oy

MARYLAND

TECHNICAL
RESEARCH
REPORT

An Integration of Manufacturing
Resource Planning (MRP Il) and
Computer Aided Design (CAD)
Based on Update Dependencies

by

G. Harhalakis, L. Mark, M. Bohse,
and B. Cochrane

SYSTEMS RESEARCH CENTER
UNIVERSITY OF MARYLAND

COLLEGE PARK, MARYLAND 20742

An Integration of Manufacturing Resource Planning (MRP II)
and Computer Aided Design (CAD) Based on Update Dependencies

G. Harha]akisl, L. Markz, M. Bohsel, B. Cochrane?

1Un;versity of Maryland, Department of Mechanical Engineering
“University of Maryland, Department of Computer Science

ABSTRACT. The traditional, fragmented approach to increasing manufacturing
efficiency has resulted in "islands of automation" in our factories. Computer
Integrated Manufacturing (CIM) is the goal of tying together these islands
into a single coherent system capable of controlling an entire manufacturing
operation., The technical and organizational difficulties of such a massive
undertaking require a modular approach to CIM implementation, with an initial
nucleus being gradually expanded by allowing interaction between it and other
systems' databases. Manufacturing Resource Planning (MRP II) is best posi-
tioned to serve as this nucleus. The suggested first system for integration
is Computer Aided Design (CAD); the integration being centered around part
specification, product structure, and engineering changes. A model of the
CAD/MRP II integrated system, detailing the logical interaction between the
systems in the areas of part specification maintenance and engineering
changes, is currently being developed. A formal language for specifying the
operations in and between the MRP Il and CAD systems, namely “update
dependencies," has been defined, and used as an AI production system. In
addition, an interpreter for the specification language has been implemented
in Prolog and has been tested against a portion of the model design specifica-
tions. A demonstration session is also presented with results and a
discussion of our experience so far. Finally, the next steps of our implemen-
tation strategy are outlined.

INTRODUCTION., Under pressure to remain efficient and competitive, many com-

panies feel compelled to implement one or more of the vast array of new tech-
nologies and techniques which are being presented and promoted as a means to
the development of the factory of the future. These include Computer Aided
Design (CAD), Computer Aided Manufacturing (CAM), Flexible Manufacturing
Systems (FMS), Manufacturing Resource Planning (MRP 1I), Group Technology
(GT), Just In Time Inventory Control (JIT), Automated Materials Handling (AMH)
and Computer Aided Process Planning (CAPP), to name only a few. Too often,
however, this approach, in which individual technologies are implemented inde-
pendently, results in "islands of automation", where individual tasks are
automated without any communication or interfacing with other related activi-
ties.

Instead of firms independently automating as many as 50 different func-
tional areas [1] often using unique hardware and software for each, it is time
to adopt a systematic approach to implementing and integrating the various
technologies as a means for achieving the productivity gains required [2].

In order to coordinate all of these activities, MRP 11 may effectively
serve as the "hub" of the CIM system, [3] as depicted in Figure 1, the pro-

posed functional model of CIM. The links between the various systems are
determined by the common information required and the logical rules to regu-

late the data flow.

ROBOTS

Fig. 1 Functional CIM Model with MRPII as the “Hub"

There are many problems and issues that must be resolved before CIM is
possible, among which the database architecture is of utmost importance [4].
Given the functional model of CIM proposed in Figure 1, how is the actual
system to be constructed? There are two primary schools of thought in this
area. The first is that a single database, accessible to all system functions
and maintaining all system data, should be constructed, The second alter-
native is that separate databases be maintained for each function, and intero-
perational capabilities be added as needed. We support and furthermore
endorse, the separate database solution which facilitates a gradual evolution
towards CIM, and carries the promise of software vendor independence. We feel
that the separate database solution carries sufficient promise to warrant
further investigation. As seen later, multi-database interoperability depends
on artificial intelligence, in the form of rule-based expert systems, in order
to define the proper interaction between the databases involved, under all

circumstances.

This paper discusses a suggested model for the functional integration of
CAD and the Bill of Material module of an MRP II system, given the fundamental

pa

similarities of operations and commonality of data between these systems. The
functional design and the detailed description of the model are followed by
the first steps toward the implementation of it, using the multi-database
interoperability technique discussed in later sections. The next steps
required to reach a state of functionality follow the conclusions drawn from
this first part of the work.

THE FUNCTIONAL DESIGN OF THE MODEL. The systems under consideration for this

starting point of our CIM model are Computer Aided Design (CAD) and
Manufacturing Resource Planning (MRP II)., While neither of these can be
called fully mature, their overlap is well established: product definition.
CAD facilitates the creation and design of parts and assemblies, where
assemblies are really just arrangements of component parts. MRP II has the
role of cataloging each part and assembly by number and description and
defining the product structure (i.e. where each part is used).

