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The Anacostia River, Washington D.C., is a freshwater ecosystem that historically 

received high concentrations of nutrients from sewage and stormwater outfalls. 

Restoration efforts have been implemented recently that may improve water quality 

and alter the relative abundance of different phytoplankton taxa in the river. To 

determine the effects that environmental shifts may have on diatom abundance and 

phytoplankton community composition in the Anacostia River, a mesocosm 

experiment and laboratory studies were conducted. The results of the mesocosm study 

revealed that diatoms were consistently outcompeted by cyanobacteria. Additionally, 

phosphorus enrichment led to a 50% increase in cyanobacterial abundance and 

decreased the abundance of diatoms. In the culture study, shifts in water temperature 

and nutrient availability altered diatom growth rates, photosynthesis, silica deposition, 

and NO3- reduction. Together, these studies highlight the interactive effects that 

nutrient availability and temperature may have on the physiology and subsequent 

growth of diatoms in the Anacostia River. 
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Chapter 1: Nutrient effects on phytoplankton community composition in the 

eutrophic Anacostia River and a focus on diatom physiology: Introduction 

 The Anacostia River is a small tributary of Chesapeake Bay that begins in 

Bladensburg, Maryland, and flows through the District of Columbia. This eutrophic 

river system has faced a long history of neglect and was named one of the highest 

priority regions of concern within the Chesapeake Bay region in 2002 (CBP 2002). A 

major source of pollution to the Anacostia River has been the untreated sewage and 

stormwater effluent that enters the river from combined sewer overflow outfalls 

(CSOs) that are found along the water (Brandes 2005, Solomon et al. 2019). The 

polluted waters that are discharged into the Anacostia River from the CSOs are rich in 

nutrients and have likely contributed to the high ambient levels of nitrogen (N) that 

are found in the water column of this river in the modern-day (Solomon et al. 2019). 

Nutrients entering the river from the CSOs and from the surrounding urban use have 

helped fuel the high biomass and potentially harmful picocyanobacterial blooms that 

have been noted during summer months on the Anacostia River (Jackson 2016, 

Solomon et al. 2019).  

 In an attempt to improve the water quality and the overall health of the 

Anacostia River system, the District of Columbia Water and Sewer Authority 

implemented the Anacostia River Tunnel Project in March 2018. The Anacostia River 

Tunnel is an underground sewage and stormwater diversion tunnel that was designed 

to divert CSO effluent to the Blue Plains Wastewater Treatment Plant, thus 

preventing these polluted waters from being discharged directly into the Anacostia 

River (DC Water and Sewer Authority 2002). The implementation of this large-scale 
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restoration project should lead to reductions in nutrient-loading and changes in the 

relative abundance of the different chemical forms of N, as CSO effluent is rich in 

reduced N forms such as ammonium (NH4+) and urea as opposed to oxidized N forms 

such as nitrate (NO3-; Solomon et al. 2019). Changes in the relative abundance of 

NH4+ and NO3- have been associated with shifts in phytoplankton community 

composition in a number of aquatic ecosystems (Berg et al. 2003, Dugdale et al. 

2007, Domingues et al. 2011, Glibert et al. 2014, 2016, Shangguan et al. 2017). These 

changes in community diversity under varying NH4+: NO3- conditions may be related 

to the unique physiological capabilities that different phytoplankton functional groups 

possess and may ultimately allow certain phytoplankton taxa to outcompete others as 

the relative abundance of different N forms in the water column changes (Lomas and 

Glibert 1999a,b, Parker and Armbrust 2005, Glibert et al. 2016).  

 One specific phytoplankton functional group that may be affected by changes 

in the relative abundance of NH4+ and NO3- are the diatoms. Diatoms form the basis 

of some of the most productive and efficient food chains in the world (Cushing 1979) 

and are thought to prefer NO3- as an N source (Patrick 1948, Probyn and Painting 

1985, Dortch 1990, Lomas and Glibert 1999a, b, Glibert et al. 2016). It has been 

suggested that diatoms thrive under high NO3- conditions due to their relatively high 

NO3- uptake rates, their ability to store large amounts of NO3- internally, and their 

abundance of high-affinity NO3- transporters (Lomas and Glibert 1999b, Lomas and 

Glibert 2000, Song and Ward 2007, Glibert et al. 2016 and references therein). In 

addition to this documented preference for NO3-, diatom growth and NO3- 

assimilation may decrease when NH4+ concentrations are high (Syrett and Morris 
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1963, Lomas and Glibert 1999a, Dugdale et al. 2007, Glibert et al. 2016). It has been 

documented that diatom abundance is inversely correlated with water NH4+ 

concentration in the Anacostia River (Solomon et al. 2019), suggesting that the high 

ambient NH4+ concentrations that have been noted in the Anacostia River may be 

affecting diatom growth and persistence at certain times throughout the year.  

 In addition to the effects that N abundance and form may have on diatom 

growth and physiology, other environmental factors that will not be affected by the 

implementation of the Anacostia River Tunnel Project, such as water temperature, 

may also influence the relative abundance of diatoms in an aquatic ecosystem. 

Diatoms are often the dominant phytoplankton group present during spring bloom 

events when waters are cool, nutrients are supplied to the phytoplankton in episodic 

pulses, and waters are weakly stratified (Cushing 1989, Goldman 1993, Lomas and 

Glibert 1999b). Water temperature has been shown to affect diatom NO3- assimilation 

(Lomas and Glibert 1999b) and cell silicon content in certain diatom species (Paasche 

1980), suggesting that changes in temperature have the capacity to alter diatom 

physiology and may in turn lead to changes in diatom abundance. Specifically, cold 

(< 10 °C) and hot (>20 °C) temperature conditions may decrease the activity of the 

nitrate reductase (NR) enzyme that catalyzes the first step of NO3- reduction in algal 

cells (Lomas and Glibert 1999a,b, Berges et al. 2002, Gao et al. 2000). Additionally, 

colder water temperatures have been associated with increases in diatom cell wall 

silicification and increases in the silicon quota of specific diatom species (Liu and 

Glibert 2018, Lomas et al. 2019, Paasche 1980). These temperature-dependent 

processes may be regulated by imbalances in cellular metabolism that occur when 
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diatom cells are subject to stressful environmental conditions and may ultimately 

influence the growth and productivity of diatom cells in an aquatic ecosystem. 

 The Anacostia River is atypical in its seasonal bloom patterns compared to 

other temperate aquatic systems, in that spring diatom blooms do not attain a biomass 

as high as that of summer blooms (Solomon et al. 2019). This lack of diatom biomass 

accumulation that has been noted during the spring season on the Anacostia River 

may be related to environmental factors such as nutrient availability and water 

temperature. The implementation of the Anacostia River Tunnel Project will likely 

lead to increases in water quality over time and may, in turn, lead to changes in 

nutrient abundance and form, phytoplankton community composition, and the 

prevalence and succession of diatom communities. Therefore, the research herein 

aims to address the general hypothesis that nutrient abundance, nutrient form, and 

water temperature may synergistically influence diatom physiology and growth in the 

Anacostia River ecosystem. To determine the synergistic effects that these 

environmental shifts may have on diatom physiology and abundance, the following 

questions were addressed:  

• How do high ambient NH4
+ concentrations and water temperatures typical of 

the Anacostia River during the summer months impact phytoplankton 

community composition and the prevalence of diatoms in the Anacostia 

River? 

• How do NO3
- availability, silicate availability, and water temperature alter 

diatom growth rate, photosynthesis, and cell wall silicification? 
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• Do extreme temperature conditions alter the rate of NO3
- reduction in 

Anacostia River phytoplankton communities and specifically that of diatom 

cells? 

 In order to address these questions, field and laboratory-based experiments 

were carried out. First, a mesocosm study was conducted on the Anacostia River to 

examine how enrichment with different nutrients may alter phytoplankton physiology 

and community composition (Chapter 2). Then, a series of culture-based studies were 

conducted using a model diatom species, Thalassiosira pseudonana, to determine 

how NO3
- availability, silicate availability, and water temperature affect diatom 

growth and physiology (Chapter 3). Together, these studies begin to highlight the 

physiological responses of diatom cells to changes in the surrounding environment 

and how these responses may subsequently alter diatom growth and abundance in an 

aquatic ecosystem.  
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Chapter 2: Effects of nutrient enrichment on phytoplankton community 

physiology and composition in the Anacostia River, Chesapeake Bay 

Abstract 

 The Anacostia River is among the smallest, but most polluted tributaries of 

Chesapeake Bay; however, in recent years, restoration efforts have been implemented 

to decrease nutrient pollution to this aquatic ecosystem. These restoration efforts may 

alter the abundance and form of different nutrients in the water column and may 

ultimately affect the biomass accumulation and community composition of 

phytoplankton assemblages over time. To determine how changes in the relative 

abundance of different nutrients alter phytoplankton growth and diversity in the 

Anacostia River, a mesocosm experiment was conducted in the summer of 2018. The 

results of this mesocosm study revealed that P-enrichment led to 2-4 times more chl a 

in the mesocosm containers and that N + P enrichments led to higher chl a 

concentrations over time than N or P-alone enrichments. Additionally, diatoms and 

cryptophytes declined across all nutrient treatments and P enrichment nearly doubled 

the rate at which diatoms declined. Phosphorus-enrichment significantly increased the 

abundance of cyanobacteria and decreased the abundance of chlorophytes in the 

mesocosm containers, leading to changes in the relative abundance of different 

phytoplankton taxa in those treatments that were P-enriched and those that were not. 

Together, these results highlight the important role that P-enrichment may play in 

shaping phytoplankton community composition on the Anacostia River and the 

synergistic effects that N and P enrichment may have on algal biomass accumulation.  

Introduction  
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 Human activities have greatly increased the rate at which nutrients such as 

nitrogen (N) and phosphorus (P) are supplied to aquatic environments that have led to 

increases in eutrophication and algal biomass accumulation in marine and freshwater 

systems around the globe (Nixon 1995, Galloway et al. 2002, Howarth et al. 2011, 

Glibert et al. 2014a, Glibert et al. 2018). In more recent years, P pollution has 

declined in many aquatic ecosystems as a result of decreases in human P fertilizer 

application and increases in the efficiency of P removal from wastewater effluent 

(Howarth et al. 2011, Glibert et al. 2014a). Conversely, N pollution has remained 

relatively high and has led to increases in the ambient N:P ratio of many marine and 

freshwater systems (Glibert et al. 2014a, Bouwman et al. 2017, Glibert 2017, Glibert 

et al. 2018). In addition to altering the total concentration of N reaching aquatic 

ecosystems, human activities have also changed the relative abundance of different 

chemical forms of N in eutrophic waters. An increasing proportion of the N that is 

supplied to aquatic ecosystems as a result of anthropogenic activities such as fertilizer 

application and aquaculture is in a reduced form such as ammonium (NH4+) or urea, 

as opposed to an oxidized form such as nitrate (NO3-; Glibert et al. 2006, Glibert et al. 

2016, Glibert 2017).  

 It has long been suggested that nutrients will not play a role in shaping 

phytoplankton community composition as long as nutrients are in saturating 

concentrations (Reynolds 1999).  That is, it has been assumed that if nutrients are not 

limiting, some other factor must limit phytoplankton growth. More recently, this idea 

has been challenged (Glibert et al. 2013, Glibert 2017) and field studies have 

supported the idea that nutrient enrichment may lead to shifts in algal community 
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composition even when nutrients are readily available in the ambient water column 

(e.g. Donald et al. 2013, Glibert et al. 2014b, Shangguan et al. 2017b, Swarbrick et al. 

2019). For example, increases in the ratio of NH4+ : NO3- have been associated with 

shifts in phytoplankton community composition in a number of eutrophic aquatic 

ecosystems (e.g. Berg et al. 2003, Dugdale et al. 2007, Donald et al. 2011, Glibert et 

al. 2014).   

 Ammonium has been described as a “paradoxical” nutrient because its 

presence has been shown to both stimulate and suppress phytoplankton growth in 

aquatic ecosystems (Dugdale et al. 2007, 2012, Donald et al. 2013, Glibert et al. 

2016, Swarbrick et al. 2019). On the one hand, phytoplankton preferentially use NH4+ 

as an N source because NH4+ assimilation is less energetically costly than NO3- 

reduction and assimilation (Harvey 1953, Syrett 1981, Probyn and Painting 1985, 

Raven et al. 1992). On the other hand, enrichment with NH4+ may suppress 

phytoplankton growth by altering NO3- transport and assimilation; however, this 

effect is more pronounced in some taxa than in others (Dortch 1990, Raven et al. 

1992, Glibert et al. 2016 and referenes therein). Reduced rates of productivity in the 

presence of elevated NH4+ conditions have been noted in numerous river, estuarine, 

and coastal ecosystems impacted by wastewater effluent (MacIsaac et al. 1979, 

Yoshiyama and Sharp 2006, Dugdale et al. 2007, Waiser et al. 2011, Xu et al. 2012), 

suggesting that increases in wastewater discharge may repress algal growth and 

productivity in an aquatic ecosystem.   

 Previous work has revealed that NH4+ suppression of NO3- uptake may be 

more severe for diatoms under some conditions than for other phytoplankton 
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functional groups such as dinoflagellates, cyanobacteria, and chlorophytes (Lomas 

and Glibert 1999b, Swarbrick et al. 2019). Diatoms often prefer NO3- as an N source 

(Probyn and Painting 1985, Lomas and Glibert 1999a,b, Domingues et al. 2011) and 

may thrive under high NO3- conditions due to their relatively high NO3- uptake rates, 

their ability to store large amounts of NO3-, and their abundance of high-affinity NO3- 

transporters (Lomas and Glibert 2000, Song and Ward 2007, Glibert et al. 2016 and 

references therein). Diatoms use the reduction of NO3- as part of their metabolic 

strategy to balance cellular energy, especially in cool waters (e.g., Lomas and Glibert 

1999a,b), but this pathway may be repressed under conditions of elevated NH4+. 

While diatom growth may be supported by NO3- and repressed by NH4+, the growth 

of other phytoplankton taxa, such as non-N2-fixing cyanobacteria and chlorophytes, 

often preferentially use reduced forms of N (Dokulil and Teubner 2000, Moore et al. 

2002, Berg et al. 2003, Glibert et al. 2004, 2016, Lee et al. 2015, Shangguan et al. 

2017a) and do not similarly depend on NO3- for cellular energy balance. Therefore, 

the relative abundance of NH4+ and NO3- in an aquatic environment may contribute to 

shifts in phytoplankton community composition depending on the nutritional 

preferences and physiological capabilities of the phytoplankton taxa that are present 

when nutrient shifts occur.  

 The relative availability of P also affects N assimilation, as NO3- reduction is 

an energy-requiring pathway. The nitrate reductase (NR) enzyme catalyzes the first 

step of NO3- reduction and its activity decreases at low phosphate (PO43-) 

concentrations and increases with increases in P (Eppley et al. 1969, Everest et al. 

1984). Recently it was shown that the degree of NH4+ stimulation or repression by 
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NH4+ was related to the availability of P, not just that of NO3- (Swarbrick et al. 2019). 

In that study, growth repression by NH4+ increased when temperatures and soluble 

reactive phosphorus (SRP) concentrations were low and when communities were 

dominated by diatoms, cryptophytes, and cyanobacteria (Swarbrick et al. 2019). 

Conversely, increases in NH4+ promoted phytoplankton growth when waters were 

warm, and when soluble reactive phosphorus (SRP) concentrations were high, and 

when chlorophytes and non-N2-fixing cyanobacteria were abundant (Swarbrick et al. 

2019).  

