expression was significantly 

affected (either positively or negatively) or remained (statistically) unaffected by 

the investigated biological perturbation. Obviously, the distribution of all genes 

around these two numbers (0, 2) will give simple, but strong, indications 

regarding the transcriptional response of the system to the examined perturbation 

over time. Paired-SAM results are expected to have stronger similarity to the 

results of the presented algorithm the more the genes with SV score closer to zero 

are.  

B. New metric for time point correlation 

The change in the physiology of a biological system due to a particular 

perturbation at two different time points could be initially compared with respect 

to the number of genes in each significance level. However, two time points could 

correspond to the same number of genes in all three significance categories, but 

still not be biologically correlated, because each category comprises different 

genes at each time point. Therefore, another metric that takes into consideration 

the number of common genes in each of the significance categories should be 

defined. Of note, the same correlation metric could also be used if, instead of time 

points, two experimental conditions or two biological perturbations are to be 

compared.  
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 We defined “Significance correlation matrix” (SCM) with respect to 

positively, negatively or non-significant genes the NT x NT symmetric matrix, 

whose elements are estimated as follows: 
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where, k depicts the significance level with respect to which the time point 

comparison is performed (for example, k = P, N, O or P∩N, if the comparison is 

made with respect to the positively, negatively, non or the union of positively and 

negatively significant, respectively, genes); l

kG  depicts the number of genes in 

the k-th significance level at the −l th timepoint, =l 1,2,…,NT;  
l

kG  depicts the 

number of genes in the k-th significance level only at the −l th timepoint (i.e 

lI
l ≠∀= qGG q

kk 0 ,  q = 1, 2, …, NT). By definition, the elements of a SCM 

may take values between 0 and 1. Two time points might be considered strongly 

correlated if the corresponding SCM element(s) is(are) larger than a certain value-

threshold, usually larger than 0.5. In addition, large diagonal element implies that 

at this time point the response of the system to the particular perturbation(s) is 

largely different than at the rest. 

C. Gene Class Comparison 

 If (a) particular gene class(es) is(are) of interest, then the matrices described in 

the above sections should be constructed to contain only the gene set associated 

with this(these) gene class(es); the same analytical methodologies described 
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above could be used to extract biologically relevant conclusions focused only on 

this(these) gene class(es).   

In order to identify the gene class(es) that are highly enriched in 

significant genes hypergeometric distribution could be used as follows: let us 

suppose that the total number of genes used in the analysis is N and among these 

n genes are significant at a particular timepoint t. In addition, let us assume that 

among the y genes that have been associated with a particular gene class (among 

all N genes), x have been identified as significant at timepoint t. For the null 

hypothesis Ho: gene class i is not significantly enriched and alternate hypothesis 

H1: gene class i is significantly enriched, the p-value can be computed in the 

following way  
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          (3.8) 

Where aCb represents number of ways we can select “b” elements out of “a” 

without replacement. If p < 0.05, then gene class i is significantly enriched.  

  Specifically, matrices corresponding to each (or to the union of more than 

one) of the significance levels could be formed; each of the matrices will have as 

many columns as the number of the sampled time points and as many rows as the 

number of gene class(es) that are to be investigated (in a high-throughput 

unsupervised way, the latter could be all the gene class(es) that are associated 

with the gene list under investigation). The [i,j]-th element of a particular 

significance level’s matrix will be equal to the p value of the i-th gene class 

corresponding to j-th time timepoint. Studying the information in these matrices, 
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it would be possible to answer a variety of questions regarding the response of the 

various gene class(es) to the applied perturbation based on their significance level 

profile over time.  

  Another way to identify the gene class(es) highly enriched in significant 

genes would be to construct matrices of number of rows and columns equal to 

number of gene class(es) and sampled timepoints respectively, whose [i,j]-th 

element of a particular significance level’s matrix will be equal to the percentage 

of the i-th gene class that has been classified in the particular significance level  at 

the j-th time point. Analyzing these matrices, for example, it would be possible to 

identify all gene class(es) whose more than 50% of the genes have been 

consistently classified as (positively or negatively) significant at each time point.  

MiTimeS software suite: 

Algorithms proposed here were implemented in a software suite called MiTimeS 

written in C language and compatible to both windows and Macintosh computers. 

This software is free for all the academic users and the executable files can be 

obtained by requesting me or Prof. Klapa.  

The software has 4 modules corresponding to four main features of the algorithm. 

Following are the modules and their description: 

1. DEGenes: Calculates the list of significant genes and FDR for each 

timepoint. Tree files continuing the list of positively, negatively and non-

significant genes are created corresponding to each timepoint. 
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2. ExpressionChanges: from the output files of DEGenes program TDSM 

and SVM matrices are computed. 

3. TimeCorr: creates the SCM matrices for all the three significant categories  

4. GOComp: creates GO comparison table based on algorithm explained 

above. 

3.3 Conclusions 
 

In light of the importance of time-series transcriptional profiling analysis to derive 

conclusions regarding a biological system’s regulation, we developed an 

algorithm based on SAM principles that enables the identification of differentially 

expressed genes at each time point of a sampled time sequence using a common 

reference distribution and significance threshold for all timepoints. This algorithm 

enables the direct comparison between the different phases of a time-dependent 

process. In this chapter, I also presented three additional algorithms that assist in 

further exploring the results of the initial method regarding the gene variability in 

significance level with time. All four proposed algorithms, programmed in the 

form of executable files under the overall name MiTimeS, provides a platform for 

the significance analysis of time series transcriptomic (or any other high-

throughput biological) data that could lead to biologically relevant conclusions, 

which would have not been easily reachable otherwise.  

 The software suite was used for analysis of time-series transcriptional 

profiling data obtained from this project. It was used for each pair-wise 

comparison in concert with paired SAM analysis. The results obtained were 

analyzed and explained in detail in the contest of plant physiology [please see 
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chapters 5 and 6]. Results revealed wealth of biological information unobserved 

before due to non-existence of the presented algorithm.   
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44 EXPERIMENTAL DESIGN AND SETUP 
 

 

4.1 Experimental Design  
 

Arabidopsis thaliana liquid culture system was subjected to various 

environmental stresses applied individually or in combination. This will not only 

reveal the response of the plant to the specific stresses applied but also provides 

us a framework for comparing the different stresses that are applied. Application 

of multiple stresses is believed to reveal the group of genes that are differentially 

expressed under all the stresses. These genes are believed to play an important 

role in gene regulation network. If it is found that some unknown gene is always 

clustering with a group of known genes in different perturbations, then this 

information might help us to assign the functionality of that unknown gene. Based 

on our previous findings [Dutta B, 2004] and other studies following stresses 

were applied: 

4.1.1 Elevated CO2 
 

Elevated CO2 stress was found affect the carbon fixation, central carbon 

metabolism and amino acid bio-synthesis at within short period of time which can 

be observed from transcriptional profiling. The results obtained can be compared 

with literature as the effect of elevated CO2 stress is well studied at genomic and 

metabolomic level for most of the metabolic pathways.  Elevated CO2 stress was 
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applied individually to plants grown in sucrose and glucose media and in 

combination with trehalose and NaCl stress for the plants grown in sucrose media.  

4.1.2 Trehalose Stress 
 

Previous studies have shown that trehalose plays an important role in 

carbohydrate utilization and plant growth [Moore el al., 2003; Wingler el al., 

2000]. Though the exact role of trehalose pathway is not yet elucidated, but 

previous studies have shown that expression of genes encoding trehalase and 

trehalose-6-phosphate phosphatase gets affected at elevated CO2. Trehalose stress 

of 12mM will be chosen as it is believed [Moore el al., 2003] to create an 

observable response at the transcriptional level.  

4.1.3 Salt Stress 
 

Most of the organisms respond to the osmotic stress at genomic and metabolic 

level [Verala et al., 2003; Taiz and Zeiger, 2002]. It will be interesting to study 

how the gene expression of A. thaliana gets affected in short term by salt stress. 

50mM salt stress was applied as it is believed [Essah et al., 2003] to create 

enough stress that can be observed at genomic level but plants would be able to 

sustain it.  

4.1.4 Combined Stresses 
 

Two combined stress experiments were carried out where CO2 stress was 

applied in conjunction with NaCl and trehalose stress. In the combined stress, 

then strengths of the stresses applied were same as that of individual ones. The 

objective of carrying out the combined stress experiment is to compare then with 
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respect to individual stresses and to study if the combined response is constitute 

of the individual responses.  

 Figure 4.1 shows the experimental design in detail. Each of the rectangles 

represents an experiment that was conducted. Each rectangle is divided into two 

parts; the upper part corresponds to air composition and the lower to growth 

media condition. If a compound is added to the media it is represented as a 

separate rectangle.  
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Figure 4.1: The figure shows the experimental design and setup. The stresses applied at 6 
different experiments are shown by colors of two rectangles. The top rectangle shows the air 
composition (white – ambient air, red – elevated CO2 ) and the bottom rectangle represent the 
stress applied in the media (blue – no stress, purple – NaCl stress and green – trehalose stress).  
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Specifically, A. thaliana (Columbia Strain) plants were grown in shake flasks in a 

growth chamber (model M-40, EGC Inc., Chagrin Falls, OH) for 12 days under 

constant light intensity (80 - 100 μE m-2 s-2) and 23OC at ambient air condition. At 

the beginning of 13th day following stresses was applied: 

• In experiments 2, 4, 6 and 8 CO2 concentrations were increased to 1% 

from 0.035%. 

• In experiment 3 and 4 10ml of 240mM trehalose solution was added to the 

media. 

• In experiment 5 and 6 10ml of 1M NaCl solution was added. 

 

Short term dynamic response of the A. thaliana system was studied to see how the 

gene expression changes with time in first 30 hours of the applied stress. From the 

previous studies [Dutta B, 2004] it was observed that plants respond to 

environmental stresses at the transcriptional level in this time scale. 4 plant 

cultures were harvested at the beginning of the experiment (0hr) and 2 plants at 

each of the time points 1hr, 3hr, 6hr, 9hr, 12hr, 18hr, 24hr and 30hr (a total of 20 

plants). Time points are selected such that they are mostly equally spaced, but it is 

also possible to observe the initial response of the plant to the applied stresses. 

 Following the protocols discussed in the “Acquiring DNA Microarray 

Data” section of “General Methodologies” the time series transcriptional profiles 

for all 8 experiments will be obtained. A pool consisting of equal amount of 

mRNA from all the samples of experiment 1 and 2 will be used as common 
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reference for all the hybridizations. This reference will provide us a common 

platform for the comparison of individual and combined stresses.  

 To understand the size of the experimental dataset to be provided from this 

experiment and the effort invested in it, below is a summary of all steps.  

• 8 liquid cultures 

• 20x8 = 160 total RNA extraction cycles 

• 20x8 = 160 mRNA amplification 

• 4x(20x8) = 640 cDNA synthesis 

• 2x(20x8) = 320 microarray hybridizations.  

• Image processing of 4x(20x8) files using TIGR Spotfinder 

• Normalization of 2x(20x8) = 320 TAV files using TIGR MIDAS 

• 8 full genome profiles of 8 time points each; each time point corresponds 

to the average profile of 2 replicates, while time 0 corresponds to 4 

replicates.  

4.2 Materials and Methods 
 
4.2.1 Selection of plant liquid cultures as model system 
 

The plant cultures grew in 500 ml shake flasks, each containing 200 ml B5 

Gamborg media [Gamborg et al., 1976] with minimal organics (Sigma, St. Louis), 

2% (w/v) sucrose (or glucose) and 0.1% agar. Agar is also added to increase the 

viscosity of the liquid media and consequently the support of the plants, 

permitting there by the growth of the seeds in the liquid media. Liquid cultures 

were grown for 12 days on an orbital shaker platform (Barnstead, IL) at 150 rpm, 

in the ambient air (350ppm CO2).  



 60

4.2.3 Seed preparation and inoculation  
 

A. thaliana Columbia strain seeds were washed and stored at 4oC for 24 hours 

covered with aluminum foils. Seeds were added in agar solution and inoculated in 

200ml of autoclaved media. Each flask contained around 80-100 seeds.  

4.2.4 Experimental setup 
 

At the end of 12th day 4 liquid cultures were harvested from each of the 

experimental set. These liquid cultures will serve as pretreatment control. 

Immediately after the plants were harvested, one set continued to grow under 

same conditions (experiment 1) which will be compared as “control experiment” 

in the rest of the thesis. However, environmental perturbations were applied to the 

remaining set of experiments in the following way: 

2. CO2 concentration in ambient air composition was increased to 

10,000ppm. The CO2 concentration increase in the perturbed system’s 

growth chamber was achieved in 5min [WMA-4 CO2 Analyzer, PP 

Systems, Amesbury, MA]. 

3. Trehalose concentration in the growth media was increased by adding 10 

ml of 240 mM trehalose solution to the media, so that the trehalose 

concentration in each flask reaches 12mM. The solution was added in 

each flask separately and to minimize the contamination injection 

syringe was used.   

4. 10ml of 240mM trehalose solution was added along with elevated CO2 

concentration of 10,000 ppm.  

5. Salt stress was applied in the growth media by adding 10 ml of 1 M NaCl 

solution in each flask, which makes the NaCl concentration in each flask 
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50mM. NaCl solution was also added with an injection syringe to 

minimize contamination. 

6. 10ml of 1M NaCl solution was added along with elevated CO2 

concentration of 10,000 ppm. 

4.2.5 DNA microarray hybridization and data acquisition 
 

Slide Preparation: Arabidopsis thaliana genomic DNA amplicon microarrays 

were constructed as described previously (Kim et al., 2003). Briefly, using the 

TIGR Arabidopsis genome release 2.0, genomic DNA fragments representing the 

predicted 3’-ends of the 26,777 protein-encoding nuclear, plastid or mitochondrial 

genes were amplified by PCR. The PCR amplicons were purified and resuspended 

in 50% DMSO and printed onto UltraGAPS aminosaline-coated slides (Corning 

Inc, Corning, NY) using an Intelligent Automation System (IAS) arrayer 

(Cambridge, MA). After printing, the spotted DNA was cross-linked to the slide 

surface by UV irradiation at an integrated intensity of 120 mJ cm-2 using a 

Stratalinker UV Crosslinker (Stratagene, La Jolla, CA) and slides were stored in a 

desiccated chamber until used. Functional annotations for the arrayed elements 

are from TIGR Arabidopsis genome release 5.0 

(http://www.tigr.org/tdb/e2k1/ath1/) and the current annotation can be 

downloaded from the Plant RESOURCERER database at 

(http://www.tigr.org/tigr-scripts/magic/p1.pl). 

Total RNA extraction and mRNA amplification: Total RNA was extracted from 

the ground plant samples using trizol [see detailed protocol 

http://atarrays.tigr.org/arabprotocols.shtml ]. From the total RNA extracted, 

http://www.tigr.org/tigr-scripts/magic/p1.pl
http://atarrays.tigr.org/arabprotocols.shtml
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mRNA was selectively amplified through cDNA synthesis using reverse 

transcriptase [http://atarrays.tigr.org/arabprotocols.shtml ]. 

Hybridization and Scanning: Probe labeling and hybridization protocols were 

described previously (Kim et al., 2003), and are available in detail at 

http://atarrays.tigr.org . Starting with 1 µg of poly(A)-enriched mRNA, single-

stranded cDNAs were synthesized during reverse transcription reaction using 

random hexamer primers (Invitrogen, Carlsbad, CA) in the presence of 

aminoallyl-dUTP (aa-dUTP; Sigma, St. Louis, MO). Following the removal of 

unincorporated aa-dUTP and dNTPs using Microcon YM-30 columns (Millipore, 

Bedford, MA), the reaction products were conjugated to either Cy3 or Cy5 NHS-

ester fluorescent dye (Amersham-Pharmacia, Piscataway, NJ). The Cy3- and Cy5-

labeled probes were further purified using Qiaquick PCR Purification Kit 

(Qiagen, Valencia, CA), combined as an appropriate pair, and lyophilized. 

Gene expression levels were measured using a reference design for 

microarray analysis in which each test sample was hybridized to a common 

reference created by pooling equal quantities of poly(A) RNA from every 

experimental and control sample. All experimental and control mRNA samples 

were labeled and compared to the labeled reference pool RNA in co-hybridization 

assays and all hybridizations were repeated using a dye-reversal replication (in 

which the use of Cy3 and Cy5 dyes were switched between experimental/control 

and reference RNAs) approach to compensate for any potential dye-specific 

biases. 

http://atarrays.tigr.org/arabprotocols.shtml
http://atarrays.tigr.org/
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Slides were pre-hybridized in 1% bovine serum albumin (BSA) in 5×SSC, 

0.1% SDS for 45 minutes at 42ºC, followed by several washes in water and 

isopropanol, and then dried by centrifugation. The labeled probes were 

resuspended in hybridization buffer containing 50% formamide, 5× SSC, 0.1% 

SDS and 0.2 µg/µl salmon sperm DNA and hybridized to the microarray slide at 

42ºC for 16 – 20 hours in a sealed, humidified chamber. Following hybridization, 

slides were sequentially washed once in 2×SSC and 0.1% SDS for 4 minutes at 

42ºC, once in 0.1×SSC and 0.1% SDS for 4 minutes at room temperature, and 

twice in 0.1×SSC for 4 minutes at room temperature, and then dried by 

centrifugation. Slides were scanned using an Axon 4000B microarray scanner 

(Axon Instruments, Union City, CA), and data were saved as two independent 16-

bit TIFF files corresponding to the Cy3 and Cy5 channels, respectively. Therefore 

the relative intensity of the same spot between the two scanned images provides a 

measure of the relative amount of mRNA between the query and reference 

samples.  

The protocols of total RNA extraction, RNA amplification, dye coupling 

and hybridization are described at Arabidopsis functional genomics webpage [ 

http://atarrays.tigr.org/].  

4.2.6 Gene and metabolic pathway databases 
 
The TIGR A. thaliana annotation database, regularly updated with new annotation 

(please check http://www.tigr.org/tdb/e2k1/ath1/ath1.shtml ) will be used for 

assigning function to the observed genes. Other public databases, i.e. metabolic 

pathway database KEGG (www.kegg.com) and ExPasy (www.expasy.org) will be 

http://atarrays.tigr.org/
http://www.tigr.org/tdb/e2k1/ath1/ath1.shtml
http://www.kegg.com/
http://www.expasy.org/


 64

consulted to study the gene expression profiles in the context of metabolic 

application. The regularly application categorization of gene functions based on 

gene ontologies (www.geneontology.org) will also be used to cluster genes based 

on a particular property.  

4.2.7 Data normalization and multivariate statistical analysis  
 
TIGR TM4: This is an open source software package (www.tm4.org ) [Saeed et 

al., 2003] for DNA microarray data processing and analysis. The different 

software(s) included in TM4 are to be used in our analysis are listed below: 

1. MicroArray Data Manager [MADAM] (data storage) 

2. TIGR Spotfinder (image processing) 

3. TIGR Microarray Data Analysis System (MIDAS) (normalization) 

4. TIGR MultiExperiment Viewer [MeV] (clustering) 

Image Processing: The raw intensity data were extracted from the two TIFF 

images using TIGR Spotfinder [V2.2.1_NoDB] [Saeed et al., 2003], and data 

points were not considered for further analysis if a spot was flagged during data 

acquisition as saturated or non-detectable at either channel, or if greater than 50% 

of the pixels within the spot were less than the median plus one standard deviation 

of background intensity. For the remaining spots, the raw signal intensity was 

reported as the mean spot intensity minus the median background intensity. 

Normalization: Microarray data normalization is necessary, because it eliminates 

the systematic biases of the DNA microarray data acquiring process 

[Quackenbush, 2000]. Errors in DNA microarray data could be originated from: 

http://www.geneontology.org/
http://www.tm4.org/
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• Unequal quantities of starting mRNA among the query and the reference 

samples. 

• Difference between the labeling efficiencies of the Cy3 and Cy5 dyes 

because of preferential binding of one of the dyes to the samples. 

• Difference in the scanner sensitivity between the two dyes lead to more 

effective detection of one of the dyes.  

• Variation of spot intensity across the slide due to variation among the pins 

used for slide printing. 

To eliminate the above mentioned errors various normalization methods have 

been proposed, the most eminent ones are listed below:  

• Total intensity normalization: compares the sum of the intensities of all 

the spots of one channel with that of the other. If they are not equal then 

the intensity of all the spots in one of the channels are scaled up or down 

accordingly [Quackenbush, 2002]. 

• Lowess: The ratio of the spot intensity values in the two channels has been 

observed to have a systematic dependence on intensity [Yang Y. et al., 

2002 and Yang I. et al., 2002]. This dependence is most commonly 

exhibited as a deviation from 1 for the low or high intensity spots. Lowess 

normalization accounts for this bias and scales the data accordingly.  

• Standard Deviation Regularization: in a spotted array, the variation 

among the sets of pins can result into variation in intensities among the 

meta-blocks. Standard deviation regularization scales the data in such a 
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way that they have the same variation across the slide [Yang Y. et al., 

2002]. 

• Flip-dye normalization: Comparison between the flip-dyes slides can 

provide information about the biases due to the difference between the two 

dyes [Quackenbush, 2002]. Flip-dye normalization scales data accordingly 

to eliminate such biases.  

The normalization involved locally weighted scatterplot smoothing regression 

(LOWESS) (smooth parameter: 0.33; reference: Cy3), variance regularization 

(reference: Cy3) and “flip-dye” data consistency trim (data trim option: SD cut; 

cross log ratio data keep range: +/- 2SD).  

Outlier detection and data preparation: 

Gene expression profiles of the samples (corresponding to each flask) we 

clustered using hierarchical clustering. Samples that have distinctly different 

physiological state will also appear as outlier from clustering. Weight of the 

plants harvested is also a measure of their physiological and growth state. 

Samples that are outliers based on gene expression, metabolomic data as well as 

from weight were excluded from further analysis. Subsequently, the control and 

perturbed expression of each gene at each time point was estimated as the 

geometric mean of its expression in all control and perturbed, respectively, 

biological replicates harvested at this timepoint. Finally, the control and perturbed 

timepoint expressions of each gene were divided with the control and perturbed, 

respectively, 0h expression of this gene. 
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Significance analysis using paired SAM: Normalized data was used for clustering 

and multivariate statistical analysis. Paired SAM implemented in TIGR MeV 

software was used for pair-wise comparisons of any two experimental data sets. 

Paired SAM is a non-parametric hypothesis testing methodology which allows 

user to change the level of significance conveniently. It also provides a measure 

of false discovery rate (FDR), i.e. number of genes found significant by chance. 

For an effective “comparison of the comparisons” from different stress responses 

a common level of significance should be used. Environmental stress levels are 

very different and so are the data sets. For all the individual pair-wise 

comparisons a significance level was chosen such that it has maximum number of 

significant genes with minimum FDR. FDR is a non-negative number; hence the 

threshold value selected had maximum number of differentially expressed genes 

with FDR 0.  

Significance Analysis at individual timepoints:  

MiTimeS software developed in our lab for significance analysis of microarray 

time-series data was used for the extraction of time-dependent information for the 

data. Expected distributions obtained from the permutation were saved from 

TIGR MeV software and was used for MiTimeS analysis. In the first module of 

the software where list of significant genes at each timepoints is calculated, delta 

value provided was same as that of paired SAM. The program calculates the 

combined FDR based on all the timepoints and if its significantly greater than the 

FDR obtained from SAM (0 in this case), internally a new delta is calculated until 

the program converges. Subsequent module of the MiTimeS software was also 
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used for identification of TDSM, SVM and SCM matrices, which serves as basis 

for studying significance analysis results in the context of metabolic pathways. 

Results obtained form these analyses are explained in detail in the following 

section.  



 69

55 ANALYSIS OF THE PLANT 
TRANSCRIPTIONAL RESPONSE TO EACH 
APPLIED STRESS 
 

 

This chapter includes the results from all the experiments explained 

before. Figure 5.1 shows the schematic diagram of the experimental design, where 

each colored circle represents an experiment and an arrow connecting two circles 

signifies a comparison between them. The unique color of each circle provides the 

color convention to be used to represent a particular experiment, in this and the 

following chapter. The metric representation of the circles signifies the stress(es) 

that is(are) applied to that experiment. Each row and column shows the 

environmental perturbation applied to the media and the ambient air composition 

respectively. Following are the notation used in the figure 5.1 and in subsequent 

part of the thesis: 

 

Different experiments were compared using hypothesis testing techniques. When 

experiment Y is compared with respect to experiment X, the results are shown as 

X_Y. The arrows with the same color imply the same stress effect. Continuous 

arrows signify the stress response with respect to the control state, whereas the 

dotted arrows imply the comparison between single and multiple stress 

SP: CO2 stress experiment  

NP: NaCl and CO2 stress experiment 

TP: trehalose and CO2 stress experiment 

SC: Control Experiment (no stress) 

NC: NaCl stress experiment 

TC: trehalose stress experiment 
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conditions. There are 5 possible stress response analysis with respect to the 

control sate and 4 between stresses.  

 

TC TP

SC SP

NC NP

1% CO2Ambient CO2

NaCl
Stress

Sucrose 

Trehalose
Stress

Control

TC TP

SC SP

NC NP

1% CO2Ambient CO2

NaCl
Stress

Sucrose 

Trehalose
Stress

Control

 
Figure 5.1: The figure shows the overall experimental design. Each of the 6 circles 
represents a stress response experiment. Each of these experiments has 9 timepoints 
including pretreatment control. Arrows connecting two circles signifies a stress response 
comparison. Arrows with same color shows similar stress, i.e. blue arrows represent CO2 
stress response. Continuous line arrows imply comparison with respect to control state 
SC, while the dashed arrows imply comparison between two stress conditions.  
 

Each pair-wise comparison (shown by arrows) was done independently. 

One of the underlying objectives of carrying out this multiple stress experiment 

was to compare the stress responses. For an effective comparison of the 

significant genes from each stress response the significance levels of analysis 

should be comparable. One way to achieve this is to use the same threshold value 
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(delta) for hypothesis testing using paired-SAM. However the reference 

distribution of expected scores changes for every comparison, hence using the 

same delta doesn’t ensure the same significance level. Having the same FDR from 

all the stress comparisons will be an effective way of making the significance 

levels comparable. Hence, for each comparison delta value was chosen such that 

it corresponds to maximum number of genes with 0 FDR. FDR value 0 was 

chosen to keep the false positives minimum or to have maximum confidence in 

the results.  

Results from the statistical significance analysis are explained and 

assuming that the statistical significance implies biological significance they are 

discussed in the context of A. thaliana physiology.  

 
5.1. Study of individual stress responses 
 
5.1.1 Transcriptional response of Arabidopsis thaliana liquid cultures 
subjected to elevated CO2 stress 
 

Elevated CO2 stress was the first stress response studied in the course of 

this experiment. In the later experiments elevated CO2 stress was coupled with 

other stresses like salt stress and trehalose stress. Following measurements of 

plant weight and media pH were obtained from both the experimental set [table 

5.1]. Sample 5 of the control experiment (SC) was found to cluster separately 

from rest of the samples of control experiment possibly due to its different 

physiological condition. This is supported by the finding that sample 5 also has 

exceptionally low weight [table 5.1]. This sample was thus removed from further 

analysis and the timepoint 6h was represented by the only sample 6. 
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Table 5.1 Weight and media pH of the samples from control and CO2 stress experiments 
    Sucrose (SC) Sucrose perturbed (SP) 
Time 
Pt. 

Sample 
No Weight pH Weight pH 

0 20 14 6.16 16.7 6.15 
0 19 16.9 6.21 19.2 6.15 
0 18 19 6.18 18.3 5.98 
0 17 17.8 6.45 15.7 6.03 
1 1 13.7 6.13 11.6 6.1 
1 2 12.8 6.43 8.4 6.03 
3 3 14.7 6.09 20.2 6.03 
3 4 16.3 6.23 25 6.1 
6 5 9.2 6.32 20.7 6.12 
6 6 15.1 6.3 25.1 6.25 
9 7 18 6.35 18.3 6.13 
9 8 21 6.24 19.7 6.21 

12 9 12 6.28 13.5 6.14 
12 10 14.5 6.4 12.6 6.19 
18 11 22.9 6.3 22.3 6.39 
18 12 21.9 6.36 14.2 6.26 
24 13 21.8 6.27 31.2 6.21 
24 14 20.1 6.45 30.6 6.34 
30 15 28.3 6.51 22.7 6.18 
30 16 30.6 6.4 27.3 6.36 

 
 
5.1.1.2 Multivariate statistical analysis 

 

With 75% cutoff a repository of genes were selected that are present in at 

least 12 out of 16 timepoints. A total of 11231 genes were selected and this gene 

pool was used for all further analysis. Principal component analysis (PCA), as 

implemented in TIGR TM4 software suite [Saeed et al., 2003] was used for 

clustering of the experiments. PCA shows a clear separation of timepoints from 

control and perturbed group in 3-D reduced gene space. First 3 principal 

components captured 39, 20 and 14% of the variance respectively, i.e. 73% in 

total [Figure 5.2].  
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Figure 5.2 PCA analysis shows the timepoints of control and CO2 stress experimental 
timepoints on reduced gene space. The timepoints are clearly separated implying elevated 
CO2 stress is producing a significant change in A. thaliana physiology.  
 
Experimental timepoints were also clustered using hierarchical clustering (HCL) 

with Pearson’s correlation distance. HCL also effectively separates the two sets.  

 

Figure 5.3: Hierarchical clustering of the experimental timepoints show they are broadly 
producing two clusters corresponding to two different stress conditions. 30h timepoints 
from both the groups and 24h timepoint of perturbed set are clustering separately. 
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Timepoints 24 and 30h of perturbed and 30h of control clustered 

separately from the group of other control and perturbed timepoints showing how 

the response changes at the later part of the stress. 

Paired SAM as implemented in TIGR TM4 [Saeed et al., 2003] was used 

for overall significance analysis while MiTimeS [Dutta et al., 2007] helped reveal 

the significance analysis results at individual timepoints. Delta value 1.16 was 

used for paired SAM, as this significance level provides maximum number of 

differentially expressed genes with 0 FDR. Paired SAM identified 313 and 143 

genes as positively and negatively significant which is only 3 and 1% respectively 

of the genes used for analysis. Multiple test correction was used in MiTimeS for 

significance analysis; hence significance threshold used for individual timepoints 

(1.56) was higher than that of paired SAM. Use of multiple test correction is 

another way to ensure that genes identified as significant are truly significant. 

Percentages of genes that are positively and negatively significant at individual 

timepoints and also from paired SAM are shown in figure 5.4. It is evident from 

the figure that, numbers of significant genes of both types are increasing for first 

9h of the applied stress. From 12 to 30h period significant gene numbers are 

remaining almost at the same level. For all timepoints and also from paired SAM, 

number of positively significant genes was higher than negatively significant 

genes. Significant gene numbers from paired SAM is much smaller compared to 

that of individual timepoints. As most of the genes are changing their significance 

level between timepoints, paired SAM, which is based on average of all the 
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timepoints couldn’t identify these genes as significant [explained in more detail in 

chapter 6]. 
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Figure 5.4: The bar diagram shows the percentage of genes that are identified as 
positively, negatively and non-significant at individual timepoints and also from paired 
SAM. Gene number of both positively and negatively significant type gradually increases 
for first 9 hours. 
 
 
 

5.1.1.2 Data validation and interpretation in the context of plant physiology 
 

Calvin cycle, sucrose and starch biosynthesis 

CO2 fixation in Calvin cycle is catalyzed by Rubisco [Nelson et al., 2002]. 

Rubisco comprises two subunits, small (rbcS) and large (rbcL), which are 

encoded by nuclear and chloroplast genes respectively. The rbcL gene is 

positively significant at 3 and 18h. The Arabidopsis rbcS gene family consists of 

four members, namely 1A, 1B, 2B and 3B [Krebbers et al., 1988]. In the present 

study all four subunits were identified as negatively significant at 9, 24 and 30h of 

perturbation. Subunit 1A was identified as negatively significant also at 3h 

timepoint. The gene encoding phosphoglycerate kinase, the enzyme catalyzing the 
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conversion of 3PG to 1,3-bis-phosphoglycerate, is also negatively significant at 3, 

6 and 24h.  

