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CONVERGENCE OF SPECTRAL METHODS FOR
HYPERBOLIC INITIAL-BOUNDARY VALUE SYSTEMS*

DAVID GOTTLIEBt%§, LIVIU LUSTMANi AND EITAN TADMORTY{

Abstract. We present here a convergence proof for spectral approximations for hyperbolic systems with
initial and boundary conditions. We treat in detail Chebyshev collocation, but the final result is readily
applicable to other spectral methods, such as Legendre collocation or tau-methods.
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Introduction. In the paper [1], we derived stability results for spectral methods
applied to initial-boundary value problems for hyperbolic systems. It is shown there
that one can bound certain weighted L, spatial norms of the solution in terms of norms
of the boundary data (homogenous initial conditions are assumed). The bounds also
contain powers of N, which is the degree of the approximating polynomials.

Here we show that the approximations discussed above actually converge to the
exact solution, at least when this solution is smooth. We bound the error in the numerical
method by a power of N multiplying a term which depends only on the exact
solution—more precisely, this is the interpolation error of the initial value and boundary
derivatives. For sufficiently differentiable functions, this interpolation error will decay
fast enough to drive the full approximation error to zero. We have not attempted to
derive the sharpest bound of this type, but merely to show that such a bound exists.

The method of proof here is similar to the one in [1], [2], where basic results are
first deduced for a scalar equation, and then extended to the full system. Accordingly,
the paper is divided into two sections, the first dealing with the scalar case, and the
second with the system. By the means of Gauss-Lobatto quadrature formulas we first
bound the error at outflow for a single scalar equation. Then we use this estimate,
together with the basic stability result of [1] to bound the overall error for a system.

1. The scalar case—Chebyshev collocation. Given the equation
Uy = Uy, |x'<1a t>09
u(x,0)=1(x), u(1,1)=g(),

we consider the pseudospectral method based on collocating at the extrema of T,
where T, is the Chebyshev polynomial of degree m

(1.1)

T,.(x) =cos (m cos ™! (x)).
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It is shown in [3], [4] that the pseudospectral approximation v = vy (x, t) satisfies

Jv_ v
= (1) T (%),
3t ax (1) T'na(x)

‘U(X, 0)=PNf; U(la t)=g(t)s

with the projection operator Py defined by

1.2)

(13) Py f is a polynomial of degree = N,
1.3

j
N+7Y

(Pnf)(x)=f(x) at x=x;=cos =j=N.

Define now 8y (x, t) as the difference between vy and the projection of u
Sn(x, t)=v— Pyu.
This function satisfies the equation

du

<]
— Pau |+ 71T,
9% ox N] N+1

d d

— 6 t)=—29 t)—| P

at ~n(x, 1) ax ~n(x, 1) [ N
(1.4)

5N(x30)=0a 6N(ls t)=0'
We note at this stage that the polynomial (1+x)d5T N+, is of degree 2N +1 and
therefore may be integrated exactly by the Gauss-Lobatto quadrature rule. This results
in the following:

! 1+x)5T5 o N+1 1
(1.5) f A+ 0ol 4y T Y = (14%)8n (%) Thiaa(x,) =0,

L J1-x? N j=o ¢

C0=CN+1=2,C]':1 f0r0<j§N,

since 14+ xn4;=0, dn(xo) =0 and Ti4,(x;) =0 for j=1,---, N. In fact, because of
the term (1+x) and the boundary condition, the indices in the quadrature sums may
run only from 1 to N (instead of 0 to N +1).

Defining

a ou
Qv =—"(Pxu)—Py—,
ax ax

multiply (1.4) by (1+x)5x and integrate to get
1d J'l (1+x)8%(x, 1)
-— | ———dx
2dt)_,  J1-x? ,
1 V(1+x)én(x, t
=J (1+x)dn(x, 1) iéN(x, £) dx+_[ (1+x)dn( 2 )QNdx.
L J1-x2 0 ax O Ji-x
An integration by parts on the right-hand side produces
liJ’l (1+x)8%(x, t) dx
2dtJ)_, J1i-x*
1 ! 6?\1(x’ t) ! (l+x)8N(x, I)QN(xs t)
— | ————dx+ dx.
2 1-x)V1-%? - J1-x*

(1.6)

dx

1.7)
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We use again the Gauss-Lobatto formula, and reach

1£J (1+x)8%(x, t)

2 dt V11— x
_m Nan(,) w o, K
_—2N,~§1 - 8N6N( 1, t)+N]§ (14 x,)8n (x5, 1) Qn (x;, 1)
(1.8)
- 2Nj§1 1—- X; 8N ( 1, t)+2N]ZI 1— —x;

+1Nj§1 (1431 %) Q3 1.

