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Malnutrition is a detrimental and significant plight for young children, responsible for 

45% of all deaths among children worldwide. The aim of my dissertation is to assess 

the history of the science of anthropometry, synthesize the cumulative findings within 

the contemporary child malnutrition literature, dispute certain quality control maxims 

of anthropometric child-health surveys, and quantify the responsible latent factors of 

child malnutrition. These efforts are in service of a better characterization of 

malnutrition, a more reliable estimate of how many children are malnourished, and a 

better understanding of the geographical distribution and dynamic stochastic 

characteristics of malnutrition. It is essential to better understand malnutrition and its 

causes to suggest appropriate corrective policy. This dissertation consists of four 

principal essays, each from a unique conceptual perspective. The first essay is a 

historical and epistemological perspective of the science of anthropometry. I 



  

contextualize the legacy of child malnutrition efforts, including the link between 

eugenics and contemporary notions of “normal” child growth, the institutional power-

struggle for child growth chart superiority, the obfuscated distinction between growth 

references and standards of growth, and the consequences of universal standards that 

do not reflect observable populations. The second essay is a systematic review of the 

literature, the largest of its kind to date. I synthesize 184 disaggregate empirical 

studies of the determinants of child malnutrition in Africa published since 1990. I find 

numerous opportunities for development within this corpus, in particular 

opportunities to enrich the scope, scale, and quantification of the field. The third 

essay is an analytical perspective on the quality control mechanisms applied to 

anthropometric surveys. I challenge the practice of rejecting datasets based on 

overlarge z-score standard deviation values and offer an alternative approach. The 

fourth essay is an econometric empirical analysis in Kenya and Nigeria of child 

malnutrition determinants. I use spatial Bayesian kriging and four-level random 

intercept hierarchical logit models to show the spatial heterogeneity of malnutrition 

prevalence, and to quantify various socio-economic and climatic determinants of 

child malnutrition. I find significant spatial and hierarchical relationships and 

determinants, which can move malnutrition rates by over 50%.  
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 1 

1 Introduction 

1.1 Overview 

This dissertation aims to expand the frontier of the science of anthropometry and 

child malnutrition. It adds to the current debate and cumulative extant findings within 

the literature, and analyzes the magnitude and geographical distribution of 

malnutrition to quantify the responsible latent factors. The dissertation consists of a 

collection of four standalone essays, which weave together a gestalt discourse. Topics 

range from the history of anthropometry, and a critical systematic literature review, to 

the debate of statistical quality control maxims, and an empirical analysis of climatic 

and economic determinants of child malnutrition. 

1.1 Background Motivation 

The specter of food supply falling behind population growth has long faltered the 

discussion of poverty and famines, most notably by Thomas Malthus (1798) in his 

infamous volume An Essay on the Principle of Population. Malthus concludes, “the 

power of population is indefinitely greater than the power in the earth to produce 

subsistence for man” (1798, p. 4). Malthus believed, “Population, when unchecked, 

increases in a geometrical ratio. Subsistence increases only in an arithmetical ratio” 

(1798, p. 4). To combat such mathematical certitudes, he proposed selective breeding 

among the wealthy and forced celibacy and sterilization of the poor, what Francis 

Galton (1883b) and his followers would later dub eugenics.  

Fortunately, Malthus was wrong about the immensity of humanity’s ability to 
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better itself. Malthus patently failed to account for economic growth, innovation, 

dignity and liberty, which would result in a one-hundred-fold enrichment per person 

over the next two centuries (McCloskey, 2006, 2010). However, the very real and 

persistent obstacles of poverty and hunger remained.  

Nobel Prize-winning economist and philosopher Amartya Sen (1976) 

conceived the paradigm of entitlements. Instead of asking is there enough food? Sen 

asked who is entitled to access food? (Devereux, 2018). He defined entitlements as 

“the set of alternative commodity bundles that a person can command in a society 

using the totality of rights and opportunities that he or she faces” (1984, p. 497).  

Indeed, Sen noted, “Much about poverty is obvious enough. One does not 

need elaborate criteria, cunning measurement, or probing analysis, to recognize raw 

poverty and to understand its antecedents. It would be natural to be impatient with 

long-winded academic studies” (1981, p. vii). But Sen showed that not everything 

about poverty and hunger is quite so simple, especially when moving away from its 

most extreme and raw forms.  

To diagnosis poverty and hunger in all its forms, Sen illuminated the 

economic mechanisms of ownership patterns, exchange entitlements, modes of 

production, and economic class structures. Furthermore, by recognizing the 

importance of wellbeing beyond income, Sen (1999) argued that health is of 

fundamental importance to economic development: transforming the study of 

poverty. Contemporary frameworks of malnutrition—including this study—derive 

much of their thrust from Sen’s insights.  
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1.2 Theoretical Framework 

In this dissertation, I  employ a holistic framework approach to motivate model 

specifications, etiological pathways, and causal inferences (Figure 1). This framework 

ties together anthropometric science, health surveys, and early warning systems, with 

hierarchical and causal structures that bridge conceptual and observable determinants 

of child malnutrition. Chapter 2 synthesizes the necessary foundational theories that 

are responsible for the framework. Chapter 3 surveys the application and findings of 

the framework in the literature. Chapter 4 critiques certain methodological practices. 

Chapter 5 contributes to the qualification and quantification of specific determinants 

and spatial hierarchical effects.  
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Figure 1: Comprehensive conceptual framework 
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1.1 Objectives and Research Questions 

Taking a leaf out of Svedberg (2000), I propose four principal challenges facing the 

field: 1) better characterizations of what undernutrition is; 2) more reliable estimates 

of who the undernourished are and their numbers; 3) a better knowledge of where the 

undernourished are and their stochastic nature over time; and finally 4) a better 

epistemological understanding of how the undernourished get to be so. I address each 

of these four principal challenges across four standalone essays. 

The first essay takes a historical and epistemological perspective on the 

science of anthropometry—the study of the measurements, indices, indicators, 

standards, and references used to assess child malnutrition. Anthropometric 

evaluation of children is the most vital and widely used instrument of public health 

and clinical medicine practitioners. I chronical the legacy of standardization, 

normality, and eugenics in the study of child anthropometry.  

I ask: What are the origins of anthropometry as a scientific study? How do 

these origins impact contemporary scientific anthropometry? How did the 

contemporary measurements, indices, indicators, standards, references, and best 

practices come to be? What are the existing practical and epistemological limitations 

and what are the areas ripe for further development? How does population-based 

anthropometric indicators translate to knowledge and improvement of an individual’s 

health. 

The second essay is a systematic review of the malnutrition literature. 

Specifically, I review and synthesize 184 articles encompassing the totality of 
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disaggregate empirical studies of the determinants of childhood malnutrition in Africa 

published since 1990. It is by far the largest and most comprehensive of its kind. 

I ask: What group of articles constitutes the total populace of disaggregate 

empirical studies of the determinants of child malnutrition in Africa published since 

1990? What are the findings of these articles? What are the trends in place, space, and 

scope across time? What are the trends in methodological techniques? What are the 

trends in choices of indicators, risk factors, and predictors? What are the spatial, 

hierarchical, and temporal frameworks? What are the trends across the journals? 

Where does the data come from and what is the data structure and size? What are the 

determinants of malnutrition? How much do the determinants affect malnutrition? 

What articles stand out for their high impact or quality? 

The third essay is a rhetorical perspective and analysis of the quality control 

mechanisms for anthropometric surveys. Once an anthropometric survey of child 

malnutrition is conducted it is essential to know and assess its quality if we wish to 

quantify determining factors, test hypotheses, and inform policy in the effort to 

eliminate child malnutrition. I dispute the practice of performing quality control 

verification of anthropometric surveys using sample z-score standard deviations.  

I ask: What are the origins of a z-score standard deviation serving as a quality 

control metric? What is the extent and impact of the SD as QC maxim in the 

literature? What are the theorical and logical underpinnings of the practice? What 

harm is caused by the practice? What are the potential alternatives? 

The fourth essay is a spatial and econometric empirical analysis of malnutrition 

determinants. The objective of the fourth essay is to analyze the determinants of 
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childhood malnutrition in Kenya and Nigeria. I uncover important climatic and 

economic determinants of child malnutrition, and quantify their epidemiological 

significance. 

I ask: In Kenya and Nigeria, what are the determinants of wasting and stunting? 

How much do the determinants affect malnutrition outcomes? In particular, how 

effective are remotely sensed climactic variables for determining malnutrition 

prevenances? What are the spatial trends and variations of wasting and stunting? How 

much does spatial heterogeneity and hierarchical systems explain the variability in 

malnutrition outcomes?  

1.2 Key Outcomes 

In the first essay, I identify a gap in the literature of histories of scientific 

thought, and the legacy of anthropometry as a science in particular. There is an unmet 

need for decolonization of the literature, and an examination of the current 

concomitant practices. Through historiographical means and archival processes, I 

uncover a nonlinear and contested record of events, up to and including leading 

contemporary practices and datasets. I contextualize the legacy of child malnutrition 

studies in a broad framework, including the linkage between the early eugenics 

movement and contemporary notions of a “normal” child, the interpersonal and 

institutional rivalries to develop the preeminent child growth charts, the often 

overlooked distinction between reference growth charts and standards of growth, and 

the hitherto unexplored consequences of universal growth standards, which fail to 

reflect actual population characteristics.  
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In the second essay, I find a mismatching of studies with malnutrition 

severity: looking only where the light shines brightest. I show that there is a 

disproportionately large focus on stunting, and little focus on spatial analysis, 

quantification, and interpretation of results. Large but imprecise (statistically 

insignificant) variables are left ignored, while small but precise (statistically 

significant) variables are touted as policy relevant areas of focus. 

In the third essay, I critique the standard deviation quality control maxim of 

anthropometric survey indicators: essentially, to dismiss any survey of 

anthropometric measurements whose standard deviation exceeds that of a benchmark 

distribution. I detail the genesis and propagation of the maxim in the literature, 

expose its theoretical and logical weaknesses, illustrate its demerits, and offer an 

alternative approach. 

In the fourth essay, I show the distinctiveness of places juxtaposed to the 

regularities within and between these places. I measure possible outcome effects of 

policy changes that target specific social determinants and various climate scenarios. 

The contribution to the literature is twofold: first I combine climactic data with the 

social determinates of health in a spatially explicit and quantifiable, 

epidemiologically significant framework; and second, I account for possible 

variability between the primary sampling units in the form of a four-level hierarchical 

model (generalized non-linear mixed model), the first of its kind. 
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2 The Chronicles of Anthropometry: The Legacy of a Standard 

of Normality in Child Nutrition Research 

2.1 Overview 

Anthropometric evaluation of children is among the most vital and widely used 

instrument of public health and clinical medicine. Anthropometry is used for 

establishing norms, identifying variations, and monitoring development. Yet the 

accurate assessment of physical growth and development of children remains a 

perpetually beleaguering subject. This paper focuses on the evolution of 

anthropometry as a science and its associated measurements, indices, indicators, 

standards, references, and best practices. This paper seeks to clarify aspects of the 

assessment of child growth, explores the historical trajectory of the study of 

anthropometry and its contemporary limitations, and contributes to the debate 

surrounding references and standards, and the applicability of international 

anthropometric standards to an individual’s health. It contextualizes the legacy of 

child malnutrition studies in a broad framework, including the linkages between 

eugenics and contemporary notions of “normal” child growth, the long contested 

institutional power-struggle for child growth chart superiority, the obfuscated 

distinction between growth reference and standards of growth, and the unforeseen 

consequences of universal standards that do not reflect any observable populations. 
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2.2 Introduction 

Anthropometry is the scientific study of the measurements and proportions of the 

human body. The World Health Organization asserts, “that for practical purposes 

anthropometry is the most useful tool for assessing the nutritional status of children” 

(WHO, 1986, p. 929). Other approaches to measure malnutrition include self-reported 

hunger levels and estimates based on food supply, however, they are less reliable 

(Svedberg, 2011). Child malnutrition is an indicator of food and nutrition security 

(Smith et al., 2000). Although anthropometry is not the same as health, it is 

significant and useful for understanding health (Komlos, 2009). There is little reason 

to doubt the importance and urgency of improving child health and nutrition, 

substantiated by a resolute anthropometric method. 

In general contemporary terminology, the basic anthropometric measurements 

are age, sex, weight, and height. Other measurements include subscapular skinfold 

thickness, triceps skinfold thickness, mid-upper arm circumference, and head 

circumference. An index is a combination of measurements (e.g., weight-for-height, 

height-for-age). They are necessary for grouping and interpreting measurements. The 

most prominent anthropometric index expression is the z-score. It is derived from the 

difference between a particular child’s weight-for-height or height-for-age and the 

comparable value from a reference population, divided by the standard deviation of 

that reference population (WHO, 1995). The most ubiquitous growth chart is the 2006 

WHO Child Growth Standards (Natale & Rajagopalan, 2014). 

An indicator is the application of an index prescribing judgement on the 

health of an individual (e.g., wasted, stunted, underweight). An index is a numerical 
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calculation only, whereas an indicator is a value based grouping or cutoff (WHO, 

1986). The two most widely studied contemporary indicators are wasting and 

stunting. Wasting indicates a deficit in tissue and fat mass, either from weight loss or 

inability to gain weight. Stunting indicates impeded skeletal growth. It is an 

evaluation of linear growth, representing chronic malnutrition accumulated over time. 

Nutrition monitoring and intervention programs hinge on specific, accurate, and 

standardized indicators (UNICEF, 2013).  

Why are these the dominant accepted paradigms and how did they get to be 

so? Historians of science know that understanding how and why a science (in this 

case anthropometry) developed is methods and gained its prominence raises profound 

questions. Social context, metaphysical assumptions, professional aspirations, and 

ideological allegiances are significant to the histories of a science. A conventional 

and sanitized history of science—which ignores blind alleys, errors, and distortions in 

the past—is incomplete. This paper attempts to grapple with some of these 

unconventional and ignored questions, particularly questions pertaining to the 

evolution and prominence of universal growth charts, the lasting impacts of 

emphasizing “normal” children, why and how categories of healthy growth developed 

and who was responsible, the oft-ignored distinction between references and 

standards, and the unforeseen consequences on the applicability of recommendations 

of child growth derived from universal growth standards. 

Broadly speaking, the present article consists of seven compound objectives. 

The first section chronicles the nascent development of the science of anthropometry, 

detailing the motivations and findings of contributors to the field at its inception. The 
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second section introduces the premise that the motivations and findings of 

anthropometric science is inextricably linked to the eugenics movement and how the 

notion of a “normal” child (described later as still in contemporary practice) derives 

from this doctrine. The third section chronicles the development of child growth 

charts and the struggle of various institutions to supplant one another as the 

preeminent authority, leading to a movement away from regional and national tables 

towards a single unified international reference. The fourth section traces the 

semantic evolution of methods and terminology of anthropometric measurements, 

indices, and indicators to describe child malnutrition in its various forms. This section 

also explores the struggle between quantitative and qualitative classifications, and 

juxtaposes the needs of cold statistical objectivity against individual subjective 

judgement and evaluation. The fifth section examines the distinction between 

reference growth charts and standards of growth, the continued development of 

unified international growth charts, and what it means to be a “normal” child. The 

sixth section highlights the origins for ongoing debates of the social determinants of 

health and the meta-histories of anthropometry. The final section analyzes the state of 

the contemporary preeminent international child growth chart derived from the 2006 

WHO Multicentre Growth Reference Study. 

This framing reveals a picture of anthropometry as a cultural product and a 

political resource. As Rudwick puts it, “Accepting or rejecting any scientific theory is 

always and irreducibly a social act, by a specific social group, in particular cultural 

circumstances” (1981, p. 247). Demonstrating that anthropometry has always been 

contested and negotiated, this historical awareness helps to keep the subject open to 
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dialogue and debate. Future policies and initiatives will be more effective and 

successful if they are shaped against a background that includes an understanding of 

the forces and factors of past developments.  

2.3 A Nascent Science 

The genesis of anthropometry is not in medicine or even science, but in the arts and 

Pythagorean philosophy (Tanner, 1981). It was sculptors and painters, in search of 

Platonic ideals, who first measured the relative proportions of the human form. The 

nascent scientific study of measurements and proportions of the human body was 

conceived by Adolphe Quételet. The Quételet Index, later redubbed the Body Mass 

Index, is still relevant (Eknoyan, 2008). In his 1832 article Research on the weight of 

man at different ages, Quételet describes the first cross-sectional study of the height 

and weight of newborns and children (Quételet, 1832). In his 1835 text A treatise on 

man and the development of his faculties, Quételet presented his conception of the 

“average man” and the link between the population distribution of weight and height 

to the normal Gaussian distribution (i.e., a bell curve) (Quételet, 1835).   

It was not until after the UK Parliament passed the 1833 Factory Act, 

reforming inadequate child labor standards in factories, that a need arose for 

physicians to measure and standardize the growth rates of children. The Act required 

physicians to certify children’s “age and physical capacity for work … and that the 

[child] has the ordinary strength and appearance of at least 8 years of age” (Roberts, 

1876, p. 681). Following the passage of the Act there was a smattering of studies 

measuring the weight and height of children in select factories. However, it was 

Roberts (1876) who first endeavored to establish standards of reference for the height 



 

 14 

and weight of children, collecting measurements from 10,000 boys and girls, aged 8 

to 14, across urban and rural populations, and factory and non-factory households.  

In 1883, the Final Report of the Anthropometric Committee of the British 

Association for the Advancement of Science was published. The Committee was 

appointed in 1875 “for the purpose of collecting observations on the systematic 

examination of the height, weight, and other physical characters of the inhabitants of 

the British Isles” (Galton, 1883a, p. 1). Under the chairmanship of Francis Galton 

(inventor of correlation and regression, and cousin of Charles Darwin), the 

Committee collected anthropometric measurements from 917 infants and 651 

children under 5 years of age to construct tables of average weight and height. The 

primary questions of research at the time were concerned with developing general 

principles of growth and development, understanding the link between social class 

and mental and physical capacity in children, and discerning the point at which 

growth matures (Burk, 1898). Similar efforts were also underway in the US 

(Bowditch, 1877). By the end of the 19th century interest in anthropometry––

specifically anthropometry of children––was accelerating. Hartwell (1893) chronicled 

117 titles of anthropometric works in the US. In 1898, Burk published growth curves 

and a study describing the “average” American boy and girl, based on the 

anthropometric surveys of Boas (88,449 Boston, St. Louis, Milwaukee, Worcester, 

Toronto, and Oakland children), Bowditch (24,500 Boston children), Peckham (9,600 

Milwaukee children), and Porter (34,500 St. Louis children).  
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2.4 A Pure and Normal Child 

In 1909, Ellen Key’s The Century of the Child was published in English. The volume 

and its title served as spark and slogan for a bourgeoning child welfare movement, 

which was gaining moral and political authority throughout Western Europe and the 

United States at the turn of the 20th century (Cravens, 1993). Key’s message certainly 

resonated in the United States, especially with people like Cora Hillis of the National 

Congress of Mothers (the progenitor of the National Parent Teacher Association), 

who in 1917 fought to establish the Iowa Child Welfare Research Station.1 The 

Research Station pioneered methods of assessing children’s nutritional status with 

anthropometry indicators in order to “give the normal child the same scientific study 

by research methods that we give to crops and cattle” (Bradbury & Stoddard, 1933, p. 

7). It was there that the notion of a “normal” child was championed. 

However, the notion of a “normal” child and the study of anthropometry is 

inextricably linked to the early eugenics movement. It was Francis Galton himself 

who coined the term eugenics as “the science of improving [human] stock [through] 

judicious mating … to give the more suitable races … a better chance of prevailing 

over the less suitable” (Galton, 1883b, p. 25). The early child wellbeing researchers 

assumed the national population was divided into a hierarchical series of groups, 

some superior and some inadequate, with native-born whites of Anglo-Saxon 

Protestant ancestry at the top (Cravens, 1993).  

 
1 Hillis’s first appeal for a research station at Iowa State University was dismissed because “the 
college’s mission was pigs, not people.” And her request in 1915 from the Iowa Legislature for 
$25,000 to establish the research station at the University of Iowa was denied in favor of a new sheep 
barn built at the state fairgrounds. 
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Ellen Key, echoing Galton, called for “very strict rules, to hinder inferior 

specimens of humanity from transmitting their vices or diseases, their intellectual or 

physical weaknesses” (Key, 1909, p. 20). Fully in the mainstream of her time, Cora 

Hillis also campaigned for racial purity in order to promote the Research Station 

(Cravens, 1993). Anthropometry has been conjoined since its inception as a scientific 

practice with the ideals of eugenics. Despite meaningful insights from anthropometry, 

this legacy has beset the field.  

