
BioMed CentralBMC Bioinformatics

ss
Open AcceResearch article
Is searching full text more effective than searching abstracts?
Jimmy Lin1,2

Address: 1National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland, USA and 2The iSchool, University 
of Maryland, College Park, Maryland, USA

Email: Jimmy Lin - jimmylin@umd.edu

Abstract
Background: With the growing availability of full-text articles online, scientists and other
consumers of the life sciences literature now have the ability to go beyond searching bibliographic
records (title, abstract, metadata) to directly access full-text content. Motivated by this emerging
trend, I posed the following question: is searching full text more effective than searching abstracts?
This question is answered by comparing text retrieval algorithms on MEDLINE® abstracts, full-text
articles, and spans (paragraphs) within full-text articles using data from the TREC 2007 genomics
track evaluation. Two retrieval models are examined: bm25 and the ranking algorithm implemented
in the open-source Lucene search engine.

Results: Experiments show that treating an entire article as an indexing unit does not consistently
yield higher effectiveness compared to abstract-only search. However, retrieval based on spans, or
paragraphs-sized segments of full-text articles, consistently outperforms abstract-only search.
Results suggest that highest overall effectiveness may be achieved by combining evidence from
spans and full articles.

Conclusion: Users searching full text are more likely to find relevant articles than searching only
abstracts. This finding affirms the value of full text collections for text retrieval and provides a
starting point for future work in exploring algorithms that take advantage of rapidly-growing digital
archives. Experimental results also highlight the need to develop distributed text retrieval
algorithms, since full-text articles are significantly longer than abstracts and may require the
computational resources of multiple machines in a cluster. The MapReduce programming model
provides a convenient framework for organizing such computations.

Background
The exponential growth of peer-reviewed literature and
the breakdown of disciplinary boundaries heralded by
genome-scale instruments have made it harder than ever
for scientists to find and assimilate all the publications
important to their research [1]. Thus, tools such as search
engines are becoming indispensable. Motivated by the
desire to develop more effective text retrieval algorithms
for consumers of the life sciences literature, this study

poses a straightforward question: Is searching full text
more effective than searching abstracts? That is, given a
particular information need expressed as a query, is the
user more likely to find relevant articles searching the full
text or searching only the abstracts?

This question is highly relevant today due to the growing
availability of full-text articles. In the United States, the
NIH Public Access Policy now requires that all research

Published: 3 February 2009

BMC Bioinformatics 2009, 10:46 doi:10.1186/1471-2105-10-46

Received: 2 October 2008
Accepted: 3 February 2009

This article is available from: http://www.biomedcentral.com/1471-2105/10/46

© 2009 Lin; licensee BioMed Central Ltd. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 15
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/10/46
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19192280
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


BMC Bioinformatics 2009, 10:46 http://www.biomedcentral.com/1471-2105/10/46
published with NIH funding be made publicly accessible.
More broadly, the Open Access movement for the dissem-
ination of scientific knowledge has gained significant trac-
tion worldwide. These trends have contributed to the
accumulation of full-text articles in public archives such as
PubMed Central and on the websites of Open Access jour-
nal publishers. The growth of freely-available content rep-
resents a significant opportunity for scientists, clinicians,
and other users of online retrieval systems – it is now pos-
sible to go beyond searching bibliographic data (abstract,
title, metadata) in sources such as MEDLINE to directly
search contents of the full text. Indeed, Zweigenbaum et
al. [2,3] identified analysis of full-text articles as one of the
frontiers in biomedical text mining.

To be clear, I refer to full-text search as the ability to per-
form retrieval on the entire textual content of an article
(including its title and abstract), whereas abstract search
refers to retrieval based only on abstract and title (similar
to what is available in PubMed® today). This work focuses
on content-based searching only; experiments do not take
advantage of metadata (e.g., authors, journal titles, MeSH®

descriptors), since they would presumably be available for
both full-text and abstract searches.

Not surprisingly, there isn't a straightforward answer to
the question posed in this study. I describe experiments
with MEDLINE abstracts, full-text articles, and spans (par-
agraphs) within full-text articles using data from the TREC
2007 genomics track evaluation. The experiments exam-
ined two retrieval models: bm25 and the ranking algo-
rithm implemented in the open-source Lucene search
engine. Results show that treating an entire article as an
indexing unit does not consistently yield higher effective-
ness compared to abstract search. However, retrieval
based on spans, or paragraphs-sized segments of full-text
articles, consistently outperforms abstract search. Results
suggest that highest overall effectiveness may be achieved
by combining evidence from spans and full articles. These
findings affirm the value of full text collections for text
retrieval and provide a starting point for future work in
exploring algorithms that take advantage of full text.

One important implication of this work is the need to
develop scalable text retrieval algorithms, since full-text
articles are significantly longer than abstracts. In the near
future, the amount of available content will likely out-
grow the capabilities of individual machines, thus requir-
ing the use of clusters for basic processing tasks. I explore
this issue with Ivory, a toolkit for distributed text retrieval
built on top of Hadoop, an open-source implementation
of the MapReduce programming model [4].

Related Work
Despite much optimism among researchers about the
potential of full-text articles, it is not completely clear how
present techniques for mining the biomedical literature,
primarily developed for title, abstract, and metadata (e.g.,
MeSH descriptors), can be adapted to full text. For some
tasks, full text does not appear to offer much beyond title
and abstract. For example, consider the Medical Text
Indexer (MTI), a production tool at the National Library
of Medicine (NLM) that assists human indexers in assign-
ing MeSH descriptors to MEDLINE citations based on title
and abstract. Gay et al. [5] reported their experiences on
extending MTI to base MeSH recommendations on full
text. After much tuning and careful selection of article sec-
tions, a modest gain in effectiveness was achieved. How-
ever, the improvements were most likely "not worth the
extra effort" (personal communication, Alan Aronson)
and there are currently no plans to integrate full-text capa-
bilities into the NLM article processing pipeline. Further-
more, it is unclear whether the particular treatment of
article sections is generalizable beyond the relatively small
set of articles examined in the study.

Other researchers have also tried to exploit information in
full-text articles for various text mining tasks. For example,
Yu et al. [6] used surface patterns to extract synonyms for
gene and protein names, and reported higher precision on
full text than on abstracts. More recently, Seki and Mostafa
[7] explored an "inference network" approach to mining
gene-disease associations. Taking advantage of full text
yields a small gain in effectiveness (consistent with the
MTI findings). However, the results were based on a small
collection of articles and can only be characterized as pre-
liminary. As with the MTI experiments, there remain ques-
tions about the generalizability of the results beyond
those articles examined.

There is no doubt that a significant amount of informa-
tion is contained in well-written abstracts. Journal
requirements for structured abstracts assist authors in
crafting highly-informative prose that covers the key
aspects of their work. In the clinical domain, for example,
Demner-Fushman et al. [8] showed that information in
abstracts is sufficient to identify articles that are poten-
tially useful for clinical decision support. In the biomedi-
cal domain, Yu [9] examined text associated with images
in articles and concluded that sentences in the abstract
suffice to summarize image content. In fact, she suggested
that abstract sentences may actually be superior, since
associated text in the article typically describes only exper-
imental procedures and often does not include the find-
ings or conclusions of an experiment. In a related study,
Yu and Lee [10] discovered that 88% of s and 85% of
tables can be summarized by sentences in the abstract,
and that 67% of abstract sentences correspond to images
Page 2 of 15
(page number not for citation purposes)



BMC Bioinformatics 2009, 10:46 http://www.biomedcentral.com/1471-2105/10/46
in the full-text articles. These results demonstrate that, at
least for some tasks, it is unclear what additional value
full-text content adds beyond title, abstract, and metadata.

Additionally, researchers have compared the term content
of abstracts with that of full text. Shah et al. [11] examined
a collection of articles and found that abstracts were the
richest source of relevant keywords. This finding was ech-
oed by Schuemie et al. [12], who concluded that the den-
sity of useful information is highest in the abstract, but
information coverage in full text is greater than that of
abstracts. However, the practicality of mining full-text arti-
cles is unclear due to increased computational require-
ments. Both these articles focused on characterizing texts
and did not examine the impact of abstract vs. full text on
a text-mining task.

