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In many major cities, fixed route transit systems such as bus and rail serve

millions of trips per day. These systems have people collect at common locations

(the station or stop), and board at common times (for example according to a

predetermined schedule or headway). By using common service locations and times,

these modes can consolidate many trips that have similar origins and destinations or

overlapping routes. However, the routes are not sensitive to changing travel patterns,

and have no way of identifying which trips are going unserved, or are poorly served,

by the existing routes. On the opposite end of the spectrum, personal modes of

transportation, such as a private vehicle or taxi, offer service to and from the exact

origin and destination of a rider, at close to exactly the time they desire to travel.

Despite the apparent increased convenience to users, the presence of a large number

of small vehicles results in a disorganized, and potentially congested road network

during high demand periods. The focus of the research presented in this paper is

to develop a system that possesses both the on-demand nature of a personal mode,



with the efficiency of shared modes. In this system, users submit their request for

travel, but are asked to make small compromises in their origin and destination

location by walking to a nearby meeting point, as well as slightly modifying their

time of travel, in order to accommodate other passengers. Because the origin and

destination location of the request can be adjusted, this is a more general case

of the Dial-a-Ride problem with time windows. The solution methodology uses a

graph clustering algorithm coupled with a greedy insertion technique. A case study

is presented using actual requests for taxi trips in Washington DC, and shows a

significant decrease in the number of vehicles required to serve the demand.
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Chapter 1: Introduction

1.1 Motivation

In cities around the world, millions of people are moved daily on fixed route

transit services, such as bus and rail. These options have people collect at common

locations (the station or stop), and board at common times (for example according

to a predetermined schedule or headway). By using common service locations and

times, these modes can consolidate many trips that have similar origins and destina-

tions or overlapping routes. This allows the operator to charge lower fares, as many

individuals are transported by a single vehicle. Of course there is an inherent trade-

off between the degree of this consolidation, which can be considered a measure of

efficiency, and convenience to the riders. The farther the service location – and time

– are from what the rider desires, the less convenient the service becomes for him or

her. There is also however another inherent trade-off: that between consolidation

and street congestion. Larger vehicles carry more people in less space, and moreover

they streamline the path of travel causing overall travel time to decrease.

On the opposite end of the spectrum, personal modes of transportation offer

service to and from the exact origin and destination of a rider, at close to exactly

the time they desire to travel. Despite the apparent increased convenience to users,
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a large number of small vehicles traveling results in a disorganized road network,

and potentially congestion during high demand periods. This type of service is

offered by a personal vehicle or a taxi. In the case of a taxi, due to the high level

of individual customization of service location and time, a higher fares is required

in order to be financially sustainable. Moreover, the number of vehicles needed to

serve the demand must be higher than with a collective option such as mass transit.

However, it is not always possible to realize the efficiencies of fixed route

transit. For example, when demand for travel is not sufficiently large, or does

not follow a significantly strong spatial pattern, it is not possible to consolidate

trips into useful routes. Additionally, if trips are not sufficiently regular so that

they cannot be well predicted, it is not possible to come up with a suitable fixed

route. Some situations which experience these types of shortcomings include off-

peak travel times, so-called “reverse commutes” (whereby an individual commutes

in the opposite direction of the major commuting pattern), late-night travel, or any

route that is not well served by the existing transit system (for example due to the

requirement for multiple transfers or an excessive number of stops). Additionally,

fixed routes are slow to respond (and costly in the case of rail) to ever-evolving

travel patterns, for example due to development of a new residential or employment

area.

2



1.1.1 Organization of thesis

This work proposes a new service that combines the customization of a per-

sonal mode with the efficiency of a transit system, by utilizing a network of meeting

points. The remainder of this chapter describes the service is further detail. The

rest of the thesis is organized as follows. Chapter 2 contains a review of related

literature. Because this service contains elements of the Dial-a-Ride problem, as

well as bus routing problems and shared taxi or carpool problems, several areas

are discussed and their solution methods assessed. Chapter 3 fully states the prob-

lem definition and constraints, and Chapters 4 and 5 detail the two-phase solution

heuristic employed by this research. Chapter 6 shows the model’s performance us-

ing a publicly available data set of taxi trips taken in Washington DC. Chapter 7

concludes.

1.1.2 Description of proposed service

This work proposes a service that bears elements of both fixed-route transit

and fully personal transportation. As in personal transit, users can request a ride

from and to a particular location, and specify a desired time of arrival. Requests

can be made through a website, smart-phone application, public kiosk, over the

phone, or via text message, and must be requested in advance for future travel.

This research does not address the topic of real-time requests, in which the system

responds immediately to received requests. A fleet of vehicles with homogeneous

capacity is available to serve the requests, though an extension of this problem
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could consider a heterogeneous fleet of vehicles. Multiple requests may be assigned

to be served by a single vehicle, which allows this system to realize some of the

efficiencies of fixed-route transit, and allows the operator to charge a lower fare per

rider since multiple individuals will utilize the vehicle. Note, it is not necessary that

the individuals have exactly the same origin and destination. Just as with a transit

vehicle, passengers can board and alight throughout the route.

In urban networks – which can be difficult to navigate due to congestion and

restricted turning movements – it may be quite inconvenient to service each request

at their precise origin and destination location. Therefore the proposed system, in-

stead of offering door-to-door service, goes to locations close to a passenger’s desired

origin and destination. These locations are chosen to maximize the overall conve-

nience of passengers, where convenience for a particular passenger can be thought

of as having two components:

1. Difference between the requested versus offered location and time of service

2. Time spent on-board the vehicle

There is an inherent conflict between these two components: generally speak-

ing, the closer a given passenger is served to their desired locations, the longer the

in-vehicle time will be for other passengers. Therefore it is important to choose

service locations that are within reasonable walking distance from each passenger’s

desired origin and destination, while integrating well into the vehicle’s route. Figure

1.1 shows an example of the proposed service. Three individuals specify an origin

and destination for their trip, shown as green and red dots, respectively. The first

4



panel of the figure shows the case in which each request is served by separate ve-

hicles. The second panel shows the case in which the requests are served by the

same vehicle, but the vehicle picks up and drops off the passengers at precisely the

customers’ specified locations. The final panel shows the service proposed by this

work. The individuals are assigned “stops” along the route, and are required to walk

from their origin location to the pick-up stop and from the drop-off stop to their

destination location. Notice that compared to the second panel, the overall driving

distance is much shorter. Therefore, the slight inconvenience from walking to and

from the stops is counterbalanced by the decreased time of travel. This is especially

true in urban areas where the presence of one-way streets, turning restrictions, and

long delays at intersections make certain locations difficult to access, while going

instead to a nearby location may be much easier.

It should also be evident that under the system shown in the third panel it is

possible to accommodate a larger number of passengers without causing much in-

convenience to the original passengers, whereas in the second panel, each additional

customer is likely to add noticeable inconvenience to the original ones. This means

that the third service has the potential to serve a large number of users with many

fewer vehicles. This then yields a system-wide benefit, as the resultant decrease in

vehicles on the road improves travel times for all users.

Though demand and vehicle size is taken as an input to this model, the model

can be run with different inputs, and from this the operator can draw conclusions

about how many vehicles to deploy and their sizes. The operator can then choose the

fleet size and composition subject to their budget constraint. Consider a morning
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Figure 1.1: Differentiating service types

Three ways to service requests: 1) With separate vehicles; 2) With a single vehicle,
offering door-to-door service; 3) Single vehicle with users walking to and from

stops

rush hour period as an example, where demand is forecast to be heavy and follows

a strong directional pattern. The system should try to accommodate each request

as well as possible, which will mean that each passenger will have longer walks to

and from their pickup and dropoff stops, in order for the demand to be met with

a limited number of vehicles. Due to the high degree of streamlining, simulation

results will recommend using a fleet of high capacity vehicles. On the other hand,

if demand is forecast to be low, say during an off-peak period, passengers will be

able to be served closer to their desired locations, as there are few other users to

inconvenience. In this case, the simulation results would suggest using a fleet of

low capacity vehicles. Thus in periods of high demand, the system becomes more

“bus-like,” with longer wait times and walk times, and more streamlined routes,
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and in periods of low demand it becomes more “taxi-like,” with closer service stops,

smaller vehicles and more customized routing.

1.1.3 Benefits of proposed service

Improved service for non-recurrent or sparse trips Due to the high

operating cost of fixed-route services, low demand periods necessitate that they run

at low frequency. As an example, consider a feeder route to a mass transit station in

a suburban neighborhood. If the neighborhood is large, any fixed route would have

to be quite long to serve the entire area, and thus quite infrequent as well. This

means that passengers would experience long in-vehicle times, simply to complete

the first leg of their trip. A flexible service is much better suited here, because

smaller vehicles can be used and are dispatched only as needed. This system could

also be useful for those who work late at night, where the demand is not high enough

to run a fixed route.

Reduced need for taxis This system may also reduce the need for taxis

in urban areas. The case study presented in Chapter 6 of this paper demonstrates

that a large number of taxi trips can be consolidated, and thus served with fewer

vehicles.

Reduced cost and pollution Large transit vehicles contribute to air pol-

lution and are expensive to operate, so it is not desirable to run them below their

capacity, for example during low demand periods. When integrated with a demand

simulation tool, the proposed model can allow transit agencies to fluctuate their
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fleet size and composition throughout the day, allowing trips to be served by a fleet

of vehicles that is appropriate for the current demand.

Adaptability to changing travel patterns While fixed-route transit modes

like bus or rail can serve large numbers of passengers, their routes are constructed

based on past trends and are slow and/or expensive to adapt to change. On the

other hand, a flexible service continuously evolves with changing travel habits, as

each route is determined by user requests. A flexible service could therefore be

implemented as a way to inform transit agencies of developing patterns, and if a

particular pattern becomes sufficiently strong, the transit agency could then imple-

ment a fixed route.

1.2 Existing Flexible Transport Modes

1.2.1 Informal transit

Perhaps the earliest form of flexible transportation can be found in developing

cities around the world. In cities such as Lagos, São Paulo, Mexico City, Nairobi,

and Manila, a large number of privately operated small to medium-sized vehicles

comprise an “informal” transportation network. The vehicles are generally referred

to as jitneys, but also are called by local names depending on the city. For example,

they are referred to as coletivos in Mexico City and matatus in Nairobi. The vehicles,

typically small vans, operate on roughly pre-determined routes. However, unlike

formalized transit, the drivers are free to modify the routes to adapt to changing

travel patterns. Since vehicles are independently operated, they are more sensitive
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to market forces, so are quick to add custom routes. This, along with their ability

to navigate small streets and their typically high operating frequency, make them

a highly flexible and desirable mode of transportation, heavily relied upon by those

whose travel routes are not well served by the formal transit network, or who unable

to afford traditional transit. For example, in Mexico City, residents who live on the

periphery of the city rely on informal transportation, as the formal system does

not reach them. Common trip destinations include places of work, health clinics,

markets, as well as train stations or bus terminals (Cervero 2000 [1]).

Another vehicle type that is used in many countries including India, Indone-

sia, Sri Lanka, Madagascar, Nigeria and South Africa, is the auto-rickshaw (often

referred to locally as tuk-tuks) which is a three-wheeled vehicle that seats 2-4 pas-

sengers. A bike-powered version called a pedi-cab also exist in some cities such as

Yogyakarta Indonesia, and Dhaka Bangladesh. Unlike van service, which is well

suited for commuting trips between the city and periphery, rickshaws offer conve-

nient service for short trips within the city. However, since their service is decen-

tralized, their large number can increase the level of congestion on the streets, and

they may at times may be unsafe to passengers, especially those unfamiliar with the

city.

Despite its flexibility and low fares, informal transit has several drawbacks.

The vehicles are often old and in poor condition, causing them to operate at slow

speeds and to produce a considerable amount of noise and air pollution. Addition-

ally, since drivers are independent, they compete for passengers, which can incen-

tivize aggressive driving behavior. Competition also means that people who live
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in areas of low demand density may not be served, as drivers gravitate towards

higher-traveled corridors. Another issue is that the lack of any central organization

means routes are often undocumented, and users rely on local knowledge to learn

which route they need to take. A handful of projects have utilized GPS technol-

ogy with the help of a large number of university students to systematically map

informal transit routes. These include a project by the World Bank and AusAid in

Manila [2], the “digitalMatatus” project by the University of Nairobi’s Computing

for Development lab and MIT’s Civic Data Design Lab [3], and the AccraMobile

project in Accra, Ghana [4]. However, with the exception of the few cases in which

maps have been painstakingly created, the majority of cities lack central knowledge

of the routes served.

1.2.2 Micro-transit

Informal transit offers a purely organic form of transportation that can roughly

accommodate and adapt to the majority of travel needs, though it is not without its

drawbacks. Recently in the US, due to improved mobile phone technology, several

so called “micro-transit” companies have started, which aim to mimic the flexibility

of informal transportation networks, while using technology to alleviate issues of

coordination, reliability, and safety. Two such companies include Chariot [5], oper-

ating in San Francisco, and Bridj [6], operating primarily in Boston, and recently

in Washington DC. These companies collect requests for trip origins and destina-

tions from users of their mobile app, and use these to derive a set of routes, both
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companies serving just the weekday commuting hours. Passengers are required to

purchase tickets in advance of their trip. Routes remain fixed for several weeks or

months, and over time, in response to users submitting requests on their website,

new routes are added, modified, or dropped. In both Boston and San Francisco, the

respective services are quite popular since they have identified routes that are not

well-served by existing transit.

A similar service has also been employed extensively by transit agencies in

China, beginning in the cities of Qingdao and Beijing in 2013 [7]. The so-called

“customized bus” has been praised for significantly decreasing commuting times, as

the buses are allowed to travel in dedicated lanes. There are several variants present,

including buses for school children and buses that feed transit stations. As of April

2015, customized bus service was operational in 22 Chinese cities and underway in

eight more.