 From these early studies medical professionals began to use height-weight-

age tables as an index of child health and as a measure of severe malnutrition, 

replacing the inadequate measure of weight only (JAMA, 1933). The impetus for an 

index of child health came from the Baldwin-Wood tables, first published in 1910 and 

revised in 1923, which soon became widely taught and reproduced in most textbooks 

(Tanner, 1952). Emerson and Manny (1920) first proposed a normal zone—of 7% 

below to 20% above average weight for height—to identify malnourished children, 

determining that 20 to 40 percent of US children were malnourished. Accompanying 

the salutary results of the research, interpreting the limits of the normal zone was 

generally misunderstood by anxious parents who would consult oracular weighting 

machines to gauge their child’s health (Tanner, 1952). Even medical professionals 

misunderstood and trivialized malnutrition, dominated instead by the ideas of 

infection (Williams, 1973). But unlike infection, which asks the qualitative question 

“Whether or Not” (a child is infected), malnutrition asks the quantitative question of 

“How Much” (a child is malnourished). 
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2.5 Growth Curve Standardization and Unification 

By the early 1940s the study of velocity of growth grew in prominence. First 

advocated by Frank K. Shuttleworth, he deemed cross-sectional data inadequate for 

all meaningful analysis with the exception of “determining the average size of 

children in general at any given age” (Shuttleworth, 1937, p. 180). However, 

determining velocity was financially, administratively, and computationally 

burdensome, requiring longitudinal rather than cross-sectional studies (Tanner, 1952). 

Boas (1892) realized the importance of longitudinal data, but was largely ignored 

until 40 years later when he clarified the statistical and scientific gains to be had from 

following individuals through time (Boas, 1930).  

The first longitudinal charts came from studies in the United States, consisting 

of 50 to 200 children from homologous communities (Bayer & Gray, 1935; Jackson 

& Kelly, 1945; Palmer et al., 1937; Palmer & Reed, 1935; Robinow, 1942; Simmons 

& Todd, 1938; Wetzel, 1941). Older studies and charts did exist in a sense. As far 

back as 1872 Bowditch collected longitudinal data; however, he only studied 13 girls 

and 12 boys who were all mostly related and older than 5 years of age (Bowditch, 

1877). These studies, however, were only quasi-longitudinal, with many children only 

being observed for a few years at a time. Despite their shortcomings, these standards 

of reference would not be fully supplanted until 2000 to 2006 (de Onis, Garza, et al., 

2007). 

In a perpetual trend that continues today, the accepted standards of 

anthropometric measurement continued to evolve. Growth rate norms developed from 

data earlier than the 1930s (i.e., the Baldwin-Wood tables) were deemed inadequate 
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for evaluation. Critics like Shuttleworth (1934) decried the inadequacies of the 

contemporary standards of development. Pointing to the secular trend over the past 

century towards heavier and taller populations (see Roberts, 1876), previous 

standards of reference were quickly deemed out-of-date (Meredith, 1941; Meredith & 

Meredith, 1944; Tanner, 1952). The secular growth trend debate continues to 

beleaguer contemporary studies of anthropometry (NCD-RisC, 2017).  

Stuart and Meredith (1946) provided the first such updated standards, 

collected from 750 children between the ages of 5 to 18 years of “northwest European 

ancestry living under better than average conditions from the standpoints of 

nutrition, housing, and health care” at the Iowa Research Station (Meredith, 1949, p. 

884). In the fifth edition of Mitchell-Nelson’s Textbook of Pediatrics (for the past 70 

years the most prominent book of its kind), Stuart and Stevenson (1950) provided 

further updates from the Harvard School of Public Health Longitudinal Studies data, 

including children from birth to 18 years old. These anthropometry standards—

referred to as the Harvard-Iowa standards—remained in prominent use for the next 

thirty years (Tanner, 1981). Similar efforts were also underway in the Netherlands (de 

Wijn & de Haas, 1960) and Britain (Tanner & Whitehouse, 1959).  

Despite its prominence, the Harvard-Iowa standards were recognized as 

inadequate for a national reference, much less for an international reference, but such 

is the effect of professional prestige and political power. In an effort to standardize 

inadequate nutrition assessments, the World Health Organization in 1966 published a 

simplified combined-sexes version of the Harvard-Iowa standards (Dibley, Goldsby, 

et al., 1987). Certifying itself as exemplar, the World Health Organization established 
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methods, techniques, and procedures for defining, collecting, presenting, and 

interpreting anthropometric measurements (D. Jelliffe, 1966). Pediatricians and 

public health officials were beginning to adopt anthropometry and children’s health 

as a sensitive index of the health of a community (Tanner et al., 1966). Indeed, the 

Assistant Director-General of the World Health Organization, W. H. Chang 

proclaimed, “Health of a population is reflected most accurately by the rate of growth 

of its children” (Eveleth & Tanner, 1976, p. ix). 

In 1967 the World Health Organization and UNICIEF (United Nations 

International Children's Emergency Fund) collaborated with the International 

Biological Programme (under the auspices of the International Council of Scientific 

Unions) to collect anthropometry data from a globally representative sample spanning 

42 countries and 340 projects, in an unprecedented multilateral effort, including a 

joint longitudinal study of children in Paris and London, to serve as the new reference 

(Eveleth & Tanner, 1976). Unfortunately, the efforts of the International Biological 

Programme lacked traction in the nutrition sphere and became defunct by 1972. 

The First Joint Food and Agriculture Organization/World Health Organization 

Committee on Nutrition convened in 1949. In keeping with its persistent message, the 

First Expert Committee prescribed a need for studies of the clinical characteristics of 

early childhood malnutrition (FAO & WHO, 1949). Under the United Nations’ 

collective belief that health is a fundamental human right and the healthy 

development of children is of central importance, nutritional needs assessments in 

underdeveloped countries began in earnest. By 1971, the Eighth Expert Committee 

prescribed a need to study incidence and prevalence of malnutrition, and the urgent 
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prerequisite of a general consensus of definitions and classifications. They also 

highlighted other concurrent issues such as the etiology of malnutrition and role of 

non-illness (socio-economic) factors, and the permanent physical and mental 

impairment caused by malnutrition (FAO & WHO, 1971). Greater understanding of 

the mechanisms of malnutrition, highlighted by Emerson and Manny (1920), spurred 

by Jelliffe (1966), and underscored by Waterlow (1972), led to the supremacy of 

height-for-age and weight-for-height anthropometric indices, supplanting the 

inadequate weight-for-age index (Waterlow et al., 1977; WHO, 1976). 

Perpetuating the discourse of ever more rigorous standards, the Maternal and 

Child Health Program, the Unites States Public Health Service, and the American 

Academy of Pediatrics concurred in 1971 that the Harvard-Iowa standards were 

inadequate and no longer applied to the US (Hamill et al., 1979). This decision was 

the impetus for the Health and Nutrition Examination Survey carried out by the 

Centers for Disease Control and Prevention’s National Center For Health Statistics 

Task Force and later recommended by the US National Academy of Science in 1974 

as the new US national anthropometric reference (WHO, 1978).  

First released in 1977, the National Center For Health Statistics Growth 

Curves were a combination of data from the National Center For Health Statistics’ 

Health Examination Surveys, Health and Nutrition Examination Survey and the Fels 

Research Institute (Hamill et al., 1979). The National Center for Health Statistics data 

consisted of three pooled quasi-longitudinal surveys (1963 to 1974) measuring the 

anthropometry of 2 to 18 year-olds from a national stratified probability sample 

(Hamill et al., 1977). The Fels data was compiled from a sample of convenience of 
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867 white middle-class Ohio children during a longitudinal study (1929 to 1975) of 

children from birth to 3 years old (Dibley, Goldsby, et al., 1987). The portmanteau 

quality of the growth reference led to a discontinuity at the junction point of the 

disparate data sets (Dibley, Staehling, et al., 1987). The discontinuity produced 

spurious interpretations of anthropometric indicators, which incorrectly implied a 

drop in prevalence rates at 2 years old. This spurious artifact persists today in many 

studies on the etiology of malnutrition. 

Waterlow et al. (1977) of the World Health Organization described the 

canonical criteria for an anthropometric reference population, which would establish 

the US National Center for Health Statistics Growth Curves (Hamill et al., 1979) as 

the preeminent growth reference for both individuals and populations for the next 30 

years. In 1978 the Centers for Disease Control and Prevention developed a 

statistically normalized version of the National Center for Health Statistics Growth 

Curves (Dibley, Goldsby, et al., 1987). In the same year the World Health 

Organization adopted the normalized Growth Curves and succeeded in promoting 

them as the preeminent international growth reference. The single international 

reference population allowed pediatricians, public health officers, and organizations 

like the World Health Organization to compare the results among different nutrition 

studies, assisting interpretation and improving clarity (WHO, 1978).  

2.6 Categories, Cutoffs, and Classifications 

Though not the first to try, Waterlow et al. (1977) cemented normalized growth charts 

and z-scores as the definitive indicator measurement. The most common expressions 

of anthropometric indices are percent-of-median, percentiles, and z-scores 
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(sometimes referred to as standard deviation scores) used to group and interpret 

measurements. Percent-of-median is the ratio of an anthropometric measurement or 

index for a child (e.g., their weight) to the median value of comparable children in the 

reference population, expressed as a percentage (WHO, 1995). Percent-of-median is 

the simplest to calculate and a useful measurement if the distribution of the reference 

population is unknown, unspecified, or otherwise not normalized (Gorstein et al., 

1994).  

Percentiles rank the relative position of a child against comparable children in 

the reference population, expressed in terms of what percentage of the reference 

population the child equals or exceeds (WHO, 1995). Percentiles are the most 

intuitive, and formerly the most common way physicians tracked a child’s growth; 

the 50th percentile or the median (and if the reference is perfectly Gaussian normal, 

also the mean), describes the central point with 50% of the population above it and 

50% of the population below it (Falkner, 1962).  

Z-scores convey anthropometric measurements as a number of standard 

deviations below or above the reference population value. Z-scores are the difference 

between a child’s measurement and the mean value of comparable children in the 

reference population, divided by the standard deviation of the reference population 

(WHO, 1995). Z-scores require a reference population that follows a normal 

(Gaussian) distribution. In return, z-score cutoff values are stable across different 

reference populations (e.g., defining a -2.0 weight-for-height z-score as wasted is 

consistent across all heights and even through other conditional factors such as age). 

Z-score measurements are also useful for comparing measurements across different 
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units (Falkner, 1962), and as a feature of normalization the full distribution of 

anthropometric values can be expressed with just a mean and standard deviation. Z-

scores are now accepted as the best system for analysis and presentation of 

anthropometric data (de Onis & Blössner, 1997; de Onis & Habicht, 1996; WHO, 

1995). 

The terminology used to describe malnutrition has gone through many 

renditions. As one anonymous author in the British Medical Journal once said: “All 

we can demand is … that language shall not lag behind knowledge; and that, as we 

learn to know things better, we shall also take due pains to name them more 

perfectly” (Anonymous, 1886, p. 1116). Etymologically speaking, the terms wasting 

and stunting are ideophones: purely descriptive of the symptomatic thinness and 

shortness of malnutrition.  

As early as Emerson and Manny (1920), stunting described low height-for-age 

whereas malnourished described low weight-for-height. At the First Joint Food and 

Agriculture Organization/World Health Organization Committee on Nutrition 

kwashiorkor or malignant malnutrition was the watchword of the day (FAO & WHO, 

1949). Kwashiorkor is a Ghanaian word meaning “the disease of the deposed baby 

when the next is born” (Williams, 1973, p. 361). First described by distinguished 

pediatric pioneer Cicely Williams (1933), it is a type of clinical malnutrition from 

deficient protein intake coupled with edema (i.e., an excess of fluid in body tissues 

and cavities). By the Third Joint Committee, the nutrition lexicon shifted to protein-

calorie malnutrition and included descriptions of “wasted muscles” hinting at the 

ensuing terminology (FAO & WHO, 1953).  
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During the intervening decade, 1950-1960, the field of nutrition shifted 

emphasis from micronutrients (vitamins A and B, iodine, and zinc) to macronutrients 

(proteins, fats, and carbohydrates) (Jolliffe, 1962). Jelliffe (1966) suggested the term 

protein-calorie malnutrition of early childhood should be used as a generic term to 

cover the whole range of manifestations, which would include the clinical syndromes 

of kwashiorkor and marasmus—a more general form of starvation with signs of 

“severe wasting,” but not edema. He also distinguished between four forms of 

malnutrition: undernutrition, specific deficiency, overnutrition, and imbalance. In 

modern parlance, “severe acute malnutrition” and “severe wasting” have superseded 

kwashiorkor and marasmus (WHO & UNICEF, 2009).  

Waterlow (1972) proposed retardation as the slowing of linear growth where 

stunting would describe a reduction in final stature. Following Seoane and Latham 

(1971), who noted weight-for-height gauges current nutrition and height-for-age 

gauges past nutrition, Waterlow (1972) also proposed four categories of nutritional 

status: normal; malnourished but not retarded (acute malnutrition); malnourished and 

retarded (acute on chronic malnutrition); and retarded but not malnourished (so-

called nutritional dwarfs). Each category was accompanied with a grade to further 

distinguish the severity. By 1977, the contemporary derivations of wasting (low 

weight-for-height) and stunting (low height-for-age) were established.  

But the sorites problem—the ancient Greek paradox of how many grains of 

sand it takes to make up a heap—remained unresolved. That is, at what point is a 

child stunted, wasted, underweight, malnourished or severely malnourished? 

Determining a child’s nutritional status based on anthropometric values requires 
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defining cut-off points, which needs a qualitative classification, whereas prevalence 

and severity needs a quantitative classification (Waterlow, 1972). To use Stevens’s 

(1946) typology of scale, one must transform a ratio measurement into a nominal 

grouping. 

Using weight-for-age, Gómez et al. (1956) imposed explicit cut-off points 

(i.e., 76-90, 61-75, and less than 60 percent-of-median) to classify malnutrition 

severity into first degree, second degree, and third degree malnutrition. Ford (1964) 

suggested that 66 percent-of-median should be the malnutrition line. Garrow (1966) 

proposed that severe malnutrition occurred only below 70 percent-of-median weight-

for-age. Dugdale (1971) believed malnutrition began at 80 percent-of-median 

reference weight. Waterlow (1972) tweaked the Gómez Classification; using weight-

for-height he suggested three delineated malnutrition severities of 90-80, 80-70, and 

less than 70 percent-of-median. Trowbridge (1979) classified wasting as below 80 

percent-of-median and stunting as below 82.5 percent-of-median. The Oomen 

Malnutrition Index (Oomen, 1955) and Protein-Calorie Malnutrition Score (Jelliffe & 

Welbourn, 1963) were other attempts to establish a common system, but the Gómez 

classification is considered the progenitor of the modern malnutrition classification 

system (de Onis, 2000; D. Jelliffe, 1966). Originally the Gómez classification was 

devised to group cases of similar prognosis for children aged 1 to 4 years and guide 

physicians in selecting the appropriate place of treatment. It was not intended as a 

diagnostic classification tool for community surveys nor to be extended to other age 

groups (FAO & WHO, 1971; Gómez et al., 1956).  
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With the increasing prominence of normalized curves and z-scores, Waterlow 

et al. (1977) defined the contemporary canonical cut-off points for moderate wasting 

and stunting as 2 standard deviations below the median reference, and for severe 

wasting and stunting as 3 standard deviations below the median reference (UNICEF, 

2013). Though largely ignored, the Eighth Report of the Joint Food and Agriculture 

Organization/World Health Organization Expert Committee on Nutrition did warn 

against the problem of a “normal” standard in tests of nutritional status (FAO & 

WHO, 1971). “In most biochemical and haematological measurements it is usual, for 

practical reasons, to specify ranges and “cut-off” points that distinguish “normal” 

individuals or groups from those who are “at risk” or “deficient”” the Report goes on 

to say, “This is an arbitrary procedure, since most parameters vary continuously … 

[and statistical evaluation] cannot by itself distinguish between what is normal and 

abnormal in the biological sense” (FAO & WHO, 1971, p. 76). Sole reliance on 

statistical evaluation continues, with little consideration as to the sensitivity and 

specificity of an arbitrary cut-off point. 

2.7 References to Standards  

Using the 1978 normalized Growth Curves, the World Health Organization continued 

to collect and publish (in 1983, 1989, and 1993) information on the nutritional status 

of the world’s children (de Onis & Blössner, 1997). In 1986, a World Health 

Organization Working Group published a conclusive guide to define, interpret, and 

standardize anthropometric indicators (WHO, 1986). By 1993, the Expert Committee 

on Physical Status, convened by the World Health Organization, concluded that 

despite previous admonitions, reference growth charts had long been misconstrued as 
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a standard of growth (de Onis & Habicht, 1996). The National Center for Health 

Statistics and the Centers for Disease Control and Prevention designed both the 1977 

smoothed percentiles and the 1978 normalized growth curves as references 

(Kuczmarski et al., 2002).  

The sole aim of a reference is to be a common basis in order to group, 

analyze, and compare different populations, whereas a standard represents a desirable 

target or norm (WHO, 1995). In practice, however, clinicians use growth charts as 

standards rather than references (Grummer-Strawn et al., 2010). The distinction may 

seem trivial, but the requirements of the underlying data will change depending on the 

intended application, which can produce spurious interpretations and conclusions.  

The problem is also circular. To be able to identify the normal range in a 

population the abnormal ones must first be removed, but abnormalities can only be 

identified once the normal range is defined (Armstrong, 2019; Creadick, 2010; Rose, 

2016). Not to mention the well documented paradox that given enough measurement 

dimensions—even a small number of dimensions across a homogenous sample—

exactly zero people will be “average” (Creadick, 2010; Rose, 2016; Subramanian et 

al., 2018). However, the question remains of whether it is appropriate to compare 

children across radically different environments, and whether the reference versus 

standard distinction is satisfactory or merely evades the larger issue (de Onis & 

Blössner, 1997).  

Clearly, different subpopulations have different proclivities for growth, based 

on their environment, gene pools and the interaction between the two (Eveleth & 

Tanner, 1976). However, Habicht et al. (1974) believed that standards which 
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represent optimal growth can apply to all children, regardless of race or ethnicity, 

because their potential effects are so small compared with environmental effects. 

Contemporaneously, Waterlow et al. proclaimed that, “If there were differences 

dependent on different gene distributions, then the target for one population would 

not be the same as the target for another. This does not, however, affect the use of the 

reference data for comparisons between populations” (Waterlow et al., 1977, p. 490).  

Tempting as it may be, the desire to distill all observed differences in human 

growth and behavior down to the environment and gene pools should be avoided, 

especially if accompanied by a numerical ranking, echoing eugenics and 

environmental determinism. 

Even the canonical arbiters of the international anthropometric reference 

conceded that: 

Because the reference population cannot be used as a universal target, the 
question of what is a realistic goal in any particular situation does become 
important. Decisions of this kind have to be taken locally, and it is not 
possible to make international recommendations about them. (Waterlow et al., 
1977, p. 490)  
 

The distinction was, and continues to be, largely overlooked. 

In constructing the international growth reference chart, the National Center 

for Health Statistics decided that smoothed growth curves looked better and 

represented reality better. Although mathematical smoothing techniques have long 

existed, the 1977 reference was the first to use computers to systematically smooth its 

curves in a reproducible, quantifiable way (Hamill et al., 1977). The result produced 

artificial growth curves in order to serve statistical techniques of comparison that 

depend on the normal (Gaussian) distribution (Dibley, Goldsby, et al., 1987). The 
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increasing normality of the international reference data (in the statistical Gaussian 

sense), however, exacerbated the phenomenon of misapplying the reference as a 

standard (WHO, 1995). Recognizing this phenomenon along with other inadequacies 

of the data (e.g., discontinuities and unrepresentative samples of convenience) led to 

the development of new growth charts, which purported to serve as both reference 

and standard. 

2.8 Histories, Etiologies, and Determinants 

Pioneering the research on the social causes of malnutrition, José María Bengoa 

(1940) believed malnutrition to be an ecological problem: the result of overlapping 

factors in a community’s physical, biological and cultural environments. Physician 

Norman Jolliffe (1962) proposed a twofold classification for the pathogenesis 

nutritional deficiency. Jolliffe’s classification places a faulty diet as the primary 

cause, which is conditional upon inadequate or abnormal nutrient ingestion, 

absorption, utilization, and excretion. This etiology is firmly couched within the 

purview of illness related malnutrition (Mehta et al., 2013).  

Moving towards a non-illness etiology of the social determinants of health, 

tropical pediatric expert Dr. Derrick Jelliffe (1966) proposed that the principle aim of 

nutritional assessment should be to map out the magnitude and geographical 

distribution of the problem and analyze the direct and indirect ecological factors. The 

entitlements paradigm, conceived by Nobel Prize-winning economist Amartya Sen 

(1976), approached the study of poverty and hunger by illuminating the less than 

obvious economic mechanisms when dealing with less than extreme raw poverty and 

its antecedents.  
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The same year Sen devised entitlements, physician and demographic historian 

Thomas McKeown (1976; 1979) proposed that economic growth coupled with better 

nutrition (i.e., greater caloric intake) caused improvements in health outcomes, rather 

than targeted public health or medical interventions. Dubbed the “McKeown thesis,” 

it became the subject of much controversy and shaped the research hypotheses of 

many scholars (Colgrove, 2002).  