There has been much work on processing full-text con-
tent, for example, the automatic extraction of gene names
and protein interactions in the BioCreative evaluations
[13,14]. However, that body of research differs signifi-
cantly from the goals of this study in that I am primarily
interested in differences between full text and abstracts,
and the impact of these differences on effectiveness in text
retrieval. In gene identification and related information
extraction tasks, the text collection is fixed, while research-
ers attempt to develop effective algorithms (as determined
by some standard metric such as F-measure). Specifically,
the tasks are designed in a manner such that the source of
the text is not a relevant factor. Experiments in this article,
on the other hand, focus both on algorithms and data.

The problem of retrieving sub-document segments of text
has previously been explored in the information retrieval
literature [15-24]; the task is often called passage retrieval.
Recently, there has been substantial interest in XML
retrieval, which shares many of the same issues as passage
retrieval since XML documents naturally support retrieval
at different granularities (i.e., every XML element is a
potential result). The locus of research activity resides in
the INitiative for Evaluation of XML Retrieval (INEX), an
annual evaluation forum that began in 2002 [25]. For sev-
eral years, the evaluation used a collection of XML-
encoded journal articles from the IEEE Computer Society.
Most relevant to this work, the genomics "track" at the
2007 Text Retrieval Conference (TREC) has explored pas-
sage retrieval in the life sciences domain. The overview
paper [26] provides an entry point into that literature
(also see Section 5.1). Experiments reported in this article
used the test collection from the TREC 2007 evaluation.

There is one important difference between this work and
the research discussed above. Whereas I ask the question
"Is searching full text more effective than searching
abstracts?", previous work simply assumes that the answer

is yes. Research papers on passage retrieval often take for
granted that retrieving passages provides value to the user.
The INEX evaluations implicitly assume that retrieving
XML fragments is desirable (although there have been
studies that explore the validity of this assumption
[27,28]). Since widespread availability of full text is a rel-
atively recent phenomenon in the life sciences, and
searching abstracts has been available for decades (and
shown to be reasonably effective), it is worth questioning
the premise that searching full text is inherently superior.
Focusing on this question, however, certainly does not
diminish the contributions of previous work: to the extent
that full text is shown to be valuable for text retrieval in
this specific domain, findings from related work can be
leveraged to inform the development of full-text retrieval
algorithms for the life sciences literature.

Comparison of Full Text and Abstracts
In comparing search effectiveness on full-text articles and
abstracts, it makes sense to begin by discussing their char-
acteristics and enumerating potential advantages and dis-
advantages. Such an analysis could guide the
interpretation of experimental results.

Length is the most obvious difference between full-text
articles and abstracts – the former provides systems with
significantly more text to process. Most information
retrieval algorithms today build on "bag of words" repre-
sentations, where text is captured as a weighted feature
vector with each term as a feature [29], or as a probability
distribution over terms in the case of language modeling
approaches [30,31]. These models derive from statistical
properties such as term frequency and document fre-
quency. More text could yield a more robust characteriza-
tion of these statistics (for example, in the language
modeling framework, longer documents require less
smoothing). However, the potential downside is that full
text may introduce noise. For example, an article may con-
tain an elaborate discussion about related work that does
not directly pertain to the article's main focus. Articles
often contain conjectures (that turn out to be incorrect) or
future work (which may or may not be fruitful lines of
inquiry). In these cases, term statistics may be misleading
due to the presence of "distractors" that dilute the impact
of important terms. In contrast, abstracts focus on the key
ideas presented in the articles and little else. Similar obser-
vations have been made with respect to collections of
newswire documents (e.g., [17]). Many news stories are
written about one central topic, but contain many aspects
that are only loosely connected – in these cases, a global
characterization of the entire document may not accu-
rately capture what the article is "about".

Another challenge with full-text articles is the variety of
formats in which they are distributed. Whereas there is a
Page 3 of 15
(page number not for citation purposes)



BMC Bioinformatics 2009, 10:46 http://www.biomedcentral.com/1471-2105/10/46
small number of formats for encoding MEDLINE
abstracts, full-text collections can be found in XML,
SGML, PDF, and even raw HTML (e.g., the result of Web
crawls). Each format is associated with idiosyncrasies that
make pre-processing a challenge. Just to give one example,
there are numerous ways to encode Greek symbols (α, β,
...) – sometimes, they are directly encoded in extended
character sets (e.g., Unicode); often, they are "written-out"
(e.g., alpha, beta, ...); in other cases, they are encoded as
HTML entities (e.g., &alpha;). The prevalence of special
characters in the literature complicates seemingly simple
tasks such as tokenization. The problem is further exacer-
bated when one tries to combine full-text collections from
different sources (in different formats).

Access to full text is necessary for certain fine-grained
retrieval tasks, e.g., image search [3]. Recently, there has
been substantial interest in this problem [32-34], based
on both image features and features derived from text
associated with images, e.g., captions and sentences in
which the figures are referenced. Full text is obviously
essential for extracting these features. For other tasks,
access to full text may be desirable, e.g., question answer-
ing. Unlike a search engine, a question answering system
attempts to return a response that directly answers the
user's question. Due to their specificity, users' questions
sometimes may not be sufficiently addressed by abstracts
– often, useful nuggets of information may be found in
parts of articles that are not well reflected in the abstract
(e.g., in the related work or discussion sections).

However, it is also important to take into account other
considerations in information seeking. Since many users
are uncomfortable reading large amounts of text on
screen, they often print out journal articles first before
reading them in detail. In these cases, finer-grained pas-
sage and image access capabilities are most useful in help-
ing users decide what articles they want to read, rather
than directly answering users' questions. Often, complex
information needs such as those faced by biologists can-
not be answered with a paragraph or an image – instead,
information returned by the system must be considered in
the context of the entire article from which the segment
was extracted (for example, so that the scientist can verify
the experimental procedure, consider alternative hypoth-
eses mentioned in the discussion section, etc.). For this
reason, I focus on a system's ability to identify relevant
articles. This corresponds to ad hoc retrieval, a task that has
been well studied by information retrieval researchers in
large-scale evaluations such as TREC.

Based on this discussion, it is clear that there are advan-
tages and disadvantages to full-text retrieval. However, the
extent to which these various factors balance out and
affect search effectiveness can only be determined empiri-

cally. The next section presents a series of experiments that
explore these issues.

Results
Test Collection
Retrieval experiments in this article were conducted with
data from the TREC 2007 genomics track evaluation [26],
which used a collection of 162,259 full-text articles from
Highwire Press. MEDLINE records that correspond to the
full-text articles were also provided as supplementary
data. To standardize system output, the organizers of the
evaluation divided up the entire collection into 12.6 mil-
lion "legal spans" (i.e., paragraphs) that represent the
basic units of retrieval. The test collection contains 36
information needs, called "topics", and relevance judg-
ments, which are lists of legal spans that were assessed by
humans to be relevant for each topic. Despite the availa-
bility of relevance judgments at the level of spans, I
focused on article-level relevance in order to support a
meaningful comparison of abstract and full-text search.
Section 5.1 describes this test collection in more detail.

Retrieval Conditions
A matrix experiment was devised with two different
retrieval models (in three separate implementations) and
three different data conditions. The goal was to compare
the effectiveness of different experimental settings, as
quantified by standard retrieval metrics (see Section 2.4).
The retrieval models examined were:

• The Okapi bm25 ranking algorithm [35,36] (described
in Section 5.2), as implemented in Ivory, a toolkit for dis-
tributed text retrieval. Ivory was developed with Hadoop,
an open-source implementation of the MapReduce pro-
gramming model (see Section 5.3 for details).

• The ranking algorithm implemented in the open-source
search engine Lucene, which represents a modified tf.idf
retrieval model (described in Section 5.2). Due to its pop-
ularity and ease of use, Lucene provides a good baseline
for comparison. This ranking algorithm was also imple-
mented in Ivory, primarily for evaluation of efficiency and
scalability (see Section 2.6).

The matrix design consisted of three different data condi-
tions. The following indexes were built (one set of indexes
for Lucene, another set of indexes for Ivory):

• Abstract index, built on the abstracts and titles of articles
in the Highwire collection, taken from the MEDLINE
records. Each abstract was considered a "document" for
retrieval purposes.

• Article index, built on the full-text articles in the High-
wire collection (which include abstracts and titles). The
Page 4 of 15
(page number not for citation purposes)



BMC Bioinformatics 2009, 10:46 http://www.biomedcentral.com/1471-2105/10/46
entire text of each article was considered a "document" for
retrieval purposes.

• Span index, built on the legal spans in the Highwire col-
lection. In this experimental condition, each of the 12.6
million spans in the collection was treated as if it were a
"document".