1.2.3 Casual carpooling

Similar services to informal van transportation also existed in the US and were

known as dollar vans, but these were banned in the early 1900’s. However, other

organic modes of shared transportation are still in use today. In the suburban region

surrounding Washington DC, a form of carpooling referred to as casual carpooling,

or by its colloquial term “slugging,” arose in the 1970’s from commuters traveling to

the Naval Research Lab. Drivers on their way to work who wish to take advantage

of high occupancy vehicle (HOV) lanes on the congested I-66 and I-95 freeways stop
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at predetermined collecting locations (“slug lines”). Upon arriving, they announce

their destination (which is often also among a set of pre-determined locations), and

any travelers waiting may board. Money is typically not exchanged, which is a

cherished characteristic of the service. The Washington DC area currently has a

fairly sophisticated slug line network used by thousands of riders per day. An online

forum provides a means for riders to discuss slug line locations and suggest new

routes. Thus the service achieves a degree of flexibility to travel patterns. Sluglines

are also run in Houston and San Francisco [8].

1.2.4 Web-based carpooling

Several websites and mobile apps have been developed in the past few years

to better facilitate the benefits of carpooling. The website “Bla bla car” [9] allows

drivers, typically making intercity trips, to post their route and an optional fare,

and for others to join their ride. The app Carma [10] offers a similar service, but

focuses on commuting. Drivers post the time and location of trips they make,

and others who need a ride can request to travel with them. The transportation

network company Uber has recently begun to offer a product in some cities called

uberCOMMUTE [11], with the same functionality as Carma except that riders and

drivers are automatically matched and the fare is set by Uber, not the driver.
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1.2.5 Shared taxi

Recently, two major transportation network companies Uber and Lyft have

launched a shared version of their taxi service: UberPOOL [12] and Lyft Line [13],

respectively. Drivers are assigned requests in real time, and when possible, travellers

going in the same direction share a portion of the ride. Because the service uses

small vehicles, at most three passengers can be matched into a shared ride. There

is no notion of a meeting point; pickups and dropoffs occur at the exact requested

locations.

1.2.6 Vanpools

Vanpooling is a service, typically organized by an employer, in which employees

can register for a shared ride to work with coworkers. Additionally, many transit

agencies offer vanpools, including those in Washington DC, Virginia, Minneapolis,

King County, Houston, Dallas, Austin, and many others. The vans are allowed

to drive in HOV lanes when available, and members are given one or more “free

ride home” benefits, in which the agency will pay for a return trip on another

transportation mode, in the event of an emergency that leads the individual to miss

their van home. Airport shuttles, which pick up several passengers on the way to the

airport, or pick up passengers from the airport and take them to their destinations,

can be classified as another type of vanpool, since either the origin or destination of

trips is the same for all passengers.
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1.2.7 Dial-a-Ride service

Dial-a-Ride service arose from the need for a transportation mode for elderly

and disabled individuals, who find it difficult or are unable to use conventional

transportation modes. Users tend to need special care, such as the requirement of

a wheelchair ramp or other assistance. Under the Americans with Disabilities Act

(ADA), public transit agencies that operate fixed route services are required by law

to provide complementary “para-transit or other special service to individuals with

disabilities that is comparable to the level of service provided to individuals without

disabilities who use the fixed route system” [14]. Para-transit service commonly of-

fers door-to-door trips made by large vans that are shared with multiple passengers.

Typically, ride reservations must be made anywhere from one to three days prior

to the trip in order for the agency to develop the schedule for rides. Requests are

traditionally made over the phone, giving the service its name “Dial-a-Ride.” Pas-

sengers specify their origin and destination of travel, what type of accommodation

they need (for example, a wheelchair ramp), and their desired time of travel: either

“leave at” or “arrive by.” Thus the service is fully customized to the needs of the

users; unlike micro-transit or casual carpooling, passengers are picked up and de-

livered from their request point of origin and destination, and are not asked to use

common collecting points. Consequently, in-vehicle time for passengers can be high,

and only a few individuals can be served per van.
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1.2.8 Flexible route bus

As a compromise to this shortcoming of the Dial-a-Ride service, several cities

offer some form of “flex bus” service. In general the idea is to have a bus with a

fixed route, but that can deviate somewhat from this route. The way in which the

deviations occur can be used to categorize the different variants of this service. A

2004 report by the Transit Cooperative Research Program [15] interviewed over 1,100

transit agencies and categorized the flexible services offered into six categories: route

deviation, point deviation, demand responsive connector, request-stops, flexible-

route segments, and zone route.

With a route-deviation system, which was the most common form in their

survey, the bus travels along a pre-specified route, but has a margin around the

route of a specific width in which it is allowed to serve custom requests. An example

is the 570 bus in Salt Lake City, Utah, whose route has a deviation radius of 3
4

of a

mile. It allows for two custom requests to be served per trip, and the requests must

be made in advance. With a point-deviation system there is no pre-specified route,

but rather a set of available points from where individuals can make requests. The

vehicle may serve the requests in any order. A demand-responsive connector serves

requests on-demand that begin or end at specific transit stations. A request-stop

system is similar to route deviation, but instead of being allowed to request service

in any area surrounding the route, off-route service is only available at a set of pre-

specified points. Flexible-route segments refers to a conventional bus route with one

or more segments operating on a demand-responsive basis. In a zone route system,
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the vehicles travel along a corridor and service requests on demand, however they

are held to pre-specified arrival times at the beginning and end of the route. For an

extensive list of examples of these services, see [15].
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Chapter 2: Literature Review

2.1 Dial-a-Ride problem

The most similar established problem to the one presented in this work is the

Dial-a-Ride problem (DARP). This problem arose in the 1970’s out of research done

by the cities of Rochester, New York and Dade County, Florida [16]. The problem

arises from the need for transportation services for elderly and disabled individuals,

who find it difficult or are unable to use conventional transportation modes. Users

tend to need special care, such as the requirement of a wheelchair ramp, or the need

for an assistant.

Para-transit service typically consists of door-to-door trips made by large vans

that are shared with multiple passengers. Typically, ride reservations must be made

anywhere from one to three days prior to the trip in order for the agency to develop

the schedule for rides. Passengers specify their origin and destination of travel,

what type of accommodation they need (e.g. wheelchair, sign-language interpreter),

and their desired time of travel: either “leave at” or “arrive by.” While seemingly

identical to the problem proposed by this research, the crucial difference is that

the origin and destination points of each passenger are fixed, as it is a door-to-

door service. The feasible region of the proposed service is therefore larger, since it
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considers multiple possible pickup and dropoff locations for the passengers.

The Dial-a-Ride problem is a more constrained version of the Pickup and

Delivery Problem with Time Windows (PDPTW). In the PDPTW, a fleet of vehicles

needs to be routed to pick up and drop off goods from specific locations. Unlike

the standard Vehicle Routing Problem (VRP) – where vehicles are required to bring

goods to customers from a central depot – the PDPTW contains both pairing and

precedence constraints: if a good is picked up by a vehicle it must be delivered by

that vehicle, and the pickup location must be visited before the delivery location.

Additionally, throughout every step of the route it must be checked that the load of

goods on the vehicle does not exceed the vehicle’s capacity; whereas in the VRP, the

vehicles are loaded at the depot so the capacity constraint only has to be enforced

one time. Each request has a desired time window for pickup service and a desired

time window for delivery service. If these time windows are treated as “hard”

constraints, the vehicle is not allowed to service a request late, and any solution

with such a schedule will be considered infeasible. If instead they are “soft” time

windows, solutions are allowed to violate the time windows, but incur a penalty in

the objective function for doing so. It is typically assumed in either case that early

arrival is permitted, but the vehicle must idle until the opening of the time window.

Without this assumption many solutions become infeasible.

The DARP has an additional constraint, which is due to the fact that the

“goods” being transported are people, so they must not remain on the vehicle for an

excessive amount of time. Therefore a maximum ride length constraint is typically

included. For further description of the many variations of routing problems and
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their formulations, see Parragh, 2008 [17].

Lastly, it should be noted that there are two versions of the DARP: the static

case and the dynamic case. In the static case, all requests are made before the

planning horizon, for example an hour or a day in advance. The problem is then

to determine the size and composition of the fleet, and to integrate all of the pre-

specified requests into routes. Since the requests are known in advance and there is

usually a sufficiently large amount of time available for computation, research on the

static case tends to focus on exact methods or high performance meta-heuristics, as

these methods produce optimal or near-optimal solutions at the expense of running

time. In the dynamic case, some requests may be made in advance, but the system

also responds to requests in real time. Since users must receive a response quickly

about whether their request can be successfully accommodated, the dynamic case

favors solution speed over quality. Research in this area therefore tends to focus on

heuristic solutions, as will be shown in the section that follows.

It should now be apparent that the Dial-a-Ride problem is similar to the one

addressed in this paper, with the difference that passengers are not necessarily picked

up and dropped off precisely at their desired locations; instead they may be served

close to these locations, in order to offer a more efficient overall service. A second

difference is that in the problem addressed here, each passenger is assumed to be

homogeneous, i.e. every seat in a vehicle is the same, whereas models specifically

related to para-transit must consider the individual needs of each passenger. A

wide body of literature exists on the Dial-a-Ride problem, and is summarized in the

following sections.

19



2.1.1 Exact solution methods

A number of studies have used exact techniques to solve the Pickup and Deliv-

ery Problems, which is a less restricted version of the DARP. For the sake of brevity,

those works will be left out of this review, and included will be only those that focus

specifically on the DARP. For a survey of the literature regarding the Pickup and

Delivery problem, see Parragh 2008 [17] and Berbeglia et al. 2010 [18].

Being a generalization of the Pickup and Delivery Problem, the DARP is NP-

hard. The first exact solution to the DARP with time windows was developed by

Psaraftis 1983 [19], which used a dynamic programming method to solve the single-

vehicle case when there are fewer than 10 customers. Desrosiers et al. 1986 [20] used

the column generation method to solve the single-vehicle problem with 40 customers.

Cordeau 2006 [21] presents a linear programming formulation for the static

multi-vehicle DARP and develops a branch-and-cut solution method. It is able to

achieve a reasonable running time by performing a pre-processing phase, which re-

duces the initial problem size, and generates several sets of valid inequalities in order

to strengthen the LP relaxation at each of the nodes of the enumeration tree. The

“families” of valid inequalities include: bounds on the load and service time vari-

ables, sub-tour elimination constraints, capacity and precedence constraints, gener-

alized order constraints, order-matching constraints, and infeasible path constraints.

Checking for violated constraints requires solving the corresponding separation prob-

lem, and to do this the authors employ heuristics, including a tabu search algorithm

based on Augerat et al. 1999 [22]. The branch-and-bound algorithm with cuts incor-
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porated requires significantly lower CPU time: an average of 1.81 minutes compared

to 25.93, when considering the instances with 24 or fewer nodes. It solved a 20 node

case in 42 minutes. The authors apply a similar model to the Pickup and Delivery

Problem with time windows in Ropke 2007 [23], with the addition of new valid in-

equalities. In one variant of their model, they allow for requests to contain up to

six passengers, and use vehicles with capacity of six. The largest instance of the

PDPTW they solve has 96 requests. They also applied the model to a DARP of a

similar size as their previous work.

Liu et al. 2015 [24] use a branch-and-cut formulation and develop a set of valid

inequalities to solve a Dial-a-Ride problem that introduces constraints encountered

in the real world. These include heterogeneous passengers who may require different

accommodations such as wheelchairs, special seats, or stretchers. This in turn intro-

duces the need for a heterogeneous vehicle fleet, in which each vehicle has varying

capacities for each of these facilities. The largest instance solved to optimality had

22 requests and solved in 35 minutes.

2.1.2 Insertion heuristics

Early methods for solving the Dial-a-Ride problem relied on greedy insertion

algorithms. For example, Jaw et al. 1986 [16] uses the “parallel insertion” algo-

rithm. Parallel insertion algorithms can produce better solutions than sequential

ones, which only consider one vehicle at a time. The parallel insertion algorithm

is as follows. Pickup and dropoff time windows are derived for each request, based
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on their requested pickup or arrival times, and the maximum ride time function,

which relates direct travel time to the maximum allowable travel time in the shared

service. The requests are then sorted by their earliest pickup times in ascending

order. A vehicle is picked at random and the first two requests are added to it,

and ordered in the least-cost way (Li and Quadrifoglio 2010 [25]). Next the third

request is considered. If it can be inserted into the current route while respecting

time windows, load capacity, and maximum ride time restrictions, then it is added

in the least cost way. If not, another vehicle is selected to serve it. Then the fourth,

fifth, etc. requests are considered for insertion into the existing routes, each time

taking the previous ordering of stops as fixed. Since the number of vehicles is lim-

ited, if there are no vehicles available for which it is possible to serve a particular

request, the request is “rejected” – it cannot be served. The algorithm is myopic –

since once a ride is inserted to a route, its order with respect to the other requests

is fixed – and thus potentially requires more vehicles to serve the requests than

necessary. However, this method is able to solve large-sized problems (over 2,000

customers and 20 vehicles) in a reasonable amount of time. The authors note it can

be made less myopic by instead of processing one request at a time, simultaneously

processing a given number of requests, though this causes an increase in run time.

Diana and Dessouky 2004 [26] developed a regret-based model to address the

myopic nature of the basic parallel insertion algorithm. The regret is calculated

as the cost of inserting a given request in the current step as opposed to waiting.

They are able to solve instances with up to 1,000 customers, while requiring signif-

icantly fewer vehicles, though it requires longer computation time since computing
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the regret values is an O(n3) operation. Luo and Schonfeld 2007 [27] provides an

improved algorithm by introducing a rejected-reinsertion heuristic that is able to

handle a problem of equal size but requires shorter computation time. It produces

better results in terms of number of vehicles needed, vehicle distance travelled, and

vehicle idle time. Upon a request being rejected, the neighbors of that request

(neighbors being defined to include spatial and temporal information) are each ten-

tatively removed from their routes and inserted elsewhere. The least cost reinsertion

is then performed. This algorithm leads to a 17% reduction in the number of vehicles

needed as compared to the basic parallel insertion method.