Triose-phosphates transported from the chloroplasts to the cytoplasm are 

converted to hexose-phosphates. The gene encoding UDP-glucose 

pyrophosphorylase, which catalyzes the conversion of glucose-1-phosphate to 

UDP-glucose, is significantly under-transcribed at 6-18h of perturbation (Figure 

5.5). Sucrose is synthesized from UDP-glucose through two sequential reactions 

(Figure 5.5) catalyzed by the enzymes sucrose phosphate synthase (SPS) and 

sucrose-phosphatase [Denis et al., 2001]. SPS is potentially the main regulatory 

enzyme [Stitt et al., 1991], activated by glucose-6-P and inhibited by inorganic 

phosphate [Denis et al., 2001]. In the present study, the SPS expression was 

observed to be significantly decreasing due to the applied perturbation in an 

average over all the timepoints  and at 6, 9 and 18h specifically, after the initiation 

of the perturbation. Sucrose could be also directly produced from UDP-glucose 

through a reversible reaction catalyzed by sucrose synthase (SS) [Smith et al., 

1993]. However, SS is considered to be mainly used in the breakdown of sucrose 

[Denis et al., 2001]. The gene encoding SS was identified as positively significant 

from 3-24h timepoints and also from paired-SAM, possibly increasing sucrose 

dissociation. 

Starch, produced in chloroplast, serves as a transient sink to accommodate 

excess photosynthate that cannot be converted to sucrose and exported (Figure 

5.4) [Smith et al., 1993]. Hence, when sucrose synthesis is restricted, starch 

synthesis is promoted. ADP-glucose pyrophosphorylase (AGPase) is a key 
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enzyme catalyzing ADP-glucose formation and regulated by triose-phosphate/Pi 

ratio and fructose-1P (Figure 5.5) [Smith et al., 1993]. One gene encoding for 

AGPase family protein was identified to be positively significant at 6h of 

perturbation. Genes encoding starch phosphorylase and beta-amylase, enzymes 

involved in starch dissociation, were identified negatively significant at most of 

the timepoints, indicating possible decrease in starch degradation.  

 To check if it is possible to extract more information, with reduction in 

significance threshold, delta values was reduced to 0.9. At this delta value FDR 

was 0.47%, which is still quite low. Using MiTimeS with this delta value reveals 

lot more genes as significant, but the confidence involved in these results is much 

low. Rubisco activase, involved in removing the inhibition of rubisco activity by 

ribulose-1,5-bisphosphate [Nelson et al., 2002], was identified positively and 

negatively significant at 1h and 9h, respectively. Rubisco subunits 2B and 3B 

were also identified as positively significant at 6h.  

In conclusion, the rate of carbon fixation is possibly increasing significantly 

for the first 9h of perturbation, as this is supported by the expression change of 

both Rubisco activase and both subunits of Rubisco. This coincides with the 

observation that number of significant genes increase for first 9 hours of the 

experiment. Without being adequately conclusive, measurements related to 

sucrose and starch production indicate that the latter is favored over the former. 

This agrees with previous studies that connect elevated CO2 physiology with 

starch accumulation [Paul et al., 2001]. More organelle-specific studies are 

required to validate these indications. 
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Figure 5.5: Observed effect of the applied perturbation on the physiology of Calvin 
cycle, starch and sucrose biosynthesis pathways at the transcriptional level. At individual 
timepoints significance level of a gene encoding a reaction’s enzyme is represented by an 
arrow. Corresponding to 8 timepoints there are 8 arrows/lines. Red facing up, green 
facing down and black with no arrow head implies that the gene is positively, negatively 
and non-significant at timepoint. A red or green box around the timepoint arrows 
signifies that the gene was identified as positively or negatively, respectively, significant 
by paired-SAM. The arrows with continuous lines imply reactions whereas those with 
dotted lines imply positive or negative regulation depending on the sign. 
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Photorespiration 
 

Carbon fixation and photorespiration “compete” for Rubisco activity (Figure 

5.6). Changes in the CO2/O2 ratio have been shown to affect the flux distribution 

between the two pathways [Lehninger et al., 2002]. Transcriptomic measurements 

indicated that this was indeed the case in the present study, in which the liquid 

cultures experienced a 25-fold increase in the CO2/O2 ratio in their growth 

environment. Three of the enzymes involved in photorespiration, serine hydroxyl-

methyl transferase, NAD+ hydroxypyruvate reductase and 2-phosphoglycolate 

phosphatase, were also identified as negatively significant at most of the time-

points and by paired-SAM (Figure 5.6). Thus, the most commonly observed effect 

of elevated CO2 stress in soil grown plants, i.e. inhibition of photorespiration, is 

also observed conclusively in the liquid culture system as well, at both the 

metabolomic and the transcriptomic levels.  
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Figure 5.6 Observed effect of the applied perturbation on the physiology of 
photorespiration, at the transcriptional level. Positively and negatively significant genes 
are color-coded as described in the caption of Figure 5.5. 
 
Nitrogen assimilation and amino-acid biosynthesis 

 Amino acid synthesis requires source of carbon and nitrogen, hence it is 

dependent on central carbon metabolism and nitrogen fixation. Based on their 

precursor and bio-synthetic pathway amino-acids can be divided into four classes 

[Lee and Leagood, 1993]. Though this division is to some extent arbitrary, 
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however studying them based on their precursor will make it easier to analyze 

them. Following are the four main precursors: 

1. Aspartate: Asparagine, lysine, threonine, methionine, isoleucine 

2. Glutamate: Glutamine, arginine and praline. 

3. Pyruvate: alanine, serine, cysteine, glycine. Pyruvate also donates carbon 

to lysine, isoleucine and valine. 

4. Erythrose 4-phosphate: Aromatic amino acids phenylalanine, tyrosine and 

tryptophan. 

5. Ribose 5-phosphate: Histidine. 

Each of the above classes will be analyzed separately in the following sections. 

Nitrate is assimilated in the leaves, and also in the roots. In most of the full grown 

plants, nitrate assimilation occurs primarily in leaves [Heldt, 2005]. The transport 

of nitrate into the root cells proceeds as symport with two protons. Root cells 

contain several nitrate transporters in their plasma membrane; among them are 

transporters with low affinity and transporter with very high affinity. The latter 

one is induced only when required by metabolism, so that capacity of nitrate 

uptake is adjusted to the environmental conditions.  

Nitrate taken up by roots are stored temporarily in vacuoles. Nitrate is 

reduced to NH4
+ in the leucoplast and is used for production of glutamine and 

asparagine. When capacity of nitrate assimilation in the roots is exhausted, nitrate 

is released from the roots to the xylem vessel and is carried to the leaves. It is 

taken up into mesophyll cells and is reduced subsequently. First step is the 

reduction of nitrate to nitrite by nitrate reductase (NR) present in cytosol and then 
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to NH4
+ by nitrite reductase in the chloroplast. Nitrate reductase mostly uses 

NADH as reductant.  

In Arabidopsis there are two isoenzymes of nitrate reductase NR1 and 

NR2. Both of these genes are expressed in root and leaves and are induced by 

nitrate and show differential response [Cheng et al., 1991]. It was observed that 

NR1 (not NR2) mRNA maintains a higher basal level in Arabidopsis plants 

grown in the absence of nitrate than in the presence of nitrate. By maintaining a 

higher basal level of one gene, the plant could scavenge nitrate at levels below 

that required for induction [Cheng et al., 1991].  

Reduction of nitrite to ammonia requires the uptake of six electrons. 

Nitrite reductase is located exclusively in plastids and utilizes reduced ferredoxin 

as electron donor which is supplied by photosystem I. Glutamine synthetase in 

chloroplast transfers the newly formed NH4
+ at the expense of ATP to glutamate, 

forming glutamine. The same reaction fixes NH4
+ released during 

photorespiration. Because of high-rate of photorespiration, the amount of NH4
+ 

produced by the oxidation of glycine is about 5 to 10 times higher than amount of 

NH4
+ generate by nitrate assimilation. Thus only a minor proportion of glutamine 

synthesis in the leaves is actually involved in nitrate assimilation. 

Glutamine synthetase (GS) is the key enzyme in this nitrogen assimilatory 

process, as it catalyzes the first step in the conversion of inorganic nitrogen into 

its organic form. Distinct isoenzymes of GS exist in the chloroplast (GS2) and 

cytosol (GS1) in Arabidopsis. These distinct GS isoenzymes are encoded by 

distinct nuclear genes in all higher plants studied. Expression studies showing that 
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the distinct GS genes display organ-specific, cell-specific, developmental, and 

temporal patterns of gene expression. The levels of mRNA for the chloroplastic 

GS2 or the cytosolic GS1 are each induced by light or by carbon metabolites 

[Oliveira and Coruzzi, 1999]. The dramatic light induction of mRNA for GS2 is 

mediated in part by phytochrome and in part by light-induced changes in levels of 

Sucrose. In contrast, light induction of cytosolic GS1 mRNA can be accounted for 

by metabolic induction by sucrose alone. Interestingly, the non-hexose carbon 

source 2-oxoglutarate also induced accumulation of mRNA for cytosolic GS1, but 

had negligible effects on the levels of mRNA for chloroplastic GS2 [Oliveira and 

Coruzzi, 1999].  

 The glutamine formed in chloroplast is converted via glutamate synthase 

(also called glutamine oxoglutarate amino transferase, abbreviated as GOGAT) by 

reaction with α-ketoglutarate to two molecules of glutamate with ferrodoxin as 

reductant. Arabidopsis in fact contains two expressed genes encoding Fd-GOGAT 

isoforms (GLU1 and GLU2). These genes show contrasting patterns of gene 

expression [Coschigano et al., 1998]. GLU1gene plays a major role in 

photorespiration as well as a role in primary nitrogen assimilation in leaves. The 

Fd-GOGAT isoenzyme encoded by GLU2 is proposed to be involved mainly in 

primary nitrogen assimilation in roots [Coschigano et al., 1998]. It was also 

observed that GLU1 gene product functions in concert with chloroplastic GS2 in 

leaves [Coschigano et al., 1998]. 

α-ketoglutarate, which is required for the glutamate synthase reaction, is 

transported into the chloroplast by oxoglutarate/malate translocator in the counter 
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exchange for malate. Glutamate formed is also transported out of the chloroplast 

into cytosol by plastidic glutamate/malate translocator, also in exchange for 

malate [Heldt, 2005].   

During photosynthesis CO2 assimilation and nitrate assimilation have to 

be matched to each other. Nitrate assimilation can progress only when CO2 

assimilation provides carbon skeletons for the amino acids. Moreover, nitrate 

assimilation must be regulated such that the production of amino acids does not 

exceed demand. Finally it is important that nitrate reduction doesn’t proceed 

faster than nitrite reduction, since otherwise toxic levels of nitrite would 

accumulate in cells [Heldt, 2005].  

Under elevated CO2 stress nitrate reductase 1 (NR1) gene was positively 

significant at 18 and 30h timepoints, although NR2 was non-significant at all 

timepoints [Figure 5.7]. Nitrite reductase, the next enzyme of the same pathway 

was also positively significant at 18h timepoint, showing similar significance 

profile (for details please check chapter 6). Possibly there is an increase in rate or 

nitrogen assimilation at the later stage of elevated CO2 stress when enough carbon 

has been assimilated. Most of the genes coding for enzymes catalyzing TCA cycle 

reactions like NADP+ isocitrate dehydrogenase, succinate dehydrogenase, 

fumarate hydratase, malate dehydrogenase [NAD] shows similar significance 

profiles and becomes positively significant at 9h timepoint, again showing the 

importance of this timepoint during the course of the experiment. GLU2 gene 

involved in nitrogen assimilation is also positively significant at this time-point. 

Homocysteine S-methyltransferase(HMT-1) gene in methionine synthesis is 
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strongly up-regulated leading to the increased methionine production under 

elevated CO2 stress. Glutamate decarboxylase and dihydrodipicolinate synthase 

genes of beta-alanine and lysine production pathway are also positively 

significant at some of the timepoints and concentration of these amino-acids has 

increased in first 24hs of the experiment. None of the other genes was found 

strongly negatively significant, which implies most of the amino-acids are over-

produced under elevated CO2 stress especially at the later stage when sucrose 

production and starch biosynthesis is stopped.   

 

 
Figure 5.7 Observed effect of the applied perturbation on the physiology of the nitrogen 
assimilation and amino acid biosynthesis at the transcriptional level. Positively and 
negatively significant genes and metabolites are color-coded as described in the caption 
of Figure 5.5 
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Under aerobic condition ATP and NADPH is produced from TCA cycle 

provides energy for other cellular function. However, under anaerobic condition 

when supply of oxygen is limited, anaerobic fermentation pathway could be used 

and both of the pathways use pyruvate as precursor. In fermentation, pyruvate is 

first reduced to acetaldehyde and then to ethanol. Pyruvate decarboxylase, the 

enzyme that catalyses the reduction of pyruvate to acetaldehyde was found 

overproduced as two genes (At4g33070, At5g01320) coding that enzyme are 

significantly up regulated. The following reduction reaction for ethanol is 

catalyzed by alcohol dehydrogenase and this gene is positively significant at 6 out 

of 8 timepoints and also from paired SAM. This provides a strong indication that 

fermentation pathway flux is possibly increasing to provide energy to cells. 

Pyruvate can also be converted to lactate an-aerobically by lactate dehydrogenase 

and this gene is positively significant at 3 timepoints.  

Ethylene Synthesis and Signaling 

Ethylene is a potent modulator of plant growth and development [Ecker, 1995]. 

The plant hormone ethylene is involved in many aspects of the plant life cycle, 

including seed germination, root hair development, root nodulation, flower 

senescence, abscission, and fruit ripening [reviewed in Johnson and Ecker, 1998]. 

The production of ethylene is tightly regulated by internal signals during 

development and in response to environmental stimuli from biotic (e.g., pathogen 

attack) and abiotic stresses, such as wounding, hypoxia, ozone, chilling, or 

freezing. To understand the roles of ethylene in plant functions, it is important to 
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know how this hormone is synthesized, how its production is regulated, and how 

the signal is transduced. 

Ethylene response has been shown to be regulated at the level of ethylene 

synthesis. S-adenosylmethionine (SAdoMet) is the precursor for ethylene 

biosynthesis [reviewed in Yang and Hoffman, 1984; Kende, 1993]. In addition to 

being an essential building block of protein synthesis, nearly 80% of cellular 

methionine is converted to SAdoMet by SAdoMet synthetase (SAM synthetase, 

EC 2.5.1.6) at the expense of ATP utilization [Ravanel et al., 1998]. SAdoMet is 

the major methyl donor in plants and is used as a substrate for many biochemical 

pathways, including polyamines and ethylene biosynthesis. On the basis of the 

Yang cycle, the first committed step of ethylene biosynthesis is the conversion of 

SAdoMet to ACC by ACC synthase (Sadenosyl-L-methionine 

methylthioadenosine-lyase, EC4.4.14) [reviewed in Yang and Hoffman, 1984; 

Kende,1993]. The rate-limiting step of ethylene synthesis is the conversion of 

SAdoMet to ACC by ACC synthase [reviewed in Kende, 1993]. The observations 

that expression of the ACS genes is highly regulated by a variety of signals and 

that active ACC synthase is labile and present at low levels suggest that ethylene 

biosynthesis is tightly controlled. ACC is further oxidized by ACC oxidase to 

produce ethylene and is activated by CO2 [Thrower et al., 2001]. ACC Synthase 

and ACC oxidase enzymes belong to a multigene family and are regulated by a 

complex network of developmental and environmental signals responding to both 

internal and external stimuli. 
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Five ethylene receptors exist in Arabiodpsis: ETR1, ETR2, ETHYLENE 

RESPONSE SENSOR 1 (ERS1), ERS2, and EIN4 [Chang et al., 1993; Hua et al., 

1995; Hua and Meyerowitz, 1998; Sakai et al., 1998]. Among these receptors, 

only ETR1, ETR2, and EIN4 contain a receiver domain that shows similarity to 

bacterial response regulators Since homodimerization of ETR1 and ERS1 has 

been observed in plants [Schaller et al., 1995; Hall et al., 2000], receptors that do 

not have receiver domain, ERS1 and ERS2, have been postulated to use the 

receiver domains of other proteins by forming heterodimers with them 

Although various factors have been demonstrated to regulate ethylene levels 

in the plant [Abeles et al., 1992], only limited information is available on the 

regulation of ethylene receptor levels. Interestingly, one factor that affects the 

expression of ethylene receptors is ethylene itself, which induces the expression 

of ETR2, ERS1, and ERS2, but not of ETR1 and EIN4. Expression of the 

ethylene receptor ETR1 is downregulated by salt and osmotic stress at the 

transcript and protein levels. This decrease in receptor levels should cause 

increased sensitivity of the plant to ethylene. Thus, abiotic stresses, in addition to 

regulating ethylene signal transduction by modulating hormone levels, may also 

do so by modulating receptor levels. 

Genetic studies have predicted that hormone binding results in the 

inactivation of receptor function [Schaller et al., 2002]. In absence of ethylene, 

therefore, the receptors are hypothesized to be in functionally active form that 

activates CTR1, which is a negative regulator of the pathway [Schaller et al., 

1995]. The receptors ETR1 and ERS1 have high affinity for CTR1, whereas 
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ETR2 posses a low binding affinity for CTR1 [Guo and Ecker, 2004] and they 

were found to show similar expression profiles [Please see chapter 6 for more 

details]. EIN2, EIN3, EIN5 and EIN6 are positive regulators of ethylene 

responses, acting downstream of CTR1. The nuclear protein EIN3 is a 

transcription factor that regulates the expression of its immediate target genes 

such as ETHYLENE RESPONSIVE FACTOR 1 (ERF1) [Hall et al., 2000; Chen 

et al., 2002,] It has been shown recently that ERF1 also regulates other hormone 

responses particularly the jasmonate (JA) mediated defense response. Like 

ethylene, JA is a volatile signal that rapidly induces the expression of ERF1, and 

its expression is activated synergistically by both the hormones. Both signaling 

pathways are required concurrently for induction of ERF1 expression and the 

activation of its target gene PDF1.2. Hence EFR1 functions as transcription factor 

that integrates signal from ethylene and JA pathways. The mechanism of 

simultaneous requirement for both pathways to activate ERF1 expression is 

unclear.  

Ethylene modulates the responses to other plant hormones, such as JA, 

salicylic acid, auxin, abscisic acis (ABA) and cytokinin, but the mechanism that 

control each of these critical hormone-hormone interactions are largely unknown. 

A. thaliana genome comprises of multiple copies of ACC synthase (regulatory 

step of ethylene formation) and ACC oxidase (final step); two copies of each were 

considered in the present analysis after normalization and filtering. One gene 

corresponding to each of the enzymes was positively significant at most of the 

timepoints and also from paired SAM. Though the other genes encoding the same 
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enzymes were significant at some of the timepoints, but didn’t pass the 

significance test from paired SAM analysis. These observations indicate that even 

at the first hour of perturbation, the ethylene synthesis was significantly induced 

at the transcriptional level. This is in agreement with previous studies of the short- 

and long-term effect of elevated CO2 stress, which have reported a sustained 

ethylene release in the photosynthetic leaves of higher plants [Bassi et al., 1982, 

Dhawan et al., 1981, Grodzinski et al., 1996]]. This is, however, the first time that 

the same is reported for the A. thaliana physiology.  

ETR2 and ERS were identified as positively significant at 5 and 6, 

respectively, out of the 8 time points. ETR2 was also positively significant from 

paired-SAM. EIN4 was identified as positively significant at 30h, whereas ETR1 

was identified positively significant at 24h. ETR1 gene, as explained before, was 

not affected significantly to increased ethylene production. The present 

transcriptional observations are in complete agreement with previous reports 

regarding soil-grown A. thaliana plants [Chen et al., 2005, Hua et al., 1998], 

providing additional support to our hypothesis that the molecular responses of 

both plant systems to a particular perturbation are similar.  

Quite limited experimental data exits about the transcriptional regulation 

of the ethylene signaling cascade(s) [Chen et al., 2005]. The transcription of 

CTR1, the second protein of the ethylene cascade, has been previously observed 

being induced in response to ethylene in tomatoes [Adams-Phillips et al., 2004], 

but this had not been previously confirmed in A. thaliana [Keiber et al., 1993, 

Gao et al., 2003]. In the present study, the gene encoding for CTR1 synthesis was 
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identified as positively significant at 3 out of the 8 time points (3, 9 & 24h). 

Regarding three genes encoding for subsequent proteins in the ethylene signaling 

cascade, i.e. EIN2, EIN3, EIL1, these were identified as significant at only 1,1 

and 0, respectively, out of the 8 time points (see Figure 5.8). It has been 

previously reported [Chen et al., 2005] that indeed these genes are not regulated 

by ethylene at the transcriptional level. In the absence of ethylene, EIN3 is 

degraded by the ubiquitin-ligases EBF1 & EBF2. In the presence of ethylene, 

EIN3 degradation is halted. The mechanism by which this regulation is achieved 

is not well-understood to-date, but its elucidation would be of great importance 

for understanding ethylene signaling [Chen et al., 2005].  

 
 
Figure 5.8 Observed effect of the applied perturbation on ethylene biosynthesis and 
signaling at the transcriptional level. Positively and negatively significant genes and 
metabolites are color-coded as described in the caption of Figure 5.5. 
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Moreover, the gene encoding for the transcription factor ERF1 is activated 

by EIN3 [Chen et al., 2005], was identified as negatively significant at 9 and 18h 

of perturbation (Figure 5.8). These observations complement data from an 

ethylene stress study in soil-grown A. thaliana plants, in which it had been 

observed that the expression of ERF1 was not up-regulated under conditions of 

high ethylene concentration [Zhong et al., 2003]. However, among the 7 analyzed 

Ethylene Responsive Element Binding (EREBP) transcription factor family 

genes, which are regulated by EIN3 / ERF1, three were identified as strongly 

negatively significant and from paired-SAM (for details on the significance 

profile over time of all 7 genes, see Table 5.2). Most of other EREBP genes, 

which are not significant from paired SAM were also negatively significant at 9h 

timepoint implying an overall under-regulation of these family of genes at this 

timepoint. Some of these apparent contradictions are one additional indication of 

the plethora of open questions that need to be pursued towards the elucidation of 

the ethylene signaling pathway, the present study contributing important 

information to the currently available relevant database.  

Table 5.2 Significance level of ethylene-responsive element-binding family genes at 
individual timepoints and also from paired SAM. The red box with 1, green box with -1, 
white box with 0 imply that gene is positively negatively and non-significant 
respectively. 

Annotation 1h 3h 6h 9h 12h 18h 24h 30h Paired 
SAM 

ethylene-responsive element-
binding family protein -1 -1 -1 -1 0 -1 0 0 -1 

ethylene-responsive element-
binding family protein -1 0 -1 -1 0 -1 0 0 -1 

ethylene-responsive element-
binding protein, putative 0 0 -1 -1 0 -1 0 0 -1 

ethylene-responsive element-
binding factor 4 (ERF4) 0 0 0 -1 0 -1 0 0 0 

ethylene-responsive element-
binding protein, putative 0 0 0 -1 0 -1 0 0 0 
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ethylene-responsive element-
binding protein, putative 0 -1 -1 -1 0 0 -1 0 0 

ethylene-responsive element-
binding protein, putative 0 0 1 0 0 0 0 -1 0 

 
Conclusion: Elevated CO2 stress affected the carbon fixation reactions which in 

turn affects the sucrose and starch biosynthesis reactions. Increased carbon pool 

available can be used for increased amino-acid biosynthesis and plant growth. 

Amino-acid biosynthesis also requires nitrogen supply and up-regulation of 

nitrate reductase genes are possibly providing the increased nitrogen supply. 

Increased CO2/O2 ratio is inhibiting the photorespiration reactions as expected. 

Sulfur metabolism was down regulated and the elevated CO2 stress was found to 

affect the ethylene biosynthesis and signaling cascade. 

 
 
5.1.2 Transcriptional response of Arabidopsis thaliana liquid cultures 
subjected to NaCl stress 
 
As an part of our multiple stress response studies of A thaliana liquid cultures, I 

applied NaCl stress of 50mM by applying NaCl solution in the media [please see 

the experimental design chapter for detail]. Salt stress was found to create 

physiological change to the culture within first 30 hours of its application. Table 

5.3 shows the weight of the plant samples and the corresponding media pH 

measurements. Sample 9 of the control experiment (NC) was found to cluster 

separately from rest of the samples of control experiment possibly due to its 

different physiological condition. This is supported by the finding that sample 9 

also has exceptionally low weight [table 5.3]. This sample was removed from 

further analysis and the timepoint 6h was represented by the only sample 6. 
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Table 5.3 Weight and media pH of the samples from control and NaCl stress experiments 
    Sucrose control (SC) NaCl stress (NC) 
Time Pt. Sample No Weight pH Weight pH 

0 20 14 6.16 26.3 6.95 
0 19 16.9 6.21 19.2 6.79 
0 18 19 6.18 N.A. N.A. 
0 17 17.8 6.45 N.A. N.A. 
1 1 13.7 6.13 21.1 6.59 
1 2 12.8 6.43 N.A. N.A. 
3 3 14.7 6.09 23.8 6.58 
3 4 16.3 6.23 22.4 6.56 
6 5 9.2 6.32 26.9 6.84 
6 6 15.1 6.3 23.0 6.51 
9 7 18 6.35 20.6 6.76 
9 8 21 6.24 23.6 6.46 

12 9 12 6.28 12.8 6.34 
12 10 14.5 6.4 24.1 6.51 
18 11 22.9 6.3 22.5 6.63 
18 12 21.9 6.36 22.3 6.64 
24 13 21.8 6.27 26.5 6.55 
24 14 20.1 6.45 23.9 6.56 
30 15 28.3 6.51 25.1 6.56 
30 16 30.6 6.4 24.3 6.67 

 

Plants were immediately frozen in liquid nitrogen and kept at -80oC until they 

were ground in liquid nitrogen. During hand grinding of the frozen plants in liquid 

nitrogen it was experienced that these plants are much easier to grind compared to 

frozen plants from other experiments. This is only a qualitative observation and 

can not be quantified; nevertheless it is an important observation as it implies 

there have been some physiological changes.   

5.1.2.1 Multivariate statistical analysis 
 
As there are many genes that have missing expression values at one or more 

timepoints, before the analysis is started, a common repository of genes is 

selected. The selected 12049 genes have non-zero expression values for at least 

12 out of 16 timepoints. According to TIGR MeV Principal Component Analysis 

(PCA), the control transcriptomic profiles can be clearly differentiated from their 



 95

perturbed counterparts (Figure 5.9). This implies that the physiology of the plant 

liquid cultures is affected by the applied perturbation at transcriptional level, even 

during the first 30h of treatment. First 3 principal components were found to 

capture 60, 16 and 6% of the information. Hence, when the experiments are 

viewed at 3-D space it can account for most of the variance (82%). It can also be 

seen due to the application of NaCl stress timepoints have moved along principal 

component 1, which accounts for maximum variability.  

          

Figure 5.9: PCA analysis shows the timepoints of control and NaCl stress experimental 
timepoints on reduced gene space. The timepoints are clearly separated implying NaCl 
stress is producing a significant change in A. thaliana physiology.  
 

Experimental timepoints were also clustered using hierarchical clustering and it 

also shows a clear separation between them (Figure 5.10). 
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Figure 5.10: PCA analysis shows the timepoints of control and CO2 stress experimental 
timepoints on reduced gene space. The timepoints are clearly separated implying elevated 
CO2 stress is producing a significant change in A. thaliana physiology.  
 
 

Both paired SAM and MiTimeS were used for significance analysis based 

on overall and individual timepoints as explained earlier. Delta value of 2.677 was 

selected for paired SAM, as this delta value has highest number of significant 

genes with minimum (0 in this case) FDR. There were 1643 and 1653 genes 

found positively and negatively significant from paired SAM with this delta 

value, which constitutes around 14% (in both significant types) of genes used for 

analysis (12049). The whole list of positively and negatively significant genes can 

be found in supplementary table S1. The delta value used for MiTimS analysis 

was same as that of paired SAM. Number of genes positively, negatively and non-

significant at individual timepoints obtained from MiTimeS were plotted with that 

of paired SAM results in figure 5.11. All the time-points including paired SAM 

shows almost equal number of significant genes of both types. It is clear 6 and 

12h timepoints have maximum and minimum number of significant genes 

respectively.   
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Figure 5.11 Percentage of positively, negatively and non-significant genes at individual 
timepoints and from paired SAM. Significant gene numbers from paired SAM is 
comparable with that of individual timepoints.  
 
5.1.2.2 Data validation and interpretation in the context of plant physiology 
 

As a result of genetic, molecular and biochemical analysis salt stress response 

pathway is well studied [Zhu JK et al., 2000]. Figure 5.12 shows a schematic 

diagram of the salt stress response pathway, also called SOS pathway. Calcium 

signal is induced by salt stress which is further sensed by calcium binding protein 

SOS3. SOS3 interacts and activated SOS2 which is a serine threonine protein 

kinase. SOS1 is a salt tolerance effector gene encoding a plasma membrane 

Na+/H+ antiporter is regulated by combined activity of SOS2 and SOS3 [Zhu JK, 

2002] . SOS1 gene regulates transcriptionally and post-transcriptionally 

expression of other genes related to salt tolerance [Shi et al., 2000]. SOS pathway 

may also be involved in stimulation or suppression the activities of other 

transporters involved in ion homeostasis under salt stress, such as vacuolar H+-
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ATPases and pyrophosphatases (PPase), vacuolar Na+/H+ exchanger (NHX), and 

plasma membrane K+ and Na+ transporters [Zhu JK, 2002] .  

 From the hypothesis testing results of this experiment it was observed 

SOS1 gene (sodium proton exchanger, putative (NHX7)) was positively 

significant at all the timepoints and also from paired SAM, which is exactly what 

is expected based on previous literature. SOS3 gene was also significantly up-

regulated at 1, 18 and 24h timepoints. Different response of SOS1 and SOS3 gene 

is interesting and creates a scope for future study. Information about SOS2 gene 

was missing in this analysis. Responses of several other sodium proton exchanger 

genes (NHX) were also studied. Among them NHX2 and NHX3 genes were 

positively significant at 7 and 6 timepoints respectively and also from paired 

SAM. However other NHX genes were non-significant at most of them 

timepoints and also from paired SAM. Three genes (At4g19960, At2g30070, 

At4g13420) coding for potassium transporter were found to be positively 

significant and paired SAM analysis, again confirming the results from the 

literature. It was also observed Na+/Ca2+ antiporter gene (At2g47600) is 

positively significant at first 4 timepoints (1-9h period) and also from paired SAM 

analysis.  
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Figure 5.12: Pathway for salt stress signaling and response [redrawn from Zhu et al., 
2002].  
 

From the data I observed, 5 (At1g27770, At4g37640, At3g63380, 60608.m00041, 

At3g57330) out of 6 genes coding “calcium-transporting ATPase – plasma 

membrane-type/ Ca(2+)-ATPase” are positively significant at all the timepoint 

and also from paired SAM analysis. Though it is a strong indication, but 

association of this gene class with salt stress response was not found in literature. 

High-throughput approach used allowed me to come up with this speculation 

without knowing much from literature, which would not have been possible with 

a conventional hypothesis-driven approach.  The only gene (At5g57110) that was 

not positively significant was coding for “Ca(2+)-ATPase isoform 8 (ACA8)”. 

The reason for anomalous behavior of this isoform couldn’t be explained and 
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requires further investigation. Interestingly, the genes “calcium-transporting 

ATPase – endoplasmic reticulum-type” were found to be non-significant. Another 

gene (At5g38710) coding “proline oxidase, putative / osmotic stress-responsive 

proline dehydrogenase”, believed to be involved in salt stress was also found 

positively significant at all the timepoints. The gene coding pyrroline-5-

carboxylate reductase, the enzyme that controls the proline biosynthesis from 

glutamate was found positively significant at only 30h timepoint. None of the 

other genes involved in proline was found to be significant from paired SAM 

analysis. In some of the plants it was observed that under salt or water stress, 

proline, glycine betaine or manitol accumulates in cytosol, chloroplast and 

mitochondria [Heldt, 2005] which minimizes the damaging effect under these 

stresses. These substances also participate as anti-oxidant in elimination of 

reactive oxygen species (ROS) [Heldt, 2005]. Water shortage or high salinity of 

soil causes and inhibition of CO2 assimilation, resulting in an over-reduction of 

photosynthetic electron transport carriers, which in turn leads to an increased 

formation of ROS [Heldt, 2005].  

 Response to salt stress might not always translate to up-regulation of 

genes. Here I found two genes At2g41720 and At3g05890 coding for “putative 

salt-inducible protein” and “hydrophobic protein (RCI2B) / low temperature and 

salt responsive protein (LTI6B)” respectively negatively significant from paired 

SAM.  
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Calvin cycle, starch and sucrose production 

All the four genes encoding small subunits (1A, 1B, 2B and 3B) of 

RuBisCO were found negatively significant at 24-30h timepoints (figure 5.13). 