 The Anacostia River, a tributary of Chesapeake Bay, represents an interesting 

site to assess the effect of nutrient concentration and form on phytoplankton 

community dynamics and N assimilation. The Anacostia River is a eutrophic 

freshwater system that has been substantially degraded as a result of chemical and 

nutrient pollution over time (Hwang and Foster 2006, McGee et al. 2009, Solomon et 

al. 2019). One of the major sources of pollution to the Anacostia River has been the 

untreated sewage and stormwater effluent that is discharged into the river from 14 

combined sewer overflow outfalls (CSOs) along the water (Brandes 2005, Solomon et 

al. 2019). The effluent that enters the river from these point sources is enriched with 

NH4+ and has helped fuel high biomass algal blooms that have been noted in the 

spring and summer months (Jackson 2016, Solomon et al. 2019). Importantly, 

restoration efforts in this system are underway that may decrease nutrient pollution 

and improve water quality over time. A multi-billion dollar restoration project, the 

Anacostia River Tunnel, was implemented in March 2018 to divert CSO effluent to 

the Blue Plains Wastewater Treatment Plant (DC Water and Sewer Authority 2017, 
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Solomon et al. 2019). Following the construction of this tunnel, CSO effluent and 

nutrient loads reaching the Anacostia River should be reduced, in turn improving 

water quality and reducing the magnitude of algal blooms in this ecosystem. The 

concentration of nutrients and the forms of nutrients reaching the river may also 

change, which could affect the species composition of the phytoplankton blooms that 

persist in the Anacostia River.  

 The Anacostia River Tunnel Project will likely alter the concentrations, forms, 

and ratios of essential nutrients in the water column of this eutrophic river system and 

may ultimately promote the growth of certain phytoplankton species over others as 

restoration efforts continue. The implementation of this tunnel is expected to decrease 

the total concentration of nutrients entering the river, as well as the relative 

abundance of chemically reduced N species in the water column because CSO 

effluent is rich is NH4+ and urea. Therefore, the overall goal of this study was to 

conduct a mesocosm manipulation experiment to determine how enrichments with 

NO3-, NH4+, urea, PO43-, and silicate (Si; a nutrient that is required for diatom growth) 

in isolation, and in combination, impact phytoplankton nutrient assimilation, biomass, 

and community composition. Based on previous work conducted in the Anacostia 

River (Jackson 2016, Solomon et al. 2019), it was hypothesized that increasing the 

ambient concentration of NO3- in the water would increase NO3- assimilation and 

increase the abundance of diatoms, while enrichment with NH4+ would decrease NO3- 

assimilation and lead to communities dominated by cyanobacteria and chlorophytes. 

Phytoplankton communities that were enriched with urea were expected to have shifts 

in community composition comparable to those noted with NH4+ enrichment. 
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Enrichment with PO43- was expected to increase algal NO3- assimilation and decrease 

NH4+ growth suppression in the mesocosm containers. Finally, Si enrichments were 

expected to increase the abundance of diatoms in the mesocosm containers. By 

measuring a variety of physiological parameters along with concurrent changes in 

phytoplankton community composition, this mesocosm study provides insight on how 

nutrient enrichment may stimulate or suppress phytoplankton growth in a nutrient-

rich river system.  

Materials and Methods 

Field methods 

 Water was collected from Site 1 on the Anacostia River in July 2018 (Fig. 1a). 

Site 1 was chosen for this study because this site is upstream of the CSOs and may, 

therefore, reflect how the water will respond to nutrient enrichment downstream. 

Water temperature, salinity, and dissolved oxygen were recorded using a YSI Pro 

2030. Fifteen, 10-liter polyethylene containers were each filled with 5 liters of river 

water and were transported within 3 hrs to Horn Point Laboratory where nutrient 

manipulation and analysis took place.  

Mesocosm experimental design 

 The unmanipulated river water was first sampled to characterize the ambient 

nutrient concentrations and phytoplankton communities, as described below. Then, 

the containers were dosed with nutrients (Table 1).  One of the nutrient treatments 

was carried out in duplicate (Table 1). The control condition contained only water 

collected from the river with no added nutrients. In the treatments that were enriched 

with NO3-, NH4+, or Si, the concentration of the N or Si enrichment was 20 µM. In 
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the treatments that were enriched with urea, the concentration of N in the containers 

was increased by 10 µM-N. In the treatments with added PO43-, the enrichment was 1 

µM-P. Immediately following nutrient enrichment, Day 1 samples were collected 

from each experimental container to assess nutrient concentrations, algal physiology, 

community composition, and productivity, as described below. Containers were then 

incubated under a single neutral density screen that reduced ambient light intensity by 

20% in a flowing, water-filled enclosure. Light intensity and temperature in the 

incubation pool were measured every 24 hours at the time of daily sample collection.  

Analytical protocols 

 Each morning for 5 days, at 0900, water samples (400 mL) were taken to 

analyze nutrient concentrations, algal community composition, and NR enzyme 

activity. These samples were immediately filtered through precombusted (450 °C for 

4 hrs) GF/F filters. The filters were retained for enzyme activity assays and for HPLC 

analysis of microbial community composition, and the filtrate reserved for nutrient 

analysis. Filters were kept at -80 ºC until analysis. Filtrates were stored at -4 °C. The 

activity of the NR enzyme was determined according to Eppley et al. (1969) and 

Berges and Harrison (1995).  

 Pigment analysis, including chlorophyll (chl) a, was undertaken using HPLC, 

according to Van Heukelem and Thomas (2001, 2005). Fucoxanthin was considered 

indicative of diatoms, alloxanthin of cryptophytes, zeaxanthin of cyanobacteria, and 

chl b of chlorophytes (Jeffrey and Vesk 1997, Wright et al. 2005). Metagenomic data 

revealed that dinoflagellates were present at very low abundances in July 2018 when 
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the mesocosm study was conducted and thus diagnostic pigments of dinoflagellates 

were not considered. 

 On the collected filtrates, concentrations of NO3- were determined using the 

colorimetric vanadium (III) reduction method (Miranda et al. 2001, Doane and 

Horwáth 2003), NH4+ concentrations were determined according to Holmes et al. 

(1999), and urea concentrations were analyzed according to Revilla et al. (2005). 

Silica concentrations were determined at Horn Point Analytical Services Laboratory 

according to Zimmerman et al. (1977).  

 Cell abundance was quantified using flow cytometry. Cells were fixed using 

10% paraformaldehyde and later analyzed using a BD Accuri C6 flow cytometer with 

dual excitation (488 nm, 640 nm). Cells were gated by shape and size using forward 

scatter and side scatter settings. Additionally, four photomultipliers (533/30 nm; 

green fluorescence, 585/40 nm; phycoerythrin fluorescence, > 670 nm; red 

fluorescence, 675/25 nm; red fluorescence) were used to detect different 

phytoplankton functional groups. Cell concentrations were calculated by dividing 

absolute cell counts by the volume of sample that was analyzed. 

 A Waltz PHYTO-PAM-II instrument was used to analyze the fluorescence 

characteristics of the algal communities. Samples for PAM fluorometry were 

obtained by filtering 200 mL of water onto a GF/F filter and then resuspending the 

cells in 2 mL of filtrate. Samples were placed in the dark for at least 15 minutes prior 

to analysis. Algal quantum efficiency (Fv/Fm) was measured for each sample.  

Statistical analyses 
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 Changes in algal biomass, physiology, and community composition in each 

mesocosm container were first characterized by plotting all variables of interest as a 

function of time. Then, the effects that the different nutrient additions had on algal 

biomass, physiology, and community composition were evaluated. To determine the 

effects that nutrient enrichment had on algal biomass, nutrient additions (NO3-, NH4+, 

PO43-, urea, and Si) were treated as dichotomous, independent variables. Time and 

nutrient treatment were used as independent predictors in linear mixed effects models 

to determine the main and interactive effects of nutrient enrichment and time on chl a 

concentration. In these linear mixed effects models, each experimental container was 

accounted for as a nested factor within the broader experimental design. The linear 

mixed effects models were created using R software (R Core Team 2014). To 

determine the interactive effects of nutrient enrichment and time on algal community 

composition, the concentrations of the diagnostic pigments were normalized to the 

concentration of chl a. Then, time and nutrient treatment were used as independent 

predictors in the linear mixed effects models to determine if the presence or absence 

of specific nutrients impacted the ratio of the diagnostic pigments relative to chl a 

throughout the course of the experiment. Similarly, time and nutrient treatment were 

used as independent predictors in linear mixed effects models to determine how these 

factors affected enzyme activity and quantum efficiency during the experiment.  

 The specific effects that P enrichment had on algal biomass, algal community 

composition, enzyme activity, and quantum efficiency were first evaluated using the 

linear mixed effects models described above. After creating the linear mixed effects 

models the data were shuffled and the models were rerun 1,000 times. The 
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differences between the slopes of the lines with and without P-enrichment in the 

original linear mixed effects models were compared to the differences in the slopes of 

the shuffled data to determine whether the diagnostic pigment ratios were 

significantly altered by P-enrichment over time.   

Results   

Ambient environmental conditions 

 Upon sample collection, river water temperature was 26.6 °C, ambient chl a 

concentration was 3.98 µg L-1, and concentrations of NO3-, NH4+, and urea were 

36.82, 5.73, and 1.12 µM-N, respectively (Table 2). All of these values were within 1 

standard deviation (SD) of their respective averages for this station and time of year 

based on previous sampling (Table 2). The DO concentration in the river water was 

8.8 mg L-1, which was higher than the average recorded DO value (6.03 ±  

1.94 mg L-1), but still fell within two standard deviations of the average (Table 2). 

The ambient concentrations of PO43- and Si in the water were 0.1 µM and 107 µM 

respectively (Table 2).  

Changes over time  

 Immediately following nutrient enrichment, the average concentrations of 

NO3-, NH4+, urea, and Si in the containers that were enriched with these nutrients 

were 53.94 ± 6.30 µM-N, 26.69 ± 3.08 µM-N, 13.10 ± 2.86 µM-N, and 119.29 ± 5.68 

µM-Si, respectively, significantly enriching the concentrations above pre-enrichment 

levels (Wilcoxon rank-sum test, p <0.01; Fig. 2). The concentrations of PO43- in the 

mesocosms over time could not be determined due to analytical error in this analysis. 

The average concentrations of NO3-, NH4+, urea, and Si in the containers that were 
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not enriched with these nutrients were 31.81 ± 6.57 µM-N, 9.03 ± 4.62 µM-N, 0.63 ± 

0.33 µM-N, and 103.95 ± 6.55 µM-Si, respectively (Fig. 2).  

 On day 1 of the experiment, the chl a concentration ranged from 5.25 to 9.37 

µg L-1 with a mean chl a concentration of 6.97 ± 1.27 µg L-1 (Fig. 3). On days 2 and 3 

of the mesocosm experiment, chl a concentration ranged from 3.81-14.89 µg L-1 and 

4.67-32.25 µg L-1, respectively. The most rapid increase in chl a was seen in the NO3- 

+ P treatment. By day 4 of the experiment, the concentration of chl a ranged from 

5.38 µg L-1 in the control container to 42.42 µg L-1 in the container that was dosed 

with NO3- and P (Figure 3). In the treatment with P only, chl a declined by day 4. 

Chlorophyll a did not respond to Si enrichment.  In general, the treatment that was 

replicated (NH4+ + P + Si) had similar changes in chl a concentration and community 

composition between replicates (Table 3). By day 4 of the experiment, the average 

chl a concentration between the two replicates was 32.75 ± 2.35 µg L-1. 

 The ratio of fucoxanthin: chl a ratio (indicative of diatoms) declined with time 

in all of the treatments (Figs. 4a-e). The mean fucoxanthin: chl a ratio on day 1 was 

0.041 ± 0.013 while the mean fucoxanthin: chl a ratio on day 4 was 0.011 ± 0.005. In 

contrast, the ratio of zeaxanthin: chl a (indicative of cyanobacteria) initially declined 

in all treatments, then increased between days 2 and 3, although the increase was only 

sustained through day 4 in only those treatments that were enriched with PO43- (Figs. 

4f-j). As with fucoxanthin: chl a, the alloxanthin: chl a ratio (indicative of 

cryptophytes) declined with time in all treatments (Figs. 4 k-o). The mean ratio of 

alloxanthin: chl a ratio was 0.063 ± 0.007 on day 1 and declined to 0.018 ± 0.011 by 

day 4.  The highest chl b: chl a ratio (indicative of chlorophytes) was 0.16 and was 
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noted in the control treatment on day 4 (Figs. 4p-t) and the lowest chl b: chl a ratio 

was 0.056 and was noted in the P-enriched treatment on day 4 (Fig. 4s).  

 The rate of NR activity significantly declined with time (Linear model, p < 

0.01; n = 56, Figs. 5a-e). The average activity of NR on day 1 was 4.25 ± 2.52 pmol 

NO2- formed hr-1 cell-1 and on day 4 was 0.057 ± 0.064 pmol NO2- formed hr-1 cell-1. 

There was a spike in NR activity on day 2 of the experiment in the treatments that 

were enriched with N + P + Si (Fig. 5a-c). This spike in NR activity was more 

prominent in the treatments that were enriched with NO3- + P + Si and urea + P + Si 

than in the treatment that was enriched with NH4+ + P + Si (Fig. 5a-c).  

 The initial total community Fv/Fm reflected that of actively photosynthesizing 

cells, with a value of 0.5 (Fig. 6). Values remained high throughout the time course 

for the treatments with NO3- and NO3- + Si. Curiously, some of the treatments with + 

Si showed an initial decline in Fv/Fm, with values of < 0.2 for the +Si treatment 

alone, but recovery was seen by day 2. Fv/Fm declined in the treatments with NH4++P 

+Si and a steady decline was also seen in the urea treatment and in the urea + P + Si 

treatment.  The control treatment showed a decline on day 3 but recovery by day 4. 

Changes with substrate 

 In all of the treatments that were enriched with P, the concentration of chl a 

and the total cell abundance increased significantly over time (Linear mixed effects 

model, p < 0.01, n = 56; Fig. 7). Conversely, when considered collectively, additions 

of NO3-, urea, or Si without P did not significantly alter the chl a concentration, 

although cell abundance did increase. The average concentration of chl a with added 

P was 31.99 ± 6.49 µg L-1 on day 4, while the average concentration of chl a in the 
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containers that were not P-enriched was 6.99 ± 2.38 µg L-1 on day 4. Enrichment with 

NO3-, NH4+, or urea also affected the concentration of chl a in the mesocosms that 

were P-enriched. The day 4 concentration of chl a in the container that was enriched 

with P alone was 21.92 µg L-1, while the average chl a concentration in the 

mesocosms that were enriched with P and N was 33.43 ± 5.47 µg L-1 on day 4. 

 There were also some significant differences in algal community composition 

in P-enriched treatments. While, as previously noted, the fucoxanthin: chl a ratio 

declined with time in all of the mesocosm treatments (Figs. 4a-e), enrichment with P 

significantly and negatively affected this ratio over time (Linear mixed effects model, 

p < 0.05, n = 56, Fig. 8a). Conversely, enrichment with P significantly increased the 

ratio zeaxanthin: chl a over time (Linear mixed effects model, p < 0.01, n = 56, Fig. 

8b). The ratio of alloxanthin: chl a declined with time across all nutrient enrichments 

but this general decline in alloxanthin concentration was not significantly affected by 

P-enrichment (p = 0.36, n = 56, Figs. 4k-o, 8c). There was a significant difference in 

the ratio of chl b: chl a over time in the treatments that were enriched with P 

compared to those that were not (Linear mixed effects model, p < 0.01, n = 56, Fig. 

8d). On day 4 of the experiment, the treatments that were enriched with P had a 

significantly lower chl b: chl a ratio than the treatments that did not contain added P 

(Wilcoxon rank sum test, p < 0.01, n = 56, Fig. 8d).  

 Differences were also noted in algal biomass and enzyme activity with 

changes in N concentration. Algal biomass increased significantly as the 

concentrations of NO3- and urea declined in the P-enriched mesocosm containers 

(Linear mixed effects models, p < 0.01, n = 56, Fig. 9a and p < 0.05, n = 56, Fig. 9g 
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for NO3- and urea respectively). Similar drawdowns of NH4+ were noted as chl a 

increased in the P-enriched mesocosms, though these results were not statistically 

significant (Linear mixed effects models, p = 0.11, n = 56, Fig. 9d). The activity of 

NR increased when NO3- concentrations were high in the P-enriched containers and 

remained relatively stable when P was not supplied to the mesocosms, though this 

relationship was not statically significant (Linear mixed effects model, p = 0.069, n = 

56, Fig. 9b). Additions of P did not significantly affect the relationship between N 

concentration and algal Fv/Fm for any of the different N forms (Fig. 9c, f, i). 