Xiang et al. 2006 [28] develop a heuristic to solve a DARP that incorporates

real world constraints, such as a maximum tour length (so no driver’s shift is too

long), built-in breaks for drivers, and drivers being compatible with the passengers

(in terms of special training needed for handicapped or elderly users). An initial

solution is constructed via a cluster-first sweep-second operation. The remainder

of the algorithm includes an improvement phase, a local search strategy, a diversi-

fication strategy, and an intensification phase. The best performing version of the

algorithm is able to solve an instance with 200 customers in about 20 seconds. How-

ever, when the number of customers reaches 1,000 or 2,000, the run time increases

to several hours.

Häme 2011 [29] considers the single vehicle DARP and defines very narrow time

windows for each request. He defines the notion of a priori infeasible: the move from

i to j is a priori infeasible if it is not possible to leave i at its earliest pickup time, and

arrive at j before its latest pickup time. These can be systematically calculated and
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stored to determine whole clusters of mutually infeasible requests. Next, customers

are inserted on the route one by one, and at each step all feasible orderings are

considered, thus avoiding the myopic characteristic of the basic parallel insertion.

However, the algorithm relies heavily on the narrow time windows (which restrict

many insertions due to infeasibility) in order to run in a reasonable amount of time.

The authors note that the time windows can be enlarged while maintaining a good

run time by limiting the number of candidates considered at each step. The largest

instance solved had 50 customers.

Coslovich 2006 [30] studies a version of the dynamic Dial-a-Ride problem with

time windows. In the scenario studied, the vehicles are assigned to requests booked

in advance, so it is based on the static problem. However, a new passenger may

approach a vehicle on the street and request a ride in real time. The paper develops

an algorithm that can tell the driver whether or not to accept the ride using a

two-phase insertion technique. The first phase is run offline while the car is driving

and creates a neighborhood of routes around the current route. The second phase

is then run when a new request arrives, and tells the driver whether or not it can

accept the request.

2.1.3 Tabu search heuristic

Several works have employed the tabu search (TS) algorithm to solve the

Dial-a-Ride problem. Cordeau and Laporte 2003 [31] were the first to apply it to

the DARP, though it had previously been applied to the Vehicle Routing Problem
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[32], [33]. An initial solution is first found, and then the algorithm moves to a

new solution in the neighborhood of the original. Solutions that contain too many

similar characteristics to the previous solution are temporarily declared “tabu,” and

are unable to be used for a certain number of iterations; this allows the algorithm to

explore the search space and avoid getting trapped in local extrema. A continuous

diversification measure is also used to avoid getting trapped. An important feature

of tabu search is that neighbors of a solution need not be feasible – that is, they may

violate ride time or vehicle load constraints – but this is in fact a major strength

of the tabu search (this also makes it trivial to come up with an initial solution).

The objective function is a weighted sum of the total vehicle distance travelled, the

excess ride time experienced by the passengers (travel time in excess of the direct

trip length), violation of the load constraint, and violation of the time window

constraints. The weights fluctuate over time to allow a more thorough exploration

of the search space.

Additional papers have advanced the use of the tabu search heuristic for the

DARP. Attanasio et al. 2004 [34] analyzes the success of using various tabu search

algorithms developed for the static case of the DARP to solve the dynamic case.

Though the TS algorithm is flexible and provides good solutions, its run time can

be long (on the order of hours). This is acceptable when requests are made in

advance, but in a dynamic setting, it is necessary to return a response in a matter

of seconds. The authors consider techniques from parallel computing to decrease

solution time. An initial solution is constructed by solving the static problem on

any advance orders. Then upon the arrival of a real time requests, several parallel

25



processors insert the request into different random locations in the solution, and

then run a tabu search to obtain feasibility. This process is capped at 30 seconds of

run time.

Berbeglia et al. 2012 [35], considers the dynamic DARP, in which requests

must be served in real time. It is a “hybrid” algorithm, as it combines a tabu search

with constraint programming, which is a technique used to find and remove many

infeasible variables when the search space is large. The constraint programming

technique used is outlined in greater detail in Berbeglia et al. 2010 [36]. The model

is tested on generated data, as well as a real data set from Denmark containing 200

customers.

Kirchler and Calvo 2013 [37] use a granular tabu search on the static problem,

which differs from the classic tabu search in its increased focus on the local search

step. Working with the assumption that optimal routes tend to not have very long

edges, only moves are allowed that have reduced costs lower than a certain threshold

value, which is gradually increased if no candidates exist.

2.2 Shared taxi problem

The shared taxi problem bears high resemblance to the Dial-a-Ride problem,

though there is no heterogeneity among passengers, it almost exclusively considers

the dynamic case, and it places a greater emphasis on large-scale instances. Users

submit taxi requests through an online application and are matched to a taxi, which

may contain additional passengers, or pick up passengers along the way.
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Lee et al. 2005 [38] present a simple algorithm for integrating demand respon-

sive service with the mass transit system in Taipei, focusing on rural areas. Riders

specify their origin location, time of travel, and which transit station they need to

access. The system is parameterized by an acceptable waiting time (for example,

5 minutes). The dispatching system checks which vehicle is closest to the location

of the request. Once the vehicle is selected, it is checked if the request can be in-

serted into the vehicle’s schedule. They performed a case study on an area with a 3

km radius surrounding Tinghsi MRT station. The middle 300 meters was removed

from the service area, as it was assumed that it is better for users to simply walk

to the station when they are within that distance from the station. It considered

an instance with ten taxis and seven requests (each request could contain up to 3

persons).

In Ma et al. 2013 [39], a dynamic taxi sharing system is proposed, which has

the ability to serve 720 thousand requests per hour. Every 20 seconds, all taxis in

the system report their location, trajectory, and available capacity to the processing

center. Upon receiving a request for a ride, the processing center determines which

taxis are in a suitable vicinity of the request pickup location, determined by their

respective distances to the location and the passenger’s desired pickup time. Since

it is prohibitively expensive to calculate a potentially large number of shortest paths

for each request, the system uses a pre-calculated distance matrix, which is defined

over a grid-partition of the road network. This greatly decreases the time needed

to filter the taxis to those near the pickup location. Once the candidate taxis are

determined, a scheduling module is run to find the best way to insert the request
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into the taxi’s schedule. Infeasible insertions – those that violate time windows or

capacity constraints – are eliminated. The taxi with the most suitable service time

for the passenger in question and the passengers already on-board is taken. While

their approach is greedy, the authors argue that on-demand ride-sharing is inherently

greedy: customers are expecting to be served as quickly as possible. They use a

training set of 33,000 taxi trips in Beijing to simulate a stream of requests. They

find that their ride-sharing system can serve 25% more passengers that a system

without ride-sharing, and that the amount of miles saved leads to a reduction of 120

million liters of gasoline annually. Moreover, taxi drivers can increase their profits

by 19% when the ratio of vehicles to request is 6 to 1.

The work proposed by this paper differs from Ma et al. 2013 in several ways.

The first is that the research here solves a static optimization problem. In the

dynamic setting, it is possible to filter the available taxis to only those that are near

the customer, thus greatly reducing the size of the feasible region. However, in a

static setting, any assignment of request to vehicle is possible, meaning the feasible

region is much larger. Additionally, this model allows for the use of larger vehicles

to serve requests. When the vehicle capacity increases, the scheduling module that

determines where to insert the request in the schedule becomes more difficult, since

the number of possibilities grows exponentially. Finally, the presence of multiple

possible meeting points multiplies the number of options to consider.
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2.3 Carpooling problem

The carpooling problem is similar to the shared taxi problem, except that the

driver himself has a destination and a desired time of arrival. When an individual is

driving to work, they may desire to pickup one or more additional passengers, either

to offset costs (for tolls or gas), or to be able to use high occupancy vehicle lanes

on highways. The matches can be made either in real time (the companies Waze,

Lyft and Uber all have carpooling options; others include Carma, Flinc, Carticipate,

EnergeticX/Zebigo, Avego, and Piggyback), or in advance, for example through an

employer program.

Agatz et al. 2012 [40] provide a review of the literature on dynamic ride-

sharing. They categorize different ride-sharing schemes with respect to several fac-

tors, such as how costs are shared among the passengers, whether passengers may be

assigned to multiple drivers (i.e. their journey involves a transfer), and whether the

ride-sharing system is integrated with other modes, such as mass transit. Additional

topics include whether future demand is anticipated by the system, and whether to

include monetary incentives to encourage individuals to use ride-sharing systems.

Amey 2010 [41] demonstrated that carpooling among employees of MIT could

reduce the number of vehicles needed by between 9 and 27%, depending on the

drivers’ preferences for detours. It considers a match between at most one rider and

driver.

Mahmoudi 2016 [42] presents a unique, yet computationally intensive exact

solution method for the ride-sharing problem. Drivers announce their origin and
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destination and are matched to riders in real time. They begin with the network

formulation of Cordeau et al. 2006 [21], with additional nodes defined for the pas-

senger and drivers’ origin and destination locations. They then create an expanded

network, which has one node per each possible vehicle state, where a state is de-

fined as the passengers currently in the vehicle. For example (p1, p2, ) is the state

corresponding to passenger 1 and 2 in the vehicle, and the third seat empty (cars

are assumed to have 3 available seats). Then feasible state transitions are identified,

based on time window and precedence constraints. The method relies on tight time

windows to reduce the size of the feasible region. On this new network, the prob-

lem reduces to a shortest path calculation which can be solved using a Lagrangian

relaxation formulation with dynamic programming. The benefit of this approach is

that the shortest paths can be computed in parallel. The author solves instances on

the cities of Phoenix and Chicago, with 60 and 50 passengers respectively, and each

with 15 vehicles. The optimal solution was found in just under two hours, however it

should be noted that a particularly powerful computer was used (128 GB of RAM).

Hosni et al. 2014 [43] also solved the ride-sharing problem using Lagrangian

relaxation, in a way that allows for the decomposition of the problem into separate

sub-problems. They propose two heuristic methods. They solve an instance of the

dynamic problem on the Manhattan road network with 20 taxis over 2 hour period.

The largest instance considered had 60 requests, and when the heuristic was used,

a solution was found in 1-10 minutes depending on the instance parameters.

Agatz et al. 2011 [44] present a ride sharing system where drivers and riders

are matched on short-term notice (for example a few minutes). Users of the system
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specify whether they intend to drive or take a ride, and enter their origin, destination,

and parameters related to the time of travel. For simplicity, the authors assume that

a driver will make only one pickup and dropoff stop along their journey. A driver

may serve multiple passengers, but only if the passengers are travelling to and from

the same location. An additional restriction is that only trips that represent a cost

savings for both the rider and the driver are considered. The requests are made with

short-notice, so in order to increase the chances of finding a match between a rider

and driver, a rolling horizon is used, so that all incoming requests over a period of

time are considered, up to a certain time limit, after which the selection is finalized.

Their matching optimization algorithm is run at pre-specified intervals in order to

match the requests in the current horizon. They use the 2008 travel demand model

from the Atlanta metropolitan region to develop realistic instances. The model

is solved as a maximum-weight bipartite matching problem with the objective of

maximizing the sum of driver and rider benefits, defined as a network flow problem

and solved in CPLEX. The largest static instance solved contain 29,000 requests

and solved in 78 seconds. They however note that the online system with a rolling

horizon approaches the success of the offline benchmark: the offline model has a 60%

match rate, and the rolling horizon model has a 58% match rate, and both yield

about a 19% reduction in vehicle miles traveled. When increasing the flexibility of

riders and driver, in terms of wait time and acceptable route deviation respectively,

the match rate increased up to 73% in one instance.

They also develop a greedy algorithm which picks the match with the largest

savings and then fixes this value in the solution. Not surprisingly, the match rate is
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much lower for the greedy algorithm, around 28% in most instances.

Stiglic et al. 2015 [45] show the benefit of using meeting points in the driver-

rider matching problem, using the travel demand data from Agatz et al. 2011. In-

stead of servicing the passenger at their desired origin and destination, a pickup

and dropoff point is used that is within 11 minutes of walking distance from their

requested locations. The benefit is decreased driving distance, at the expense of

walking time for the passenger. Indeed the results show that driving time increases

by only 1%, but total travel time experienced by passengers increases by 12% due

to walking, in comparison to the case without meeting points. However, the system

benefits as a whole, because the match rate increases by 6.8 percentage points. How-

ever by including meetup points in the solution, the solution time increases from

150 seconds to 10 minutes, due to increased complexity.

This is perhaps the closest existing research to the work presented in this

paper. The core of this research is to utilize meeting points to increase the efficiency

of ride-sharing. There are however two differences with respect to Stiglic et al. 2015.

The first is that their work considers a carpooling application, in which the driver

has a fixed destination and arrival time, which restricts the set of feasible matches

compared to the case when drivers’ routes are open. The second is that it only

allows for one pickup and dropoff stop in a journey. The results of this paper are

promising, in that they indicate that meeting points can indeed increase ride-share

efficiency, yet they point to the need for a different solution method that is able to

handle the increased number of feasible solutions.

Stiglic et al. 2016 [46] measure the effect of an increase in flexibility on the
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part of the drivers – in terms of acceptable route deviation – and of the passengers

– in terms of acceptable waiting time. They use the matching algorithm from Agatz

et al. 2011 on the Atlanta metropolitan region demand data set. The goal is to

be able to inform ride-sharing planners when driver and rider flexibility will have

the greatest impact on system performance. They find that even small increases

in flexibility can have a large impact on the driver-rider matching rate, especially

when the request volume is low.

2.4 Ride sharing with transfers

A few papers have considered the possibility of a ride-sharing system in which

passengers transfer between vehicles. Clearly this is a significantly more complex

problem than the single vehicle problem. However it can potentially improve the

efficiency of the system. For example, short routes in small vehicles can be used to

feed into a route on large vehicle. The work presented here does not consider the

multiple-hop scenario.