These genes are part of nuclear genome and have important regulatory activity. 

The large subunit of rubisco was also negatively significant at 24h timepoint. 

Alpha and beta subunits of RuBisCO subunit binding-protein (At1g55490 and 

At2g28000) were also negatively significant at 5 out of 8 timepoints and also 

from paired SAM analysis (figure 5.13). The rate of carbon fixation is possibly 

decreasing at the last 6 hour of the experiment. Two phosphoglycerate kinase 

genes were also negatively significant at some of the timepoints especially at the 

later stage, implying a possible overall reduction of calvin cycle flux. Most of the 

genes catalyzing the starch synthesis reactions in cytosol are moderately 

negatively significant especially at last two timepoints. Possibly a reduction in 

Calvin cycle is translated into reduction in starch biosynthesis. It was also found 

from literature that starch production decreases under salt stress and starch 

degradation increases providing energy for carrying out cellular mechanism. 

ADP-glucose pyrophosphorylase plays an important regulatory role in starch 

biosynthesis and corresponding 2 genes were found negatively significant at 1 and 

6h signifying a possible decrease in starch biosynthesis. 

Triose phosphate is transported out of chloroplast for sucrose synthesis. 

Triose phosphate/ phosphate translocator gene, responsible for transferring the 

triose phosphates produced in chloroplast to cytosol is negatively significant from 

3-24h timepoints and also from overall analysis. Fructose-bisphosphate aldolase 
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gene was found positively significant at all the timepoints and also from paired 

SAM analysis. Sucrose phosphate phosphatase and sucrose synthase genes were 

also found positively significant at most of the timepoints and also from paired 

SAM analysis. However, UDP-glucose pyrophosphorylase gene was negatively 

significant which is inconsistent with other genes of the pathway (figure 5.13). 

The gene corresponding to the cytosolic copy of this enzyme was not found and 

this gene is believed to be active in endomembrane system. Sucrose synthase gene 

catalyzes reversible reaction and mainly used for degradation of sucrose. It is not 

clear from the results why sucrose production and degradation are simultaneously 

increasing. It could be possible under this condition both the pathways are 

contributing to sucrose synthesis.  
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Figure 5.13: Observed effect of the applied perturbation on the physiology of Calvin 
cycle, starch and sucrose biosynthesis pathways at the transcriptional level. Positively 
and negatively significant genes are color-coded as described in the caption of Figure 5.5. 
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Photorespiration 

 

Figure 5.14: Observed effect of the applied perturbation on the physiology of 
photorespiration, at the transcriptional level. Positively and negatively significant genes 
are color-coded as described in the caption of Figure 5.5. 
 

Though CO2/O2 ratio remains unchanged during this stress, but photorespiratory 

pathway is significantly affected by the applied perturbations (Figure 5.14). Most 

of the genes of this pathway like glutamate-glyoxylate aminotransferase 2, 

glycine decarboxylase, serine hydroxymethyl transferase, NAD+ hydroxyl 

pyruvate reductase, phosphoglycolate phosphatase are all negatively significant at 
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most of the timepoints and also from paired SAM analysis, implying a net 

reduction in photorespiratory flux. Reduction in photorespiration under NaCl 

stress was not reported anywhere before and need to be verified from independent 

analysis.  

Amino-acid biosynthesis pathways 

 Under NaCl stress it was observed that two nitrate reductase genes NR1 

and NR2 are showing differential response. NR1 is negatively significant at 1 and 

6h timepoints while NR2 is positively significant at 5 out of 8 timepoints and also 

from paired SAM analysis (Figure 5.15). Nitrite reductase was also found 

negatively significant at 1 and 6h timepoints, again showing similarity with NR1 

response. As explained above, to stop toxic nitrite from accumulating, the rate of 

nitrate reduction should not exceed that of nitrite reduction. However our finding 

about NR2 contradicts this observation. From this observation I speculate that 

NR1 is possible regulatory enzyme involved in nitrate reduction. When 

expression profile of NR1, NR2 and nitrite reductase was compared, it was 

observed that NR1 and nitrite reductase has high degree of expression correlation 

while NR2 shown distinctly different expression profiles (please see section 6.2.3 

in chapter 6). NR2 response is turn quite similar to GS1 stress response. The 

regulation involved in NR1 and NR2, especially under different environmental 

stress conditions could be a subject of future research.  

 After nitrate is reduced to NH4
+ it is assimilated by glutamine synthetase, 

as explained above. Distinct isoenzymes of GS exist in the chloroplast (GS2) and 

cytosol (GS1) [Oliveira and Coruzzi, 1999]. GS1 was positively significant at all 
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timepoints and also from paired SAM analysis. However, GS2, the gene active in 

chloroplast was negatively significant at 6, 24 and 30h timepoints (figure 5.15). 

Ferredoxin-dependent glutamate synthase, the enzymes that catalyses the 

following reaction has two isoenzymes Fd-GOGAT 1 and Fd-GOGAT 2. The 

gene encoding Fd-GOGAT 1 is negatively significant at 6 and 18-30h, hence 

shows significance profile similar to GS2 which is in accord with the previous 

finding [Coschigano et al., 1998].  

 Significance profiles of NR1 and nitrite reductase genes involved in nitrate 

reduction do not match with that of GS2 and GLU1 genes involved in NH4+ 

assimilation. A plausible reason could be NH4
+ assimilated in chloroplast is 

coming from both photorespiration and nitrate reduction; hence the overall 

GOGAT reaction is the cumulative effect of both.  

  NaCl stress was also found to affect the amino-acid biosynthesis pathway 

to a great extent. Figure 5.15 depicts the transcriptional response of the nitrogen 

assimilation, TCA cycle and amino-acid biosynthesis pathway. Citrate synthase, 

the enzyme that catalyses conversion of pyruvate to citrate, the first reaction of 

TCA cycle was found negatively significant at all timepoints and also from paired 

SAM. The influx to TCA cycle is possibly decreasing due to the down regulation 

of this reaction. Aconitate hydratase (cytoplasmic) is the enzyme that catalyses 

two consecutive reactions of citrate to aconitate and again aconitate to isocitrate, 

is overproduced. Aconitate concentration was also significantly increasing from 

metabolomic analysis. 2-oxoglutarate dehydrogenase E1 component gene 

producing α-ketoglutarate was also up-regulated at most of the timepoints. 
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Following four reactions of the TCA cycle from α-ketoglutarate to oxaloacetate is 

found mostly non-significant. Hence possibly there is an accumulation of α-

ketoglutarate concentration, which is responsible for up-regulation of NR2 gene.  

Oxaloacetate (OAA) is taken out of TCA cycle for production of arpartate 

and the amino acids that are produced from aspartate. Aspartate aminotransferase, 

cytoplasmic isozyme 1/ transaminase A (ASP2) gene involved in OAA to 

aspartate reaction up-regulated at 18-30 h timepoints (figure 5.15). The increase 

in flux to aspartate is possibly used for beta- alanine production as the 2 glutamate 

decarboxylase genes encoding this reaction was positively significant from all 

timepoints. Beta-alanine is also significantly over-produced from metabolomic 

analysis. However there is a strong indication from transcriptomic analysis that 

the flux towards production of other amino acids like asparagine, homoserine, 

threonine, homosynteine, methionine, lysine are decreasing. This observation was 

apparently contradictory to some of the metabolomic observations where 

homoserine and methionie concentrations were significantly increased.  
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Figure 5.15: Observed effect of the applied NaCl stress on Nitrogen assimilation and 
amino-acid biosynthesis pathway. Positively and negatively significant genes are color-
coded as described in the caption of Figure 5.5. 

 

It is already explained that TCA cycle flux is possibly decreasing, so 

fermentation pathway was investigated. In fermentation pyruvate is first reduced 

to acetaldehyde and then to ethanol. Pyruvate decarboxylase, the enzyme that 

catalyses the reduction to acetaldehyde was found overproduced as three genes 

(At4g33070, At5g01320, At5g17380) coding that enzyme are significantly up 

regulated. The following reduction reaction is catalyzed by alcohol 

dehydrogenase and this gene is also positively significant at 6 out of 8 timepoints 

and also from paired SAM. This provides a strong indication that fermentation 

pathway flux is possibly increasing to provide energy to cells. Pyruvate can also 
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be converted to lactate an-aerobically by lactate dehydrogenase but the expression 

of this gene didn’t change significantly over the course of the experiment.  

 Number of genes related to tryptophan biosynthesis pathway was found 

positively significant from paired SAM and MiTimeS analysis (figure 5.16). Up-

regulation of genes related to this pathway subjected to NaCl stress was not 

observed before. MiTimeS and paired SAM results are plotted in the context of 

tryptophan biosynthesis pathway in figure 5.16. Figure 5.16 shows, starting from 

chorismate all the genes except two involved in tryptophan biosynthesis pathway 

are significantly up-regulated, while the competitive reactions producing 

Phenylalanine and Tyrosine are decreasing.  

 

 

Figure 5.16: Observed transcriptional response of the NaCl stress on tryptophan 
synthesis pathway. Positively and negatively significant genes are color-coded as 
described in the caption of Figure 5.5.  
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The decrease in TCA cycle flux is possibly responsible for down 

regulation of most of the amino-acid production reaction from aspartate, except 

beta-alanine. Production of serine and glycine from 3-phosphoglycerate is also 

decreasing. So the general conclusion that can be drawn is rate of most of the 

amino-acid biosynthesis is decreasing, while tryptophan and beta-alanine 

biosynthesis is increasing. The reason for increase in flux towards tryptophan 

biosynthesis is to produce different secondary metabolites for which tryptophan 

acts as precursor. 

Ethylene Biosynthesis and Signaling 

It is already explained before how ethylene plays an important regulatory 

role in plant. Pathway for ethylene bio-synthesis and its response was also 

explained in detail. Most of the genes’ expressions in this pathway were 

significantly affected the applied salt stress.  

Similar to elevated CO2 stress, ACC oxidase was positively significant 

implying a possible increase in ethylene synthesis, especially after first 9 hours 

(figure 5.17). Both the genes were positively significant from 12 to 30h period 

while one of them was also significant from paired SAM analysis. However, ACC 

synthase (ACS), shows difference from CO2 stress response. One of the ACS 

genes was found significant from 6-12h period, while the other ACS gene was 

missing. ACC synthase 2 (ACS2) gene was found positively significant at all 

timepoints and also from paired SAM (figure 5.17). It is not clear which of the 

ACS gene plays dominant role in ethylene biosynthesis. Both of them are up-
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regulated from NaCl stress, but the time-period over which they are significant 

varies.  

 

Figure 5.17 Observed effect of the NaCl stress on ethylene biosynthesis and signaling at 
the transcriptional level. Positively and negatively significant genes are color-coded as 
described in the caption of Figure 5.5. 
   

With chnage in rate of ethylene production, ethylene signaling cascade is also 

affected which could be seen from the over-expression of genes coding proteins 

ETR1, ETR2, CTR1. ETR1 gene was not found to be significantly affected by 

ethylene, was strongly up-regulated here. The reason for its up-regulation under 

salt stress was an apparent contradiction with [Chen et al., 2005] where it was 

found down-regulated. CTR1 inhibits EIN2, from the expression analysis we also 

see EIN2 being negatively significant at some of the timepoints with over-

expression of CTR1. This cascade leads to over-expression of other genes like 
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EIN3. EIN3 acts as transcription factor for the gene ERF1, from the figure it is 

clear that over-expression of EIN3 is up-regulating the expression of ERF1.  

Table 5.4 Significance levels of ethylene-responsive element-binding family genes under 
NaCl stress. Notation used is same as table 5.2. 

Annotation 1h 3h 6h 9h 12h 18h 24h 30h Paired 
SAM 

ethylene-responsive element-
binding family protein -1 -1 -1 -1 0 0 -1 -1 -1 

ethylene-responsive element-
binding protein, putative -1 -1 -1 -1 0 0 -1 0 -1 

ethylene-responsive element-
binding family protein 0 -1 -1 -1 -1 -1 0 -1 -1 

ethylene-responsive element-
binding factor 4 (ERF4) 0 0 0 -1 0 0 -1 -1 0 

ethylene-responsive element-
binding family protein 0 0 0 0 0 0 0 -1 0 

ethylene-responsive element-
binding protein, putative 0 0 0 -1 0 0 0 0 0 

ethylene-responsive element-
binding protein, putative 0 0 0 -1 0 0 0 0 0 

 

Fatty acid biosynthesis and metabolism 

Vast majority of fatty acid biosynthesis in plants occurs in plastids. Fatty 

acid is also produced in mitochondria but rates of this activity are very small in 

comparison to those found in plastid [Lea and Leegood]. Fatty acid biosynthesis 

is a multistep process involving number of enzymes. It was also observed that 

under the salt stress several genes involved in fatty acid biosynthesis from acetyl 

CoA are negatively significant. Genes related to fatty acid elongation were also 

found negatively significant. Following table 5.5 shows the list of genes involved 

in fatty acid biosynthesis and their significance level at individual timepoints and 

also from paired SAM. 

While there is a possible indication of reduction in fatty acid biosynthesis, 

it was also observed that genes related to fatty acid metabolism are positively 
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significant. List of the genes involved in fatty acid metabolism and their 

significance level from paired SAM and MiTimeS are shown in table 5.6. 

Table 5.5: Significance level of genes at individual timepoints and also from paired SAM 
related to fatty acid biosynthesis under salt stress. Notation used is same as that of table 
5.2 
 

Annotation 1h 3h 6h 9h 12h 18h 24h 30h Paired 
SAM 

3-oxoacyl-[acyl-carrier-protein] 
synthase I -1 -1 -1 -1 -1 -1 -1 -1 -1 

3-oxoacyl-[acyl-carrier-protein] 
synthase III, chloroplast / beta-
ketoacyl-ACP synthase III / 3-
ketoacyl-acyl carrier protein 

synthase III (KAS III) 

-1 -1 -1 -1 -1 -1 -1 -1 -1 

3-ketoacyl-CoA thiolase -1 0 0 0 0 0 0 0 0 
3-oxoacyl-[acyl-carrier protein] 

reductase, chloroplast / 3-
ketoacyl-acyl carrier protein 

reductase 

-1 0 -1 0 0 0 0 0 0 

3-oxoacyl-[acyl-carrier-protein] 
synthase II, putative 0 0 0 0 0 0 1 0 0 

acetyl-CoA C-acyltransferase 1 / 
3-ketoacyl-CoA thiolase 1 

(PKT1) 
-1 -1 -1 0 -1 -1 -1 -1 -1 

acetyl-CoA C-acyltransferase, 
putative / 3-ketoacyl-CoA 

thiolase, putative 
0 -1 -1 -1 0 -1 0 0 -1 

acetyl-CoA C-acyltransferase, 
putative / 3-ketoacyl-CoA 

thiolase, putative 
0 0 0 0 0 0 0 0 0 

acetyl-CoA C-acyltransferase, 
putative / 3-ketoacyl-CoA 

thiolase, putative 
0 0 0 0 0 0 0 0 0 

acetyl-CoA carboxylase 1 
(ACC1) 0 0 -1 0 0 0 0 0 0 

acetyl-CoA carboxylase 2 
(ACC2) 0 0 -1 0 0 0 0 0 0 

acetyl-CoA carboxylase, biotin 
carboxylase subunit (CAC2) 0 0 -1 0 -1 -1 -1 0 0 

acyl carrier family protein / ACP 
family protein 0 0 -1 -1 -1 -1 -1 -1 -1 

acyl carrier family protein / ACP 
family protein 0 0 -1 -1 -1 -1 -1 -1 -1 

acyl carrier protein 3, chloroplast 
(ACP-3) -1 0 0 0 0 0 0 0 0 

acyl carrier protein, chloroplast, 
putative / ACP, putative -1 -1 -1 -1 -1 -1 -1 -1 -1 

acyl carrier protein, 
mitochondrial / ACP / NADH-
ubiquinone oxidoreductase 9.6 

kDa subunit 

0 0 -1 -1 -1 -1 0 0 -1 

beta-hydroxyacyl-ACP 
dehydratase, putative -1 -1 -1 0 0 0 -1 0 -1 

beta-hydroxyacyl-ACP 
dehydratase, putative -1 0 -1 0 0 0 -1 0 0 
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beta-ketoacyl-CoA synthase 
family (FIDDLEHEAD) (FDH) 0 0 -1 0 0 0 -1 -1 0 

beta-ketoacyl-CoA synthase 
family protein 0 0 0 0 0 0 -1 -1 0 

beta-ketoacyl-CoA synthase, 
putative -1 -1 -1 0 -1 -1 -1 -1 -1 

beta-ketoacyl-CoA synthase, 
putative 0 0 0 0 0 0 -1 -1 0 

enoyl-[acyl-carrier protein] 
reductase [NADH], chloroplast, 

putative / NADH-dependent 
enoyl-ACP reductase, putative 

-1 -1 -1 -1 -1 -1 -1 -1 -1 

very-long-chain fatty acid 
condensing enzyme (CUT1) 0 0 0 -1 0 0 -1 -1 0 

very-long-chain fatty acid 
condensing enzyme, putative 0 -1 -1 -1 -1 0 -1 -1 -1 

very-long-chain fatty acid 
condensing enzyme, putative -1 -1 -1 -1 -1 -1 -1 -1 -1 

  

Table 5.6: Significance level of genes at individual timepoints and also from paired SAM 
related to fatty acid metabolism under salt stress. Notation used is same as that of table 
5.2 
 

Annotation 1h 3h 6h 9h 12h 18h 24h 30h Paired 
SAM 

3-ketoacyl-ACP synthase, 
putative 0 0 1 1 1 1 1 1 1 

acyl-CoA dehydrogenase-
related 0 0 0 0 0 0 1 1 0 

acyl-CoA oxidase (ACX1) 1 1 1 1 1 1 1 1 1 

acyl-CoA oxidase (ACX2) 1 1 1 1 0 0 1 1 1 

 

A general conclusion can be drawn that under the stressed condition, when 

photosynthesis, the source of energy, is decreasing in plants, fatty acid 

degradation is possibly increasing to release energy which can be used for plant’s 

survival and to make possible changes in physiology for stress acclimation. There 

is no excess photosynthetic product which needs to be stored, hence fatty acid 

biosynthesis reactions are negatively significant.  

Universal stress protein (USP) 

Stress doesn’t necessarily create up-regulation of genes’ expression. In this 

analysis there were 2 genes encoding universal stress protein (USP) were found to 
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be differentially expressed. One of them was positively significant all timepoints 

while the other was significantly down-regulated at all timepoints and also from 

paired SAM. 

Table 5.7: Significance levels of Universal Stress Protein (USP) genes at individual 
timepoints and also from paired SAM under salt stress. Notation used is same as that of 
table 5.2 
 

Annotation 1h 3h 6h 9h 12h 18h 24h 30h Paired 
SAM 

universal stress protein 
(USP) family protein -1 -1 -1 -1 -1 -1 -1 -1 -1 

universal stress protein 
(USP) family protein 0 0 -1 -1 -1 -1 -1 -1 -1 

universal stress protein 
(USP) family protein 0 0 1 1 0 0 1 0 0 

universal stress protein 
(USP) family protein -1 0 -1 0 0 -1 0 0 0 

universal stress protein 
(USP) family protein 0 0 -1 0 0 0 -1 0 0 

universal stress protein 
(USP) family protein -1 -1 -1 0 -1 -1 0 0 0 

universal stress protein 
(USP) family protein 0 0 0 0 0 0 0 1 0 

universal stress protein 
(USP) family protein 1 0 1 0 1 0 0 0 0 

universal stress protein 
(USP) family protein 0 0 0 0 0 0 0 0 0 

universal stress protein 
(USP) family protein 1 1 1 1 1 1 1 1 1 

 

 

5.1.3 Clustering results of Arabidopsis thaliana liquid cultures subjected 
to trehalose stress 
 
 To study the response of trehalose, a non-reducing disaccharide involved 

in sugar partitioning and stress response in several organisms, on plant growth 

media experiments were conducted as explained in the experimental design 

section. For an effective comparison in this combined stress experiment with the 

other experiment of this project stresses were applied in the same fashion and 

samples were also harvested at the same timepoints. Table 5.8 shows the weight 

of the plant samples and the corresponding media pH measurements for control 
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experiment (SC) and trehalose stress experiment (TC). Sample 17 and 2 were 

removed from analysis as I noticed bacterial contamination in these liquid 

cultures. From the table it is clear sample 18 or TC experiment is weight 

substantially lower than weights of the rest of the samples. The plants in this flask 

possibly didn’t grow completely for some unknown reasons. When the samples 

were clustered based on gene expressions this sample was found to cluster 

separately implying significant difference in the physiology of this sample 

compared to the others. I believe this sample is an outlier and hence removed for 

further analysis. The timepoint 0h for TC experiment is represented by geometric 

mean of the expressions of sample 19 and 20.  

Table 5.8: Weights and media pH measurements for harvested samples of control and 
trehalose stress experiments. 

  Control (SC) trehalose stress(TC) 

Time Pt. Sample 
No Weight pH Weight pH 

0 20 14 6.16 17.9 6.83 
0 19 16.9 6.21 17.6 6.65 
0 18 19 6.18 3.5 5.80 
0 17 17.8 6.45 N.A. N.A. 
1 1 13.7 6.13 19.4 6.75 
1 2 12.8 6.43 N.A. N.A. 
3 3 14.7 6.09 22.5  
3 4 16.3 6.23 20.9 6.79 
6 5 9.2 6.32 21.5 6.70 
6 6 15.1 6.3 23.2 7.06 
9 7 18 6.35 22.9 6.78 
9 8 21 6.24 23.3 6.63 

12 9 12 6.28 24.3 6.83 
12 10 14.5 6.4 23.4 6.73 
18 11 22.9 6.3 21.2 7.06 
18 12 21.9 6.36 19.3 6.76 
24 13 21.8 6.27 29.2 6.83 
24 14 20.1 6.45 20.7 6.91 
30 15 28.3 6.51 28.7 6.70 
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30 16 30.6 6.4 19.9 6.75 
 

Plants were immediately frozen in liquid nitrogen and kept at -80oC until they 

were ground in liquid nitrogen. Whole plans were ground in liquid nitrogen and 2 

grams of this sample was used for transcriptional profiling analysis. Please see the 

materials and methods section for details of the steps followed in the experiment. 

5.1.3.1 Multivariate statistical analysis 
 

Similar to the previous comparison analysis, before the analysis is started, 

a common repository of genes is selected. The selected 11416 genes have non-

zero expression values for at least 12 out of 16 timepoints. PCA of the timepoints 

for control (SC) and trehalose stress (TC) experiments show that they are 

separated in reduced gene space (figure 5.18), implying that applied trehalose 

stress is causing a significant change in the transcriptional level. First 3 principal 

components contain 35, 28 and 11% of the information. When the three 

components were combined, around 75% of the variance is retained. Control 

timepoints were more spread out while the trehalose stress experimental 

timepoints are not, except for one timepoint.  
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Figure 5.18 PCA analysis of the experimental timepoints of control and perturbed 
experiments. The experiments are separated in reduced gene space as trehalose stress is 
moving the timepoints along PC2. 
 
Hierarchical clustering also shows a clear separation of the control and trehalose 

stress timepoints [Figure 5.19]. 

 

Figure 5.19 Hierarchical clustering of the samples shows two experimental groups form 
two distinct clusters. 
 

Both paired SAM and MiTimeS were used for significance analysis based 

on overall and individual timepoints as explained earlier. Delta value of 2.14 was 

used for paired SAM, because at this significance level there was maximum 

number of significant genes with minimum possible false discovery rate. There 
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were 709 and 885 genes found positively and negatively significant from paired 

SAM analysis with the delta value mentioned above, which are 6 and 8% of the 

genes used for analysis. These numbers are greater than that CO2 stress response 

and smaller than NaCl stress response. In MiTimeS analysis when multiple test 

correction was used, 2.34 was selected as the delta value. At this delta, the 

combined FDR from all the timepoints was same as the FDR of the paired SAM 

analysis. Corrected delta value and the significant gene numbers at each timepoint 

were automatically calculated from the iterative algorithm of MiTimeS. The 

number of significant genes at each timepoint and also from paired SAM is shown 

in figure 5.20. The figure shows the significant gene numbers for individual 

timepoints is at the same range as that of paired SAM. At 1h timepoint, numbers 

of differentially expressed genes at both the significance categories are maximum, 

which implies trehalose is possibly creating a strong initial stress response, unlike 

previous stresses. It is also interesting to note, number of negatively significant 

genes are higher at most of the timepoints and also from paired SAM analysis.  
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Figure 5.20 The bar diagram show the number of positively, negatively and non-
significant genes at individual timepoints and also from paired SAM. Timepoint 1h has 
maximum number of positive and negative significant genes. 
 
5.1.3.2 Data validation and interpretation in the context of plant physiology 

 

Trehalose is a non-reducing disaccharide that occurs in a large range of 

organisms, such as bacteria, fungi, nematodes and crustaceans. In addition to its 

function as a storage carbohydrate and transport sugar, trehalose plays an 

important role in stress protection, especially during heat stress and dehydration 

[Wiemken, 1990; Crowe et al., 1998]. Trehalose has been shown to stabilise 

proteins and membranes under stress conditions, especially during desiccation. 

Furthermore, trehalose remains stable at elevated temperatures and at low pH and 

does not undergo Maillard browning with proteins. These protective properties of 

trehalose are clearly superior to those of other sugars, such as sucrose, making 

trehalose an ideal stress protectant [Wingler A., 2000]. 

The observation that most of the trehalose formed in Arabidopsis is 

simultaneously being degraded by trehalase raises the questions of the function of 
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trehalose biosynthesis. The precursor of trehalose, trehalose-6-phosphate (T6P), 

prevents an uncontrolled influx of glucose into glycolysis. The synthesis of T6P 

may also play a role in the regulation of photosynthetic carbon metabolism. 

Similar to sucrose, trehalose induces enzymes involved in the accumulation of 

storage carbohydrates in photosynthetic tissues. In Arabidopsis, trehalose strongly 

induces the expression of ApL3, a gene encoding a large subunit of ADP-glucose 

pyrophosphorylase, which is an important enzyme in starch biosynthesis. This 

induction of ApL3 expression leads to increased ADP-glucose pyrophosphorylase 

activity, an overaccumulation of starch in the shoots and decreased root growth 

[Wingler et al., 2000; Fritzius et al., 2001]. 

Trehalose is produced from UDP-glucose in two steps. Trehalose-6P 

produced from UDP glucose is catalyzed by trehalose-6-phosphate synthase 

(TPS). Trehalose-6-phosphate phosphatase (TPP) catalyses the subsequent 

reaction of trehalose production. Functional genes encoding enzymes of trehalose 

synthesis, i.e. TPS and TPP, have been identified in Arabidopsis [Blazquez et al., 

1998; Vogel et al., 1998].  

Trehalase activity normally keeps cellular trehalose concentrations low in 

order to prevent detrimental effects of trehalose accumulation on the regulation of 

carbon metabolism. Such a role of trehalase may be of particular importance in 

interactions of plants with trehalose-producing micro-organisms. In support of 

this hypothesis, expression of the Arabidopsis trehalase gene and trehalase 

activity were found to be strongly induced by infection of Arabidopsis plants with 
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the trehalose-producing pathogen Plasmodiophora brassicae [Brodmann et al., 

2002]. 

 In accordance with the previous observations, it was found the trehalase 

gene is positively significant at all the timepoints and also from paired SAM 

analysis under trehalose stress. Hence, external trehalose added to the media 

follows the same response as that of trehalose-producing pathogen. The increased 

trehalose concentration might be affecting the sugar partitioning, hence need to be 

degraded in order maintain homeostasis. Among the other genes of this pathway 

one of the trehalose-6-phosphate phosphatase genes (At4g22590) was also 

positively significant from paired SAM analysis. There were couples of other 

trehalose-6-phosphate phosphatase genes differentially expressed at only few 

timepoints. Significance level of these genes at individual timepoints and from 

paired SAM are shown in table 5.9 

Table 5.9: Table shows the significance level of genes encoding enzymes in trehalose 
synthesis and degradation pathway under trehalose stress. Notation used is same as that 
of table 5.2. Gene coding for trehalose, the enzyme that catalyses trehalose degradation 
was positively significant at all timepoints.  
 

 Annotation  1h 3h 6h 9h 12h 18h 24h 30h 
Paired 
SAM 

glycosyl hydrolase family protein 37 / 
trehalase, putative 1 1 1 1 1 1 1 1 1 
trehalose-6-phosphate phosphatase 
(TPPA) 0 0 0 0 0 0 0 1 0 
trehalose-6-phosphate phosphatase 
(TPPB) 0 1 0 0 0 0 0 1 0 
trehalose-6-phosphate phosphatase, 
putative -1 -1 0 0 -1 0 0 0 0 
trehalose-6-phosphate phosphatase, 
putative 0 0 0 0 0 0 0 0 0 
trehalose-6-phosphate phosphatase, 
putative 1 0 1 1 0 1 1 1 1 
trehalose-6-phosphate synthase, putative 0 0 -1 -1 0 -1 0 0 0 
ADP-glucose pyrophosphorylase family 
protein 0 0 0 0 0 0 0 -1 0 
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Calvin cycle, starch and sucrose production 

As explained before CO2 fixation in Calvin cycle is catalyzed by Rubisco, 

which comprises two subunits, small (rbcS) and large (rbcL), which are encoded 

by nuclear and chloroplast genes respectively. The rbcL gene is positively 

significant at three timepoints from 3 to 9h (figure 5.21). Among the four rbcS 

gene family only 1A and 1B were found from analysis and the other two subunits 

were missing. Both the genes were negatively significant at 24 and30h timepoints 

similar to CO2 and NaCl stress response. Rubisco small subunit 1A gene was also 

down-regulated at 1 and 9h. Rubisco activase gene was also missing in the 

analysis. Two gene encoding phosphoglycerate kinase, the enzyme catalyzing the 

conversion of 3PG to 1,3-bis-phosphoglycerate, is negatively significant at 1h, 

similar to Rubisco small subunit 1A. Other genes were down-regulated at 6 and 

18h timepoints (figure 5.21).  

Triose-phosphates transported from the chloroplasts to the cytoplasm are 

converted to fructose-1,6-bisphosphate by fuctose-bisphosphate aldolase. Though 

the chloroplast copy of this gene was negatively significant, but cytoplasmic gene 

was positively significant from paired SAM analysis. This underscores the 

importance of analyzing gene expression in the context of cellular components.  

The genes encoding Phosphoglucomutase and UDP-glucose 

pyrophosphorylase, enzymes involved in production of UDP-glucose from 

glucose-6-phosphate, is significantly under-expressed at 6-18h of perturbation 

(Figure 5.21). One of the SPS genes was negatively significant at only 6h 

timepoint while the other one was differentially expressed at none of the 
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timepoints. SPS, which is potentially the main regulatory enzyme and activated 

by glucose-6P and inhibited by inorganic phosphate [Buchanan et al., 2001]. One 

of the sucrose phsosphate phosphatase genes corresponding to the next reaction 

follows exactly same significance profile as that of SPS, as it becomes negatively 

significant at 6h. However, the other sucrose phsosphate phosphatase gene was 

positively significant from 9-24h period. The differential response of the sucrose 

phsosphate phosphatase genes from this and also from other experiments raises 

the question which one is actually regulating the processes. SS gene is considered 

to be mainly active in the breakdown of sucrose was positively significant 

[Buchanan et al., 2001] at all timepoints and also from paired-SAM. The other 

copy of SS gene was non-significant at all the timepoints and hence from paired 

SAM. This again shows the need to identify the right gene from analysis and 

incomplete nature of the current annotation. It was found before that sucrose 

synthase and invertase activities are affected by trehalose in soybeans [Muller et 

al., 1998]. Here I see the similarity in A. thaliana as well. Four genes encoding 

intervase At4g25250, At5g51520, At5g62340 and At5g64620 were also found 

negatively significant from paired SAM in this experiment. 

Starch, produced in chloroplast, and also serves as a transient sink to 

accommodate excess photosynthate that cannot be converted to sucrose and 

exported (Figure 5.21) [Lea and Leegood, 1993]. Hence, when sucrose synthesis 

is restricted, starch synthesis is promoted. ADP-glucose pyrophosphorylase 

(AGPase) is a key enzyme catalyzing ADP-glucose formation and genes encoding 

this enzyme was found negatively significant at 1 and 6h timepoints. This result is 
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inconsistent with previous finding of increase in ADP-glucose pyrophosphorylase 

gene under trehalose stress. However, the gene encoding starch synthase was 

found positively significant at 5 out of 8 timepoints. Starch synthase catalyses the 

starch production from ADP glucose and this gene’s over-expression is possibly 

increasing the starch synthesis, as expected in case of trehalose stress. Other genes 

involved in starch degradation were mostly non-significant. 