More specifically, the elements common to MRP II and CAD addressed by the
integration are as follows:

- Part Specifications
- Bills of Material
- Engineering Changes

The functional model of the CAD/MRP Il integrated system is based on the
similarity of functions and the commonality of data between the two systems.
The model is not derived from any two commerical packages in particular, but
instead is intended to be generic enough to be applied to any set of fairly
well-designed systems. The model to be presented includes the sharing of part
specification and engineering change data. The model is intended to operate
in a discrete parts, make-to-stock environment.

The part specification data maintained by each system is shown in Figure
2. General part data is maintained for each part and is retrieved by part
number; in addition to this data, the effectivity start and end dates and sta-
tus code (different for each system) of each revision is maintained,

For Eath Part Number

CAD MRP II
Part Number Part Number
Drawing Number Drawing Number
Drawing Size Drawing Size
Description Description
CAD Unit of Measure CAD(BOM) Unit of Measure
MRP(Purchasing) Unit of
Measure

UOM Conversion Factor
Source Code

Cost
Leadtime
Supersedes Part Number Supersedes Part Number
Superseded by Part Number Superseded by Part
Number

For Each Revision Level

CAD MRP II
Part Number ' Part Number
Revision Level Revision Level
Effectivity Start Date Effectivity Start Date
Effectivity End Date Effectivity End Date
CAD Status Code MRP II Status Code

Fig. 2 Part Specification Data Maintained by Each
System

It is assumed that no data exists in either system when the integration is
established, ensuring data consistency.

The functioning of the model can be represented by examining the status
codes associated with each part and revision. These codes have different
values for each system, as follows:

CAD Status
W - "Working": not a completed drawing, used
prior to approval, and not transmittable
to MRP II '
R - "Released": an active part
H - "Hold": under review, pending for appro-

val, possibly with a new revision level.
Part should not be used by either system.

“Obsolete"

(ew]
1

MRP 11 Status

R - "Released": active part
H - "Hold": not to be used by MRP

The basic functions of the system are described with the aid of status
code diagrams, showing the flow of infcrmation and the status of each part in
both systems during a given activity. In the following sections, the basic
operations are described through the presentation of appropriate scenarios.

CAD Status MRP |1l Status

I(W
b p PMR

20, R — P R'd
l‘c H .

Fig. 3 Status Diagram for the Creation of a New Part

A brand new part is first created by a CAD user as a working drawing
(figure 3, point la). At this point, no information about the part exists in
MRP II. Upon completion and approval within CAD, the part is released by a
CAD user (1b).

If the part supersedes another, the status of the superseded part is imme-
diately changed in CAD to obsolete, (2c), regardless of whether the part pre-
viously had an R status (2a) or an H status (2b). In MRP II, the changeover
to the superseding part is performed automatically, by virtue of the effec-
tivity start date of the higher level assembly calling for the new part as
part of a revision change, handled by an Engineering Change procedure.

The release of the new part within CAD triggers the establishment of a
skeletai Part Master Record (PMR) in MRP using the CAD Part Specification
data. Because the PMR is not complete, and to give manufacturing time to plan
for the purchase or manufacture of the part (eg., search for vendors, develop
routings) the part is given a status of H in MRP II (c). When MRP II users
complete the PMR, the part can be released within MRP II (d). If the need
arises, due to a machine break down or vendor problems, for example, MRP II
users can place a local hold on the part (e) without affecting CAD. Once
held, MRP II users can again release the part.

Similar diagrams have been developed for part obsolescence, deletion, and
changes of revision code.

The basic interopeability functions required to maintain consistent
assembly, or Bill of Material, information, have also been developed. These
address the addition of components to assemblies, the deletion of components
from assemblies, and the replacement of one component with another.

—

5

DATABASE INTEROPERABILITY. The update dependency formalism has a wide variety
of applications in walk-through guidance control systems, cause-effect
systems, statistical information gathering, knowledge acquisition, policy
enforcement, and production control.

Within the database area we are currently applying update dependen-
cies to specifying and controlling aspects of databases ranging over integrity
constraints, transactions, normalization, view maintenance and update, and
metadata management.

In this section we define the syntax and the semantics of update depen-
dencies.

Syntax

A compound update operation is defined by an update dependency with the
following form:

<op>
-> <cl>,
<opl,1>,
<opl,2>,
<opl,nl>,
-> <c2>,
<op2,1>,
<opZ,2>,
<op2,n2>,
->

where <op> is the compound update operation being defined, <opij>, is
either an implied compound update operation or an implied primitive opera-
tion, and <ci> is a condition on the database state.

A compound update operation <opi> has the following forms:
- <operation_name>(<relaticn_name>(<tuple_spec>))

where the <tuple spec> is a tuple variable for the relation with the name
<relation name> and consists of a list of <domain variable>s., The <tuple
spec> in <op> is the formal parameter for <op>. All the <domain
variable>s in the <tuple spec> of <op> are assumed to be wuniversally quan-
tified. Al1l <domain variable>s in the <tuple spec>s of <opij>, that are
not bound to a universally quantified <domain variable> in <op>, are
assumed to be existentially quantified. A1l <domain variable>s are in caps;
nothing else is.