Discussion 

 The overarching goal of this study was to investigate the effects of nutrient 

enrichment on algal physiology and community composition in a eutrophic 

freshwater ecosystem. The effects were considered to be representative of the types of 

effects that might be seen along the Anacostia River receiving outflow from sewage 

and CSOs. The largest response in biomass was in treatments with an enrichment of 

P, and no effect was seen in the treatments with an enrichment of Si alone. Moreover, 

the combination of N plus P led to the highest biomass accumulation; the treatment 

with P only became limited by N by day 3, and thus the combination of nutrients 

promoted highest biomass accumulation. Addition of Si yielded no biomass changes, 

although in all the treatments with Si there was an unexplained initial drop in 

quantum efficiency. The higher biomass accumulation in the treatments with N and P 

is consistent with the findings of Zohary et al. (2005), North et al. (2007), Xu et al. 

(2014), Müller and Mitrovic (2015), and Paerl et al. (2015) who have interpreted such 

an effect to be co-limitation.  
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 The results obtained from this study did not reveal significant changes in algal 

biomass or community composition as a result of enrichment with different N forms. 

This finding does not agree with the results of a 3-year Anacostia River monitoring 

study conducted by Solomon et al. (2019). In the Solomon et al. (2019) study the 

fucoxanthin: chl a ratio increased as NO3- concentrations in the river increased, while 

the zeaxanthin: chl a ratio in the river increased as NH4+ concentrations increased. It 

is possible that at other times throughout the year or under a different suite of 

environmental conditions, the effects of N form on algal biomass and community 

composition may be observed under NO3-or NH4+-enriched conditions.   

 Although differences in N form alone did not lead to notable in changes in 

algal biomass and community composition in this study, the significant role that P-

enrichment played in shaping the mesocosm phytoplankton communities may be 

explained when considering the effects that P-enrichment can have on NH4+ growth 

suppression. Swarbrick et al. (2019), analyzing 16 years of bioassays with NH4+ 

enrichment in a freshwater lake in Canada, showed that NH4+ can differentially 

stimulate or suppress algal growth depending on ambient algal community 

composition, water temperature, and SRP concentration at the time of NH4+ 

enrichment. Specifically, the results of the Swarbrick et al. (2019) study found that 

algal growth stimulation by NH4+ increased with increasing temperature under high-P 

conditions. Similarly, in the same P-rich lake system, Donald et al. (2013) showed 

that NH4+-enrichment led to significant increases in cyanobacterial abundance and 

significant decreases in diatom abundance. The results obtained from this Anacostia 

River mesocosm study agree in part with the findings outlined by Donald et al. (2013) 
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and Swarbrick et al. (2019), in that P was an important predictor in determining how 

algal communities would respond to high ambient and enriched NH4+ conditions (Fig. 

8). Although temperature was not a variable that was manipulated in this study, water 

temperatures were consistently warm and were comparable to the warmer water 

temperature trials noted in the Swarbrick et al. (2019) study, suggesting that warmer 

water temperatures along with P availability may be important environmental factors 

influencing NH4+ growth stimulation in cyanobacteria. It is known that cyanobacteria 

are favored under warm conditions (e.g. Paerl et al. 1985, Paul 2008, Carey et al. 

2012), while diatoms are favored under cooler conditions (Probyn and Painting 1985, 

Lomas and Glibert 1999b). The results of this study build on studies by Swarbrick et 

al. (2019) and Donald et al. (2013) by suggesting that NH4+ growth stimulation of 

cyanobacteria may occur at the same time as NH4+ growth suppression of diatoms 

and that both of these processes may be directly related to P availability (Figs. 8a, b).  

 The important role that P-enrichment may play in altering algal NH4+ growth 

suppression may not always be straightforward. In a mesocosm manipulation 

experiment carried out by Shangguan et al. (2017b) in Florida Bay, NO3- + P 

additions initially promoted the growth of diatoms and then led to declines in diatom 

abundance and increases in cyanobacterial abundance. Unlike the Shangguan et al. 

(2017b) study, notable increases in diatom abundance were not observed at any time 

point during this experiment (Figs. 4a-e, 8a). The lack of a diatom response noted in 

this study may be due to the fact that the P-enrichments made in this study were lower 

than those made in the single enrichments of the Shannguan et al. (2017) study, 

suggesting that diatom growth may be supported when P concentrations are higher or 
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when N:P ratios are lower. Different diatom species may also have been present in 

the ambient communities of these different studies. Despite the differences noted 

between this study and the Shannguan et al. (2017b) study, both of these experiments 

support the idea that cyanobacteria may thrive in an aquatic ecosystem that has a 

relatively high concentration of NH4+ and a relatively low concentration of P.  

 Cyanobacteria may outcompete other algal taxa under high-N and low-P 

conditions because cyanobacteria are good competitors for inorganic P, can use 

organic P forms, and can use non-P lipids under P-limited conditions (Glibert et al. 

2004, Van Mooey et al. 2009, O’Neil et al. 2012). In addition to the similar 

cyanobacterial response noted in this study and the Shannguan et al. (2017b) study, 

both of these studies also demonstrated that N and P enrichment together led to higher 

algal biomass accumulation in the experimental containers than adding either nutrient 

alone, regardless of which N form (NO3-, NH4+, or dissolved organic N/urea) was 

supplied to the algae. Therefore, the results of this study and the Shangguan et al. 

(2017b) study add to the growing body of knowledge that suggests that N and P 

pollution must both be controlled to effectively manage eutrophication in aquatic 

ecosystems (Paerl et al. 2004, Conley et al. 2009, Paerl et al. 2011, Chen et al. 2012).  

 The dual effect of N and P on biomass accumulation has previously been 

interpreted as co-limitation by both nutrients (e.g., Zohary et al. 2005, North et al. 

2007, Xu et al. 2014, Müller and Mitrovic 2015, Paerl et al. 2015). Yet, it can also be 

interpreted as sequential nutrient limitation. In this study, the P-only treatment 

showed evidence of biomass decline by day 4 (Fig. 3d), but no such decline was 

noted with added N + P. Moreover, Fv/Fm declined from day 2 to 4 in the P only 
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treatment, suggesting that the algae growing in this mesocosm container may have 

been stressed as a result of N limitation. The daily sample collection that was 

undertaken in this study allowed the effects of sequential nutrient limitation to be 

distinguished from the effects of nutrient co-limitation, as single and point 

measurements may be falsely interpreted as nutrient co-limitation.   

 In addition to the notable effects that N+P-enrichment had on algal biomass 

and phytoplankton community dynamics in this study, differences in algal nutrient 

use were also documented throughout the course of the study. The nutrient 

concentration data revealed that NH4+ drawdown between days 1 and 2 of the 

experiment occurred faster than NO3- drawdown in the P-enriched mesocosm 

containers, suggesting that NH4+ may have been the preferred N source for the 

phytoplankton that were growing in the P-enriched waters (Figure 2). This preference 

for NH4+ over NO3- by cyanobacteria has been well-documented in other systems 

(Berg et al. 2003, Ferber et al. 2004, Glibert et al. 2006, 2014b, Donald et al. 2011, 

Paerl et al. 2011, Shangguan et al. 2017b), as well as in the Anacostia River (Jackson 

2016, Solomon et al. 2019). Although NH4+ drawdown between days 1 and 2 by the 

P-enriched mesocosm phytoplankton communities was greater than that of NO3-, by 

day 4 of the experiment, NO3- concentrations in the P-enriched mesocosms were 

substantially reduced (Fig. 2), demonstrating that the phytoplankton in the P-enriched 

containers were using the NO3- along with the NH4+ that was available in the water. 

Additionally, the activity of the activity of the NR enzyme tended to increase under 

high-NO3- and P-enriched conditions (Fig. 9b), suggesting that NO3- reduction and 

assimilation may have occurred when these nutrients were readily available to the P-
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enriched mesocosm phytoplankton communities. Lastly, algal Fv/Fm tended to 

decrease as N was depleted in the P-enriched mesocosm containers (Fig. 9c,f,i), 

suggesting that the phytoplankton in the P-enriched waters became N-limited over 

time and that the P-enriched communities were using all forms of N to some extent 

throughout the course of the experiment. These nutrient and physiological data 

support the notion that NO3- assimilation may be dependent on P availability in an 

aquatic ecosystem and that low P availability may prevent phytoplankton from 

accessing all of the N available in the DIN pool. 

Conclusion 

 The results obtained from this study highlight the important role that both N 

and P concentrations may play in altering algal biomass and community composition 

in a eutrophic freshwater system, even when nutrient concentrations in the ambient 

water column are already at or near saturating levels. Additionally, the results of this 

study suggest that NH4+ may be the preferred N source for the cyanobacteria that are 

growing in the Anacostia River during the summer months and that P-availability 

may play a role in NH4+ growth stimulation and suppression of various phytoplankton 

taxa present in the water column. As efforts to restore water quality in the Anacostia 

River continue, the dual control of both N and P pollution must be considered in order 

to ensure environmental conditions do not promote the growth of high biomass and 

potentially harmful algal blooms. The implementation of the Anacostia River Tunnel 

will likely decrease the amount of nutrient pollution that reaches the river waters and 

may potentially lead to reductions in eutrophication over time.   
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Table 1. The experimental treatments that were used in this study. 

 

 

 

 

 

 
 
 
 
   
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Treatment Replicates 
Control 
 

1 

+ 20 μM NO3- 

 
1 

+ 10 μM Urea 
 

1 

+ 1 μM PO4- 

 
1 

+ 20 μM Si 
 

1 

+ 20 μM NO3- + 1 μM PO4- 

 
1 

+ 20 μM NH4+ + 1 μM PO4- 

 
1 

+ 10 μM Urea + 1 μM PO4- 

 
1 

+ 20 μM NO3- + 20 μM Si 
 

1 

+ 10 μM Urea + 20 μM Si 
 

1 

+ 20 μM NO3- + 1 μM PO4- + 20μM Si 
 

1 

+ 20 μM NH4+ + 1 μM PO4- + 20μM Si 
  

2 

+ 10 μM Urea + 1 μM PO4- + 20μM Si 
 

1 
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Table 2: Ambient environmental conditions at Site 1 on the Anacostia River, 
Chesapeake Bay on the day that the mesocosm study began.  
 

Parameter Ambient 
measurement 

Average July measurement at 
Site 1 2013-2018 (mean ± sd) 

Temperature (°C) 26.6 25.6 ± 2.0 
 

Dissolved oxygen (mg L-1) 8.8 6.03 ± 1.94 
 

NO3- (µM) 36.82 39.8 ± 14.4 
 

NH4+ (µM) 5.73 6.88 ± 5.25 
 

Urea (µM) 1.12 1.17 ± 1.16 
 

PO43- (µM) 0.1 NA 
 

Si (µM) 107 NA 
 

Chlorophyll a (µg L-1) 3.98 11.93 ± 9.14 
 

Zeaxanthin (µg L-1) 0.54 0.161 ± 0.065 
 

Alloxanthin (µg L-1) 0.21 0.417 ± 0.185 
 

Fucoxanthin (µg L-1) 0.27 0.636 ± 0.221 
 

Chlorophyll b (µg L-1) 0.51 0.909 ± 0.203 
 

Zeaxanthin/Chlorophyll a 0.14 0.029 ± 0.013 
 

Alloxanthin/Chlorophyll a 0.053 0.071 ± 0.029 
 

Fucoxanthin/ Chlorophyll a 0.068 0.107± 0.019 
 

Chlorophyll b/ Chlorophyll a 0.13 0.156 ± 0.030 
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Table 3: Chlorophyll a concentrations and pigment ratios in the mesocosm containers 
that were replicated (NH4+ + P +Si) and the mean and standard deviation of these 
measurements between the two replicates. 

 

Parameter  Day NH4+ + P 
+ Si #1 

NH4+ + P 
+ Si #2 

Mean ± Standard 
Deviation 

Chlorophyll a (µg L-1) 1 6.72 6.55 6.64 ± 0.12 
  

Fucoxanthin: Chlorophyll a  1 0.042 0.031 0.036 ± 0.0077 
 

Zeaxanthin: Chlorophyll a  1 0.094 0.102 0.098 ± 0.006 
 

Alloxanthin: Chlorophyll a 1 0.057 0.073 0.065 ± 0.011 
 

Chlorophyll b: Chlorophyll a 1 0.097 0.094 0.095 ± 0.002 
 

Chlorophyll a (µg L-1) 2 10.65 10.50 10.58  ± 0.11 
 

Fucoxanthin: Chlorophyll a  2 0.013 0.012 0.013  ± 0.0009 
 

Zeaxanthin: Chlorophyll a  2 0.064 0.062 0.063  ± 0.0013 
 

Alloxanthin: Chlorophyll a 2 0.026 0.028 0.026  ± 0.0037 
 

Chlorophyll b: Chlorophyll a 2 0.13 0.11 0.12 ± 0.0091 
 

Chlorophyll a (µg L-1) 3 26.44 28.16 27.30 ± 1.21 
 

Fucoxanthin: Chlorophyll a  3 0.006 0.009 0.008 ± 0.002 
 

Zeaxanthin: Chlorophyll a  3 0.151 0.151 0.151 ± 9.1 e-6 
 

Alloxanthin: Chlorophyll a 3 0.010 0.013 0.011 ± 0.002 
 

Chlorophyll b: Chlorophyll a 3 0.081 0.066 0.074 ± 0.01 
 

Chlorophyll a (µg L-1) 4 34.41 31.08 32.75 ± 2.35 
 

Fucoxanthin: Chlorophyll a  4 0.005 0.005 0.005 ± 0.0004 
 

Zeaxanthin: Chlorophyll a  4 0.14 0.21 0.17 ± 0.05 
 

Alloxanthin: Chlorophyll a 4 0.010 0.009 0.010 ± 0.0008 
 

Chlorophyll b: Chlorophyll a 4 0.084 0.076 0.080 ± 0.006 
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Figure 1. Map of the Anacostia River, Chesapeake Bay monitoring sites (a) and map 
of the Anacostia River Tunnel Project (b). The small open circles in panel a indicate 
the sites of combined sewer overflow outfalls. The mesocosm study was conducted at 
Site 1 above the outfall sites. The monitoring map was reproduced from Solomon et 
al. (2019) with permission of Springer and the tunnel project map was obtained from 
D.C. Water and Sewer Authority (2017).  
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Figure 7: Concentration of chlorophyll a (a) and total cell abundance (b) as a 
function of time for all treatments that were enriched with PO43- and those that were 
not. 
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Figure 8: The ratio of the fucoxanthin (a), zeaxanthin (b), alloxanthin (c), and 
chlorophyll b (chl b, d) to chlorophyll a (chl a) over time differentiated by those 
treatments that were enriched with PO4

3- and those that were not. Fucoxanthin is 
indicative of diatoms, zeaxanthin is indicative of cyanobacteria, alloxanthin is 
indicative of cryptophytes, and chl b is indicative of chlorophytes.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