In conclusion, the rate of carbon fixation decreases especially at the later stage 

of the experiment. Sucrose synthase gene is over-expressed leading to possible 

degradation of sucrose and starch synthesis is also increasing, both being 

consistent with past results. 
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Figure 5.21 Observed effect of the applied trehalose perturbation on the physiology of 
Calvin cycle, starch and sucrose biosynthesis pathways at the transcriptional level. 
Positively and negatively significant genes are color-coded as described in the caption of 
Figure 5.5. Sucrose degradation is increasing with a possible increase in starch synthesis. 



 127

Photorespiration 

Most of the photorespiratory genes were found negatively significant. Some of 

them were negatively significant from paired SAM as well showing strong down 

regulation over the 30h of the experiment. Figure 5.22 shows the significance 

level of the genes involved in the photorespiration pathway at individual 

timepoints and from paired SAM analysis.  

 

Figure 5.22 Observed effect of the applied trehalose perturbation on the physiology of 
photorespiration pathways at the transcriptional level. Positively and negatively 
significant genes are color-coded as described in the caption of Figure 5.5. 
Photorespiratory pathway was negatively significant as it was in other stress responses. 
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Nitrogen assimilation and amino-acid biosynthesis 

Apart from CO2 stress response, only under the trehalose stress NR1 gene 

is positively significant (Fgiure 5.23). Nitrate reductase 2 (NR2) is positively 

significant at all the timepoints and also from paired SAM. Being consistent with 

NR1 gene, nitrite reductase and ferredoxin-dependent glutamate synthase (Fd-

GOGAT 1) genes are positively significant 30h timepoint. This provides a 

compelling indication that nitrogen assimilation is increasing under trehalose 

stress. GS2 is also a part of nitrogen assimilation through GOGAT mechanism is 

not showing similar significance profile and the gene is negatively significant at 3 

and 24h timepoints (figure 5.23). Recycle of NH4
+ from photorespiration is 5-10 

times more than NH4
+ assimilated from nitrate reduction. In spite of strong down-

regulation of photorespiratory pathway GS2 gene was down regulated at only two 

timepoints. In the overall effect increase in NH4
+ assimilation from nitrate 

reduction is more than compensated by decrease in NH4
+ release from 

photorespiration, hence we see a moderate decrease in GS2 gene. 

TCA cycle flux is possibly also going towards production of aspartate and 

other amino acids for which it is a precursor. This becomes evident as we see 

aspartate aminotransferase gene is positively significant at half of the timepoints. 

This is indeed true as glutamate decarboxylase gene was also positively 

significant at 2 of the timepoints. The flux towards threonine production is 

possibly decreasing as both the genes encoding threonine synthase are under-

expressed, one of them is negatively significant from paired SAM as well. The 

flux towards methionine production is possibly increasing as methionine synthase 
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gene is positively significant at two of the timepoints and negatively significant in 

none. Similarity of CO2 stress response and trehalose stress response in the 

context of nitrogen assimilation is quite perceptible. In both the stresses nitrate 

reduction was increasing coupled with rise in flux towards beta-alanine and 

methionine production pathway.  

 

Figure 5.23 Observed effect of the applied trehalose stress on Nitrogen assimilation and 
amino-acid biosynthesis pathway. Positively and negatively significant genes are color-
coded as described in the caption of Figure 5.5. Nitrogen assimilation is possibly 
increasing with increase in some of the amino-acids biosynthesis flux, unlike NaCl stress 
response where the amino-acid biosynthesis reactions were going down.   
 

Similar to the other stress response pathways, genes involved in this 

pathway are mostly up-regulated. All the genes except two in the pathway starting 

from Chorismate to tryptophan are positively significant at 6 or 8 timepoints and 

also from paired SAM (figure 5.24). Anthranilate phosphoribosyltransferase and 
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indole-3-glycerol-phosphate synthase genes, which are not up-regulated in other 

stress responses were positively significant here (figure 5.24). Most up-regulation 

of gene belonging to this pathway was obtained under trehalose stress. Overall 

increase in nitrogen assimilation is possibly allowing a greater flux towards 

tryptophan biosynthesis.  

 

Figure 5.24 Observed transcriptional response of the trehalose stress on tryptophan 
synthesis pathway. Positively and negatively significant genes are color-coded as 
described in the caption of Figure 5.5. The rate of tryptophan biosynthesis is possibly 
increasing, similar to other stress responses.  
 
Ethylene Biosynthesis and Signaling 

Under the trehalose stress condition we see an interesting phenomenon in 

ethylene biosynthesis pathway. One of the SAM synthase and two ACC oxidase 

genes are positively significant at almost all the timepoints and also from paired 

SAM, implying a possible increase in ethylene biosynthesis. However, ACC 

synthase, putative gene (At4g08040) was negatively significant at 4 out of 8 
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timepoints, while the ACC synthase 2 (ACS2) gene (At1g01480) was positively 

significant only at 30h. ETR2 gene which is activated in presence of ethylene was 

positively significant, also indicating and increase in ethylene production. From 

all the three observations taken together no convincing conclusion could be 

derived about response of ethylene biosynthesis pathway under trehalose stress.  

 

Figure 5.25 Observed effect of the trehalose stress on ethylene biosynthesis and 
signaling at the transcriptional level. Positively and negatively significant genes are 
color-coded as described in the caption of Figure 5.5. 
 

 Both ERT1 and CTR1 genes were positively significant at first 2 

timepoints (figure 5.25). Though CTR1 gene was positively significant at 4 

timepoints, but EIN2 gene in downstream of CTR1 was non-significant all 

timepoints. No positive or negative correlation was observed between CTR1 and 

EIN2 genes from previous comparisons as well, which is feasible if the regulation 
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is not taking place at the transcriptional level. EIN3 and ERF1 genes also show 

similar significance profile of being positively significant at 1h timepoint (figure 

5.25). Theses genes have shown similar profiles under NaCl stress and NaCl and 

CO2 combined stress as well.   

Significance levels of different EREBP genes, which are affected by 

ethylene response are shown in table 5.10. Unlike NaCl and combined response 

most of the genes’ significance level is not changing. The only similarity with 

previous stress comparisons is most of the genes are negatively significant at 9h 

timepoint. This gives some indication that ethylene synthesis is not increasing 

though number of genes of this pathway are significantly over-expressed.   

Table 5.10 Significance level of ethylene-responsive element-binding family genes under 
trehalose stress. Overall stress response these genes were not significant as it was in case 
of NaCl or NaCl and CO2 stress. Negative response was observed predominantly at 9h 
timepoint.  

Annotation 1h 3h 6h 9h 12h 18h 24h 30h Paired 
SAM 

ethylene-responsive element-
binding factor 4 (ERF4) 0 0 0 -1 0 -1 0 0 0 

ethylene-responsive element-
binding family protein 0 0 0 -1 0 0 0 -1 0 

ethylene-responsive element-
binding protein, putative 0 0 0 -1 0 0 0 0 0 

ethylene-responsive element-
binding protein, putative 0 0 0 -1 0 0 0 0 0 

ethylene-responsive element-
binding family protein 1 0 0 0 1 0 1 0 0 

ethylene-responsive element-
binding protein, putative 0 0 0 0 0 0 0 0 0 
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5.2 Combined Stress Responses 
 
5.2.1 Transcriptional response of Arabidopsis thaliana liquid cultures 
subjected to NaCl and CO2 stress 
 
 

I have discussed the transcriptional response of NaCl and CO2 stress 

applied individually. Now I will discuss the response when the stresses are 

applied in combination. For an effective comparison in this combined stress 

experiment the strength of NaCl and CO2 stresses was same as that when applied 

individually. Samples were also harvested at the same timepoints. The combine 

stress was found to create physiological change to the culture within first 30 hours 

of its application. Table 5.11 shows the weight of the plant samples and the 

corresponding media pH measurements for control experiment (SC) and 

combined stress experiment (NP).   

Table 5.11 Weights and media pH readings of plant samples harvested in control and 
NaCl with CO2 stress.  

  Sucrose control NaCl and CO2 stress (NP) 
Time Pt. Sample No Weight pH Weight pH 

0 20 14 6.16 21.3 6.73 
0 19 16.9 6.21 22.0 6.88 
0 18 19 6.18 20.8 6.60 
0 17 17.8 6.45 16.8 6.60 
1 1 13.7 6.13 21.3 6.58 
1 2 12.8 6.43 19.3 6.60 
3 3 14.7 6.09 18.7 6.40 
3 4 16.3 6.23 21.4 6.59 
6 5 9.2 6.32 21.7 6.56 
6 6 15.1 6.3 23.2 6.67 
9 7 18 6.35 18.8 6.52 
9 8 21 6.24 19.7 6.48 

12 9 12 6.28 21.5 6.44 
12 10 14.5 6.4 19.7 6.50 
18 11 22.9 6.3 25.3 6.44 
18 12 21.9 6.36 20.3 6.47 
24 13 21.8 6.27 22.3 6.48 
24 14 20.1 6.45 23.7 6.58 
30 15 28.3 6.51 27.3 6.75 
30 16 30.6 6.4 27.6 6.64 
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Plants were immediately frozen in liquid nitrogen and kept at -80oC until 

they were ground in liquid nitrogen. During hand grinding of the frozen plants in 

liquid nitrogen it was experienced that these plants are much easier to grind 

compared to frozen plants like the NaCl stress experiment. This is only a 

qualitative observation and can not be quantified; nevertheless it is an important 

observation as it implies there have been some physiological changes.   

5.2.1.1 Multivariate statistical analysis 

 

Figure 5.26 PCA analysis shows the control and NaCl with CO2 stress experimental 
timepoints on reduced gene space. The timepoints are clearly separated implying the 
combined stress is producing a significant change in A. thaliana physiology. Combined 
stress is moving the timepoints towards PC1 which accounts for maximum variance in 
the data. 
 

Similar to the previous stress analysis first a common repository of genes 

is selected. The selected 11080 genes have non-zero expression values for at least 

12 out of 16 timepoints. From the Principal Component Analysis (PCA), the 
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control transcriptomic profiles can be clearly differentiated from their perturbed 

counterparts (Figure 5.26). This implies that the physiology of the plant liquid 

cultures is affected by the applied perturbation at transcriptional level, even 

during the first 30h of treatment. First 3 principal components were found to 

capture 60, 16 and 6% of the information, interestingly these numbers are same as 

the of NaCl stress comparison. Hence, when the experiments are viewed at 3-D 

space it can account for most of the variance (82%). It can also be seen due to the 

application of NaCl stress timepoints have moved along principal component 1, 

which accounts for maximum variability.  

 

Figure 5.27 Hierarchical clustering of the samples using Pearsons’ correlation distance 
shows a clear separation as it was in PCA analysis. This implies salt stress is causing a 
significant change in the transcriptional level of A. thaliana.  
 

Experimental timepoints were also clustered using hierarchical clustering and it 

also shows a clear separation between them (Figure 5.27).  

 

Both paired SAM and MiTimeS were used for significance analysis based 

on overall and individual timepoints as explained in the previous stress 

experiments. Delta value of 2.4 was selected for paired SAM, as this delta value 

has highest number of significant genes with minimum (0 in this case) FDR. 
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There were 1729 and 1616 genes found positively and negatively significant from 

paired SAM with this delta value, which constitutes around 16% and 15% of 

genes respectively used for analysis (11080). The delta value used for MiTimS 

analysis was same as that of paired SAM. Number of genes positively, negatively 

and non-significant at individual timepoints obtained from MiTimeS was plotted 

with that of paired SAM results in figure 5.28. All the time-points including 

paired SAM shows almost equal number of significant genes of both types. It is 

clear 6 and 18h timepoints have maximum and minimum number of significant 

genes respectively.  The profile of number of significant genes with time is very 

similar to that of NaCl stress response.  
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Figure 5.28 Percentage of positively, negatively and non-significant genes at individual 
timepoints and from paired SAM. Significant gene numbers were comparable between 
timepoints and also with paired SAM. 
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5.2.1.2 Data validation and interpretation in the context of plant physiology 
 

As a result of genetic, molecular and biochemical analysis combined salt and 

CO2 stress response pathway is well studied. Figure 5.12 shows a schematic 

diagram of the salt stress response pathway, also called SOS pathway. Calcium 

signal is induced by salt stress which is further sensed by calcium binding protein 

SOS3. SOS3 interacts and activated SOS2 which is a serine threonine protein 

kinase. SOS1 is a salt tolerance effector gene encoding a plasma membrane 

Na+/H+ antiporter is regulated be combined activity of SOS2 and SOS3 [Zhu  JK, 

2000] . SOS1 gene regulates transcriptionally and post-transcriptionally 

expression of other genes related to salt tolerance [Shi et al, 2000]. SOS pathway 

may also be involved in stimulation or suppression the activities of other 

transporters involved in ion homeostasis under salt stress, such as vacuolar H+-

ATPases and pyrophosphatases (PPase), vacuolar Na+/H+ exchanger (NHX), and 

plasma membrane K+ and Na+ transporters [Zhu JK, 2002] .  

 From the hypothesis testing results of this experiment it was observed 

SOS3 gene (sodium proton exchanger, putative (NHX7)) was positively 

significant at 9h and 18-30h timepoints, similar to NaCl stress response. 

Information about SOS1 and SOS2 gene was missing in this analysis. Responses 

of several other sodium proton exchanger genes (NHX) were also studied. Among 

them NHX2, NHX3 and NHX6 genes were positively significant at most of the 

timepoints and also from paired SAM. However other NHX genes were non-

significant from paired SAM. Several genes (At4g19960, At2g30070, At4g13420, 

At1g70300, At2g26650, At4g23640) coding for potassium transporter were found 
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to be positively significant and paired SAM analysis, again congruous with the 

results from the literature. It was also observed Na+/Ca2+ antiporter gene 

(At2g47600) is positively significant at 1-6h and 12h timepoints and also from 

paired SAM analysis. In general it was observed that SOS pathway responses to 

NaCl stress and the combines stress are very similar. Hence this pathway of salt 

stress response is conserved whether or not CO2 stress is applied in conjunction.  

Calvin cycle, sucrose and starch production pathway 

In the combined stress response of NaCl and CO2 most of the Calvin cycle 

pathway genes are strongly under-expressed. NaCl and CO2 stress responses 

applied individually causes a down regulation of RuBisCO and other genes in 

chloroplast mostly at last two timepoints [Figure 5.5 and 5.13]. In case of 

combined stress response all the four sub-units of RuBisCO genes are negatively 

significant from paired SAM analysis (figure 5.29). In the following reaction 

photosynthetic product 3-PGA is converted to 1,3-diPGA. This reaction is 

catalyzed by phosphoglycerate kinase which was also found under-produced. 

Genes encoding other chloroplast reactions catalyzed by fructose-1,6-

bisphosphatase and Phosphoglucomutase are also negatively significant from 

paired SAM analysis. Starch synthase genes, involved in starch production from 

ADP-glucose are non-significant at most of the timepoints and also from paired 

SAM analysis. One of the beta-amylase genes were positively significant from 

paired SAM analysis implying starch degradation is increasing under this 

combined stress condition. This beta amylase gene was also positively significant 

from NaCl stress response, but only at few timepoints. In case of combined stress 
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the cumulative response was higher and the expression level crossed the threshold 

of significance for paired SAM analysis. Sucrose is possibly over-produced as 

sucrose phosphate synthase is gene is over-expressed. However unlike NaCl 

stress, sucrose phosphate phosphatase and sucrose synthase genes are non-

significant from paired SAM analysis implying sucrose production is increasing, 

but not as much as it was in case of NaCl stress alone 
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.  

Figure 5.29 Observed effect of the applied perturbation on the physiology of Calvin 
cycle, starch and sucrose biosynthesis pathways at the transcriptional level. Positively 
and negatively significant genes are color-coded as described in the caption of Figure 5.5. 
Rubisco genes were negatively significant from paired SAM analysis implying a 
reduction in carbon fixation. Gene encoding SPS, the regulating enzyme in sucrose 
synthesis pathway was positively significant along with sucrose phosphate phosphatase.  
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Photorespiration 

Similar to NaCl stress response, most of the photorespiratory pathway genes 

are negatively significant from paired SAM analysis (figure 5.30). Genes 

encoding glutamate-glyoxylate aminotransferase 2, serine hydroxymethyl 

transferase, NAD+ hydroxyl pyruvate reductase, phosphoglycolate phosphatase 

are all negatively significant at most of the timepoints and also from paired SAM 

analysis, implying a net reduction in photorespiratory flux. 

 

Figure 5.30 Observed effect of the applied perturbation on the physiology of 
photorespiration, at the transcriptional level. Positively and negatively significant genes 
are color-coded as described in the caption of Figure 5.5. Photorespiratory pathway flux 
is possibly decreasing significantly as most of the genes are negatively significant from 
paired SAM analysis. Glutamate-glyoxylate aminotransferase 2 gene was not negatively 
significant in any other stress, unlike this combined stress.  
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Nitrogen Assimilations and amino-acid biosynthesis 

 
 
Figure 5.31 Observed effects of the applied NaCl and CO2 combined stress on Nitrogen 
assimilation and amino-acid biosynthesis pathway. Positively and negatively significant 
genes are color-coded as described in the caption of Figure 5.5. This pathway was 
significantly affected due to the applied perturbation (more than any other perturbation 
shown here) as most of the gene of this pathway are significantly up or down regulated. 

 

Figure 5.31 shows significance profiles of genes involved in nitrate reduction 

and its assimilation for amino-acid biosynthesis. Nitrate reductase 1 and 2 shows 

differenetial expression, with NR1 and NR2 becoming negatively and positively 

significant respectively at first few timepoints. Nitrite reductase was negatively 

significant at most of the timepoints and also from paired SAM. Its bemusing why 

nitrite reductase is strongly down-regulated while nitrate reductase isoenzymes 

are not, as this might lead to accumulation of toxic nitrite ions inside cells. This is 

the only gene annotated as nitrite reductase in the latest Arabidopsis annotation. 
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There could be another nitrite reductase gene currently unannotated. The 

regulation of nitrite reductase might not be at the transcriptional level; hence its 

mRNA abundance doesn’t truly represent its active enzyme concentration. GS2, 

glutamine synthetase 2 is active in chloroplast was from 6-30h period providing a 

strong indication of the down regulation of nitrogen assimilation. This down 

regulation could also be because of decrease in photorespiration pathway flux. 

NH4
+ released from photorespiration is 5-10 times more than that of NH4

+ fixation 

from nitrate reductase.  

 As mentioned before, aspartate is precursor for number of amino acids and 

is produced from OAA, a TCA cycle intermediate. Glutamate decarboxylase, 

catalyzing reaction from aspartate to beta-alanine is positively significant at all 

time points and also from paired SAM analysis. Most of the other genes of this 

pathway [Figure 5.31] involved in producing other amino acids are negatively 

significant.  

 Similar to NaCl stress in case of combined stress it was observed that flux 

through tryptophan biosynthesis pathway is increasing. Genes encoding 

anthranilate phosphoribosyltransferase, both the subunits of anthranilate synthase 

and tryptophan synthase are positively significant at all timepoints and also from 

paired SAM analysis. However phosphoribosylanthranilate isomerase isoenzymes 

are under-produced at first 24hs, which is contradictory to the other genes from 

the same pathway. It should be noted that these phosphoribosylanthranilate 

isomerase are annotated as putative and the gene coding this enzyme can not be 

verified from established biochemical databases like KEGG as the latter shows 
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this enzyme as unidentified for Arabidopsis pathway. Again it is clear that 

transcriptional response of the trytophan biosynthesis pathway under combined 

stress is very similar to that of NaCl stress response. The only difference is in case 

of combined stress anthranilate phosphoribosyltransferase and histidinol-

phosphate aminotransferase genes are strongly up and down regulated 

respectively. Hence it can be speculated that in case of combined stress 

tryptophan production is increasing at the cost of tyrosine and phenylalanine, the 

other two amino-acids that share the same precursor chorismate. Tryptophan 

could be related to general stress response, hence in case of combined stress 

higher stress level is possibly causing increased tryptophan production.  

 
Figure 5.32: Observed transcriptional response of the NaCl and CO2 combined stress on 
tryptophan synthesis pathway. Positively and negatively significant genes are color-coded 
as described in the caption of Figure 5.5. Similar to amino acid biosynthesis pathway, 
most of these genes were significantly up or down regulated due to applied perturbation. 
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Ethylene biosynthesis and signaling cascade 

In case of both CO2 and NaCl stress response it was observed that ACC 

synthase gene was positively significant at most of the timepoints and also from 

paired SAM analysis. When combined stress is applied, only ACS2 gene was 

identified from analysis as the other two ACS genes were missing (figure 5.33). 

Similar to NaCl stress response ACS2 gene was positively significant at all 

timepoints and from paired SAM.  ACC oxidase, the enzyme for the next reaction 

in ethylene biosynthesis was positively significant at 4 timepoints and also from 

paired SAM. But, the other ACC oxidase gene was non-significant at most of the 

timepoints. As ACCS is the most regulating enzyme, up- regulation of this gene 

could cause a increase in ethylene biosynthesis.  

Similar to NaCl stress response, ETR1 and CTR1 gene was positively 

significant at all timepoints and also from paired SAM analysis (figure 5.33). As 

explained before, ETR1 gene is up-regulated by ethylene and here we see its up-

regulation where ACS2 gene, which plays a regulatory role in ethylene 

biosynthesis, is also positively significant. EIN3, EIL1 and ERF1 genes show 

similar response as that of NaCl stress alone. These genes are regulated by CTR1 

gene, as the CRT1 gene expression is similar in NaCl and combined stress 

responses, so are the expression of its downstream genes.  
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Figure 5.33 Observed effect of the NaCl and CO2 combined stress on ethylene 
biosynthesis and signaling at the transcriptional level. Positively and negatively 
significant genes are color-coded as described in the caption of Figure 5.5. 

  

It was observed before expression of EREBP genes are affected by ethylene. 

Significance results of Arabidopsis EREBP genes obtained in this comparison are 

shown in table 5.12. At5g07580 and At5g25190 genes are negatively significant 

at most of the timepoints and from paired SAM. Other EREBP genes are also 

negatively significant at 9 and 18h timepoints. At5g25190 gene was also 

negatively significant from NaCl stress response and most of the other EREBP 

genes were also negatively significant at 9h timepoint.  

 In general it was observed that NaCl stress and NaCl and CO2 stress 

shown considerable similarity in their transcriptional response of ethylene 

signaling cascade genes and ethylene response genes, apart from two genes of this 
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pathway ETR2 and EIN2. Possibly these two genes follow different regulatory 

mechanism then the rest of the genes. 

Table 5.12: Significance level of ethylene-responsive element-binding family genes 
under NaCl and CO2 combined stress. Overall stress response was through down 
regulation and almost all the genes were negatively significant at 9 and 18h timepoints.  

 

Annotation 1h 3h 6h 9h 12h 18h 24h 30h Paired 
SAM 

ethylene-responsive 
element-binding family 

protein 
-1 -1 0 -1 -1 -1 -1 -1 -1 

ethylene-responsive 
element-binding 
protein, putative 

-1 -1 -1 -1 -1 0 -1 0 -1 

ethylene-responsive 
element-binding factor 

4 (ERF4) 
0 0 0 -1 0 -1 0 0 0 

ethylene-responsive 
element-binding 
protein, putative 

0 0 0 -1 0 -1 0 0 0 

ethylene-responsive 
element-binding 
protein, putative 

0 0 0 -1 0 -1 0 0 0 

 

Fatty acid biosynthesis and metabolism 

Vast majority of fatty acid biosynthesis in plants occurs in plastids. Fatty 

acid is also produced in mitochondria but rates of this activity are very small in 

comparison to those found in plastid [Lea and Leeegood, 1993]. Fatty acid 

biosynthesis is a multistep process involving number of enzymes. It was also 

observed that under the salt stress several genes involved in fatty acid 

biosynthesis from acetyl CoA are negatively significant. genes related to fatty 

acid elongation were also found negatively significant. Following table 5.13 

shows the list of genes involved in fatty acid biosynthesis and their significance 

level at individual timepoints and also from paired SAM. 
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Table 5.13: Significance level of genes at individual timepoints and also from paired 
SAM related to fatty acid biosynthesis under salt stress. Notation used is same as that of 
table 5.2. Most of the genes response was through down regulation which is similar to 
NaCl stress response. Maximum number of negatively significant genes was observed at 
6h timepoint. 
 

Annotation 1h 3h 6h 9h 12h 18h 24h 30h Paired 
SAM 

acyl carrier family protein / ACP 
family protein -1 -1 -1 -1 -1 -1 -1 -1 -1 

beta-hydroxyacyl-ACP dehydratase, 
putative -1 -1 -1 -1 -1 0 -1 0 -1 

acyl carrier protein, chloroplast, 
putative / ACP, putative -1 -1 0 -1 -1 0 -1 -1 -1 

acyl carrier protein, chloroplast, 
putative / ACP, putative -1 -1 0 -1 -1 0 -1 -1 -1 

acyl carrier protein 3, chloroplast 
(ACP-3) -1 -1 0 0 0 0 0 0 0 

acetyl-CoA C-acyltransferase 1 / 3-
ketoacyl-CoA thiolase 1 (PKT1) -1 0 -1 -1 -1 -1 -1 -1 -1 

acetyl-CoA C-acyltransferase 1 / 3-
ketoacyl-CoA thiolase 1 (PKT1) -1 0 -1 -1 -1 -1 -1 -1 -1 

acetyl-CoA carboxylase, biotin 
carboxylase subunit (CAC2) -1 0 -1 -1 -1 0 -1 0 -1 

beta-hydroxyacyl-ACP dehydratase, 
putative -1 0 -1 -1 -1 0 -1 0 -1 

acetyl-CoA C-acyltransferase, 
putative / 3-ketoacyl-CoA thiolase, 

putative 
-1 0 -1 -1 0 0 0 0 0 

3-oxoacyl-[acyl-carrier-protein] 
synthase I -1 0 -1 -1 0 0 0 0 0 

acetyl-CoA C-acyltransferase, 
putative / 3-ketoacyl-CoA thiolase, 

putative 
-1 0 -1 -1 0 0 0 0 0 

3-oxoacyl-[acyl-carrier-protein] 
synthase III, chloroplast / beta-
ketoacyl-ACP synthase III / 3-
ketoacyl-acyl carrier protein 

synthase III (KAS III) 

-1 0 -1 0 0 0 0 -1 0 

3-oxoacyl-[acyl-carrier protein] 
reductase, chloroplast / 3-ketoacyl-

acyl carrier protein reductase 
-1 0 -1 0 0 0 0 0 0 

acyl carrier protein, mitochondrial / 
ACP / NADH-ubiquinone 

oxidoreductase 9.6 kDa subunit 
0 0 -1 -1 -1 0 -1 0 -1 

acetyl-CoA C-acyltransferase, 
putative / 3-ketoacyl-CoA thiolase, 

putative 
0 0 -1 0 0 0 0 0 0 

acetyl-CoA C-acyltransferase, 
putative / 3-ketoacyl-CoA thiolase, 

putative 
0 0 -1 0 0 0 0 0 0 

3-ketoacyl-ACP synthase, putative 0 0 0 0 0 0 0 -1 0 
3-ketoacyl-CoA thiolase 0 0 0 0 0 0 0 1 0 

acetyl-CoA synthetase, putative / 
acetate-CoA ligase, putative 0 0 0 0 0 0 0 1 0 

3-oxoacyl-[acyl-carrier-protein] 
synthase II, putative 0 0 0 0 0 0 1 0 0 

acetyl-CoA C-acyltransferase, 
putative / 3-ketoacyl-CoA thiolase, 0 0 0 1 0 0 0 0 0 



 149

putative 
acetyl-CoA C-acyltransferase, 

putative / 3-ketoacyl-CoA thiolase, 
putative 

0 0 0 1 0 0 0 0 0 

acetyl-CoA carboxylase 2 (ACC2) 1 0 0 0 0 0 0 0 0 
acetyl-CoA carboxylase 1 (ACC1) 1 1 0 1 1 0 0 0 0 

  

While there is a possible indication of reduction in fatty acid biosynthesis, 

it was also observed that genes related to fatty acid metabolism are mostly 

positively significant. List of the genes involved in fatty acid metabolism and 

their significance level from paired SAM and MiTimeS are shown in table 5.14.  

Table 5.14: Significance level of genes at individual timepoints and also from paired 
SAM related to fatty acid metabolism under salt and CO2 combined stress. Notation used 
is same as that of table 5.2. Most of the genes response was through up regulation 
implying increased degradation of fatty acid, similar to NaCl stress response. Maximum 
number of negatively significant genes was observed at 6h timepoint. 
 

Annotation 1h 3h 6h 9h 12h 18h 24h 30h Paired 
SAM 

acyl-activating enzyme 18 
(AAE18) 1 1 1 1 1 1 1 1 1 

acyl-CoA oxidase (ACX2) 1 1 1 1 1 1 1 1 1 

acyl-CoA oxidase (ACX1) 1 1 1 1 1 1 1 1 1 
malonyl-CoA decarboxylase 

family protein 0 0 1 0 1 1 1 0 0 

acyl-CoA dehydrogenase-
related 0 1 1 0 1 1 1 1 1 

 

A general conclusion can be drawn that under the stressed condition, when 

photosynthesis, the source of energy, is decreasing in plants fatty acid degradation 

is possibly increasing to release energy from it which can be used for plant’s 

survival and to make possible changes in physiology for stress acclimation. There 

is no excess photosynthetic product which needs to be stored, hence fatty acid 

biosynthesis reactions are negatively significant.  
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Table 5.15: Significance levels of Universal Stress Protein (USP) genes at individual 
timepoints and also from paired SAM under salt and CO2 stress. Notation used is same as 
that of table 5.2. Similar to NaCl stress most of the gene’s response was through down-
regulation. 

Annotation 1h 3h 6h 9h 12h 18h 24h 30h Paired 
SAM 

universal stress protein 
(USP) family protein -1 -1 -1 -1 -1 -1 -1 -1 -1 

universal stress protein 
(USP) family protein 0 -1 -1 -1 -1 0 -1 0 -1 

universal stress protein 
(USP) family protein 0 -1 -1 -1 -1 -1 -1 -1 -1 

universal stress protein 
(USP) family protein -1 -1 0 -1 0 -1 -1 -1 -1 

universal stress protein 
(USP) family protein -1 -1 -1 -1 -1 -1 -1 -1 -1 

universal stress protein 
(USP) family protein 0 0 0 -1 -1 -1 -1 -1 -1 

universal stress protein 
(USP) family protein -1 -1 -1 -1 0 -1 -1 -1 -1 

universal stress protein 
(USP) family protein / 

responsive to dessication 
protein (RD2) 

0 0 0 0 1 0 0 0 0 

universal stress protein 
(USP) family protein -1 0 0 0 0 0 0 0 0 

universal stress protein 
(USP) family protein -1 0 -1 -1 0 -1 0 0 0 

universal stress protein 
(USP) family protein -1 0 0 0 0 0 -1 -1 0 

universal stress protein 
(USP) family protein 0 0 1 1 1 0 0 0 0 

universal stress protein 
(USP) family protein -1 -1 0 -1 0 -1 -1 0 0 

universal stress protein 
(USP) family protein 0 0 0 0 0 0 -1 0 0 

 

Genes annotated as Universal Stress Protein (USP) are mostly significantly down 

regulated both from paired SAM and MiTimeS analysis. These genes are of 

special interest because they are supposed to be affected by stress responses. 

However to what extent they are affected and if they are regulated by up or down 

regulation is can be analyzed from stress response studies. 
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5.2.2 Transcriptional response of Arabidopsis thaliana liquid cultures 
subjected to trehalose and CO2 stress  
 

The transcriptional response of trehalose and CO2 stress applied individually were 

discussed above. Now I will discuss the response when the stresses are applied in 

combination. For an effective comparison in this combined stress experiment the 

strength of trehalose and CO2 stresses was same as that when applied 

individually. Samples were also harvested at the same timepoints. The combines 

stress was found to create physiological change to the culture within first 30 hours 

of its application. Table 5.16 shows the weight of the plant samples and the 

corresponding media pH measurements for control experiment (SC) and 

combined stress experiment (TP).  

Table 5.16 Comparison of weight and media pH of control and trehalose and CO2 
combined stress response.  