For each cell in the matrix experiment, I performed a
retrieval run with 36 queries, taken verbatim from the
TREC 2007 genomics track test data (see Section 5.1 for
examples). With the abstract and article indexes, retrieval
results consisted of 1000 article ids in rank order. For the
span index, the ranked results consisted of span ids. As a
post-processing step, I applied a script to create a ranking
of articles from a ranking of spans, using two different
methods described by Hearst and Plaunt [17]:

• Maximum of supporting spans (max): the score for an
article is computed as the maximum of scores for all spans
contained in that article. Article ids were sorted by this
score in descending order. This method favors articles that
have a single high-scoring span.

• Sum of supporting spans (sum): the score for an article
is computed as the sum of scores for all spans contained
in that article. Article ids were sorted by this score in
descending order. This method favors articles that have
many potentially-relevant spans.

In order to ensure that the post-processing script gener-
ated a ranked list of 1000 articles (same as the abstract and
article conditions), 5000 spans were retrieved initially.

Evidence Combination
An obvious extension to the matrix experiment discussed
in the previous section is to integrate evidence from mul-
tiple sources. As an initial exploration, I conducted a series
of experiments that combined the results of span retrieval
with either article or abstract retrieval. In both cases, runs
were combined by first normalizing each set of scores and
then averaging scores from the different runs. The goal of
this experiment was to examine the effect of combining
content representations at different granularities. Note
that in principle a simple average of the scores could be
replaced with weighted linear interpolation (or some
other evidence combination technique), but in absence of
a principled approach to determining parameters, I opted
not to explore this option for fear of overtraining on lim-
ited data.

Evaluation Metrics
For all experimental conditions, I arrived at a ranking of
1000 articles, which supported a meaningful comparison

across all data conditions. To evaluate effectiveness, three
different metrics were collected:

• Mean average precision (MAP), the single-point metric
of effectiveness most widely accepted by the information
retrieval community. The standard cutoff of 1000 hits was
used.

• Precision at 20 (P20), the fraction of articles in the top
twenty results that are relevant. The cutoff of twenty
equals the number of hits on a result page in the present
PubMed interface. In a Web environment, many searchers
only focus on the first page of results.

• Interpolated precision at recall of 50% (IP@R50), which
attempts to capture the experience of a dedicated, recall-
oriented searcher (e.g., scientist conducting a literature
search). This metric quantifies the amount of irrelevant
material a user must tolerate in order to find half of the
relevant articles – the higher the IP@R50, the less "junk"
a user must sort through. In this study, I characterize
IP@R50 as a "recall-oriented" metric. The recall level of
50% was arbitrarily selected.

Section 2.5 focuses on retrieval effectiveness with Ivory,
comparing bm25 and the implementation of Lucene's
ranking algorithm. Section 2.6 focuses on efficiency, com-
paring Lucene with the implementation of its ranking
algorithm in Ivory.

Retrieval Effectiveness
Results of the matrix experiment described in Section 2.2
with Ivory are presented in Table 1. The three parts of the
table show effectiveness in terms of MAP, P20, and
IP@R50. The columns report figures for the two retrieval
models: bm25 and the Ivory implementation of Lucene's
ranking algorithm. Abstract retrieval (i.e., retrieval using
the abstract index) is taken as the baseline, and the table
provides relative differences with respect to this condi-
tion. The Wilcoxon signed-rank test was applied in all
cases to assess the statistical significance of the results.

Results show that for abstract retrieval, bm25 is signifi-
cantly more effective in terms of MAP than the Lucene
ranking algorithm (p < 0.01). Comparing abstract retrieval
with article retrieval (i.e., retrieval using the article index),
MAP is significantly higher (p < 0.01) for Lucene but dif-
ferences are not statistically significant for bm25. For the
Lucene ranking algorithm, article retrieval significantly
outperforms abstract retrieval for the other two metrics as
well. On the other hand, for bm25, article retrieval either
hurts (P20), or doesn't have a significant impact
(IP@P50). Article retrieval, which simply treats full-text
articles as longer "documents", does not appear to yield
consistent gains in effectiveness.
Page 5 of 15
(page number not for citation purposes)



BMC Bioinformatics 2009, 10:46 http://www.biomedcentral.com/1471-2105/10/46
For retrieval using the span index, the "max" strategy for
generating article rankings appears to be more effective
than the "sum" strategy. In terms of MAP and IP@R50,
both span retrieval strategies significantly outperform
retrieval with the abstract index, for both bm25 and the
Lucene ranking algorithm. For IP@R50, in particular, the
gains are quite substantial. However, span retrieval does
not appear to have a significant impact on P20 compared
to the abstract retrieval baseline.

Table 2 shows the results of significance testing between
article retrieval and span retrieval with the "max" strategy
(the more effective, and thus more interesting, of the two
strategies). For bm25, article retrieval is significantly worse
in terms of MAP and P20. None of the differences are sig-
nificant for the Lucene ranking algorithm. Note that for
these comparisons, there are often large differences in per-
topic scores, but in many cases one run does not consist-
ently outperform another – for this reason, substantial
differences in the mean may not necessarily yield statisti-
cal significance. These results suggest that span retrieval is
at least as effective as treating the entire article as an index-

ing unit, and at least in a few cases, span retrieval is supe-
rior.

Results for the evidence combination experiments are
shown in Table 3, where span retrieval is combined with
abstract and article retrieval. In the interest of space, effec-
tiveness metrics are only shown for the "max" strategy.
Relative differences are shown with respect to the span
retrieval baseline. As with before, the Wilcoxon signed-
rank test was applied in all cases to assess the statistical
significance of the results. For the Lucene ranking algo-
rithm, combining span retrieval with article retrieval
yields significant gains for all three metrics. Other differ-
ences are not statistically significant.

Table 4 attempts to summarize findings from all these
experiments by establishing a partial rank order of differ-
ent experimental conditions (based on significance test-
ing), in terms of each effectiveness metric and retrieval
model. The "sum" strategy for span retrieval is not consid-
ered since the alternative "max" strategy appears to be
more effective. In all cases, integrating span-level evidence
with article-level evidence either yields the highest effec-
tiveness or is not significantly worse than the condition
that yields the highest effectiveness. This suggests that
combining article content and span-level analysis is an
effective approach to exploiting full text in the life sci-
ences.

Retrieval Efficiency
Given that there is value in searching full text, the ques-
tion of efficiency must be addressed. The potential effec-
tiveness gains of full text come at a significant cost in
terms of dataset size. In its compressed form as distrib-
uted, the collection of 162,259 full-text articles from
Highwire Press occupies 3.28 GB (12.6 GB uncom-
pressed). The corresponding MEDLINE abstracts, also in
compressed form, take up only 139 MB (502 MB uncom-
pressed). The difference in size is more than an order of
magnitude – which means that algorithms must process
significantly more data to realize the potential gains of
full-text content. Articles in the Highwire collection con-
tain on average 4148 terms (after stopword removal),
while abstracts contain on average only 142 terms. For ref-
erence, spans average 66 terms, or a bit less than half the
length of abstracts.

Table 1: Effectiveness of bm25 and the Lucene ranking algorithm 
on abstracts, full-text articles, and spans from full text.

MAP

Ivory (bm25) Ivory (Lucene)

Abstract 0.163 0.129
Article 0.146 (-11%)° 0.235 (+82%)**
Span (max) 0.240 (+47%)** 0.206 (+60%)**
Span (sum) 0.192 (+18%)* 0.198 (+54%)**

P20

Ivory (bm25) Ivory (Lucene)

Abstract 0.322 0.293
Article 0.158 (-51%)** 0.353 (+20%)*
Span (max) 0.357 (+11%)° 0.332 (+13%)°
Span (sum) 0.314 (-3%)° 0.317 (+8%)*

IP@R50

Ivory (bm25) Ivory (Lucene)

Abstract 0.110 0.090
Article 0.163 (+48%)° 0.222 (+146%)**
Span (max) 0.212 (+93%)** 0.189 (+109%)**
Span (sum) 0.149 (+36%)* 0.159 (+77%)**

For all metrics, relative improvements over baseline are shown; ** = 
statistically significant (p < 0.01); * = statistically significant (p < 0.05); 
° = not significant.

Table 2: Results of significance testing comparing article 
retrieval with span retrieval ("max" strategy).