Motivated by McKeown and coinciding with the search to develop child 

growth standards, the National Bureau of Economic Research conducted numerous 

early studies on anthropometric history and trends (Cuff, 2019). In the late 1970s 

researchers such as Nobel Prize-winning economist Robert Fogel began to create the 

new anthropometric history (Steckel, 2009). The founders of this newly developing 

interdisciplinary perspective were instrumental in bridging child growth and 

economic development, and connecting components of biological welfare with the 

socioeconomic and epidemiological environment during childhood (Komlos & Baten, 

2004). In particular, anthropometric history found a niche in scholarship by 

incorporating the effects of environmental externalities, cyclical fluctuations, family 

resource distribution, societal level inequalities, and spatial disparities from historical 

records (see Floud & Wachter, 1982; Fogel et al., 1982; Fogel et al., 1978; Friedman, 

1982; Komlos, 1985, 1998; Margo & Steckel, 1982, 1983; Sokoloff & Villaflor, 

1982; Steckel, 1979; Tanner, 1982; Trussell & Steckel, 1978).  

Much of McKeown’s particular arguments about public health have been 

largely invalidated, but the legacy remains. Stiglitz (1976), picking up where 

Leibenstein (1957) left off, argued productivity depends (nonlinearly) on nutrition 
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from an efficiency wage perspective. Szreter (1988) argued that public health 

measures—especially clean water and improved sanitation—fundamentally reduces 

mortality and causes improvements in health outcomes throughout history. While 

others, such as Behrman and Deolalikar (1987), Bouis and Haddad (1992), and Bouis 

(1994), proposed that increases in income will not result in substantial improvements 

in nutrient intake, from an Engel curve for calories perspective. However, 

Subramanian and Deaton (1996) argued calorie elasticity is not zero, suggesting 

sufficient daily calories can be readily purchased with only a small fraction of the 

daily wage.  

Fogel (1994; 2004) documented direct evidence for the importance of 

nutrition, connecting levels of calorie availability to their effects on health throughout 

history. He postulated that understanding nutrition traps is the key to both improved 

health and economic development. Smith and Haddad (2000), from an aggregate 

cross-county perspective take the broader view, suggesting the main determinants of 

malnutrition are national income, poverty, education, and the state of the health 

environment. Under the chairmanship of Jeffery Sachs, the WHO Commission on 

Macroeconomics and Health, suggested that good health is a necessary—and possibly 

sufficient—condition of economic growth, which suggests that improving health, and 

as a consequence stimulating economic growth, requires direct intervention through 

public health provisioning (WHO, 2001).  

However, Deaton (2003) concluded that there is no direct link from income 

inequality to ill-health. Deaton goes a step further to emphasize the reinforcing 

interplay between disease and nutrition. He showed how nutrition traps are much 
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easier to understand once disease is given its proper place in the story. Malnutrition 

compromises the immune system, while at the same time, disease prevents the 

absorption of nutrients. For example, giving more food to a malnourished child 

afflicted with severe diarrhea would not ameliorate her health. As such, scientists, 

pediatricians, public health policy makers, and nutrition assistance programs need to 

carefully consider the many nuances of anthropometric modeling.  

2.9 The New Normal 

In 2000, the US Centers for Disease Control and Prevention released a revised 

version of the National Center for Health Statistics growth charts, and recommended 

them for both clinical and research purposes to evaluate the growth status of children 

in the US (Kuczmarski et al., 2002). These Growth Charts are based on five 

nationally representative surveys administered between 1963 and 1994 (de Onis, 

Garza, et al., 2007). The revised charts amended previous issues of discontinuity and 

unrepresentative samples, and an internal evaluation found no systematic differences 

between the smoothed and empirical data.  

In a separate effort, the World Health Organization also concluded that the 

1978 Growth Curves were inadequate (WHO, 2006a). As a result, the World Health 

Organization Multicentre Growth Reference Study was implemented between 1997 

and 2003. The designers of the new Growth Reference were intentionally prescriptive 

rather than descriptive (i.e., they designed a reference for how children should grow 

rather than how children actually grow) (Garza & de Onis, 2004). In other words, it 

was purposely designed to produce a standard rather than a reference.  
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Despite the fact that the National Center For Health Statistics Growth Curves 

and the revised Centers for Disease Control and Prevention Growth Charts are a 

reference, whereas the World Health Organization Multicentre Growth Reference 

Study is a standard, there are those who propose to compare the two and recommend 

one as a universally better tool (de Onis, Garza, et al., 2007; de Onis et al., 2006; de 

Onis, Onyango, et al., 2007; Ziegler & Nelson, 2012).  

Even as a standard, other studies find the Multicentre Growth Reference Study 

does not necessarily stand up (Bonthuis et al., 2012; Christesen et al., 2016; de Wilde 

et al., 2015; Heude et al., 2019; Júlíusson et al., 2011; Kêkê et al., 2015; Natale & 

Rajagopalan, 2014; Scherdel et al., 2015; Scherdel et al., 2016). The Standardized 

Monitoring & Assessment of Relief & Transitions (SMART) inter-agency initiative 

warns that,  

The reference values should not be considered “ideal”; they are simply used as 
a standard to compare nutritional status in different regions, and in 
populations over time. It is a standard in the same way that the meter or the 
kilogram are standards used to measure length or weight. (SMART, 2006, p. 
24) 
 

Regardless, the Multicentre Growth Reference is the definitive international 

anthropometric “reference population.”  

The Multicentre Growth Reference Study (July 1997–December 2003) 

consists of both cross-sectional and longitudinal surveys from six cities: Davis, 

California, USA; Muscat, Oman; Oslo, Norway; Pelotas, Brazil; select affluent 

neighborhoods in Accra, Ghana; and South Delhi, India (WHO, 2006b). The 

distributions of children across the different survey countries for the longitudinal 

component are: 119 USA; 149 Oman; 148 Norway; 66 Brazil; 227 Ghana; and 173 
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India. For a definitive global reference, the number of children the study is based on 

is rather small. The distributions of children across the different survey countries for 

the cross-sectional component are: 476 USA; 1,438 Oman; 1,385 Norway; 480 

Brazil; 1,403 Ghana; and 1,487 India. Children were selected for inclusion based on: 

no known health or environmental constraints to growth, mothers willing to follow 

feeding recommendations (although only 20% actually did), no maternal smoking 

before and after delivery, single term birth, and absence of significant morbidity.  

Of the 13,741 children screened for the longitudinal survey, less than 7% or 

882 children (428 boys and 454 girls) were eligible, compliant, and included in the 

final study. In addition, of the 21,520 children screened for the cross-sectional survey, 

less than 31% or 6,669 children (3,450 boys and 3,219 girls) were eligible, compliant, 

and included in the final study. Notwithstanding the discontinuity problem seen in the 

1978 Growth Curves, induced by a truncated longitudinal survey of children 0 to 24 

months old, the longitudinal component of the Multicentre Growth Reference Study 

is an equally truncated survey of children 0 to 24 months old.  

Prior to constructing the standards, if a child was 3 standard deviations above 

the sample median or 3 standard deviations below the sample median they were 

excluded (WHO, 2006b). For the cross-sectional sample the truncation procedure was 

even stricter. If a child was 2 standard deviations above the sample median or 2 

standard deviations below the sample median they were excluded. In other words, 

even though the study sought out the healthiest, most ideal population to measure, 69-

93% of the healthy populous (i.e., a very large percentage of the actual population) 

did not conform to this ideal (Sandler, 2021). As such, the Multicentre Growth 
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Reference Study is not representative of even a healthy population, much less a 

malnourished one.  

The initial Multicentre Growth Reference Study sample was not a standard 

normal (Gaussian) distribution. After the selective sampling and exclusion exercise, 

the sample was exceedingly skewed to the right (WHO, 2006b). To rectify the non-

normality, the data were cleaved at the median. The values from each new dataset 

were then reflected across the median to create two symmetrical distributions. Fitting 

a normal distribution to the data using the LMS method (Cole & Green, 1992), each 

mirrored distribution was used to derive standard deviation cut-off values for the 

respective upper and lower portions of the data.  

This means that if describing a “population” effect or standard, most of the 

actual, non-statistical, real-world population distribution is fundamentally and 

structurally not represented. The population is a sum of individual identities and 

should provide a fluid denominator, comparator, context, and analytic space, yet now 

the population has come to define those very individuals (Armstrong, 2017).  

Despite its shortcomings and checkered heritage, the Multicentre Growth 

Reference remains the most ubiquitous and authoritative resource of its kind (Natale 

& Rajagopalan, 2014). Even the United States Centers for Disease Control and 

Prevention (CDC), who develop their own specific child growth charts, “recommends 

that clinicians in the United States use the 2006 WHO international growth charts, 

rather than the CDC growth charts, for children aged <24 months” (Grummer-Strawn 

et al., 2010).  



 

 36 

Only 47 countries have potential alternative growth charts to the Multicentre 

Growth Reference (Natale & Rajagopalan, 2014). Elsewhere in countries where child 

malnutrition is most severe and country specific child growth charts do not exist, the 

Multicentre Growth Reference remains the most relied upon growth chart of its kind. 

WHO contends that its growth curves describe how all children should grow in all 

countries and that any deviations from its standards should be considered as evidence 

of abnormal growth (Garza & de Onis, 2004; WHO, 2006b).  

2.10 Conclusion 

In the context of clinical nosology, Armstrong observed that “when classificatory 

systems and explanatory frameworks are in flux there is no Archimedean point from 

which to see things as they really are: neither causes nor reasons can have 

epistemological priority” (2011, p. 806). The statement aptly characterizes 

anthropometric evaluation as well. Chronicling the evolution of medical classification 

is rare and has not received the attention it deserves (Armstrong, 2011; Jutel, 2009). 

Overlooking the legacy of a standard of “normality” in anthropometry could have 

profound consequences for contemporary etiological analyses of nutrition (e.g., Corsi 

et al., 2016; Kim et al., 2017; Kim et al., 2019; Perkins et al., 2017). To uncover its 

implications, we should continue to interrogate contemporary manifestations of 

anthropometric ontologies. It is well beyond the reach of this or any other single 

paper to disentangle the historical strands and perform this sort of examination, 

although it would not be impossible given more time and space. 
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3 A Scrupulous Review 

3.1 Overview 

Malnutrition devastates millions of children globally every year, yet the consensus of 

determining factors remains mixed and obscure. Based on a systematic literature 

search, I reviewed 184 disaggregate empirical studies of the determinants of 

childhood malnutrition in Africa published since 1990. The literature concerning 

disaggregate empirical studies of childhood malnutrition is found wanting for answers 

to two essential questions: What are the determinants of malnutrition? And how much 

do the determinants affect malnutrition? The role of spatial heterogeneity, 

hierarchical institutions, and divergent causal pathways of various non-illness related 

latent determinants is growing. Few studies consider conflict and environment 

etiologies: despite being the primary factors attributed to malnutrition, hunger, and 

death in most catastrophic famine events. Despite an extensive body of research, I 

find there are a number of opportunities for development within this corpus, in terms 

of an unmet need for more studies with broad temporal, spatial, and hierarchical 

perspectives, with an exhaustive set of nutrition outcomes, and findings that are 

quantifiable and epidemiologically significant.  

3.2 Introduction  

Universally recognized as a widespread and detrimental condition, malnutrition of 

young children encompasses a large body of research. Timing of observable 

determinant factors and measured nutrition outcomes makes identification difficult.  
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Issues of reverse causality with respect to illness, and highly correlated behavioral 

determinants make matters worse (Buisman et al., 2019). My review examines the 

existing status of disaggregate empirical studies of childhood malnutrition, 

confounding factors, existing policies, current challenges, and future solutions. I 

sought to analyze the relevant body of research concerning childhood malnutrition 

determinants over the past 30 years. Africa, being the most food insecure continent, 

was an obvious place to start (Devereux, 2018). The core identification criteria 

consisted of empirical and disaggregate child malnutrition studies conducted in 

African countries since 1990. Specifically, I analyzed the relevant methodologies, 

locations, outcomes, etiological themes, and conclusions.  

3.2.1 Evidence Before this Study  

Since the introduction of the UNICEF (1990) theoretical framework there has been an 

upsurge in studies attempting to corroborate it with empirical evidence. Previous 

systematic reviews have synthesized various determinants of malnutrition. Bhutta et 

al. (2008) synthesize the literature of illness related interventions on child 

malnutrition outcomes. Possible interventions included: balanced energy protein 

supplementation; vitamin A, zinc, iron, and iodine supplementation; breastfeeding 

promotion and support; complementary feeding interventions; hygiene interventions; 

and preventive treatment. They find that if nutrition-specific intervention (including 

management of acute malnutrition and multiple micronutrient supplementation) is 

scaled up to 90% coverage, stunting would be reduced by 20% reduce under-five 

mortality by 15% globally.  
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Keino et al. (2014) explore the determinants of stunting and overweight across 

sub-Saharan Africa from 1990 to 2012. Their systematic review yielded a set of 38 

studies from the PubMed database. After the screening process, they managed to 

review 18 studies. With the aid of chi-square tests, they conclude that stunting 

prevalence rates are dependent on a child’s sex, mother’s education, mother’s 

occupation, household income, sanitation facilities, and rural living conditions.2  

Phalkey et al. (2015) sought to assess the evidence base for climate change 

impacts on childhood undernutrition (i.e., stunting) in subsistence farming 

households. Their systematic review across all low- and middle-income countries 

with no limits on temporal scope and including full-text gray literature documents 

(from Eldis, Popline, IFPRI, WHOLIS, Agris, AgSpace, and Scirus) along with peer-

reviewed studies (from PubMed, Web of Knowledge, OvidSP, EBSCO, and Scopus) 

yielded 1900 total hits. After the screening process, they reviewed a combined 15 

studies. They show much of the evidence for the impact of climate on childhood 

malnutrition is based on a few heterogeneous studies with flawed methodologies. 

However, they suggest there are significant but variable linkages between rainfall, 

temperature, seasonality and extreme weather events with stunting prevalence.  

Akombi et al. (2017) reviewed the literature for consistent factors associated 

with child undernutrition across sub-Saharan Africa. Their systematic review of 

studies published between January 1990 and January 2017, across 49 sub-Saharan 

 
2 Given the low number of included studies from such a large potential population, I suspect the search 
criteria of returning a false literature pool (i.e., they apply the Boolean operator “AND Africa” 
unconventionally, which returned only 38 titles in total and disproportionately favored studies from 
“South Africa” by 53%). 
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African countries, yielded a set of 2291 individual articles from five bibliographic 

databases (Scopus, PubMed, PsycINFO, CINAHL and Embase). After the screening 

process, 49 academic articles were assessed. They report vitamin A and zinc 

deficiency, low mother’s education, increased child’s age, male sex of the child, poor 

households, prolonged duration of breastfeeding, low birth weight, decreased 

mother’s age, unimproved drinking water, low mother’s Body Mass Index, small 

birth size, recent diarrheal episode, low father’s education, and rural residences are 

the consistent determinants of child malnutrition.3  

Brown et al. (2020) conduct a structured review of 90 studies that assess 

relationships between potential determinants and child malnutrition indicators. Their 

search criteria, with no limits on temporal and geographic scope, yielded a set of 688 

articles from the EconLit database. They synthesize the findings of studies with 

statistically significant positive or negative relationships between child malnutrition 

and various factors. They identify shocks due to variations in climate conditions 

(temperature, rainfall, and vegetation indicators) and violent conflict are consistent 

predictors of child malnutrition. They found factors associated with stunting, wasting, 

and underweight, including: child’s age, multiple births, mother’s education, mother’s 

BMI, household’s wealth/assets, and national GDP per capita. In addition, child’s sex 

was associated with stunting, and wasting, while rural households and national female 

education level were associated with stunting, and underweight.4  

 
3 Contain various instances of errors, both of commission and omission. For example, exclusion of 
important articles, inclusion of inappropriate articles, misinterpretation of study designs, miscounting 
of sample sizes, misattribution of determinizing factors, and mischaracterization of research quality. 
4Consists of a limited number of studies given the search criteria. Results of the analysis rest on a 
misguided understanding of quantitative methods and statistical analysis. 
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3.2.2 Inflection Points 

The year 1990 marks the genesis of the literature with the inception of the UNICEF 

(1990) theoretical framework. First published in 1993, the Global Burden of Disease 

Study is an ongoing international collaborative effort to assess the mortality and 

morbidity of major diseases, injuries, and risk factors including child malnutrition. 

Each subsequent publication of the Global Burden of Disease Study pertaining to 

child malnutrition (2008, 2013, and 2018) serve as possible points of activity in the 

literature. In 1996, the World Food Summit set a target of halving the number of 

undernourished people globally by 2015. And in 2000, the United Nations adopted 

the Millennium Development Goals, which included targets to reduce hunger and 

child mortality by 2015. In 2006 the World Health Organization released the 

Multicentre Growth Reference, the latest definitive and most ubiquitous international 

anthropometric child growth chart. As the sun was setting on the Millennium 

Development Goals, the United Nations adopted the updated and more extensive 

Sustainable Development Goals in 2015. 

From 1991 to 1992, Somalia experienced a famine caused by drought and 

civil war killing an estimated 300,000 to 500,000 people (Devereux, 2000). In 1998 

Sudan experienced a famine caused by drought and civil war killing an estimated 

70,000 people (Devereux, 2000). From 1998 to 2000, Ethiopia experienced a famine, 

worsened by the Eritrean-Ethiopian War, killing an estimated 71,600 to 122,700 

people (Salama et al., 2001). From 2001 to 2002, Malawi experienced a famine that 

killed an estimated 47,000 to 85,000 people (Devereux & Tiba, 2006). From 2004 to 

2005, Niger experienced a famine that killed an estimated 13,297 to 47,755 people 
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(Rubin, 2009). From 2010 to 2012, southern and central Somalia experienced a 

famine brought on by drought and poor harvests, that killed an estimated 244,000 to 

273,000 people (Robinson et al., 2014). Famine conditions have been ongoing in 

parts of South Sudan from 2017 to the present (IPC, 2017). Each of these 

multinational endeavors and humanitarian catastrophes serve as potential catalysts to 

spur activity within the literature. 

3.3 Materials and Methods 

The core identification criteria consisted of empirical and disaggregate child 

malnutrition studies conducted in African countries since 1990. I conducted a 

systematic database search methodology using Web of Science to procure the primary 

population of potential studies. Web of Science is a comprehensive academic 

literature database citation index, with coverage across many different academic 

fields and databases (for explicit Web of Science search concepts with Boolean and 

Truncation/Wildcard symbology search terms, see section 7.1.1). The Web of Science 

search yielded a set of 903 articles. I augmented the database search with keyword 

and citation methodologies using Google Scholar along with hand searching within 

key journals and articles. Additional identified records from alternative means yielded 

a set of 73 articles. All duplicate articles were removed to constitute a total of 942 

articles for screening.  

A further 489 articles were excluded based on their titles, plus an additional 

202 articles were excluded based on the content of their abstracts. A total of 251 

articles were included in a full-text assessment. Only disaggregate empirical studies 

of the determinants of childhood malnutrition in Africa published since 1990 were 
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included in the final selection. All article searches were conducted only in English, 

and only English-language articles are included in the analysis. Focusing exclusively 

on anglophone science should be a cause for concern and the practice carries with it 

greater epistemological issues that are beyond the scope of this paper. However, in a 

follow-up Web of Science search where English-language only articles is not 

specified only 11 additional papers are returned, none of which would have been 

included based on tittle and abstract screening. In addition, I screened for deceptive or 

predatory scholarly publishers and journals (see Beall, 2017; Strielkowski, 2017, 

2018). During the full-text assessment an additional 67 articles were excluded. The 

sample included in the final synthesis therefore consists of a total of 184 studies. A 

flow chart of the article selection process is shown in Figure 2 (Page et al., 2021). 
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During the differentiation process certain themes emerged to guide the 

screening strategy. Malnutrition and outcome specific exclusion criteria included: 

studies where malnutrition was used to define a cohort wherein other comorbidities 

are assessed; studies where malnutrition was strictly coupled with other co-

occurrences; studies where malnutrition was used to measure outcome of specific 

intervention treatment or is an associated risk factor for some other outcome; studies 

where malnutrition was an independent variable; studies where treatment or prognosis 

of malnutrition related illnesses or co-morbidities was assessed; studies where 

Records identified through Web of 
Science database search 

(n = 903) 

Additional records identified 
through other sources 

(n = 73) 

Records after duplicates removed 
(n = 942) 

Records screened 
(n = 942) 

Records excluded by 
reading Title 

(n = 489)  

Full-text articles assessed 
for eligibility 

(n = 251)  

Records excluded by 
reading Abstract 

(n = 202) 

Full-text articles 
excluded, with reasons 

(n = 67) 

Studies included in 
synthesis 
(n = 184) 

Figure 2: PRISMA systematic review methodology flowchart diagram 
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malnutrition prevalence or incidence was not used (e.g., distribution, spatial 

inequality, composite index of anthropometric failure, stunting shortfall); and studies 

not assessing stunting, wasting, or underweight related outcomes in the form of 

alternative measurements, indices, or indicators of nutrition (e.g., the double burden, 

Mid-Upper Arm Circumference, anemia, environmental hazards, infection, or 

mortality). 