The implied primitive operators are: ‘'add' for adding a new tuple in
a relation, 'remove' for eliminating one, 'write' and 'read' for retrieving
data from the user, 'new' for creating a unique new surrogate, and ‘break'
for temporarily stopping the system to do some retrievel before giving the

P2

control back to the sysfem. The implied primitive operations <opij> have
the following forms:

- add(<relation name>(<tuple spec>))

- remove(<relation name>(<tuple spec>))

- write('<any text>'), or write(<domain variable>)
- read(<domain variable>)

- new(<relation name>(<tuple spec>))

- break

The <relation name> used in the operation 'new' must be the name of
a unary relation defined over a non-lexical domain. The conditions <cond>
are expressions of predicates. The conectives used in forming the expressions
are 'and' and 'not'. The predicates are of the form <relation name>(<tuple
spec>) to determine whether or not a given tuple is in a given relation; or of
the form ‘nonvar(X)' or 'var(X) to decide whether or not a <domain variable>,
X, has been instantiated; or of the form X<comp>Y, where <comp> is a com-
parison operator,

Conditions, or retrieval dependencies, can also be used to retrieve
data from the system.

Semantics

A compound update operation succeeds if, for at least one of the alter-
natives in the its update dependency, the condition evaluates to true and all
the implied operations succeed. It fails otherwise.

When a compound update operation is invoked its formal parameters are
bound to the actual parameters. The scope of a variable is one update depen-
dency. Existantially quantified variables are bound to values selected by the
database system or to values supplied by the interacting user on request from
the database system. Evaluation of conditions, replacement of implied compound
update operations, and execution of implied primitive operations is left-to-
right and depth-first for each invoked update dependency. For the evaluation
of conditions we assume a closed world interpretation.

The non-deterministic choice of a replacement for an implied compound
update operation is done by backtracking, selecting in order of appearance
the update dependencies with matching left-hand sides. If no match is found,
the operation fails.

An implied compound update operation matches the left-hand side of an
update dependency if:

- the operation names are the same, and

- the relation names are the same, and

- all the domain components match. Domain components match
if they are the same constant or if one or both of them is
a variable, If a variable matches a constant it is instan-
tiated to that value. If two variables match they share
value.

The semantics of the primitive operations are:

- add(r(t)); its effect is r := r U {t}; it always succeeds;
all components of ‘t' are constants.

- remove(r(t)); its effect is r := A[t] where all com-
ponents of 't' are constants. It always succeeds,

- write('text'); it writes the 'text' on the user's screen.
It always succeeds.

- write(X); writes the value of 'X' on the user's screen. It
always succeeds.

- read(X); reads the value supplied by the user and binds it
to 'X'. It always succeeds (if the user answers).

- new(r(D)); produces a new unique surrogate, from the non-
lexical domain over which ‘r' is defined and binds the
value of the variable 'D' to this surrogate. It always
succeeds.

- break; suspends the current execution and makes a new copy
of the interpreter available to the user, who can use it
to retrieve the information he needs to answer a question
from an operation.

The list of primitive operations is minimal for illustrating the con-
cept. It can easily be extended. It is emphasized that primitive operations
are not available to the user; he cannot directly invoke them.

The execution of ‘add' and 'remove' operations done by the system in an
attempt to make a compound update operation succeed, will be undone in
reverse order during backtracking. This implies, that a (user invoked)
compound update operation that fails will leave the database unchanged.

We have recently found that we can automatically generate update
dependencies for a number of high level control abstractions, including while,
repeat, do-for, if-then-else, and case statements. We therefore expect to
revise the language to include these abstractions, and thus become more user-
friendly.

Using the Update Dependency Language, operations can be coded to imple-
ment the functional design of the integrated MRP II/CAD system. In Appendix
A, the code of five somewhat simplified operations used to insert new parts
and revision changes from either MRP 11 or CAD into the integrated system are
presented. These operations are specified such that the system prompts the
user for any required input fields not specified by the user in the call to
the operation. Calls to the operations do not succeed unless all of the calls
to other operations within the operation succeed, assuring the consistency and
integrity of the two databases.

DEMONSTRATION. A sample interactive session demonstrating some of the basic
interoperability functions of the MRP II/CAD system is shown in Figures 4-7,
Initially, both the MRP II and CAD databases are empty. The CAD and MRP II

part and revision records contain the information specified in Figure 2. In
Figure 4, a new part is inserted into the CAD database; the user is prompted
for the data required to establish a record for the new part and one for its

&

1> insert(cadpart(Pnum,bnum,Dsize,Des,Buom,Spnum,Sbnum)).
art Number?
12345.
ascription?
deluxe widget.
1it of Measure?
each.
2w Revision Level?
S
rawing File Name?
‘widget.prt’.
avision Has Been Added
art Has Been Added

4> listing(cadpart).

adpart(12345,unknown,unknown,deluxe widget,each,unknown,unknown).
d> listing(cadrevs).

adrevs(12345,1,unknown,unknown,w, 'widget.prt’).

d> listing(mrppmr).

d> listing(mrprevs).
igure 4. Adding a New Part to CAD.

d> releasework(cadrevs(Pnum,Rev,Estart,Eend,Cstat,Dfname)).
art Number?