Ivory (bm25) Ivory (Lucene)

MAP p < 0.01 n.s.
P20 p < 0.01 n.s.
IP@R50 n.s. n.s.
Page 6 of 15
(page number not for citation purposes)



BMC Bioinformatics 2009, 10:46 http://www.biomedcentral.com/1471-2105/10/46
Open-source text retrieval systems available today,
designed to run on individual machines, would have no
difficulty handling the Highwire collection and even col-
lections that are much larger. However, these articles rep-
resent only a small fraction of the material already
available or soon to be available. Based on recent esti-
mates, records are added to MEDLINE at a rate of approx-
imately 65 k per month. A lower bound on the growth of
available full-text content can be estimated by examining
the growth of PubMed Central. Over the past two years,
the digital archive has grown by approximately 40 k arti-
cles per month. However, the growth rate is uneven due to

retrospective conversion; more recently, this figure is
closer to 20 k articles per month. Nevertheless, full-text
collections will inevitably outgrow the capabilities of indi-
vidual machines – the only practical recourse is to distrib-
ute computations across multiple machines in a cluster.

I have been exploring the requirements of scaling to larger
datasets with Ivory, a toolkit for distributed text retrieval
implemented in Java using Hadoop, which is an open-
source implementation of the MapReduce framework [4].
Section 5.3 describes Ivory in more detail, but an evalua-
tion of its efficiency is presented here. Specifically, I com-
pare the original implementation of Lucene with the Ivory
implementation of the Lucene ranking algorithm (to fac-
tor out the effects of different retrieval algorithms).

All experiments were conducted with Amazon's Elastic
Compute Cloud (EC2) service, which allows one to
dynamically provision clusters of different sizes. EC2 is an
example of a "utility computing" service, where anyone
can "rent" computing cycles at a reasonable cost. For this
work, EC2 provided a homogeneous computing environ-
ment that supports easy comparison of different cluster
configurations. The basic unit of computing resource in
EC2 is the small instance-hour, the virtualized equivalent
of a processor core with 1.7 GB of memory, running for an
hour. I experimented with the following configurations:

• Lucene (version 2.0), running on a single EC2 instance.
Default settings "out of the box" were used for all experi-
ments.

• Ivory (with Hadoop version 0.17.0), running on an EC2
cluster with 10 slave instances (plus 1 instance for the
master). This is comparable to a cluster with 10 cores.

• Same as above, except with 20 slave instances, compara-
ble to a cluster with 20 cores.

As an aside, note that physical equivalents of these clusters
are quite modest by today's standards. Quad-core proces-
sors are widely available in server-class machines, and

Table 4: Comparison of different experimental conditions for bm25 and the Lucene ranking algorithm.

Model Metric Comparison

bm25 MAP Span (max) + Article, Span (max) >> Abstract, Article
P20 Span (max) + Article, Span (max), Abstract >> Article
IP@R50 Span (max) + Article >> Abstract, Article; Span (max) >> Abstract

Lucene MAP Span (max) + Article >> Span (max), Article >> Abstract
P20 Span (max) + Article > Span (max), Article; Article > Abstract
IP@R50 Span (max) + Article > Span (max), Article >> Abstract

A >> B indicates that A is significantly better than B (p < 0.01); A > B indicates that A is significantly better than B (p < 0.05);

Table 3: Effectiveness of bm25 and the Lucene ranking algorithm 
combining evidence from spans with evidence from abstracts 
and articles.

MAP

Ivory (bm25) Ivory (Lucene)

Span (max) 0.240 0.206
Span (max) + Abstract 0.257 (+7%)° 0.216 (+5%)°
Span (max) + Article 0.257 (+7%)° 0.262 (+27%)**

P20

Ivory (bm25) Ivory (Lucene)

Span (max) 0.357 0.332
Span (max) + Abstract 0.382 (+7%)° 0.349 (+5%)°
Span (max) + Article 0.343 (-4%)° 0.404 (+22%)**

IP@R50

Ivory (bm25) Ivory (Lucene)

Span (max) 0.212 0.189
Span (max) + Abstract 0.215 (+1%)° 0.190 (+1%)°
Span (max) + Article 0.257 (+21%)° 0.244 (+29%)**

For all metrics, relative improvements over baseline are shown; ** = 
statistically significant (p < 0.01); * = statistically significant (p < 0.05); 
° = not significant.
Page 7 of 15
(page number not for citation purposes)



BMC Bioinformatics 2009, 10:46 http://www.biomedcentral.com/1471-2105/10/46
with dual processor packages, a 20-core cluster is within
the means of most research groups.

Running times for index construction for the three differ-
ent configurations are shown in Table 5. Lucene, which
was not designed to run on a cluster, takes over a day to
build the span index (containing 12.6 million spans).
With either cluster configurations, indexing takes less than
an hour. These figures should be interpreted with the
caveat that Lucene builds a richer index that supports
complex query operators and that I am comparing a single
core to clusters. However, the point is that Lucene cannot
be easily adapted to run on multiple machines and thus
indexing speed is fundamentally bound by the disk band-
width of one machine. A cluster can take advantage of the
aggregate disk bandwidth of many machines, and MapRe-
duce provides a convenient model for organizing these
disk operations (see Section 5.3).

The speedup demonstrated by Ivory is important because
time for inverted index construction places an upper
bound on how fast a researcher can explore the solution
space for algorithms that require manipulating the index.
Since research in information retrieval is fundamentally
empirical in nature, progress is driven by iterative experi-
mentation. Thus, exceedingly long experimental cycles
represent a potential impediment to advances in the state
of the art.

In terms of retrieval, running times on the entire set of 36
topics from the TREC 2007 genomics track are shown in
Table 6. The gains in efficiency are not quite as dramatic,
but still substantial. In its present implementation, Ivory
was designed for batch-style experiments, not real-time
retrieval (see Section 5.3 for more discussion). These
numbers are therefore only presented for reference, and
should not be taken as indicative of efficiency in opera-
tional settings (where techniques such as caching can
greatly reduce retrieval latency). My experiments prima-
rily focus on indexing efficiency, which is more important
for the issues explored in this study.

Taking advantage of full-text content requires more com-
putational resources to cope with the increased quantities
of data. Inevitably, full-text collections will outgrow
retrieval systems designed to run on single machines –

necessitating the development of distributed algorithms.
The MapReduce framework provides a practical solution
for distributed text retrieval.

Discussion
Is searching full text more effective than searching
abstracts? The answer appears to be yes. Furthermore,
experimental results suggest that span-level analysis pro-
vides a promising strategy for taking advantage of full-text
content. Whereas simply treating entire articles as index-
ing units yields mixed results, span retrieval consistently
outperforms abstract retrieval. Combining span- and arti-
cle-level evidence yields the highest effectiveness across a
range of experimental conditions.

Why does span retrieval work? Further analysis of results
in Section 2.5 reveals some interesting observations.
Focusing on the "max" strategy, Table 1 shows that, over-
all, span retrieval has a relatively small effect on precision
(seen in the P20 scores), but a large impact on recall (seen
in the IP@R50 scores). This makes sense: key ideas in an
article are likely reinforced multiple times, often in
slightly different ways. This potentially alleviates mis-
matches between query terms and terms used by authors
– in essence, span indexing gives a retrieval algorithm
multiple opportunities to identify a relevant article. This
enhanced recall leads to higher overall effectiveness in
terms of MAP.

In general, the "max" strategy for generating article rank-
ings from span rankings appears to be more effective than
the "sum" strategy. Why is this so? One possibility is the
issue of length normalization. In the current implementa-
tion, longer articles tend to have higher scores simply
because they contain more spans; thus, there is an inher-
ent bias in the "sum" strategy. Length normalization plays
an important role in text retrieval [37,38], but I leave a
thorough exploration of this issue for future work.

The findings in this article pave the way for future
advances in full-text retrieval algorithms for the life sci-
ences, which can draw from a wealth of previous work in
the information retrieval literature on passage retrieval,
XML retrieval, etc. In fact, the effectiveness of span
retrieval confirms a well-known finding: ranking algo-
rithms benefit from techniques that exploit document
structure, particularly for longer documents.

Remaining focused on the problem of using full-text con-
tent to improve article ranking, how in general can article
structure be exploited? Within the space of "bag of words"
models, strategies can be organized in terms of two ques-
tions:

Table 5: Time required for index construction, comparing 
Lucene to different Ivory configurations.

Lucene (1 core) Ivory (10 cores) Ivory (20 cores)

Abstract 1 h 00 m 58 s 1 m 32 s 1 m 07 s
Article 19 h 09 m 23 s 17 m 21 s 9 m 57 s
Span 27 h 10 m 46 s 39 m 58 s 24 m 56 s
Page 8 of 15
(page number not for citation purposes)



BMC Bioinformatics 2009, 10:46 http://www.biomedcentral.com/1471-2105/10/46
• At what levels of granularity should retrieval algorithms
build representations of full-text content?