●

●
●
●

●
●

●

●

●●
●
●

●

●

●
●

●
●●●

●

●●●

●●●
●

●●
●
●

●

●

●

●
●●●

●●●
●
●

●

●
●
●

●

●
●
●

●●●

●

y = 0.0346 − 0.00593 x   R2 = 0.46
y = 0.0484 − 0.0113 x   R2 = 0.53

−0.05

0.00

0.05

1 2 3 4

Day of Experiment

Fu
co

xa
nt

hi
n/

C
hl

or
op

hy
ll a

●

●

●

●

●

●

●

●●●
●

●

●
●

●

●●

●

●

●●●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

y = 0.0938 + 0.00632 x   R2 = 0.064
y = 0.0444 + 0.0306 x   R2 = 0.55

0.00

0.05

0.10

0.15

0.20

1 2 3 4

Day of Experiment

Ze
ax

an
th

in
/C

hl
or

op
hy

ll a

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

y = 0.0714 − 0.0128 x   R2 = 0.67
y = 0.0663 − 0.0151 x   R2 = 0.73

−0.025

0.000

0.025

0.050

1 2 3 4

Day of Experiment

Al
lo

xa
nt

hi
n/

C
hl

or
op

hy
ll a

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

y = 0.0896 + 0.00985 x   R2 = 0.3
y = 0.114 − 0.0108 x   R2 = 0.38

0.00

0.04

0.08

0.12

1 2 3 4

Day of Experiment

C
hl

or
op

hy
ll b

 /C
hl

or
op

hy
ll a

●

●
●
●

●
●

●

●

●●
●
●

●

●

●
●

●
●●●

●

●●●

●●●
●

●●
●
●

●

●

●

●
●●●

●●●
●
●

●

●
●
●

●

●
●
●

●●●

●

y = 0.0346 − 0.00593 x   R2 = 0.46
y = 0.0484 − 0.0113 x   R2 = 0.53

−0.05

0.00

0.05

1 2 3 4

Day of Experiment

Fu
co

xa
nt

hi
n/

C
hl

or
op

hy
ll a

●

●

●

●

●

●

●

●●●
●

●

●
●

●

●●

●

●

●●●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

y = 0.0938 + 0.00632 x   R2 = 0.064
y = 0.0444 + 0.0306 x   R2 = 0.55

0.00

0.05

0.10

0.15

0.20

1 2 3 4

Day of Experiment

Ze
ax

an
th

in
/C

hl
or

op
hy

ll a

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

y = 0.0714 − 0.0128 x   R2 = 0.67
y = 0.0663 − 0.0151 x   R2 = 0.73

−0.025

0.000

0.025

0.050

1 2 3 4

Day of Experiment

Al
lo

xa
nt

hi
n/

C
hl

or
op

hy
ll a

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

y = 0.0896 + 0.00985 x   R2 = 0.3
y = 0.114 − 0.0108 x   R2 = 0.38

0.00

0.04

0.08

0.12

1 2 3 4

Day of Experiment

C
hl

or
op

hy
ll b

 /C
hl

or
op

hy
ll a

a b

c d

●

●
●
●

●
●

●

●

●●
●
●

●

●

●
●

●
●●●

●

●●●

●●●
●

●●
●
●

●

●

●

●
●●●

●●●
●
●

●

●
●
●

●

●
●
●

●●●

●

y = 0.0346 − 0.00593 x   R2 = 0.46
y = 0.0484 − 0.0113 x   R2 = 0.53

−0.05

0.00

0.05

1 2 3 4

Day of Experiment
Fu

co
xa

nt
hi

n/
C

hl
or

op
hy

ll a

●

●

●

●

●

●

●

●●●
●

●

●
●

●

●●

●

●

●●●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

y = 0.0938 + 0.00632 x   R2 = 0.064
y = 0.0444 + 0.0306 x   R2 = 0.55

0.00

0.05

0.10

0.15

0.20

1 2 3 4

Day of Experiment

Ze
ax

an
th

in
/C

hl
or

op
hy

ll a

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

y = 0.0714 − 0.0128 x   R2 = 0.67
y = 0.0663 − 0.0151 x   R2 = 0.73

−0.025

0.000

0.025

0.050

1 2 3 4

Day of Experiment

Al
lo

xa
nt

hi
n/

C
hl

or
op

hy
ll a

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

y = 0.0896 + 0.00985 x   R2 = 0.3
y = 0.114 − 0.0108 x   R2 = 0.38

0.00

0.04

0.08

0.12

1 2 3 4

Day of Experiment

C
hl

or
op

hy
ll b

 /C
hl

or
op

hy
ll a

●

●
●
●

●
●

●

●

●●
●
●

●

●

●
●

●
●●●

●

●●●

●●●
●

●●
●
●

●

●

●

●
●●●

●●●
●
●

●

●
●
●

●

●
●
●

●●●

●

y = 0.0346 − 0.00593 x   R2 = 0.46
y = 0.0484 − 0.0113 x   R2 = 0.53

−0.05

0.00

0.05

1 2 3 4

Day of Experiment

Fu
co

xa
nt

hi
n/

Ch
lo

ro
ph

yll
 a

Nutrient Addition
●

●

No PO4
3− addition

PO4
3− addition

●

●

●

●

●

●

●

●●●
●

●

●
●

●

●●

●

●

●●●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

y = 0.0938 + 0.00632 x   R2 = 0.064
y = 0.0444 + 0.0306 x   R2 = 0.55

0.00

0.05

0.10

0.15

0.20

1 2 3 4

Day of Experiment

Ze
ax

an
th

in
/C

hl
or

op
hy

ll a

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

y = 0.0714 − 0.0128 x   R2 = 0.67
y = 0.0663 − 0.0151 x   R2 = 0.73

−0.025

0.000

0.025

0.050

1 2 3 4

Day of Experiment

Al
lo

xa
nt

hi
n/

Ch
lo

ro
ph

yll
 a

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

y = 0.0896 + 0.00985 x   R2 = 0.3
y = 0.114 − 0.0108 x   R2 = 0.38

0.00

0.04

0.08

0.12

1 2 3 4

Day of Experiment

Ch
lo

ro
ph

yll
 b

 /C
hl

or
op

hy
ll a



 

41 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Fi
gu

re
 9

: C
hl

or
op

hy
ll 

a,
 N

R 
ac

tiv
ity

, a
nd

 to
ta

l c
om

m
un

ity
 F

v/
Fm

 a
s a

 fu
nc

tio
n 

of
 N

O
3-  

co
nc

en
tra

tio
n 

(p
an

el
s a

-c
), 

N
H

4+  c
on

ce
nt

ra
tio

n 
(p

an
el

s d
-f)

, a
nd

 u
re

a 
co

nc
en

tra
tio

n 
(p

an
el

s g
-i)

 in
 

th
e 

m
es

oc
os

m
 c

on
ta

in
er

s t
ha

t w
er

e 
PO

43-
-e

nr
ic

he
d 

an
d 

in
 th

os
e 

th
at

 d
id

 n
ot

 c
on

ta
in

 a
dd

ed
 P

O
43-

. 
  

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●
●

●
●

●
●●
●

●●
●●

●
0.
0e
+0
0

2.
5e
−0
6

5.
0e
−0
6

7.
5e
−0
6 0

20
40

60

NO
3−  (µ

M
)

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●
●● ●
●

●
●

●
●

●
●

●
●

●
●

0.
0e
+0
0

2.
5e
−0
6

5.
0e
−0
6

7.
5e
−0
6 0

10
20

NH
4+  (µ

M
)

●

●

●

●

●

●

●

●

● ●●
●

●

● ●

●

● ●●● ●
● ●
●

●● ●
●●

●● ●
0.
0e
+0
0

2.
5e
−0
6

5.
0e
−0
6

7.
5e
−0
6 0

5
10

15

Ur
ea

 (µ
M

)

●
●

●

●
●

●
●

●

●

●
●

●
●

●
●

●

●
●

●

●

●

●
●

●

●●

●

● ●

● ●
●

10203040

0
20

40
60

[N
O
3−  ] 

(µ
M

)

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●
●

●
●

●
●●
●

●●
●●

●
0.
0

0.
1

0.
2

0.
3

0.
4 0

20
40

60

NO
3−  (µ

M
)

●

● ●

●
●

●
●

●

●

●

●

●
●

●

●

●
● ●

●

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5 0

10
20

30

NO
3−  (µ

M
)

●
●

●

●
●

●
●

●

●

●
●

●
●

●
●

●

●●

●● ●

●
●

●

●

●

●

●

●

●

●
●

10203040

0
10

20
30

NH
4+  (µ

M
)

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●
●● ●
●

●
●

●
●

●
●

●
●

●
●

0.
0

0.
1

0.
2

0.
3

0.
4 0

10
20

NH
4+  (µ

M
)

●

●
●

●

●

●

●
●

●
●

●
●

●

●
●

●
●●

● ● ●

●
●

●

●

●●

●

●

●

●

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5 0

10
20

30

NH
4+  (µ

M
)

●
●

●

●
●

●
●

●

● ● ●
●

●
●
●

●

●● ●● ●●●

●

●● ●

● ●

● ●●

10203040

0
5

10
15

Ur
ea

 (µ
M
−
N)

●

●

●

●

●

●

●

●

● ●●
●

●

●

●

●

● ●●● ●
● ●
●

●● ●
●●

●● ●
0.
0

0.
1

0.
2

0.
3

0.
4 0

5
10

15

Ur
ea

 (µ
M

)

●●●

●

●●
●

● ●
●

●● ●

●
●● ● ●●●

●

●●●
● ●

● ●

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5 0

10
20

30

Ur
ea

 (µ
M

)

●
●

●

●
●

●
●

●

●

●
●

●
●

●
●

●

●
●

●

●

●

●
●

●

●●

●

● ●

● ●
●

10203040

0
20

40
60

[N
O
3−  ] 

(µ
M

)

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●
●

●
●

●
●●
●

●●
●●

●
0.
0

0.
1

0.
2

0.
3

0.
4 0

20
40

60

NO
3−  (µ

M
)

●

● ●

●
●

●
●

●

●

●

●

●
●

●

●

●
● ●

●

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5 0

10
20

30

NO
3−  (µ

M
)

●
●

●

●
●

●
●

●

●

●
●

●
●

●
●

●

●●

●● ●

●
●

●

●

●

●

●

●

●

●
●

10203040

0
10

20
30

NH
4+  (µ

M
)

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●
●● ●
●

●
●

●
●

●
●

●
●

●
●

0.
0

0.
1

0.
2

0.
3

0.
4 0

10
20

NH
4+  (µ

M
)

●

●
●

●

●

●

●
●

●
●

●
●

●

●
●

●
●●

● ● ●

●
●

●

●

●●

●

●

●

●

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5 0

10
20

30

NH
4+  (µ

M
)

●
●

●

●
●

●
●

●

● ● ●
●

●
●
●

●

●● ●● ●●●

●

●● ●

● ●

● ●●

10203040

0
5

10
15

Ur
ea

 (µ
M
−
N)

●

●

●

●

●

●

●

●

● ●●
●

●

●

●

●

● ●●● ●
● ●
●

●● ●
●●

●● ●
0.
0

0.
1

0.
2

0.
3

0.
4 0

5
10

15

Ur
ea

 (µ
M

)

●●●

●

●●
●

● ●
●

●● ●

●
●● ● ●●●

●

●●●
● ●

● ●

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5 0

10
20

30

Ur
ea

 (µ
M

)

●

●

●
●

●

●
●

●

●
●

●

●
●

●
●

●

●●

●

● ●●●

●

●

● ● ●

● ●
●●

010203040

0
10

20
30

Ur
ea

 (µ
M
−

N)

Chlorophyll a (µg L
−1)

Nu
tri

en
t A

dd
itio

n
● ●

No
 P

O
43−

 a
dd

itio
n

PO
43−

 a
dd

itio
n

P ●
1 0

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

● ●●●

●

●

● ●●

● ●

● ●

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5 0

10
20

30

Ur
ea

 (µ
M
−

N)

Fv/Fm

Nu
tri

en
t A

dd
itio

n
● ●

No
 P

O
43−

 a
dd

itio
n

PO
43−

 a
dd

itio
n

P ●
1 0

a
b

c

d
e

f

g
h

i

●● ●●

●

●●
●

● ●●
●

●● ●

●
●●● ● ●●● ● ●● ●● ● ●● ●

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5 01

0203
0

Ur
ea

 (µ
M

)Nu
tri

en
t A

dd
itio

n
● ●

No
 P

O
43−

 a
dd

itio
n

PO
43−

 a
dd

itio
n

P ●
1 0

● ●● ●
0e

+0
0

2e
−0

6

4e
−0

6

6e
−0

6

8e
−0

6 1234

Da
y 

of
 E

xp
er

im
en

t

NR activity (µmol NO2
−
 formed cell

−1hr
−1)

Nu
tri

en
t A

dd
itio

n
● ● ●

Co
nt

ro
l

NH
4+

+
P

NH
4+

+
P

+
Si

Sa
m

pl
e

1 8 14

●
●

●

●
●

●
●

●

●

●
●

●
●

●
●

●

●
●

●

●

●

●
●

●

●●

●

● ●

● ●
●

10203040

0
20

40
60

[N
O
3−  ] 

(µ
M

)

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●
●

●
●

●
●●
●

●●
●●

●
0.
0

0.
1

0.
2

0.
3

0.
4 0

20
40

60

NO
3−  (µ

M
)

●

● ●

●
●

●
●

●

●

●

●

●
●

●

●

●
● ●

●

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5 0

10
20

30

NO
3−  (µ

M
)

●
●

●

●
●

●
●

●

●

●
●

●
●

●
●

●

●●

●● ●

●
●

●

●

●

●

●

●

●

●
●

10203040

0
10

20
30

NH
4+  (µ

M
)

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●
●● ●
●

●
●

●
●

●
●

●
●

●
●

0.
0

0.
1

0.
2

0.
3

0.
4 0

10
20

NH
4+  (µ

M
)

●

●
●

●

●

●

●
●

●
●

●
●

●

●
●

●
●●

● ● ●

●
●

●

●

●●

●

●

●

●

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5 0

10
20

30

NH
4+  (µ

M
)

●
●

●

●
●

●
●

●

● ● ●
●

●
●
●

●

●● ●● ●●●

●

●● ●

● ●

● ●●

10203040

0
5

10
15

Ur
ea

 (µ
M
−
N)

●

●

●

●

●

●

●

●

● ●●
●

●

●

●

●

● ●●● ●
● ●
●

●● ●
●●

●● ●
0.
0

0.
1

0.
2

0.
3

0.
4 0

5
10

15

Ur
ea

 (µ
M

)

●●●

●

●●
●

● ●
●

●● ●

●
●● ● ●●●

●

●●●
● ●

● ●

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5 0

10
20

30

Ur
ea

 (µ
M

)

●
●

●

●
●

●
●

●

●

●
●

●
●

●
●

●

●
●

●

●

●

●
●

●

●●

●

● ●

● ●
●

10203040

0
20

40
60

[N
O
3−  ] 

(µ
M

)

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●
●

●
●

●
●●
●

●●
●●

●
0.
0

0.
1

0.
2

0.
3

0.
4 0

20
40

60

NO
3−  (µ

M
)

●

● ●

●
●

●
●

●

●

●

●

●
●

●

●

●
● ●

●

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5 0

10
20

30

NO
3−  (µ

M
)

●
●

●

●
●

●
●

●

●

●
●

●
●

●
●

●

●●

●● ●

●
●

●

●

●

●

●

●

●

●
●

10203040

0
10

20
30

NH
4+  (µ

M
)

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●
●● ●
●

●
●

●
●

●
●

●
●

●
●

0.
0

0.
1

0.
2

0.
3

0.
4 0

10
20

NH
4+  (µ

M
)

●

●
●

●

●

●

●
●

●
●

●
●

●

●
●

●
●●

● ● ●

●
●

●

●

●●

●

●

●

●

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5 0

10
20

30

NH
4+  (µ

M
)

●
●

●

●
●

●
●

●

● ● ●
●

●
●
●

●

●● ●● ●●●

●

●● ●

● ●

● ●●

10203040

0
5

10
15

Ur
ea

 (µ
M
−
N)

●

●

●

●

●

●

●

●

● ●●
●

●

●

●

●

● ●●● ●
● ●
●

●● ●
●●

●● ●
0.
0

0.
1

0.
2

0.
3

0.
4 0

5
10

15

Ur
ea

 (µ
M

)

●●●

●

●●
●

● ●
●

●● ●

●
●● ● ●●●

●

●●●
● ●

● ●

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5 0

10
20

30

Ur
ea

 (µ
M

)

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●
●

●
●

●
●●
●

●●
●●

●
0.
0e
+0
0

2.
5e
−0
6

5.
0e
−0
6

7.
5e
−0
6 0

20
40

60

NO
3−  (µ

M
)

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●
●● ●
●

●
●

●
●

●
●

●
●

●
●

0.
0e
+0
0

2.
5e
−0
6

5.
0e
−0
6

7.
5e
−0
6 0

10
20

NH
4+  (µ

M
)

●

●

●

●

●

●

●

●

● ●●
●

●

● ●

●

● ●●● ●
● ●
●

●● ●
●●

●● ●
0.
0e
+0
0

2.
5e
−0
6

5.
0e
−0
6

7.
5e
−0
6 0

5
10

15

Ur
ea

 (µ
M

)



 

42 
 

References 
 
Berg G.M., Balode M., Purina I., Bekere S., Béchemin C., and Maestrini S.Y. 2003. 