12345.
evision Level?

1.
evision Has Been Released
d> listing(cadrevs).
‘adrevs(12345,1,unknown,unknown,r,’'widget.prt’).

«d> listing(mrppmr).

1rppmr(12345,unknown,unknown,deluxe_widget,each,unknown,unknown,unknown,
unknown,unknown,unknown,unknown).

id> listing(mrprevs).

irprevs(12345,1 ,unknown,unknown, h).

‘igure 5. Releasing a New Part

insert(cadrevs(Pnum,Rev,Estart,Eend,Cstat,Dfname)).

t Number?

12345.

Revision Level?
2.
wing File Name?
'widget2.prt’.

ision Has Been Added
listing(cadrevs).

revs{(12345,1 ,unknown,unknown, r,’'widget.prt’).
revs(12345,2,unknown,unknown,w, ‘widget2.prt’).

listing(mrprevs).

revs(12345,1,unknown,unknown,h).

ure 6. Adding a New Revision to CAD.

insert{(cadpart(Pnum,Dnum,Dsize,Des,Buom,Spnum, Sbnum)).
t Number?
12345.
cription?
hammer.
t of Measure?
each.

t Number Already Exists

releasework(cadrevs(Pnum,Rev,Estart,Eend,Cstat,Dfname)).
t Number?
12345.
ision Level?
1.

t Does Not Have Working Status

ure 7. Preventing Users from Compromising Database Integrity.

first revision level. The remaining fields, if not specified by the user in
the call to the operation, are given the value "unknown," as shown in the sub-
sequent listing of the CAD part and revision records. The absensce of the MRP
II part master and revision records verifies that no information has been
transferred to MRP II yet.

In Figure 5, the first revision of the part just created is released.
The listing of records after the part's release shows the updating that has
occurred in both CAD and MRP II. In CAD, the status of the revision data is
changed from working to released; in MRP II, a part master record is created
for the new part, as well as a revision record with a status of "hold" for the
first revision of the part. Any data not included in the CAD record is given
the value "unknown".

Figure 6 shows the addition of a new revision level to the part. The
listings after this addition show the revision record with a working status in
CAD, but not recorded at all in MRP II.

The system is designed to prevent the user from inadvertently compromising
the integrity and consistency of the two databases. Figure 7 shows two
examples of this, In the first examplie, the user attempts to enter a new part
using a part number that already exists. The system prints a message out
indicating this and stops the operation. In the second example, a user tries
to release a CAD revision that is already released. Again the system prevents
this action and prints a message.

DISCUSSION. The sample operations performed in the previous section represent
only a small portion of the interoperability system, which extends to many
other typical part maintenance functions. Even so, the model is a simplifica-
tion of the activities and data exchange involved in a typical organization, a
result of the desire to remain as general as possible in the solution to MRP
II/CAD integration. In its present version, the usefullness of the model is
limited by its isolation from actual CAD and MRP Il systems, forcing the users
to interact directly with the interoperability system. As the research
progresses, the sophistication of the model will increase and the interopera-
bility system will become more transparent to the user, interacting with the
application programs directly, although the latter seems to be a remote goal
at this point in time.

Update dependencies provide a convenient formalism for organizing,
expressing, and communicating algorithms. Update dependencies have a declara-
tive representation tht allows the designer to express algorithms in a natural
manner. This natrual representation is appropriate for reviews and presen-
tation since it is a consise statement of the user'snotions. Furthermore,
this formalism eliminates the tedious and error prone phase of translating
algorithms into code.

Update dependencies is a language that supports high level thinking.
However, there are a few disadvantages. Because update dependencies form an
interpreted language, applications written in this language will run slower
than those written in a compiled language. While update dependencies allow an
explicit expression of the algorithms, it is necessary to enumerate implicit

\\

cases, such as tests for key attribute instantiation. Thus to ensure con-
sistency, the update dependencies must be completely defined. However, the
need to express such complex dependency operations merits the use of such a
language.

IMPLEMENTATION STRATEGY. Our implementation strategy has been planned to
allow us to test the specification of the functional relationship between the
MRP II and the CAD system early in the project.

Qur first step has therefore been to define a formal language for
specifying this functional relationship. The language allows us to specify
the operations in and between the MRP Il and the CAD system as an Al pro-
duction system. We are currently evaluating this language.

The second step has been to implement an interpreter for the specifica-
tion language. A first version of the interpreter has been implemented in
Prolog. We are currently testing both the interpreter and the specification
of the functional relationship between the MRP Il and the CAD system under the
control of one instance of the interpreter.