Gruebele 2008 [47] outlines a vision of a ride-sharing system in which users

may share with multiple drivers to complete their trip. By using multiple vehicles,

the likelihood of completing the trip as a shared ride increases; for example, even

a driver whose destination is far from the rider’s destination, may still be able to

offer the individual a ride for part of the trip. The road network could potentially

identify certain intersections with high probability of drivers passing by as “hubs”

in the network. The document is only an outline of the potential benefits from
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multi-hop ride-sharing, and does not present a solution method.

Herbawi and Weber 2011 [48] solve the multi-hop ride-sharing problem us-

ing an evolutionary algorithm. They formulate the problem as a multi-objective

minimization problem, where the objectives are cost, travel time, and number of ve-

hicles needed. In order to obtain the Pareto Frontier (the set of solutions for which

it is not possible to improve one objective without worsening another), they use the

Nondominated Sorting Genetic Algorithm (NSGA-II), which is a fast greedy genetic

algorithm. They develop their own genetic operators for crossover and mutation.

To test their methodology they create a network with 41 nodes, and generate

instances with between 100 and 500 requests. They used a population size of 250

and maximum of 100 generations, which led to 25,000 calls to the objective function.

The run time of their method is several seconds even for the largest instance. They

compare the method to a Generalize Label Correcting algorithm (GLC), which is a

deterministic method for discovering the Pareto frontier. For the largest instance,

the GLC found a solution in 2 minutes.

2.5 School bus routing problem

Another problem similar to the one proposed here is the School Bus Routing

Problem (SBRP). A fleet of school buses is required to pick up students, who have

been assigned to stops near their house, and bring them to their school by a certain

time. The stop selection aspect is similar to the work presented here, since the stu-

dents’ origin locations are known (their homes), but their stop assignment must be
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determined, and ideally this is done concurrently with the route definition. The dif-

ference with the work presented here is that the students have the same destination,

the school, and a common required arrival time.

Typical constraints in the SBRP include earliest pickup time and vehicle ca-

pacity. A variant of the problem considers the mixed-load School Bus Routing

Problem, in which there are multiple schools, and students from different schools

may ride together on the same bus. Clearly, the total number of vehicles required

should be less than if each school used its own buses. Park and Kim 2010 [49]

provide a review of the literature on school bus routing problems.

In the simplest version of the SBRP, the students are assigned to their stop

locations in advance. This provides a substantial simplification, since the students’

pickup locations are inputs to the model, and all that is needed is to route the buses

through those fixed points. In this case, it becomes quite similar to a Dial-A-Ride

problem in which the stops are the origin locations and there is a single dropoff

location, namely the school (the only difference being that SBRP problems often

need to consider the location of the vehicle depot). Two examples are Euchi and

Mraihi 2012 [50], which uses ant colony optimization with a variable neighborhood

descent improvement search, and Park et al. 2012 [51], which takes a single-load

solution for the multiple-school case, and produces an improved mixed-load solution.

These works assume each student has already been assigned to a bus stop.

However, there may be several locations near a student’s house that could serve as

a bus stop, so a desirable model would consider all of these candidate locations to

determine the most efficient set of routes, instead of fixing the stops as an initial
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step.

Early works in this area considered sequential approaches to the stop selection

and routing problems. The method in Chapleau 1985 [52] clusters students into

districts first, and then routes one vehicle through each district. Others who used

similar sequential approach include Bodin and Berman 1979 [53], and Desrosiers et

al. 1980 [54]. Such approaches were borrowed from location routing theory, and are

referred to as Location Allocation Routing (LAR), which assigns students to stops

and then derives the routes, and Allocation-Routing-Location (ARL), which defines

clusters first and then derives the routes. ARL tends to produce better results than

LAR.

Some works have considered the stop selection problem concurrently with route

optimization. Bowerman 1995 [55] performed a clustering of student requests and

then used set covering and travelling salesman problem algorithms to generate the

routes. This paper also introduced a maximum walking distance for students, which

determines the number of candidate stops a student has. Riera-Ledesma 2012 [56]

formulate a mixed integer program to solve the school bus routing problem with

stop selection, which they refer to as the multi-vehicle traveling purchaser problem.

They use branch-and-bound to solve instances of varying size, but for the largest

instance with 100 students a solution could not be found in under an hour. A paper

by the same authors in 2013 solved the problem using column generation.

Schittekat et al. 2013 [57] develops a heuristic model to 1) choose stops for

the buses to visit, 2) assign students to stops, and 3) determine the routes through

the points. The algorithm is initialized with a greedy randomized adaptive search
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procedure (GRASP), which performs a variant of the Clark and Wright algorithm.

Each of the potential stops are initially served by a single route. Then the savings

matrix between each pair of stops on different routes is computed as the time savings

that would result from merging the routes. The pair of stops to be merged is chosen

randomly by drawing from a distribution based on the savings values. After merging,

the feasibility is checked by solving the ’student allocation sub-problem’ which is

assigns students to one of the stops (and therefore one of the routes) in the current

solution by solving a constraint programming problem. Note, feasibility of a merge

is only checked after that merge is selected, otherwise it would require solving this

sub-problem many times. This process repeats, where pairs of stops are considered

if one is the first stop in its route and the other is the last, and if the capacity

of the vehicle would not be violated by merging the respective routes. After the

GRASP solution is found, a variable deterministic descent search is performed to

improve the solution. Neighborhoods of the solution are found via three operations.

The first two, remove-insert within a route and remove-insert between routes are

commonly used in vehicle routing problems. The third procedure, replace, is unique

to the SBRP, and it removes a visited stop and replaces it with an unvisited one.

The authors used their model to solve 112 different instances, in which they varied

the number of students from 25 to 800, the number of stops from 5 to 80, the bus

capacity of either 25 or 50, and walking distance from 5 to 40 minutes. The largest

instances could not be solved in under two hours, while the small and medium sizes

were solved in minutes.
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2.6 Vanpool routing problem

A simplification of the school bus routing problem is the vanpool problem,

which is to pick up passengers from a common meeting point, located reasonably

close to their origin locations, and take them to a common destination, such as an

office building. It represents a simplification of the SBRP because generally only

one pickup is made along the route. Employers may facilitate vanpooling for their

employees, which provides a cost savings for the participants, along with the ability

to rotate the driving responsibility.

Kaan and Olinick 2013 [58] study the one-stop and two-stop vanpooling prob-

lem for a case study in the Dallas Fort-Worth area, where park-and-ride locations

were considered as potential meeting points. They present an exact linear program-

ming model using a three-index decision variable (an index for each passenger, origin

point, and vehicle type), as well as a heuristic solution method.

The exact method was able to find a solution to the one-stop vanpooling

assignment problem with up to 600 employees and 120 possible stop locations in

a matter of seconds. However, an exact solution to the the two-stop model could

not be found in under 12 hours. The heuristic method was therefore used, which

works by combining a greedy covering algorithm with a relaxed LP solution. The

relaxed heuristic is used to inform which park-and-ride locations seem most useful.

The heuristic is reported to have suitably short solution time.
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2.7 Literature review conclusion

The work presented here intends to take passengers from and to locations

relatively close to their desired origin and destination. In that sense, it is similar to

the Dial-a-Ride problem, but the pickup and delivery can occur at different locations

than the original ones specified by the users. This allows for a more streamlined

route, and the potential for multiple passengers to be served in the same location.

Since stop selection is a crucial part of this system, the research also bears similarity

to the School Bus Routing Problem, in the case in which the stops are not pre-

assigned to students. Unlike the school bus problem however, passengers do not all

have a common destination location (i.e., the school) and arrival time window (i.e.,

the morning bell). This means that the number of riders in a vehicle can increase

and decrease throughout the journey, unlike a school bus which only accumulates

passengers. It also means it is significantly more difficult to “cluster” requests, as

both the pickup and dropoff location need to be considered.

The system proposed here would be similar to the mixed-load school bus prob-

lem, in which each student belongs to a different school. The mixed-load problem

has been studied, but not with concurrent stop selection. It would also be similar

to a multi-stop vanpooling problem where the destination is not the same for every

passenger, but this has not been studied.

Carpooling and share-taxi research consider service to and from the desired

origin and destination, with the exception of Stiglic et al. 2015 [45] which considers

meeting points. Additionally, they consider vehicles with capacity of 3 or fewer

39



passengers. The work presented here allows for the use of high capacity vehicles,

and offers service from meeting points, which are not necessarily at the desired origin

and destination of the requests.
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Chapter 3: Solution Algorithm Overview

3.1 Introduction

The proposed system accepts requests for travel from the user’s specified origin

and destination location, and desired time of arrival at the destination. The solution

algorithm presented here assumes that requests are submitted sufficiently far in

advance of the desired time of travel (e.g. one hour or one day). An input to

the model is a digital representation of the road network, converted into a directed

graph. The edge weights of the graph can be the travel time along the edge. If

desired, several versions of the graph can be used to represent periods of varying

levels of traffic (e.g. a rush hour graph and an off-peak graph). However, it should

be noted that since the solution algorithm here considers the scenario in which all

requests are made ahead of time, it does not account for information about live

traffic conditions or incidents. Such real-time changes would need to be handled in

a heuristic way, and this is not in the scope of this work.

Lastly, the system requires the existence of a pre-defined network of stop lo-

cations. As an example, one might use the existing network of city bus stops.

Alternatively, one could define a custom network, where the general idea is to have

one stop per block in both directions of travel whenever possible. This grants the al-
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gorithm the greatest flexibility to choose the most efficient set of stops when forming

a route. Increasing the number of stops can only improve the solution, but comes at

the cost of increased complexity to the solution algorithm. Having the stop network

pre-defined is the key feature that enables the model to overcome some of the diffi-

culties encountered by existing methods. Because they stop-network is determined

ahead of time, one can analyze all possible routes in the system. Then when the

schedules are being derived, the model is better informed about which routes to

try to insert into the schedule. This is in contrast to a purely brute force insertion

method, or a method that only looks at time windows.

Model objective In general, there are several objectives that can be con-

sidered for this problem depending on the needs of the system operator. In this

paper, the objective taken is to minimize the number of vehicles used to serve the

requests, subject to the travel time constraints of the passengers. However, another

objective might be to consider the cost of providing the service: for instance, some

requests may be exceedingly expensive to serve (if a particular request is distant

from the majority of other requests), and therefore a cost minimization model or a

model that had a budget constraint would involve rejecting some requests. Another

objective would be to achieve an optimal quality of service, subject to a certain

portion of the demand being satisfied. This could mean striving for the shortest

total travel time, or the least amount of walking, while guaranteeing that a certain

percentage of the demand be served. Moreover, any of these objectives could be

used concurrently in a multi-objective framework, but this would require a more

complex solution approach. As previously stated, this model tries to minimize the
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number of vehicles used to serve the demand, subject to serving all of the requests,

and obeying the vehicle capacity and ride time constraints.

Model constraints As with the Dial-a-Ride problem, time windows are spec-

ified for the pickup and dropoff of riders. The pickup and dropoff time windows are

based on the user’s desired arrival time, and their calculation is explained in the

description of Phase II. Note that unlike the DARP, in which the pickup location is

the same as the origin location and the dropoff location is the same as the destina-

tion, the amount of time spent walking from the origin to the pickup stop and from

the dropoff stop to the destination must be accounted for when computing the time

windows at each candidate stop.

Additionally, a constraint on the ride time for each passenger must be enforced.

This can either be handled by imposing a system-wide maximum allowed ride time,

or by setting the maximum ride time separately for each request as a function of

the direct ride time. The simple function used in this research is to allow rides to

be no longer than the direct ride time plus some value λ, a model parameter.

Constraints with respect to the vehicles include maximum load constraints,

defined by the number of seats available on each vehicle, as well as precedence and

pairing constraints. In this research, vehicles are assumed to have equal capacity,

but necessary considerations for incorporating heterogeneous vehicles are discussed

in the Conclusion chapter. This research does not address the problem of crew

scheduling, in which routes are found that incorporate time for drivers to switch

out or take breaks, or maximum shift constraints, which put a limit on the longest

driver shift. It also assumes that the vehicles may start and end in any location,
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which is to say there is no notion of a “depot.” More realistic assumptions with

regards to the fleet can be imposed in future work; the goal of this research is to

explore the potential capabilities of such a system.

Model formulation The objective addressed by this work is to minimize the

number of vehicles K used to serve the demand:

minK (3.1)

For each request, there may be multiple possible pairs of pickup and dropoff

stops. The term request-candidate is used to refer to a unique combination of request,

pickup stop, and dropoff stop. Denote a request candidate ra by this triple ra =

(r, a = (p, d)), where r is the request index, and a = (p, d) is the pickup-dropoff pair,

determined by a unique combination of pickup and dropoff stops.

The ride time constraints are represented as follows, where T Vra = τ dra − τ pra is

the in-vehicle time from the pickup stop p to the dropoff stop d, equal to the dropoff

time minus the pickup time assigned to ra. T
Wp
ra and TWd

ra are respectively the time

needed to walk to the pickup and dropoff stops associated with ra. δr is the direct

travel time from the origin to the destination of request r.

T Vra + TWp
ra + TWd

ra ≤ δr + λ (3.2)

This states that the total travel time, equal to the sum of the walking from the

origin to the pickup stop, the in-vehicle time, and the walk from the dropoff stop to
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the destination, must not exceed the direct driving time from the origin destination

by more than λ. A limit is placed on the values of T
Wp
ra and TWd

ra , limiting the amount

of time passengers will be asked to walk to each stop:

TWp
ra ≤ γi (3.3)

TWd
ra ≤ γi (3.4)

As previously mentioned, all requests r ∈ R must be served. Lower and upper

bounds are placed on the pickup and dropoff times, and are defined in the next

section. Lastly, the number of passengers on board a vehicle at any given time must

not exceed the capacity of the vehicle.