  Control (SC) trehalose and CO2 stress(TP) 
Time Pt. Sample No Weight pH Weight pH 

0 20 14 6.16 22.7 6.93 
0 19 16.9 6.21 23.0 6.84 
0 18 19 6.18 20.7 6.68 
0 17 17.8 6.45 16.2 6.51 
1 1 13.7 6.13 25.2 6.76 
1 2 12.8 6.43 22.6 6.72 
3 3 14.7 6.09 20.9 6.50 
3 4 16.3 6.23 27.0 6.64 
6 5 9.2 6.32 20.1 6.58 
6 6 15.1 6.3 24.7 6.57 
9 7 18 6.35 25.8 6.81 
9 8 21 6.24 21.8 6.76 

12 9 12 6.28 25.8 6.75 
12 10 14.5 6.4 27.8 6.63 
18 11 22.9 6.3 24.0 6.48 
18 12 21.9 6.36 24.3 6.33 
24 13 21.8 6.27 29.4 6.67 
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24 14 20.1 6.45 30.7 6.77 
30 15 28.3 6.51 31.9 6.95 
30 16 30.6 6.4 32.1 6.90 

 

Plants were immediately frozen in liquid nitrogen and kept at -80oC until they 

were ground in liquid nitrogen. 2 grams of ground sample was used for 

transcriptional profiling analysis. Experimental protocol for RNA extraction, 

RNA amplification, hybridization are explained in detail in materials and methods 

section.   

5.2.2.1 Multivariate statistical analysis 
 

 

Figure 5.34 PCA analysis of the experimental timepoints of control and trehalose and 
CO2 stress experiments. The experiments are separated in reduced gene space as the 
combined stress is moving the timepoints along PC1. 
 
Similar to the previous stress analysis first a common repository of genes is 

selected. The selected 11025 genes have non-zero expression values for at least 

12 out of 16 timepoints. From the Principal Component Analysis (PCA), the 

control transcriptomic profiles can be clearly differentiated from their perturbed 
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counterparts (Figure 5.34). This implies that the physiology of the plant liquid 

cultures is affected by the applied perturbation at transcriptional level, even 

during the first 30h of treatment. First 3 principal components were found to 

capture 38, 25 and 8% of the information. Hence, when the experiments are 

viewed at 3-D space it can account for most of the variance (71%). It can also be 

seen due to the application of trehalose stress timepoints have moved along 

principal component 2, whereas in case of combined stress they moved along 

principal component 1, which accounts for maximum variability.  

 

Figure 5.35 Hierarchical clustering of the samples shows two experimental groups form 
two distinct clusters. 
 

Experimental timepoints were also clustered using hierarchical clustering and it 

also shows a clear separation between them (Figure 5.35). 

Significance analysis of the combined stress was carried out in a similar 

fashion as that of previous comparisons. Paired SAM and MiTimeS were used for 

significance analysis. Delta value of 2.11 was selected for paired SAM, as this 

delta value has highest number of significant genes with minimum (0 in this case) 

FDR. There were 784 and 632 genes found positively and negatively significant 

from paired SAM with this delta value, which constitutes around 7 and 6% 

respectively of genes used for analysis (11025). The delta value used for 
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MiTimeS analysis was 2.2655. The delta value for individual timepoints was 

higher than the one used for paired SAM because of stringent multiple test 

correction. Number of genes positively, negatively and non-significant at 

individual timepoints obtained from MiTimeS was plotted with that of paired 

SAM results in figure 5.36. Timepoint 1h shows maximum number of significant 

genes of both the significant types due to strong initial response of the trehalose 

stress. Strong initial response was also observed in case of trehalose stress, and is 

possibly conserved for any type of trehalose stress response.  
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Figure 5.36 The bar diagram show the percentage of positively, negatively and non-
significant genes at individual timepoints and also from paired SAM under trehalose and 
CO2 combined stress. Timepoint 1h has maximum number of positive and negative 
significant genes, similar to trehalose stress response. 
 

5.2.2.2 Data validation and interpretation in the context of plant physiology 
 

Similar to the response of the trehalose stress alone, it was found the 

trehalase gene is positively significant at 6 of the 8 timepoints and also from 

paired SAM analysis. However, other genes involved in this pathway TPP and 
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TPS show response different from when trehalose stress is applied individually. 

TPP gene At4g17770 was negatively significant at five timepoint and also from 

paired SAM analysis [please see table 5.17]. Another TPP gene At4g22590, 

which was up-regulated at 6 timepoints from trehalose stress was non-significant 

in case of combined stress. Comparison of significance profile of the of the TPP 

and TPS genes shows that trehalose biosynthesis pathway is responding 

differently in individual and combined stress responses. Significance level of 

these genes at individual timepoints and from paired SAM are shown in table 

5.17. 

Table 5.17 Significance profile of genes related to trehalose synthesis and degradation. 
Color-code used was same as table 5.2. 

Annotation 1h 3h 6h 9h 12h 18h 24h 30h Paired 
SAM 

glycosyl hydrolase family protein 37 
/ trehalase, putative 1 0 1 1 0 1 1 1 1 

glycosyl transferase family 20 
protein / trehalose-phosphatase 

family protein 
1 0 1 0 0 0 0 0 0 

glycosyl transferase family 20 
protein / trehalose-phosphatase 

family protein 
0 0 0 0 1 0 0 0 0 

glycosyl transferase family 20 
protein / trehalose-phosphatase 

family protein 
-1 -1 -1 0 -1 -1 0 0 -1 

trehalose-6-phosphate phosphatase 
(TPPA) 0 0 0 -1 0 0 0 0 0 

trehalose-6-phosphate phosphatase 
(TPPB) 0 1 0 1 0 0 0 0 0 

trehalose-6-phosphate phosphatase, 
putative 0 0 0 0 0 0 0 0 0 

trehalose-6-phosphate phosphatase, 
putative 0 0 1 0 0 0 0 0 0 

trehalose-6-phosphate phosphatase, 
putative -1 0 0 -1 0 0 0 0 0 

 

Calvin cycle, sucrose and starch biosynthesis 

It is explained before that RuBosCO catalyses the carbon fixation of 

Calvin cycle. The rbcL gene, which encodes the large subunit of rubisco, was 

positively significant at 9 and 12h timepoints. The Arabidopsis rbcS gene family 
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consists of four members, namely 1A, 1B, 2B and 3B, as mentioned before. In the 

present study, all four subunits were identified as negatively significant at 30h of 

perturbation. In all other stress comparisons, rbcS genes were negatively 

significant at more than one timepoints. Hence, trehalose and CO2 combined 

stress shows least negative response of rubisco genes. Two genes were found 

from analysis encoding phosphoglycerate kinase, one of them being negatively 

significant at most of the timepoints while the other one was down-regulated at 

only 1 and 9h timepoints. Triose-phosphates transported from the chloroplasts to 

the cytoplasm are converted to hexose-phosphates. Sucrose synthesis takes place 

with in a series of reaction starting from triose phosphates transported in cytosol.  

In the pathway of sucrose synthesis starting from triose phosphates several 

genes encoding the following enzymes fuctose-bisphosphate aldolase, glucose-6-

phosphate isomerase, sucrose phosphate synthase and sucrose synthase shows 

similar significance profiles. All of them are positively significant at 9h timepoint. 

None of the genes in this pathway are strongly up or down regulated as none of 

them are identified as differentially expressed from paired SAM analysis. This 

response is very different from what is obtained in case of trehalsoe stress alone, 

where sucrose synthase and fuctose-bisphosphate aldolase genes were positively 

significant from paired SAM. Four genes encoding invertase At2g01610, 

At4g25250, At5g38610, At5g64620 were negatively significant at 5-6 timepoints 

and also from paired SAM (figure 5.37). Two of these genes At4g25250 and 

At5g64620 were also negatively significant under trehalose stress alone.  
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Increase in starch synthesis and up-regulation of ADP-glucose 

pyrophosphorylase was observed in past when trehalose stress is applied. Under 

trehalose and CO2 combined stress two ADP-glucose pyrophosphorylase genes 

were negatively significant at four timepoints during 1-12h period. When 

trehalose stress was applied individually it was significant at only at one or two 

timepoints. Unlike trehalose stress, starch synthase gene was negatively or non-

significant at most of the timepoints. These observations together provide 

indication that starch synthesis is decreasing in case of combined stress. 

In conclusion, the decrease in rate of carbon fixation is possibly minimal under 

this stress response. Contrary to trehalsoe stress alone, reduction in rate of starch 

synthesis was observed in case of combined stress response. Sucrose synthase 

gene was not significantly up-regulated as observed in individual stress.   
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Figure 5.37: Observed effect of the applied perturbation on the physiology of Calvin 
cycle, starch and sucrose biosynthesis pathways at the transcriptional level. Positively 
and negatively significant genes are color-coded as described in the caption of Figure 5.5. 
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Photorespiration 

 

Figure 5.38 Observed effect of the applied perturbation on the physiology of 
photorespiration pathway. Positively and negatively significant genes are color-coded as 
described in the caption of Figure 5.5. 
 

As explained before Carbon fixation and photorespiration “compete” for 

Rubisco activity, hence with increase in CO2 concentration expression of 

photorespiratory genes were suppressed. When only trehalose stress was applied, 
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photorespiratory genes were also down-regulated. In case of combined stress 

several genes involved in photorespiration pathway like Phosphpglyconate 

phosphatase, NAD+ hydroxypyruvate reductase, Glutamine synthetase (GS2), 

Serine hydroxymethyl transferase were negatively significant at most of the 

timepoints and also from paired SAM. Only one gene encoding Serine 

hydroxymethyl transferase was positively significant at 3 timepoints.  

The suppression of photorespiration was observed in all stress responses 

individual or combination hence could be a general stress response behavior 

rather than specific to any particular stress. Please see the last chapter for more 

details.  

 
Nitrogen assimilation and amino-acid biosynthesis  

Consistent with other stress responses NR1 and NR2 genes show differential 

response under combined stress response. NR1 was negatively significant at 12h 

timepoint while NR2 gene was positively significant from 6-12h period. Nitrite 

reductase was negatively significant at 1h timepoint. Though NR1 and nitrite 

reductase genes were down-regulated at only one of the timepoints, but GS2 gene, 

involved in assimilation of reduced NH4
+ was negatively significant at 6 out of 8 

timepoints and also from paired SAM. This apparent inconsistency can be 

attributed to the following reason. NH4
+ released from photorespiration is higher 

than NH4
+ produced from nitrate reduction. It is already observed, under this 

stress condition photorespiration is suppressed, reducing the reflux of NH4
+. 

Hence, what down-regulation of GS2 genes is the combined response of 

photorespiration and nitrate reduction, where photorespiration is the predominant 
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effect. Ferredoxin-dependent glutamate synthase (Fd-GOGAT 1) gene is 

negatively significant at 3 and 6h timepoints, consistent with the hypothesis that 

nitrogen assimilation is moderately suppressed, which is different from trehalose 

stress alone where nitrogen assimilation was increasing.  

 TCA cycle genes aconitate hydratase, NADP+ isocitrate dehydrogenase 

and succinate dehydrogenase are positively significant at more than one 

timepoints. Gene involved in biosynthesis of amino acids produced from aspartate 

was mostly negatively significant at several timepoints, with a very few 

exceptions. Like one of the glutamate decarboxylase genes is non-significant at all 

timepoints while the other one was missing. Other genes like homocysteine S-

methyltransferase(HMT-1), methionine synthase were positively significant at 

one of the timepoints. These enzymes catalyze resactions in biosynthesis of 

methionine. 

 The response of tryptophan biosynthesis pathway was quite similar to 

other stress response. Tryptophan synthase, beta subunit 1 was positively 

significant at 7 out of 8 timepoints and also from paired SAM. No information 

about tryptophan synthase, beta subunit 2 (TSB2) was obtained as this gene was 

missing in the analysis. Interestingly, genes encoding phosphoribosylanthranilate 

isomerase 1 (PAI1), phosphoribosylanthranilate isomerase 2 (PAI2) and indole-3-

glycerol-phosphate synthase were negatively significant at 6 of the 8 timepoints 

and also from paired SAM. Anthranilate phosphoribosyltransferase gene was also 

down-regulated at 3 timepoints. competing reactions producing phenylalanine and 

tyrosine are suppressed as histidinol-phosphate aminotransferase gene is 
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negatively significant at 7 timepoints and as expected, also from paired SAM. 

Histidinol-phosphate aminotransferase gene was also negatively significant in 

other combined stress response of NaCl and CO2, though it was non-significant at 

individual stress responses. In conclusion, tryptophan synthesis is possibly 

increasing like other stress responses, but the flux through this pathway might not 

be as high as it is in case of other stresses.  

Though tryptophan synthase, beta subunit 2 (TSB2) gene is over-

expressed in trehalose and CO2 combined stress, but increase in tryptophan 

biosynthesis flux is possible less than increase due to other stress responses 

(figure 5.40). In no other stress response 3 genes from this pathway was 

negatively significant from paired SAM analysis. In this context this stress 

response is quite unique.  



 

Figure 5.39 Observed effect of the applied perturbation on nitrogen assimilation and amino-
acid biosynthesis pathway under trehalose and CO2 combined stress. Positively and negatively 
significant genes are color-coded as described in the caption of Figure 5.5. 
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Figure 5.40 Observed transcriptional response of tryptophan biosynthesis pathway under 
trehalose and CO2 combined stress. Though TSB1 gene was positively significant at 7 out of 8 
timepoints and also from paired SAM, indole-3-glycerol-phosphate synthase, PAI1 and PAI2 
genes from the same pathway are negatively significant. Positively and negatively significant 
genes are color-coded as described in the caption of Figure 5.5. 
 

Ethylene biosynthesis and signaling 

The response of ethylene signaling cascade genes were very similar in NaCl 

stress and NaCl and CO2 stress, hence they were conserved. But in case of trehalose 

stress and trehalose and CO2 similarity was not obvious.  SAM synthase gene was 

significant at only one or two initial timepoints. One of the ACC synthase genes were 

significant at 9 and 24h timepoints, while the other one was positively and negatively 

significant at 1 and 9h respectively (figure 5.41). Responses of ACC oxidase genes 

were very similar to trehalose stress as they were strongly up-regulated.  

 ETR2 gene, which is up-regulated at ethylene stress, is positively significant at 

only 1h timepoint. Interesting genes involved in part of this signaling cascade i.e. 
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ETR1, ETR2, CTR1, EIN2 shows exactly same significance profile. Under previous 

stress response comparisons EIN3 and ERF1 were showing similar expression profiles. 

But here EIN3 is positively significant from paired SAM but ERF1 is done-regulated at 

two timepoints. The regulations of these genes are not always at the transcriptional 

level, still they show similar profile which is quite surprising. It could be merely a 

coincidence that all of them becoming positively significant at 1h timepoint. 

Nevertheless co-expression of these genes needs to be validates and elucidated at the 

molecular level.  

 

Figure 5.41 Observed response of the ethylene bio-synthesis and signaling pathway genes 
under trehalose and CO2 combined stress. Genes encoding signaling cascade proteins ETR1, 
ETR2, CRT1 and EIN2 shows same significance profile. Positively and negatively significant 
genes are color-coded as described in the caption of Figure 5.5. 
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 The response of the EREBP genes under this stress condition was also quite 

different from that of trehalose stress alone (table 5.18). Here most of the genes are 

negatively significant at 9 and 18h timepoints which is similar to NaCl and CO2 

response. One of these genes At5g25190 was also negatively significant at 5 out of 8 

timepoints and also from paired SAM. This is the same gene that was negatively 

significant at CO2 stress, NaCl stress and NaCl and CO2 combined stress. The response 

of this gene in the context of ethylene stress could a subject of future study.  

Table 5.18: Response of the EREBP genes to combined trehalose and CO2 stress shows almost 
all the genes are negatively significant at 9 and 12h timepoints. 

Annotation 1h 3h 6h 9h 12h 18h 24h 30h Paired 
SAM 

ethylene-responsive element-binding 
protein, putative -1 0 -1 -1 -1 0 0 0 -1 

ethylene-responsive element-binding 
factor 4 (ERF4) 0 0 0 -1 0 -1 -1 -1 0 

ethylene-responsive element-binding 
family protein 0 0 0 0 0 -1 0 0 0 

ethylene-responsive element-binding 
family protein 0 0 0 -1 0 -1 0 0 0 

ethylene-responsive element-binding 
protein, putative 0 0 0 -1 0 -1 0 0 0 

ethylene-responsive element-binding 
protein, putative 0 0 0 -1 0 -1 0 0 0 

ethylene-responsive element-binding 
family protein 0 0 0 0 0 0 -1 0 0 

 

 

5.3 Comparison of combined stresses with their constitutive ones 
 

The unique experimental design used in this research not only allows us to study the 

response of the system by applying different perturbations, but also can compare the 

effect of combined perturbation with individual ones. For each of the NaCl and 

trehalose experiment separately, we can compare the combined stress response (CO2 

and NaCl, CO2 and trehalose) with individual ones (CO2, NaCl or trehalose). One way 

to compare these responses is by comparing the genes that are differentially expressed 
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in response to the stresses applied. To check if the stress responses are additive in 

nature it’s important to investigate this question: “are the genes significant at both the 

individual stresses necessarily significant at combined stress?” Or a question opposite 

to that can also be asked “Do the genes significant at combined stress are significant in 

at least one of the corresponding individual stress?” The data reveals the answers to 

some of these questions.  

 

 

Figure 5.42: Comparison of positively significant genes from individual and combined stress 
responses. Blue, red and yellow circles in the Venn diagram represent the genes that are 
differentially expressed in response to elevated CO2, trehalose and combined stress. In the Venn 
diagram on the right, gene numbers are normalized with respect to total genes of that category. 
The overlap of significant genes between two (or three) stress responses are normalized with 
respect to their geometric means.  
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Figure 5.43 Comparison of negatively significant genes from individual and combined stress 
responses. Rest of the notations is same as figure 5.42. 
 

 

Figure 5.44 Comparison of positively significant genes from individual and combined stress 
responses. Blue, violet and brown circles in the Venn diagram represent the genes that are 
differentially expressed in response to elevated CO2, NaCl and combined stress. Rest of the 
notations is same as Figure 5.42. 
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Figure 5.45 Comparison of negatively significant genes from individual and combined stress 
responses. Rest of the notations is same as figure 5.42. 
 

Analysis of all the four Venn diagrams (figure 5.42 to 5.45) leads us to following 

conclusions: 

• In all the four cases positively significant genes have higher overlap (between 

any two or all the stresses) compared to negatively significant genes.  

• Trehalose stress (T) response is more conserved compared to CO2 stress (C).  

• NaCl stress (N) response is more conserved compared to CO2 stress (C).   

• Between NaCl (N) and trehalose stress (T) NaCl is more conserved. 

• Between NaCl and trehalose stress responses, the later one has higher similarity 

with CO2 stress response.  

• Fraction of genes that are uniquely significant are highest at trehalose stress (T) 

and lowest at NaCl stress (N) 

From analyzing the Venn diagrams, it can be concluded that stress responses are not 

additive. There are some genes (higher in case of trehalose compared to NaCl stress, 
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please see Figure 5.42 to 5.45) that are significant at both the individual stress 

responses but non-significant from combined stress response. List of these genes are 

available in supplementary table S5.1 and S5.2.  

 

5.4 Study of CO2 stresses with or without other stresses 
 

The response of the only elevated CO2 stress (C) can be compared with elevated CO2 

stress response with NaCl (C(N)) and trehalose stress (C(T)). This comparison is 

important as it can tell us to what extent CO2 stress is conserved at the transcriptional 

level along with other stresses. The approach used here was to compare the genes that 

are differentially expressed in three different stress responses. Finally pool of genes that 

are significant in all the three possible comparison (C, C(N) and C(T)), if any, were 

identified. Positively and negatively significant gene pools were compared separately. 

Table 5 shows the comparison of the positively significant genes. There was no gene 

that is positively significant at elevated CO2 stress with or without other stresses. 

Interestingly C(N) and C(T) shown maximum number of common genes while C and 

C(N) shows the minimum number. 

Table 5.19 The table shows the list of genes that are found common from pair-wise comparison 
of positively significant genes of stress responses.  
 
C and C(N) 
1 copper-binding family protein 
2 zinc finger protein-related 
3 kelch repeat-containing protein / serine/threonine phosphoesterase family protein 
C and C(T) 
1 CACTA-like transposase family (Tnp2/En/Spm) 
2 cleavage stimulation factor, putative 
3 copia-like retrotransposon family 
4 DNA-binding protein-related 
5 eukaryotic translation initiation factor 2 family protein / eIF-2 family protein 
6 expressed protein 
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7 expressed protein 
8 expressed protein 
9 expressed protein 
10 expressed protein 
11 importin beta-2 subunit family protein 
12 MATE efflux family protein 
13 mRNA capping enzyme family protein 

14 
nuclear transport factor 2 (NTF2) family protein / RNA recognition motif (RRM)-
containing protein 

15 phosphatidyl serine synthase family protein 
16 preprotein translocase secA subunit, putative 
17 pseudo-response regulator 2 (APRR2) (TOC2) 
18 ubiquitin system component Cue domain-containing protein 
19 urease, putative / urea amidohydrolase, putative 
20 zinc finger (CCCH-type) family protein 
21 zinc finger (Ran-binding) family protein 
C(N) and C(T) 
1 auxin efflux carrier family protein 
2 basic helix-loop-helix (bHLH) family protein 
3 calmodulin-binding protein-related 
4 cold-acclimation protein, putative (FL3-5A3) 
5 COP1-interactive protein 1 / CIP1 
6 cytochrome P450 71A16, putative (CYP71A16) 
7 cytochrome P450 family protein 
8 cytochrome P450 family protein 
9 dormancy/auxin associated family protein 
10 expressed protein 
11 expressed protein 
12 expressed protein 
13 expressed protein 
14 expressed protein 
15 expressed protein 
16 glycosyl hydrolase family 3 protein 
17 haloacid dehalogenase-like hydrolase family protein 
18 laccase, putative / diphenol oxidase, putative 
19 leucine-rich repeat transmembrane protein kinase, putative 
20 major intrinsic family protein / MIP family protein 
21 major latex protein-related / MLP-related 
22 myrcene/ocimene synthase, putative 
23 neurofilament protein-related 
24 nodulin MtN3 family protein 
25 nodulin MtN3 family protein 
26 Null 
27 phenylalanine ammonia-lyase, putative 

28 
plasma membrane intrinsic protein 1C (PIP1C) / aquaporin PIP1.3 (PIP1.3) / 
transmembrane protein B (TMPB) 

29 protease inhibitor/seed storage/lipid transfer protein (LTP) family protein 
30 protein kinase family protein 
31 PWWP domain-containing protein 
32 senescence-associated protein-related 
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33 U-box domain-containing protein 
34 zinc finger (C3HC4-type RING finger) family protein 
C and C(T) and C(N) 
None  

 

The results from the comparison of negatively significant genes are shown in table 6. In 

this case as well there was no gene that was significant at all the stresses C, C(N) and 

C(T).  However, unlike positively significant genes there were only two genes that were 

common between C and C(T) and unfortunately none of them are annotated. There are 

not many genes in this list that are metabolically related. In both positive and negatively 

significant case I find highest number of genes that are common between C(T) and 

C(N). This implies, when CO2 stress is applied with NaCl or trehalose stress it is more 

conserved compared to when it is applied alone. The rationale behind this observation 

is apparently imperceptible, and this could just be a numerical artifact.  

Table 5.20 the table shows the list of genes that are found common from pair-wise comparison 
of negatively significant genes of stress responses. 
C and C(N) 
1 hypothetical protein 
2 expressed protein 
3 hypothetical protein 
4 hypothetical protein 
5 oxygen-evolving enhancer protein 3, chloroplast, putative (PSBQ2) 
6 pseudogene, hypothetical protein 
C and C(T) 
1 expressed protein 
2 hypothetical protein 
C(N) and C(T) 
1 CBL-interacting protein kinase 25 (CIPK25) 
2 early nodule-specific protein, putative 
3 ethylene receptor, putative (ETR2) 
4 expressed protein 
5 expressed protein 
6 expressed protein 
7 expressed protein 
8 Glucose-6-phosphate/phosphate translocator, putative 
9 glycosyl hydrolase family 17 protein 
10 major intrinsic family protein / MIP family protein 
11 monodehydroascorbate reductase, putative 
12 peroxidase, putative 
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13 short-chain dehydrogenase/reductase (SDR) family protein 
14 transferase family protein 
C, C(N) and C(T) 
None  

 

5.5 Pathways and gene families of general interest 
5.5.1 Auxin biosynthesis and regulation 

 

Up-regulation of tryptophan biosynthesis pathway from all the stress 

comparisons opens up a question “why this pathway is up regulated under all the 

different stress conditions?” To search for this answer, biochemical pathways that 

consume tryptophan were analyzed. Tryptophan is used as precursor for biosynthesis of 

a plant hormone auxin which plays an important role in regulation. In this section 

biosynthesis and regulation of auxin will be discussed at length.  

Auxin is an essential plant hormone that influences many aspects of plant 

growth and development, including cell division and elongation, differentiation, 

tropisms, apical dominance, senescence, abscission, and flowering [Davies, 1995]. 

Although auxin has been studied for over 100 years, the mechanisms of its biosynthesis 

remain elusive. Multiple pathways have been proposed [Cohen et al. 2003] for the 

biosynthesis of indole-3-acetic acid (IAA) (the main auxin), including two tryptophan-

dependent pathways and a tryptophan-independent one (figure 5.46). YUCCA, a flavin 

monooxygenase (FMO)–like enzyme, catalyzes a key step in Arabidopsis tryptophan-

dependent auxin biosynthesis [Zhao et al., 2001]. YUCCA catalyzes the N-oxygenation 

of tryptamine, and that this transformation is a rate-limiting step in auxin biosynthesis 

in many plants [Zhao et al., 2001]. The conversion of tryptophan to IAOx is known to 

be catalyzed by two cytochrome P450s, CYP79B2 and CYP79B3 in Arabidopsis 

[Cohen et al. 2003]. Another gene encoding the cytochrome P450 CYP83B1, results in 
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increased indolic glucosinolate levels, a class of secondary compounds [Cohen et al. 

2003]. It has been suggested that CYP83B1 serves regulates the branch point between 

IAA and indolic glucosinolate biosynthesis [Cohen et al. 2003]. Over-expression of 

CRY79B2 yielded plants with an IAA-overproduction phenotype, elevated IAA levels 

and increased expression of IAA-inducible genes similar to that seen in YUCCA over-

expression [Cohen et al. 2003].  

 CYP79B2 and CYP83B1 are differentially localized within the cell. CYP79B2 

is chloroplastic and CYP83B1 resides in the endoplasmic reticulum (ER). YUCCA 

appears to be cytoplasmic [Cohen et al. 2003]. The disparate localizations for these 

enzymes rule out their involvement in an IAA-synthase enzyme complex. The 

differential subcellular localizations suggest that a great deal of internal indolic 

trafficking is involved in the use and control of these pathways [Teale et al., 

2006].Although several proteins with clear binding specificities were identified, the 

functional characterization focused on one of them, AUXIN-BINDING PROTEIN-1 

(ABP1), as it binds auxins with high specificity and affinity [Teale et al., 2006].ABP1 

is a soluble, ER-located, dimeric glycoprotein, which forms a-jellyroll barrel that 

carries auxin in a central hydrophobic pocket [Teale et al., 2006].  

 So, auxin influences aspects of cell division, cell elongation and cell 

differentiation, although exactly how it is involved in each process (and to what extent 

they are intertwined) is not completely understood [Teale et al., 2006]. Whereas the 

levels of some mRNAs decrease many fold in response to auxin, those of other mRNAs 

increase many fold (for example, Aux/IAA, GRETCHENHAGEN-3(GH3) and 

members of the small auxin up RNA (SAUR) gene family) [Teale et al., 2006]. The 
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complex auxin responses are mediated by two groups of well-studied genes: the 

Aux/IAA genes, which consist of 29 members, and the auxin response factor (ARF) 

genes with 23 members, in Arabidopsis thaliana. Aux/IAA proteins have been shown to 

function as negative regulators of gene expression [Teale et al., 2006].  

 Figure 5.46 shows the auxin biosynthesis pathway dependent or independent of 

tryptophan. All the 5 stress responses are shown in the figure represented by 5 different 

background colors. Eight arrows or line signifies the significance level of the 

corresponding gene at 8 timepoints and a box around it signifies the significance level 

from paired SAM. Red and green signifies positively and negatively significant. 

In the indole dependent auxin biosynthesis pathway CYP79B2 is positively 

significant at stress comparisons except CO2 stress. CYP83B1 gene is also shows very 

similar significance response. However, nitrilase 1 and 3 (NIT1 and NIT3) genes are 

positively significant at only NaCl stress. I don’t know how important role NIT1 and 

NIT3 plays in regulation of auxin production. If it does, then auxin synthesis is 

increasing under salt stress only. Over-expression of CYP83B1, which plays an 

important regulatory role at the branch point, also indicates possible increase in indolic 

glucosinolates production from typtophan under all the stress conditions.  
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Figure 5.46 Pathway for tryptophan dependent and independent auxin synthesis. Significance 
profiles of the genes encoding enzymes of this pathway are shown using notation and color 
code same as figure 5.5. 
 
5.5.2 Sulfate reduction and sulfur assimilation 
 

As sulfur is an important constituent of cysteine, methionine and glutathione, it 

is essential to study its metabolism. Sulfate is initially activated in the presence of ATP 

to form adenosine-5-sulphatophosphate or adenosine phosphosulphate (APS) catalyzed 
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by ATP sulphurylase (figure 5.47). Electrons required for sulfate reduction are derived 

from reduced ferredoxin, which may be formed in the chloroplast directly from 

photosystem I. However prior to reduction APS is bound to a carrier molecule, which is 

probably glutathione, and contains a free thiol group. The enzyme APS 

sulphotransferase catalyzes this reaction and the gene encoding this enzyme is not 

identified in A. thaliana. Sulfite is reduced to sulfide by sulfite reductase (Figure 5.47). 

Free sulfide reacts with O-acetylserine to form cysteine catalyzed by enzyme cysteine 

synthase. O-acetylserine is synthesized by the acetylation of serine, using acetyl CoA as 

substrate.  

Comparison of significance profiles from different comparisons show NaCl 

stress is affecting the genes of this pathway most significantly. Four isoenzymes of 

APS are catalyzed by four different genes and they show differential expression. 

Multiple copies of cysteine synthase genes were also identified which are active in 

different cellular components and they show distinctly different significance profiles.  
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5.3  Cysteine synthase (mitochondria)/ putative O-acetylserine (thiol)-lyase/ putative O-acetylserine

sulfydralase
5.4  Cysteine synthase (cpACS1)
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Figure 5.47 Significance profiles of sulfate reduction and sulfur metabolism pathway genes 
from all the stress comparisons 
 
5.5.3 Histone Proteins 

 

Analyses of significance profiles of genes encoding hisotne proteins are 

particularly important because of the important role they play in cellular physiology. 

None of these genes were differentially expressed in elevated CO2 stress. In case of 

NaCl stress and NaCl and CO2 combined stress most (almost half) of these genes are 

negatively significant from paired SAM analysis [table 5.21]. Many of the genes that 

are non-significant from paired SAM are also significant at individual timepoints. 

When trehalose stress is applied 8 out of 28 genes were negatively significant from 

paired SAM analysis [table 5.21]. However when trehalose and CO2 stress is applied in 
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combination, the response was different from other stress responses and there were only 

two significant genes one of each significant types. The trehalose stress response was 

also found significantly different in pathways like Calvin cycle and photosynthesis, 

universal stress proteins.  

Table 5.21 Significance profiles of genes encoding different histone proteins from all the five 
stress comparisons. Notation used is same as table 5.2. 