• How should evidence from multiple representations be
combined to rank articles?

These two questions provide context for future work. As a
start, I have experimented with two different indexing
granularities (full articles and spans), but alternative
approaches include sliding windows [18,20], multi-para-
graph segments [19], hierarchically-overlapping segments
[38,39], and segments based on topic shifts [17]. There are
many strategies for integrating evidence from multiple
content representations and representations at different
granularities (e.g., [40]). I have begun to examine some of
these strategies, but there are many more possibilities yet
to be explored. For example, differential treatment of arti-
cle sections may improve effectiveness since some sec-
tions are more important than others, i.e., more likely to
contain relevant information. Earlier work on a smaller
collection of documents from the Federal Register illus-
trated the potential of assigning weights to different sec-
tion types [19]. More recently, Tbahriti et al. [41] found
section-specific weights to be helpful for retrieval in the
context of structured abstracts in the life sciences. How-
ever, one challenge that must be overcome for this strategy
to work on a large scale is the lack of standardized section
headings – both across journals and different types of arti-
cles (e.g., research vs. review articles).

In this work I have focused on exploiting full-text content
to better rank articles. Alternatively, one could leverage
full text to directly return relevant information, i.e., with
passage retrieval techniques. This was, in fact, the original
design of the TREC 2007 genomics track evaluation. Of
course, this begs the question: How are they related? In
the information retrieval literature, a distinction is made
between passage retrieval and document retrieval that
exploits passage-level evidence. This exactly parallels the
present discussion about retrieving segments of full-text
content versus leveraging full-text content to enhance arti-
cle retrieval. However, I argue that the two are comple-
mentary from a user interface point of view.

Leaving aside non-traditional search interfaces, a retrieval
system must ultimately present users with lists of results.

Consider the two approaches to exploiting full text in this
context:

Even if the primary goal of a system is to leverage full-text
content to enhance article retrieval, results have to be pre-
sented in a manner that suggests the relevance of an arti-
cle. This necessarily involves creating some type of
surrogate for the article, which can either be indicative or
informative. Common techniques for generating such sur-
rogates include displaying titles and metadata (as with the
current PubMed interface) and short keyword-in-context
extracts (as with Google Scholar). The first is primarily
indicative, while the second aims to be informative.
Extraction of informative text segments from articles is
essentially a passage retrieval task – and in some cases,
this information may already be available as a natural
byproduct of the article ranking process. For example, in
algorithms that integrate evidence from multiple spans
within an article, those salient spans might form the basis
of generating article surrogates.

Even if the primary goal of a system is to directly retrieve
relevant passages, the passages must still be couched
within the context of the article containing the passages
(to provide users with pointers back to the original con-
tent). In addition, there will be cases where a passage
retrieval algorithm suggests multiple passages extracted
from the same article (unless this is explicitly suppressed,
which may lead to loss of potentially-important informa-
tion). To facilitate result presentation, it would be desira-
ble to group passages by the articles that contain them –
which essentially involves article ranking.

In other words, the distinction between retrieving pas-
sages and retrieving articles becomes blurred when one
considers elements of the user interface. Both approaches
must grapple with the same issues, thus creating synergies
where algorithms specifically developed for one purpose
may be useful for the other.

Conclusion
Experiments in this article with the TREC 2007 genomics
track test collection illustrate that there is significant value
in searching full-text articles. Given the rapidly growing
availability of full text in online digital archives, this is a
positive development for scientists who depend on access

Table 6: Time required for retrieval runs, comparing Lucene to different Ivory configurations.

Lucene (1 core) Ivory (10 cores) Ivory (20 cores)

Abstract (1000 hits) 1 m 42 s 51 s 40 s
Article (1000 hits) 7 m 00 s 1 m 51 s 1 m 09 s
Span (5000 hits) 21 m 32 s 11 m 57 s 8 m 25 s
Page 9 of 15
(page number not for citation purposes)



BMC Bioinformatics 2009, 10:46 http://www.biomedcentral.com/1471-2105/10/46
to the literature for their research. Results show that
retrieval at the level of paragraphs within full text is signif-
icantly more effective than searching abstracts only. Com-
bining span- and article-level evidence appears to yield
the best results. However, much work remains in develop-
ing effective full-text retrieval algorithms for the life sci-
ences literature: toward that end, this work presents a first
step.

One important issue in moving from searching abstracts
to searching full text is that of scalability. Gains in effec-
tiveness come at a cost – algorithms must process signifi-
cantly more text. Although currently-available tools
designed to run on single machines suffice to handle
present test collections, it is clear that future systems must
distribute computations across multiple machines to cope
with ever-growing quantities of text. As illustrated by
Ivory, MapReduce provides a convenient framework for
distributed text retrieval. The combination of greater effec-
tiveness enabled by full text and greater efficiency enabled
by cluster computing paves the way for exciting future
developments in information access tools for the life sci-
ences.

Methods
Test Collection
Experiments reported in this article were conducted with
the test collection from the TREC 2007 genomics track
evaluation [26]. A test collection is a standard laboratory
tool for evaluating text retrieval systems, which consists of
three components:

• a collection – documents on which retrieval is per-
formed,

• a set of information needs – written statements describ-
ing the desired information (called "topics"), which are
usually provided as queries to the system, and

• relevance judgments – records specifying the documents
that should be retrieved in response to each information
need (i.e., which documents are relevant to each topic).

The use of test collections to assess the effectiveness of text
retrieval algorithms is a well-established methodology in
the information retrieval literature, dating back to the

Cranfield experiments in the 60's [42]. These tools enable
rapid, reproducible experiments in a controlled setting
without requiring manual assessment. In modern infor-
mation retrieval research, test collections are created
through large-scale evaluations, such as the Text Retrieval
Conferences (TRECs) sponsored by the U.S. National
Institute of Standards and Technology (NIST) [43]. TREC
is an annual evaluation forum that draws together
researchers from around the world to work on shared
problems in different "tracks". Over the years, TREC has
explored a wide variety of problems ranging from multi-
media retrieval to spam detection. The genomics track was
dedicated to exploring biomedical text retrieval.

The TREC 2007 genomics track used a collection of
162,259 full-text articles assembled in 2006. These articles
came from the electronic distribution of 49 genomics-
related journals from Highwire Press. The articles were
distributed in HTML, which preserved formatting, struc-
ture, table and figure legends, etc. In addition, the organ-
izers gathered MEDLINE records corresponding to each of
the full-text articles, which were also made available to
participants in the evaluation.

The test collection contains 36 official topics in the form
of questions that asked for specific entities such as pro-
teins and drugs – the first five topics are shown in Table 7.
Entities of interest are denoted in square brackets and cor-
respond to controlled terminologies from various sources
(e.g., MeSH). The topics were created after surveying biol-
ogists about recent information needs, and hence can be
considered representative for an important group of users
who regularly depend on access to the literature.

Relevance judgments consist of lists of legal spans that
were determined to contain an answer, based on the opin-
ion of human assessors with significant domain knowl-
edge (Ph.D. in the life sciences). A legal span is a
prescribed unit of retrieval that corresponds to a para-
graph in the full-text article. The notion of a legal span
evolved out of an attempt to standardize system output.
Since systems varied in their processing of article text (in
terms of segmentation, tokenization, etc.), a prescrip-
tively-defined unit of retrieval made results easier to com-
pare. In total, there are 12.6 million legal spans in the
collection; a list of all legal spans was distributed along-

Table 7: Sample topics from the TREC 2007 genomics track.

200 What serum [PROTEINS] change expression in association with high disease activity in lupus?
201 What [MUTATIONS] in the Raf gene are associated with cancer?
202 What [DRUGS] are associated with lysosomal abnormalities in the nervous system?
203 What [CELL OR TISSUE TYPES] express receptor binding sites for vasoactive intestinal peptide (VIP) on their cell surface?
204 What nervous system [CELL OR TISSUE TYPES] synthesize neurosteroids in the brain?
205 What [SIGNS OR SYMPTOMS] of anxiety disorder are related to coronary artery disease?
Page 10 of 15
(page number not for citation purposes)



BMC Bioinformatics 2009, 10:46 http://www.biomedcentral.com/1471-2105/10/46
side the full-text articles. In the context of this study, an
article is considered relevant if it contains at least one rel-
evant legal span.