The third step is to integrate a remote procedure call facility into the
interpreter. This will allow us to run functional copies of the MRP II and
the CAD system under separate instances of the interpreter on the same
machine.

The fourth step is to move the two interpreters to different machines by
generalizing the remote procedure call facility to allow calls over the net.

An important aspect of this implementation strategy is that it allows
early testing of the specification of the functional relationship between the
MRP II and the CAD system. Furthermore, step three and four should not imply
any changes in this specification, i.e. the distribution of information in
the system should be transparent to the user,

Whereas this implementation strategy does allow us to test the specifi-
cation of the functional dependencies within each system and between the two
systems, it does not provide an integration of two actual systems.

If we were to actually build a "bridge-box" for two given systems, we
would proceed as follows. First, we would identify the set of operations
available to the users in each system. These operations should continue to be
available to the users and the user interface should to the extend possible be
kept unchanged. Second, we would identify the software procedures that sup-
port these operations. Third, through calls to the interpreter, we would
insert a set of update dependencies between the operations available to the
users and the software procedures supporting them. These update dependen-
cies would capture calls of operations made by the wusers and would issue
calls of the software procedures supporting them, i.e. the calls of the soft-
ware components would be implied operations in the update dependencies. This
approach would allow us to enforce consistency both within and between the
two systems, by reusing the software components already available.

(e

It is important to realize that the above approach keeps the user inter-
faces stable, reuses the software components that are already there, avoids
redesign of existing databases, and solves the problem. However, it is
also important to realize, that a certain amount of additional programming
cannot be avoided.

CONCLUSIONS. The need for manufacturing systems integration has resulted in a
CIM crusade in which several industrial and academic researchers are involved.
This work suggests a staged approach, starting with MRP II as the nucleus of
the system and CAD as the first "satellite." The similarity of functions
dealing with the product definition and administraion and the large degree of
data commonality between BOM of MRP II and CAD call for an attempt to
streamline the operations in both systems.

The generation and maintenance of part master records and product struc-
tures initiated in the product engineering/design division of every typical
manufacturing organization has been modelled and transformed to a set of logi-
cal rules. These rules have been translated into update dependencies, using a
form of a rule-based expert system. Having completed the programming phase,
the system is being tested for inconsistencies. Approval of the logical rules
will be sought from industrial experts to ensure the applicability of the
model in a real working environment. The functional design of the model has
been extended to cover the transition of single level product structures to
MRP II.

Future steps include the extension of the model over two databases on the
same computer and later on two computers using remote operation calls.

It is clearly desirable to integrate existing pieces of software rather
than developing new systems from scratch., However, we do not in this project
intend to provide a "bridge-box" that will allow users to hook up any two MRP
I1 and CAD systems. What we do provide is the knowledge needed to specify a
“bridge-box" for two given systems, and an interpreter that can be used in
implementing it.

ACKNOWLEDGEMENTS. The National Science Foundation (Grant No. DMC85-04922) and
the Systems Research Center of the University of Maryland (Grant NSFD
CDR-85-00108) are acknowledged for their funding of this research.

REFERENCES.

1. "“The State of CIM", Daniels Appleton, Datamation, Vol. 30, pp 66-72,
(1984) -

2. "The Engineering Research Centers as a Tool for Change in the Culture and
Attitudes of Academic Engineering", David C. Hazen, Presentation at the
Second Meeting of the Steering Group on Systems Aspects of Cross
Disciplinary Engineering, August 8, 1985,

3. “MRP II Providing a Natural 'Hub' for Computer Integrated Manufacturing
Systems", Kenneth A. Fox, Industrial Engineering, Vol. 16, No. 10, pp.
44-50 (October 1984).

13

4, "The CIMS Database: Goals, Problems, Case Studies, and Proposed
Approaches Outlined", Michael Melkanoff, Industrial Engineering, Vol. 16,
No. 11, pp. 78-92 (November 1984).

I

o

Appendix A. Selected Update Dependency Operations

*

* Routine to Insert Part Records into CAD
*

sert(cadpart(Pnum,Dnum,Dsize,Des,Buom, Spnum, Sbnum))

> nonvar (Pnum) /\ nonvar(Dnum) /\ nonvar(Dsize) /\ nonvar(Des)
/\. nonvar (Buom) /\ nonvar (Spnum)
/\. nonvar(Sbnum)
/\ cadpart(Pnum,Dnum,Dsize,Des,Buom,Spnum,Sbhnunm).

> var (Pnum),
write(’'Part Number?’;,
read(Pnum),
insert(cadpart(Pnum,Dnum,Dsize,Des,Buom, Spnum, Sbnum)).

> var(Des),
write('Description?'),
read(Des),

insert(cadpart(Pnum,Dnum,Dsize,Des,Buom,Spnum,Sbnum)).

> var (Buomnm),
write('Unit of Measure?’),
read(Buom),
insert(cadpart(Pnum,Dnum,Dsize,Des,Buom, Spnum, Sbnum)).