Plankton community composition in relation to availability and uptake of 

oxidized and reduced nitrogen. Aquatic Microbial Ecology. 30: 263-274.  

Berges J.A. and Harrison P.J. 1995. Nitrate reductase activity quantitatively predicts 

the rate of nitrate incorporation under steady state light limitation: A revised 

assay and characterization of the enzyme in three species of marine 

phytoplankton. Limnology & Oceanography. 40(1): 82-93.  

Bouwman A.F., Beusen A.H.W., Lassaletta L., van Apeldoorn D.F., van Grinsven 

H.J.M, Zhang J., and van Ittersum M.K. 2017. Lessons from temporal and 

spatial patterns in global use of N and P fertilizer on cropland. Scientific 

Reports. 7: 40366.  

Brandes U.S. 2005. Recapturing the Anacostia River: The Center of 21st Century 

Washington, DC. Golden Gate UL Rev. 35: 411. 

Carey C.C., Ibelings B.W., Hoffman E.P., Hamilton D.P., and Brookes J.D. 2012. 

Eco-physiological adaptations that favour freshwater cyanobacteria in a 

changing climate. Water Research. 46: 1394-1407.  

Chen N., Peng B., Hong H., Turyaheebwa N., Cui S., and Mo X. 2012. Nutrient 

enrichment and N:P ratio decline in a costal bay—river system in southeast 

China: The need for a dual nutrient (N and P) management strategy. Ocean & 

Coastal Management. 32(4): 593-601.  



 

43 
 

Conley D.J., Paerl H.W., Howarth R.W., Boesch D.F., Seitzinger S.P., Havens K.E., 

Lancelot C., and Likens G.E. 2009. Controlling eutrophication: nitrogen and 

phosphorus. Science. 323: 1014-1015. 

District of Columbia Water and Sewer Authority. 2017. Clean water projects. 

Accessed at: https://www.dcwater. com/projects. 

Doane T.A. and Horwáth W.R. 2003. Spectrophotometric determination of nitrate 

with a single reagent. Analytical Letters. 36(12): 2713-2722.  

Dokulil M.T. and Teubner K. 2000. Cyanobacterial dominance in lakes. 

Hydrobiologia. 438: 1-12.  

Domingues R.B., Barbosa A.B., Sommer U., and Galvão H.M. 2011. Ammonium, 

nitrate and phytoplankton interactions in a freshwater tidal estuarine zone: 

potential effects of cultural eutrophication. Aquatic Sciences. 73: 331-343.  

Donald D.B., Bogard M.J., Finlay K., and Leavitt P.R. 2011. Comparative effects of 

urea, ammonium, and nitrate on phytoplankton abundance, community 

composition, and toxicity in hypereutrophic freshwaters. Limnology and 

Oceanography. 56(6): 2161-2175.  

Donald D.B., Bogard M.J., Finlay K., Bunting L., and Leavitt P.R. 2013. 

Phytoplankton-specific response to enrichment of phosphorus-rich surface 

waters with ammonium, nitrate, and urea. PLOS One. 8(1): e53277. 

Dortch Q. 1990. The interaction between ammonium and nitrate uptake in 

phytoplankton. Marine Ecology Progress Series. 61: 183-201.  



 

44 
 

Dugdale R.C., Wilkerson F.P., Hogue V.E., and Marchi A. 2007. The role of 

ammonium and nitrate in spring bloom development in San Francisco Bay. 

Estuarine, Coastal and Shelf Science. 73: 17-29.  

Dugdale R., Wilkerson F., Parker A.E., Marchi A., and Taberski K. 2012. River flow 

and ammonium discharge determine spring phytoplankton blooms in an 

urbanized estuary. Estuarine, Coastal and Shelf Science. 115: 187-199. 

Eppley R.W., Coatsworth J.L., and Solórzano L. 1969. Studies of nitrate reductase in 

marine phytoplankton. Limnology and Oceanography. 14(2): 194-205. 

Everest S.A., Hipkin C.R., and Syrett P.J. 1984. The effect of phosphate and flavin 

adenine dinucleotide on nitrate reductase activity of some unicellular marine 

algae. Journal of Experimental Marine Biology and Ecology. 76(3): 263-275. 

Ferber L.R., Levine S.N., Lini A., and Livingston G.P. 2004. Do cyanobacteria 

dominate in eutrophic lakes because they fix atmospheric nitrogen? 

Freshwater Biology. 49: 690-708. 

Galloway J.N. and Cowling E.B. 2002. Reactive nitrogen and the world: 200 years of 

change. A Journal of the Human Environment. 31(2): 64-72.  

Glibert P.M. 2017. Eutrophication, harmful algae and biodiversity—Challenging 

paradigms in a world of complex nutrient changes. Marine Pollution Bulletin. 

124: 591-606.  

Glibert P.M., Beusen A.H.W., Harrison J.A., Dürr H.H., Bouwman A.F., and Laruelle 

G.G. 2018. Changing land-, sea-, and airscapes: Sources of nutrient pollution 

affecting habitat suitability for harmful algae. In: Glibert P.M., Berdalet E., 

Burford M.A., Pitcher G.C., and Zhou M., editors. Global Ecology and 



 

45 
 

Oceanography of Harmful Algal Bloooms. Cham, Switzerland: Springer. pp. 

53-76. 

Glibert P.M., Heil C.A., Hollander D., Revilla M., Hoare A., Alexander J., and 

Murasko S. 2004. Evidence for dissolved organic nitrogen and phosphorus 

uptake during a cyanobacterial bloom in Florida Bay. Marine Ecology 

Progress Series. 280: 73-83.  

Glibert P.M., Heil C.A., O’Neil J.M., Dennison W.C., and O’Donohue M.J.H. 2006. 

Nitrogen, phosphorus, silica, and carbon in Moreton Bay, Queensland, 

Australia: Differential limitation of phytoplankton biomass production. 

Estuaries and Coasts. 29(2): 209-221.  

Glibert P.M., Kana T.M., and Brown K. 2013. From limitation to excess: The 

consequences of substrate excess and stoichiometry for phytoplankton 

physiology, trophodynamics and biogeochemistry, and the implications for 

modeling. Journal of Marine Systems. 125: 14-28.  

Glibert P.M., Manager R., Sobota D.J., and Bouwman L. 2014a. The Haber-Bosch-

Harmful algal bloom (HB-HAB) link. Environmental Research Letters. 9: 

105001.  

Glibert P.M., Wilkerson F.P., Dugdale R.C., Parker A.E., Alexander J., Blaser S., and 

Murasko S., 2014b. Phytoplankton communities from San Francisco Bay 

Delta respond differently to oxidized and reduced nitrogen substrates—even 

under conditions that would otherwise suggest nitrogen sufficiency. Frontiers 

in Marine Science. 1:17. 



 

46 
 

Glibert P.M., Wilkerson F.P., Dugdale R.C., Raven J.A., Dupont C.L., Leavitt P.R., 

Parker A.E., Burkholder J.M., and Kana T.M. 2016. Pluses and minuses of 

ammonium and nitrate uptake and assimilation by phytoplankton and 

implications for productivity and community composition, with emphasis on 

nitrogen-enriched conditions. Limnology and Oceanography. 61:165-197.  

Harvey H.W. 1953. Synthesis of organic nitrogen and chlorophyll by Nitzschia 

closterium. Journal of the Marine Biological Association of the United 

Kingdom. 31(3): 477-487.  

Heukelem L.V. and Thomas C.S. 2001. Computer-assisted high-performance liquid 

chromatography method development with applications to the isolation and 

analysis of phytoplankton pigments. Journal of Chromatography A. 910: 31-

49.  

Holmes R.M., Aminot A., Kérouel R., Hooker B.A., and Peterson B.J. 1999. A 

simple and precise method for measuring ammonium in marine and 

freshwater ecosystems. Canadian Journal of Fisheries and Aquatic Sciences. 

56(10): 1801-1808.  

Howarth R., Chan F., Conley D.J., Garnier J., Doney S.C., Marino R., and Billen G. 

2011. Coupled biogeochemical cycles: eutrophication and hypoxia in 

temperate estuaries and coastal marine ecosystems. Frontiers in Ecology and 

the Environment. 9(1): 18-26.  

Hwang, H. M. and Foster, G. D. 2006. Characterization of polycyclic aromatic 

hydrocarbons in urban stormwater runoff flowing into the tidal Anacostia 

River, Washington, DC, USA. Environ. Poll. 140: 416-426. 



 

47 
 

Jackson, M. 2016. Phytoplankton and nutrient dynamics with a focus on nitrogen 

form in the Anacostia River, in Washington, D.C. and West Lake, in 

Hangzhou, China. Masters of Science, University of Maryland, College Park, 

MD. 

Jeffrey S.W. and Vesk M. 1997. Introduction to marine phytoplankton and their 

pigment signatures. In Jeffrey S.W., Mantoura R.F.C., and Wright S.W. (eds). 

Phytoplankton pigments in oceanography: Guidelines to modern methods. 

Paris: UNESCO.  

Lee J., Parker A.E., Wilkerson F.P., and Dugdale R.C. 2015. Uptake and inhibition 

kineatics of nitrogen in Microcystis aeruginosa: Results from cultures and 

field assemblages collected in the San Francisco Bay Delta, CA. Harmful 

Algae. 47: 126-140. 

L’Helguen S., Maguer J.F., and Cardec J. 2008. Inhibition kinetics of nitrate uptake 

by ammonium in size-fractionated oceanic phytoplankton communities: 

Implications for new production and f-ratio estimates. Journal of Plankton 

Research. 30(10): 1179-1188. 

Lomas M.W. and Glibert P.M. 1999a. Interactions between NH4+ and NO3- uptake 

and assimilation: Comparison of diatoms and dinoflagellates at several growth 

temperatures. Marine Biology. 133: 541-551.  

Lomas M.W. and Glibert P.M. 1999b. Temperature regulation of nitrate uptake: A 

novel hypothesis about nitrate uptake and reduction in cool-water diatoms. 

Limnology and Oceanography. 44(3): 556-572.   



 

48 
 

Lomas M.W. and Glibert P.M. 2000. Comparisons of nitrate uptake, storage, and 

reduction in marine diatoms and flagellates. Journal of Phycology. 36: 903-

913. 

MacIsaac J.J., Dugdale R.C., Huntsman S.A., and Conway H.L. 1979. The effect of 

sewage on uptake of inorganic nitrogen and carbon by natural populations of 

marine phytoplankton. Journal of Marine Resolution: 37: 51-66.  

Miranda K.M., Espey M.G., and Wink D.A. 2001. A rapid, simple 

spectrophotometric method for simultaneous detection of nitrate and nitrite. 

Nitric Oxide. 5(1): 62-71.  

Moore L.R., Post A.F., Rocap G., and Chisholm S.W. 2002. Utilization of different 

nitrogen sources by the marine cyanobacteria Prochlorococcus and 

Synechococcus. Limnology and Oceanography. 47(4): 989-996.  

Mooy B.A.S., Fredricks H.F., Pedler B.E., Dyhrman S.T., Karl D.M., Koblízek M., 

Lomas M.W., Mincer T.J., Moore L.R., Moutin T., Rappé M.S., and Webb 

E.A. 2009. Phytoplankton in the ocean use non-phosphorus lipids in response 

to phosphorus scarcity. Nature. 458(7234):69. 

Müller S. and Mitrovic S.M. 2015. Phytoplankton co-limitation by nitrogen and 

phosphorus in a shallow reservoir: progressing from the phosphorus limitation 

paradigm. Hyrdrobiologia. 744: 255-269.  

Nixon S.W. 1995. Coastal marine eutrophication: a definition, social causes, and 

future concerns. Ophelia. 41: 199-219.  



 

49 
 

North R.L., Guildford S.J., Smith R.E.H., Havens S.M., and Twiss M.R. Evidence for 

phosphorus, nitrogen, and iron colimitation of phytoplankton communities in 

Lake Erie. Limnology and Oceanography. 52(1): 315-328.  

O’Neil J.M., Davis T.W., Burford M.A., and Gobler C.J. 2012. The rise of harmful 

cyanobacteria blooms: The potential roles of eutrophication and climate 

change. Harmful Algae. 14: 313-334.  

Parsons T.R., Maita Y., and Lalli C.M. 1984. A Manual of Chemical and Biological 

Methods for Seawater Analyses. Pergamon Press, New York: 173.  

Paerl H.W., Bland P.T., Bowles N.D. and Haibach M.E. 1985. Adaptation to high 

intensity, low wavelength light among surface blooms of the cyanobacterium 

Microcystis aeruginosa. Applied Environmental Microbiology. 49: 1046-

1052.  

Paerl H.W., Valdes L.M., Joyner A.R., Piehler M.F., and Lebo M.E. 2004. Solving 

problems resulting from solutions: Evolution of a dual nutrient management 

strategy for the eutrophying Neuse River Estuary, North Carolina. 

Environmental Science & Technology. 38(11): 3068-3073.   

Paerl H.W. Xu H., Hall N.S., Rossignol K.L., Joyner A.R., Zhu G., and Qin B. 2015. 

Nutrient limitation dynamics examined on a multi-annual scale in Lake Taihu, 

China: Implications for controlling eutrophication and harmful algal blooms. 

Journal of Freshwater Ecology. 30(1): 5-24.  

Paerl H.W., Xu H., McCarthy M.J., Zhu G., Qin B., Li Y., and Gardner W.S. 2011. 

Controlling harmful cyanobacterial blooms in a hyper-eutrophic lake (Lake 



 

50 
 

Taihu, China): The need for a dual nutrient (N & P) management strategy. 

Water Research. 45: 1973-1983 

Paul V.J. 2008. Global warming and cyanobacterial harmful algal blooms. 

In: Cyanobacterial Harmful Algal Blooms: State of the Science and Research 

Needs. Springer, New York, NY, 2008. p. 239-257. 

Probyn T.A. and Painting S.J. 1985. Nitrogen uptake by size-fractionated 

phytoplankton populations in Antarctic surface waters. Limnology and 

Oceanography. 30(6): 1327-1332. 

Raven J.A., Willenweber B., and Handley L.L. 1992. A comparison of ammonium 

and nitrate as nitrogen sources for photolithotrophs. New Phytologist. 121: 19-

32.  

Revilla M., Alexander J., and Glibert P.M. 2005. Urea analysis in coastal waters: 

Comparison of enzymatic and direct methods. Limnology and Oceanography. 

3: 290-299.  

Reynolds C.S. 1999. Non-determinism to probability, or N:P in the community 

ecology of phytoplankton. Arch. Hydrobiol. 146: 23-35.  

R Core Team. 2014. R: A language and environment for statistical computing. R 

Foundation for Statistical Computing. R Foundation for Statistical Computing, 

Vienna, Austria. 

Shangguan Y., Glibert P.M., Alexander J.A., Madden C.J., and Murasko S. 2017a. 

Nutrients and phytoplankton in semienclosed lagoon systems in Florida Bay 

and their responses to changes in flow from Everglades restoration. Limnology 

and Oceanography. 62: S327-S347. 