Other methodical exclusion criteria included: studies where a specific or 

single illness related determinant was tested; studies which occurred outside of 

Africa; studies of mothers, adults, or children older than (approx.) 59 months, studies 

that where merely surveys, datasets, or profiles without any empirical or etiological 

analysis; studies that were strictly program impact evaluations; studies not published 

in peer-reviewed scholarly journals; studies published in deceptive or potentially 

predatory scholarly publishers and journals; studies not published between 1990 and 

2020; studies not written in English, and all other obviously unrelated or spurious 

search results. Common exclusion criteria during the full-text article assessment 

process include: no article access, does not satisfy core inclusion criteria, composite 

outcome, purely study area description, potentially predatory publisher, overlarge age 

range, multi-country pooled study, and malnutrition indicator as independent variable.  

3.4 Literature Characteristics 

I reviewed and analyzed 184 disaggregate empirical studies of the 

determinants of childhood malnutrition in Africa published since 1990 (Table 1). The 

collection spans 30 years and 34 countries. Country specific sample sizes range from 

93 to 73,778 children. Together 38% of studies (n=70) are nationally representative. 
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3.5 Childhood Malnutrition Literature in Africa Since 1990 

Table 1. Summary of scrutinized studies, grouped alphabetically by country in order of publication year 

Study  Outcome  Sample size  Location Analytical method Determining factor  QC 
(Fernandes et al., 2017) Stunting 

Wasting 

¾ 

742 young children Bom Jesus, Angola Bivariate and Poison 

analysis 

Child’s age/sex, neighborhood, water source, mother’s age, family 

size/structure  

1 

(Humbwavali et al., 2019) Stunting 

¾ 

Underweight  

749 children under 

2 years  

Suburban Cacuaco, 

Angola 

Bivariate and logit analysis Diarrhea incidence, sibling death, primary caregiver, mother’s 

employment, prenatal care  

1 

(Padonou et al., 2014) HAZ 

WHZ 

¾ 

520 children 0 to 18 

months 

Southern Benin Univariate analysis and 

multivariate linear mixed 

model analysis 

Birth weight, maternal stature/weight 1 

(Tharakan & Suchindran, 1999) Stunting 

Wasting 

Underweight  

734 young children  Botswana Bivariate, logistic, and 

ordered logistic analysis  

Child’s age, birth weight, breast-feeding duration, family head, 

residence, house type, toilet facility, mother’s education, father’s 

education, child caretaker, diet, cough/diarrhea incidence 

1 

(Nnyepi, 2007) Stunting 

Wasting 

¾ 

522 children 0 to 5 

years 

Gaborone, 

Botswana 

Chi-Square tests, 

bivariate/multivariate 

logistic analyses 

Child’s age/sex, birth weight, adequacy of food, clinic location 2a 

(Beiersmann et al., 2013) ¾ 

Wasting  

¾ 

460 young children  Nouna, Burkina 

Faso 

Bivariate and logit analysis Child’s age, religion, presence of younger siblings, village,   1 

(Grace et al., 2017) HAZ 

¾ 

WAZ 

1627 children under 

25 months 

Burkina Faso Linear regression Water source cleanliness/reliability, maternal health/nutrition during 

pregnancy, breastfeeding practices 

1 

(Poda et al., 2017) Stunting 

Wasting 

Underweight 

6337 children under 

5 years  

Burkina Faso Univariate analysis and  

multivariable logistic 

regression 

Child’s age/sex, birth size, child morbidity factors, mother's 

education/body mass index, household wealth 

1 

(Nkurunziza et al., 2017) Stunting 

¾ 

¾ 

6199 children 6 to 

23 months 

Burundi Bivariate and multivariable 

logistic regression 

Child’s sex, birth size, mother's education/assessment, delivery 

location, family size/wealth 

1 
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(Nagahori et al., 2015) Stunting 

Wasting 

Underweight 

100 children under 

2 years 

Urban Batouri, 

Cameroon 

Wilcoxon rank sum test, 

Fisher’s exact test 

Child’s age, mother’s age/education, family planning information, 

water source 

1 

(Nagahori et al., 2017) Stunting 

Wasting 

Underweight 

212 children 0 to 5 

years 

Batouri, Cameroon Multiple linear regression 

analysis 

Complementary feeding 1 

(Begin et al., 1997) HAZ 

¾ 

¾ 

93 children 12 to 71 

months 

Rural Chad Linear regression Child’s age, mother’s feeding autonomy, father’s cereal sales  2b 

(Emina et al., 2011) Stunting 

Wasting 

¾ 

9748 children under 

5 years 

D.R.C. Logit generalized estimating 

equation 

Mother's education, providence 2b 

(Kandala et al., 2011) HAZ 

¾ 

¾ 

3663 children under 

5 years 

D.R.C. Markov chain Monte Carlo 

geo-additive semi-

parametric mixed model 

Child’s age/sex, mother's education/body mass index, household 

wealth, residence, province 

1 

(Kismul et al., 2018) Stunting 

¾ 

¾ 

9030 children under 

5 years 

D.R.C. Bivariate and Multivariate 

logistic regression 

Child’s age/sex, mother’s age/height/ education/body mass index, 

breastfeeding practice, water access, hygienic toilet access, number 

of children in family, household wealth, residence, province 

1 

(McKenna et al., 2019) Stunting 

Wasting 

¾ 

3721 children 6 to 

59 months 

D.R.C. Chi-square tests, Bivariate 

and Multivariate Logistic 

regression 

Child’s age/sex, household socioeconomic status, mother’s 

age/education, number of under five children in household, 

residence, province 

1 

(Delpeuch et al., 2000) HAZ 

WHZ 

WAZ 

1163 young 

children  

Urban Brazzaville, 

Congo 

General linear and logistic 

analysis  

Economic level of the household, mother’s education, dwelling 

location 

1 

(Kavle et al., 2015) Stunting 

¾ 

¾ 

7794 (2005) and 

6091 (2008) 

children 6 to 59 

months 

Egypt Bivariate analyses, 

Pearson’s chi-square, and 

multivariable logistic 

regression 

Dietary diversity, poultry consumption, sugary foods consumption 2a 

(Kavle et al., 2016) HAZ 

WHZ 

WAZ 

277 longitudinal 

cohort 0 to 1 year at 

1-year interval 

Egypt Bivariate linear and logistic 

regression, multivariate 

mixed models 

Minimum dietary diversity, diarrhea/fever incidence, program 

exposure 

1 

(Rashad & Sharaf, 2018) Stunting 

Wasting 

Underweight 

43,446 to 40,712 

children under 5 

years 

Egypt Logistic regression with 

regional/time fixed effects 

Child’s age/sex, twin birth, birth interval, maternal 

healthcare/occupation, father's education, household size, toilet 

facilities, economic growth 

1 

(Lindtjørn & Alemu, 2002) Stunting 

¾ 

¾ 

678 young children  Rural Ethiopia Correlation, Student's t-test, 

Yates chi-square test, and 

survival analysis 

Child’s age/sex 1 
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(Teshome et al., 2009) Stunting 

¾ 

¾ 

622 children 0 to 59 

months 

West Gojam, 

Ethiopia 

Bivariate and multivariate 

analysis 

Child’s age/sex, diarrhea incidence, deprivation of colostrum, 

duration of breastfeeding, pre-lacteal feeds, type of food, 

complementary feeding timing, feeding method 

2a 

(Deribew et al., 2010) Stunting 

Wasting 

Underweight 

2410 young 

children 

Gilgel Gibe, 

Ethiopia 

Bivariate and logistic 

regression 

Child’s age 1 

(Medhin et al., 2010) Stunting 

¾ 

Underweight 

873 to 926 

longitudinal cohort 

0 to 12 months at 6-

month interval 

Butajira, Ethiopia Linear and logistic multiple 

regression  

Child’s sex, birth weight, maternal nutritional status, household 

sanitary facilities, residence 

1 

(Mulugeta et al., 2010)  HAZ 

WHZ 

WAZ 

318 young children  Tigray, Ethiopia Bivariate and regression 

analysis  

Child’s age, mother’s health, complementary food adequacy, pre-

lacteal foods, residential zone 

1 

(Ali et al., 2013) Stunting 

Wasting 

Underweight 

 2356 children 6 to 

59 months 

Ethiopia Bivariate and multivariate 

logistic regression  

Food insecurity 2b 

(Egata et al., 2013) ¾ 

Wasting  

¾ 

2132 children 6 to 

36 months 

Kersa, Ethiopia  Conditional fixed- effects 

logistic regression 

Household poverty, access to health services 1 

(Egata et al., 2014) ¾ 

Wasting  

¾ 

2199 children 6 to 

36 months 

Kersa, Ethiopia  Bivariate and multivariable 

logistic regression 

Household poverty, access to health services, decision making 

power, birth interval, breastfeeding practice 

1 

(Fikadu et al., 2014) Stunting 

¾ 

¾ 

242 children 24 to 

59 months  

Meskan, Ethiopia Bivariate analysis, backward 

stepwise logistic regression 

Family size, number of under-five children in the household, 

maternal occupation, duration of exclusive breastfeeding, duration 

breast feeding, complementary food feeding method 

1 

(Alemayehu et al., 2015) Stunting 

Wasting 

Underweight 

605 young children  Tigray, Ethiopia Bivariate and logit analysis Child’s age/sex, breast feeding practice, mother’s education, 

father’s education, family food distribution, water source, family 

size, sanitation facilities, weaning practices, family financial 

distribution 

1 

(Asfaw et al., 2015) Stunting 

Wasting 

Underweight 

796 young children  Bule Hora, Ethiopia Bivariate and logit analysis Child’s sex, diarrhea incidence, pre-lacteal feeding, complementary 

feeding timing, contraception use 

2b 

(Fekadu et al., 2015) Stunting 

Wasting 

Underweight 

214 children under 

2 years  

Filtu, Ethiopia Bivariate and logit analysis Breastfeeding, diarrhea incidence, diet diversity, complementary 

feeding, bottle feeding  

2b 

(Motbainor et al., 2015) Stunting 

Wasting 

Underweight 

3964 young 

children 

Amhara, Ethiopia Linear regression   Food insecurity, food diversity, number of meals, residence  1 
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(Yisak et al., 2015) Stunting 

Wasting 

Underweight 

791 young children  Haramaya, Ethiopia Bivariate and logit analysis Child’s sex, birth order, family size, diarrhea/fever incidence, 

mother’s body mass index, antenatal care, pre-lacteal feeding, 

residence 

2b 

(Fentahun et al., 2016)‡ Stunting 

Wasting 

Underweight 

1927 children under 

5 years 

Oromiya, Ethiopia Two-level mixed-effects 

logistic regression model 

Child’s age/sex, siblings, diet diversity, feeding of special foods 

during illness 

2c 

(Haile et al., 2016)‡ Stunting 

¾ 

¾ 

9893 children 0 to 

59 months 

Ethiopia Multilevel logistic 

regression (2-level) 

Child’s age/sex, birth interval, severe anemia, mother’s 

education/body mass index, father’s education, head of household 

gender, household wealth, improved latrine facility availability   

1 

(Tariku et al., 2016) Stunting 

¾ 

¾ 

681 children 24 to 

59 months 

Dembia, Ethiopia Bivariable and multivariable 

binary logistic regression 

Latrine availability, household size 1 

(Alemu et al., 2017)‡ HAZ 

¾ 

¾ 

3108 young 

children 

East Gojjam, 

Ethiopia 

Multilevel linear regression 

analysis  

Child’s age/sex, immunization status, diarrheal morbidity, breast 

feeding, mother’s nutritional status, number of under-five children 

in the household, household water treatment, household dietary 

diversity, agroecosystem type, liquid waste disposal, latrine 

utilization 

2b 

(Batiro et al., 2017) Stunting 

¾ 

¾ 

465 children 6 to 59 

months 

Kindo Didaye, 

Ethiopia 

Bivariate analysis, 

multivariate logistic 

regression  

Vaccination status, drinking water source, animal source food, acute 

raspatory infection incidence, breastfeeding initiation 

2b 

(Betebo et al., 2017) Stunting 

Wasting 

Underweight 

508 children 6 to 59 

months 

East Badawacho, 

Ethiopia 

Bivariate analysis, 

multivariate logistic 

regression  

Child’s age/sex, birth interval, diarrhea incidence, pre-lacteal 

feeding, complementary feeding initiation, mother’s health during 

pregnancy, antenatal care visits, household food insecurity  

2a 

(Darsene et al., 2017) Stunting 

Wasting 

Underweight 

811 children 6 to 59 

months  

Hawassa, Ethiopia Bivariate logistic regression 

analysis  

Child’s sex, diarrheal morbidity, birth interval, mother’s 

age/education, colostrum feeding, breastfeeding cessation timing, 

complementary feeding frequency, family size  

2a 

(Demilew & Abie, 2017) Stunting 

¾ 

Underweight 

480 children 2 years 

old 

Bahir Dar slums, 

Ethiopia 

Bivariate and logit analysis Illness incidence, pre-lacteal feeding, complementary feeding 

initiation timing, number of under-three children in the household, 

latrine utilization, hand washing practices  

2a 

(Tariku, Bikis, et al., 2017)  ¾ 

Wasting  

¾ 

1184 children 6 to 

59 months 

Dabat, Ethiopia Binary and multivariate 

logistic regression 

Dietary diversity, breastfeeding initiation, postnatal vitamin-A 

supplementation, mother’s occupation 

1 

(Tariku, Biks, et al., 2017) Stunting 

¾ 

¾ 

1295 children 6 to 

59 months 

Dabat, Ethiopia Bivariable analysis, ordinal 

multivariable logistic 

regression  

Mother’s occupation, postnatal vitamin-A supplementation, 

household wealth, family food from farms 

1 

(Woodruff et al., 2017) HAZ 

¾ 

¾ 

23,999 children 

under 5 years 

Ethiopia Bivariate linear regression 

and ANOVA, pooled 

multivariate linear 

regression 

Diarrhea/fever incidence, mother's height/education/nutrition status, 

contraception usage, toilet facility, community location 

1 
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(Wubante, 2017) Stunting 

Wasting 

Underweight 

400 children under 

1 year  

Dabat, Ethiopia Bi-variate analysis, multiple 

logistic regression 

Deprivation of colostrum, mother’s age, radio ownership, toilet 

facility, complementary feeding method 

2a 

(Abeway et al., 2018) Stunting 

¾ 

¾ 

410 children 6 to 59 

months 

Merhabete, Ethiopia  Binary and multivariable 

logistic regression 

Child’s age/sex, birth weight, complementary food initiation, 

mother’s education, antenatal care  

2a 

(Ahmadi et al., 2018) Stunting 

Wasting 

Underweight 

1005 children under 

5 years 

Ethiopia ANOVA, t-test, and linear 

regression 

Child’s age/sex, mother’s education/mid-upper arm circumference, 

open defecation 

1 

(Berhanu et al., 2018) Stunting 

¾ 

¾ 

1039 children 24 to 

59 months 

Albuko, Ethiopia Bivariable and multivariable 

logistic regression 

Child's sex, birth order, dietary diversity score, mother's 

education/nutrition status, family size, food insecurity, water access 

2a 

(Geberselassie et al., 2018) Stunting 

¾ 

¾ 

1287 children 6 to 

59 months 

Libo-Kemekem, 

Ethiopia 

Bivariate and multivariable 

logistic regression 

Child’s age, family size, father’s education, household head 

occupation, parental employment 

2a 

(Gelu et al., 2018)‡ Stunting 

Wasting 

¾ 

593 young children  Gondar slums, 

Ethiopia 

Bivariate and logit analysis Child’s age, fever incidence, wealth status, parental financial 

control 

2b 

(Nigatu et al., 2018) ¾ 

¾ 

Underweight 

645 children 6 to 59 

months 

Takusa, Ethiopia Bivariate and multivariable 

logistic regression 

Antenatal care, mother’s age, residence 2a 

(Wasihun et al., 2018) Stunting 

Wasting 

Underweight 

610 children 6 to 59 

months 

Tigray, Ethiopia Bivariate and multivariable 

logistic regression 

Child’s age, hand washing, family size 2a 

(Amare et al., 2019) Stunting 

Wasting 

¾ 

9419 children 0 to 

59 months 

Ethiopia Bivariate and logistic 

regression 

Child’s age/sex, birth weight, mother’s education/stature/body mass 

index, household wealth, toilet facility type, cooking fuel type, 

residence, region 

1 

(Berhe et al., 2019) Stunting 

¾ 

¾ 

330 children 6 to 24 

months 

Mekelle, Ethiopia Bivariate and multivariate 

logistic regression 

Birth weight, diet diversity score, diarrhea incidence, mother's 

education/height/body mass index, household number of children 

1 

(Dake et al., 2019) Stunting 

¾ 

¾ 

342 children 6 to 59 

months 

Sodo Zuria, 

Ethiopia 

Bivariate and multivariate 

logistic regression 

Child age/sex, pre-lacteal feeding, diarrhea incidence, family 

planning, income 

1 

(Dessie et al., 2019) Stunting 

Wasting 

¾ 

7452 children 6 to 

59 months 

Ethiopia  Binary logistic regression 

and multivariable analysis 

Birth interval, mother’s education/anemia/nutrition status, place of 

delivery 

1 

(Gebre et al., 2019) Stunting 

Wasting 

Underweight 

840 children 6 to 59 

months 

Afar, Ethiopia Bivariate and multivariable 

logistic regression 

Child's age/sex, immunization status, pre-lacteal feeding, diarrhea 

incidence, mother’s education, family size  

2a 
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(K. F. Gebru et al., 2019)‡ Stunting 

¾ 

¾ 

8855 children under 

5 years 

Ethiopia Bivariate and multilevel 

logistic regression 

Child's age/sex, birth size, twin status, mother's education, 

household wealth, religion, community  

2a 

(T. T. Gebru et al., 2019) ¾ 

Wasting  

¾ 

394 children under 

5 years 

Wukro, Ethiopia Bivariate and multivariable 

logistic regression  

Family cohesion, family planning  2a 

(Kwami et al., 2019) HAZ 

¾ 

¾ 

2400 children under 

5 years 

Amhara, Oromiya, 

SNNPR, and 

Tigray, Ethiopia 

Bivariate and multivariate 

linear regression 

Child's age, caregiver gender, drinking water source, handwashing 

after defecation, handwashing before eating  

2a 

(Mohammed et al., 2019) HAZ 

¾ 

¾ 

2932 children 6 to 

23 months 

Ethiopia Bivariable and multivariable 

linear regression 

Child's age/sex, birth size, meal frequency, dietary diversity score, 

breastfeeding status, vitamin A supplementation, household wealth, 

household toilet facility, region 

1 

(Motbainor & Taye, 2019) ¾ 

Wasting  

¾ 

862 children 6 to 59 

months 

Libokemkem, 

Ethiopia 

Binary and multivariate 

logistic regression 

Diarrhea incidence, complementary feeding practice, mother's 

empowerment/education, household income, non-rice producing 

communities 

1 

(Nigatu et al., 2019) Stunting 

Wasting 

Underweight 

2433 children under 

6 months 

Ethiopia Bi-variable logistic 

regression 

Exclusive breastfeeding timing 2a 

(Takele et al., 2019)‡ Stunting 

¾ 

¾ 

8743 children under 

5 years 

Ethiopia Generalized linear mixed 

model (GLMM) 

