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Abstract The difficulty in quality improvement
of machining performance comes from the
uncertainty about the cutting force generated
during the material removal process. This paper
presents the results from the research aimed at
developing a new approach to capture the
uncertainty through mathematically modeling the
physical machining system. A case study is
used to demonstrate the procedure to interpret
the cutting force variation through a three stage
process. By integrating deterministic and
stochastic approaches, an observed cutting force
variation, which was recorded from an
experiment, can be explained satisfactorily. The
reduction of uncertainty allows an accurate
prediction of the cutting force variation and
forms a basis for developing a control strategy
for improving the machining performance.

1. Introduction

Mathematical modeling of physical systems
and simulating the performance of physical
systems on computer based on the developed
model have been widely used in engineering
applications. For example, aerospace industry
solely relies on simulation models to study the
dynamics of spacecrafts. Vehicle simulation
models are effectively used in automobile
industry to evaluate safe operations during the
vehicle design. In the manufacturing industry,
due to the increasing emphasis on precision and
cost effective machining, there is a pressing need
t['or ;nodeling and simulating machining systems

1-3].

Research into the understanding of
machining systems has been an active field of
study for several decades with focus on predict-
ing the cutting force generated during machining

The difficulty in modeling a machining system
mainly comes from the uncertainty about the
material removal process and dynamics of the
machining system. Significant efforts have been
made in attempt to explain the uncertainty
through mathematical modeling approaches. For
example, lumped-parameter analysis was
developed to describe dynamics of the machine
tool structure where the tool motion during
machining was assumed to be purely periodic
[4-5]. Finite element method has been used to
model the material removal process as a
continuous system [6-7]. However, limited
success has been achieved due to the uncertainty
caused by complexity of the machining system.

In this paper, we present a rational
approach to improve the predictability of the
cutting force generated during machining. The
approach is analytically based and consists of
three stages. In the first stage, a deterministic
model, which assumes the periodic nature of the
cutting force signal, is developed. In the second
stage, a stochastic model is introduced to
interpret part of the random variation in the
cutting force signal. In the third stage, a
stationary Markov chain model is used to add
the model flexibility for describing possible state
transition in the process of cutting force
generation. A case study is presented to
demonstrate the procedure how the cutting force
variation observed during machining can be
effectively interpreted by this new approach.

2. Basic Methodology

Figure 1la illustrates a physical machining
system, in which the material is being removed
by the tool during the cutting process. The
structural dynamics of the machine tool is
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Figure 1 Representation of a Machining System

represented by a two-degree-of-freedom model.
As illustrated, the cutting area, or the nominal
chip load, serves as the input of the machining
system. The cutting force is generated when the
material is removed to form chips. The
generated cutting force excites the machine tool
structure. The dynamic variation of tool
displacement changes the chip load through a

feedback loop. Figure 1b is a block diagram of
the machining system representation.

2.1 Stage 1 - Deterministic Model

Three plots in Figure 2 represent the cutting
force signals recorded during three consecutive
revolutions of the workpiece in a defined turning
process. An FFT analysis identifies that the
signal is mainly composed of two frequency
components at 2500 Hz and 3750 Hz,
respectively. Based on the initial data analysis
and an assumption that the cutting force signal is
purely periodic, a deterministic model can be
formulated to predict the cutting force generated
during machining. Using the deterministic
model, we are able to simulate the machining
process on computer. Results from the
simulation can be used to predict the cutting
force. Figure 3b is a plot of the data obtained
from the simulation. Comparing it with the
observed data shown in Fig. 3a, the deterministic
model is capable of interpreting 30 - 40% of the
total variation of the cutting force recorded
during machining.

2.2 Stage 2 - Integration of a Determi-
nistic Model and Stochastic Model

It is evident that prediction using a
deterministic model is not satisfied. This is
usually the case simply because the deterministic
modeling approach fails to interpret the part of
random variation. In reality, noise may come
from phenomena, such as non-homogeneous
distribution of microstructures in the material

. being removed. Consequently, the cutting

process functions as a sampling process. It
picks up the part of material that can be hard or
soft, varying at a random fashion. By using the
sampling variance theory [8-9], we add a
stochastic model, which describes the random
variation of the cutting force, to the deterministic
model introduced in stage 1. Following a similar
procedure, we implement the integrated modeling
approach on computer and simulate the cutting
force generation. Figures 4a and 4b present
such a comparison. Figure 4b is a plot of the
data obtained from the simulation. By
examining these two plots, approximately, 70%
of the total variation of the cutting force recorded
during machining can be explained, an increase
of almost 30% from stage 1.