Number annotation 1h 3h 6h 9h 12h 18h 24h 30h Paired 
SAM 

SC_SP 
1 histone H2A, 

putative -1 0 0 0 0 -1 0 0 0 

2 histone H1, 
putative 0 -1 0 -1 -1 0 -1 0 0 

3 histone H1.2 0 0 0 0 1 0 0 0 0 

4 histone H1/H5 
family protein 0 0 1 1 0 0 0 0 0 

5 histone H2A, 
putative 0 0 0 0 0 0 0 0 0 

6 histone H2A, 
putative 0 0 0 0 0 0 0 0 0 

7 histone H2A, 
putative 0 0 1 1 0 1 0 0 0 

8 histone H2A, 
putative 0 0 0 1 0 1 0 0 0 

9 histone H2A, 
putative 0 0 0 0 0 0 0 0 0 

10 histone H2A.F/Z 0 0 0 0 0 0 0 0 0 

11 histone H2B 0 -1 0 0 -1 0 0 0 0 

12 histone H2B, 
putative 0 -1 0 -1 0 0 0 0 0 

13 histone H2B, 
putative 0 -1 0 -1 0 0 0 0 0 

14 histone H2B, 
putative 0 -1 -1 0 0 0 0 0 0 

15 histone H3 0 0 0 0 0 0 0 0 0 
16 histone H3 0 -1 0 0 0 0 0 0 0 
17 histone H3 0 0 0 0 0 0 0 0 0 

18 histone H3 0 -1 0 -1 0 0 0 0 0 
19 histone H3 0 -1 0 -1 0 1 0 0 0 

20 histone H3, 
putative 0 0 1 0 0 0 0 -1 0 

21 histone H3.2 0 0 1 0 0 0 0 0 0 

22 histone H3.2 0 0 1 0 0 0 0 0 0 

23 histone H3.2, 
putative 0 0 0 0 0 1 0 0 0 

24 histone H4 0 0 0 0 0 0 0 0 0 
25 histone H4 0 0 0 0 0 0 0 1 0 

26 histone H4 0 0 1 1 0 0 0 0 0 
27 histone H4 0 0 0 0 -1 0 0 0 0 
28 histone H4 0 0 1 0 0 0 0 0 0 

SC_NC           

1 
histone H1, 

putative -1 -1 -1 -1 -1 -1 -1 -1 -1 
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2 
histone H1/H5 
family protein -1 0 0 0 0 0 -1 -1 -1 

3 
histone H1-3 

(HIS1-3) 0 0 0 -1 0 -1 -1 -1 -1 

4 
histone H2A, 

putative -1 -1 -1 -1 -1 0 -1 -1 -1 

5 
histone H2A, 

putative -1 -1 -1 -1 0 0 -1 0 -1 

6 histone H2A.F/Z -1 -1 -1 -1 -1 -1 0 0 -1 

7 histone H2B -1 -1 -1 -1 -1 -1 0 0 -1 

8 
histone H2B, 

putative -1 -1 -1 -1 -1 -1 0 0 -1 

9 histone H3 -1 -1 0 -1 0 0 -1 0 -1 

10 histone H4 -1 -1 -1 -1 -1 -1 -1 -1 -1 

11 histone H4 -1 -1 -1 -1 -1 -1 -1 0 -1 

12 histone H4 -1 -1 -1 -1 -1 -1 -1 0 -1 

13 histone H4 -1 -1 0 -1 -1 -1 -1 -1 -1 

14 histone H1.2 0 1 0 0 0 0 0 0 0 

15 
histone H2A, 

putative 0 0 0 0 0 0 -1 -1 0 

16 
histone H2A, 

putative -1 0 0 0 0 0 -1 -1 0 

17 
histone H2A, 

putative 0 0 1 0 0 0 0 0 0 

18 
histone H2A, 

putative 0 0 0 0 0 -1 -1 0 0 

19 
histone H2B, 

putative -1 -1 -1 -1 0 0 0 0 0 

20 
histone H2B, 

putative 0 -1 -1 -1 0 0 0 0 0 

21 
histone H2B, 

putative 0 -1 0 -1 0 0 0 0 0 

22 
histone H2B, 

putative -1 -1 0 -1 -1 0 -1 0 0 

23 histone H3 0 -1 -1 -1 -1 0 0 0 0 

24 histone H3 0 0 0 -1 0 0 0 0 0 

25 histone H3 -1 -1 -1 -1 -1 0 -1 0 0 

26 histone H3 -1 -1 0 -1 0 0 0 0 0 

27 
histone H3, 

putative 0 0 1 0 0 0 0 0 0 

28 histone H3.2 0 0 1 0 0 0 0 0 0 

29 histone H4 -1 0 -1 -1 0 0 -1 0 0 

30 
histone H1/H5 
family protein 0 0 1 0 0 1 1 0 1 

SC_NP           
1 histone H1, 

putative -1 -1 -1 -1 -1 -1 -1 -1 -1 

2 histone H1.2 0 0 0 1 0 0 0 0 0 

3 histone H1/H5 
family protein 0 0 0 0 0 0 -1 0 0 

4 histone H2A, 
putative -1 -1 -1 0 -1 0 0 -1 -1 

5 histone H2A, 
putative -1 0 0 0 0 -1 -1 0 -1 

6 histone H2A, 
putative -1 -1 -1 0 -1 0 0 -1 -1 

7 histone H2A, 
putative -1 -1 0 0 0 0 0 0 0 

8 histone H2A, 
putative 0 0 0 1 0 1 0 0 0 

9 histone H2A, -1 -1 -1 -1 -1 0 0 0 0 
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putative 

10 histone H2A.F/Z -1 -1 -1 -1 -1 0 0 0 -1 

11 histone H2B -1 -1 -1 -1 -1 0 0 0 -1 

12 histone H2B, 
putative -1 -1 -1 -1 -1 0 0 0 -1 

13 histone H2B, 
putative 0 0 -1 -1 0 0 0 0 0 

14 histone H2B, 
putative -1 -1 -1 -1 -1 0 0 0 0 

15 histone H2B, 
putative 0 0 0 0 -1 0 0 0 0 

16 histone H3 -1 -1 0 -1 -1 0 -1 0 -1 
17 histone H3 -1 -1 -1 -1 -1 0 0 0 0 
18 histone H3 0 -1 0 -1 -1 0 0 0 0 

19 histone H3 0 -1 -1 -1 -1 0 0 0 0 
20 histone H3 0 -1 -1 -1 -1 0 0 0 0 

21 histone H3, 
putative -1 -1 0 0 -1 0 -1 -1 0 

22 histone H3.2 0 0 1 0 0 0 0 0 0 

23 histone H3.2 0 0 0 0 0 0 0 -1 0 
24 histone H4 -1 -1 -1 -1 -1 0 0 0 -1 
25 histone H4 -1 -1 -1 -1 -1 -1 -1 0 -1 

26 histone H4 -1 -1 -1 -1 -1 -1 0 0 -1 
27 histone H4 -1 -1 -1 -1 -1 0 0 0 -1 
28 histone H4 -1 0 -1 -1 0 0 0 0 0 

SC_TC           

1 
histone H1, 

putative -1 0 0 -1 -1 0 -1 0 -1 

2 histone H1.2 -1 0 0 0 0 0 0 0 0 

3 
histone H1/H5 
family protein 0 0 0 0 0 0 0 0 0 

4 
histone H2A, 

putative -1 -1 -1 -1 -1 0 -1 -1 -1 

5 
histone H2A, 

putative 0 0 0 0 0 0 0 -1 0 

6 
histone H2A, 

putative 0 0 0 0 0 1 0 0 0 

7 
histone H2A, 

putative -1 0 0 0 0 0 0 0 0 

8 
histone H2A, 

putative -1 0 0 0 -1 0 -1 -1 0 

9 
histone H2A, 

putative -1 0 0 0 0 1 0 0 0 

10 histone H2A.F/Z -1 0 0 0 -1 0 0 0 0 

11 histone H2B 0 0 0 0 -1 0 0 0 0 

12 
histone H2B, 

putative -1 0 0 0 0 0 0 0 0 

13 
histone H2B, 

putative -1 0 0 0 -1 0 0 0 0 

14 
histone H2B, 

putative -1 0 0 0 0 0 0 0 0 

15 
histone H2B, 

putative -1 0 0 0 0 0 0 0 0 

16 
histone H2B, 

putative -1 0 0 -1 -1 0 0 0 0 

17 histone H3 -1 -1 0 -1 -1 0 -1 0 -1 

18 histone H3 -1 0 0 -1 -1 0 0 -1 -1 

19 histone H3 0 0 0 0 -1 0 0 0 0 

20 histone H3 -1 0 0 0 -1 0 0 0 0 
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21 histone H3 0 0 0 -1 -1 0 0 0 0 

22 histone H3.2 0 0 0 0 0 0 0 -1 0 

23 histone H3.2 0 0 0 0 0 0 0 -1 0 

24 histone H4 -1 -1 0 -1 -1 -1 -1 -1 -1 

25 histone H4 -1 -1 0 -1 -1 -1 -1 -1 -1 

26 histone H4 -1 0 0 -1 -1 0 -1 -1 -1 

27 histone H4 -1 -1 0 -1 -1 -1 -1 0 -1 

28 histone H4 0 0 0 -1 0 0 0 0 0 

SC_TP           

1 
histone H1, 

putative -1 0 0 -1 -1 0 0 -1 -1 

2 histone H1.2 0 0 0 0 0 0 0 -1 0 

3 
histone H1/H5 
family protein 0 0 0 0 0 0 0 0 0 

4 
histone H2A, 

putative -1 0 0 0 0 0 0 0 0 

5 
histone H2A, 

putative -1 0 0 -1 0 0 0 0 0 

6 
histone H2A, 

putative -1 0 0 0 0 0 -1 0 0 

7 
histone H2A, 

putative -1 0 0 -1 0 0 -1 -1 0 

8 
histone H2A, 

putative -1 0 0 -1 0 -1 0 0 0 

9 histone H2A.F/Z -1 0 0 -1 0 0 0 0 0 

10 histone H2B -1 0 0 -1 -1 0 0 0 0 

11 
histone H2B, 

putative 0 0 0 0 0 0 0 0 0 

12 
histone H2B, 

putative -1 0 0 0 0 0 0 0 0 

13 
histone H2B, 

putative -1 0 0 0 0 0 0 0 0 

14 
histone H2B, 

putative -1 0 0 0 0 0 0 0 0 

15 histone H3 0 0 0 0 0 0 0 0 0 

16 histone H3 0 0 0 0 0 0 0 1 0 

17 histone H3 -1 0 0 0 0 0 0 0 0 

18 histone H3 -1 0 0 -1 -1 0 0 0 0 

19 histone H3 0 0 1 0 0 0 0 1 0 

20 
histone H3, 

putative 0 0 0 0 0 0 0 0 0 

21 histone H3.2 0 0 1 1 0 0 0 0 0 

22 histone H3.2 1 1 1 1 1 1 1 0 1 

23 histone H4 -1 0 0 0 0 0 0 0 0 

24 histone H4 -1 0 0 -1 -1 0 0 0 0 

25 histone H4 -1 0 0 -1 -1 0 0 0 0 

26 histone H4 -1 0 0 -1 -1 0 0 0 0 

27 histone H4 -1 0 0 -1 -1 0 0 0 0 

 
  
5.5.4 Universal Stress Protein (USP) Family genes 
 
It would be interesting to study the response of the genes annotated as universal stress 

protein (USP) under the different stress conditions. As the name imply do these genes 
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really get differentially expressed under all the stress conditions? Do they respond by 

up-regulation or down regulation? Do these genes respond get positively significant 

under one stress, while negatively significant in the other? Or is there any preferential 

timepoint when they significant? To answer these questions significance level of USP 

genes were from all the stress responses were compared together (table 5.22). In 

general it was observed that in case of CO2 stress, there was no gene significant from 

paired SAM and minimum number of significant genes at individual timepoints. While 

in case of NaCl and CO2 combined stress, 7 out of 14 genes were negatively significant 

from paired SAM. Even the genes that are non-significant from paired SAM, were 

significant at multiple timepoints. Genes were predominantly down-regulated and there 

were only two genes At2g47710 and At2g21620 that are positively significant at three 

and one timepoints respectively. At3g53990 gene was found strongly negatively 

significant from in all the stress responses. In case of NaCl, NaCl and CO2 and 

trehalose stress this gene was negatively significant from paired SAM. While in CO2 

stress and trehalose and CO2 stress it was down-regulated at 3 and 4 timepoints 

respectively. Hence, it can be hypothesized that general response of At2g47710 gene is 

by its down-regulation. On the contrary At2g47710 gene was positively significant 

from paired SAM in NaCl stress and trehalose and CO2 stress. It was also positively 

significant at multiple timepoints in other stress responses and negatively significant at 

none. Similar conclusion of At2g47710 genes up-regulation to general stress response 

can be formulated. Though among the differentially expressed genes most of them were 

negatively-significant, but in case of paired SAM analysis of trehalose and CO2 
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combined stress two genes were significantly over-expressed but none were under-

expressed, which seems to be different from other stress responses.  

Table 5.22 Significance profiles of the universal stress protein genes from different stress 
comparisons. Notation used is same as table 5.2. 
 
Locus annotation 1h 3h 6h 9h 12h 18h 24h 30h Paired 

SAM 
SC_SP 

1 universal stress protein 
(USP) family protein 0 0 0 0 0 0 0 0 0 

2 universal stress protein 
(USP) family protein 0 0 0 0 0 0 0 0 0 

3 universal stress protein 
(USP) family protein 0 0 0 0 0 0 -1 0 0 

4 universal stress protein 
(USP) family protein 0 -1 0 -1 0 -1 0 -1 0 

5 universal stress protein 
(USP) family protein 0 0 0 1 0 0 0 0 0 

6 universal stress protein 
(USP) family protein 0 0 0 0 0 0 0 0 0 

7 universal stress protein 
(USP) family protein 0 0 0 0 0 0 0 0 0 

8 universal stress protein 
(USP) family protein 0 0 0 0 0 0 0 0 0 

9 universal stress protein 
(USP) family protein 0 0 0 -1 0 0 0 0 0 

10 universal stress protein 
(USP) family protein 0 0 0 -1 -1 -1 0 0 0 

11 universal stress protein 
(USP) family protein 0 0 0 0 0 -1 0 0 0 

12 

universal stress protein 
(USP) family protein / 
responsive to dessication 
protein (RD2) 

0 0 0 1 0 0 0 0 0 

SC_NC 
1 universal stress protein 

(USP) family protein -1 -1 -1 -1 -1 -1 -1 -1 -1 

2 universal stress protein 
(USP) family protein 0 0 -1 -1 -1 -1 -1 -1 -1 

3 universal stress protein 
(USP) family protein 0 0 1 1 0 0 1 0 0 

4 universal stress protein 
(USP) family protein -1 0 -1 0 0 -1 0 0 0 

5 universal stress protein 
(USP) family protein 0 0 -1 0 0 0 -1 0 0 

6 universal stress protein 
(USP) family protein -1 -1 -1 0 -1 -1 0 0 0 

7 universal stress protein 
(USP) family protein 0 0 0 0 0 0 0 1 0 

8 universal stress protein 
(USP) family protein 1 0 1 0 1 0 0 0 0 

9 universal stress protein 
(USP) family protein 0 0 0 0 0 0 0 0 0 

10 universal stress protein 
(USP) family protein 1 1 1 1 1 1 1 1 1 

SC_NP 
Locus Annotation 1h 3h 6h 9h 12h 18h 24h 30h Paired 

SAM 

1 universal stress protein 
(USP) family protein -1 -1 -1 -1 -1 -1 -1 -1 -1 

2 universal stress protein 0 -1 -1 -1 -1 0 -1 0 -1 
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(USP) family protein 

3 universal stress protein 
(USP) family protein 0 -1 -1 -1 -1 -1 -1 -1 -1 

4 universal stress protein 
(USP) family protein -1 -1 0 -1 0 -1 -1 -1 -1 

5 universal stress protein 
(USP) family protein -1 -1 -1 -1 -1 -1 -1 -1 -1 

6 universal stress protein 
(USP) family protein 0 0 0 -1 -1 -1 -1 -1 -1 

7 universal stress protein 
(USP) family protein -1 -1 -1 -1 0 -1 -1 -1 -1 

8 

universal stress protein 
(USP) family protein / 
responsive to dessication 
protein (RD2) 

0 0 0 0 1 0 0 0 0 

9 universal stress protein 
(USP) family protein -1 0 0 0 0 0 0 0 0 

10 universal stress protein 
(USP) family protein -1 0 -1 -1 0 -1 0 0 0 

11 universal stress protein 
(USP) family protein -1 0 0 0 0 0 -1 -1 0 

12 universal stress protein 
(USP) family protein 0 0 1 1 1 0 0 0 0 

13 universal stress protein 
(USP) family protein -1 -1 0 -1 0 -1 -1 0 0 

14 universal stress protein 
(USP) family protein 0 0 0 0 0 0 -1 0 0 

SC_TC 
Locus Annotation 1h 3h 6h 9h 12h 18h 24h 30h Paired 

SAM 

1 universal stress protein 
(USP) family protein -1 -1 -1 -1 0 -1 -1 -1 -1 

2 universal stress protein 
(USP) family protein -1 -1 -1 -1 -1 -1 -1 -1 -1 

3 universal stress protein 
(USP) family protein -1 -1 -1 -1 -1 -1 0 -1 -1 

4 universal stress protein 
(USP) family protein 0 0 -1 0 0 0 0 0 0 

5 universal stress protein 
(USP) family protein 0 0 0 0 0 0 0 0 0 

6 universal stress protein 
(USP) family protein -1 0 0 0 0 0 -1 0 0 

7 universal stress protein 
(USP) family protein -1 -1 0 0 0 0 0 0 0 

8 universal stress protein 
(USP) family protein 0 0 0 1 0 0 0 0 0 

9 universal stress protein 
(USP) family protein 0 0 0 0 0 0 0 0 0 

10 universal stress protein 
(USP) family protein 0 0 0 -1 0 -1 -1 0 0 

11 universal stress protein 
(USP) family protein 0 0 0 0 0 0 0 0 0 

12 universal stress protein 
(USP) family protein 0 0 0 -1 0 0 0 0 0 

13 universal stress protein 
(USP) family protein 0 0 0 0 0 0 0 0 0 

14 

universal stress protein 
(USP) family protein / 
responsive to dessication 
protein (RD2) 

0 0 -1 -1 0 -1 -1 0 0 

SC_TP 
1 universal stress protein 

(USP) family protein 0 0 -1 0 0 0 0 0 0 

2 universal stress protein 
(USP) family protein 0 -1 -1 0 0 -1 0 0 0 

3 universal stress protein -1 0 0 -1 0 0 0 0 0 
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(USP) family protein 

4 universal stress protein 
(USP) family protein -1 0 0 -1 0 0 0 0 0 

5 universal stress protein 
(USP) family protein -1 0 0 -1 0 -1 0 0 0 

6 universal stress protein 
(USP) family protein 0 0 0 0 0 0 0 0 0 

7 universal stress protein 
(USP) family protein 0 1 1 1 1 1 1 0 1 

8 universal stress protein 
(USP) family protein 0 0 0 0 0 0 0 0 0 

9 universal stress protein 
(USP) family protein 1 1 1 1 1 0 1 0 1 

10 universal stress protein 
(USP) family protein 0 0 0 0 0 0 0 0 0 

11 universal stress protein 
(USP) family protein 0 0 0 0 0 0 1 0 0 

12 universal stress protein 
(USP) family protein -1 0 0 -1 -1 -1 0 -1 0 

13 universal stress protein 
(USP) family protein -1 0 0 -1 0 0 0 0 0 

14 

universal stress protein 
(USP) family protein / 
responsive to dessication 
protein (RD2) 

0 0 0 0 1 0 0 0 0 

 

5.5.5 Cellulose synthase family protein 
 

Cellulose is an unbranched polymer consisting of D-glucose molecules which are 

connected to each other by glycosidic linkage. The biochemical basis for cellulose 

synthesis is not well understood. Sequencing of Arabidopsis thaliana genome has 

revealed the existence of multiple copies of cellulose synthase which shows 64% 

sequence similarity, however the functions of individual isoenzymes are not known. 

Cellulose synthase is posttranslationally regulated and is known to be phosphorylated, 

but the mechanisms that regulate activity are not yet known. The genes for cellulose 

synthase are developmentally regulated, but there is relatively little evidence for 

environmental regulation of expression. Here I see cellulose synthase family protein 

genes are differentially expressed due to applied stress (table 5.23). Differential 

responses of these genes are most prominent in case of NaCl stress and NaCl and CO2 

combined stress. In both the cases almost all the genes except two were significantly up 

or down regulated from paired SAM analysis. UDP-glucose is the building block of 
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cellulose and UDP-glucose pyrophosphorylase catalyzes the UDP-glucose synthesis 

reaction. UDP-glucose pyrophosphorylase gene was down-regulated almost at all 

timepoints and also from paired SAM in response to NaCl stress and NaCl and CO2 

combined stress. In case of CO2 stress none of these genes were differentially expressed 

from paired SAM. At4g24010 and At5g16910 genes were positively significant at most 

of the timepoints and also from paired SAM in NaCl stress and NaCl and CO2 

combined stress. In case of other stress responses they were also positively significant 

at individual timepoints, but didn’t qualify as significant from overall analysis. On the 

other hand At2g32530 and At2g32540 genes were negatively significant in most of the 

timepoints and also from paired SAM analysis in all the stress responses except CO2 

stress. Interestingly enough these genes are closely located in the chromosome. It needs 

to be verifies if proximity on the chromosomal map possibly make these two genes to 

be co-regulated. 

Table 5.23 Significance profiles of cellulose synthase family protein genes from different stress 
response experiments. Notation used is same as table 5.2. 

Locus annotation 1h 3h 6h 9h 12h 18h 24h 30h Paired 
SAM 

SC_SP 
1 cellulose synthase 

family protein 0 1 0 0 0 0 0 0 0 

2 cellulose synthase 
family protein 0 0 0 0 0 0 0 0 0 

3 cellulose synthase 
family protein 0 0 0 0 0 -1 0 0 0 

4 cellulose synthase 
family protein -1 0 0 0 -1 -1 0 0 0 

5 cellulose synthase 
family protein (CslD3) 0 1 0 1 0 0 0 0 0 

6 cellulose synthase 
family protein 0 1 1 1 0 0 0 0 0 

7 cellulose synthase 
family protein 0 0 0 0 0 -1 0 0 0 

8 cellulose synthase 
family protein 0 0 -1 -1 -1 -1 0 0 0 

9 cellulose synthase 
family protein 0 0 0 0 0 0 0 0 0 

10 cellulose synthase 
family protein 0 0 0 0 0 0 0 0 0 

11 cellulose synthase 
family protein 0 0 -1 0 0 -1 0 0 0 

SC_NC 
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1 cellulose synthase 
family protein 1 1 1 1 1 0 0 1 1 

2 cellulose synthase 
family protein 1 1 1 1 0 0 1 0 1 

3 cellulose synthase 
family protein 0 1 1 1 1 1 0 0 1 

4 cellulose synthase 
family protein -1 -1 -1 -1 -1 -1 -1 -1 -1 

5 cellulose synthase 
family protein (CslD3) 0 0 1 0 0 0 0 0 0 

6 cellulose synthase 
family protein 0 0 -1 -1 0 -1 -1 0 -1 

7 cellulose synthase 
family protein 0 0 -1 -1 -1 -1 -1 -1 -1 

8 cellulose synthase 
family protein 0 0 -1 -1 -1 -1 -1 -1 -1 

9 cellulose synthase 
family protein 0 0 0 1 0 1 1 1 0 

SC_NP 
1 cellulose synthase 

family protein 1 1 1 1 1 0 1 1 1 

2 cellulose synthase 
family protein 1 1 1 1 0 0 0 1 1 

3 cellulose synthase 
family protein -1 -1 -1 -1 -1 -1 -1 -1 -1 

4 cellulose synthase 
family protein -1 -1 -1 -1 -1 -1 -1 -1 -1 

5 cellulose synthase 
family protein 0 0 -1 -1 0 -1 -1 -1 -1 

6 cellulose synthase 
family protein 0 0 -1 -1 -1 0 0 0 0 

7 cellulose synthase 
family protein 0 0 0 0 0 0 0 1 0 

SC_TC 
1 cellulose synthase 

family protein 0 1 0 1 0 0 0 0 0 

2 cellulose synthase 
family protein 0 0 0 0 0 0 0 0 0 

3 cellulose synthase 
family protein 0 0 -1 0 0 0 -1 0 0 

4 cellulose synthase 
family protein -1 0 -1 0 0 -1 -1 0 -1 

5 cellulose synthase 
family protein (CslD3) 0 0 0 0 0 0 0 0 0 

6 cellulose synthase 
family protein 0 0 0 0 0 0 0 0 0 

7 cellulose synthase 
family protein 0 0 0 0 0 -1 0 0 0 

8 cellulose synthase 
family protein -1 0 -1 -1 -1 -1 -1 0 -1 

9 cellulose synthase 
family protein -1 0 -1 -1 -1 -1 -1 0 -1 

10 cellulose synthase 
family protein -1 0 -1 0 0 0 0 0 0 

11 cellulose synthase 
family protein 0 0 0 1 1 0 1 1 0 

SC_TP 
1 cellulose synthase 

family protein 1 0 0 1 0 0 0 0 0 

2 cellulose synthase 
family protein 0 0 0 0 0 -1 0 0 0 

3 cellulose synthase 
family protein 0 0 -1 0 0 -1 0 0 0 

4 cellulose synthase 
family protein -1 -1 -1 -1 -1 0 0 0 -1 

5 cellulose synthase 1 0 1 1 0 0 0 0 0 
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family protein (CslD3) 

6 cellulose synthase 
family protein 0 -1 -1 0 0 -1 0 0 0 

7 cellulose synthase 
family protein -1 0 -1 -1 -1 -1 0 0 -1 

8 cellulose synthase 
family protein -1 0 -1 -1 -1 -1 0 -1 -1 

9 cellulose synthase 
family protein -1 0 -1 -1 -1 -1 0 0 -1 

10 cellulose synthase 
family protein -1 0 0 0 0 0 0 0 0 

 

5.6 Comparison of MiTimeS results from different stress 
responses 
5.6.1 Comparison of significant gene numbers 
 

Figure 5.48 and 5.49 show the percentage of genes that are positively and 

negatively significant at each timepoint over the 30 hours of experimental duration. 

Each curve on the figure corresponds to one of the pair-wise stress comparisons. 

Comparing the two figures it is apparent that positive and negatively significant genes 

corresponding to each comparison shows similar profiles. For all the stresses except 

CO2 stress (SC_SP comparison), there is a distinct acute stress response marked by 

large number of significant genes at time1h. For all the four comparisons and for both 

the significance type, number of significant genes decrease from 1 to 3h. This decrease 

is most prominent in case of trehalose stress and trehalose with CO2 stress. The curves 

corresponding to trehalose stress and trehalose and CO2 combined stress are very 

similar, especially in case of negatively significant genes, implying a possible 

dominance of trehalose stress in the combined stress response. Same is true with NaCl 

stress and NaCl and CO2 combined stress. In case of CO2 stress, number of 

differentially expressed genes increase steadily for first 9 hours and falls again. It can 

be hypothesized that it takes longer time for plants to experience the CO2 stress 

compared to the other stress responses shown here.  
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Figure 5.48 Percentage of genes that are identified as positively significant over the duration of 
the experiment. 
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Figure 5.49 Percentage of genes that are identified as negatively significant over the duration 
of the experiment. 
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5.6.2 SV Score distribution 
Figure 5.50 shows the SV score distribution of all the 5 pair-wise comparisons that is 

discussed in the previous section. It shows that sucrose stress has distinctly different 

transcriptional response, which was also observed when compared in the context of A. 

thaliana physiology. SC_SP and SC_TP have minimum and maximum average SV 

score of 0.26 and 0.3 respectively. In SC_SP nearly half of the genes had SV score of 

0.29.  
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Figure 5.50 SV score distribution of five stress comparisons 

When analyzed separately, trehalose stress and trehalose and CO2 combined stress was 

following very similar SV score distributions, which again implies the dominance of 

trehalose stress in the combined stress response (figure 5.51).   
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Figure 5.51 SV score distribution of trehalose stress and trehalose with CO2 stress shows 
similarity.   
 
Comparison of three CO2 stress responses, with or without trehalose and NaCl stress 

shows similarity in their SV score distributions (Figure 5.52). This similarity in SV 

score distributions can be attributed to inherent response behavior of the CO2 stress.  
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Figure 5.52 SV score distribution of three CO2 stress responses show close similarity. 
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66 Comparison of different stress responses 

 
 

In the previous chapter the individual stress responses were discussed 

independently in the context of Arabidopsis thaliana physiology. One of the main 

reasons for carrying out multiple stress experiment was indeed not just to study them 

independently but also to compare these responses. The comparison can be at several 

levels, like matching the significant genes for individual stress responses and find the 

ones that are common for all the stresses. At a higher level it can be studied how the 

combined stress response is varying from the individual stress responses or how it is 

conserved leading to answer the cross talk between different responses. Studying all the 

stress responses together will provide considerable number of samples (54 in this case) 

over which genes can be clustered and the ones clustered together in such wide 

physiological space most likely would lead to biological implications unobserved 

before. The unique experimental design and plethora of valuable data provided to the 

scientific community from this experiment will be basis for developing and validating 

novel framework for statistical analysis of high-throughput molecular fingerprint data.  

 

6.1 Comparison of all stress responses 
 
6.1.1 Clustering of all the experiments 

 

An experimental design where multiple perturbations were applied to the same 

system in a similar fashion will allow us to compare them effectively. Studying how the 

transcriptional response changes under different stresses is an important motivation for 
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this research. One of the ways to analyze it effectively is to cluster the experimental 

timepoints. After using 75% cutoff (i.e. genes that are present in 12 or more out of 16 

experiments are selected) on all the experiments a total of 11204 genes were used for 

this analysis. Hierarchical clustering with Euclidean distance was used to cluster the 

sample timepoints and the results are shown in figure 6.1.  

 

Figure 6.1: The figure shows the clustering profile of the experimental timepoints from 
hierarchical clustering using Euclidean distance. Stress responses are mostly separated from 
each other. 
 
The clustering clearly creates three main clusters corresponding to sucrose experiment 

(SC and SP), NaCl experiment (NC and NP) and trehalose experiment (TC and TP). 

Within each main group there are two subgroups corresponding to presence or absence 

of elevated CO2 stress. In spite of this overall trend there are few anomalies. 1 and 3 hr 

timepoints of NC was found to cluster with NP group, whereas 30h timepoint of NP is 

found to be closer to NC cluster. 1 h timepoints of TC and TP was found to cluster 

separately from rest of the timepoints. I speculate that initial response of trehalose 

stress is very strong and unique, causing it to show similar transcriptional response to 

each other but different from rest of the timepoints. It was also observed that 1h 

timepoint of TC and TP have maximum number of significant genes. Again I observed 

30h timepoint of SC, 24 and 30h timepoitns of SP are clustering with the trehalose 

cluster. The rationale behind this observation is not very clear, but a general conclusion 

can be drawn that usually 30h timepoints are showing most distinct anomaly.  
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PCA analysis was carried out on the same data and using the same color code figure 

6.1. In the figure 6.2 we see there is a separation between SC and SP, again between TC 

and TP. However NC and NP timepoints seems to mingle together and no clear 

separation was observed. Interestingly when only NC and NP are clustered together 

they were distinctly separated. 

 

Figure 6.2: From the PCA analysis it is clear that most the stress responses are distinctly 
different except NC and NP, as they cluster together separated from rest of the samples.  
 

The reason could be when we cluster all the experiments together, the principal 

components representing the maximum variance is different from that of the principal 

components created from only NC and NP experiments. Hence, as the coordinate 

system becomes different, their representation with respect to this new system also 

becomes different. NC and NP timepoints seems to have moved together along the 
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principal component 1 which accounts for maximum variability. As explained before, 

the salt stress is perceived to create stronger transcriptional response than the CO2 

stress; hence the separation between NC and NP is not that prominent compared to the 

effect of salt stress. When only NC and NP are clustered together, the effect of salt 

stress is not present and the weaker difference between the NC and NP experiments 

becomes perceptible. Hence, to make the minute difference prominent, the stronger 

effect has to be removed. Another interesting thing that can be observed is the 

timepoints of the experiments without CO2 stress, like SC and TC, are much 

widespread compare to the corresponding perturbed timepoints. A plausible reason 

could be, when elevated CO2 stress is applied, the natural variation of the 

transcriptional state with time is reduced with respect to it’s control state.  

 

6.1.2 Identification of common significant genes from all stresses 
 

All the different stresses were analyzed independently to find out genes that are 

significantly over or under expressed in each case. It would be important to study if 

there exist set of genes that are differentially expressed under all the stress conditions. 

This gene pool, being significant under variety of stress conditions, could take part in 

general abiotic stress response, if any. It would be important to study from literature the 

response of these genes under different other abiotic stress not considered in this 

particular project. Any finding of some of these genes involvement in other stress 

response will justify the existence of a common stress response gene regulatory 

network.  

Positively and negatively significant genes from paired SAM for CO2, NaCl, 

NaCl with CO2, trehalose and trehalose with CO2 were compared to find the common 
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genes. There were 31 and 16 genes positively and negatively significant respectively 

belonging to this category (shown in table 6.2A and 6.2B). 9 out of these 16 negatively 

significant genes are related to metabolism. However, only 3 out of 31 positively 

significant genes were related to metabolism.  