Child’s age/sex, birth interval, breastfeeding period, mother’s 

education/body mass index, household wealth, toilet facility type, 

drinking water source, internet use 

2b 

(Nabwera et al., 2018) ¾ 

Wasting 

¾ 

280 children 6 to 59 

months 

West Kiang, 

Gambia 

Univariable analysis and 

conditional logistic 

regression 

Complementary feeding frequency  2a 

(Rikimaru et al., 1998) ¾ 

¾ 

WAZ 

170 children 8 to 36 

months 

Accra, Ghana Pearson's chi-square test, 

Tukey's test, pair-wise 

correlation 

Birth weight, feeding frequency, breast-feeding access, co-parental 

support, mother’s age/education/occupation, father’s 

education/occupation, 

1 

(Ruel et al., 1999) HAZ 

¾ 

¾ 

475 young children  Accra, Ghana Ordinary least squares and 

instrumental variable two-

stage least squares 

Child’s age, mother’s height/education, care practices, housing 

quality, household assets 

2c 

(Nikoi & Anthamatten, 2013)‡ HAZ 

¾ 

¾ 

2225 young 

children 

Ghana Multilevel analysis Child’s age, birth size, vaccination status, breast-feeding duration, 

mother’s body mass index, health insurance access, household 

wealth, population density 

1 

(Darteh et al., 2014) Stunting 

¾ 

¾ 

2379 young 

children 

Ghana Logit analysis Child’s age, number of siblings, mother’s age, region 2b 
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(Aheto et al., 2015)‡  HAZ 

WHZ 

WAZ 

2083 young 

children  

Ghana Multilevel analysis Child’s age, birth size, twin status, breast-feeding duration, diarrhea 

incidence, mother’s education/body mass index, toilet facility 

access household income, national health insurance access 

1 

(Wemakor & Mensah, 2016) Stunting 

¾ 

¾ 

384 children 0 to 59 

months 

Northern Ghana Chi square tests and 

multivariate logit regression 

Mother’s depression 2a 

(Saaka & Galaa, 2016) Stunting 

Wasting 

¾ 

2720 young 

children 

Ghana Bivariate and logistic 

analysis 

Child’s age, birth weight, prenatal care, mother’s height, household 

wealth, residence, 

1 

(Atsu et al., 2017)  Stunting 

¾ 

¾ 

7750 young 

children 

Ghana Bivariate and Poison 

analysis 

Mother’s age, household wealth, religion 2b 

(Aheto et al., 2017) HAZ 

¾ 

¾ 

10,036 children 

under 5 years 

Ghana Dynamic linear state-space 

model with backwards 

selection  

Child’s age, breastfeeding duration, mother’s years of education 1 

(Ewusie et al., 2017) Stunting 

Wasting 

Underweight 

2379 children under 

5 years 

Ghana Univariate analysis and 

multivariate logistic 

regression 

Child’s age/sex, mother’s education/nutritional status of the mother, 

household financial status 

1 

(Bandoh et al., 2018) Stunting 

Wasting 

Underweight 

250 children 6 to 59 

months 

Ekumfi Narkwa, 

Ghana 

Simple logistic regression  Caregiver age 2b 

(Nikoi, 2018)‡ ¾ 

¾ 

Underweight 

2244 children 0 to 

59 months 

Ghana Generalized linear mixed 

models 

Child’s sex, birth size, fever incidence, mother’s body mass index, 

insurance coverage, number of under five children in household, 

culture, geography 

2b 

(Boah et al., 2019) Stunting 

Wasting 

Underweight 

2720 children 0 to 

59 months 

Ghana Single multiple logistic 

regressions 

Child's age/sex, birth weight, minimum diet diversity, birth order, 

paternal education, mother’s autonomy/body mass index, household 

wealth, region 

2a 

(Woodruff et al., 2018) Stunting 

Wasting 

¾ 

9228 children under 

60 months 

Guinea Bivariate analysis and 

logistic regression 

Birth size, child health/nutritional status, child caring practice, 

mother’s nutritional/health status, household water source, 

sanitation facilities 

1 

(Thorne et al., 2013) Stunting 

¾ 

¾ 

872 children 0 to 59 

months 

Bijagós, Guinea-

Bissau 

Univariate analysis and 

logistic regression 

Immunization status, parent’s education, size of living quarters, 

water source, feeding practices  

1 

(Onyango et al., 1998) HAZ 

WHZ 

WAZ 

154 children 12 to 

36 months 

Rural western 

Kenya  

Forward selection backward 

elimination linear regression 

dietary diversity, starchy gruel complementation 1 
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(Bloss et al., 2004) Stunting 

Wasting 

Underweight 

175 young children  Ugunja, Kenya Bivariate and logit analysis Child’s age, vaccination status, weaning practices, adoption status  1 

(Kabubo-Mariara et al., 2009) HAZ/Stunting 

¾ 

¾ 

5870 young 

children  

Kenya Multiple regression  Child’s sex, mother’s education, birth count, contraceptive usage, 

household assets, public health services 

2b 

(Abuya et al., 2011) Stunting 

¾ 

¾ 

5949 young 

children 

Kenya Multivariate logistic 

regression  

Mother's education 2b 

(Olack et al., 2011) Stunting 

Wasting 

Underweight 

1245 children 6 to 

59 months 

Nairobi informal 

settlements, Kenya 

Chi-square test Child’s age/sex 1 

(Abuya et al., 2012) Stunting 

¾ 

¾ 

4770 young 

children  

Nairobi slums, 

Kenya 

Bivariate and logit analysis  Child’s sex, birth weight, mother’s education, marital status, parity, 

health seeking behavior, social economic status 

2b 

(Gewa & Yandell, 2012) Stunting 

Wasting 

Underweight 

3793 young 

children 

Kenya Bivariate and logit analysis  Child’s sex, birth size, diarrhea/cough incidence, immunization 

status, breast-feeding duration, mother’s education/body mass 

index/age at first birth, household wealth, residence, season  

2b 

(Grace et al., 2012)‡ Stunting 

¾ 

¾ 

2255 young 

children  

Kenya Multilevel analysis Mother’s education, source of drinking water, household wealth, 

livelihood zone, precipitation level  

2b 

(Fotso et al., 2012)‡ Stunting 

¾ 

¾ 

Up to 3693 children 

across 6 cohorts and 

8 surveys 

Nairobi informal 

settlements, Kenya 

Univariate, bivariate, and 

multivariate models with 

random intercept multilevel 

regression  

Child’s age/sex, mother’s education, marital status, food access, 

assets, residence  

2c 

(Faye et al., 2019) HAZ 

¾ 

¾ 

1917 children under 

5 years 

Nairobi informal 

settlements, Kenya 

Generalized linear model Child’s age, birth weight, immunization status, breast-feeding 

practice, mother’s age, marital status, socio-economic status, 

household size 

1 

(El Taguri et al., 2009) Stunting 

¾ 

¾ 

4549 children under 

5 years 

Libya Bivariate and multivariate 

logit analysis 

Child’s age/sex, birth weight, diarrhea incidence, psychosocial 

stimulation, father’s age/education, water access/storage, garbage 

disposal, residence 

1 

(Rabaoarisoa et al., 2017) Stunting 

¾ 

¾ 

1826 children 6 to 

59.9 months 

Moramanga and 

Morondava, 

Madagascar  

Backwards stepwise 

multivariate logistic 

regression 

Child’s age, birth size, infection incidence, birth interval, mother’s 

activities, household income 

2a 

(Rakotomanana et al., 2017) Stunting 

¾ 

¾ 

3920 young 

children  

Madagascar Bivariate analysis and 

logistic regressions  

Child’s age/sex, mother’s height, iodized salt use, residence 1 
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(McCuskee et al., 2018) Stunting 

Wasting 

¾ 

1175 children 6 to 

59 months 

Ifanadiana, 

Madagascar 

Univariate and multivariate 

logistic regression 

Child’s age, birth size, mother’s weight/height/body mass index, 

father’s height 

2a 

(Espo et al., 2002) Stunting 

¾ 

¾ 

613 longitudinal 

cohort 3 to 12 

months at 3-month 

intervals 

Malawi  Chi-square tests, univariate 

analysis and stepwise 

multivariate logistic 

regression 

Child’s sex, birth weight, morbidity in infancy, birth gestation, 

gestational weight gain, mother’s height, weaning practices, 

socioeconomic status 

1 

(Maleta et al., 2003) Stunting 

Wasting 

Underweight 

767 children 0 to 36 

months 

Lungwena, Malawi Univariate analysis and 

multivariate logit  

Birth weight, illness episodes in infancy, mother’s HIV status, 

health facility distance 

1 

(Kalanda et al., 2005) ¾ 

¾ 

WAZ 

322 longitudinal 

cohort 0 to 52 

weeks at 4-week 

intervals 

Chikwawa, Malawi Univariate analysis and 

multivariate logistic 

regression  

Child’s sex, birth weight/season, placental or peripheral malaria at 

delivery, infant illness incidence, mother’s height/literacy 

1 

(Chirwa & Ngalawa, 2008) HAZ 

WHZ 

WAZ 

5218, 4370 and 

4270 children under 

5 years 

Malawi 2SLS regressions Child’s age/sex, drinking water access, economic empowerment 1 

(Aiga et al., 2009) ¾ 

¾ 

Underweight 

132 young children  Zomba, Malawi Bivariate and logistic 

regression 

Breastfeeding duration, proportion oil/fat intake, fish farming 

income 

1 

(Weisz et al., 2011) HAZ 

¾ 

WAZ 

209 children 6 to 18 

months followed 

>280 days 

Rural Malawi Linear mixed model analysis Diarrhea/fever/cough duration 1 

(Chikhungu & Madise, 2014) Stunting 

¾ 

Underweight 

6687 children 6 to 

59 months 

Malawi Chi-square tests and 

multivariate logit 

Child’s sex, illness incidence, housing quality, household food 

expenditure, season 

2b 

(Chikhungu et al., 2014)‡ Stunting 

¾ 

¾ 

4284 children 6 to 

59 months 

Malawi Chi-square tests and 

multilevel logistic regression 

(two-level random intercept 

model) 

Child’s age/sex, food expenditure, daily market/lineage availability, 

improved floor, permanent roof 

2a 

(Kuchenbecker et al., 2015) Stunting 

Wasting 

Underweight 

196 children 0 to 6 

months 

Central and 

northern Malawi 

ANOVA Exclusive breastfeeding 1 

(Ntenda & Chuang, 2018)  Stunting 

Wasting 

Underweight 

6384 children under 

5 years 

Malawi Three-level logistic models 

with generalized estimating 

equations  

Child’s sex, birth size, year of birth, diarrhea incidence, twin status, 

mother's weight/education/socio-economic status, community 

wealth/female education 

2b 

(Ntenda, 2019) Stunting 

Wasting 

Underweight 

4047 children under 

5 years 

Malawi Multivariate logistic 

regression 

Birth weight 2c 
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(Bouvier et al., 1995) Stunting 

Wasting 

¾ 

491 longitudinal 

cohort over 5-year 

period 

Sikasso, Mali Univariate pooled and age 

stratified logistic regression 

Mother’s education, father’s education, family assets 1 

(Hatløy et al., 2000) HAZ 

WHZ 

WAZ 

2315 children 6 to 

59 months 

Koutiala, Mali Pearson's chi-square test, 

Student's test, and logistic 

regression 

Food variety score, diet diversity score, region 2b 

(Grace et al., 2016)‡ Stunting 

¾ 

¾ 

2830 young 

children 

Mali Standard generalized linear 

models and generalized 

linear mixed models 

(multilevel) 

Child’s sex, birth year, mother’s height, father’s education, 

household wealth, region 

2b 

(García Cruz et al., 2017) Stunting 

¾ 

¾ 

282 children under 

5 years 

Tete, Mozambique T-test, ANOVA, bivariate 

analyses, chi-square test, 

stepwise multiple logistic 

regression 

Birth weight, breastfeeding duration, complementary feeding 

timing, mother’s education/occupation, number of under-five 

children in the household, family size, charcoal use, housing 

infrastructure, region  

1 

(Ighogboja, 1992) Marasmus 

Kwashiorkor 

Marasmic 

Kwashiorkor 

900 young children Jos, Nigeria Pearson’s chi-squared test Mother’s education, weaning practices, household income  1 

(Abidoye & Ihebuzor, 2001) Stunting 

Wasting 

Underweight 

365 young children Lagos slums, 

Nigeria 

Pearson’s chi-squared test Food/feeding practices, immunization status, parent’s education, 

living quarters size, water source 

1 

(Esimai et al., 2001) Stunting 

Wasting 

¾ 

344 young children Ilare, Nigeria Pearson’s chi-squared test Child’s sex, family socioeconomic situation 1 

(Ojofeitimi et al., 2003) Stunting 

Wasting 

¾ 

230 young children  Oranfe, Nigeria Pearson’s chi-squared test Child’s age, immunization status, mother’s age/education/parity, 

family type  

1 

(Ukwuani & Suchindran, 2003) Stunting 

Wasting 

¾ 

5331 young 

children 

Nigeria Pearson’s chi-squared test 

and ordinal logistic 

regression 

Diarrhea incidence, breast-feeding duration, accompanying mother 

to work, mother’s occupation 

2b 

(Odunayo & Oyewole, 2006) Stunting 

Wasting 

¾ 

420 young children  Ifewara, Nigeria Pearson’s chi-squared test Child’s age, feeding practices, infant formula use, mother’s income, 

parental education, standard of living, overcrowding, 

1 

(Uthman, 2008)‡ Stunting 

¾ 

¾ 

4007 young 

children  

Rural Nigeria Multilevel logit analysis Mother’s weight, maternal health-seeking behavior, duration of 

breastfeeding, household wealth, heterogeneity across 

individual/community levels  

2b 

(Ajao et al., 2010) Stunting 

Wasting 

Underweight 

412 young children Ife, Nigeria Logit analysis Mother’s education/finances 1 
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(Olusanya et al., 2010) Stunting 

Wasting 

¾ 

5888 young 

children 

Lagos, Nigeria Bivariate analysis and logit 

regression 

Child’s sex, antenatal care, place of delivery, hyperbilirubinemia, 

mother’s age/education/parity, multiple pregnancies, residence 

1 

(Olusanya & Renner, 2012) Stunting 

Wasting 

Underweight 

2754 young 

children 

Lagos, Nigeria Conditional logistic 

regression 

Place of delivery 2a 

(Adekanmbi et al., 2013)‡ Stunting 

¾ 

¾ 

28,647 young 

children 

Nigeria Multilevel logit analysis Child’s age/sex, birth weight, twin status, birth interval, mother’s 

education/body mass index, maternal health-seeking behavior, 

household wealth, community literacy rates, region 

2b 

(Idris et al., 2013) Stunting 

Wasting 

Underweight 

119 young children  Biye, Nigeria Pearson’s chi-squared test Family size, feeding practices  1 

(Senbanjo et al., 2013) Stunting 

Wasting 

Underweight 

150 young children  Alimosho and Epe, 

Nigeria 

Pearson’s chi-squared test Child’s age/sex, birth order, father’s education, social class 1 

(Balogun & Yakubu, 2015) Stunting 

Wasting 

Underweight 

366 young children  Shika, Nigeria Logistic regression Diarrhea incidence, father’s education 1 

(Ogunlesi et al., 2015) ¾ 

Wasting 

¾ 

208 young children Sagamu, Nigeria Cross-sectional analysis Infection, mother’s education, breastfeeding practices/timing, 

weaning timing 

1 

(Udoh & Amodu, 2016) Stunting 

Wasting 

Underweight 

330 children 6 to 11 

months 

Akpabuyo, Nigeria Bivariate Chi square tests, 

Multivariate logistic 

regression 

Complementary food intake, dietary diversity, feeding frequency 1 

(Blessing J. Akombi, Kingsley E. 

Agho, Dafna Merom, et al., 2017)‡ 
¾ 

Wasting 

Underweight 

24,529 children 6 to 

59 months 

Nigeria Multilevel analysis Child’s sex, birth size, mode of delivery, fever incidence, mother’s 

body mass index, geopolitical zone 

1 

(Blessing J. Akombi, Kingsley E. 

Agho, John J. Hall, et al., 2017)‡  

Stunting 

¾ 

¾ 

24,529 children 6 to 

59 months 

Nigeria Multilevel analysis Child’s sex, birth size, diarrhea incidence, breastfeeding duration, 

mother’s body mass index, household wealth, geopolitical zone 

1 

(Amare et al., 2018) Stunting 

¾ 

¾ 

4495, 4183, and 

3601 children 6 to 

23 months 

Northern Nigeria Maximum-likelihood logit 

regression 

Child's sex/age, birth order, diet diversity, vitamin A supplements, 

birth facility, mother's body mass index, antenatal clinic, 

radio/television use, household wealth 

2c 

(Agu et al., 2019) Stunting 

Wasting 

Underweight 

7532 children 3 to 

24 months 

Nigeria Weighted bivariate and 

multi-variable logistic 

regression 

Breast-feeding practice, mother's education/body mass index, 

marriage type domestic violence incidence, ethnicity, socio-

economic status  

2b 

(Gayawan et al., 2019) Stunting 

Wasting 

Underweight 

24,505 children 

under 5 years 

Nigeria Bayesian quantile regression Child's sex, birth order, diarrhea/fever incidence, breastfeeding 

practice, vitamin A supplements, mother's education, household 

wealth, toilet facilities, newspaper/tv use, residence 

1 
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(Jude et al., 2019) Stunting 

Wasting 

¾ 

749 children 12 to 

59 months 

Enugu, Nigeria Chi square tests Mother’s education, socio-economic status 1 

(Habimana & Biracyaza, 2019) Stunting 

¾ 

¾ 

1905 children 6 to 

59 months 

Rwanda Univariate and multivariate 

logistic regression 

Child's sex, fortified food intake, breastfeeding practice, antenatal 

care visits, mother’s age/education/occupation, household wealth, 

toilet facilities 

1 

(Nshimyiryo et al., 2019) Stunting 

¾ 

¾ 

3594 children under 

5 years  

Rwanda Logistic regression Child's sex/age, birth weight, deworming incidence, mother's 

height/education/literacy, household wealth  

1 

(Weatherspoon et al., 2019) Stunting 

¾ 

¾ 

770 children 4 to 25 

months 

Rural Rwanda Clustered variance-

covariance logit analysis 

Child’s age/sex/weight, dietary diversity, household head marriage 

status/education level, mother’s height, livestock/family garden 

presence, altitude, soil fertility, distance to main market road, food 

production policies 

2b 

(Simondon et al., 2001) HAZ 

WHZ 

WAZ 

436 longitudinal 

cohort 1.5 to 4 years 

at 6-month intervals 

Senegal Two-factor ANOVA and 

multiple linear regression 

Weaning age, breast-feeding incidence 1 

(Gupta et al., 2007) Stunting 

Wasting 

¾ 

374 children 6 to 23 

months 

Senegal Chi-square tests, linear 

regression, and multiple 

logistic regression 

Child’s age/sex, drinking water source, family size, community 1 

(Kinyoki et al., 2015)‡  Stunting 

Wasting 

Underweight 

73,778 children 6 to 

59 months 

Somalia Bayesian hierarchical spatio-

temporal regression analysis  

Child’s age/sex, fever/diarrhea incidence, household size, food 

access, conflict events 

3 

(Kinyoki, Kandala, et al., 2016) Stunting 

Wasting 

Underweight 

73,778 children 6 to 

59 months 

Somalia Stochastic partial differential 

equations 

Child’s age/sex, illness incidence, high protein foods access, 

carbohydrate access, vegetation cover, temperature 

1 

(Kinyoki et al., 2017)‡  Stunting 

Wasting 

Underweight 

73,778 children 6 to 

59 months 

Somalia Bayesian hierarchical spatio-

temporal regression analysis  

Child’s age/sex, fever/diarrhea incidence, household size, food 

access, conflict  

3 

(Dannhauser et al., 2000) HAZ 

WHZ 

WAZ 

348 children under 

72 months 

Bloemfontein, 

South Africa 

Contingency tables Median nutrient intake together with household income 1 

(Chopra, 2003) Stunting 

Wasting 

¾ 

868 young children  Hlabisa, South 

Africa 

Logit regression Birth weight, breastfeeding practices, mother’s education/literacy, 

father’s presence, household construction, toilet facilities 

1 

(Mamabolo et al., 2005) Stunting 

¾ 

¾ 

162 children 3 years 

old 

Central Limpopo, 

South Africa 

Binary logistic regression Mother’s occupation, household size 2b 
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(Theron et al., 2007) Stunting 