3.2 Solution method overview

Since the problem presented here generalizes the Dial-a-Ride problem, it would

be impractical to seek an exact solution method that could handle an instance of

realistic size. This paper presents a heuristic that can find good solutions in a

reasonable amount of time.

The main idea of the solution method is to define an undirected graph in

which the nodes are request candidates, and find clusters on this graph of request

candidates that are sufficiently similar and assign them to the same vehicle in a

greedy fashion. Two components determine the similarity of request candidates: 1)

spatial similarity, referring to the location and shape of their routes, and 2) temporal

similarity in terms of the users’ requested time of arrival at their destinations and
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the implied earliest departure time from their origin.

The solution method includes two phases. The first initializes the system and

the second is used to respond to requests from users. The first phase consists of

several calculations that may take a considerable amount of time but only need to

be done once, and their results are referenced every time the second phase runs.

Since there are a discrete number of stops, the routes between all possible

pickup and dropoff pickup-dropoff pairs can be enumerated ahead of time, and

therefore the spatial similarity between these pairs can be pre-calculated; this is the

task of Phase I. With the spatial similarity already calculated, when requests from

users arrive, Phase II needs only compare their requested travel times in order to

determine their temporal similarity. Then the clustering algorithm can be executed.

For simplicity, users are required to submit their requests sufficiently far in

advance, and it is further assumed that all vehicles initially have no passengers on

board.

A detailed explanation of Phase I and Phase II is presented in the next chap-

ters. Several notations and terms will be used, which are first defined here for

clarity.

3.3 Model inputs, outputs, objective, and constraints

For clarity, the following are the model inputs and outputs:

Inputs

• Road network: a digital representation of the road network is required, with
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the cost (distance or travel time) of each link specified.

• Stop network: location and bearing of service locations. This can be taken as

the existing bus stop network, or defined in another way.

• Vehicle capacity: This research assumes all vehicles are of equal size. The

system operator is free to run the model under different assumptions of vehicle

fleet size and vehicle capacity to compare the outcomes.

• Demand: Demand for trips is specified by individual users, and includes the

origin and destination of travel and the desired arrival time at the destination.

Each request is assumed to be for one person, but it would be straightforward

to extend the model to accommodate requests for multiple passengers.

Model Output

• Request-to-vehicle assignment: Each passenger will be told the Id number of

the vehicle to which they are assigned.

• Request service locations: Each user will be assigned a location for pickup and

dropoff, that will be within a suitable walking distance from their requested

origin and destination locations.

• Request pickup and dropoff time: Each user will be informed of the time that

the vehicle will arrive at the pick up stop, and the time that it will drop them

off at the dropoff stop.

• Vehicle routes: Vehicles will be given a schedule to follow, consisting of the

times and locations of pickups and dropoffs.
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Table 3.1: General terminology

G The directed graph representing the road network. If multiple graphs are to be used for different
times of day/ days of week, use the notation Gt where t is the time period index.

users, passengers Refers to individuals who submit a request for travel to the system (these terms used interchange-
ably).

r = (Or, Dr, τ
D
r ) A request. Or and Dr are requested origin and destination location respectively, and τDr is the desired

arrival time at the destination.

δr The direct travel time from Or to Dr.

R The set of all requests.

stop, meeting point A fixed location that has been determined during system initialization to be suitable for service by a
vehicle. Users will be assigned a pickup and dropoff stop within reasonable walking distance of their
desired origin and destination.

P The set of all stops

N The number of stops, i.e. |P |

pickup-dropoff pair (p, d) A pair of stops, which may be used to pick up and drop off a passenger.

D(p, q) The distance (or travel time) between stop p and stop q.

M The set of all pickup-dropoff pairs which are sufficiently far from each other, i.e. {(p, d) : p, d ∈
P,D(p, d) ≥ β}, where the value of β is left to the discretion of the system operator.

spatial similarity A metric describing the compatibility of two pickup-dropoff pairs in terms of their direction and path
of travel.

temporal similarity A metric describing the compatibility of two pickup-dropoff pairs in terms of their desired travel
times.
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Table 3.2: Phase I specific terminology

W The spatial similarity matrix between pickup-dropoff pairs.

G′ The modified road network graph. It is initialized to G, and then the edge weights are iteratively
decreased based on the number of shortest paths that route through each edge.

SX(a, b) The overlap measure for two pickup-dropoff pairs a and b

κ The number of iterations to perform in the iterative shortest path component of Phase I

α The proportionality factor by which to reduce the edge weights in the iterative shortest path com-
ponent of Phase I
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Table 3.3: Phase II specific terminology

C` The number of passengers vehicle ` can carry. In this research this is taken as a constant value for
all vehicles.

γi The maximum amount of time passenger i should have to walk to their assigned pickup and dropoff
stops. This value can be the same for all users, though for example users with a disability may have
γi = 0.

Maximum inconvenience
amount λ

For a request with origin O and destination D, the amount of time in excess of the direct route time
that a ride in this system is allowed to take. For example λ = 10 means that the total travel time
(walking plus in vehicle time) cannot exceed 10 minutes plus the direct travel time.

Candidate
pickup/dropoff stop

A pickup or dropoff stop within γ distance of the passenger’s desired origin and destination, respec-
tively.

Request-candidate A request-candidate consists of a request r and one candidate pickup-dropoff pair

RM The set of all request-candidates, {(r, a) : r ∈ R, a ∈
Mand pickup-dropoff pair a can serve request r}

h Similarity threshold to consider two pickup-dropoff pairs for clustering.

ε Value of the buffer on the latest arrival time. For example ε = 2 minutes allows dropoffs to occur up
to two minutes outside of the time window.

WR The similarity matrix between pairs of request-candidates.
∆ The amount by which to artificially increase the similarity between request-candidates if they use

the same pickup and dropoff stops.
η1 Number of neighborhood levels to take around a cluster after all cluster members have been tried.
η2 Number of consecutive infeasible attempts to insert a node before starting the next vehicle.
η3 Number of assigned segments after which to re-run the graph clustering.

K Number of vehicles used in the solution to serve the demand.
Vehicle utilization The number of requests served divided by the number of vehicles used: |R|/K.
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Table 3.4: Phase II specific terminology (continued)

Defined for each request-candidate (r, a), r = (O,D, τD), a = (p, d) :

Departure time The time at which the passenger leaves from their origin location O and begins to walk to the pickup
stop p.

Departure time The time at which the passenger leaves their origin location O to begin walking to their pickup stop.
τ p Pickup time The time at which the passenger is picked up at their pickup stop.
τ d Dropoff time The time at which the passenger is dropped off at their dropoff stop.
Arrival time The time at which the passenger arrives at their destination D, after having walked from their dropoff

stop.
T V In-vehicle time The time spent in the vehicle by passenger, equal to the dropoff time minus the pickup time
TWp The time it takes to walk from the origin to the pickup stop
TWd The time it takes to walk from the dropoff stop to the destination
Latest arrival time The latest time the passenger can arrive at their destination D, after having walked from their dropoff

stop. Equal to the desired arrival time, plus an optional small margin, ε.
Latest dropoff time The latest time the passenger can be dropped off at the dropoff stop, in order to be able to walk to

their destination D and arrive by the latest arrival time.
Latest pickup time The time the passenger would have to be picked up at the pickup stop, if travelling on a direct route

to the dropoff stop in order to arrive by the latest dropoff time.
Earliest departure time The time the passenger would have to depart from their origin O in order to arrive at their destination

D by τD, assuming that the route takes λ plus the direct ride time.
Earliest pickup time The time the passenger would arrive, via walking, at the pickup stop p if leaving her origin at the

earliest departure time.
Earliest dropoff/ arrival
time

It is assumed passengers do not mind arriving early to their destination, provided it is within reason.
This is secured however, since the earliest departure time is fixed. Therefore the earliest dropoff and
arrival times are set to the trivial value of the earliest departure time.
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Chapter 4: Solution Algorithm Phase I: Spatial Similarity

Because users are served from a discrete set of stops, many calculations can be

done in advance to speed up the passenger to vehicle assignment at run-time. This

section describes a set of calculations that are time-consuming, but can be done

ahead of time and their results stored for repeated use later. The goal of this phase

is to calculate the amount of “similarity” that exists among pickup-dropoff pairs.

These values can be stored and queried later in response to user requests (Phase II).

The components of the pre-calculation phase are:

1. Pickup-dropoff pairs enumeration

2. Iterative shortest path calculation

3. Store spatial similarity matrix

4.1 Part 1: Pickup-dropoff pairs enumeration

In the first step, consider the set P which contains the N pre-defined stops.

Then form the set of all pairs of stops in the system, removing stops that are too

close to each other: M = {(p, d) : p, d ∈ P,D(p, d) ≥ β}. The planner can decide

the value of β to determine the minimum allowable ride length, and the distance
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function can be defined in terms of travel length or time. Defining the number of

stops in the system as N , then there are O(N2) allowable pickup-dropoff pairs.

It is now necessary to determine how “similar” two pickup-dropoff pairs are. A

brute-force method would to look at every pair of pickup-dropoff pairs, and calculate

the additional travel time incurred by inserting in the least-cost way one pickup-

dropoff pair into the other. However since there are O(N4) such pairs, this method

is impractical unless the number of stops in the system is small. Therefore, the next

two steps use a heuristic method to implicitly identify similar routes.

It should be noted that both Luo and Schonfeld 2007 [27] and Santos and

Xavier [59] compute the insertion cost for pairs of requests. This is practical if 1)

the model considers live requests only, and 2) each request has only one possible

pickup and dropoff location. In the work presented here, Phase I calculates the

similarity between all pairs of pickup and dropoff stops. If only the live requests

were considered, there would be many additional insertion costs to calculate, since

each request may have multiple feasible pickup and dropoff locations.

4.2 Part 2: Iterative shortest path calculation

For each pickup-dropoff pair (p, d), calculate the directed shortest path be-

tween p and d, and save the edges traversed by each shortest path. To begin the

first iteration, start with the list of edges used in any shortest path, and calculate the

total distance of overlap among the pickup-dropoff pairs. Note, it is not necessary

to consider all O(N4) pairs, since the vast majority of them will not possess any
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overlapping edges. Keep track of the amount of overlap between the pickup-dropoff

pairs, and note that they overlapped on the initial iteration (k=0). There still may

be two pickup-dropoff pairs that are quite similar, but do not explicitly overlap on

the first iteration, as is shown in Figure 4.1. This is the motivation behind the

subsequent steps.

Next, for each edge in the graph, calculate the number of pickup-dropoff pairs

that used it in their shortest path, and call this value the commonness of the edge.

Some edges will be more common than others, typically corresponding to major

roads. Reduce the cost of each edge by a factor α times its commonness. Call the

resultant graph the modified graph G′ because its edge weights differ from those of

the true graph. Then recalculate the shortest paths of the pickup-dropoff pairs in M

on the modified graph G′. The idea is that in the second iteration, pickup-dropoff

pairs will be attracted to the more commonly used edges. This in turn increases

the commonness of those edges further, and even more pickup-dropoff pairs are

attracted to them in the subsequent iterations. A sketch of this idea is shown in

Figure 4.1. Nearby routes that did not explicitly overlap in the first iteration are

made to overlap by this process, making it possible to capture their similarity.

At every iteration, calculate the amount of overlap between pickup-dropoff

pairs Xk(a, b), defined as the sum of the length of the edges that are present in

both shortest paths. When calculating the amount of overlap, use the edges of the

shortest paths found on the modified graph, but substitute the true edge costs. Note

that there is a corresponding iteration number k that was required to achieve the

overlap. The idea is that pickup-dropoff pairs that take several iterations to overlap
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Figure 4.1: Finding overlapping routes

Demonstration of reducing edge costs on links with higher commonness. On
subsequent iterations, more pickup-dropoff pairs then use these links, and so on.

are not as similar to each other as those that overlap early on. The module can

continue for a κ iterations, which is a parameter set by the modeler, and if desired,

the factor α can be adjusted after each iteration.

Note that the routes calculated in each iteration of this process are merely

used to determine similarity among pickup-dropoff pairs. They are not indicative

of the route that will be taken in the final solution, as this depends on all of the

requests selected to be served by a vehicle. Indeed, the routes calculated in this

phase are generally not the most efficient routes, but the assumption is that if a

group of pickup-dropoff pairs can be make to overlap over a large portion of their

length, then they likely have many alternate routes in common as well. This point

will be further demonstrated in the Case Study chapter.

After the iterations finish, the modified graphG′ contains routes for the pickup-

dropoff pairs in M , but many more routes will overlap than did when using the edge
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weights of the true graph G. At each iteration, the amount of overlap between routes

is calculated, and the iteration counter k at which that overlap occurred is stored.

For pickup-dropoff pairs a and b that overlap, the overlap similarity S can be defined

as follows:

S(a, b) = max
k=1...κ

[
Xk(a, b) · f(k)

]
/L(a) (4.1)

where the maximum amount of overlap weighed by the number of iterations is taken.

f is a function that transforms the iteration counter k into a value between zero

and one, and L(a) is the length of route a. Thus S(a, b) is the overlap similarity of

pickup-dropoff pair a to pickup-dropoff pair b.

Note that S(a, b) need not equal S(b, a), since route b may be longer or shorter

than route a, in other words L(a) likely does not equal L(b). For the clustering

algorithm described in Phase II, it will be necessary to use symmetric costs (i.e.

S(a, b) = S(b, a)). To accomplish this, the larger of the two values is taken.

The similarity matrix is defined by the elements S(a, b) and stored for use

in the second phase. If multiple graphs are used, for example, if a separate set of

edge weights are used during rush hour and off-peak times, then separate similarity

matrices should be calculated for each one.

4.3 Phase I conclusion

The spatial similarity calculation uses an iterative approach to discover over-

lapping pickup-dropoff pairs, and develops a measure for determining the degree

of similarity between them. The method works by reducing the weights on more
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commonly used edges of the graph and re-computing the shortest paths of all pickup-

dropoff pairs. Doing so leads similar routes to overlap, and as the iterations progress,

more and more routes overlap. This method is used in order to avoid the brute-force

calculation of the insertion cost between all pickup-dropoff pairs.