Table 6.1: List of genes positively significant from all the pair-wise comparisons 

ABC transporter family protein 
AP2 domain-containing transcription factor, putative 
armadillo/beta-catenin repeat family protein / U-box domain-containing 
protein 
bZIP family transcription factor 
cytochrome P450, putative 
DC1 domain-containing protein 
disease resistance protein (TIR-NBS-LRR class), putative 
DNA topoisomerase family protein 
endoribonuclease L-PSP family protein 
ethylene-responsive factor, putative 
exportin1 (XPO1) 
expressed protein 
expressed protein 
expressed protein 
expressed protein 
EXS family protein / ERD1/XPR1/SYG1 family protein 
germin-like protein (GLP9) 
leucine-rich repeat protein kinase, putative 
leucine-rich repeat protein kinase, putative 
lysine and histidine specific transporter, putative 
O-acetyltransferase-related 
peroxidase, putative 
phytochrome B (PHYB) 
protein kinase family protein 
protein kinase family protein 
protein kinase-related 
protein phosphatase 2C, putative / PP2C, putative 
putative endochitinase 
tryptophan synthase, beta subunit 1 (TSB1) 
tryptophan synthase, beta subunit 2 (TSB2) 
Ubiquitin carboxyl-terminal hydrolase family protein 

 

 

Table 6.2 List of genes negatively significant from all the pair-wise comparisons 

ATP synthase protein I –related 
carbonic anhydrase 2 / carbonate dehydratase 2 (CA2) (CA18) 
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chlorophyll A-B binding protein, putative / LHCI type II, putative 
expressed protein 
Glycerate dehydrogenase / NADH-dependent hydroxypyruvate reductase 
glycine cleavage system H protein 1, mitochondrial (GDCSH) (GCDH) 
glycine hydroxymethyltransferase / serine hydroxymethyltransferase / 
serine/threonine aldolase (SHM1) 
Invertase/pectin methylesterase inhibitor family protein 
nodulin, putative 
pentatricopeptide (PPR) repeat-containing protein 
phosphoglycolate phosphatase, putative 
phosphoglycolate phosphatase, putative 
polygalacturonase, putative / pectinase, putative 
ribosomal protein L29 family protein 
Transport protein-related 
uridylyltransferase-related 

 

Among the positively significant genes related to metabolism are tryptophan 

synthase, beta subunit 1 (TSB1) and beta subunit 2 (TSB2). This enzyme catalyzes the 

last reaction in the tryptophan biosynthesis pathway.  Tryptophan biosynthetic pathway 

in plants is of particular importance because it is the source of precursors for many 

important indolic secondary products, in addition to its role in protein synthesis [Pruitt 

and Last, 1993]. These compounds include the plant growth regulator auxin [Wright et 

al., 1991], anti-microbial phytoalexins [Tsuji et al., 1992], and alkaloids and 

glucosinolates [Haughn et al., 1991]. Molecular biological and genetic approaches to 

the tryptophan pathway should provide insights into the regulation of metabolite flow 

through the pathway and the coordination of primary and secondary product 

biosynthesis in plants [Pruitt and Last, 1993]. It was also observed that in response to a 

punctual mechanical wound affected transcript level of many genes, including genes 

from tryptophan biosynthesis pathway was increased many folds within 90 to 120 min 

[Reymond et al., 2000], which shows important role tryptophan pathway plays in plant 

stress response in general.  
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Among the other genes that are positively significant under all the stress 

conditions are different protein kinase and protein phosphatase (PP2C) genes which are 

involved in different signaling pathway. There are many protein kinase genes and 

always we do not know their exact role in signaling pathway. However, there could be 

some core signaling pathway which involves many of the genes present in this list 

(table 2A). Another gene encoding ethylene-responsive factor is also possibly involved 

in cellular signaling.  

It is stated before that among the genes that are negatively significant under all 

stresses; a significant fraction is related to metabolism. Interestingly most of these 

genes like phosphoglycolate phosphatase, glycine hydroxymethyltransferase / serine 

hydroxymethyltransferase / serine/threonine aldolase (SHM1), glycerate dehydrogenase 

/ NADH-dependent hydroxypyruvate reductase are found to be involved in 

photorespiration. Photorespiration takes place in three different cellular components 

like chloroplast, mitochondria, peroxisome and these gene products catalyses reactions 

in those cellular components respectively. It is a significant observation that 

photorespiratory pathway genes are under-expressed not only under elevated CO2 

stress, but also in presence of other stresses, which apparently should not affect the 

carbon assimilation reaction directly. No verification of this postulate that down 

regulation of photorespiration under general stress response was obtained from 

literature hence needs to be studied in detail.  

 One gene encoding cytoplasmic phosphoglycolate phosphatase was also found 

to be negatively significant. I don’t know if the under-expression of this gene is due to 

the overall under-expression of genes related to photorespiration. Phosphoglycolate 
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phosphatase catalyses the conversion of phosphoglycolate to glycolate and according to 

the literature the reaction takes place in chloroplast [Heldt, 3rd Ed.], followed by 

transport of glycolate from chloroplast to peroxisomes through cytosol. I hypothesize 

that, some of the unconverted phosphoglycolate are also converted to glycolate in the 

cytoplasm when in transit. The other possibility could be glycolate that enters 

peroxisome is not only from chloroplast, but also from cytoplasm. Hence cytoplasmic 

conversion of phosphoglycolate to glycolate plays an important role in photorespiratory 

pathway.  

Carbonic anhydrase (CA) encoding gene was also found to be negatively 

significant under all stress conditions. CA catalyzes the reversible hydration of CO2 to 

bicarbonate and is one of the most abundant soluble proteins in the leaves of C3 higher 

plants, representing up to 1 to 2% of the soluble leaf protein [Fett and Coleman, 1994]. 

Within the C3 chloroplast it has been postulated that CA activity could maintain the 

supply of CO2 for Rubisco by speeding the dehydration of HCO3
- or by facilitating the 

diffusion of CO2 across the chloroplast envelope via maintenance of the equilibrium 

between the inorganic carbon species (Reed and Graham, 1971). Two more gene 

encoding chlorophyll A-B binding protein, putative / LHCI type II, putative and 

uridylyltransferase-related proteins were also negatively significant. All the three genes 

mentioned are involved in regulation of photosynthesis and carbon fixation. Though 

enzyme involved in carbon fixation reaction, rubisco, is not present in the list of 

negatively significant genes, however, photosynthesis rate is possibly getting affected 

when the stresses are applied. 
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6.2 Clustering of genes from all the experiments  
 

After observing how the different stresses are changing the transcriptional state 

of Arabidopsis thaliana liquid cultures it would obviously be interesting to analyze the 

expression profile of different genes under all the experimental conditions. In the 

context of gene regulation, it would be a good opportunity to find out genes that are 

showing similar expression profiles under all the different stress conditions. Co-

expression of these genes could be due to their co-regulation. With this objective genes 

were clustered using hierarchical clustering implemented in TIGR MeV software with 

both Euclidean and Pearson correlation distances. Genes clustered together with 

Euclidean distance will have close expression values under all the experimental 

conditions. Whereas when Pearson’s correlation is used genes showing similar 

expression profiles (not necessarily with similar expression values) will cluster 

together. Both the clustering results were studied extensively to test whether 

mathematical similarity has true biological relevance. In this context it was observed 

Pearson’s correlation distance created clusters that seem to have more biological 

significance. Some of these clustering results are discussed here in the context of 

Arabidopsis thaliana physiology.  

6.2.1 Genes related to Photosynthesis and carbon fixation: 
 

From hierarchical clustering using Pearson’s correlation distance I could 

identify a cluster of genes that are that are directly or indirectly related to 

photosynthesis and carbon fixation. This cluster contains 80 genes [Supplementary 

table 6.1] and is divided into different sub-clusters. Rubisco enzyme catalyses the 

carbon fixation reaction in Calvin cycle and genes coding for small subunits regulates 
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the carbon fixation reaction. Four genes encoding all the four subunits of Rubisco small 

chain, 1A, 1B, 2B and 3B were found cluster together and form a sub-cluster. While 

Euclidian distance was used for clustering, three out of four genes clustered together, 

only subunit 1A clustered separately. Based on this observation I hypothesize that 

expression of the B subunits of the RubisCO small chain are probably regulated 

together. All the B subunits (1B, 2B and 3B) of RubisCO are physically close in the 

chromosome, which might facilitate their regulation. The subunit 1A, whose regulation 

is also synchronous to the other subunits, is possibly regulated in slightly different way. 

Five other genes coding for sedoheptulose-1,7-bisphosphatase, chloroplast 

(At3g55800), fructose-1,6-bisphosphatase (At3g54050), glyceraldehyde-3-phosphate 

dehydrogenase B (At1g42970), fructose-bisphosphate aldolase, putative (At2g21330) 

and phosphoribulokinase (PRK) (At1g32060) the enzymes that catalyze several other 

reactions of carbon fixation pathway was also belong to the same cluster. 

Phosphoribulokinase catalyses the reaction from Ribulose-5P to Ribulose-1,5-BP, 

which is used as substrate for carbon fixation reaction by RubisCO. Genes encoding the 

three Calvin cycle enzymes sedoheptulose-1,7-bisphosphatase, chloroplast 

(At3g55800), fructose-1,6-bisphosphatase (At3g54050), glyceraldehyde-3-phosphate 

dehydrogenase B (At1g42970) were found to form a sub-cluster. It is indeed an 

interesting observation to find the enzymes of the three consecutive reactions are 

produced in exactly synchronous way. Two other genes carbonic anhydrase 1, 

chloroplast (At3g01500) and inorganic carbon transport protein-related (At1g70760), 

which are also involved in carbon fixation indirectly, belongs to this cluster. 
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Figure 6.3: Clustering of all the experiments shows RubisCO subunits, Calvin cycle and 
photorespiration pathway genes form three distinct sub-clusters marked with different colors.    
 

 Another interesting observation is, the cluster mentioned above contains 6 genes 

related to photorespiration. 5 out of these 6 genes form a sub-cluster. Only the gene 

annotated as “serine-glyoxylate aminotransferase-related (At2g13360)” clustered with 

genes encoding Calvin cycle pathway enzymes. It was not obvious why this gene is 

expressed closer to Calvin cycle pathway compared to other photorespiratory genes. 

Three sub-clusters mentioned above coding for RuBisCO subunits and 

phosphoribulokinase, Calvin cycle pathway enzymes and photorespiratory pathway 

enzymes from a cluster of genes predominantly coding for enzymes. There were 

another cluster within the cluster of 80 genes [Figure 6.4] which are coding for 

photosystem I and II reaction center and chlorophyll A-B binding protein.  
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Figure 6.4 Clustering analysis shows genes related photosystem I and II and chlorophyll A-B 
binding proteins are clustering together. Both of these genes are involved in photosynthesis.   
 

 Few of other genes coding for enzymes which are not directly related to carbon 

fixation or photosynthesis were found to be present in this cluster of genes. One of 

these genes annotated as “glutathione S-transferase, putative”. Glutathione S-

transferase (GST) is differentially regulated under different form of biotic and abiotic 

stresses. Specific GSTs are reported to be induced upon infection, in response to 

treatment with ozone, hydrogen peroxide, glutathione and biotic elicitors, plant 

hormones, heavy metals, heat shock, dehydration, wounding and senescence, however 

little headway has been made in matching specific GST isozymes with either their 

preferred substrates or their function in vivo [Wagner et al., 2002]. Another gene with 

locus ID At1g65230, annotated as expressed protein was found to cluster closely with 

the genes coding for photorespiratory pathway genes. The coding sequence of this gene 

was not found to match closely with any other genes of Arabidopsis genome. Though I 

can’t say for sure, but I believe protein coded by this gene may play some role in 

photorespiratory pathway.  
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6.2.2 Similarity between expression profiles and sequence alignment 
 

Histones are the major structural proteins of chromosomes. The DNA molecule 

is wrapped twice around a Histone Octamer to make a Nucleosome [Albert et al. 4th 

Ed.]. Genes encoding different subunits of histones were found to form two different 

clusters. Out of 5 histone H4 genes used for analysis 4 clustered together along with 

two other genes. The fifth histone gene (locus At2g28740) had clustered with genes 

coding for different other subunits of histone. To investigate the different behavior of 

this anomalous histone gene, the nucleotide sequences of the hsitone genes from these 

two clusters were compared using sequence alignment software of European 

Bioinformatics Institute called ClustalW [http://www.ebi.ac.uk/clustalw/]. Phylogenic 

tree constructed from sequence similarity shows the outlier histone H4 gene 

(At2g28740) has diverged from rest of the rest of the H4 genes and is closer to the 

histone H2B and H3 genes it has clustered with [figure 6.5]. Though all the histone H4 

proteins have same amino acid sequence, but they differ in their nucleotide sequence 

which gives rise to different regulation of these genes. 

 
Figure 6.5: Sequence alignment shows At2g28740 (histone H4) gene is closer to the hsitone 
subunits H2B and H3 compared to other H4 subunits  
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A similar phenomenon was also observed in nitrilase genes. Nitrilases are 

enzymes that catalyze the hydroxylation of nitriles to carboxylic acid and ammonia. 

Two genes encoding nitrilase 1 (NIT1) (At3g44310) and nitrilase 3 (NIT3) 

(At3g44320) were found to cluster together. However another gene with a putative 

nitrilase annotation (At4g08790) remained separate from the above mentioned genes. A 

similar approach, as explained above was used which showsn NIT1 and NIT3 are 

closer in phylogenic tree [using ClustalW] according to their sequence similarity while 

the gene with the putative function is not (Figure 6.6).  

 

Figure 6.6: Sequence alignment shows putative nitrilase gene is different from NIT1 and NIT3 
genes which are clustering together from gene expression data.  
 

Another example of sequence similarity of genes leading to a similar expression 

profile is shown here. The Arabidopsis genome contains many gene families that are 

not found in the animal kingdom. One of these is the multidrug and toxic compound 

extrusion (MATE) family, which has homology with bacterial efflux transporters 

[Andrew et al., 2001]. Multidrug transporters form a large class of membrane proteins 

present in the cells of most organisms. These proteins bind to a variety of potentially 

cytotoxic compounds and remove them from the cell in an ATP- or proton-dependent 

process. MATE family belongs to the family of multidrug transporter family and is 

characterized by the presence of 12 putative transmembrane segments [Andrew et al., 

2001].  Figure 6.7 shown 6 genes belonging to MATE family where two are from 

chromosome 1 and four are from chromosome 2 (the first number after “At” in a gene’s 

locus ID represent it’s chromosome number). Their difference in the coding sequence 
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of genes belonging to chromosome 1 and 2 are can be observed from the phylogenic 

tree. When clustered, these genes have shown similar clustering pattern consistent with 

the phylogenic tree.  

 

Figure 6.7: MATE family proteins from similar tree form sequence alignment and clustering 
based on gene expression. 
  

6.2.3 Nitrate reduction pathway 
 

In the nitrate assimilation pathway there are two nitrogen reduction reactions shown in 

figure 6.8. 

 

 

Figure 6.8: Nitrate reduction to nitrite takes place in two different steps catalyzed by NR1, 
NR2 and nitrite reductase. 
 

Nitrate reduction reaction takes place in cytoplasm and is catalyzed by the 

enzyme Nitrate reductase, which has two subunits 1 and 2 encoded by two different 

genes At1g77760 and At1g37130 respectively. Nitrate reductase is an exceptionally 

short lived protein. Its half life is few hours, hence activity if nitrate reductase is 

regulated by its synthesis. The reduction of nitrite to ammonia is carried out in 

chloroplast [Heldt, 3rd Edition] using the reducing power of Ferredoxin and catalyzed 

by Nitrite reductase. Nitrate reduction is strictly controlled so that nitrate reduction 

doesn’t proceed faster than nitrite reduction, since otherwise the toxic level of nitrite 

will accumulate in the cell. Here the expression of profiles of two nitrate reductase 

Nitrate Nitrite NH4
+ 

Nitrate Reductase 1 

Nitrate Reductase 2 

Nitrite  

Reductase 
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genes is plotted along with that of one nitrite reductase gene [figure 6.9]. Visually all 

three of them show almost similar expression profiles. NR1 gene shows comparatively 

less change in their expression level, while NR2 gene shows higher magnitude change. 

It implies response of NR2 gene is more amplified than that of NR1 gene. When the 

expression profiles of these genes were compared statistically, it was observed NR1 and 

ferredoxin-nitrite reductase genes are clustered closely both from Pearson’s correlation 

and Euclidian distance. Correlation coefficient of these two genes expression values, a 

measure of how similar they are, was 0.82, which is a fairly high value. Correlation 

coefficient between NR2 and ferredoxin--nitrite reductase genes was found fairly low (-

0.1). Again, correlation coefficient between NR1 and NR2 genes was 0.13, which 

implies almost no correlation. From comparison of individual stresses it can be 

observed that for most of the comparisons differential response of NR1 and ferredoxin-

-nitrite reductase genes are similar. When NaCl and trehalose stresses are applied 

individually, NR2 was found positively significant from paired SAM analysis while the 

other two genes were not. As it is known from biochemistry cell doesn’t want to create 

a situation where nitrate reduction rate is higher than that of nitrite reduction. To keep 

the nitrate reduction at the same pace as that of nitrite reduction, possibly it is NR1 

gene that actively regulates the overall Nitrate reduction reaction, not NR2 gene.  
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Figure 6.9: NR1 and nitrite reductase genes show high degree of co-expression.  

6.2.4 Glutamine synthetase 2 (GS2) and glutamate synthase 1 (GLU1) are 
coexpressed  
 

 Both glutamine synthetase and glutamate synthase plays in important role in 

nitrogen assimilation for the biosynthesis of amino-acids. Both of these enzymes have 

two isoenzymes which are encoded by two different genes. These isoenzymes are 

active in different cellular compartments. In most of our analysis these isoenzymes 

have shown differential response under almost all the stress comparisons. Glutamine 

synthetase 1 and 2 (GS1 and GS2) are active in chloroplast and cytoplasm respectively. 

Glutamate synthase 1 (GLU1) mainly regulated the GOGAT mechanism of nitrogen 

assimilation in chloroplast and usually have higher level of expression. GLU2 is a 

housekeeping gene and shows lower expression level. GLU1 was also found to show 

similar expression profile as that of GS2 [Heldt, 3rd Edition]. In most of the pair-wise 

significance analysis GLU1 and GS2 have shown similar significance profiles. When 

gene expression data was clustered based on all the experimental timepoints, they were 
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found to cluster closely. Pearson’s correlation coefficient of GS2 and GLU1 was 0.83. 

However the correlation coefficient between GLU1 and GLU2 or GS1 and GS2 were 

quite poor. This observation validates the previous finding that GS2 and GLU1 work in 

concert and show similar expression profiles.  
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Figure 6.10: GS2 and GLU1genes show high degree of co-expression.  

6.2.5 Tryptophan biosynthesis pathway 
 

I noticed number of genes encoding enzymes for Phenylalanine, tyrosine and 

tryptophan biosynthesis pathway is also being co-expressed. These genes were found to 

form clusters. These genes form one big and multiple small clusters. These clustering 

results are pictorially represented in figure 6.11, where genes belonging to same cluster 

are colored same. If there are multiple genes corresponding to one enzyme then they are 

shown by multiple arrows.  

I observed metabolic pathway branch of tryptophan biosynthesis from 

chorismate (4 out of 5 genes of this pathway) are co-regulated. These genes are colored 
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blue. Two genes corresponding to phosphoribosylanthranilate isomerase 1 and 2 show 

similar expression profile with respect to each other but different from cluster of other 

genes marked in blue. Three anthranilate synthase beta subunit genes were clustering 

together (marked in brown), however show different expression profiles compared to 

corresponding alpha subunit gene. I do not have any information for the genes 

corresponding to the arrows colored gray, either because they are un-annotated or 

because they are missing in our analysis.  
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5.2. tryptophan synthase, beta subunit 2 (TSB2)
6. 3-phosphoshikimate 1-carboxyvinyltransferase, putative
7. 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase
8. histidinol-phosphate aminotransferase

Prephenate Phenylpyruvate Phenylalanine 

4-Hydroxyphenylpyruvate Tyrosine 
8

8

3.1

3.2

5.2

5.1
5.2

5.1
5.2

 

Figure 6.11 Tryptophan biosynthesis genes show similar expression profiles. Arrows colored 
same are clustered together from hierarchical clustering.   
 
 From Alkaloid biosynthesis II pathway I observed 4, 2 and 2 genes coding 

tropinone reductase, putative / tropine dehydrogenase, copper amine oxidase, putative, 

and phenylalanine ammonia-lyase are coregulated. Each set of genes that are co-

regulated are marked with different colors. Interestingly tropinone reductase, putative / 
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tropine dehydrogenase gene found from KEGG pathway were not showing up in the 

corresponding cluster of Alkaloid biosynthesis II pathway from EASE analysis.  

Table 6.3 Genes from Alkaloid biosynthesis II pathway are clustered together 

tropinone reductase, putative / tropine dehydrogenase, putative 
short-chain dehydrogenase/reductase (SDR) family protein / tropinone 
reductase, putative 
tropinone reductase, putative / tropine dehydrogenase, putative 
tropinone reductase, putative / tropine dehydrogenase, putative 
copper amine oxidase, putative 
copper amine oxidase, putative 
phenylalanine ammonia-lyase 2 (PAL2) 
phenylalanine ammonia-lyase 1 (PAL1) 

 

6.3 Relation between gene regulation and chromosomal location 
 

I tried to investigate if there is any correlation between genes that are showing very 

similar expression values or profiles over the wide range of experiments can be 

correlated to their proximity in chromosome. To answer this question I identified gene 

pairs that are closest in their expressions values or profiles and also closest to each 

other physically on the chromosomal map. From a repository of 10963 genes that used 

for analysis, with Pearson’s correlation distance I identified 327 such pairs, whereas 

with Euclidean distance 292 pairs were identified and they are listed in supplementary 

table S6.2A and S6.2B. In this case Pearson’s correlation distance was found to 

perform slightly better than Euclidean distance. When these two list of genes were 

compared, to my surprise I noticed 248 genes are common between them. Hence 

conclusions are not very much dependent on the distance measure that we choose. Most 

of these correlated gene pairs in supplementary table S6.2A and S6.2B have same 

annotation. Possibly, these genes’ expressions need to be regulated together and these 

regulations become more efficient when they are physically close on the chromosome.  
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77 FUTURE WORKS 
 

 

The work presented in the thesis is one of beginning, though not completely 

perfect, steps in the long journey systems biology is about to go through. To the best of 

my knowledge, it was the first experimental design where multiple perturbations were 

applied to a eukaryotic system, individually or in combination and the integrated 

transcriptional and metabolic response was studied in a time-series manner.  

Analysis of single cellular fingerprint can only study one of the facades of 

biology and is not always sufficient to derive conclusions. Simultaneous study of 

multiple cellular fingerprints and the data integration will lead to more comprehensive 

and convincing results. The metabolic profiling analysis was carried out by a fellow 

graduate student and only the results relevant in the context of transcriptional profiling 

were discussed here.  

The need for studying a system from multiple perturbations is well talked about 

in systems biology research. However, studying the response of multiple perturbations 

and comparing them with individual ones is not very common. The importance of 

doing time-series high-throughput experiment is becoming more strengthened these 

days as regulatory mechanisms can only be derived from dynamic responses, not from 

snapshots.  

 Results obtained from this multiple stress high-throughput experiment lead to 

several biologically relevant conclusions. However in the process it opens up lot more 

questions than what it answers, which need to be addressed. Experience gained from 
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carrying out the experiments and analyzing the data will help to develop better 

experimental design and analytical methods in future.  

To formulate a mathematical framework for the integration of gene 

expression and metabolic data: 
Transcriptomic and metabolomic data generated from the multiple perturbation time-

series experiment can be used basis for development of mathematical models to 

integrate different data types. As part of future work a mathematical model is proposed 

with the following assumptions: 

• All the reactions follow 0 order kinetics. 

• Active enzyme concentration at any time point is same as the total enzyme 

concentration.  

• Total enzyme concentrations at any time point are proportional to the 

corresponding gene expressions at that time point. 

 While this is definitely an oversimplified picture of in vivo reality, what it 

describes can be used to extract information about the activity of metabolic pathway 

from the transcriptional data. If a gene is over-expressed then this indicates (based on 

transcriptional data in absence of any flux analysis data) that the corresponding reaction 

rate is possibly higher as well.  

 The model is been demonstrated below in the context of a simple linear pathway 

around metabolite B, but it can be further extended to more complex reaction networks.  

     (7.1) 
A B C 

k2 k1 
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Assuming k1 and k2 the rate constants of the reactions A->B and B->C respectively. 

The mass balance around metabolite B can be written as follows: 

   
21 kk

dt
dB

−=
              (7.2) 

The rate constants k1 and k2 are proportional to the total concentrations of the enzymes 

catalyzing the corresponding reactions. At a particular time point if C1 and C2 are the 

proportionality constants, then equation 7.2 can be rewritten as  

   
2211 ECEC

dt
dB

−=
         (7.3) 

where E1 and E2 are the total enzyme concentrations of the corresponding reactions.  

Based on the initially stated assumptions, the total enzyme concentrations are 

proportional to the corresponding gene expressions. If D1 and D2 are the respective 

proportionality constants, then equation 7.3 can be rewritten as 

     
222111 GDCGDC

dt
dB

−=
             (7.4) 

Equation 7.4 can be integrated with proper boundary conditions to establish a 

preliminary relation between gene expression and metabolite concentrations 

  
∫ −=−
t

t dtGDCGDCBB
0

2221110 )(
     (7.5) 

Where B0 and Bt are the concentration of metabolite B at time zero and time t, 

respectively. On dividing both sides of the equation 7.5 by B0 

 
∫ −=−
t

t dtGBDCGBDCBB
0

202210110 ))/()/((1)/(
           (7.6) 
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Similarly the gene expression values in equation 7.6 can be normalized with respect to 

the gene’s expression at time zero. 

       
∫ −=−
t

t dtGGBGDCGGBGDCBB
0

0
220

0
222

0
110

0
1110 ))/)(/()/)(/((1)/(

    (7.7) 

Where G1
o and G2

o are the expression values of gene 1 and 2 respectively at time zero 

and they are constants with respect to time. The constants involved in the right hand 

side of equation 7.7 are replaced by a single positive constant αi corresponding to each 

gene and the variables G1, G2 and Bt are replaced by g1, g2 and bt which represent the 

expression of gene 1 and 2 and the concentration of metabolite B at time t normalized 

with respect to time zero. 

  
∫ −=−
t

t dtggb
0

2211 )(1)( αα
       (7.8) 

Equation 7.8 is independent of the physiological state of any biological system, hence 

valid for both control and perturbed systems. If c and p superscripts refer to the control 

and perturbed system respectively, the following equation is also true: 

 
b b g g dt g g dtt

p
t
c p c p c

tt

− = − − −∫∫α α1 1 1 2 2 2
00

( ) ( )
    (7.9) 

α1 and α2 values are nonnegative as all the proportionality constants that are contained 

in α are positive. If gene 1 is over-expressed and gene 2 is under-expressed the integral 

over gene 1 is positive while that over gene 2 is negative. Hence the right hand side of 

the equation 7.9 will be positive, independent of α1 and α2 values. This leads to the 

conclusion that metabolite B is going to be over-produced in the perturbed vs the 

control system. On the contrary, if gene 2 and gene 1 are over-expressed and under-

expressed respectively, then the right hand side of equation 7.9 is going to be always 
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negative implying under-production of metabolite B. If both the genes are over or 

under-expressed, then it’s the relative values of α1 and α2 that will determine which of 

the two terms of the right hand side will dominate. Figure 7.1 shows a pictorial 

representation of four possible physiological states and the conclusion that could be 

derived from equation 7.9. 

 

Figure 7.1 Four potential transcriptional states and the conclusions about the concentration of 
metabolite B. In the first two cases it can be concluded from gene expression analysis that the 
metabolite B is over or under-produced. Other two cases doesn’t give us any conclusive 
information about metabolite B 
 

Equation 7.9 can be written for each metabolite of the network. For a network of m 

metabolites and n genes, the system of these equations can be written in a compact 

matrix form as follows 

    M = Z * G         (7.10) 

A C 
k2 k1 

B 

A C 
k2 k1 

B 

A C 
k2 k1 

B ?
A C 

k2 k1 
B ?
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Where the vector M has a dimension of m and it contains difference in metabolite 

concentrations between perturbed and control system. G is a vector of dimension n and 

it contains difference of the integrated gene expression values between perturbed and 

control. Z is a matrix that contains the constants (αi values with associated signs) in 

equation 7.10.  

 In the following case study the explained modeling concept was used in real life 

data [Dutta et al., 2004]. Figure 7.2 shows biochemical pathway for trehalose and starch 

synthesis.  

  

1. beta-amylase 
2. alpha-amylase 
3. starch phosphorylase 
4. 1,4-alpha-glucan branching enzyme / starch branching enzyme 
5. UDP-glucose pyrophosphorylase 
6. glycogen synthase 
7. trehalose-phosphatase family protein 
8. trehalose-6-phosphate phosphatase 
9. trehalase 

 

Figure 7.2 The reactions involved in starch and trehalose bio-synthesis pathway. The flux of 
the reactions colored red and green are increasing and decreasing respectively. Blue and black 
colored arrows represent reactions that are not undergoing significant change in flux and the 
reactions for which no information is available.   
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In the following case study the explained modeling concept was used in real life data 

[Dutta 2004]. Figure 7.2 shows biochemical pathway for trehalose and starch synthesis. 

A mathematical model for starch production could be derived in the way explained 

above 

Starch Starch g g dt g g dt g g dt g g dtt
p

t
c p c

t
p c

t
p c p c

tt

− = − − − − − − + −∫ ∫ ∫∫α α α α1 1 1
0

2 2 2
0

3 3 3 4 4 4
00

( ) ( ) ( ) ( )

          

 (7.11) 

The reactions for starch dissociation to maltose and glucose-1P are found to be 

increasing in perturbed compared to control. So the 1st and 3rd term in the right hand 

side of the equation 7.11 are positive, but they have a negative sign associated with it. 

However, the reactions from glycogen to starch and from starch to dextrin are not 

changing significantly. So the 2nd and 4th term being insignificant the net result is 

dictated by 1st and 3rd term, which makes the right hand side negative. This leads to the 

conclusion that starch is under-produced in perturbed compared to control.  

Trehalose production pathway is another example where relative concentration of 

trehalose can be predicted from the gene expression data. Trehalose-6-phosphate 

phosphatase catalyses the reaction from trehalose-6P to trehalose and is over-produced. 

Trehalase which catalyses the reaction from trehalose to glucose, is under-produced.  

 
Trehalose Trehalose g g dt g g dtt

p
t
c p c

t
p c

t

− = − − −∫ ∫α α8 8 8
0

9 9 9
0

( ) ( )
  (7.12) 

In the right hand side of equation 7.12, the first term will be positive and the second 

term will be negative making the right hand side positive. So it can be predicted that 

trehalose is going to be over-produced in perturbed compared to control. 
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General systems biology experimental design and data analysis protocol: 

 In this section I will explain a general systems biology experimental design with 

the help of a schematic diagram (Figure 7.3). This is a generic design based on my 

knowledge and experience and can be tailored according to individual experimental 

requirements.   

 It starts with a systems biology experiment where multiple cellular fingerprints 

are measured in a time-series manner. Measurement techniques of this cellular 

fingerprints use different technologies hence are susceptible to different experimental 

biases which require them to be processed or normalized separately. Heterogeneous 

data obtained from multiple cellular fingerprints will be used to develop and validate 

mathematical and statistical models which can elucidate or even predict biological 

processes. Apart from the data obtained from the experimental measurements, a good 

model should be able to use existing biological information, like in the form of 

additional constraints or initial conditions. Model should also be able to include 

relevant data from other research groups. This doesn’t sound feasible right now, 

because experimental design, measurement and analytical techniques vary significantly 

between research groups. But it’s extremely important because this mammoth 

experimental and computational work needs expertise from different disciplines hence 

can not be carried out by a single lab.   
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Figure 7.3 Schematic diagram of a future systems biology experiment. 

 

 Results and conclusions derived could be in several forms. It could be discrete 

information like function of an unknown gene or knowledge about its regulation. It 

could also be more generic in the form of network and sub-networks, network 

properties or even terms of mathematical equations consisting of different molecular 

fingerprint variables.  