¾ 

¾ 

132 children 12 to 

24 months 

Rural Limpopo, 

South Africa 

Two-sided t-tests (Null) 1 

(Willey et al., 2009)  Stunting 

¾ 

¾ 

621 children under 

3 years 

Johannesburg and 

Soweto, South 

Africa 

Bivariate and logit analysis Child’s sex, birth weight, other’s employment, father’s education, 

domestic help employment 

1 

(Lesiapeto et al., 2010)  Stunting 

¾ 

Underweight 

2485 young 

children  

Rural Kwazulu-

Natal and Eastern 

Cape, South Africa 

Logistic regression Child’s sex, growth perception, food handouts, breast feeding 

practices, mother’s empowerment/education  

1 

(Kimani-Murage et al., 2011) HAZ/Stunting 

WHZ/Wasting 

WAZ/Weight 

671 children 12 to 

59 months 

Agincourt, South 

Africa  

Univariate, multivariate 

linear and logit regression 

Child’s age, birth weight, household head age, mother’s age/HIV 

status, residence 

2a 

(Matsungo et al., 2017) Stunting 

¾ 

¾ 

750 children 6 

months old  

Matlosana, South 

Africa 

Univariate logistic and 

multivariable binary logistic 

regression 

Child’s sex, birth weight, mother’s height, plasma concentrations 2a 

(Slemming et al., 2017) Stunting 

¾ 

¾ 

1098 children 2 

years old 

Soweto, South 

African 

Bivariate analyses and 

multiple logistic regression 

Birth weight, mother’s education, household socio-economic status 2a 

(Casale et al., 2018) HAZ 

¾ 

¾ 

691 children 2 years 

old 

Soweto-

Johannesburg, 

South Africa 

Ordinary least-squares 

regression and probit models 

Birth weight, vaccination status, ear/eye illness symptoms, care 

environment, mother’s education 

1 

(Madiba et al., 2019) Stunting 

Wasting 

Underweight 

1254 children 12 to 

60 months 

Gauteng, South 

Africa 

Binary and multivariate 

logistic regression 

Child’s age/sex, birth weight, preschool attendance 1 

(Sedgh et al., 2000) Stunting 

¾ 

¾ 

8174 children 6 to 

72 months 

Sudan Univariate and multivariate 

logistic regression 

Child’s age/sex, breast-feeding status, carotenoid intake, mother’s 

literacy, household water supply 

2c 

(Nyaruhucha et al., 2006)  ¾ 

¾ 

Underweight 

250 young children  Simanjiro, Tanzania Summary characteristics Child’s age, breastfeeding/weaning practices, food availability, 

mother’s education, household size 

1 

(Abubakar et al., 2012)  Stunting 

¾ 

Underweight 

423 children under 

3 years  

Same, Tanzania Bivariate and logit analysis Child’s age/growth, mother’s education, distance to water source  1 

(Mamiro et al., 2005) Stunting 

¾ 

¾ 

309 children 6 

months old 

Kilosa, Tanzania Logit analysis Birth weight, mother’s body mass index 2b 
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(Chirande et al., 2015)  Stunting 

¾ 

¾ 

7324 young 

children  

Tanzania Bivariate and logit analysis Child’s sex, birth size, mother’s education, drinking water source  1 

(Semali et al., 2015)  Stunting 

¾ 

¾ 

678 young children  Kongwa, Tanzania Bivariate and logit analysis Household head’s age/sex, mother’s age/education, mobile phone 

ownership 

1 

(Nordang et al., 2015)  Stunting 

¾ 

Underweight 

152 young children  Rural Rukwa, 

Tanzania 

Bivariate and logit analysis Illness incidence, mother’s farming time, food shortage, dry-season 

cultivation  

1 

(Mbwana et al., 2017) Stunting 

¾ 

¾ 

120 children 6 to 59 

months 

Morogoro and 

Dodoma, Tanzania 

Logistic regression 

multivariate analysis 

Child’s age/sex, duration of breastfeeding, iodized salt use, 

mother’s literacy/body mass index, household size, cultivated land 

size, distance to water source 

2b 

(Mgongo et al., 2017) Stunting 

Wasting 

Underweight 

1870 children 0 to 

24 months 

Kilimanjaro, 

Tanzania 

Chi-square tests, Univariate 

logistic regression, 

multivariate logistic 

regression 

Child age/sex, birth weight, illness incidence, breastfeeding 

incidence, mother’s education, father’s age, district 

1 

(Kejo et al., 2018) Stunting 

Wasting 

Underweight 

436 children 6 to 59 

months 

Arusha, Tanzania Bivariate analysis and 

multivariable binary logistic 

regression 

Child's age/sex, nonexclusive breastfeeding incidence, mother's age, 

region 

1 

(Mshida et al., 2018) Stunting 

¾ 

Underweight 

310 children under 

5 years 

Arusha, Tanzania Logistics regression  Child's sex, diarrhea incidence, complementary feeding practice, 

mother's education, family polygamy, surface water use, un-boiled 

cow’s milk consumption 

2a 

(Muhimbula et al., 2019) HAZ 

WHZ 

WAZ 

220 children under 

5 years 

Morogoro and 

Shinyanga, 

Tanzania 

Chi‐squared tests, multiple 

linear regression and binary 

logistic regression  

Breastfeeding timing, fluid’s introduction, mother’s age/height, 

seasonality  

1 

(Shilugu & Sunguya, 2019) Stunting 

¾ 

¾ 

358 children under 

5 years 

Bukombe, Tanzania Bivariate and multivariate 

logistic regression 

Child’s age, birth weight, feeding practice, dietary diversity, food 

insecurity, peasant households 

1 

(Sunguya et al., 2019) Stunting 

¾ 

¾ 

8815 young 

children 

Tanzania Logistic regression Child's age/sex, birth weight, breastfeeding practices, mother's 

education/body mass index, household wealth, residence 

2a 

(Kikafunda et al., 1998)  Stunting 

¾ 

Underweight 

261 children under 

3 years  

Central Uganda Bivariate and logit analysis Child’s age, breastfeeding duration, meal size, food energy density, 

milk consumption, eye pathology presence, health quality, mother’s 

education, unprotected water use, charcoal/paraffin fuel use, 

personal hygiene quality, socio-economic status, residence 

1 

(Wamani et al., 2004)  Stunting 

Wasting 

Underweight 

721 children under 

2 years 

Hoima, Uganda Bivariate and backward 

conditional logistic 

regression 

Child’s sex, fever/cough incidence, deworming incidence, mother’s 

education, father’s education, latrine facilities, household wealth 

1 
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(Wamani et al., 2006)  Stunting 

Wasting 

Underweight 

721 children under 

2 years  

Hoima, Uganda Bivariate and backward 

conditional logistic 

regression 

Child’s sex, fever/cough incidence, deworming incidence, mother’s 

education, father’s education, latrine facilities, household wealth 

1 

(Engebretsen et al., 2008)  Stunting 

Wasting 

¾ 

723 children under 

1 year 

Eastern Uganda Bivariate and logit analysis Child's age/sex, diarrhea incidence, sibling count, feeding practices, 

household wealth 

1 

(Habaasa, 2015) Stunting 

Wasting 

Underweight 

104 young children  Nakaseke and 

Nakasongola, 

Uganda 

Bivariate and logit analysis Child’s age, mother’s occupation  1 

(Vella et al., 1992) HAZ 

WHZ 

WAZ 

1178 children 0 to 

59 months 

Arua, Uganda Stepwise multiple regression Child’s age, breast-feeding incidence, diarrhea/skin infection 

incidence, mother’s education, father's education, dry season water 

source 

1 

(Vella et al., 1994) Stunting 

¾ 

¾ 

827 longitudinal 

cohort over 2-year 

interval  

Arua, Uganda. Logistic regression  Child’s age, mother's education, income 1 

(Biondi et al., 2011) Stunting 

¾ 

¾ 

299 children 6 to 59 

months 

Kabarole, Uganda Logistic regression Caregiver’s health, water source contamination, household 

economic status, health unit distance, residence 

1 

(Ssewanyana & Kasirye, 2012) HAZ 

¾ 

¾ 

12,035 young 

children 

Uganda Linear regression Mother’s education, household welfare status 2b 

(Muhoozi et al., 2016) HAZ 

WHZ 

WAZ 

512 children 6 to 8 

months 

Kabale and Kisoro, 

Uganda 

Chi-square/Pearson’s 

correlation tests and linear 

regression 

Child’s sex, birth order, diet diversity score, mother’s 

age/education, household head’s education, sanitation facilities, 

household size/poverty 

1 

(Shively, 2017)‡  HAZ 

WHZ 

¾ 

4345 young 

children 

Uganda Hierarchical analysis Agricultural season rainfall, health infrastructure, transportation 

infrastructure, heterogeneity across household/district/region levels 

3 

(Yang et al., 2018) HAZ/Stunting 

¾ 

¾ 

14,747 children 

under 5 years 

Uganda Univariable, bivariable 

analyses, and multi-variable 

logistic and linear regression 

Child's age/sex, birth size, mother’s age/education, household 

wealth, region 

2a 

(Nankinga et al., 2019) Stunting 

Wasting 

Underweight 

3531 children under 

5 years 

Uganda Chi-squared tests and 

multivariate logistic 

regression 

Child's age/sex, birth weight, mother's age/education/occupation 1 

(Manda et al., 2016) Stunting 

¾ 

¾ 

810 children 0 to 60 

months 

Zambia Endogenous switching 

probit regression 

Child's age/sex, household head’s sex, female household member’s 

count/education, sanitation access, improved maize variety adoption 

2b 
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(Griffiths et al., 2004)‡ ¾ 

¾ 

WAZ 

Children 1 to 35 

months (2050; 

4083; 3237; 2042; 

1803; 3485)  

Multiple: Ghana, 

Malawi, Nigeria, 

Tanzania, Zambia, 

Zimbabwe 

Multilevel analysis Child's age, birth size, breast-feeding status, diarrhea incidence, 

mother’s education, heterogeneity across family/community/region 

levels 

2a 

(Makoka & Masibo, 2015) Stunting 

Wasting 

Underweight 

Children 0 to 59 

months (4563; 482; 

3473) 

Multiple: Malawi, 

Tanzania, 

Zimbabwe 

Bivariate and multivariate 

logistic regression 

Mother’s education 1 

(Mosites et al., 2015) Stunting 

¾ 

¾ 

Children under 5 

years (8720; 4203; 

1740) 

Multiple: Ethiopia, 

Kenya, Uganda 

Log-binomial regression  Livestock units  1 

(Hoffman et al., 2017) Stunting 

Wasting 

¾ 

Children under 5 

years (5478; 5150; 

5088; 5478; 5150; 

5088; 11,335) 

Multiple: 

Kenya, Zambia 

Multiple linear regression, 

logistic regression 

Mother’s education/literacy, electricity use, toilet type, car 

ownership, household wealth, region 

2a 

(Buisman et al., 2019) Stunting 

¾ 

¾ 

Children 0 to 23 

months (4993; 

1845; 4795; 2084; 

1015; 2875; 2603) 

Multiple: Ethiopia, 

Ghana, Kenya, 

Liberia, Namibia, 

Niger, Rwanda 

Least squares regression Child's age/sex, immunization status, iron supplement use, 

deworming incidence, diarrhea incidence, mother's height, 

maternity care, parental education, household wealth 

2a 

‡ denotes study with hierarchical methodology 
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Most studies, 83% (n=153), involved analysis of a discrete malnutrition 

outcome variable (e.g., stunting, wasting, or underweight), while 15% of studies 

(n=28) involved analysis of a continuous malnutrition outcome (e.g., HAZ, WHZ, or 

HAZ), and only 1.6% of studies (n=3) undertook analyses of both. Across 10 

countries from 2004 through 2019, an 11% sub-section of studies (n=21) incorporate 

hierarchical methods including random intercepts and slopes, and intraclass 

correlation analysis. Of the three major anthropometric indices and indicators, 168 

studies (91%) examine stunting or HAZ, 96 studies (52%) examine wasting or WHZ, 

and 83 studies (45%) examine underweight or WAZ (Figure 3).  

 
Figure 3: Proportional Venn diagram of studied nutritional outcomes.  
Indicator labels refer to studies of either discrete or continuous outcomes.  
 

Stunting is disproportionately represented in the literature. Studies that assess 

stunting alone comprise 38% of papers (n=70) compared to 4.3% (n=8) for wasting 

alone and 3.8% (n=7) for underweight alone. Of the possible combinations of 
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malnutrition outcomes, the most prevalent is all three—stunting and wasting and 

underweight—comprising 35% of studies (n=64), followed by stunting and wasting 

alone with 13% of studies (n=23). Stunting and underweight alone account for 6% of 

studies (n=11) and the combination of wasting and underweight is only observed 

once in the literature.  

During the first decade from 1990-1999, only 10 studies appear in the 

literature (Figure 4). From 2000-2009 there is a stable but substantial upswing in the 

number of publications, with an average of 3.3 publications per year. Starting in 

2010, the literature experiences an exponential growth in the number of studies being 

published, with 2015 being a particularly significant inflection point for the increase 

in the number of studies. Over half of the total number of studies (n=107) were 

published during the last five years. 

 
Figure 4: Temporal distribution of the literature 
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The top four most studied countries—Ethiopia (n=47), Nigeria (n=23), Ghana 

(n=15), and Tanzania (n=15)—account for half of the total number of studies (Figure 

5). The remaining 100 studies are spread across 30 countries (Angola, Benin, 

Botswana, Burkina Faso, Burundi, Cameroon, Chad, Congo, D.R.C., Egypt, Gambia, 

Guinea, Guinea-Bissau, Kenya, Liberia, Libya, Madagascar, Malawi, Mali, 

Mozambique, Namibia, Niger, Rwanda, Senegal, Somalia, South Africa, Sudan, 

Uganda, Zambia, and Zimbabwe). Regionally, 5% of studies (n=10) are from Central 

Africa, 65% of studies (n=119) are from Eastern Africa, 3% of studies (n=5) are from 

Northern Africa, 8% of studies (n=14) are from Southern Africa, and 28% of studies 

(n=52) are from Western Africa. Five studies (i.e., Buisman et al., 2019; Griffiths et 

al., 2004; Hoffman et al., 2017; Makoka & Masibo, 2015; Mosites et al., 2015) 

contain multiple individual country analyses (n=21).  

In 13 countries—Burundi, Niger, Libya, Mozambique, Chad, Sudan, Benin, 

Congo, Gambia, Guinea, Guinea-Bissau, Liberia, and Namibia—only one study can 

be found in the literature. Among these 13 single study countries, 7 are among the top 

20 countries with the highest stunting prevalence rates (UNICEF et al., 2021), 

including Burundi (1st), Niger (3rd), Libya (4th), Mozambique (8th), Chad (13th), Sudan 

(15th), and Benin (20th). Among the top 20 countries with the highest stunting 

prevalence rates (UNICEF et al., 2021), Eritrea (2nd), Central African Republic (7th), 

Djibouti (14th), and Lesotho (18th) are unstudied in this literature. Wasting and 

underweight is so much less studied that reliable and consistent, country level, 

continent wide, up-to-date prevalence rates are not reported.  
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Figure 5: Map of empirical literature coverage by country 
 

Together 28% of studies (n=52) utilize Demographic and Health Surveys 

(DHS) Program data. The DHS Program has collected health data of some kind in a 

total of 46 African countries. Countries with DHS data in the literature include: 

Burkina Faso (n=2), D.R.C. (n=3), Egypt (n=1), Ethiopia (n=10), Ghana (n=10), 

Guinea (n=1), Kenya (n=7), Liberia (n=1), Madagascar (n=1), Malawi (n=4), Mali 

(n=1), Namibia (n=1), Niger (n=1), Nigeria (n=9), Rwanda (n=3), Tanzania (n=4), 

Uganda (n=5), Zambia (n=2), and Zimbabwe (n=2). A total of 20 countries have 

available DHS data which have been unutilized by the literature, and 10 countries 



 

 66 

with available DHS data are left unstudied altogether, including: Central African 

Republic, Comoros, Cote d'Ivoire, Eswatini, Gabon, Lesotho, Morocco, Sao Tome 

and Principe, Sierra Leone, and Togo.  

The extant group of selected articles were published by a total of 36 

publishers. Just four publishers (BMC, Cambridge University Press, Public Library of 

Sciences, and Wiley-Blackwell) account for a majority of the articles (n=100). 

Articles from blatant deceptive or predatory scholarly publishers were screened out. 

However, many included studies came from less than immaculate publishers and 

journals (see Beall, 2017; Strielkowski, 2017, 2018). A sub-group of the largest 

questionable publishers (BMC, Hindawi, MDPI, and Dove Medical Press) account 

for 36% of the literature (n=66). More attention should be made on the standards and 

quality of results in systematic reviews and meta-analyses. 

3.6 Summary of Emergent Etiological Themes  

Determinants are selected if present in more than three studies, which sets the lower 

bound on what quorum is necessary to suggest a common theme. Grouping is by 

proximal and distal factors, order of pervasiveness: 
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Table 2. Common determinants 

Reported study findings Number of studies 
child’s feeding 64 
child’s age 64 
child’s sex 60 
child’s birth size and weight 49 
child’s diarrhea incidence 31 
child’s vaccination, immunization, and deworming status 16 
child’s birth interval and order 15 
child’s fever incidence 12 
child’s general illness and infection incidence 9 
child’s cough incidence 5 
child’s twin status 5 
  

mother’s education and literacy level 76 
mother’s Body Mass Index 22 
mother’s age 19 
mother’s height 16 
father’s education level 15 
parental occupation 13 
parental and household head education level 7 
  

household’s wealth, income, and socio-economic status 56 
household’s water source and usage 25 
household’s latrine utilization and sanitation facilities 10 
  

regional effects 13 
urban and rural residence effects 13 
seasonal effects 7 

 

3.7 A Quality and Quantity Assessment 

Causal identification of nutrition etiologies is difficult; it cannot be done with careless 

regressions (Buisman et al., 2019). A gap exists in the literature of studies that 

measure the effect sizes of possible non-illness related malnutrition interventions. I 

apply a simplified version of the 19-part “questionnaire” developed by McCloskey 

and Ziliak (1996; 2004b) for two literature reviews in the economics field. I similarly 

evaluate the state of null hypothesis significance testing, and other limitations within 
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the child malnutrition literature (Nickerson, 2000). The objective is to assess the 

quality of the study’s approach and conclusions. This “Size Matters” approach 

determines if results are based in statistically significant terms alone or if the results 

have any epidemiologically significant justification. Similar questionnaires have been 

adopted in literature reviews of conservation biology (Fidler et al., 2006), 

criminology (Bushway et al., 2006), and psychology (Sun et al., 2010).  

In the child malnutrition literature, I looked for studies that explicitly 

distinguished epidemiological significance from statistical significance. This includes 

articles that reported the effect size of a determinant and interpreted the effect size by 

placing it with a broader scientific conversation about what effects would be judged 

“large” or “small”. Other criteria included studies that motivated their coefficient 

selection without p-hacking or methods lacking in scientific judgement and studies 

that avoid inappropriate or otherwise spurious statistical tests. A note was made if a 

study reported the power of their tests and the findings. Similarly, findings based on a 

small number of observations, such that no statically significant differences can be 

found, or on a large number of observations, such that statically significant 

differences are arbitrary, are also noted.  

I find that papers in this literature are spread across three general categories: 

(1) those without any presentation of epidemiological significance or effect size; (2a) 

those that do present some quantitative effect sizes of some kind, however, only after 

first explicitly p-hacking their coefficient selection or (2b) those that do discuss some 

effect sizes, but without context to judge epidemiological effects and only after 

identifying meaningful determinants from post estimation tests of statistical 
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significance or (2c) those that do discuss epidemiological significance and effect sizes 

but only of statistically significance determinants; and (3) those in which statistical 

significance was not the primary driver behind the results and coefficient selection 

was not derived from p-hacking procedures; instead scientific judgement is applied 

and explicit quantitative results are discussed and presented within a larger context of 

epidemiological significance.  

Across the entire body of literature, 59% of studies (n=109) fall into the first 

category, and 39% of studies (n=72) fall into the second category: with 18% (n=33) 

in category 2a, 18% (n=33) in category 2b, and 3% (n=) in category 2c. Only 1.6% of 

studies (n=3) fall into the third category. However, there are a number of well-

reasoned and informative studies, just below the “Size Matters” cutoff (see Abuya et 

al., 2012; Begin et al., 1997; Fotso et al., 2012; Gewa & Yandell, 2012; Grace et al., 

2012; Haile et al., 2016; Kabubo-Mariara et al., 2009; Ruel et al., 1999; Ukwuani & 

Suchindran, 2003) Articles within the third “Size Matters” category include Kinyoki 

et al. (2015), Kinyoki et al. (2017), and Shively (2017). 

Kinyoki et al. (2015) and Kinyoki et al. (2017) studied risk factors of stunting, 

wasting, and underweight for 73,778 young children in Somalia. Employing 

household cross-sectional national nutrition survey data and Bayesian hierarchical 

spatio-temporal regression analysis, they find fever, diarrhea, sex and age of the child, 

household size, access to foods, enhanced vegetation index, and conflict are 

significant predictors of malnutrition. Important predictors associated with wasting 

and stunting exhibited substantial regional variation. Diarrhea was associated with 

increases of 0.35 and 0.29 in wasting and stunting odds. Girls had 0.27 lower odds of 
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being either stunted or wasted. A 1-unit increase in enhanced vegetation index was 

associated with a 0.38 and 0.49 reduction in wasting and stunting odds. Recent 

conflict increased odds by 0.37 and 0.21 of wasting and stunting. Longer term 

conflict had even larger effects, increasing odds by 0.76 and 0.88 for wasting and 

stunting.  