There are two parameters to the similarity calculation just described: α, the

amount by which to decrease the edge cost at each iteration, as well as κ, the number

of iterations to perform. These should be tested with different values, as the most

suitable values will likely vary for different road networks. Increasing the amount

by which edge cost is reduced at each iteration and/or performing a greater number

of iterations will lead to a high degree of overlap among routes, potentially between

even those that are not realistically similar. On the other hand, low values for these

parameters may result in too few routes being found to overlap.

After the system has been operational and receiving user requests for some

time, it will be possible to improve the initialization step of the similarity module.

When first performed, edge weights are reduced based on their commonness, which

is defined by how many pickup-dropoff pairs used the edge in its shortest path, with

each pickup-dropoff pair being equally weighted. However, as travel patterns become

known, each pickup-dropoff pair could be weighted by the frequency of its use by

actual passengers. In this way, the system can “learn” to prefer more commonly

requested routes as it is used.
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Chapter 5: Solution Algorithm Phase II: Request Assignment

Once the pre-calculation phase is complete, the system can go into operation

and begin accepting requests. For the scope of this work, requests are assumed to

arrive sufficiently in advance of the desired time of travel. Clearly, the earlier the

requests are known, the greater is the potential to find highly efficient routes.

The second phase of the solution algorithm is run to match the received re-

quests to the fleet of vehicles. It contains the following steps:

1. Identify request candidates

2. Identify similar request candidates

3. Greedy request to route segment assignment

4. Improvement heuristic

5. Route segment chaining

5.1 Part 1: Determine candidate pickup-dropoff pairs

Each request received will specify the user’s desired origin and destination

location, and desired arrival time at the destination. The set of requests can be
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Figure 5.1: Sample request and its candidates

denoted as R = {r = (Or, Dr, τ
D
r )}. For each request, all stops within γ distance

from the origin and destination are selected as candidate stops for that request. An

example is shown in Figure 5.1. The origin and destination locations are shown in

green and red respectively. There are two candidate pickup stops and two candidate

dropoff stops, meaning there are a total of four candidate pickup-dropoff pairs, which

are shown as the black lines.

The walking time threshold γ is therefore a parameter of the solution method.

This parameter measures where the service is located on the spectrum between a

personal mode and a collective mode. A lower γ means passengers will be served

closer to their requested locations, meaning the service will behave more like a taxi

system. However, as was motivated by Figure 1.1, if demand is high this may lead to

an increase in passenger travel time. A higher walking threshold gives the algorithm

greater flexibility in forming routes, making the service more like a bus system,
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however passengers may dislike the increased walking time. Certain passengers, for

example those with a disability, could however be allowed an exception in order to

be given a zero-minute walking time threshold.

The set M contains all possible pairs of pickup and dropoff stops. The set

RM of request-candidates can be formed

RM = {(r, a) : r ∈ R, a = (p, d) ∈M, and pickup-dropoff pair a can serve request r}.

5.2 Part 2: Travel time overlap

If two requests are to be served with the same vehicle, it is necessary that not

only their pickup-dropoff pairs are similar, but also that their desired times of travel

are compatible.

For each request-candidate ra = (r = (O,D, τD), a = (p, d)), it is possible to

compute acceptable time windows for the pickup and dropoff stops, based on the

user’s desired arrival time at the destination. In the definitions that follow, the word

departure refers to the passenger walking from their origin location to the pickup

stop, pickup refers to when the vehicle arrives at the pickup stop, dropoff refers to

when the vehicle drops off the passenger at the stop, and arrival refers to when the

customer arrives at their final destination after having walked from the dropoff stop.

A diagram relating the time windows is shown in Figure 5.2.

First, the maximum allowable time for the customer to arrive late to their

destination must be established. One option would be to take the desired arrival
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Figure 5.2: Relationship between departure, arrival, pickup and dropoff times

time τD. However, the feasible region can be expanded by considering solutions in

which the customer may arrive up to a few minutes after their desired arrival time.

Call this time the latest arrival time, and let ε be the amount of time by which it

is permissible to arrive after the desired time window. This is a parameter of the

solution algorithm, for which different values may be tested. Generally speaking,

the larger the value of ε, the more requests will be able to be accommodated, at the

expense of rider convenience.

Next, the latest dropoff time can be calculated as the latest time a passenger

can be dropped off at d, in order to be able to walk to their destination D and arrive

by the latest arrival time. The latest pickup time is when the passenger would have

to be picked up at p, if travelling on a direct route to d, in order to arrive by the

latest dropoff time.

The earliest departure time is when the passenger would have to depart from

their origin O in order to arrive at their destination D by τD, assuming that the

route takes λ plus the direct ride time. This is based on the principal that a ride in
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this service should not take more time than the direct route in excess of a certain

value. For example, it might be desired that no trip take more than 10 minutes of

the direct route time. In this case, the earliest departure time is set to the desired

arrival time less the direct route time plus ten minutes. The amount of ten minutes

is denoted as λ, the maximum inconvenience amount. Note that setting a high λ

value will allow a greater level of trip consolidation, but the longer trip lengths may

be unfavorable to passengers. On the other hand, too low a value of λ may lead to

a high number of vehicles needed to serve the demand. The earliest pickup time is

the time the passenger would arrive, via walking, at the pickup stop p if leaving her

origin at the earliest departure time.

There is no need to define an earliest dropoff or arrival time, as a customer

can be assumed to always prefer an early dropoff whenever possible, provided it is

within reason. This is secured however, since the earliest departure time is fixed.

Therefore the earliest dropoff and arrival times are set to the trivial value of the

earliest departure time.

Define the travel time range Tra of a request-candidate ra as the earliest de-

parture time to the latest arrival time.

Next, the similarity is measured between pairs of request-candidates. This is

taken to be the spatial similarity of their routes, which is pulled from the stored

spatial similarity matrix, W , with the additional comparison of their travel time

ranges. A new similarity matrix, WR will be created considering the route-requests,

and will have dimension |RM | × |RM |, with one row and column for each request-

candidates.

62



The elements of the request similarity matrix WR are computed as follows.

For each request-candidate (r, a = (p, d)), obtain the pickup-dropoff pairs that are

similar to a, in other words, b ∈ M, b 6= a such that W (a, b) > h. The parameter

h can be set to 0 to include even routes that overlap slightly. For faster solution

time, a higher value of h can be used. Then for each pickup-dropoff pair b, retrieve

the requests that has b as a candidate, in other words q ∈ R such that (q, b) ∈ RM .

For these requests, compare their travel time ranges Tra and Tqb. If these time

ranges overlap, WR
(
(r, a), (q, b)

)
= W (a, b), otherwise 0. It should be noted that

even if two requests have temporal similarity of 1, they may not be suitable for

consolidation (for example, if they only overlap by a small amount, and/or during

the overlap time, the vehicle would have to be in two different locations). It would

be possible to make the temporal similarity value continuous instead of binary to

better capture temporal compatibility. However it will be shown in the greedy

assignment step that using the binary indicator still produces good solutions, and is

much less expensive to compute than a continuous value. To increase the likelihood

of trip consolidation, if two request-candidates use the same pickup-dropoff pair,

their similarity is multiplied by 1 + ∆, where ∆ can be set by the modeler.

5.3 Part 3: Greedy request to route segment assignment

Using the similarity matrix for request-candidates WR, it is possible to iden-

tify clusters of request-candidates that are highly similar. The work presented here

uses a greedy graph clustering algorithm, but other graph clustering algorithms
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are available [60]. In this case, the nodes of the graph correspond to request-

candidates, and two request-candidates are connected by an edge if they are spa-

tially and temporally similar. Since, as previously noted, it might be the case that

WR((r, a), (q, b)) 6= WR((q, b), (r, a)), the original directed graph is converted to an

undirected graph by setting the arc cost as the larger of the two cost.

Details of the greedy graph clustering algorithm can be found in [61]. Upon

converting the request-candidate graph to an undirected graph, each request is as-

signed to a cluster by this algorithm. Note that if a request has multiple candidate

pickup-dropoff pairs, it may appear in multiple clusters for each of its candidates.

It is then necessary to assign time windows for each node: the pickup time

window is (earliest pickup time, latest pickup time), and the dropoff time window

is (earliest dropoff time, latest dropoff time). Then a tentative service time tx is

assigned to each pickup and dropoff. This value will be updated throughout the

algorithm, and is initialized to the earliest pickup time for pickups, and the latest

dropoff time for dropoffs.

The next step is to identify the importance of each node within its cluster.

Many graph centrality metrics exist that can be used to calculate this [62]. This

research calculates the weighted degree of each node, which is equal to the sum of

the costs of all edges incident to the node. The idea is that the node with highest

weighted degree will be more likely to be similar to other nodes in the graph. Starting

with the largest cluster, the request-candidate with the highest weighted degree is

assigned to a route segment. After the first request-candidate is selected, any other

candidates for that request are removed from the solution pool. Then the request-
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candidate with the next highest weighted degree is attempted to be inserted. The

insertion test module is described next. If the insertion is feasible, then the request-

candidate is added to the schedule, and if it is not, it is removed from the list of

request-candidates to try. After a successful insertion, the weighted degrees of the

nodes in the graph are recalculated, since some nodes have now been removed.

Once all of the nodes in the cluster have been tested, any nodes that are

adjacent to a node in the cluster, referred to as the cluster neighbors, are then tested,

in decreasing order of the highest cost edge weight that connects the neighbor node

to the cluster. After these have been tested, any neighbors of the neighbors are

tested, and so on for η1 iterations. The number of neighbor levels to search η1 can

be set by the modeler. At any point, if η2 consecutive infeasible attempts to insert

a node are made, a new route segment is started and the process repeats.

As requests are assigned to route segments, their respective request-candidate

nodes are removed from the graph. This means that the originally defined clusters

may no longer be the best clustering of the remaining nodes. To alleviate this, every

η3 route segments, the clustering algorithm is repeated to assign nodes to updated

clusters. Depending on the size of the instance considered, the re-clustering may be

desired to run less frequently, and this is left to the discretion of the modeler. For

the case study that follows, the re-clustering step was set to every 10 route segments.

The overall structure of the greedy request to route segment assignment is

shown in Figure 5.3.
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Feasibility checking modules

Two modules are needed to insert request candidates into route segments. The

first finds the least cost way to insert the pickup and dropoff stops, and requires use

of the second module to determine feasible times to service each stop.

Insertion test module

Given an existing route segment schedule, a request-candidate is tested for insertion

into the schedule in the following way. First, the pickup stop is considered for

insertion at every point in the schedule, and the position that results in the route

with the shortest distance is taken. Then every position after this one is tested for

the dropoff stop, and again the one resulting in the lowest route length is taken.

Now with the tentative schedule, the service time module is run to assign arrival

times to each stop in the schedule that obey the time windows. The service time

module is described in the next section. If a feasible set of service times is found,

then the capacity constraint is checked: that at each step in the route the number

of passengers on board does not exceed the capacity of the vehicle. Next, two local

improvement procedures are tried: the first one attempts to combine users to the

same stop whenever this is feasible for them, and the second tests switching each

stop one at a time, in the order of the schedule, to a very nearby stop (e.g. across

the street) to see if the route length is improved, and time window feasibility is not

affected.

Service times module

Given a stop ordering, the service time module begins by setting the service time of

the first stop to its current tx value. It then calculates the travel time between all
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subsequent stops in the route, and updates their tx values accordingly. If the vehicle

arrives at a stop before the start of a time window, it waits until the time window

starts before travelling to the next stop. If any service time violate the end of a

time window, the initial tx value is decremented by 1 minute, and the stop times are

recalculated. The starting time can be pushed back until the beginning of its time

window. If a time window is still violated, then the schedule is flagged as infeasible.

5.4 Part 4: Improvement heuristic

After the route segments have been created, there may be several requests that

were unable to be inserted into a segment with any other requests, in other words

the request is the only one in the segment. This can happen due to the greedy nature

of the route insertion algorithm. If a request does not have an overwhelmingly high

centrality score, then it may get skipped while its neighbors are being added.

This module tries to insert any of these “single” requests into another route

segment, in order to reduce the total number of segments. It starts by enumerating

the single requests, and sorting them based on the number of candidates they have.

Requests with candidates are attempted in order of increasing number of candidates,

as it is more likely to find feasible insertion for requests with lots of candidates.

Requests with no candidates are tried at the end, since there is no information

available about which segments might be compatible with it.

The module begins by selecting the single request with the fewest pickup-

dropoff pair candidates. It then checks if it has any similar request-candidates, by
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Figure 5.3: Greedy request to route segment assignment algorithm.
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referring to the similarity matrix WR. If it does, it attempts to insert the request

into the smallest existing segment to which it is similar to, and if insertion fails,

the second largest is tried, and so on. If there are no request-candidates similar to

the single request, then all sections are tried, in order of increasing size. This is

repeated until all single requests have received an attempt at reinsertion.

Additional local search improvement heuristics could be performed at this

point, but this research only considers the step described.

5.5 Part 5: Route segment chaining

The output of the previous step is a set of route segments, which may or may

not be served by distinct vehicles. For example, there may be two sections for which

the last dropoff time of one is sufficiently earlier than the first pickup time of the

other. These then could be served by the same vehicle. In order to reduce the

number of required vehicles, this step “chains” together route segments to be served

by a single vehicle. Another greedy heuristic is used, though it would be possible to

formulate the chaining problem as an integer program. Doing so would also allow

for crew-scheduling and maximum shift constraints to be imposed.

The first step of the chaining process is to find all pairs of compatible route

sections: these are sections for which it’s possible to leave the final dropoff stop of

one and arrive either on time or early to the start of the other. At this point, the

amount of compatibility could be quantified as a continuous value, for example as

some combination of the distance required to travel and the amount of time the
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vehicle would be early to the next pickup. However in this research, compatibility is

treated as a binary condition. Next, an undirected graph is formed using the route

sections as nodes and their compatibility as arcs. Note there is obvious asymmetry

in the arcs: if segment Y can be served before segment Z, then it’s not possible for

segment Z to be served before Y . However, as will soon be apparent, this step does

not need to consider the arc direction, so the arcs are treated as undirected.