As a final note, organizers of the TREC 2007 genomics
track were unable to gather corresponding MEDLINE
records for approximately 1% of the full-text articles in the
Highwire collection. This was due to inconsistencies
between the document identifiers used by Highwire Press
and PMIDs in MEDLINE. According to my analysis, this
resulted in the abstract index having 13 fewer relevant arti-
cles than the full-text index (out of a total of 2477) for the
entire test set of 36 topics. To be consistent, the official rel-
evance judgments were used in all experiments. However,
I confirmed that the small number of missing abstracts
had no significant impact on results.

Retrieval Models
Most modern text retrieval systems adopt a "bag of words"
model, in which documents are treated as unordered col-
lections of terms. Although such a model ignores the rich-
ness and complexity of natural language – disregarding
syntax, semantics, and even word order – this simplifica-
tion has proven to be effective in practice. In one standard
formulation of the retrieval problem, a document d is rep-
resented as a vector Wd of term weights wt, d, which reflect
the importance of each term t in the document. A docu-
ment vector has dimensions |V|, the size of the vocabulary
in the entire collection. As a matter of convenience, "doc-
ument" generically refers to the unit of indexing (which
may in actuality be an abstract, a paragraph, etc.) A query
q is represented in the same manner, and the score of a
document with respect to the query is computed as fol-
lows:

This inner-product formulation is sufficiently general to
capture a wide range of retrieval models. Note that since
queries are often very short, wt, q is generally less important
than wt, d.

Given a query, a text retrieval system returns a list of doc-
uments with respect to a particular retrieval model. In the
inner-product formulation, ranking algorithms vary in
how term weights are computed. This work explores two
different ranking algorithms: the algorithm implemented
in the open-source Lucene search engine and Okapi bm25.

Lucene is best described as a modified tf.idf ranking algo-
rithm. Given a query q, the score of a document is com-
puted as the sum of contributions from individual query
terms:

For each term t that appears in the query q, tf is the term
frequency in the document, N is the number of docu-
ments in the collection, n is the number of documents
containing t (its document frequency), and dl is the docu-
ment length. The first term inside the summation is the tf
component, the second is the idf component, and the
third is a length normalization component. On top of a
standard inner-product formulation, Lucene introduces c,
a "coordination factor", defined as the fraction of query
terms found in the document. This factor rewards docu-
ments that have many matching terms.

Okapi bm25 [35,36] models documents as a mixture of
two Poisson processes. One process generates so-called
elite terms, corresponding to those that an author uses in
writing about the topic of a particular document. The
other process generates non-elite terms, corresponding to
those that the author uses in passing (i.e., words whose
appearance is incidental to the topic of the document).
Due to the complexity of parameter estimation for the full
two-Poisson formulation, bm25 uses an empirically-
derived approximation [44]. Given a query q, bm25 com-
putes the score of a document as the sum of contributions
from individual query terms:

For each term t, tf and qtf are term frequencies in the doc-
ument and query, respectively; N is the number of docu-
ments in the collection; and n is the number of
documents containing the term. K, a length normaliza-
tion factor, is defined as follows:

where dl is the document length and avdl is the average
length of all documents. The constants k1, b, and k3 are
tunable parameters. In my experiments, I used k1 = 1.2, b
= 0.75, and k3 = 1000, which are typical settings recom-
mended in the literature.

Ivory: A Toolkit for Distributed Text Retrieval
Ivory is a toolkit for distributed text retrieval being devel-
oped at the University of Maryland to explore scalable
algorithms [45]. The software was created using Hadoop,
which is an open-source Java implementation of the
MapReduce programming model [4] originally developed
by Google. Ivory supports the large class of retrieval mod-

w wt d t q

t q

, ,⋅
∈
∑ (1)

c tf log
N

n dl
t q∈
∑ +

+
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

1
1

1
2

log
.

.
( ) ( )

t q

N n
n

k tf
K tf

k qtf
k qtf

∈
∑ − +

+
⎛
⎝⎜

⎞
⎠⎟

+
+

+
+

0 5
0 5

1 1 3 1

3

K k b b
dl

avdl
= − −⎛

⎝⎜
⎞
⎠⎟1 1( )
Page 11 of 15
(page number not for citation purposes)



BMC Bioinformatics 2009, 10:46 http://www.biomedcentral.com/1471-2105/10/46
els that can be expressed as an inner product of term
weights (see Section 5.2), and currently implements both
bm25 and the Lucene ranking algorithm (with a special
extension to handle the coordination factor).

Certainly, distributed retrieval systems are not new – Web
search engines have been in existence for over a decade.
However, the exact architectures of these systems are
guarded as commercial secrets. Even though outsiders are
occasionally offered glimpses into their design [46,47],
few details are available about important engineering
tradeoffs. On the other hand, most open-source search
engines were not specifically designed for multiple
machines (or require tedious manual configuration to run
on clusters). Although existing tools can easily support
text retrieval experiments involving the Highwire collec-
tion (and indeed even much larger collections), the
growth of available content will inevitably require transi-
tion to cluster-based environments. Ivory represents an
initial attempt to develop a toolkit for distributed text
retrieval using Hadoop; upon suitable maturity, it will be
released as open-source software.

MapReduce is an attractive framework for concurrent pro-
gramming because it frees the software developer from
having to explicitly worry about system-level issues such
as fault tolerance, synchronization, inter-process commu-
nication, scheduling, etc. The abstraction simplifies the

design of scalable, distributed algorithms. With the
release of Hadoop, an open-source implementation of the
MapReduce programming model led by Yahoo, this versa-
tile framework is available to anyone.

MapReduce draws inspiration from higher-order func-
tions in functional programming and builds on the obser-
vation that many information processing tasks have the
same basic structure: a computation is applied over a large
number of records (e.g., Web pages, nodes in a graph) to
generate partial results, which are then aggregated in some
fashion. In MapReduce, the programmer defines a "map-
per" and a "reducer" with the following signatures:

map: (k1, v1) → [(k2, v2)]

reduce: (k2, [v2]) → [(k3, v3)]

Key-value pairs form the basic data structure in MapRe-
duce. The mapper is applied to every input key-value pair
to generate an arbitrary number of intermediate key-value
pairs (I adopt the convention of [...] to denote a list). The
reducer is applied to all values associated with the same
intermediate key to generate output key-value pairs. This
two-stage processing structure is illustrated in Figure 1.

In MapReduce, a programmer need only provide imple-
mentations of the mapper and reducer. On top of a dis-

Illustration of the MapReduce framework: the "mapper" is applied to all input records, which generates results that are aggre-gated by the "reducer"Figure 1
Illustration of the MapReduce framework: the "mapper" is applied to all input records, which generates results 
that are aggregated by the "reducer". The runtime groups together values by keys.

��������	
�	�
�����������������

��� ��� ��� ���

������ ������ ������

����� ����� ����� �����


����� 
����� 
�����
Page 12 of 15
(page number not for citation purposes)



BMC Bioinformatics 2009, 10:46 http://www.biomedcentral.com/1471-2105/10/46
tributed file system [48], the runtime transparently
handles all other aspects of execution, on clusters ranging
from a few to a few thousand nodes. The runtime is
responsible for scheduling map and reduce workers,
detecting and handling faults, delivering input data, shuf-
fling intermediate results, and gathering final output. The
MapReduce abstraction allows many complex algorithms
to be expressed concisely.

The pseudo-code for Ivory's indexing algorithm is shown
in Figure 2. Like nearly all text retrieval systems, Ivory
builds a data structure called an inverted index, which
given a term provides access to the list of documents that
contain the term. An inverted index consists of postings
lists, one associated with each term in the collection. A
postings list is comprised of individual postings, each of
which represents a (document id, term frequency) pair.
This information is used to compute term weights during
retrieval.

Input to the indexer consists of document ids (keys) and
associated document content (values). In each mapper,
the document text is tokenized and stemmed term occur-
rences are first stored in a histogram H (implemented as
an associative array). After this histogram has been built,
the mapper then iterates over all terms. For each term, a
pair consisting of the document id (k) and the frequency
of the term in the document (f) is created. Each pair,
denoted by �k, f� in the pseudo-code, represents an individ-
ual posting.

The mapper then emits an intermediate key-value pair
with the term as the key and the posting as the value.
MapReduce guarantees that all values associated with the
same key will be sent to the same reducer; the reducer
gathers up all postings, sorts them by descending term fre-
quency, and emits the complete postings list, which is
then written out to the distributed file system. The final
key-value pairs (terms and associated postings lists) make
up the inverted index.