> var (Dnum),
insert(cadpart(Pnum,unknown,Dsize,Des,Buom, Spnum, Sbnum)).

> var{Dsize),
insert(cadpart(Pnum,Dnum,unknown,Des,Buom, Spnum, Sbnum)).

> var(Spnum),
insert(cadpart(Pnum,Dnum,Dsize,Des,Buom,unknown, Sbnum)).

> var(Sbnum),
insert(cadpart(Pnum,Dnum,Dsize,Des,Buom, Spnum,unknown)).

> nonvar{Pnum) /\ nonvar(Dnum) /\ nonvar(Dsize) /\ nonvar(Des)
/\ nonvar (Buom) /\ nonvar(Spnum) /\ nonvar(Sbnum)

write('Part Number Already Exists’).

> nonvar(Pnum) /\ nonvar(Dnum) /\ nonvar(Dsize) /\ nonvar(Des)
/\ nonvar (Buom) /\ nonvar(Spnum) /\ nonvar(Sbnum)
/\ " (cadpart(Pnum, , , , , ,_))
/\ “(mrppmr{(Pnum, , , . s s _s_s_r_r_s_)):s

insert({cadrevs(Pnum,Rev,unknown,unknown,w,Dfname)),
write('Part Has Been Added’).

> nonvar (Pnum) /\ nonvar(Dnum) /\ nonvar(Dsize) /\ nonvar(Des)
/\ “(cadpart(Pnum,_,_, ,_,_._))

/\ mrppnr(Pnum,Dnum,Dsize,Des,Buom, , , , , ,Spnum,Sbnum),

15

add(cadpart(Pnum,Dnum,Dsize,Des,Buom, Spnum, Sbnum)).

Routine to Insert Revision Records into CAD

'rt(cadrevs(Pnum,Rev,Estart,Eend,Cstat,Dfname))

nonvar(Pnum) /\ nonvar(Rev) /\ nonvar{Estart) /\ nonvar(Eend)
/\ nonvar(Cstat) /\ nonvar(Dfname)
/\ cadrevs(Pnum,Rev,Estart,Eend,Cstat,Dfname).

var (Pnum),
write('Part Number?’),
read(Pnum),
insert(cadrevs(Pnum,Rev,Estart,Eend,Cstat,Dfname)).

var(Rev),
write(’'New Revision Level?’),
read(Rev),

insert(cadrevs(Pnum,Rev,Estart,Eend,Cstat,Dfname)).

var(Dfname),
write('Drawing File Name?’),
read(Dfname),
insert(cadrevs(Pnum,Rev,Estart,Eend,Cstat,Dfname)).

var(Estart),
insert(cadrevs(Pnum,Rev,unknown,Eend,Cstat,Dfname)).

var{Eend),
insert(cadrevs(Pnum,Rev,Estart,unknown,Cstat,Dfname)).

nonvar (Pnum)
/\ ”(cadpart(Pnum,__,__,_,_,__,_)).

write(’Part Does Not Exist’).

nonvar (Pnum) /\ nonvar{(Rev) /\ nonvar(Estart) /\ nonvar(Eend)
/\ nonvar{(Dfname)
/\ cadrevs(Pnum,Rev, , , ,)
/\ "(cadrevs(Pnum,Rev,Estart,Eend, ,Dfname)),
write(’Revision Level Already Exists’).

nonvar(Pnum) /\ nonvar(Rev) /\ nonvar{(Estart) /\ nonvar(Eend)
/\, nonvar{Dfname)
/\ cadpart(Pnum, , ,_,_,_._)
/\ "(cadrevs(Pnum Rev, , , ,
/\ "(mrprevs(Pnum,Rev, , , }),
add(cadrevs(Pnum,Rev,Estart,Eend,w,Dfname)),

write(’Revision Has Been Added).

nonvar{Pnum) /\ nonvar(Rev) /\ nonvar(Estart) /\ nonvar(Eend)
/\ nonvar (Dfname)
/\ cadpart(Pnum,_,_,_,_,_,_)
/\ "(cadrevs(Pnum,Rev, , ,)
/\ mrprevs({Pnum,Rev,Estart, Eend Mstat),

add(cadrevs(Pnum, Rev, Estart Eend Cstat,Dfname)).

&

¢k

r* Routine to Release "working" CAD Revisions
vk

:leasework(cadrevs{Pnum,Rev,Estart,Eend,Cstat,Dfname))

-> var(Pnum),
write('Part Number?z?’),
read(Pnum),
releasework(cadrevs(Pnum,Rev,Estart,Eend,Cstat,Dfname)).

-> var(Rev),
write(’Revision Level?’),
read(Rev),
releasework(cadrevs{Pnum,Rev,Estart,Eend,Cstat,Dfname)).

-> nonvar (Pnum)
/\ “(cadpart(Pnum, , , , , ,_)),
write('Part Number Does Not Exist’)
-> nonvar(Pnum) /\. nonvar (Rev)
/\ ~(cadrevs(Pnum,Rev, , , ,)),

write(’'Revision Level Does Not Exist’).