 

51 
 

Shangguan Y., Glibert P.M., Alexander J.A., Madden C.J., and Murasko S. 2017b. 

Phytoplankton assemblage response to changing nutrients in Florida Bay: 

Results of mesocosm studies. Journal of Experimental Marine Biology and 

Ecology. 494: 38-53.  

Solomon, C.M., Jackson M., Glibert P.M., and G. Vazquez. 2019. Chesapeake Bay’s 

‘forgotten’ Anacostia River: Eutrophication status and nutrient reduction 

measures. Environmental Monitoring and Assessment. 91: 265. 

Song B. and Ward B.B. 2007. Molecular cloning and characterization of high-affinity 

nitrate transporters in marine phytoplankton. Journal of Phycology. 43: 542-

552.  

Swarbrick V.J., Simpson G.L., Glibert P.M., and Leavitt P.R. 2019. Differential 

stimulation and suppression of phytoplankton growth by ammonium 

enrichment in eutrophic hardwater lakes over 16 years. Limnology and 

Oceanography. 64: S130-S149. 

Syrett P.J. 1981. Nitrogen metabolism of microalgae. Canadian Bulletin of Fisheries 

and Aquatic Sciences. 210: 182-210.   

Van Heukelem L. and Thomas C.S. 2001. Computer-assisted high-performance liquid 

chromatography method development with applications to the isolation and 

analysis of phytoplankton pigments. Journal of Chromatography A. 910: 31-

49.  

Van Heukelem L. and Thomas C.S. 2005. The HPL Method. In: Hooker S.B., Van 

Heukelem L., Thomas C.S., Claustre H., Ras J., Barlow R., Sessions H., 

Schlüter L., Perl J., Trees C., Stuart V., Head E., Clementson L., Fiskwick J., 



 

52 
 

Llewellyn C., and Aiken J., eds. The second SeaWiFs HPLC analysis round-

robin experiment (SeaHARRE-2). NASA Tech. Memo. pp. 86-92.  

Waiser M.J., Tumber V., and Holm J. 2011. Effluent-dominated streams. Part 1: 

Presence and effects of excess nitrogen and phosphorus in Wascana Creek, 

Saskatchewan, Canada. Environmental Toxicology and Chemistry. 30(2): 496-

507.  

Wright S. W., Jeffrey S. W., and Mantoura, R. F. C. Eds. 2005. Phytoplankton 

pigments in oceanography: guidelines to modern methods. Unesco Pub. 

Xu J., Glibert P.M., Liu H., Yin K., Yuan X., Chem M., and Harrison P.J. 2012. 

Nitrogen sources and rates of phytoplankton uptake in different regions of 

Hong Kong waters in summer. Estuaries and Coasts. 35: 559-571.  

Xu H., Paerl H.W., Qin B., Zhu G., Hall N.S., and Wu Y. 2014.  Determining critical 

nutrient thresholds needed to control harmful cyanobacterial blooms in 

eutrophic Lake Taihu, China. Environmental Science & Technology. 49: 

1051-1059.  

Yoshiyama K. and Sharp J.H. 2006. Phytoplankton response to nutrient enrichment in 

an urbanized estuary: Apparent inhibition of primary production by 

overeutrophication. Limnology and Oceanography. 51(1, part 2): 424-434.  

Zimmerman, C., Price, M. and Montgomery, J. 1977.  Operation, Methods and 

Quality Control of Technicon AutoAnalyzer II Systems for Nutrient 

Determination in Seawater.  Harbor Branch Foundation, Inc., Technical 

Report No.11.  Harbor Branch Foundation, Inc., Fort Pierce, Florida. 



 

53 
 

Zohary T., Herut B., Krom M.D., Mantoura F.C., Pitta P., Psarra S., Rassoulzadegan 

F., Stambler N., Tanaka T., Thingstad T.F., and Woodward E.M.S. 2005. P-

limited bacteria but N and P co-limited phytoplankton in the Eastern 

Mediterranean—a microcosm experiment. Deep Sea Research II. 52: 3011-

3023.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

54 
 

Chapter 3: Nutrient effects on photosynthesis, nitrate reductase activity, 

silicification and gene expression in the diatom Thalassiosira pseudonana across 

a broad temperature gradient 

Abstract 

 Diatom cells utilize a variety of metabolic pathways to cope with internal 

energy imbalances caused by stressful environmental conditions. In this study, the 

model diatom species, Thalassiosira pseudonana, was grown in nitrate (NO3-) and 

dissolved silicate (Si)-depleted media across a temperature gradient (4, 17, 28 °C) to 

determine how nutrient enrichment and temperature stress would affect diatom 

growth, photosynthesis, nitrate reductase (NR) enzyme activity, biogenic silica 

(bSiO2) deposition, and gene expression. Cells grown at 4 °C under nutrient-replete 

conditions had significantly higher bSiO2 deposition rates than cells grown at 17 and 

28 °C. The relative expression of the targeted NR gene was on average ~10 times 

higher in the 4 °C cultures and ~4 times higher in the 28 °C than in the 17 °C 

cultures, while the activity of the NR enzyme was generally highest in the cultures 

grown at 17 °C that were enriched with NO3-. Across all nutrient treatments, the cells 

grown at 17 °C had an average Fv/Fm was of 0.44, while the cells grown at 4 °C and 

28 °C had an average Fv/Fm of 0.37 and 0.38 respectively. The physiological 

responses highlighted here demonstrate how water temperature and nutrient limitation 

may stress diatom cells and how the mechanisms diatoms use to cope with such 

stressors impact the growth, physiology, and morphology of these primary producers.  

Introduction 
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 Diatoms make substantial contributions to new production in marine and 

freshwater ecosystems and have been estimated to fix over 10 billion tons of 

inorganic carbon (C) in the oceans each year (Goldman 1993, Del Amo et al. 1997, 

Brzezinski et al. 1998, Smetacek 1998, Granum et al. 2005). In addition to the 

significant role that diatoms play in global primary production, these organisms are 

also important in the export of C from the euphotic zone and in the biogeochemical 

cycling of nutrients in aquatic ecosystems (Round et al. 1990, Raven and Falkowski 

1999, Ragueneau et al. 2006). Although diatoms are widely distributed and appear to 

be “cosmopolitan” in nature (Finlay and Fenchel 2004), they do have environmental 

preferences and changes in the surrounding environment can stress diatom cells and 

impact the subsequent growth and productivity of these primary producers. 

 Diatoms often dominate phytoplankton assemblages during the onset of spring 

blooms and in upwelling regions when waters are cool, nutrient-rich, and weakly 

stratified (Cushing 1989, Peinert et al. 1989, Eppley et al. 1969b, Lomas and Glibert 

1999a). Following spring freshets and upwelling events, waters that are injected into 

the euphotic zone are typically rich in nitrate (NO3-) and dissolved silicate (Si), both 

of which may help fuel diatom blooms (Dugdale 1985). The availability of oxidized 

NO3- relative to chemically-reduced nitrogen (N) forms (e.g., NH4+), can also play an 

important role in diatom growth and productivity because diatoms often prefer NO3- 

over NH4+ (Probyn and Painting 1985, Lomas and Glibert 1999a, Glibert et al. 2016). 

Given that Si is necessary for diatom cells to divide, and the general preference for 

NO3- by diatoms, the relative availability of Si and NO3- may influence diatom 

abundance.  



 

56 
 

 However, even when essential nutrients are readily available in the water 

column, other environmental factors such as water temperature may affect diatom 

growth and productivity. Water temperature becomes an important controlling 

variable when the pathways of N and C assimilation become uncoupled. Typically, 

the light-dependent reactions of photosynthesis are unaffected by temperature, while 

the Calvin cycle, responsible for C assimilation, slows down as temperatures decrease 

(Kok 1956, Falkowski and Raven 1997). The Calvin cycle enzyme Rubisco is 

responsible for the first step of C fixation and typically has a temperature optimum of 

~30 °C or greater (Li 1980, Smith and Platt 1985, Ras et al. 2013). In contrast, the 

nitrate reductase (NR) enzyme that is responsible for catalyzing the reduction of NO3- 

to NO2- has been found to operate optimally when temperatures are cool (~10-20 °C; 

Lomas and Glibert 1999a, Gao et al. 2000, Berges et al. 2002).  If Rubisco activity 

declines as temperatures decrease, excess reductant may build up from the 

biophysical light reactions which can lead to photodamage or photoinhibition 

(Falkowski and Raven 1997, Sobrino and Neale 2007, Glibert et al. 2016). In order to 

overcome this imbalance, diatoms have been shown to reduce NO3- to nitrite (NO2-) 

in a non-assimilatory fashion (Lomas and Glibert 1999a,b, Glibert et al. 2016) thus 

making dissimilatory NO3- reduction an efficient energy dissipation pathway when 

temperatures are cool and the NR enzyme is operating efficiently. However, at 

temperatures well below ~10 °C and well above ~20 °C, the efficiency of 

dissimilatory NO3- reduction may decrease. Therefore, overflow pathways other than 

dissimilatory NO3- reduction may be necessary for diatom cells to overcome internal 

energy imbalances that occur when photochemistry and C fixation become 
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uncoupled. Photorespiration is one such pathway (Huner et al. 1998, Parker and 

Armbrust 2005, Glibert et al. 2016). As a whole, photorespiration is an energetically 

inefficient process that results in a net loss of C fixation; however, increases in 

photorespiration may work to alleviate the stress that diatoms experience when 

photochemistry and C fixation become uncoupled (Parker and Armbrust 2005, 

Glibert et al. 2016).  

 It has been suggested that increases in photorespiration may stimulate 

mitochondrial urea cycle activity that is, in turn, related to the synthesis of polyamine 

proteins in diatom cells (Liu and Glibert 2018). These polyamine proteins are 

incorporated into the silaffin proteins that are responsible for biogenic silica (bSiO2) 

deposition in diatom cell walls (Sumper and Kröger 2004). Therefore, if increases in 

photorespiration stimulate urea cycle activity and lead to increases in polyamine 

synthesis, silicification may increase (Liu and Glibert 2018). Heavily silicified 

diatoms have a greater propensity for sinking, which may lead to increased bSiO2 

export from the photic zone (e.g., Dugdale et al.1995). Thus, the degree of 

silicification can affect the rates of dissolution and biogeochemical cycling of bSiO2, 

altering the subsequent availability of Si to diatoms in the water column (Liu and 

Glibert 2018).  

 The goal of this study was to use the model diatom species, Thalassiosira 

pseudonana, to quantify the relationships between nutrient availability, 

photosynthesis, NR enzyme activity, silicification, and NR gene expression when 

cells were growing at three temperatures: at or near the presumed NR temperature 

optima (17 °C), well above it and near the optimal temperature for Rubisco (28 °C), 
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and well below the optimal temperature of both enzymes (4 °C). It was hypothesized 

that diatom photosynthesis, NR enzyme activity and NR gene expression should 

increase when temperatures are near the NR temperature optima and when NO3- and 

Si are readily available in the surrounding media. In contrast, cold, nutrient-replete 

conditions should increase photochemical stress in diatom cells and should lead to 

decreases in NR activity and gene expression and increases in cell wall silicification. 

The information obtained through this study may begin to elucidate how metabolic 

energy balance and overflow pathways function in this diatom species under different 

temperature and nutrient conditions.  

Materials and Methods 

Culture Conditions and Experimental Design 

 A culture of T. pseudonana CCMP 1335 was obtained from the Horn Point 

Laboratory Oyster Hatchery and was grown in f/2 culture media (Guillard 1983). 

Cultures were acclimated to three temperatures, 4 °C, 17 °C, and 28 °C over the 

course of several weeks to months and were maintained in batch conditions under a 

12:12 light:dark cycle at a light level of ~200 µE m-2 s-1, gently bubbled with CO2. To 

initiate experiments, T. pseudonana cultures were transferred into new glass 

containers with fresh f/2 media and the growth of the cells in the cultures were 

monitored using a BD Accuri C6 flow cytometer. When the cultures were in the 

exponential phase of growth, cells were concentrated by filtration or centrifugation 

and were transferred into replicated 2-liter culture flasks that contained NO3- and Si-

depleted media.  
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 Cell growth in the nutrient-depleted cultures was monitored until the cells in 

these nutrient-depleted cultures reached stationary phase (residual nutrient permitted 

short-term growth). On the first day that a decline in growth rate was noted, 500 mL 

of each nutrient-depleted culture were transferred into 8 separate polyethylene culture 

flasks. Duplicate flasks were then enriched with 3 different combinations of nutrients 

(Table 1). Additions of either NO3- and/or Si were made at 100 µM (Table 1). Control 

flasks received no added nutrients.   

 Immediately after making the nutrient additions, and again 24 hours later, 

aliquots were removed from the cultures for measurements of cell abundance, 

concentrations of NO3- and Si, variable fluorescence characteristics, NR enzyme 

activity, bSiO2 deposition, and the relative expression of genes that are associated 

with NR activity and silicification. 

Cell abundance quantification 

 To quantify cell abundance in each of the experimental containers, 1.5 mL of 

each culture were fixed with 10% paraformaldehyde and stored at 4 °C until analysis. 

Cell counts were then obtained using a BD Accuri C6 flow cytometer with dual 

excitation (488 nm, 640 nm). When analyzed on the flow cytometer, cells were gated 

by shape and size using forward scatter and side scatter settings. Cell concentrations 

were calculated by dividing absolute cell counts by the volume of sample that was 

analyzed.  

Nutrient analyses 

 Aliquots of media from all flasks were filtered through precombusted GF/F 

filters, and the filtrate was frozen at -18 °C until nutrient analyses were performed. 
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Concentrations of NO3- were determined according to Miranda et al. (2001) and 

Doane and Horwáth (2003). Concentrations of Si were determined at Horn Point 

Analytical Services Laboratory according to Zimmerman et al. (1977). 

PAM fluorometry  

 Variable fluorescence parameters were obtained using a Waltz Phyto-PAM II 

fluorometer. At each sampling time, 2 mL of each culture treatment were collected 

and placed in a glass test tube. The samples were then placed in darkness for 15-20 

minutes. After the dark incubation period, the algal quantum efficiency (Fv/Fm), light 

saturation parameter (Ek), initial slope (α), and maximum electron transport rate 

(ETRmax) were measured.  

Nitrate reductase activity 

 The activity of NR enzyme was measured using the NO3- reduction protocol 

of Eppley et al. (1969a) as modified by Berges and Harrison (1995). Aliquots of 25 

mL were first filtered onto a precombusted GF/F filter, then flash frozen and stored at 

-80 °C until analysis. After no more than 1 week in the freezer, the frozen GF/F filters 

were homogenized in a glass Teflon homogenizer with 3.3 mL of extraction buffer. 

The extraction buffer contained 1 mM of dithiothreitol, 5 mM EDTA, 0.2 M 

phosphate buffer, 0.1% v/v Triton X-100, and 0.3% w/v polyvinyl pyrrolidone, and 

was adjusted to a pH of ~8 using potassium hydroxide pellets. The homogenized filter 

material was centrifuged for 5 minutes at 4 °C and 3000 rpm. Then, the supernatant 

was divided into 2, 1 mL portions, one of which was used as a control and one was 

used for the NO3- reduction reaction. The control and reaction tubes were all 

incubated at their respective experimental growth temperatures (4, 17, or 28 °C) for 
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30 minutes. The control tubes were incubated with 0.2 M NaNO3-, 0.05 M MgSO4-, 

and 300 µL extraction buffer, and the treatment tubes were incubated with 0.2 M 

NaNO3-, 0.05 M MgSO4-, and 300 µL of 150 µM NADH. The reactions were stopped 

by adding 1M zinc acetate and 5 mL of 95% ethanol. The samples were then 

centrifuged for 5 minutes at 15 °C and 3000 rpm. Excess NADH was oxidized by 

adding 0.83 µM phenazine methosulfate to the supernatant obtained by 

centrifugation. Then, the supernatant was used to determine NO2- formation in each of 

the samples.  