The next step is to identify the cliques in this graph. A clique represents a

set of segments that are mutually compatible (i.e., every member of the clique is

compatible with every other member). Thus, a single vehicle can be assigned to all

the members of a clique. Computing all cliques, however, is quite memory intensive

for a solution with many route segments that covers a long period of time. For

instance, if the sample time period is one hour, there may be many possible pairs

of segments that can be served one before the other.

To reduce the cost of running this step, the following modification was made.

For each pair of compatible segments Y and Z, define the idle time between them as

the amount of time after travelling from Y and arriving at Z before Z’s service start

time. Remove any edges with idle time above a certain threshold. Then compute

the cliques on this much smaller graph. Starting with the largest clique, assign its

member route segments to the same vehicle, and proceed until all clique members

have been assigned. Since a segment may belong to multiple cliques, once it has

been assigned, the clique membership table is updated. Any segments that are not

members of a clique – meaning they are not compatible with any other segments –

must be served by separate vehicles.
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After the first iteration, many route segments will have been chained together.

Repeat the chaining process until there are no more cliques. At this point, the final

vehicle assignment has been determined.

5.6 Phase II conclusion

This completes the request-vehicle assignment algorithm. In summary, the

algorithm references the similarity matrix from Phase I to create a measure of sim-

ilarity between request-candidates, which are objects corresponding to the possible

pickup-dropoff pairs that are feasible for each request. The similarity is set to 0 if the

time ranges of the requests do not overlap. The similarity defines a directed graph,

which can be made undirected by taking the larger of the forward and backward

arc costs. Then a fast greedy clustering algorithm is run on the graph to determine

request-candidates that are similar. Within each cluster, the weighted degree is

calculated for each node, equal to the sum of the costs of the incident edges. Higher

scores correspond to more “important” nodes, i.e., ones that are likely to be com-

patible with the most number of other nodes. A greedy insertion technique is used

to generate segments of routes. Local perturbations are checked at each insertion,

including grouping requests to the same stops and testing nearby stops. After the

route sections are obtained, any single requests are attempted to be inserted into a

more full section. Finally, the route sections are chained together, yielding a route

corresponding to each vehicle.
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Chapter 6: Case Study: Washington DC Taxi Trips

To test the model’s performance with a real scenario, a data set of all taxi

trips taken in the month of May 2015 was obtained from the Washington DC De-

partment of For-Hire Vehicles [63]. A particularly busy hour in the sample – 6 pm

on Wednesday May 13th – was taken as the test period. A network of stop locations

was defined by using the existing locations of bus stops in the city, and filtering

them to a more manageable number. The stop network and the area they cover is

shown in Figure 6.1. The following sections detail the steps taken to implement the

model, and the results of several instances with varying parameters.

All of Phase I was implemented in a PostgreSQL database. For Phase II,

the selection of candidates for each request was performed in the database, and

the remaining steps were performed using the R programming language [64]. The R

igraph library was used for the graph clustering and centrality calculations [65]. All

code was executed on a computer running Ubuntu with an Intel Core i7 processor

and 16 GB of RAM.
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Figure 6.1: Case study stop network

The stop network used in the case study contains 270 stops and covers an area of
about 13.5 square miles.
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6.1 Data sources

6.1.1 Road network

For this research, a digital representation of the street network was obtained

from OpenStreetMap [66], an open source map database. The extract file was

loaded into a PostgreSQL database [67] and parsed from its XML format into SQL

tables. The road network is represented by two types of objects: nodes and ways,

where nodes are 1-dimensional points, and ways are collections of points. Roads are

represented as ways, and contain a node every time the road bends. This means

that the segment between two successive nodes is always a straight line. The extract

area contained 15,193 road type ways, which had an associated 121,526 nodes.

This research made use of the PostGIS extension for PostgreSQL [68], which

provides an efficient way to perform geometric operations such as calculating the

length of a line, even if it is specified in non-Euclidean coordinates such as latitude

and longitude. The length of each straight-line segment was calculated and then

the total length of each road segment was taken as the sum of its straight-line

sub-segments. The bearing was also calculated for each sub-segment, which is the

degrees differing from north, increasing in the clockwise direction. Any unnecessary

nodes were removed in the following way: a node was kept if it represented an

intersection of road segments, if it represented a bus stop, or if it was the start or

end point of a road segment, and otherwise it was discarded. Any edges that contain

sub-segments defined by the nodes that were removed were combined to form one

74



long edge, with length equal to the sum of the sub-segment lengths.

Next, the road data needed to be further processed to be used as a directed

graph. Streets that were marked as one-way were not modified. For the remaining

streets, a reverse edge was created, but different Id numbers were used for the new

edges and respective nodes. This was done to prohibit taking U-turns at every

node. Then artificial edges of length zero were added to connect the new edges to

the original ones, but only if the angle of the implied turn was not larger than 135

degrees.

Lastly, a spatial index was created on the road segment table. This instructs

the database to internally organize the location of each segment based on its physical

location. The spatial index is used to reduce the amount of time needed to find

objects close to one another.

6.1.2 Bus stop network

This research used the location of existing bus stops to form the stop network.

The locations were obtained from the website of the Washington Metropolitan Area

Transit Authority (WMATA) [69]. The data set contains the location coordinates

in longitude and latitude of the stops, the stop name, and the bearing angle of the

stop. As with the road segments, a spatial index was created for the stop locations.

The bus stops were inserted into the road network in the following way. For

each bus stop, any of the straight-line road sub-segments within a small radius of the

stop were considered. Finding nearby edge sub-segments is the step that benefited
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Figure 6.2: Matching bus stops to the road network

from having a spatial index on both tables. Then from these candidates, the road

sub-segment with the bearing most similar to the bearing of the stop was taken as

the matched road segment. Then two artificial edges were created in the graph,

connecting the start point of the matched edge to the stop, and then connecting the

stop to the end point of the matched edge. This matching process is depicted in

Figure 6.2.

A subset of the full set of stops was defined manually, with the goal of obtaining

an even distribution of stops over the service area. Additionally, if a stop was selected

on a two-way street, it was ensured that the stop on the opposite side of the street

was also chosen. The network tested contained a total of 270 stops, and covered an

area of 13.5 square miles. The map of the bus stop network is shown in Figure 6.1.

6.1.3 Demand data

The request data was taken to be real requests for taxi trips during the period

of 6:00 PM to 7:00 PM on May 13, 2015. The data set contains the longitude

and latitude coordinates of the origin and destination for each request. Any trips
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that did not originate or end within γ of a stop in the system were discarded. The

mileage of the trip is contained in the data set as well, but in order to compare to the

results of the model, the requests origin and destination locations were integrated

into the road network in the same manner that the bus stops were matched, but

taking the “bearing” as the angle defined by the straight line between the origin

and destination. The taxi data set also contains the license plate Id of the taxi that

served each request. Therefore it is possible to count how many taxi vehicles were

used to meet the demand.

6.1.4 Shortest path engine

In order to perform the large number of shortest path calculations needed for

Phase I of the algorithm, the pgRouting [70] extension for PostgreSQL was used.

The convenience of this extension is that it simply requires the graph edges to be

listed in a table having the columns “source node id,” “target node id,” and “cost.”

Then a number of functions are available to calculate either a one-to-one shortest

path or one-to-many shortest paths. The function pgr kdijkstrapath calculates

one-to-many shortest paths and returns the edges in each of the paths. For each

stop in the network, this function is called to get the shortest path edges to all other

stops in the network.
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6.2 Model Performance

The model’s performance is documented in the following sections. Table 6.2

summarizes the run time of both phases and their sub-parts.

6.2.1 Phase I

The stop network contains 270 stops. The set M contains all feasible pickup-

dropoff pairs, which are pairs of stops that are at least β distance apart. The

minimum route distance β was set to 800 meters. Whereas the set of all pickup-

dropoff pairs would have 270 × 270 = 72, 900, the β filter reduced the number to

67,118. It took approximately 30 minutes to generate all of the routes and compute

their shortest paths. Then Phase I began by calculating the commonness of each

edge used in the shortest paths. Figure 6.3 shows how the commonness is greater

on the major roads. Three iterations were used for Phase I (κ = 3), and together

had a run time of about 7 hours.

The most computationally intensive step of Phase I is the calculation of the

similarity matrix. The results of the shortest path calculations are stored in a table

containing the Id of the pickup-dropoff pair, and the corresponding Id’s of each of

the edges in the shortest paths. Determining similar pickup-dropoff pairs involves

joining this table to itself. For the three iterations, the number of rows in this

table is 6,597,541; 6,765,471; and 6,996,295, respectively. Two steps were taken to

improve performance of these joins. The first was to draw a uniform grid over the

service area map, and categorize each edge by its membership to a particular cell of
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Figure 6.3: Edge commonness illustration

The commonness of each edge (proportional to the number of times an edge is
used in a shortest path) is represented by the color of the edge. Darker colors

indicate greater commonness. The commonness shown here is with respect to the
third iteration of the Phase I iterative shortest path calculation.
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the grid. If an edge overlaps multiple cells, the one in which the largest portion of

its length falls into is taken. For this instance, a grid of squares with side length 600

meters was drawn over the service area, resulting in 357 cells. Then the shortest

path table is indexed by the grid cell Id and the edge Id. Since there are much fewer

grid cells than edges, the join is able to quickly eliminate a lot of possibilities, and

thus run time is greatly improved. The second performance improvement step was

to calculate the similarity matrix in segments: the 67,118 pickup-dropoff pairs were

subdivided into 34 segments, and the similarity for each segment was calculated

one at a time. The parameter h determines the minimum amount of similarity two

pickup-dropoff pairs must have in order to be recorded in the similarity matrix. For

this case study, h was set to 0.6.

6.2.2 Phase II

A total of 36 instances were created to test the effect of the following factors

on system efficiency:

• The number of requests

• The inconvenience level λ

• The average driving speed in the network

• The effect of considering multiple candidate stops for each request

Two parameters are not tested by this case study. The first is the value of

the maximum allowable walking distance, γ. This is not tested due to the fact
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that the stop network is not sufficiently dense. Many requests only had one or two

candidate stops, and the next closest stops were quite far. So an increase to γ

would not impact the number of candidates much, unless it was a large increase.

Alternatively, setting γ too low would make some requests ineligible for any stop,

meaning that the number of requests under the different γ settings would not be

equal, and a fair comparison could not be made. Therefore it would not be possible

to see a smooth response from increasing or decreasing γ. In order to assess the

impact of this parameter, it would be necessary to have a much more dense stop

network. Instead, the value of γ was fixed to 400 meters for all of the instances.

The second factor that was not varied for testing is the vehicle capacity. This

is so that the model can inform the vehicle sizes needed to serve the demand. For

the instances studied, the capacity of all vehicles was set to the arbitrarily large

value of 50.

6.2.3 Instance descriptions

For the one hour period of taxi data available, subsets of requests where gener-

ated by randomly removing a percentage of the requests. The full data set contained

1,291 requests with origin and destination within walking distance of stops in the

network. Smaller samples were created by randomly removing 25, 50, and 75% of

records from the full data set. The purpose of comparing the outcome under dif-

ferent demand levels is to show that the system is more efficient when demand is

higher, as the chance to combine trips increases. Table 6.1 shows the number of
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Percentage of original data Number of requests Requests per vehicle

Full 1,291 1.07
75% 970 1.07
50% 646 1.06
25% 335 1.07

Table 6.1: Sizes of each request data subset.

requests in each of the request data subsets. It also provides the ratio of the number

of requests to the number of taxi vehicles used, where a value of 1 indicates each

request was served by a unique vehicle. This is the key metric used to compare the

performance of the model on the various instances. While it is much greater for

the proposed system, it is not a completely fair comparison since the model here

is static – the requests are known in advance – whereas a taxi system is dynamic.

Nonetheless, these values are shown for reference.

Next, for each of the request sets, three values of λ were tested: 5, 10, and

15 minutes. The parameter λ puts a limit on the amount of additional travel time

allowed with respect to the direct travel time. Referring to Figure 5.2, decreasing

lambda shifts the earliest pickup time closer to the latest pickup time. Therefore

a larger λ value means wider time windows for the requests, and therefore a larger

feasible region.

There is a technicality that should be explained: when increasing the value of

λ, for example from 5 to 10 minutes, it may become possible to serve more requests

than with the lower value. This can happen when all of the candidates of a request

require a total walking time greater than 5 minutes. With γ = 5, they would not

be able to use any pickup-dropoff pair, however with γ = 10, they will have some
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candidates. In order to be able to make a comparison across the different values

of λ, only the requests that are feasible with λ = 5 are considered for all of the

instances.

In addition to the value of λ and the volume of the requests, the effectiveness

of a shared ride system clearly also relies on the average travel speed on the road

network. The faster a vehicle is able to move between stops, the more it is possible

to combine trips without violating the passenger time windows. To measure this

effect, for each of the four requests sets and three λ values, the model was solved

for two values of the driving speed: 11 mph and 20 mph.

An additional set of instances was run to test the importance of considering

multiple possible pickup and dropoff locations. In the standard Dial-a-Ride prob-

lem, passengers are picked up at their requested origin and taken to their requested

destination. In the proposed system, passengers may be served from one of many

possible nearby stops. As a way to show the effectiveness of these flexible meet-

ing points, the model was run assuming that the passengers were served from the

pickup and dropoff stops closest to them. In other words, these instances considered

the objective of minimizing the amount of walking required of passengers. These

instances were performed assuming an average driving speed of 11 mph.