-> nonvar (Pnum) /\ nonvar (Rev)
7\ cadrevs(Pnum,Rev, 1)
/\ "“(cadrevs(Pnum,Rev, , ,w,)),
write(’Part Does Not Have Working Status’).

-> nonvar (Pnum) /\ nonvar (Rev)
/\ cadrevs(Pnum,Rev,Estart,Eend,w,Dfname)
/\ cadpart(Pnum,Dnum,Dsize,Des,Buom,Spnum,Sbnum)
/N T{mrppmr(Pnum, , _, s+ s v _o_s_r_r_s_))s
unknown,unknown,unknown, Spnum, Sbnum)),
insert(mrprevs(Pnum,Rev,unknown,unknown,h)),
remove(cadrevs(Pnum,Rev,Estart,Eend,w,Dfname)),
add(cadrevs(Pnum,Rev,Estart,Eend,r,bfname)),
write(’'Revision Has Been Released’).

-> nonvar (Pnum) /\ nonvar (Rev)
/\ cadrevs(Pnum,Rev,Estart,Eend,w,Dfname)
/N MIppmr(Pnum, , ,_+_+_¢_. 1)

remove(cadrevs(Pnum Rev, Estart Eend w,Dfname)),
add(cadrevs(Pnum,Rev,Estart,Eend,r,Dfname)),
write(’Revision Has Been Released’).

* %

** Routine to Insert Part Master Records into MRP II
* %

’

nsert(mrppmr(Pnum,Dnun,Dsize,Des,Buom, Puom,Cfuom, Scode, Cost,

\7?

Lt, Spnum, Sbnum))

nonvar (Pnum) /\ nonvar(Dnum) /\ nonvar(Dsize) /\ nonvar(Des)
/\ nonvar (Buom) /\ nonvar(Spnum) /\ nonvar(Sbnum)
/\ mrppnr(Pnum,Dnum,Dsize,Des,Buom, , , , , ,Spnum,Sbnum).
var(Pnum),
write(’Part Number?z’),
read(Pnum),
insert(mrppmr(Pnum,Dnum,Dsize,Des,Buom, Puom,Cfuom,Scode, Cost,
Lt,Spnum, Sbnum) }.

var(Des),
write('Description?’),
read(Des),
insert(mrppmr(Pnum,Dnum,Dsize,Des,Buom,Puom,Cfuom, Scode, Cost,
Lt,Spnum, Sbnum)).

var(Buom),
write(’BOM Unit of Measure?’),
read(Buom),
insert(mrppmr(Pnum,Dnum,Dsize,Des,Buom,Puom,Cfuom,Scode,Cost,
Lt,Spnum, Sbnum)).

var{(Puom),
write(’'Purchasing Unit of Measure?'),
read(Puom),
insert(mrppmr (Pnum,Pnum,Dsize,Des,Buom,Puom,Cfuom, Scode,Cost,
Lt, Spnum, Sbnun)).

var(Cfuom),
write('Unit of Measure Conversion Factor?’),
read(Cfuom),
insert(mrppmr(Pnum,Dnum,Dsize,Des,Buom,Puom,Cfuom, Scode,Cost,
Lt, Spnum,Sbnum)).

var(Scode),
write(’Source Code?'’},
read(Scode),
insert(mrppmr(Pnum,Dnum,Dsize,Des,Buom,Puom,Cfuom, Scode, Cost,
Lt,Spnum,Sbnum)).

var(Lt),
write(’'Lead Time?'),
read(Lt),

insert(mrppmr(Pnum,Dnum,Dsize,Des,Buom,Puom,Cfuom,Scode,Cost,
Lt, Spnum,Sbnum)).

var(Dnum),
insert(mrppmr(Pnum,inapp,Dsize,Des,Buom,Puom,Cfuom,Scode,Cost,

Lt,Spnum,Sbnum)).

var(bDsize),
insert(mrppmr (Pnum,Dnum, inapp,Des,Buom, Puom,Cfuom, Scode, Cost,

Lt, Spnum, Sbnum)).

var(Cost),

ert(mrppmr (Pnum,bnum,bDsize,Des,Buom, Puom,Cfuom, Scode,unknown,
Lt,Spnum, Sbnum)).

(S

-> var(Spnumn),
insert(mrppmr(Pnum,Dnum,Dsize,Des,Buom, Puom,Cfuom, Scode, Cost,
Lt ,unknown, Sbnum)).

-> var(Sbnum),

insert(mrppmr{Pnum,Dnum,Dsize,Des,Buom,Puom,Cfuom, Scode, Cost,
Lt,Spnum,unknown)).

-> nonvar{(Pnum) /\ nonvar(Dnum) /\ nonvar(Dsize) /\ nonvar(Des)
/\ nonvar(Buom) /\ nonvar(Puom) /\ nonvar(Cfuom) /\ nonvar(Scode)
/\ nonvar(Cost) /\ nonvar(Lt) /\ nonvar(Spnum) /\ nonvar(Sbnum)
/N MIppmr(POUM, , s v s _4_s_s_s_s_r_
Lt,Spnum,Sbnum)),
write(’Part Number Already Exists’).