 The concentration of NO2- formed in each of the samples was quantified 

spectrophotometrically (Eppley et al. 1969a; Parsons et al. 1984).  To determine NO2- 

concentrations in each of the samples, 800 µL of supernatant was combined with 32 

µL of the color detection reagent. Following color development, absorbance readings 

were measured at 543 nm on a BioTek Synergy HT or a BioTek Synergy LX plate 

reader. The NR activity values were normalized to cell abundance to determine NR 

activity cell-1 hour-1.   

Silica deposition rate 

 For measurements of silicification, the fluorescent analog, 2-(4-pyridyl)-5-((4-

(2- dimethylaminoethylaminocarbamoyl)methoxy)phenyl)oxazole (PDMPO), was 

used. This compound is incorporated into diatom cell walls at a constant ratio with 

bSiO2 (Shimizu et al. 2001, McNair et al. 2015). PDMPO was added to subsamples of 

the T. pseudonana cultures so that the final concentration of PDMPO in each bottle 

was 0.157 µM. The bottles were incubated at the temperature of culture growth (4, 

17, or 28 °C) for 24 hours and samples were subsequently analyzed according to 
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McNair et al. (2015) and Shimizu et al. (2001). First, the cells in each container were 

filtered onto a 14 mm polycarbonate filter, placed in a 15 mL polyethylene tube, 

covered with 10 mL 100% methanol, and placed in the dark at 4 °C for 24 hours. 

Following the 24-hour incubation, the filters were compressed at the bottom of the 

tube using a Teflon rod and the tubes were centrifuged for 10 minutes at 2500 rpm.  

Then, 9 mL of the methanol were removed from each tube and the tubes were left to 

dry (uncapped) in a 50 °C oven. Once the filters were dry, 200 µL of 0.5 M 

hydrofluoric acid (HF) were added to each tube and the tube was mixed using a 

Teflon rod. The tubes with HF were incubated for 3 hours. Then, 2.8 mL of 1 M boric 

acid were added to each of the tubes and 1 mL was transferred into a cuvette with 2 

mL of 100% methanol.  Fluorescence measurements were obtained using a 

FluoroMax fluorometer (excitation: 365/30, emission: 534/30) and were compared to 

a standard curve consisting of PDMPO in a matrix of HF and boric acid. The 

concentration bSiO2 deposited into the culture cells was estimated using a 

bSiO2:PDMPO ratio of 2,900:1 when the silicic acid (Si(OH)4) concentration was 

greater than 3 µM and using the equation bSiO2:PDMPO = 912.6 * [Si(OH)4] when 

the concentration of  Si(OH)4 was less than 3 µM (McNair et al. 2015).  

Gene expression analysis 

 Two genes were targeted for differential gene expression analysis, a NR gene 

and a silaffin gene (TPSIL2). Primers used to target the NR gene were obtained from 

Parker and Armbrust (2005) and those used to amplify the silaffin gene were 

designed using the default settings in the NCBI Primer Blast program (Ye et al. 2012, 

Table 2). To quantify differential expression, actin was used as a housekeeping gene, 
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and those primers were obtained from McGinn and Morel (2008). The PCR products 

that resulted from the differential expression analyses were run on a 1% agarose gel 

to confirm that the primers used were specific and that the target sequences were 

properly amplified. The primers that were designed to target the silaffin gene were 

not specific across all PCR runs. Due to this lack of specificity, the silaffin gene 

expression data were not included in subsequent analyses.  

 To extract total RNA, ~50 mL of culture were filtered onto a Supor-200 

membrane filter. Cells captured on the filter were scraped into a clean 

microcentrifuge tube, lysed using a pestle, and flash frozen in liquid N2. Total RNA 

from the cells was extracted using the Qiagan RNeasy Plant Mini Kit. The total RNA 

that was obtained from each RNA extraction was incubated with Invitrogen DNase I 

to ensure that genomic DNA was not a source of contamination in the subsequent 

analyses. Following the RNA extraction and DNA digestion protocols, total RNA 

was quantified using a Qubit RNA HS Assay Kit. The total RNA obtained from each 

culture was stored at -80 °C until RT-qPCR procedures were performed.  

 Following RNA quantification, the RT-qPCR analyses were conducted using 

the Qiagen one-step QuantiNova SYBR Green RT-PCR Kit. To run the RT-qPCR 

analysis, 5 µL of total RNA were added to a mixture containing 10 µL 2x SYBR 

Green RT-PCR Master Mix, 0.2 µL QN SYBR Green RT-Mix, 1 µL of both the 

forward and reverse primers (10µM), and 2.8 µL of RNase-free water, for a total 

reaction volume of 20 µL. The reaction mixtures were then run on a Bio-Rad CFX96 

qPCR machine. The first reverse transcription step of the reaction was 50 °C for 10 
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min. Following reverse transcription, the PCR reaction proceeded at 95 °C for 2 min, 

followed by 40 cycles at 95 °C for 5 s and 60 °C for 10 s.  

 After the RT-qPCR reactions, the mean cycle threshold (Ct) value of actin 

obtained for each sample was plotted as a function of the concentration of RNA 

measured in each sample to confirm that actin was constitutively expressed across all 

treatments and temperatures. Then, the expression of the NR gene relative to the 

expression of the actin gene was calculated as relative transcript abundance = 2(ΔCt) 

(Pfaffl 2007).  

Statistical Analyses 

 To determine the main and interactive effects of temperature and nutrient 

limitation, two-way ANOVA analyses were conducted using the programming 

software R (R Core Team 2014) with temperature and treatment (nutrient addition) as 

the two independent factors. The dependent variables examined through these 

analyses were algal Fv/Fm, ETRmax, NR activity, bSiO2 deposition (PDMPO 

incorporation), and relative NR gene expression. In addition, one-way ANOVA 

analyses were used to examine the effects that growth temperature and nutrient 

addition alone had on the physiological and gene expression measurements. Tukey’s 

post-hoc tests were used to determine significant differences between the growth 

temperature and nutrient treatments.  

Results 

Algal growth rates and nutrient concentrations 

 The highest growth rates were observed at 17 °C and the lowest growth rates 

were observed at 4 °C in the nutrient-replete culture bottles (Fig. 1). Growth rates in 
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exponential conditions were 0.41, 1.28, and 0.66 day-1 for the 4, 17, and 28 °C 

cultures respectively. After cells were transferred to NO3- and Si-depleted media, the 

growth rates of the 28 °C cultures were significantly higher than the growth rates of 

the 4 and 17 °C cultures (one-way ANOVA/Tukey’s HSD, p < 0.01 and p < 0.05 

respectively). Additionally, the growth rates noted in the 17 °C cultures were 

significantly higher than those noted in the 4 °C cultures (one-way ANOVA/Tukey’s 

HSD, p < 0.01). The average algal growth rates in the nutrient-depleted cultures were 

0.50 ± 0.01 day-1 at 4 °C, 0.91 ± 0.01 day-1 at 17 °C, and 1.08 ± 0.06 day-1 at 28 °C 

(Fig. 1).  

 As expected, following nutrient enrichment, the concentrations of NO3- and Si 

in the NO3--enriched and Si-enriched cultures were significantly higher than the 

concentrations of these respective nutrients in cultures that did not receive such 

enrichments (Wilcoxon rank sum test, p < 0.01).  

PAM analyses 

 The fluorometric analyses revealed that immediately following nutrient 

enrichment there was no significant effect of temperature or nutrient enrichment on 

the Fv/Fm of the T. pseudonana cells (two-way ANOVA, Fig. 2). Although growth 

and incubation temperature did not significantly alter algal Fv/Fm at either 

experimental time point, the Fv/Fm values of the 17 °C cultures were consistently 

higher than those of the 4 and 28 °C cultures. After 24 hours of incubation with 

nutrients, the average Fv/Fm values of the cultures were 0.36 ± 0.02 at 4 °C, 0.44 ± 

0.03 at 17 °C, and 0.37 ± 0.07 at 28 °C. 
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 There were some significant effects of nutrient enrichment on algal Fv/Fm in 

cultures that were grown at 4 °C and 28 °C (one-way ANOVA). After 24 hours of 

incubation with nutrients at 4 °C, the control, NO3-, and NO3- + Si-enriched cultures 

had significantly higher Fv/Fm values than the cultures that were enriched with Si 

alone (Tukey’s HSD, p < 0.05, p < 0.05, and p < 0.01 respectively). In the cultures 

that were incubated at 28 °C, the Fv/Fm values were significantly higher in the 

cultures that were enriched with NO3- and NO3- + Si than in the cultures that were not 

enriched with NO3- (Tukey’s HSD, all relationships p < 0.01). While algal Fv/Fm was 

significantly affected by nutrient enrichment after 24-hours at 4 and 28 °C, the Fv/Fm 

values of cultures that were grown and incubated at 17 °C were not significantly 

altered by nutrient enrichment.  

 The temperature at which the T. pseudonana cultures were grown had a 

significant effect on the ETRmax values obtained for the cultures immediately 

following nutrient addition and 24 hours after nutrient addition (p < 0.01 for both 

time points, Fig. 3). At the initial time point after nutrient enrichment, the cultures 

had an average ETRmax of 25.05 ± 2.1, 20.8 ± 0.9 , and 8.9 ± 1.2 µmol electrons  

m-2 s-1 at 4, 17 and 28 °C, respectively. Then, 24 hours following nutrient enrichment, 

the average ETRmax values were 23.9 ± 3.9, 22.1 ± 7.0 , and 6.24 ± 1.5 µmol electrons 

m-2 s-1 at the respective temperatures. There was also a near-significant effect of 

nutrient enrichment on algal ETRmax after 24 hours of incubation with nutrients (p = 

0.062). In general, the NO3- and NO3- + Si enriched treatments had higher ETRmax 

values than the Si-enriched and control treatments after 24 hours of incubation (Fig. 

3).  
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 When looking at the effects of nutrient enrichment on ETRmax at each growth 

temperature, some significant trends emerged. At 4 °C, the cultures that were 

enriched with NO3- alone had a significantly higher ETRmax after 24 hours than the 

control cultures or the cultures that were enriched with Si alone (one-way 

ANOVA/Tukey’s HSD, p < 0.05 for both relationships). Additionally, at 28 °C, the 

cultures that were enriched with NO3- + Si had a significantly higher ETRmax after 24 

hours of incubation than the control cultures and the cultures that were enriched with 

Si alone (one-way ANOVA/Tukey’s HSD, p < 0.05 for both relationships). At 17 °C, 

nutrient enrichment did not have any significant effect on algal ETRmax.  

NR activity analysis 

 There was no significant effect of temperature or nutrient treatment on the 

activity of the NR enzyme even though there were differences between treatments (p 

= 0.83 and p = 0.14 for temperature and treatment respectively; Fig. 4). The average 

activity of the NR enzyme was typically highest at 17 °C and lowest at 28 °C. 

Immediately following nutrient enrichment, the average activities of the NR enzyme 

were 2.34 ± 2.25, 9.57 ± 4.46, and 2.05 ± 1.09 fmol NO2- formed cell-1 hour-1 at 4, 17 

and 28 °C, respectively. Then, after 24 hours of incubation with nutrients, the average 

activity of the NR enzyme declined in all of the 17 °C T. pseudonana cultures. The 

average activities of the NR enzyme after 24 hours were 3.61 ± 2.37, 7.54 ± 3.84, and 

2.69 ± 1.53 fmol NO2- formed cell-1 hour-1 at 4, 17 and 28 °C. Additionally, the 17 °C 

cultures that were enriched with NO3- or NO3- + Si had higher average NR values 

than the control and Si-enriched culture immediately following nutrient enrichment. 

After enrichment, the average activity of the NR enzyme was 6.87 ± 5.34 fmol NO2- 
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formed cell-1 hour-1 for the NO3- and NO3- + Si treatments and 3.25 ± 3.08 fmol NO2- 

formed cell-1 hour-1 for the control and Si treatments.  

PDMPO incorporation  

 The PDMPO incorporation technique revealed that temperature and nutrient 

enrichment in isolation and in combination with one another had a significant effect 

on bSiO2 deposition (two-way ANOVA, nutrient enrichment: p < 0.01, temperature: 

p < 0.05, nutrient enrichment x temperature: p < 0.01, Fig. 5). When the cells in 

culture were incubated with PDMPO 24 hours after nutrient enrichment, there was a 

significant effect of nutrient enrichment on bSiO2 deposition (one-way ANOVA, p < 

0.01) and a significant, interactive effect of temperature and nutrient addition on 

bSiO2 deposition (two-way ANOVA, p < 0.05).  

 Nutrient enrichment had a significant effect on bSiO2 deposition (One-way 

ANOVA). At both the initial and final time points, the cultures that were enriched 

with NO3- + Si had significantly higher bSiO2 deposition rates than rates associated 

with the control and NO3- treatments (Tukey’s HSD, p < 0.01 for all comparisons). 

When the cultures were incubated with PDMPO immediately following nutrient 

addition, the highest bSiO2 deposition values were noted in the 4 °C NO3- + Si-

enriched cultures (6.08 ± 1.52 pmol bSiO2 deposited cell-1 hour-1) and the lowest 

bSiO2 deposition values were noted in the 28 °C control cultures (0.065 ± 0.041 pmol 

bSiO2 deposited cell-1 hour-1). When the cultures were incubated with PDMPO 24 

hours after nutrient enrichment, the highest bSiO2 deposition values were still noted 

in the 4 °C NO3- + Si-enriched cultures (4.47 ± 1.27 pmol bSiO2 deposited cell-1  
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hour-1), while the lowest bSiO2 deposition values were noted in the 4 °C control 

cultures (0.069 ± 0.029 pmol bSiO2 deposited cell-1 hour-1, Fig. 5). 

Gene expression analyses 

 There was a significant effect of both temperature and nutrient enrichment on 

the relative expression of the NR gene immediately following nutrient addition in the 

T. pseudonana cultures (Fig. 6). The relative expression of the NR gene was 

significantly greater in the cultures that were grown at 4 °C than in those that were 

grown at 17 °C (one-way ANOVA/Tukey’s HSD, p < 0.01). The cultures that were 

grown at 4 °C also tended to have higher relative NR expression than the cultures that 

were grown at 28 °C, though this relationship was not statistically significant (p = 

0.06). In the cultures that were grown at 4 °C, the relative expression of the NR gene 

was significantly altered by all nutrient enrichment treatments (one-way 

ANOVA/Tukey’s HSD, p < 0.01 for all comparisons).   

Discussion 

 The overarching goal of this study was to determine how nutrient availability 

and water temperature impact diatom growth, photosynthesis, NR activity, and gene 

expression. As to be expected, both nutrient availability and temperature influenced 

the growth rates and biomass of the T. pseudonana cells in culture. Additionally, 

differences in nutrient availability and temperature impacted T. pseudonana variable 

fluorescence characteristics, bSiO2 deposition, and NR gene expression. Together, 

information obtained through this study underscores that although diatoms are 

resilient and may be sustained under a variety of temperature and nutrient conditions, 

moderate temperatures and nutrient-rich waters increase the physiological 
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performance of diatom cells. Additionally, the results obtained in this experiment 

support the hypothesis that cold, nutrient-replete conditions lead to increases in 

diatom cell wall silicification. Lastly, this study suggests that NR enzyme activity 

may be regulated downstream of mRNA transcription under specific environmental 

conditions.  

bSiO2 deposition as a result of diatom stress response 

 The results of this study support the physiological mechanism outlined by Liu 

and Glibert (2018) that links cold water temperatures to increased silicification in at 

least some diatom taxa. In their proposed mechanism, Liu and Glibert (2018) suggest 

that under cold temperature and high-light conditions, diatom cells experience stress 

and may become more heavily silicified. The results of this study support the idea 

that growth at cold (~ 4 °C) temperatures is stressful based on the Fv/Fm data 

obtained through fluorometric analyses (Fig. 2). The lower Fv/Fm values that were 

noted in the 4 °C cultures suggest that the cells growing at 4 °C may have been 

limited or stressed to some degree (Falkowski et al. 1992), though the intricate 

imbalances in metabolism that may have occurred at the cellular level were not 

accounted for in this study. Liu and Glibert (2018) discuss photorespiration as a 

mechanism for coping with imbalances in cellular metabolism that may be apparent 

under cold temperature conditions and link increases in photorespiration to increases 

in mitochondrial urea cycle activity, increases in polyamine synthesis, and increases 

in diatom cell wall silicification. While rates of photorespiration and urea cycle 

activity were not measured in this study, bSiO2 deposition rates were measured and 

were influenced by both diatom growth temperature and nutrient availability (Fig. 5). 
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The results of this study revealed that bSiO2 deposition was highest when T. 

pseudonana cells were grown and incubated at 4 °C and when cells were supplied 

with NO3- and Si at approximately a 1:1 ratio, thus supporting the hypothesis that 

cold, nutrient-replete waters may promote silicification in diatom cells.  