This results in a total of 36 instances. Their objective values are presented

and discussed in the next section, and Tables 6.2 and 6.3 in the subsequent section

reports their run times.
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6.2.4 Measures of effectiveness

Two obvious measures of effectiveness for a shared ride service are the vehicle

utilization rate (number of requests served per vehicle) and the amount of inconve-

nience experienced by the passengers. However, it is also important to evaluate the

scalability of the request assignment algorithm. The model presented here exhibits

a nice scaling property, in that:

1. Vehicle utilization increases with respect to increasing the demand (Economies

of scale)

2. As demand grows, it becomes possible to have a low inconvenience level and

maintain high utilization

The first result can be shown by comparing the vehicle utilization as a function

of the request volume, controlling for the inconvenience level λ. This relationship is

shown in Figure 6.4. Each line represents a constant value of λ: either 5, 10, or 15

minutes. It can be seen that the vehicle utilization (requests per vehicle) increases

as request volume increases. For example, with λ = 10 and an average travel speed

of 11 mph, it requires 68 vehicles to serve 335 requests, giving a utilization rate

of 4.93. However, with the same parameter settings it requires only 199 vehicles

to serve 1,291 requests, giving a utilization rate of 7.51. Increasing the number of

requests by about four times resulted in only about a three time increase in the

number of vehicles needed. This means that each additional unit demand because

less costly to serve.
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The increase in utilization as a function of requests can be explained by two

factors. First, the vehicle capacity is allowed to adjust to accommodate a greater

number of requests. This is shown in Figure 6.5, which shows the average capacity

of the vehicles in the solution to each instance. The capacity for each vehicle is

found by taking the greatest number of passengers simultaneously on board at any

point in the vehicle’s schedule.

The second result requires plotting the vehicle utilization, which is the model’s

objective, against the inconvenience level, controlling for the number of requests. As

discussed, increasing λ leads to a larger feasible region, since it becomes possible to

combine trips that for lower values of λ were not feasible to combine. As a result,

vehicle utilization increases with λ. Depending on the needs of the system operator,

it may be desirable to offer a more convenient service if cost is less important. Then,

for example, if request volume is high enough, it is possible to still obtain utilization

of about 5, which may be considered good enough, even with λ equal to 5 minutes.

The two panels of Figures 6.4 and 6.6 show the effect of increasing the average

travel speed from 11 mph to 20 mph. Note that the instances with 335 requests

obtained a utilization between 3.94 and 5.78 when travel speed is 11 mph, but when

speed is increased, the utilization increases to between 5.20 and 9.32. This means

that in a low demand scenario, being able to increase travel speed can boost the

utilization to a level experienced under high demand. Therefore, if a city has low

request volume, they can still run an efficient shared ride service if they increase

travel speeds, for example by letting the vehicles use HOV or dedicated lanes.

The two panels of Figure 6.7 show the impact of choosing to minimize the
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Figure 6.4: Improvements to vehicle utilization with respect to demand
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Figure 6.5: Vehicle capacity with respect to λ and demand
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Figure 6.6: Increase to vehicle utilization with respect to inconvenience
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Figure 6.7: Impact of flexible meeting points vs closest points
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passengers’ walking distance instead of the number of vehicles used. In the left

panel, only the closet pickup and dropoff stop were considered for each request. Thus

vehicles are likely required to driver farther to pick up and drop off each individual

passenger. This means that time window constraints will be violated much sooner

(i.e., with a lower number of passengers), therefore requiring a larger fleet to serve the

same level of demand. While the flexible scenarios achieved a vehicle utilization of

up to 7.51, the instances that only considered the closest stops attained a maximum

utilization of 4.26. Two sample route segments from the solution with and without

flexible meeting points are shown in Figure 6.8. Green and red dots show the origin

an destination locations, respectively, of requests. The upper panel shows the case

when the closest points are chosen. The route must make many time consuming

maneuvers to reach the rider. On the other hand, in the route with flexible meeting

points, the vehicle can take a much more streamlined path, resulting in an improved

travel time for all passengers.

It should be noted that the impact of choosing the closest stop varies greatly

depending on the density of the stop network. If the stop network is fairly sparse,

then the chance of multiple riders being served by the same stop increases, and

system efficiency may not be impacted much. However for a dense stop network,

choosing the closest stop leads the system to approximate a taxi service, and the

likelihood of trip combining falls.
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Figure 6.8: Comparison of routes with and without flexible meeting points
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6.2.5 Performance summary

Table 6.2 summarizes the parameter settings for each instance, as well as the

average number of available candidates for each request. This is a function of the

inconvenience level λ: for larger values of λ there are more feasible pickup-dropoff

pairs available for each request. Thus the problem size grows as λ increases. The

center columns in the table present number of vehicles used in the solution, K, as

well as the vehicle utilization (number of requests per vehicle used), and the average

capacity of the vehicles in the solution. Table 6.3 shows the same information but

for the twelve instances for which only the closest pickup and dropoff stops were

considered (thus the number of candidates per request is 1).

The rightmost group of columns show the solution time for each of the in-

stances, in units of seconds. The five parts of the Phase II solution algorithm are

1) identifying request candidates, 2) defining the graph and performing clustering

and centrality calculations, 3) greedy request to route segment assignment, 4) im-

provement heuristic, and 5) route segment chaining. The run times of parts 3 and

4 dominate the others. Two observations can be made. The run time of part 3

increases steadily with the number of requests, as is shown in Figure 6.9. However,

the run time of part 4 is more sensitive to the λ parameter. The task of part 4 is

to attempt to insert requests that failed to be combined with any others in part 3.

For lower λ or driving speed there is less similarity among requests which leads the

clustering step to yield many small clusters, making single requests more common.

This leads part 4 to have a higher run time for lower λ, as shown in Figure 6.10.
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Table 6.2: Run times and objective values of all instances, flexible meeting points

Id Demand |R| λ Speed Cand./Req. K |R|/K Avg. Cap. Part 1 Part 2 Part 3 Part 4 Part 5 Total time

1 25 335 5 11 6 85 3.94 2.21 2 2 113 1337 29 1483
2 25 335 10 11 17 68 4.93 3.18 2 6 274 1273 32 1587
3 25 335 15 11 17 58 5.78 3.64 2 5 384 791 23 1205

4 50 646 5 11 6 130 4.97 2.76 3 4 304 3000 92 3403
5 50 646 10 11 17 110 5.87 3.86 4 12 888 2755 100 3759
6 50 646 15 11 18 101 6.40 4.39 5 11 1134 1797 82 3029

7 75 970 5 11 6 204 4.75 2.84 4 5 784 2711 55 3559
8 75 970 10 11 16 155 6.26 4.17 6 17 2189 2793 60 5065
9 75 970 15 11 17 139 6.98 4.99 8 16 2287 2305 40 4656

10 100 1,291 5 11 6 246 5.25 3.14 22 7 1132 3707 102 4970
11 100 1,291 10 11 16 199 6.49 4.40 15 26 3925 3223 98 7287
12 100 1,291 15 11 17 172 7.51 5.44 8 26 3758 3153 85 7030

13 25 317 5 20 6 61 5.20 2.39 2 2 88 822 73 987
14 25 317 10 20 17 43 6.89 3.49 2 6 293 982 67 1350
15 25 317 15 20 18 34 9.32 4.71 2 5 277 387 68 739

16 50 590 5 20 6 98 5.78 2.81 3 4 200 1706 91 2004
17 50 590 10 20 18 69 8.19 4.23 4 12 781 1335 85 2217
18 50 590 15 20 18 63 9.36 5.30 4 11 872 1108 91 2086

19 75 901 5 20 5 141 6.63 3.29 4 5 483 1512 40 2044
20 75 901 10 20 17 85 10.60 5.58 5 18 1584 1881 48 3536
21 75 901 15 20 18 77 12.01 7.00 7 16 2121 1149 53 3346

22 100 1,204 5 20 6 163 7.39 3.70 6 7 865 2184 107 3169
23 100 1,204 10 20 17 105 11.36 6.28 9 27 2850 2421 117 5424
24 100 1,204 15 20 18 93 12.29 7.72 12 25 2693 1948 116 4794
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Table 6.3: Run times and objective values of all instances, closest meeting points

Id Demand |R| λ Speed Cand./Req. K |R|/K Avg. Cap. Part 1 Part 2 Part 3 Part 4 Part 5 Total time

25 25 339 5 11 1 91 3.73 1.96 3 1 53 760 26 843
26 25 339 10 11 1 99 3.42 2.11 3 1 60 583 23 670
27 25 339 15 11 1 95 3.57 2.26 3 1 53 392 23 472

28 50 646 5 11 1 176 3.67 1.98 4 1 118 1812 34 1969
29 50 646 10 11 1 159 4.06 2.31 4 1 125 1168 31 1329
30 50 646 15 11 1 174 3.71 2.32 4 1 116 932 29 1082

31 75 970 5 11 1 240 4.04 2.29 4 1 219 2307 29 2560
32 75 970 10 11 1 231 4.20 2.49 5 1 207 1871 26 2110
33 75 970 15 11 1 233 4.16 2.64 5 1 211 1435 22 1674

34 100 1291 5 11 1 305 4.23 2.36 6 1 354 3113 47 3521
35 100 1291 10 11 1 308 4.19 2.58 6 1 272 2247 42 2568
36 100 1291 15 11 1 303 4.26 2.70 6 1 315 1654 36 2012
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Figure 6.9: Comparing run times of Phase II, Part 3
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Figure 6.10: Comparing run times of Phase II, Part 4
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Chapter 7: Conclusion and Future Work

7.1 Future extensions

7.1.1 Further parameter testing

The case study presented here tested different values of the inconvenience level

λ, the request volume, and the average travel speed in the network. Two parameters

were left out of this analysis: vehicle capacity and the walking limit. Future work

could study the impact of using a fleet of small, medium, or large vehicles on the

vehicle utilization objective.

In order to meaningfully test the walking limit, however, it would be necessary

to use a much more dense stop network. Without a sufficiently dense stop network

it is not possible to measure smooth responses to changes in the walking limit.

Increasing the number of stops would increase the run time of Phase I, since every

new stop introduces N new pickup-dropoff pairs. Therefore new techniques, from

both a computing and algorithmic standpoint, would need to be developed to handle

large networks.

A more subtle parameter that was not tested is the value of h, which de-

termines how similar two pickup-dropoff routes must be before adding their cor-
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responding edge to the graph. In this case study h was set to 0.6, meaning that

any request-candidates with less than this similarity did not have an edge between

them. The higher the value of h, the smaller the graph, which may be desirable

from a computational standpoint. However, the resulting clusters may be smaller

and more numerous, which will make it difficult for the greedy-assignment phase to

form route segments. Experimenting with a lower h value may yield even higher

vehicle utilization, at the expense of increased computational requirement.

An additional factor that is critical to the success of a shared ride system is to

what degree there are strong spatial and temporal patterns in the users’ requests.

A controlled experiment could be done, in which requests are uniformly generated

over space and time. A completely random demand pattern represents the “worst

case” scenario for this system, since trips are much less likely to be similar.

7.1.2 Modeling extensions

The model considered here had the objective of maximizing vehicle utilization,

subject to serving all of the demand. It may be desirable however, to include a

financial constraint. This would allow for the possibility of rejecting certain requests

that are too costly to serve. This research did not impose a fleet size constraint,

but such a constraint would make the model more realistic. This would be possible

within the current modeling framework by simply removing the vehicles with lowest

utilization until the fleet size constraint is satisfied.

An additional advancement would be to allow for a mixed fleet, for example
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with some small vehicles and some high capacity vehicles. This may be most bene-

ficial in an area that has a dense urban core and a sprawling surrounding residential

area. The variable vehicle capacity would have to be taken into account in the

greedy insertion step. Instead of initializing an arbitrary vehicle for a new request,

care would need to be taken to assign larger vehicles to requests that are expected

to overlap with many others, and smaller vehicles to requests to which few others

are similar. Lastly, crew scheduling considerations should be considered, in order to

allow drivers to take breaks or end their shift.

7.2 Conclusion

This research has approached a new problem, which seeks to pick up and drop

off passengers in an efficient manner. It bears similarity to the Dial-a-Ride problem

and the School Bus Routing Problem. With respect to the former, a solution is

sought that assigns a timetable for vehicles to pick up and drop off passengers,

subject to time window and vehicle capacity constraints. However, passengers are

not necessarily picked up or dropped off at their precise origin and destination

locations. Instead, they are asked to walk to a stop in order to meet the vehicle.

This is done to reduce the amount of in-vehicle time, which in turn allows a greater

number of trips to be combined, than compared with a traditional carpool or shared

taxi system.

The concurrent optimization of the vehicle route and the passenger stop as-

signment makes this problem similar to the School Bus Routing Problem. The key
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difference is that in the SBRP, passengers are taken to a common destination at a

common time.

The model proposed here uses a graph clustering algorithm to find groups of

request candidates that are similar. The edge weights for the graph are derived in

the first phase of the algorithm, which may be done ahead of time since it is time

consuming. The second phase assigns similar request candidates to vehicles in a

greedy fashion, and then applies some improvement heuristics.

The system in general is able to attain high vehicle utilization thanks to meet-

ing points, which allow multiple passengers to be served from the same location

at no additional cost to the route. Moreover, the results show that such a system

has the property of economies of scale: as the demand for the service increases,

the vehicle utilization rate increases. Put another way, when demand increases, the

number of vehicles required increases, but by (considerably) less than the demand

increase, meaning it becomes less costly to serve each unit of demand. This is due

to two factors. First, the vehicle capacity is allowed to adjust to accommodate more

passengers. Second, as the request volume increases, the likelihood of encountering

similar requests increases. This makes it easier to combine more trips without in-

curring much additional inconvenience to the other riders. As a corollary, when the

number of requests becomes sufficiently high it becomes possible to achieve reason-

able vehicle utilization with a low inconvenience to passengers. Additional efficiency

gains can be realized with an increased travel speed in the system, which can be

achieved with dedicated lanes for the shared vehicle fleet. This should encourage

city transportation officials to consider offering such a service.
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