Expeciental cuiog focce foe fr revoluion 2.3 Stage 3 - Introduction of a Sta-
= tionary Markov Chain Model

Based on experimental evidence, the cutting
force variation displays chaotic dynamics.
Traditionally, the variation due to the chaotic
dynamics has to be interpreted through
mathematical modeling that is non-linear. Very
often, it leads to formidable equations with
complex initial conditions and constraints. For
mathematical modeling of machining systems,
we propose to apply stationary Markov chain
models to view a non-linear system as a linear
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number of states. As illustrated in Figs. 5a, 5b,
and 5c, a N-state transition model is used to
describe the distribution of microstructures from
different cross-sections, a phenomenon often
accounted in raw materials fabricated through a
rolling process.
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Figure 4 Comparison between the Experimental
and Simulated Data (Stage 2)

3. Discussion of Results

Our approach to mathematically model
machining systems through a three-stage

process has been proven effective. Not only
does the case study presented in this paper
demonstrate its effectiveness, other examples can
also be found [10-12].

The uniqueness of our approach is the
integration of deterministic and stochastic
models. We use the deterministic model to
characterize the system identity and use the
stochastic model to capture effects of the system
noise on the system response. Through a three-
stage modeling process, the system uncertainty
is gradually reduced to a low and acceptable
level, thus allowing an effective evaluation of the
performance measures of interest.

The introduction of a stochastic model
allows the evaluation of the performance
measures of interest statistically. For example,
the results obtained from the uncertainty analysis
can be used to construct a control chart to
perform an on-line monitoring of a machining
system. Assume that the topographical data of a
machined surface is available through computer
simulation. Assume thatR,;, R,,, ... R.99, Ry100
are the R, values selected from the simulation
data to represent the R, at 100 different

locations, two relations may be obtained.

1
Ra-mean = 100 [Ra1+Ra2+ .e- +Ra99+RaIOO] (1

2 1 100 )
Ora = 100 z (Ral - Ra-mean) @
i=1

These two parameters characterize the
mean and variation of the R, measurements.

They provide quantitative information about the
natural performance variation and form a basis
for the construction of R, - and op, - charts,

as shown in Fig. 6, where the sample size =5

and 30//5 principle are assumed. During
machining, on-line detected R, values can be
plotted on the chart against the upper and lower
limits to ensure statistical control of the
machining process. Consequently, the on-line
monitoring system is capable of indirectly
tracking the cutting force variation. As long as

the monitored values of R,; do not exceed the
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Figure 5 Introduction of A Markov Chain Model (stage 3)

control limits and display a normal variation
pattern about the center line of the control chart,
no human intervention is needed.

It is important to note that difficulties arise
when using control charts to perform in-process
monitoring, namely, false alarming and low
sensitivity to detect process abnormalities. The
application of Markov chain models offers
flexibility that significantly enhances the
sensitivity of detection and reduces the risk of
false alarming. By choosing a state associated

with the narrowest control chart, sensitivity of
detection can be improved significantly. By
choosing a state associated with the widest
control chart, we are able of avoiding false
alarming effectively. More important is the fact
that using probabilities of the state transition
matrix allows the utilization of Bayes' theorem
for decision making. When an abnormal
situation occurs on the control chart, for example

one R,; value exceeds the upper limit, the risk
of making a false alarming would be greatly
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Figure 6 Control Chart for On-Line Monitoring

reduced if the probabilities for associated state
transition are taken into consideration.

4. Conclusions

This paper presents a new approach to
investigate the uncertainty accounted in the
process of improving machining operations. It
advocates an integration of deterministic and
stochastic models for data/signal interpretation.
The deterministic model characterizes the system
identity while the stochastic model captures
effects of the system noise on the system
response. Through a three-stage modeling
process, the system uncertainty gradually
reduces to a low and acceptable level in the
evaluation of the performance measures of
interest. The effectiveness of employing Markov
chain models is demonstrated in the case study
for providing a quantitative measure to balance
the need to increase sensitivity meanwhile
keeping false alarming at a minimum level for
on-line monitoring.
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