Shively (2017) studied the determinants of weight-for-height and height-for-

age z-scores for 4,345 children under 5 years in Uganda. Employing the Uganda 

DHS-V and DHS-VI with a hierarchical analysis, he finds agricultural season rainfall, 

health infrastructure, and transportation infrastructure are significant factors of 

malnutrition. In the hierarchical framework, he finds heterogeneity at the regional, 

district, and household level.  

Since 98% of the literature does not firmly pass the “Size Matters” metric, it is 

a futile exercise to synthesize the findings from such a collection of studies. It is 

invalid to posit that any real knowledge can be gleaned from tallying the results of 

size-less studies. Mere statistically significant positive or negative relationships 

between child malnutrition and various factors does not pass muster. It would be 

incorrect and even unethical to suggest otherwise. To make policy recommendations 

based on a determinant being qualitatively either a risk or a mitigating factor is 

dubious. Pseudo-analytic synthesis based on arbitrary levels of significance from a 

size-less literature misses the epidemiological point: they are neither informative nor 

meaningful. As Kenneth Rothman put it writing for the journal Epidemiology:  

Omit tests of statistical significance … discourage this type of thinking. … 
We also would like to see the interpretation of a study based not on statistical 
significance, or lack of it, for one or more study variables, but rather on 
careful quantitative consideration of the data … consider the magnitude of an 
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estimated effect … rather than simply offer uninspired interpretation that the 
estimated effect is “significant.” … As it only has two values, “significant” or 
“not significant,” it cannot convey much useful information. … Misleading 
signals occur when a trivial effect is found to be “significant,” … or when a 
strong relation is found to be “nonsignificant.” (Rothman, 1998, p. 334) 
 
Reliance on statistical significance alone may lead to ignoring large but 

imprecise factors and highlighting precise but small determinants. The result is also a 

literature devoid of any actual findings. The optimistic perspective, however, is one 

where there are bountiful, untapped opportunities to develop this literature much 

further. A great opportunity rests within studies with quantifiable results: a new 

regime of explicit measurement of how much potential determinants impact child 

malnutrition outcomes. There exists a wealth of untapped potential for future 

discoveries of researchers aptly employing the “rigorous methods of science” 

(Goodchild, 2009). But it is a sad state of affairs for the millions of children who will 

continue to suffer because we, as a scientific community, continue to be satisfied with 

fooling ourselves.  

3.8 Study Limitations 

All systematic reviews suffer from over confidence in results (Arksey & O'Malley, 

2005). The potential for mischaracterizing the study universe and introducing errors 

of omission is significant. In an initial trial search, I identified a much broader and 

extensive universe of 13,893 potential manuscripts. (For details of the expanded 

search criteria, see section 7.1.2). However, the burden of selection and review was 

too great. The missed potential for a more complete and comprehensive study is 

certainly not insignificant. However, casting this much wider net in an attempt to 
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catch elusive articles also undoubtedly ensnared many more non-pertinent articles at 

diminishing marginal return. 

The study population is derived from only a single database (i.e., Web of 

Science) plus key journal hand searching with Google Scholar. Some pertinent 

journals, such as Nutrition and Health, Tanzania Journal of Health Research, and 

The Nigerian Postgraduate Medical Journal, are not indexed by Web of Science. Nor 

does Web of Science index a comprehensive range of publication dates for all 

journals that it does index (e.g., South African Journal of Clinical Nutrition, African 

Journal of Reproductive Health, East African Medical Journal, BMC Research Notes, 

International Quarterly of Community Health Education, and International Journal 

for Equity in Health). 

The final selection of studies consists of only English language documents, 

which may lead to selection bias. In assessing the selected literature, the list of 

determinants does not include null results, or determinant effects that found to have 

no impact. The spatial scope of the review excludes all non-African countries. Asia 

along with Latin America and the Caribbean have significant child malnutrition 

prevalence, too. The review does not include all possible nutrition outcome 

assessments (e.g., MUAC) nor does it consider studies with composite outcomes 

(double burden of malnutrition). Studies with non-tractable analytical methodologies 

and aggregate or pooled studies that include more than one country were also 

excluded (e.g., Cooper et al., 2019; Kandala et al., 2009; Smith & Haddad, 2000).  

However, despite these limitations, this review is the largest and most 

comprehensive of its kind. Even with its focused spatial, temporal, and 
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methodological selection criteria, the number of included articles is over twice as 

many as the next largest literature review of child malnutrition studies.  

3.9 Conclusions 

Since the introduction of the 1990 UNICEF conceptual framework there has been an 

escalation of corroborating empirical studies. Previous systematic reviews have 

attempted to synthesize the literature and identify various determinants (e.g., Blessing 

J Akombi et al., 2017; Brown et al., 2020; Keino et al., 2014; Phalkey et al., 2015). 

However, no other study is as comprehensive (including over twice as many papers as 

the next largest systematic review, despite having a more focused spatial, temporal, 

and methodological selection criteria). Nor has any other review shown how much 

the literature abuses tests of statistical significance.  

I find most studies follow a typical structure, however, there remains little 

consensus of determining factors across time, space, and scale. Very few studies 

consider conflict and environment etiologies despite being the primary factors 

attributed to malnutrition, hunger, and death in most catastrophic famine events. 

Despite an extensive body of research, I find there are numerous opportunities for 

development within this corpus.  

The first opportunity exists in the heterogenous patchwork of malnutrition 

research across time, countries, and scales. Over 38% of countries on the African 

continent are not represented at all in this field, while only 16 countries can point to 

more than two studies across the 30-year timespan. Nationally representative studies 

make up only 38% of studies, and an even smaller 29%, account for the heterogeneity 

of social experiences, across just 8 countries. Despite over half of the extant literature 
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being published in just the last five years, over half of these studies are from just one 

of three countries (Ethiopia, Tanzania, and Ghana). The disparate coverage raises 

doubts about the generalizability and operational usefulness of many established 

paradigms and heuristic approaches.  

The second growth opportunity underscored by this literature exists within the 

proliferation of stunting related malnutrition outcomes. Stunting related outcomes are 

studied in over 91% of the literature. Studies of stunting alone constitute 38% of the 

literature. Focusing solely on stunting is an error, one adopted out of convenience 

(Perumal et al., 2018). Some point to greater data availability and greater prevalence 

rates as a rational (Black et al., 2013; de Onis & Branca, 2016; Smith & Haddad, 

2015; UNICEF, 2013). Studying stunting because of greater data availability and 

greater prevalence rates, however, is the quintessential drunkard's search principle—

an observational bias that occurs when one only searches for something where it is 

easiest to look. I hope the child malnutrition research community sobers up to such 

drunken temptations.  

The third and most bountiful growth opportunity in the literature resides with 

developing quantifiable results: the explicit measurement of how much each 

determinant impacts malnutrition, especially for non-illness related determinants. I 

find that, overall, the literature lacks the capability to answer the simple question: 

How much does any particular determinant effect malnutrition prevalence? Of the 

184 papers using a test of statistical significance, fully 98% mistook a merely 

statistically significant finding for an epidemiologically significant finding.  
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What matters for scientific advancement and meaningful practical execution is 

the impactfulness of a determinant. Impactfulness explains how much a determinant 

is practically useful even if it is imprecisely measured (McCloskey, 1995). Confusion 

over statistical and substantive significance often leads to misinterpretations, devoid 

of actual scientific findings (Goodman, 2008; Greenland et al., 2016; Wasserstein & 

Lazar, 2016; Ziliak & McCloskey, 2008). Such confusion is rampant in the empirical 

disaggregate African child malnutrition literature. Indeed, other systematic reviews 

have found that much of the evidence for the impact of climate on childhood 

malnutrition is based on a few heterogeneous studies with flawed methodologies 

(Phalkey et al., 2015). Despite widely anticipated links between climate change and 

child malnutrition, evidence for the nature of the relationship is just beginning to 

emerge across expansive spatial and temporal scales (Niles et al., 2020). More studies 

are needed, with more geographic coverage, and more attention to scale, that include 

multiple dimensions of nutrition outcomes, and are couched in sound inferential 

theory to quantify the spatial, social, political, climatic, and economic determinants of 

malnutrition.   
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4 On the Quality Control Maxim of Standard Deviations 

4.1 Overview 

Anthropometry is the study of the measurements and proportions of the human body. 

In the field, many practitioners have adopted a questionable quality control maxim. 

The maxim is, essentially, to dismiss any survey of anthropometric measurements 

whose standard deviation exceeds that of a benchmark survey, sample, or distribution 

(e.g., by 1.3x). To date there is no published study which properly substantiates the 

maxim. Despite the lack of sound statistical justification and lack of scientific 

evidence, the standard deviation as quality control indicator persists. Practitioners 

who endorse the maxim transpose the conditional and muddle samples with 

populations and references with standards. The practice is endemic and may have real 

consequences in terms of financial resources and global morbidity and mortality. This 

essay details the genesis and propagation of the maxim in the literature, exposes its 

theoretical and logical weaknesses, illustrates its demerits, and offers an alternative 

attitude toward the problem of quality control.  

4.2 Exordium: SD ¹ QC 

Anthropometry is the study of the measurements and proportions of the human body. 

It is widely accepted that for practical purposes anthropometry is the most useful tool 

for assessing the malnutrition status of children (WHO, 1986). Malnutrition is 

responsible for 45 percent of all deaths among children worldwide (Black et al., 

2013). In 2017, acute malnutrition (wasting) menaced over 50 million young children 
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while over 150 million young children suffered from chronic malnutrition (stunting) 

(UNICEF et al., 2018). Even a small change in child malnutrition rates can have 

major consequences in terms of lives saved or lost. The financial and human costs 

associated with the practice of anthropometry can be enormous. In 2014 alone, global 

donors disbursed nearly $937 million in nutrition-specific programing (KFF, 2016). 

According to Meera Shekar et al. (2017), to achieve the World Health Assembly 

global nutrition targets, the world needs to invest $70 billion over 10 years in high-

impact nutrition-specific interventions.  

The two most widely studied expressions of anthropometric indices are 

weight-for-height (WHZ) and height-for-age (HAZ) z-scores (de Onis & Blössner, 

1997; de Onis & Habicht, 1996). These z-scores express anthropometric 

measurements in terms of standard deviations below or above a reference population 

value. A z-score is the difference between a particular child’s measurements and the 

mean value of comparable children from a reference population, divided by the 

standard deviation of that reference population (WHO, 1995). Z-scores require a well 

specified reference population with a normal distribution, a condition which would 

imply that z-score cutoff values for stunting, wasting, or underweight are stable 

across different reference populations.  

However, many practitioners operate under the assumption that the standard 

deviation (SD) of a survey’s anthropometric indices is a necessary and sufficient 

measurement for quality control (QC). Exactly how many is up for debate and a 

potential direction for future research. Suffice it to say the number is large. If one is 

unfamiliar with this particular body of literature or the day-to-day pragmatics of 
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organizations working in this field, then the SD as QC problem might not seem 

endemic. But much like dust in the air, to borrow a metaphor, SD as QC seems 

invisible — even if you’re choking on it — until you let the sun in. Then you see it’s 

everywhere. A collection of quotes from this search is provided in section 7.2.1 to 

help illuminate the extent, certainly representing only a small sub-sample of all the 

potential articles and reports. Not to mention the many unreported, unknown, and 

unknowable studies that never saw the light of day because of internal or external 

suppression for having a supposedly over-large standard deviation.  

The practice is particularly persistent for anthropometric surveys within the 

field of child malnutrition, with particularly grievous consequences. In one typical 

article, the quality control maxim for z-scores states, “summary statistics can be 

compared with the reference, which has an expected mean Z-score of 0 and a SD of 

1.0 for all normalized growth indices” (Mei & Grummer-Strawn, 2007, p. 441). 

Others suggest that if a survey presents with “an excessive standard deviation … the 

survey results should be rejected” (Grellety & Golden, 2016). The maxim is certainly 

simple, but does its simplicity compensate for its disadvantages? 

Suppose you wish to conduct an anthropometric survey across the Karamoja 

region of northeast Uganda, to assess the health of the region’s children. Your well-

designed survey includes measurements of height, weight, and age from a sample of 

children. You combine the measurements to make anthropometric indices of health 

such as weight-for-height and height-for-age. After performing some rudimentary 

summary analysis, you discover the sample standard deviations of the survey indices 

are (for example) 1.3 times greater than those of the 2006 World Health Organization 
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(WHO) reference standards, which is not surprising given that the two groups of 

children come from two distinctly different populations. However, the quality control 

maxim used by many anthropometric researchers would dismiss your Karamoja 

survey as low quality, simply because the standard deviations are 1.3 times greater 

than the 2006 WHO reference standards.  

Anthropometric research generally works with z-scores, however, and the 

practice that I am objecting to is expressed in terms of z-scores, not sample standard 

deviations. Couched in terms of z-scores, the nature of the putative quality control 

requirement is a bit harder to understand. But it is really as simple as the Karamoja 

example: the ratio of standard deviations (of the sample and a reference) when in 

excess of a fixed threshold (e.g., 1.3) fail the quality control test. It can be shown that 

an anthropometric survey has a z-score standard deviation of 1.3 (or any other 

arbitrary cutoff value) if and only if the sample standard deviation of the 

anthropometric index is 1.3 times that of the standard deviation of the reference 

population. From a mathematical standpoint, a claim about the standard deviation of a 

z-score is equivalent to a claim about the ratio of an index’s sample standard 

deviation to that of a reference population. For a proof, see section 7.2.2. 

The notion that I wish to challenge is the following: Any anthropometric 

survey and subsequent z-score index (e.g., height-for-age or weight-for-height) not 

normally distributed with a standard deviation of approximately 1.0 (e.g., 1.3), 

indicates a serious problem, and should be considered unusable. (For more on the size 

and specifics of the maxim, see section 7.2.3). And I suggest there is neither statistical 

justification nor scientific evidence that supports the SD as QC maxim.  
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There are, of course, inaccurate surveys that probably deserve to be dismissed. 

Garbage in, garbage out. I too am wary, but other tests and conditions must be 

applied. For example, the United States Agency for International Development 

(USAID) identify 26 potential indicators that could measure anthropometry data 

quality during fieldwork (Allen et al., 2019). The World Bank and WHO 

recommends considering several indicators such as population characteristics, sample 

size, survey design, measurement methods, and missing data (Kostermans, 1994; 

WHO, 1995). WHO and UNICEF (2019) suggest performing a seven-point data 

quality assessment, which interprets and reports: completeness; sex ratio; age 

heaping; height and weight digit preference; and z-score implausibility, standard 

deviations, skewness and kurtosis. And Nandita Perumal et al. (2020) have 

implemented this suggestion to its fullest potential. 

Emmanuel Grellety and Michael H. Golden (2016) highlight random 

measurement, digit preference and rounding error as potential sources of error. David 

A. Siegel and Jacob S. Swanson (2004) warn against heaping and digit preference. 

Researchers should also look out for confounding effects, specification error, non-

linearity, bias of the auspices, measurement error, experimental error, and sample 

selection bias. Others point out that there is not even a consensus in the literature as to 

what constitutes a usable dataset (Crowe et al., 2014; USAID, 2016; Waterlow et al., 

1977). Shireen Assaf, Monica T. Kothari, and Thomas W. Pullum (2015) say the need 

for well-defined quality assessment criteria remains unmet, and recommend more 

training and better equipment in the meantime.  
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In their methodological guidelines for assessing nutrition in crisis situations, 

the SMART (Standardized Monitoring and Assessment of Relief and Transitions) 

inter-agency initiative recognized that survey samples do not follow reference 

standards, and that even “the standard population is not normally distributed” (2006, 

p. 24). Later, however, the guidelines rely on the SD as QC maxim, claiming bias 

“can be estimated from examination of the standard deviation of the WFH, which 

should always be 0.8–1.2 z-scores” (SMART, 2006, p. 38). 

Inspection of surveys for small SD remains in many QC recommendations 

(e.g., Allen et al., 2019; SMART, 2006; WHO & UNICEF, 2019) as a necessary if 

not sufficient condition for acceptance, while for others it is even a sufficient 

condition (e.g., Bilukha et al., 2020; Grellety & Golden, 2016, 2018; Mei & 

Grummer-Strawn, 2007). I propose that SD is neither a necessary nor sufficient 

indicator of QC. Low-quality surveys can have small SD and high-quality surveys 

can have large SD. Errors of commission and omission waste precious resources that 

are already spread thin. The disregarding of surveys with high standard deviation 

could result in funds and research being syphoned away from the people most in 

need. It is my aim to illustrate the archival, statistical, logical, theoretical, and 

practical evidence that standard deviation should serve as neither a necessary or a 

sufficient arbiter of quality control.  

4.3 Narratio: Unsound Beginnings 

It was sculptors and painters who first measured the relative proportions of the human 

form (Tanner, 1981). Scientific study of the measurements of the human body 

emerged notably with the work of Adolphe Quételet in 1832. Much like 
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contemporary practitioners, Quételet performed a cross-sectional study of the height 

and weight of newborns and children, and observed a likeness between the 

distribution of weight and height to a normal (Gaussian) distribution (Quételet, 1832, 

1835). This Quételet Index, later redubbed Body Mass Index, is still relevant today. 

Unlike Quételet, however, contemporary practitioners have transposed his 

observation, and adopted the quality control practice of judging a survey based on its 

likeness to a standard normal distribution.  

The source of the misconception originates in a presentation at the 15th 

International Congress of Nutrition in 1993 by Ray Yip. Despite its later impact on 

the literature, the SD-as-QC proposal does not even appear in the summary of the 

workshop, including Yip’s abstract (Yip, 1993). However, two years later the WHO 

issued a technical report entitled Physical status: The use of and interpretation of 

anthropometry that many have cited as the originator and authority for the SD as QC 

maxim.  

In less than one page of a 463-page report, some of the most recurrent maxims 

are found. WHO (1995) outlines several steps involved in assessing the quality of 

anthropometric data, including the observed standard deviation of the z-score 

distribution. With accurate measurements, the report claims the “distribution should 

be relatively constant and close to the expected value of 1.0 for the reference 

distribution” (WHO, 1995, p. 218). Citing the 1993 conference abstract, the report 

presents a table of “the standard deviations of the height-for-age, weight-for-age, and 

weight-for-height z-score distributions” all ranging “within approximately 0.2 units of 

the expected value” (WHO, 1995, p. 218). The table of values include: HAZ (1.10 to 
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1.30), WAZ (1.00 to 1.20), and WHZ (0.85 to 1.10). The expected value of 1.0, the 

range of plus or minus 0.2 units, and the specific table values have all been widely 

cited as the criteria which constitute a good quality survey (e.g., Bilukha et al., 2020; 

Blanton & Bilukha, 2013; de Onis & Blössner, 1997; Grellety & Golden, 2018; Mei 

& Grummer-Strawn, 2007; SMART, 2006; WHO & UNICEF, 2019). 

WHO (1995) presents the table of SD ranges only as an example that was 

observed during multiple large-scale CDC surveys presented once at a conference. 

The range of plus or minus approximately 0.2 units is merely a generalization they 

ascribe to the example surveys. In fact, WHO (1995) goes on to say that in some 

surveys the observed standard deviations ranged from 1.4 to 1.8, even after excluding 

extreme outliers. The specific SD values were not given in WHO (1995) as QC 

ranges as many have claimed (e.g., Castro Bedriñana & Chirinos Peinado, 2014; 

Grellety & Golden, 2018; Gupta et al., 2020; Jacob et al., 2016; Kwena et al., 2003; 

Mei & Grummer-Strawn, 2007; Wijaya-Erhardt, 2019).  

The report does suggest a SD > 1 could be an indicator of inaccuracy, but the 

notion was couched in a larger discussion of indicators, including validity of the 

reference population, the notorious quality of age estimates, errors of rounding and 

digit bias, number of missing and improbable values, and overall data compilation 

and documentation. Standard deviation is but one potential indicator, of many, to flag 

surveys for further inspection, not a sufficient measure of quality (WHO, 1995). And 

the report recommends: “Verification of accuracy is best done by remeasurement of a 

sub-sample of the original sample by individuals who are fully qualified in 
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anthropometric procedures” (WHO, 1995, p. 216). In other words, standard normal 

SD is certainly not a sufficient QC condition. 

Soon after, Mercedes de Onis and Monika Blössner (1997) echoed the SD as 

QC maxim as a definitive fact of nutrition surveys in their report WHO Global 

Database on Child Growth and Malnutrition, which many others have cited as the 

progenitorial charter of the idea. In particular, de Onis and Blössner claim: 

If the surveyed standard deviation of the Z-score ranges between 1.1 
and 1.2, the distribution of the sample has a wider spread than the 
reference. Any standard deviation of the Z-scores above 1.3 suggests 
inaccurate data due to measurement error or incorrect age reporting. 
(de Onis & Blössner, 1997, p. 51) 
 
The first sentence is referring to the survey data compared to the reference 

data. It is only making general statements about how variance and spread can be 

described for any two distributions of data. The second sentence, however, jumps to 

the conclusion that a z-score standard deviation above 1.3 “suggests inaccurate data.”  