Equation (1.8) yields immediately, since 8x(x, 0) =0,

(1.9) J_l \(/II% 8%(x, 1) dx+a Jt 8%(—1,t) dt= L’ lQn (x, DI dt

0

where

(1.10) Qs DF =77 T (14 5)%(1 =) Qx(x;, ).

In the next section we will need a different version of (1.9), in which the time
integral is weighted by e >", 5> 0:

o) 1 1+x) T o)
e‘z’"J ( d%(x, 1) dxdt+——-J e *"8%(—1, t) dt
J; _lvl—xz N 8N1] 0

1 (> _
=] e >7|Qw (x, t)||F dt.
nJo
This form matches the Laplace-Fourier transforms which are used in the basic stability
estimates.
It should be noted that the bound on 8%(—1, t) obtained in (1.11),

(1.11)

L e M83(~1, 1) d,<a<mj e Qn 5, P d,

(1.12)

a(N)—f—]Y

is very crude. A better estimate can be found for the boundary error u(—1, t) —v(—1, t)
by taking the Laplace transform of (1.1) and (1.2) and analyzing the difference. This
approach was used by Dubiner [5], who obtained (u—v)(—1,t)=1/N. The same
bound holds for Pyu — v, since, for smooth functions, Pyu approaches u faster than
any power of 1/ N.

2. Convergence proof for systems. Consider the first-order hyperbolic system of
partial differential equations
ou d
(2.1) oA Ix|<1, t>0
at ax
where

u=u(x,1)=w(x, 1), uP(x, 1), -, u"(x, 1)
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is the vector of unknowns and A is a fixed n X n coefficient matrix. Since by hyperbolicity
A is similar to a real diagonal matrix we may, without loss of generality, take it diagonal:

Al 0
A= ( 0 A")’
a, Qi1

Al = <0, A"= > 0.
aQ; a,

(2.2)

The solution of this system is uniquely determined if we specify initial conditions

(2.3) u(x,0)=£(x)=(f"(x), " (x))
and boundary conditions
(2.4) ul (=1, ) =Lu" (-1, )+g" (1), u"(1,t)=Ru’(1,t)+g"(1).

In these formulas, f and g = g(t)=(g'(t), g"'(t)) are prescribed n-vectors, and
(2.5) ' u™), (L"), (ge")

is the partition of these vectors into inflow and outflow components—corresponding
to the partition of A in (2.2). L and R are constant reflection matrices of order I X (n —1)
and (n—1) x I, respectively.

We shall discuss only problems whose solutions decay in time, and therefore
postulate:

Assumption 1. There exists a constant y >0, such that

IR||L|=1-vy<1.
(JA| and |v| denote the Euclidean norm of a matrix A or vector v, respectively.)

In a pseudospectral Chebyshev approximation to (2.1), one seeks a vector v = vy
of N-degree polynomials such that

av av
(2.6a) 5=A8_x+ 7(8) T'n 1 (x).

The multiplier 7= (7', 7'') is determined by the boundary conditions
(2.6b) v'(-1, t)= Lo (=1, )+ g'(1), v(1,t)=Ro'(1, )+ g" (2).
Initially, v is defined by collocation:

(%, 0)=f"(x) atx=x, j=1,2,---,N+1,
(2.60) v™(x,0)=f"(x) atx=x;, j=0,1,---,N.

In [1] the stability of the approximation (2.6) has been established, under zero initial
conditions. Here we shall prove the convergence of vn(x, t) to u(x, t) as N tends to
infinity.

We define a pair of projection operators P = (P’ P™) by requiring that for any

function F, P'F and P"F be polynomials of degree N at most, satisfying
(27) (PIF)(x_]):F(xj)a j=1’2"”aN+13
' (P'F)(x)=F(x), j=0,1,---,N.
h J

Note that two distinct sets of nodes are used for collocation—cf. (2.6¢).
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We can state now the main convergence result:

THEOREM. Lete = gy (x, t) = v — Pu be the error in the pseudospectral approximation
(2.6) to the hyperbolic system (1.1). Let Q =(Q", Q™) be the approximation error

(2.8) QI =AI(PIa—uI_i PIuI)’ QII =AII(P118L"_1 PIIuII).