Typically, computing term weights requires information
about document lengths. This is straightforwardly
expressed as another MapReduce algorithm: each mapper
counts up the number of terms in a document and emits
the term count as a value with the associated document id
as the key. In this case, there is no need for a reducer – doc-
ument lengths are directly written to disk. The table of
document lengths is relatively compact, and is read into
memory by each mapper in the retrieval phase.

Retrieval with an inverted index involves fetching postings
lists that correspond to query terms, and then scoring doc-
uments based on term weights computed from postings
information. For real-time applications, this requires low-

latency access to the inverted index. However, Hadoop
was primarily designed for high-throughput batch com-
putations, not computations for which low latency is
desired. Presently, Hadoop does not provide a mecha-
nism for low-latency random access to the distributed file
system. To work around this limitation, Ivory's retrieval
algorithm was designed for parallel query execution.

The pseudo-code for Ivory's retrieval algorithm is shown
in Figure 3. The input to each mapper is a term t (the key)
and its associated postings list P (the value). The mapper
loads up all the queries at once and processes each query
in turn. If the query does not contain t, no action is per-
formed. If the query contains t, then the corresponding
postings must be traversed to compute the partial contri-
butions to the query-document score. For each posting
element, the partial contribution to the score (wt, q·wt, d) is
computed based on the actual ranking algorithm. For
example, bm25 requires the document frequency of t
(known by the length of the postings list), term frequency
of t in the document (stored in the posting), query fre-
quency (loaded by the mapper), document length (stored
separately and loaded by the mapper; see above), and
average document length (same). With all the necessary
components, computing the partial score contribution is
simply a matter of arithmetic. Each partial score is stored
in an associative array H, indexed by the document id k –
this structure serves the same functionality as accumula-
tors in a traditional retrieval engine. The mapper emits an
intermediate key-value pair with the query number i as
the key and H as the value. The result of each mapper is all

Pseudo-code of Ivory's indexing algorithm in MapReduceFigure 2
Pseudo-code of Ivory's indexing algorithm in MapRe-
duce. The mapper processes each document and emits post-
ings with the associated term as the key. The reducer gathers 
all postings for each term to create the inverted index.

1: procedure Map(k, d)
2: Initialize.AssociativeArray(H)
3: for all t ∈ d do

4: H{t} ← H{t} + 1
5: for all t ∈ H do

6: Emit(t, 〈k, H{t}〉)
1: procedure Reduce(t, [〈k1, f1〉, 〈k2, f2〉 . . .])
2: Initialize.List(P )
3: for all 〈k, f〉 ∈ [〈k1, f1〉, 〈k2, f2〉 . . .] do

4: Append(P, 〈k, f〉)
5: Sort(P )
6: Emit(t, P )
Page 13 of 15
(page number not for citation purposes)



BMC Bioinformatics 2009, 10:46 http://www.biomedcentral.com/1471-2105/10/46
partial query-document scores associated with term t for
all queries that contain the term.

In the reduce phase, all associative arrays belonging to the
same query are brought together by the runtime. The
reducer performs an element-wise sum of all the associa-
tive arrays (denoted by the MERGE function in the pseudo-
code): this adds up the contributions for each query term
across all documents. The final result is an associative
array containing scores for all documents that have at least
one query term. This structure is then sorted (outside
MapReduce by a separate process) to generate the final
ranked list for fixed cutoff.

Note that this retrieval algorithm replaces random access
of the postings with a parallel scan of all postings – this
modification was necessary due to limitations of Hadoop.
However, since disk scans are distributed across the entire
cluster, it is possible to exploit the aggregate disk band-
width of all available machines. In processing a set of que-
ries, each postings list is accessed only once – each mapper
computes partial score contributions for all queries that
contain the query term. It should be emphasized that this
algorithm is not meant for real-time retrieval applications,
but rather is intended for running batch-style experiments
in a research context.

Acknowledgements
This work was supported by the Intramural Research Program of the NIH, 
National Library of Medicine; NSF under awards IIS-0705832 and IIS-
0836560; DARPA/IPTO Contract No. HR0011-06-2-0001 under the GALE 

program. Any opinions, findings, conclusions, or recommendations 
expressed in this article are the author's and do not necessarily reflect 
those of the sponsors. I would like to thank Yahoo! for leading the devel-
opment of Hadoop and Amazon for EC2/S3 support. This article benefited 
from the comments of two anonymous reviewers. Finally, I am grateful to 
Esther and Kiri for their kind support.

References
1. Hunter L, Cohen KB: Biomedical Language Processing: What's

Beyond PubMed?  Mol Cell 2006, 21(5):589-594.
2. Zweigenbaum P, Demner-Fushman D, Yu H, Cohen KB: New Fron-

tiers In Biomedical Text Mining.  In Pacific Symposium on Biocom-
puting 12 Wailea, Maui, Hawaii; 2007:205-208. 

3. Zweigenbaum P, Demner-Fushman D, Yu H, Cohen KB: Frontiers
of Biomedical Text Mining: Current Progress.  Brief Bioinform
2007, 8(5):358-375.

4. Dean J, Ghemawat S: MapReduce: Simplified Data Processing
on Large Clusters.  Proceedings of the 6th Symposium on Operating
System Design and Implementation (OSDI 2004), San Francisco, California
2004:137-150.

5. Gay CW, Kayaalp M, Aronson AR: Semi-Automatic Indexing of
Full Text Biomedical Articles.  AMIA Annu Symp Proc
2005:271-275.

6. Yu H, Hatzivassiloglou V, Friedman C, Rzhetsky A, Wilbur WJ: Auto-
matic Extraction of Gene and Protein Synonyms from
MEDLINE and Journal Articles.  Proc AMIA Symp 2002:919-923.

7. Seki K, Mostafa J: Discovering Implicit Associations Between
Genes and Hereditary Diseases.  Pac Symp Biocomput
2007:316-327.

8. Demner-Fushman D, Hauser S, Thoma G: The Role of Title, Meta-
data and Abstract in Identifying Clinically Relevant Journal
Articles.  AMIA Annu Symp Proc 2005:191-195.

9. Yu H: Towards Answering Biological Questions with Experi-
mental Evidence: Automatically Identifying Text that Sum-
marize Image Content in Full-Text Articles.  AMIA Annu Symp
Proc 2006:834-838.

10. Yu H, Lee M: Accessing Bioscience Images from Abstract Sen-
tences.  Bioinformatics 2006, 22(14):e547-e556.

11. Shah PK, Perez-Iratxeta C, Bork P, Andrade MA: Information
Extraction from Full Text Scientific Articles: Where are the
Keywords?  BMC Bioinformatics 2003, 4:20.

12. Schuemie MJ, Weeber M, Schijvenaars BJA, van Mulligen EM, Eijk CC
van der, Jelier R, Mons B, Kors JA: Distribution of Information in
Biomedical Abstracts and Full-Text Publications.  Bioinformat-
ics 2004, 20(16):2597-2604.

13. Wilbur WJ, Smith L, Tanabe L: BioCreative 2. Gene Mention
Task.  Proceedings of the Second BioCreative Challenge Evaluation Work-
shop, Madrid, Spain 2007:7-16.

14. Krallinger M, Leitner F, Valencia A: Assessment of the Second
BioCreative PPI Task: Automatic Extraction of Protein-Pro-
tein Interactions.  Proceedings of the Second BioCreative Challenge
Evaluation Workshop, Madrid, Spain 2007:41-54.

15. Salton G, Buckley C: Automatic Text Structuring and Retrieval
– Experiments in Automatic Encyclopedia searching.  Proceed-
ings of the 14th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval (SIGIR 1991), Chicago, Illinois
1991:21-30.

16. Salton G, Allan J, Buckley C: Approaches to Passage Retrieval in
Full Text Information Systems.  Proceedings of the 16th Annual
International ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR 1993), Pittsburgh, Pennsylvania 1993:49-58.

17. Hearst MA, Plaunt C: Subtopic Structuring for Full-Length
Document Access.  Proceedings of the 16th Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval
(SIGIR 1993), Pittsburgh, Pennsylvania 1993:56-68.

18. Callan JP: Passage-Level Evidence in Document Retrieval.  Pro-
ceedings of the 17th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval (SIGIR 1994), Dublin,
Ireland 1994:302-310.

19. Wilkinson R: Effective Retrieval of Structured Documents.
Proceedings of the 17th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval (SIGIR 1994), Dublin,
Ireland 1994:311-317.