 In general, the effects of temperature and nutrient limitation on diatom bSiO2 

deposition have not been studied in detail, however, a previous laboratory study 

conducted by Durbin (1977) found that the amount of intracellular Si per unit surface 

area in Thalassiosira nordenskioeldii was ~2 times greater in cells grown at 0 °C than 

in cells grown at 10 °C under nutrient-replete conditions. Similarly, in a study 

conducted by Paasche (1980), the Si content per diatom cell increased with 

decreasing temperatures (8-23 °C) in the diatoms Chaetoceros affinis and 

Rhizosolenia fragilissima. In a study conducted Spilling et al. (2015), the amount of 

Si relative to C in Si-limited Chaetoceros wighamii cells was greater when cells were 

grown at 7 °C as opposed to 11 °C under moderate (130 µmol photos  

m-2 s-1) light conditions. In a more recent study conducted by Lomas et al. (2019), a 

number of polar diatom species were isolated and maintained under low temperature 

conditions (~2 °C) to determine how these colder temperatures would affect the Si 

content per diatom cell as a function of cell biovolume. The results of the Lomas et al. 

(2019) study revealed that the amount of Si per diatom cell increased with cell 

biovolume 5-15 times more in the cells grown at cold temperatures than in diatom 

cells from other studies that were grown under temperate conditions (Fig. 3b, Lomas 

et al. 2019). Together, the results herein and those of Durbin (1977), Paasche (1980), 
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Spilling et al. (2015), and Lomas et al. (2019) broadly agree that colder temperature 

conditions may promote higher frustule Si content in certain diatom species.  

 A number of field studies have also noted increases in the abundance of 

heavily silicified diatom species under cold temperature conditions. For example, in 

Sishili Bay, China, an increase in the abundance of the small, heavily silicified diatom 

Paralia sulcata has been noted in recent years with increases in eutrophication and 

increases in N relative to Si (Liu et al. 2013, Liu and Glibert 2018). Similarly, 

increases in the abundance of smaller diatoms with thicker frustules have been noted 

in the Baltic Sea during the winter and early spring season (Wasmund et al. 1998). A 

study conducted by Baines et al. (2010) compared diatom silicification in the cold, 

nutrient-replete waters of the Antarctic Zone of the Southern Ocean (SOAZ) to the 

warm, nutrient-depleted waters of the Eastern Equatorial Pacific (EEP). The results of 

that study revealed that diatoms living in the colder waters of the SOAZ had ~6 times 

more bSiO2 per unit volume than the diatoms living in the EEP waters (Baines et al. 

2010), suggesting that both nutrient availability and temperature may play a role in 

altering diatom cell wall thickness in these regions. Similarly, in a study conducted by 

Takeda (1998), Si consumption by diatoms was 2 times greater in the high-latitude 

waters of the Southern Ocean and the Subarctic North Pacific than they were for the 

low-latitude waters of the Equatorial Pacific. Together, these field observations 

support the notion that colder waters may lead to increased silicification in diatom 

cells, though the intricate physiological processes underlying these differences in 

silicification may need to be explored in more detail.  
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 The results presented here suggest that colder temperatures and elevated N:Si 

conditions may lead to increased bSiO2 deposition in diatom cells. If environmental 

shifts indeed select for diatom cells with thicker frustules, such changes in 

phytoplankton ecology may in turn impact the overall biogeochemical cycling of Si in 

an aquatic ecosystem (Liu and Glibert 2018). For example, it has been suggested that 

heavily silicified diatoms sink faster than less silicified forms and may lead to 

increased bSiO2 sequestration in the sediments (Dugdale et al. 1995, Liu et al. 2013, 

Liu and Glibert 2018). Increased nutrient sequestration can slow down the rate of 

bSiO2 dissolution in the sediments and may impact the subsequent availability of Si 

relative to other essential nutrients in the water column, especially because N and 

phosphorus (P) are remineralized relatively quickly compared to bSiO2 (Officer and 

Ryther 1980, Martin-Jézéquel et al. 2000, Liu et al. 2013). Such changes in the 

relative availability of Si over time may promote the growth of non-silicious and 

potentially harmful phytoplankton species (Anderson et al. 2002, Liu and Glibert 

2018).  

Nitrate reductase enzyme activity and gene expression 

 The variability noted in NR enzyme activity, and therefore non-statistically 

significant results, may be due to inherent analytical variability with this assay. Only 

2 replicates were used in this study. Despite the fact that the activity of the NR 

enzyme was not significantly affected by temperature, the activity of this enzyme was 

generally higher at 17 °C than it was at the cold and hot temperature extremes (Figure 

4). Conversely, the relative expression of the NR gene targeted in this study was 

significantly affected by temperature and was lower in the cultures that were grown at 
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17 °C than in the cultures grown at 4 or 28 °C (Figure 6). These results differ from a 

previous study conducted by Parker and Armbrust (2005) in which the number of 

copies of NR mRNA in T. pseudonana cells grown at a higher growth temperature 

(22 °C) was less than that of cells grown at a more moderate growth temperature (12 

°C) when cells were exposed to high-light conditions. Although the data obtained in 

this study seem to contradict the data reported by Parker and Armbrust (2005), the 

extreme temperature and nutrient-limitation conditions that the cells in this study 

were subject to may have influenced the NR expression data obtained. Importantly, in 

the Parker and Armbrust (2005) study, the ratio of the NR mRNA copy number to the 

mRNA copy number of a gene involved in photorespiration (phosphoglycolate 

phosphatase; PGP) was higher when cells were grown at a warmer (22 °C) 

temperature. This increase in the NR mRNA: PGP mRNA ratio suggests that cells 

growing at a warmer temperature may upregulate NR genes in order to decrease 

energy flow through the photorespiration pathway. However, future research efforts 

will need to be directed at these intricate responses to determine the relative 

importance of dissimilatory NO3- reduction and photorespiration at various growth 

temperatures.  

 Although NR mRNA copy numbers were not measured in this study, the 

relative expression data that were obtained may be used to better understand NR 

activity and regulation in diatom cells. A previous study conducted by Vergara et al. 

(1998) suggested that NR activity is regulated at the transcriptional level; however, 

the results of this experiment do not support this idea. In this study, the relative 

expression of the NR gene was lowest at 17 °C and the activity of the NR enzyme 
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was generally highest at 17 °C (Figure 6), suggesting that NR activity may be 

regulated downstream of transcription. This idea of NR activity being regulated 

downstream of transcription may be further supported when looking at data obtained 

in a study conducted by Berges et al. (2002) in which NR activity analyses were 

performed at 3 assay temperatures using T. pseudonana cells isolated from 3 growth 

temperatures. The results of that study revealed that the temperature at which the NR 

assay was performed had a greater effect on NR activity than the temperature at 

which the cells were grown (Fig. 3, Berges et al. 2002). This suggests that the activity 

of the crude NR enzyme that was extracted from the T. pseudonana cells grown at 

different temperatures responded similarly across a range of NR assay temperature 

(8-25 °C) and that the activity of the enzyme may be influenced by processes that 

occur downstream of NR mRNA transcription. In discussing this finding, Berges et 

al. (2002) speculated that protease activity may alter NR protein abundance as 

temperatures increase. Additionally, Berges et al. (2002) commented on the potential 

role that post-translational modifications may play in altering the kinetic constants 

and the subsequent activity of the NR enzyme. Although little information about the 

post-translational regulation of the NR enzyme is known at this time, the findings 

outlined by Berges et al. (2002) along with the relative NR expression data obtained 

in this study suggest that NR gene expression and NR activity may not always be 

linked and that diatoms exposed to stressful temperature conditions may upregulate 

NR genes to compensate for decreases in NR efficiency that occur outside of the 

optimal NR activity temperature range. 

Changes in diatom variable fluorescence response 
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 The results obtained in this study suggest that the growth rate of T. 

pseudonana cells grown under nutrient-depleted conditions is highest at warmer 

temperatures and lowest at colder temperatures (Fig. 1). This finding is in agreement 

with a previous study that documented linear increases in T. pseudonana growth rate 

when cells were grown across a broad temperature gradient (7-25 °C) under high-

light, nutrient-replete conditions (Stramski et al. 2002). The similarities noted 

between T. pseudonana growth rate and temperature in this study and in the Stramski 

et al. (2002) study suggest that the nutrient-limited conditions that were used in this 

study did not alter the documented, linear relationship between temperature and T. 

pseduonana growth rate.  

 The fluorometric analyses performed in this study revealed that T. 

pseudonana quantum efficiency is greatest at moderate temperatures and decreases 

under extreme temperature conditions (Fig. 2). In a previous study conducted by 

Morris and Kromkamp (2003) the Fv/Fm of the diatom Cylindrotheca closterium was 

measured after cultured cells were exposed to a range of temperature conditions for 

45 minutes. The results of the Morris and Kromkamp (2003) study revealed that 

Fv/Fm did not change much when cells were incubated at temperatures from 5-15 °C; 

however, Fv/Fm declined slightly when cells were incubated at 20 °C. Conversely, in 

this study, the Fv/Fm of the cells grown at a more moderate temperature (17 °C) was 

significantly higher than cells grown under cold temperature conditions (4 °C).  

Importantly, the cultures used in this study were acclimated to their respective growth 

temperatures over many generations, unlike those used in the Morris and Kromkamp 

(2003) study. Additionally, the cultures that were used for Fv/Fm measurements in 
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this study had been growing in nutrient-poor media, thus making the Fv/Fm values 

obtained in this study a product of both temperature regulation and nutrient status.  

 The results of this study suggested that nutrient availability may influence 

diatom Fv/Fm at certain growth temperatures. This finding is consistent with a study 

conducted by Parkhill et al. (2001) that suggested that algal Fv/Fm can be used to 

diagnose nutrient stress in algal cells in batch culture experiments. While the cultures 

that were grown and incubated at 4 and 28 °C in this study showed changes in Fv/Fm 

as a function of recovery from nutrient stress, the Fv/Fm values of the cultures that 

were grown at 17 °C did not significantly respond to nutrient enrichment, suggesting 

that temperature and the degree of nutrient limitation may be important in 

determining how algal quantum efficiency will change once nutrient stress is 

alleviated in diatom cells. 

 Herein, higher growth temperatures were associated with lower ETRmax values 

(Fig. 3). In an experiment conducted by Claquin et al. (2008), the ETRmax of T. 

pseudonana cells grown across a temperature gradient (5-32 °C) peaked at 25 °C and 

declined at colder and hotter temperature extremes. Conversely, ETRmax values were 

highest in the cells grown under cold (4 °C) temperature conditions in this study and 

generally declined as temperature increased (Fig. 3). The differences in ETRmax 

values noted between T. pseudonana cultures acclimated to low and moderate 

temperatures in this study and the Claquin et al. (2008) study may be related to 

differences in culture temperature acclimation time. In the Claquin et al. (2008) 

experiment, cultures were acclimated to their respective growth temperatures for at 

least one week, while cultures in this study were acclimated over multiple 
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generations. In a long-term temperature acclimation study conducted by Mock and 

Hoch (2005), the polar diatom, Fragilariopsis cylindrus, had a higher ETRmax when 

the diatom was grown at -1 °C as opposed to 7 °C (Fig. 2, Mock and Hoch 2005). 

Much like the Mock and Hoch (2005) study, the cultures that were acclimated to 

colder temperature conditions in this study (4 °C) had growth rates well below those 

cultures acclimated to the more moderate temperature condition (17 °C, Fig. 1). 

Therefore, it is possible that the actual ETRmax values of the 17 °C cultures were 

greater than those of the 4 °C cultures when accounting for differences in growth rate. 

 Extreme temperature and nutrient-depleted conditions can lead to imbalances 

in algal cellular metabolism and may, in turn, induce stress response pathways. The 

results of this study support the hypothesis that cold temperature conditions may 

stress diatom cells and increase bSiO2 deposition in diatom frustules when nutrients 

are not limiting cell growth. Additionally, the results of this study suggest that NR 

genes may be upregulated when temperature conditions fall outside of the NR 

temperature optimum, thus allowing cells to compensate for a lack of NR efficiency 

at cold or hot temperatures by increasing the transcription of genes that are associated 

with the NR enzyme. The findings of this study have implications with respect to the 

biogeochemical cycling of nutrients. Additionally, the data presented in this study 

emphasize the importance of these physiological responses in ensuring that diatoms 

remain resilient under environmental stress. 
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Table 1: The nutrient treatments and temperature conditions that were used in the T. 
pseudonana culture study. All of the temperature x nutrient addition culture 
conditions were performed in duplicate. 

 
 
 
   
 
 
 
  
 

 

 

 

 

Temperature (°C)  Nutrient addition 
4 Control (no nutrient addition)  

 
4 + ~100 µM NO3- 

  
4 + ~100 µM Si 

 
4 + ~100 µM NO3- + ~100 µM Si 

 
17 Control (no nutrient addition)  

 
17 + ~100 µM NO3-  

 
17 + ~100 µM Si 

 
17 + ~100 µM NO3- + ~100 µM Si 

 
28 Control (no nutrient addition)  

 
28 + ~100 µM NO3- 

  
28 + ~100 µM Si 

 
28 + ~100 µM NO3- + ~100 µM Si 
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 Table 2: PCR primer sequences used in this study. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Target Gene Primer Sequences Fragment 
Size (bp) 

Primer 
specificity 

 
Actin 

 
F: ACTGGATTGGAGATGGATGG 
R: CAAAGCCGTAATCTCCTTCG 
 

 
162 

 
Specific 

Nitrate 
Reductase 

F: TGAGGAAGCATAACAAGGAGG 
R: AGCATCAGAAACAACCGCCA 
 

233 Specific 

Silaffin 
Protein  
(TPSIL2) 

F: CCCGCCGATTGAGAACTCTT 
R: AACCAGCCTTGCTTGCTTTG 
 
 

168 Not 
specific 

across all 
runs 
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Figure 1: Growth curves of the nutrient-replete and nutrient-depleted algal cultures 
that were used in the study. The solid lines depict the growth of the T. pseudonana 
cultures under nutrient-replete conditions and the dotted and dashed lines depict the 
growth of the cultures under NO3- and Si-depleted conditions.  
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Figure 2: Quantum efficiency (Fv/Fm) of the T. pseudonana cultures immediately 
following nutrient enrichment and 24 hours after nutrient enrichment at 4, 17, and 28 
°C.  
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Figure 3: Maximum electron transport rate (ETRmax) of the T. pseudonana cultures 
immediately following nutrient enrichment and 24 hours after nutrient enrichment at 
4, 17, and 28 °C.  
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Figure 4: Activity of the nitrate reductase enzyme in the T. pseudonana cultures 
immediately following nutrient enrichment and 24 hours after nutrient enrichment at 
4, 17, and 28 °C.   
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Figure 5: The daily rate of bSiO2 deposition in the T. pseudonana cells grown at 4 
°C, 17 °C, and 28 °C immediately following nutrient enrichment and 24 hours after 
nutrient enrichment. 
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Figure 6: Relative expression of the NR gene immediately following nutrient 
enrichment. 
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