ax dx ax adx
Then
« KNo(N) [~
(2.9) I e *™|e(x, 0| ar= XN J e *MQ(x, )|I” dt
0 2 0
with K independent of N, a(N) as defined in (1.12) and
! dx ! dx
lle(x, )I* = J (1-x)|e'(x, 0 +J (1+x)|e"(x, ) —,
-1 ' 1- x2 -1 | V11— x2

(210) [lo(x Dl =7 L (1=%)°(1+x)|Q"(x, P

3 £, A+ %2 -)le" g, o,

(Here we generalize the seminorm defined in (1.11).)
Proof. Let r be the solution of

or_ L 9r
at T ax’
(2.11) r(x, 0) =u(x,0),

(-1, 1) =u'(-1,1), (1, ) =u"(1,1)

and let s be the pseudospectral Chebyshev approximation to (2.11), i.e.

as as

—=A—+T} o(t

at ax Tn+(x)0(1),
(2.12) s(x,0)= Pu(x, 0),

si(=1, )=u"(-1,1), s, H=u"(Q, ).

It is obvious that r=u, but s does not satisfy the boundary conditions (2.6¢), and
therefore its multiplier 6 is distinct from 7. In any case, for = s — Pr, we have

o0 1 o0
e 2| 8(x, t)||Pdt+—— | e 2|87 (1, 1) dt
[ s o g [ oot o)

oo

(2.13)

1 (e o]
+— "6 (-1, t)zdté—J e 2"|Q(x, 1)||* dt.
7l R Pas— | e ool

This is clearly a restatement of (1.11). Next, we compare the spectral solution s with
v—as defined by (2.6). We can show that

(2.14) J e |s—v|? dté—c- NJ' e M[|87(1, )P+ (8™ (-1, )] at.
n 0

0
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Indeed, v — s satisfies
3 3 )
—(v=s)=—(v—s5)+ T (7-0),
ot 0x

(v=5)(x,0)=0,
(o' =s") (=1, t)=L(v" =s")(—1, )+ Ls"" (-1, t) —u' (-1, t)+ g’
=L(v" —s™)(~1, )+ L8" (-1, 1),
(0" =s")(~1,t)=R(v"=s")(1, t)+ R8"(1, 1),

and the inequality (2.14) follows from the stability estimate in [1, Thm. 5.1].
Now, since Pr= Pu we have

e—06=v—s5,

and hence,
J e e(x, 1)|? dtéj. e *"|8(x, 1)? dt+J' e ?|v—s|*dt
0 0 (V]

The first term is majorized in (2.13) and the second in (2.14), thus establishing the
theorem.

Again, we emphasize that the bound for u— vy is the same as the bound for
Pu — vy—which we just have computed—for smooth functions u, which Pu approaches
rapidly.

We conclude with two remarks:

(a) The stability estimate of (2.14) explicitly uses boundary values. This is why
these have to be bounded beforehand, which was done in the preceding section, (1.10).

(b) Our result applies not only to Chebyshev collocation, but also to other spectral
methods (which, however, have to satisfy Assumptions I, IT and III of [1]). Indeed,
the only quantity that varies with the spectral method employed is the coefficient weight
at +1 for the Gauss-Lobatto quadrature. Once it is known that this weight is ~1/ N*,
which is the case for Gegenbauer collocation, as shown in [1], the same proof follows
through. In particular, it is sufficient to evaluate outflow errors for a scalar equation
in order to estimate errors at both boundary points for a system.

REFERENCES

[1] D. GOTTLIEB, L. LUSTMAN AND E. TADMOR, Stability analysis of spectral methods for hyperbolic initial
boundary values systems, NASA Contractor Report No. 178035, ICASE Report No. 86-2.

[2] L. LUSTMAN, The time evolution of spectral discretizations of hyperbolic systems, NASA Contractor Report
No. 172432, ICASE Report No. 84-37, this Journal, 23 (1986), pp. 1193-1198.

[3]1 D. GOTTLIEB AND S. A. ORSZAG, Numerical Analysis of Spectral Methods: Theory and Application,
Society for Industrial and Applied Mathematics, Philadelphia, PA, 1977.

[4] R. G. VoiIGT, D. GOTTLIEB AND M. Y. HUSSAINI, EDS., Spectral Methods for Partial Differential
Equations, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1984.

[5] M. DUBINER, Ph.D. thesis, Department of Applied Mathematics, Massachusetts Institute of Technology,
Cambridge, MA, 1981.