Based on the results, experimental design and data analysis methods can be 

modified in a feed back process. Modification in experimental design could be in the 

form of selecting proper system, applying correct perturbations, identifying right 

variables for measurement and the correct timescale. Biological system is inherently 

different from other systems where mathematical and statistical methods are 
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extensively used at present. The huge amount of data that are or will be generated will 

pose a new challenge to identify biologically relevant conclusions. This challenge 

cannot be met without development of suitable mathematical and statistical analysis 

techniques, which closes the second feedback loop of the diagram. 
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Appendix 
 
List of significant genes, SV scores and TDSM files for pair-wise comparisons were not 
included in the Appendix because of their large size. Soft copy of these files will be provided 
upon request.  
 
Supplementary Table 5.19 Genes that are positively significant in both CO2 and trehalose 
stress, but non-significant in combined stress. Genes marked in yellow are metabolically 
important. Number of genes from Glycolysis and Gluconeogenesis, Phosphatidylinositol 
signaling, Glycerolipid metabolism and Glycerophospholipid metabolism pathways are present 
in this list.  
 
1-aminocyclopropane-1-carboxylate oxidase, putative / ACC oxidase, putative 
2,3-biphosphoglycerate-independent phosphoglycerate mutase-related / 
phosphoglyceromutase-related 
alcohol dehydrogenase (ADH) 
bifunctional dihydrofolate reductase-thymidylate synthase, putative / DHFR-TS, putative 
CACTA-like transposase family (Tnp1/En/Spm) 
casein kinase, putative 
curculin-like (mannose-binding) lectin family protein 
DEAD/DEAH box helicase, putative (RH15) 
diacylglycerol kinase, putative 
dihydrolipoamide dehydrogenase 2, mitochondrial / lipoamide dehydrogenase 2 
(MTLPD2) 
disease resistance family protein 
disease resistance family protein / LRR family protein 
disease resistance protein (TIR-NBS-LRR class), putative 
DNA-directed RNA polymerase, mitochondrial (RPOMT) 
enhanced disease susceptibility 5 (EDS5) / salicylic acid induction deficient 1 (SID1) 
ethylene receptor, putative (ETR2) 
exocyst complex component-related 
expressed protein 
expressed protein 
expressed protein 
expressed protein 
expressed protein 
expressed protein 
expressed protein 
expressed protein 
expressed protein 
expressed protein 
expressed protein 
expressed protein 
expressed protein 
expressed protein 
FAD-binding domain-containing protein 
F-box family protein 
ferrochelatase I 
GTP-binding family protein 
heat shock transcription factor family protein 
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HECT-domain-containing protein / ubiquitin-transferase family protein 
kelch repeat-containing protein / serine/threonine phosphoesterase family protein 
kelch repeat-containing serine/threonine phosphoesterase family protein 
KH domain-containing RNA-binding protein (HEN4) 
leucine-rich repeat family protein / protein kinase family protein 
lipocalin, putative 
molybdenum cofactor synthesis protein 3 / molybdopterin synthase sulphurylase (CNX5) 
NOT2/NOT3/NOT5 family protein 
nucleotidyltransferase family protein 
Null 
O-acetyltransferase family protein 
oligopeptide transporter OPT family protein 
oxidoreductase, 2OG-Fe(II) oxygenase family protein 
Peroxidase, putative 
phosphatidylinositol 3- and 4-kinase family protein 
phox (PX) domain-containing protein 
protein kinase family protein 
protein kinase family protein 
protein kinase family protein 
protein kinase, putative 
pseudogene, Ulp1 protease family 
putative sterol dehydrogenase 
pyruvate decarboxylase, putative 
pyruvate decarboxylase, putative 
Respiratory burst oxidase protein D (RbohD) / NADPH oxidase 
ribose-phosphate pyrophosphokinase, putative / phosphoribosyl diphosphate synthetase, 
putative 
SEC14 cytosolic factor, putative / phosphoglyceride transfer protein, putative 
SEC14 cytosolic factor, putative / polyphosphoinositide-binding protein, putative 
sucrose synthase, putative / sucrose-UDP glucosyltransferase, putative 
tic20 family protein 
transducin family protein / WD-40 repeat family protein 
UbiA prenyltransferase family protein 
ubiquitin-conjugating enzyme-related 
vacuolar sorting protein 9 domain-containing protein / VPS9 domain-containing protein 
zinc finger (C2H2 type) family protein 
zinc finger (MYND type) family protein 

 

Supplementary Table S5.2: Genes that are negatively significant in both CO2 and trehalose 
stress, but non-significant in combined stress. 
 
1 arabinogalactan-protein (AGP1) 
2 ATP-dependent protease La (LON) domain-containing protein 
3 auxin efflux carrier family protein 
4 basic helix-loop-helix (bHLH) family protein 
5 calmodulin-binding family protein 
6 cytochrome P450 family protein 
7 disease resistance-responsive protein-related / dirigent protein-related 
8 expressed protein 
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9 expressed protein 
10 expressed protein 
11 hydroxyproline-rich glycoprotein family protein 
12 NADP-dependent oxidoreductase, putative 
13 NADP-dependent oxidoreductase, putative 
14 no apical meristem (NAM) family protein 
15 Null 
16 Null 
17 Null 
18 photosystem II oxygen-evolving complex 23 (OEC23) 
19 plastocyanin-like domain-containing protein 
20 polygalacturonase, putative / pectinase, putative 
21 protease inhibitor/seed storage/lipid transfer protein (LTP) family protein 
22 proton-dependent oligopeptide transport (POT) family protein 
23 Ran-binding protein 1, putative / RanBP1, putative 
24 sugar transporter family protein 
25 transducin family protein / WD-40 repeat family protein 

26 
xyloglucan:xyloglucosyl transferase, putative / xyloglucan endotransglycosylase, 
putative / endo-xyloglucan transferase, putative 

27 Zinc finger (C3HC4-type RING finger) family protein 
28 Zinc finger (DNL type) family protein 

 
Supplementary Table S6.1A: List of genes that are clustering together using Pearson’s 
correlation distance and are neighbor in their chromosomal location (total of 326 genes) 
 
Gene Name 
LIM domain-containing protein 
LIM domain-containing protein 
LIM domain-containing protein 
histone H3 
histone H3 
MADS-box protein (MAF3) 
MADS-box protein (MAF2) 
lectin protein kinase, putative 
lectin protein kinase family protein 
xyloglucan:xyloglucosyl transferase, putative / xyloglucan 
endotransglycosylase, putative / endo-xyloglucan transferase, putative 
xyloglucan:xyloglucosyl transferase, putative / xyloglucan 
endotransglycosylase, putative / endo-xyloglucan transferase, putative 
IAA-amino acid hydrolase 2 (ILL2) 
IAA-amino acid hydrolase 3 (IAR3) (ILL1) 
heat shock protein, putative 
heat shock protein 81-4 (HSP81-4) 
SUMO activating enzyme 1b (SAE1b) 
SUMO activating enzyme, putative 
expressed protein 
60S ribosomal protein L32 (RPL32B) 
integral membrane family protein 
tapetum-specific protein-related 
FAD-binding domain-containing protein 
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FAD-binding domain-containing protein 
inorganic phosphate transporter (PHT2) 
inorganic phosphate transporter (PHT1) (PT1) 
kelch repeat-containing F-box family protein 
kelch repeat-containing F-box family protein 
germin-like protein (GER2) 
germin-like protein (GLP2a) (GLP5a) 
protein kinase family protein 
protein kinase family protein 
germin-like protein, putative 
germin-like protein, putative 
jacalin lectin family protein 
jacalin lectin family protein 
ribulose bisphosphate carboxylase small chain 1B / RuBisCO small subunit 1B 
(RBCS-1B) (ATS1B) 
ribulose bisphosphate carboxylase small chain 2B / RuBisCO small subunit 2B 
(RBCS-2B) (ATS2B) 
ribulose bisphosphate carboxylase small chain 3B / RuBisCO small subunit 3B 
(RBCS-3B) (ATS3B) 
SAR DNA-binding protein, putative 
SAR DNA-binding protein, putative 
hypothetical protein 
expressed protein 
expressed protein 
expressed protein 
cytochrome P450 family protein 
cytochrome P450 family protein 
cytochrome P450 family protein 
integral membrane transporter family protein 
integral membrane transporter family protein 
isochorismatase hydrolase family protein 
isochorismatase hydrolase family protein 
tubulin alpha-3/alpha-5 chain (TUA5) 
tubulin alpha-3/alpha-5 chain (TUA3) 
lipase class 3 family protein 
lipase class 3 family protein 
hypothetical protein 
rubredoxin family protein 
expressed protein 
hypothetical protein 
NADP-dependent oxidoreductase, putative 
NADP-dependent oxidoreductase, putative 
NADP-dependent oxidoreductase, putative (P1) 
stress-responsive protein (KIN2) / stress-induced protein (KIN2) / cold-
responsive protein (COR6.6) / cold-regulated protein (COR6.6) 
stress-responsive protein (KIN1) / stress-induced protein (KIN1) 
ubiquinol-cytochrome C reductase iron-sulfur subunit, mitochondrial, putative / 
Rieske iron-sulfur protein, putative 
ubiquinol-cytochrome C reductase iron-sulfur subunit, mitochondrial, putative / 
Rieske iron-sulfur protein, putative 
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auxin-responsive GH3 family protein 
auxin-responsive GH3 family protein 
auxin-responsive GH3 family protein 
DEAD/DEAH box helicase, putative 
DEAD/DEAH box helicase, putative (RH15) 
DEAD box RNA helicase (RH25) 
DEAD box RNA helicase (RH26) 
transferase family protein 
transferase family protein 
sulfotransferase family protein 
sulfotransferase family protein 
laccase family protein / diphenol oxidase family protein 
laccase family protein / diphenol oxidase family protein 
patatin, putative 
patatin, putative 
transcription factor IIB (TFIIB) family protein 
expressed protein 
aspartyl protease family protein 
aspartyl protease family protein 
coatomer beta subunit, putative / beta-coat protein, putative / beta-COP, 
putative 
coatomer beta subunit, putative / beta-coat protein, putative / beta-COP, 
putative 
expressed protein 
expressed protein 
cellulose synthase family protein 
cellulose synthase family protein 
protein kinase family protein 
protein kinase family protein 
cytochrome P450 family protein 
cytochrome P450 family protein 
hypothetical protein 
protease inhibitor/seed storage/lipid transfer protein (LTP) family protein 
methionine sulfoxide reductase domain-containing protein / SelR domain-
containing protein 
methionine sulfoxide reductase domain-containing protein / SeIR domain-
containing protein 
subtilase family protein 
subtilase family protein 
FAD-binding domain-containing protein 
FAD-binding domain-containing protein 
glutaredoxin family protein 
glutaredoxin family protein 
pyruvate phosphate dikinase family protein 
pyruvate phosphate dikinase family protein 
peroxidase, putative 
peroxidase, putative 
mitogen-activated protein kinase, putative 
mitogen-activated protein kinase, putative 
equilibrative nucleoside transporter, putative (ENT3) 
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equilibrative nucleoside transporter, putative (ENT6) 
expressed protein 
serine protease inhibitor, Kazal-type family protein 
expressed protein 
F-box family protein 
splicing factor, putative 
splicing factor, putative 
proline-rich extensin-like family protein 
proline-rich extensin-like family protein 
strictosidine synthase family protein 
strictosidine synthase, putative (YLS2) 
copia-like retrotransposon family 
broad-spectrum mildew resistance RPW8 family protein 
ADP-ribosylation factor, putative 
ADP-ribosylation factor, putative 
disease resistance protein (EDS1) 
lipase class 3 family protein / disease resistance protein-related 
ubiquitin carboxyl-terminal hydrolase family protein 
ubiquitin carboxyl-terminal hydrolase-related 
disease resistance protein (TIR-NBS-LRR class), putative 
disease resistance protein (TIR-NBS-LRR class), putative 
nitrilase 3 (NIT3) 
nitrilase 1 (NIT1) 
short-chain dehydrogenase/reductase (SDR) family protein 
short-chain dehydrogenase/reductase (SDR) family protein 
H+-transporting two-sector ATPase, putative 
H+-transporting two-sector ATPase, putative 
cytochrome P450 family protein 
cytochrome P450 family protein 
cytochrome P450 family protein 
cytochrome P450 family protein 
cytochrome P450 71B20, putative (CYP71B2) 
cytochrome P450 71B19, putative (CYP71B19) 
pseudogene, cytochrome P450 
cytochrome P450 family protein 
allene oxide cyclase, putative / early-responsive to dehydration protein, putative 
/ ERD protein, putative 
early-responsive to dehydration stress protein (ERD12) 
disease resistance family protein 
disease resistance family protein 
expressed protein 
expressed protein 
cyclopropane fatty acid synthase-related 
cyclopropane-fatty-acyl-phospholipid synthase family protein 
pseudogene, hypothetical protein 
pseudogene, cytochrome P450 
hypothetical protein 
expressed protein 
jacalin lectin family protein 
jacalin lectin family protein 
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cytochrome P450, putative 
cytochrome P450, putative 
forkhead-associated domain-containing protein / FHA domain-containing 
protein 
transcriptional activator, putative 
acyl-[acyl-carrier-protein] desaturase, putative / stearoyl-ACP desaturase, 
putative 
acyl-[acyl-carrier-protein] desaturase, putative / stearoyl-ACP desaturase, 
putative 
short-chain dehydrogenase/reductase (SDR) family protein 
short-chain dehydrogenase/reductase (SDR) family protein 
FAD-binding domain-containing protein 
FAD-binding domain-containing protein 
cyclic nucleotide-regulated ion channel, putative (CNGC11) 
cyclic nucleotide-regulated ion channel / cyclic nucleotide-gated channel 
(CNGC3) 
DC1 domain-containing protein 
DC1 domain-containing protein 
putative endochitinase 
putative endochitinase 
hypothetical protein 
auxin-regulated protein 
expressed protein 
expressed protein 
putative cinnamoyl-CoA reductase 
putative cinnamoyl-CoA reductase 
putative synaptobrevin 
putative synaptobrevin 
cellulose synthase family protein 
cellulose synthase family protein 
short-chain dehydrogenase/reductase (SDR) family protein / tropinone 
reductase, putative 
tropinone reductase, putative / tropine dehydrogenase, putative 
cytochrome P450 family protein 
cytochrome P450 family protein 
60S acidic ribosomal protein P2 (RPP2A) 
60S acidic ribosomal protein P2 (RPP2B) 
epoxide hydrolase, putative 
epoxide hydrolase, soluble (sEH) 
putative membrane transporter 
unknown protein 
expressed protein 
expressed protein 
hydrolase, alpha/beta fold family protein 
hydrolase, alpha/beta fold family protein 
putative MYB family transcription factor 
unknown protein 
sinapoylglucose:malate sinapoyltransferase (SNG1) 
serine carboxypeptidase S10 family protein 
mannose 6-phosphate reductase (NADPH-dependent), putative 
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mannose 6-phosphate reductase (NADPH-dependent), putative 
expressed protein 
expressed protein 
UDP-glucoronosyl/UDP-glucosyl transferase family protein 
UDP-glucoronosyl/UDP-glucosyl transferase family protein 
leucine-rich repeat family protein / protein kinase family protein 
leucine-rich repeat family protein / protein kinase family protein 
ligase, putative 
pseudogene, C-1-tetrahydrofolate synthase 
glycine-rich protein 
glycine-rich protein (GRP) 
DNAJ heat shock N-terminal domain-containing protein 
DNAJ heat shock N-terminal domain-containing protein 
MATE efflux family protein 
MATE efflux family protein 
coenzyme Q biosynthesis Coq4 family protein / ubiquinone biosynthesis Coq4 
family protein 
expressed protein 
glutathione S-transferase zeta 1 (GSTZ1) (GST18) 
glutathione S-transferase, putative 
major latex protein-related / MLP-related 
major latex protein-related / MLP-related 
expressed protein 
protein kinase family protein 
curculin-like (mannose-binding) lectin family protein 
curculin-like (mannose-binding) lectin family protein / PAN domain-containing 
protein 
isoflavone reductase, putative 
isoflavone reductase, putative 
major latex protein-related / MLP-related 
Bet v I allergen family protein 
expressed protein 
remorin family protein 
pseudogene, putative receptor serine/threonine kinase 
protein kinase family protein / glycerophosphoryl diester phosphodiesterase 
family protein 
serine/threonine protein kinase, putative 
protein kinase, putative 
S-adenosyl-L-methionine:carboxyl methyltransferase family protein 
S-adenosyl-L-methionine:carboxyl methyltransferase family protein 
cytochrome P450, putative 
cytochrome P450, putative 
S-locus protein kinase, putative 
S-locus protein kinase, putative 
S-locus protein kinase, putative 
S-locus protein kinase, putative 
aldo/keto reductase family protein 
aldo/keto reductase family protein 
glycosyl transferase family 20 protein / trehalose-phosphatase family protein 
gypsy-like retrotransposon family 
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expressed protein (CW7) 
expressed protein (CW7) 
disease resistance protein (CC-NBS-LRR class), putative 
xylan endohydrolase, putative 
pseudogene, disease resistance protein [fragment] 
PAPA-1-like family protein / zinc finger (HIT type) family protein 
myrosinase-associated protein, putative 
myrosinase-associated protein, putative 
eukaryotic translation initiation factor 2B family protein / eIF-2B family protein 
eukaryotic translation initiation factor 2B family protein / eIF-2B family protein 
jacalin lectin family protein 
jacalin lectin family protein 
leucine-rich repeat protein kinase, putative 
leucine-rich repeat protein kinase, putative 
leucine-rich repeat protein kinase, putative 
leucine-rich repeat protein kinase, putative 
leucine-rich repeat protein kinase, putative 
leucine-rich repeat protein kinase, putative 
leucine-rich repeat protein kinase, putative 
leucine-rich repeat protein kinase, putative 
IAA-amino acid hydrolase 5 / auxin conjugate hydrolase (ILL5) 
IAA-amino acid hydrolase 3 / IAA-Ala hydrolase 3 (IAR3) 
expressed protein 
pseudogene, cytochrome P450 family 
hypothetical protein 
chlorophyll A-B binding protein, putative (LHCA5) 
expressed protein 
expressed protein 
leucine-rich repeat family protein 
disease resistance protein-related / LRR protein-related 
subtilase family protein 
subtilase family protein 
FAD-binding domain-containing protein 
FAD-binding domain-containing protein 
eukaryotic translation initiation factor 4E, putative / eIF-4E, putative / eIF4E, 
putative / mRNA cap-binding protein, putative 
eukaryotic translation initiation factor 4E, putative / eIF-4E, putative / eIF4E, 
putative / mRNA cap-binding protein, putative 
lipase 
lipase, putative 
lipase, putative 
glutathione S-transferase, putative 
glutathione S-transferase, putative 
FAD-binding domain-containing protein 
FAD-binding domain-containing protein 
expressed protein 
expressed protein 
UDP-glucoronosyl/UDP-glucosyl transferase family protein 
UDP-glucoronosyl/UDP-glucosyl transferase family protein 
pseudogene, putative UDP-glucose glucosyltransferase 
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UDP-glucoronosyl/UDP-glucosyl transferase family protein 
O-methyltransferase, putative 
O-methyltransferase, putative 
dehydroascorbate reductase, putative 
dehydroascorbate reductase, putative 
mitogen-activated protein kinase, putative / MAPK, putative (MPK8) 
laccase family protein / diphenol oxidase family protein 
MATE efflux family protein 
MATE efflux family protein 
2-oxoglutarate-dependent dioxygenase, putative 
2-oxoglutarate-dependent dioxygenase, putative 
sulfotransferase family protein 
sulfotransferase family protein 
fatty acid desaturase family protein 
fatty acid desaturase family protein 
polygalacturonase, putative / pectinase, putative 
polygalacturonase, putative / pectinase, putative 
UDP-glucose transferase (UGT75B2) 
UDP-glucoronosyl/UDP-glucosyl transferase family protein 
extracellular dermal glycoprotein, putative / EDGP, putative 
extracellular dermal glycoprotein, putative / EDGP, putative 
glutathione S-transferase, putative 
glutathione S-transferase, putative 
multidrug resistance P-glycoprotein, putative 
multidrug resistance P-glycoprotein, putative 
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Supplementary Table S6.1B: List of genes that are clustering together using Euclidean 
distance and are neighbor in their chromosomal location (total of 292 genes) 
 
Gene Name 
LIM domain-containing protein 
LIM domain-containing protein 
histone H3 
histone H3 
MADS-box protein (MAF3) 
MADS-box protein (MAF2) 
xyloglucan:xyloglucosyl transferase, putative / xyloglucan endotransglycosylase, 
putative / endo-xyloglucan transferase, putative 
xyloglucan:xyloglucosyl transferase, putative / xyloglucan endotransglycosylase, 
putative / endo-xyloglucan transferase, putative 
protein kinase family protein 
serine O-acetyltransferase (SAT-52) 
IAA-amino acid hydrolase 2 (ILL2) 
IAA-amino acid hydrolase 3 (IAR3) (ILL1) 
SUMO activating enzyme 1b (SAE1b) 
SUMO activating enzyme, putative 
pentacyclic triterpene synthase, putative 
cytochrome P450 family protein 
Lon protease homolog 1, mitochondrial (LON) 
glycine-rich protein 
expressed protein 
60S ribosomal protein L32 (RPL32B) 
integral membrane family protein 
tapetum-specific protein-related 
FAD-binding domain-containing protein 
FAD-binding domain-containing protein 
inorganic phosphate transporter (PHT2) 
inorganic phosphate transporter (PHT1) (PT1) 
nodulin MtN21 family protein 
nodulin-related 
germin-like protein (GER2) 
germin-like protein (GLP2a) (GLP5a) 
protein kinase family protein 
protein kinase family protein 
germin-like protein, putative 
germin-like protein, putative 
jacalin lectin family protein 
jacalin lectin family protein 
ribulose bisphosphate carboxylase small chain 1B / RuBisCO small subunit 1B (RBCS-
1B) (ATS1B) 
ribulose bisphosphate carboxylase small chain 2B / RuBisCO small subunit 2B (RBCS-
2B) (ATS2B) 
ribulose bisphosphate carboxylase small chain 3B / RuBisCO small subunit 3B (RBCS-
3B) (ATS3B) 
SAR DNA-binding protein, putative 
SAR DNA-binding protein, putative 
expressed protein 
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expressed protein 
cytochrome P450 family protein 
cytochrome P450 family protein 
cytochrome P450 family protein 
integral membrane transporter family protein 
integral membrane transporter family protein 
integral membrane family protein 
SOH1 family protein 
tubulin alpha-3/alpha-5 chain (TUA5) 
tubulin alpha-3/alpha-5 chain (TUA3) 
hypothetical protein 
rubredoxin family protein 
expressed protein 
hypothetical protein 
NADP-dependent oxidoreductase, putative 
NADP-dependent oxidoreductase, putative 
stress-responsive protein (KIN2) / stress-induced protein (KIN2) / cold-responsive 
protein (COR6.6) / cold-regulated protein (COR6.6) 
stress-responsive protein (KIN1) / stress-induced protein (KIN1) 
dentin sialophosphoprotein-related 
dentin sialophosphoprotein-related 
transferase family protein 
transferase family protein 
laccase family protein / diphenol oxidase family protein 
laccase family protein / diphenol oxidase family protein 
patatin, putative 
patatin, putative 
coatomer beta subunit, putative / beta-coat protein, putative / beta-COP, putative 
coatomer beta subunit, putative / beta-coat protein, putative / beta-COP, putative 
expressed protein 
expressed protein 
protein kinase family protein 
protein kinase family protein 
cytochrome P450 family protein 
cytochrome P450 family protein 
methionine sulfoxide reductase domain-containing protein / SelR domain-containing 
protein 
methionine sulfoxide reductase domain-containing protein / SeIR domain-containing 
protein 
subtilase family protein 
subtilase family protein 
disease resistance protein (TIR-NBS-LRR class), putative 
disease resistance protein (TIR-NBS-LRR class), putative 
glutaredoxin family protein 
glutaredoxin family protein 
multi-copper oxidase, putative (SKU5) 
auxin-responsive family protein 
peroxidase, putative 
peroxidase, putative 
mitogen-activated protein kinase, putative 
mitogen-activated protein kinase, putative 
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equilibrative nucleoside transporter, putative (ENT3) 
equilibrative nucleoside transporter, putative (ENT6) 
expressed protein 
serine protease inhibitor, Kazal-type family protein 
expressed protein 
F-box family protein 
short-chain dehydrogenase/reductase (SDR) family protein 
short-chain dehydrogenase/reductase (SDR) family protein 
splicing factor, putative 
splicing factor, putative 
proline-rich extensin-like family protein 
proline-rich extensin-like family protein 
copia-like retrotransposon family 
broad-spectrum mildew resistance RPW8 family protein 
ADP-ribosylation factor, putative 
ADP-ribosylation factor, putative 
ubiquitin carboxyl-terminal hydrolase family protein 
ubiquitin carboxyl-terminal hydrolase-related 
disease resistance protein (TIR-NBS-LRR class), putative 
disease resistance protein (TIR-NBS-LRR class), putative 
nitrilase 3 (NIT3) 
nitrilase 1 (NIT1) 
short-chain dehydrogenase/reductase (SDR) family protein 
short-chain dehydrogenase/reductase (SDR) family protein 
H+-transporting two-sector ATPase, putative 
H+-transporting two-sector ATPase, putative 
cytochrome P450 family protein 
cytochrome P450 family protein 
cytochrome P450 71B20, putative (CYP71B2) 
cytochrome P450 71B19, putative (CYP71B19) 
pseudogene, cytochrome P450 
cytochrome P450 family protein 
cytochrome P450 71B16, putative (CYP71B16) 
allene oxide cyclase, putative / early-responsive to dehydration protein, putative / ERD 
protein, putative 
early-responsive to dehydration stress protein (ERD12) 
disease resistance family protein 
disease resistance family protein 
expressed protein 
expressed protein 
pseudogene, hypothetical protein 
pseudogene, cytochrome P450 
hypothetical protein 
expressed protein 
cytochrome P450, putative 
cytochrome P450, putative 
no apical meristem (NAM) family protein 
no apical meristem (NAM) family protein 
forkhead-associated domain-containing protein / FHA domain-containing protein 
transcriptional activator, putative 
acyl-[acyl-carrier-protein] desaturase, putative / stearoyl-ACP desaturase, putative 
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acyl-[acyl-carrier-protein] desaturase, putative / stearoyl-ACP desaturase, putative 
hydroxyproline-rich glycoprotein family protein 
expressed protein 
short-chain dehydrogenase/reductase (SDR) family protein 
short-chain dehydrogenase/reductase (SDR) family protein 
cytochrome b5, putative 
hypothetical protein 
DC1 domain-containing protein 
DC1 domain-containing protein 
putative endochitinase 
putative endochitinase 
auxin-regulated protein 
auxin-regulated protein 
aldo/keto reductase family protein 
aldo/keto reductase family protein 
expressed protein 
expressed protein 
chlorophyll A-B binding protein / LHCII type I (LHB1B1) 
chlorophyll A-B binding protein / LHCII type I (LHB1B2) 
putative cinnamoyl-CoA reductase 
putative cinnamoyl-CoA reductase 
putative synaptobrevin 
putative synaptobrevin 
cellulose synthase family protein 
cellulose synthase family protein 
oxysterol-binding family protein 
oxysterol-binding family protein 
cytochrome P450 71A13, putative (CYP71A13) 
cytochrome P450 71A12, putative (CYP71A12) 
short-chain dehydrogenase/reductase (SDR) family protein / tropinone reductase, 
putative 
tropinone reductase, putative / tropine dehydrogenase, putative 
cytochrome P450 family protein 
cytochrome P450 family protein 
60S acidic ribosomal protein P2 (RPP2A) 
60S acidic ribosomal protein P2 (RPP2B) 
epoxide hydrolase, putative 
epoxide hydrolase, soluble (sEH) 
unknown protein 
unknown protein 
expressed protein 
expressed protein 
hydrolase, alpha/beta fold family protein 
hydrolase, alpha/beta fold family protein 
putative MYB family transcription factor 
unknown protein 
mannose 6-phosphate reductase (NADPH-dependent), putative 
mannose 6-phosphate reductase (NADPH-dependent), putative 
UDP-glucoronosyl/UDP-glucosyl transferase family protein 
UDP-glucoronosyl/UDP-glucosyl transferase family protein 
leucine-rich repeat family protein / protein kinase family protein 
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leucine-rich repeat family protein / protein kinase family protein 
ligase, putative 
pseudogene, C-1-tetrahydrofolate synthase 
glycine-rich protein 
glycine-rich protein (GRP) 
DNAJ heat shock N-terminal domain-containing protein 
DNAJ heat shock N-terminal domain-containing protein 
chlorophyll A-B binding protein / LHCII type II (LHCB2.1) (LHCB2.3) 
chlorophyll A-B binding protein / LHCII type II (LHCB2.2) 
MATE efflux family protein 
MATE efflux family protein 
MATE efflux family protein 
expressed protein 
expressed protein 
glutathione S-transferase zeta 1 (GSTZ1) (GST18) 
glutathione S-transferase, putative 
curculin-like (mannose-binding) lectin family protein 
curculin-like (mannose-binding) lectin family protein / PAN domain-containing protein 
isoflavone reductase, putative 
isoflavone reductase, putative 
esterase/lipase/thioesterase family protein 
hydrolase, alpha/beta fold family protein 
remorin family protein 
remorin family protein 
pseudogene, putative receptor serine/threonine kinase 
protein kinase family protein / glycerophosphoryl diester phosphodiesterase family 
protein 
S-adenosyl-L-methionine:carboxyl methyltransferase family protein 
S-adenosyl-L-methionine:carboxyl methyltransferase family protein 
cytochrome P450, putative 
cytochrome P450, putative 
cytochrome P450, putative 
rhomboid family protein 
cell division cycle protein-related 
S-locus protein kinase, putative 
S-locus protein kinase, putative 
aldo/keto reductase family protein 
aldo/keto reductase family protein 
glycosyl transferase family 20 protein / trehalose-phosphatase family protein 
gypsy-like retrotransposon family 
expressed protein (CW7) 
expressed protein (CW7) 
xylan endohydrolase, putative 
glycosyl hydrolase family 10 protein / carbohydrate-binding domain-containing protein 
pseudogene, disease resistance protein [fragment] 
PAPA-1-like family protein / zinc finger (HIT type) family protein 
myrosinase-associated protein, putative 
myrosinase-associated protein, putative 
eukaryotic translation initiation factor 2B family protein / eIF-2B family protein 
eukaryotic translation initiation factor 2B family protein / eIF-2B family protein 
jacalin lectin family protein 
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jacalin lectin family protein 
leucine-rich repeat protein kinase, putative 
leucine-rich repeat protein kinase, putative 
leucine-rich repeat protein kinase, putative 
leucine-rich repeat protein kinase, putative 
leucine-rich repeat protein kinase, putative 
leucine-rich repeat protein kinase, putative 
IAA-amino acid hydrolase 5 / auxin conjugate hydrolase (ILL5) 
IAA-amino acid hydrolase 3 / IAA-Ala hydrolase 3 (IAR3) 
expressed protein 
pseudogene, cytochrome P450 family 
expressed protein 
expressed protein 
leucine-rich repeat family protein 
disease resistance protein-related / LRR protein-related 
subtilase family protein 
subtilase family protein 
FAD-binding domain-containing protein 
FAD-binding domain-containing protein 
eukaryotic translation initiation factor 4E, putative / eIF-4E, putative / eIF4E, putative / 
mRNA cap-binding protein, putative 
eukaryotic translation initiation factor 4E, putative / eIF-4E, putative / eIF4E, putative / 
mRNA cap-binding protein, putative 
lipase 
lipase, putative 
lipase, putative 
FAD-binding domain-containing protein 
FAD-binding domain-containing protein 
expressed protein 
expressed protein 
pseudogene, putative UDP-glucose glucosyltransferase 
UDP-glucoronosyl/UDP-glucosyl transferase family protein 
O-methyltransferase, putative 
O-methyltransferase, putative 
dehydroascorbate reductase, putative 
dehydroascorbate reductase, putative 
laccase family protein / diphenol oxidase family protein 
laccase family protein / diphenol oxidase family protein 
MATE efflux family protein 
MATE efflux family protein 
pseudogene, similar to CmE8 
2-oxoglutarate-dependent dioxygenase, putative 
fatty acid desaturase family protein 
fatty acid desaturase family protein 
polygalacturonase, putative / pectinase, putative 
polygalacturonase, putative / pectinase, putative 
extracellular dermal glycoprotein, putative / EDGP, putative 
extracellular dermal glycoprotein, putative / EDGP, putative 
multidrug resistance P-glycoprotein, putative 
multidrug resistance P-glycoprotein, putative 
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