Pseudo-code of Ivory's retrieval algorithm in MapReduceFigure 3
Pseudo-code of Ivory's retrieval algorithm in MapRe-
duce. The mapper processes the postings lists in parallel. For 
each query term, the mapper initializes accumulators to hold 
partial score contributions from all documents containing the 
term. The reducer adds up partial scores to produce the final 
results.

1: procedure Map(t, P )
2: [Q1, Q2, . . . Qn] ← LoadQueries()
3: for all Qi ∈ [Q1, Q2, . . . Qn] do

4: if t ∈ Qi then

5: Initialize.AssociativeArray(H)
6: for all 〈k, f〉 ∈ P do

7: H{k} ← wt,q · wt,d

8: Emit(i, H)
1: procedure Reduce(i, [H1, H2, H3, . . .])
2: Initialize.AssociativeArray(Hf )
3: for all H ∈ [H1, H2, H3, . . .] do

4: Merge(Hf , H)
5: Emit(i, Hf )
Page 14 of 15
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16507357
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16507357
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17977867
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17977867
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16779044
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16779044
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12463959
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12463959
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12463959
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17990502
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17990502
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16779028
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16779028
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16779028
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17238458
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17238458
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17238458
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16873519
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16873519
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12775220
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12775220
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12775220
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15130936
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15130936


BMC Bioinformatics 2009, 10:46 http://www.biomedcentral.com/1471-2105/10/46
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

20. Kaszkiel M, Zobel J: Passage Retrieval Revisited.  Proceedings of
the 20th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR 1997), Philadelphia, Pennsyl-
vania 1997:178-185.

21. Clarke C, Cormack G, Tudhope E: Relevance Ranking for One to
Three Term Queries.  Information Processing and Management
2000, 36:291-311.

22. Liu X, Croft WB: Passage Retrieval Based on Language Mod-
els.  Proceedings of the Eleventh International Conference on Information
and Knowledge Management (CIKM 2002), McLean, Virginia
2002:375-382.

23. Tellex S, Katz B, Lin J, Marton G, Fernandes A: Quantitative Eval-
uation of Passage Retrieval Algorithms for Question
Answering.  Proceedings of the 26th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval (SIGIR
2003), Toronto, Canada 2003:41-47.

24. Wang M, Si L: Discriminative Probabilistic Models for Passage
Based Retrieval.  In Proceedings of the 31st Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval
(SIGIR 2008), Singapore 2008:419-426.

25. Lalmas M, Tombros A: INEX 2002–2006: Understanding XML
Retrieval Evaluation.  Digital Libraries: Research and Development –
First International DELOS Conference, Revised Selected Papers, Pisa, Italy
2007:187-196.

26. Hersh WR, Cohen A, Ruslen L, Roberts P: TREC 2007 Genomics
Track Overview.  Proceedings of the Sixteenth Text REtrieval Confer-
ence (TREC 2007), Gaithersburg, Maryland 2007.

27. Trotman A: Wanted: Element Retrieval Users.  Proceedings of the
INEX 2005 Workshop on Element Retrieval Methodology, Glasgow, Scot-
land 2005:63-69.

28. Larsen B, Tombros A, Malik S: Is XML Retrieval Meaningful to
Users? Searcher Preferences for Full Documents vs. Ele-
ments.  Proceedings of the 29th Annual International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval (SIGIR 2006),
Seattle, Washington 2006:663-664.

29. Salton G, Wong Y, Yang CS: A Vector Space Model for Auto-
matic Indexing.  Communications of the ACM 1975, 18(11):613-620.

30. Ponte JM, Croft WB: A Language Modeling Approach to Infor-
mation Retrieval.  Proceedings of the 21st Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval
(SIGIR 1998), Melbourne, Australia 1998:275-281.

31. Metzler D, Croft WB: Combining the Language Model and
Inference Network Approaches to Retrieval.  Information
Processing and Management 2004, 40(5):735-750.

32. Rafkind B, Lee M, Chang SF, Yu H: Exploring Text and Image Fea-
tures to Classify Images in Bioscience Literature.  Proceedings
of the HLT/NAACL 2006 Workshop on Biomedical Natural Language
Processing (BioNLP'06), New York, New York 2006:73-80.

33. Shatkay H, Chen N, Blostein D: Integrating Image Data into Bio-
medical Text Categorization.  Bioinformatics 2006,
22(14):e446-e453.

34. Kou Z, Cohen WW, Murphy RF: A Stacked Graphical Model for
Associating Sub-Images with Sub-Captions.  In Pacific Sympo-
sium on Biocomputing 12 Wailea, Maui, Hawaii; 2007:257-268. 

35. Robertson SE, Walker S, Hancock-Beaulieu M, Gatford M, Payne A:
Okapi at TREC-4.  Proceedings of the Fourth Text REtrieval Conference
(TREC-4), Gaithersburg, Maryland 1995:73-96.

36. Sparck Jones K, Walker S, Robertson SE: A Probabilistic Model of
Information Retrieval: Development and Comparative
Experiments (Parts 1 and 2).  Information Processing and Manage-
ment 2000, 36(6):779-840.

37. Singhal A, Buckley C, Mitra M: Pivoted Document Length Nor-
malization.  Proceedings of the 19th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval (SIGIR
1996), Zürich, Switzerland 1996:21-29.

38. Kamps J, de Rijke M, Sigurbjörnsson B: Length Normalization in
XML Retrieval.  Proceedings of the 27th Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval
(SIGIR 2004), Sheffield, United Kingdom 2004:80-87.

39. Ogilvie P, Callan J: Parameter Estimation for a Simple Hierar-
chical Generative Model for XML Retrieval.  Proceedings of the
2005 Initiative for the Evaluation of XML Retrieval Workshop (INEX
2005), Dagstuhl, Germany 2005:211-224.

40. Sigurbjörnsson B, Kamps J, de Rijke M: An Element-based
Approach to XML Retrieval.  Proceedings of the 2003 Initiative for

the Evaluation of XML Retrieval Workshop (INEX 2005), Dagstuhl, Ger-
many 2003:19-26.

41. Tbahriti I, Chichester C, Lisacek F, Ruch P: Using Argumentation
to Retrieve Articles with Similar Citations: An Inquiry into
Improving Related Articles Search in the MEDLINE Digital
Library.  Int J Med Inform 2006, 75(6):488-495.

42. Cleverdon CW, Mills J, Keen EM: Factors Determining the Per-
formance of Indexing Systems.  Volume Two. ASLIB Cranfield
Research Project, Cranfield, England; 1968. 

43. Harman DK: The TREC Test Collections.  In TREC: Experiment
and Evaluation in Information Retrieval Edited by: Voorhees EM, Harman
DK. Cambridge, Massachusetts: MIT Press; 2005:21-52. 

44. Robertson SE, Walker S: Some Simple Effective Approxima-
tions to the 2-Poisson Model for Probabilistic Weighted
Retrieval.  Proceedings of the 17th Annual International ACM SIGIR Con-
ference on Research and Development in Information Retrieval (SIGIR
1994), Dublin, Ireland 1994:232-241.

45. Elsayed T, Lin J, Oard D: Pairwise Document Similarity in Large
Collections with MapReduce.  Proceedings of the 46th Annual Meet-
ing of the Association for Computational Linguistics (ACL 2008), Companion
Volume, Columbus, Ohio 2008:265-268.

46. Brin S, Page L: The Anatomy of a Large-Scale Hypertextual
Web Search Engine.  Proceedings of the Seventh International World
Wide Web Conference (WWW 7), Brisbane, Australia 1998:107-117.

47. Barroso LA, Dean J, Hölzle U: Web Search for a Planet: The
Google Cluster Architecture.  IEEE Micro 2003, 23(2):22-28.

48. Ghemawat S, Gobioff H, Leung ST: The Google File System.  Pro-
ceedings of the 19th ACM Symposium on Operating Systems Principles
(SOSP 2003), Bolton Landing, New York 2003:29-43.
Page 15 of 15
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16873506
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16873506
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16165395
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16165395
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16165395
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Related Work
	Comparison of Full Text and Abstracts

	Results
	Test Collection
	Retrieval Conditions
	Evidence Combination
	Evaluation Metrics
	Retrieval Effectiveness
	Retrieval Efficiency

	Discussion
	Conclusion
	Methods
	Test Collection
	Retrieval Models
	Ivory: A Toolkit for Distributed Text Retrieval

	Acknowledgements
	References