-> nonvar (Pnum) /\ nonvar(Dnum) /\ nonvar(Dsize) /\ nonvar(Des)
/\ nonvar(Buom) /\ nonvar(Puom) /\ nonvar(Cfuom) /\ nonvar(Scode)

/\ nonvar(Cost) /\ nonvar(Lt) /\ nonvar(Spnum) /\ nonvar(Sbnum)
/\ cadpart(Pnum, , , , , ,)

write(’'Part Number Already Exists’).

-> nonvar (Pnum) /\ nonvar(Dnum) /\ nonvar(Dsize) /\ nonvar(Des)
/\ nonvar(Buom) /\ nonvar(Puom) /\ nonvar{(Cfuom) /\ nonvar(Scode)
/\ nonvar(Cost) /\ nonvar(Lt) /\ nonvar(Spnum) /\ nonvar(Sbnum)
/\ “(mrppmr(Pnum, , , , , , , , , , ,

add(mrppmr (Pnum,Dnum,Dsize,Des,Buom, Puom,Cfuom, Scode, Cost,
Lt,Spnum,Sbnum)), '
insert(cadpart(Pnum,Dnum,Dsize,Des,Buom,Spnum, Sbnum)),
insert(mrprevs(Pnum,Rev,Estart,Eend,Mstat}),

write(’'Part Has Been Added’).

-> nonvar(Pnum) /\ nonvar(Dnum) /\ nonvar(Dsize) ,/\ nonvar(Des)
/\ nonvar(Buom) /\ nonvar(Puom) /\ nonvar(Cfuom) /\ nonvar(Scode)
/\ nonvar(Cost) /\ nonvar(Lt) /\ nonvar(Spnum) /\ nonvar(Sbnum)
/\ ~(mfppmf(Pnum; 0 o o _a_ e)

/\ cadpart(Pnum,Dnum,Dsize,Des,Buom,Spnum,Sbnum),
add(mrppmr (Pnum,Dnum,Dsize,Des,Buom,Puom,Cfuom, Scode, Cost,
Lt,Spnum, Sbnum)).

* %

** Routine to Insert Part Master Revision Data into MRP II
* %

nsert(mrprevs(Pnum,Rev,Estart,Eend,Mstat))

-> nonvar(Pnum) /\ nonvar(Rev) /\ nonvar(Estart) /\ nonvar(Eend)
/\. nonvar(Mstat)
/\ mrprevs(Pnum,Rev,Estart,Eend,Mstat).

-> var(Pnum),

write(’'Part Numberz?’),
read(Pnum),

14

insert(mrprevs(Pnum,Rev,Estart,Eend,Mstat}).

var(Rev),
write(’Revision Level?’),
read(Rev),
insert(mrprevs(Pnum,Rev,Estart,Eend,Mstat)).

var(Estart),
write(’Effectivity Start Date?’),
read(Estart),
insert(mrprevs(Pnum,Rev,Estart,Eend,Mstat)).

var(Eend),
write('Effectivity End Date?’),
read(Eend),
insert(mrprevs{Pnum,Rev,Estart,Eend,Mstat)).

var{Mstat),
write('Status Code?’),
read(Mstat),
insert(mrprevs(Pnum,Rev,Estart,Eend,Mstat)).

nonvar (Pnum)
/\ T(mrppmr(Pnum, , , , . s s 4 4 _+_+_),

writel{(’Part Number Does Not Exist’).

nonvar (Pnum) /\ nonvar(Rev) /\ nonvar(Estart) /\ nonvar(Eend)
/\ nonvar{Mstat)
VAN m*prevs(Pnum Rev, , ,)
/\ "“(mrprevs(Pnum,Rev,Estart,Eend,Mstat)),
write/('Revision Level Already Exlsts).

Pnum) /\ nonvar(Rev) /\ nonvar{(Estart) /\ nonvar(Eend)
nvar (Mstat)
ppmr(Pnum, , o+ s _+_s_s_e_r_+_s_)
mrprevs (Pnum,Rev, , ,))
(cadrevs ({Pnum,Rev, , , , 1)),
add rprevs(Pnum,Rev,Estart,Eend,Mstat)),
inse t(cadrevs(Pnum Rev, Estart Eend r, 1napp))

wr1t ("Revision Has Been Added’).

nonvar (

/\ n

nonvar (Pnun) /\ nonvar(Rev) /\ nonvar(Estart) /\ nonvar(Eend)
/\ nonvar({Mstat)
/N\ Mrppmr{(Pnum, ., , + 4 _s_s_s_r_r_s_)
/\ “{(mrprevs(Pnum,Rev, , ,)
/\ cadrevs(Pnum,Rev, , ,)

add(mrprevs(Pnum,Rev, Estart Eend,h)).

20