Without question, z-score summary statistics can illustrate a broader 

community-wide picture of malnutrition; that is their function. As de Onis and 

Blössner state earlier “if a condition is severe, an intervention is required for the 

entire community, not just those who are classified as “malnourished” by the cut-off 

criteria (1997, p. 50). That is to say, when analyzing z-scores, if many observed z-

scores are well below the reference, then one might conclude that the appropriate 

intervention mechanism should be aimed at the population, and not the individual 

level. This is a sensible, if tautological, suggestion. But the inverse is not necessarily 

true. Namely, if you do not observe a standard normal distribution of z-scores shifted 
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in mean only, then you conclude none of the population has been affected and the 

sample is simply of low quality. 

It seems obvious that a population by definition will not move together as a 

whole. We know that low income families are more vulnerable to price volatility and 

uncertainty because they have fewer options, entitlements, and capabilities (Sen, 

1984). Calorie elasticity is not zero (Subramanian & Deaton, 1996). These families 

have relatively little income and a large percentage is spent on food, making them 

more vulnerable, thus skewing the distribution asymmetrically.  

Larger z-score SD implies larger spread implies inaccurate data: simple but 

unsatisfying. I have not found substantiating evidence or theoretical justification for 

the maxim—in de Onis and Blössner (1997) in particular or the literature in general. 

But what I have found is a history of citations built upon a shaky foundation. 

In my estimation there are really only two studies which one could argue have 

attempted to show evidence or justification for SD as QC, if only tangentially. The 

first comes from a conference paper given at the Proceedings of the Standardized 

Monitoring and Assessment of Relief and Transitions (SMART) Workshop, July 23-

26, 2002. At the workshop Michael H. Golden and Yvonne Grellety presented a 

working paper in which they claim to disprove the assertion: “social heterogeneity 

would lead to changes in the shape of the distribution curve of acute malnutrition 

when a population is exposed to famine” (2002, p. 3). And through their analysis they 

conclude that “there was no change in the spread of wasting within the population as 

it became more malnourished” (2002, p. 3). Grellety and Golden (2018) stipulate that 
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these findings confirm that SD should be between 0.8 and 1.2 z-score units in all 

well-conducted surveys. 

The findings of the Golden and Grellety (2002) working paper rest largely on 

Kolmogorov-Smirnov tests. In this case, the null hypothesis claim is that 

heterogeneity of wasting (i.e., z-score distribution curve) is heteroscedastic and the 

goal of the test is to falsify that claim. Their objective is to prove distributional spread 

(i.e., SD) is independent, stable, and standard normal (i.e., close to 1.0) as populations 

are exposed to starvation and famine (i.e., changes in average z-scores). And as an 

extension of their Kolmogorov-Smirnov test, they suggest SD is a measure of QC, 

stating: 

If a survey is observed to differ significantly from normality or have a large 
standard deviation, then we suggest that either two distinctly different 
populations may have been included in the sample or there is methodological 
error. All surveys should be checked for normality and any difference 
investigated. (Golden & Grellety, 2002, p. 10) 
 
But the specific Kolmogorov-Smirnov tests that Golden and Grellety (2002) 

devise assumes the data are normally distributed from the start. In this case the null 

hypothesis is not heterogeneity, but that z-score distribution curves are in fact normal. 

Furthermore, Thomas Bayes (1763) shows us that it is incorrect to assume 

Pr(Data|H!) = Pr(H!|Data). And testing for normality is not equivalent to testing a 

unit SD. We are also not provided the power of the tests (i.e., the probability of 

correctly rejecting the null hypothesis), making it difficult for one to judge a null 

hypothesis false when it is false.  

Finally, in their figures, they purport that mean and standard deviation are 

uncorrelated. But if two random variables are statistically uncorrelated, that does not 
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imply they are independent. But it is independence that they seek. In addition, they 

show that kurtosis varies from -0.75 to 1.75 decreasing as wasting escalates, and 

skewness varies from -0.5 to 0.75 increasing as wasting escalates, contradicting the 

claim that malnutrition prevalence remains fixed and normally distributed. 

In my estimation, even if Golden and Grellety (2002) had shown what they 

intended, it is still a great leap to conclude that therefore standard deviations are a 

necessary and sufficient quality control measure. The link is missing. Many 

alternative hypotheses still exist. As Deirdre N. McCloskey and Stephen T. Ziliak 

point out, “Failing to reject does not of course imply that the null is therefore true. 

And rejecting the null does not imply that the alternative hypothesis is true: there may 

be other alternatives which would cause rejection of the null” (1996, p. 102). And 

elsewhere, Golden concedes that “[m]ost experimental studies do not include the 

acutely ill children for ethical reasons; the children are studied after they have 

recovered from acute infections and other major complications” (2009, p. S280). The 

esteemed pediatrician James Tanner knew in 1952 what remains true today: 

unhealthy populations could be non-Gaussian and skewed; as such, standard 

deviations may be biased and not locate the right points (Tanner, 1952).  

The second study comes from an article by Zuguo Mei and Laurence M. 

Grummer-Strawn (2007). Mei and Grummer-Strawn claim to “assess whether the SD 

of height- and weight-based Z-score indicators derived from the 2006 WHO growth 

standards can still be used as data quality indicators” (2007, p. 441). They find, “The 

SD for all four indicators were independent of their respective mean Z-scores across 

countries” (Mei and Grummer-Strawn 2007, 441). And they conclude that, “the SD of 
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Z-scores could still be used as a data quality indicator for evaluation of 

anthropometric data” (Mei & Grummer-Strawn, 2007, p. 445). 

Again, WHO (1995, p. 218) present a table of z-scores with different ranges 

of distribution values (i.e., HAZ (1.10 to 1.30), WAZ (1.00 to 1.20), and WHZ (0.85 

to 1.10)). However, as I hope I have illustrated, the table is presented only as an 

example of observed ranges. And the standard deviation z-score ranges were never 

meant for data quality assessment, nor has SD ever been shown to be a sufficient QC 

indicator.  

But the point is lost in Mei and Grummer-Strawn (2007), who submit that 

WHO (1995) recommended “standard deviation ranges for data quality assessment” 

and claim to assess “whether these Z-score ranges still apply.” I suggest they never 

did. Mei and Grummer-Strawn even concede that “the observed ranges of SD for all 

four indicators from our analysis were consistently wider than those recommended by 

WHO” (2007, p. 441). Yet these specific values were never given in WHO (1995) as 

the acceptable range for good quality surveys. 

Citing WHO (1995), Mei and Grummer-Strawn assert that:  

On the basis of the 1978 WHO/National Center for Health Statistics 
(NCHS) growth reference, WHO has previously indicated that the SD 
of Z-scores of these indicators is reasonably constant across 
populations, irrespective of nutritional status, and thus can be used to 
assess the quality of anthropometric data. (Mei & Grummer-Strawn, 
2007, p. 441)  
 



 

 89 

I think it is telling that they point to the 1995 technical report instead of pointing to 

the actual developers of the WHO/National Center for Health Statistics (NCHS) 

growth reference (e.g., Waterlow et al., 1977).5 

In fact, the arbiters of the WHO/National Center for Health Statistics (NCHS) 

growth reference, John C. Waterlow et al., warn against universal principles, saying: 

“Decisions of this kind have to be taken locally, and it is not possible to make 

international recommendations about them” (1977, p. 491). Indeed, we need to make 

judgments backed up by logic, theory, and evidence, and not blindly follow a binary 

decision rule lacking any contextual nuance. Waterlow et al. affirm that sub-

populations are heterogenous, imploring us to make judgments on a case-by-case 

basis:  

Clearly, if there were differences dependent on different gene 
distributions, then the target for one population would not be the same 
as the target for another. … Because the reference population cannot 
be used as a universal target, the question of what is a realistic goal in 
any particular situation does become important. (Waterlow et al., 
1977, p. 490) 
 
The purpose of Waterlow et al. was to “present recommendations for the 

analysis and presentation of height and weight data” (1977, p. 489), not to present 

ways to exclude such data. All constraints they do propose are wholly directed at 

 
5 In 1971, as part of a long tradition for child growth references, the Maternal and Child Health 
Program, the United States Public Health Service, and the American Academy of Pediatrics concurred 
that more rigorous standards were needed for clinical characteristics of early childhood malnutrition. 
This decision was the impetus for the Health and Nutrition Examination Survey carried out by the 
Centers for Disease Control and Prevention’s National Center for Health Statistics Task Force. First 
released in 1977, the National Center for Health Statistics Growth Curves were a combination of data 
from the National Center for Health Statistics’ Health Examination Surveys, the Health and Nutrition 
Examination Survey, and the Fels Research Institute. Wanting in on the action, a WHO working group 
on nutritional surveillance made recommendations on the criteria for the anthropometric reference 
population and presented recommendations for the analysis of data from surveys involving nutrition 
and anthropometry, thus the “WHO/National Center for Health Statistics” growth reference. 
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constructing a reference population. Whereas a standard represents a desirable target 

or norm, the sole aim of a reference is to be a common basis in order to group, 

analyze, and compare different populations (WHO, 1995). Unfortunately, the 

distinction between references and standards was, and continues to be, indifferently 

heeded and oft left in unclarity.  

The 1978 WHO/National Center for Health Statistics (NCHS) growth 

reference is distinct in its purpose and function from the 2006 WHO Multicentre 

Growth Reference Study (MGRS) growth standards. And neither can inform, through 

comparing standard deviations, whether or not any particular sample is of poor 

quality. But Mei and Grummer-Strawn assert that, “our analysis confirms the WHO 

assertion that the SD remains in a relatively small range for each indicator” (2007, p. 

445). To do so, however, is to conflate standards, references, and samples.  

In 1993, the Expert Committee on Physical Status, convened by WHO, 

concluded that previous reference growth charts had long been misconstrued as a 

standard for growth (de Onis & Habicht, 1996). As a result, the WHO Multicentre 

Growth Reference Study was implemented between 1997 and 2003. The designers of 

the new Growth Reference were intentionally prescriptive rather than descriptive 

(Garza & de Onis, 2004). They designed a growth chart for how children should grow 

rather than how children actually grow. In other words, it was purposely designed to 

produce an idealized standard rather than a baseline reference.  

Even the initial sample data for the Multicentre Growth Reference Study did 

not have small and well-behaved standard deviations. To produce the growth 

standards, the sample was manipulated to fit specific distributional requirements 
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(WHO, 2006b). And even though the study sought out the healthiest, most ideal 

population to measure, 93 percent to 69 percent of the healthy populous were 

ineligible and did not conform to this ideal (for more on the The Multicentre Growth 

Reference Study, see section 7.2.4). In other words, even in the healthiest and most 

ideal sub-populations, most children do not fit the growth standards, nor are they 

normally distributed with standard deviations close to one. The Multicentre Growth 

Reference Study is a growth standard intended for measuring benchmark distances 

from an idealized healthy child. It is not the only permittable distribution for a sample 

dataset nor is it relevant for measuring data quality.  

4.4 Probatio: Spurious Theory and Flawed Logic 

SD as QC may be believed by some to be loosely related to the seminal concepts of 

the eminent epidemiologist Geoffrey Rose, whose ideas transformed the strategy of 

preventive medicine. Central to Rose’s strategy was his assumption that the width of 

the distribution of a variety of biological measures remains similar across different 

populations even as the mean of the distribution shifts: a mean-centric view of 

population (Rose, 1992). He observed that most risk-factor distributions across 

populations appear to have uniform displacements, with risk changing the same 

amount at different parts of the risk-factor distributions. Rose’s assumption implies 

that the mean of a distribution can be used as a proxy for a population’s intrinsic 

traits. 

Yet it remains an untenable leap to go from Rose’s “distributions of biological 

measures tend to have consistent spread, independent from the central tendency” to 

the misconception that “any distribution of a biological measure that does not have a 
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‘small’ and ‘precise’ spread is invalid, inaccurate, and not inciteful.” Furthermore, 

Rose’s conceptualization is anchored on the cohesiveness of populations, an 

assumption that may be violated by differential changes in the BMI distribution 

occurring globally within populations (Razak et al., 2016). 

Contrary to theoretical and observational expectations, some have claimed 

whole population distributions shift equally in the face of malnutrition stressors and 

that any data set which does not behave that way (i.e., any data set with z-score 

standard errors not equal to one) must be a low-quality survey (e.g., Bilukha et al., 

2020; Blanton & Bilukha, 2013; de Onis & Blössner, 1997; Golden & Grellety, 2002; 

Grellety & Golden, 2016, 2018; Mei & Grummer-Strawn, 2007). 

But the assertion remains unsubstantiated. If true, it would follow that 

whenever there was a famine (malnutrition stressor) anywhere in the world, you 

sitting at the breakfast table, drinking your coffee, oblivious to the famine, would also 

become slightly malnourished, too, to maintain a normally distributed population with 

a standard deviation of one. We all must move together to preserve the spread of the 

distribution, you see. “That is preposterous,” the SD as QC crowd say, “Mean shifts 

in z-scores do not occur for the entire planet, it is only applicable to some smaller 

sub-population.” Ah, then, by “shifts in the population,” they don’t really mean the 

Population. Okay, but they still have to contend with the problems of sorites and the 

fallacy of the transposed conditional (for more on the fallacy, see section 7.2.5). 

If the effect is only valid for some sub-population then the boundaries of that 

sub-population must be defined. And, in defining that boundary, the sub-population is 

by definition not representative of the whole population. Indeed, the casual parlance 
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of “populations” should be avoided. The meaningfulness of descriptive statistics 

depends on how meaningfully a population is defined in relation to the inherent 

intrinsic and extrinsic dynamic generative relationships by which they are constituted 

(Krieger, 2012). 

Prevalence and distributions of z-scores are therefore highly reliant on 

boundary definitions and cannot be extrapolated out of sample. Remember, too, that 

the “reference population” used for judging a child’s health is really a standard and 

by design a small sub-population of only the healthiest of healthy children. And, even 

still, those “standard” children were not distributed standard normal with a standard 

deviation of one (WHO, 2006b). There is no reason to believe that a healthy sub-

population should behave the same way a malnourished sub-population does. In fact, 

we would expect differences, else our work to solve the problem of malnutrition 

would be trivial.  

Standard deviation is merely the measure of dispersion for a set of values, 

unlike digit preference (heaping at 0 and 5), incompleteness (missing values), 

rounding errors (chop vs. nearest), data formatting (short, long, float double), 

transposition and transcription errors (obvious typos), or procedural errors (e.g., a 

child measured lying down when they should have been standing), which are all 

direct quality control metrics of a specific error. For example, the standard deviation 

of WHZ only gauges the ratio of the weight-for-height sample standard deviation to 

that of the weight-for-height standard deviation of a reference population. The 

reference population (even if it is a standard) cannot signify anything qualitative 
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about the sample data, nor should it. A reference population is merely a datum or a 

fixed point. It is a quantitative scale not a qualitative apparatus.  

Measurement errors might generate inflated SD. Then again, they might not. 

Inflated SD does not necessarily imply measurement error (Biehl et al., 2013; 

Ulijaszek & Kerr, 1999). The advertised “test” for the quality of a survey poses the 

prior “if the population is distributed normal, then the observed data will be 

distributed normal,” and supposes wrongly “if data is observed, then the population it 

is drawn from is distributed normal.” If H, then O, does not affirm if O, then H. It is 

the same as thinking if a person is hanged, then he will probably die; therefore, if 

observing a corpse, then one should conclude he was probably hanged (Ziliak & 

McCloskey, 2008).  

Random errors lower precision by inflating confidence intervals. Random 

error is but one of many dozens of errors and seldom the biggest (Ziliak & 

McCloskey, 2008). It is systematic errors that we should be worried about. They 

cause bias. Especially when the costs of failure (i.e., child mortality) are high, the 

choice between low bias or low precision is not really a choice at all. If I can’t be 

precisely right, I would rather be generally right than precisely wrong. More 

importantly, Ziliak and McCloskey note “sampling precision says nothing about the 

oomph of a variable or model” (2008, p. 25). 

Systematic errors may even attenuate SD. A small spread in SD is not a 

necessary condition for a lack of systematic error, making SD a poor metric from 

which to judge quality. Suppose, for example, I performed an especially erroneous 

survey of child anthropometry in which instead of actually measuring different 
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weights and heights, I just marked down the exact same value for every survey 

participant. Is my systematic measurement error captured by an inflated standard 

deviation? No. Obviously, this is an extreme and absurd example. But there exists a 

non-zero proportion of the total sample space in which systematic errors diminish 

rather than inflate standard deviation. Try to imagine the countless number of 

possible surveys with less extreme systematic error structures, all of which exhibit ‘a 

standard deviation of approximately one.’ If it is systematic errors that we are 

concerned with, SD signifies very little. 

The obverse problem with SD as QC remains, too. Since Anscombe's quartet 

and the more recent Datasaurus Dozen, students of statistics have long known that 

different datasets with wildly varying graphical distributions can all have the exact 

same descriptive statistics, including standard deviation (Anscombe, 1973; Matejka & 

Fitzmaurice, 2017). Logic dictates SD is neither a necessary nor sufficient indicator 

of QC.  

4.5 Refutatio: Informed Dissent from the Maxim 

The debate surrounding standard deviation as quality control metric is ongoing and 

unresolved. After two national nutrition surveys in Nigeria exhibited divergent 

estimates, both USAID and UNICEF staff in-country felt that substantial quality 

problems must exist in either one or both surveys (USAID, 2016). In July 2015, the 

USAID Nutrition Division convened a technical meeting aimed at resolving the 

issues of accuracy and comparability of anthropometric data. Participants included 

representatives from USAID, CDC, UNICEF, WHO, PAHO, and external nutrition 

experts. The meeting report highlights that the importance of standard deviations for 
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measuring data quality was a major point of contention. The report concludes that 

“there was no agreement on what is a reasonable standard deviation of z-scores to 

expect in heterogeneous populations” (USAID, 2016, p. 17).  

The meeting report features arguments for the SD as QC maxim given by an 

unspecified presenter from the CDC. In reference to the Demographic and Health 

Surveys, the CDC presenter asserted that high quality anthropometric data will 

always be normally distributed with a standard deviation of approximately one 

regardless of population heterogeneity, and that a standard deviation greater than one 

must mean the data are of poor quality (USAID, 2016). One example they pointed to 

was the National Health and Nutrition Examination Survey in the United States with 

a (recent) stable trend of small standard deviations. Furthermore, they claimed the 

shape of the distribution does not change as a population becomes more 

malnourished, concluding there is no relationship between the mean z-score and 

standard deviation. In their estimation, this lack of relationship is sufficient to 

conclude standard deviation is a quality control metric. 

The report suggests, however, that not all participants agreed with the SD as 

QC maxim. Some participants felt that standard deviations greater than one could 

reflect heterogeneity in the population. For the Demographic and Health Surveys in 

particular, they expressed concern regarding the emphasis on standard deviations of 

height-for-age, weight-for-age, and weight-for-height z-scores close to one as an 

indication of quality. They noted: 

In Kano state, Nigeria, for example, a majority of the within-cluster 
standard deviations were below 1, however, the average standard 
deviation in Kano state was more than 1. If the states are different, it is 
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impossible for the standard deviation to be 1 in every state, and 1 for 
the country as a whole. (USAID, 2016, p. 17) 
 
Other researchers acknowledged that the Demographic and Health Surveys in 

particular did show the most variability in parameters such as standard deviation. But 

they also noted that the Demographic and Health Surveys Program has the largest 

number of surveys and covers the largest span of time; standard deviations may have 

changed with time as nutritional status of the populations changed or improved. One 

meeting facilitator affirmed that it is not true that the shape of the distribution does 

not change as nutritional status of the population changes. While others pointed out 

that in terms of the factors that influence anthropometric indicators (e.g., water, 

sanitation, and food security), the United States may be more homogeneous than 

other countries (e.g., India) (USAID, 2016, p. 16). 

Given that standard deviations capture inherent population heterogeneity, 

there is no reason to assume that the standard deviation will be the same across all 

surveys. It is true that poor data quality could inflate the standard deviation of 

anthropometric measures, but given that anthropometric z-scores are biologic 

parameters, one would anticipate some population heterogeneity both within and 

between countries, even in situations of high-quality data collection.  

The Joint FAO/WHO Expert Committee on Nutrition (1971) noted that 

statistical evaluation cannot by itself distinguish between what is normal and 

abnormal in the biological sense. Even seminal author and pediatric expert Dr. 

Derrick Jelliffe (1966) emphasized the problems and difficulties of non-sampling 

errors, which cannot be detected with tests of sampling errors. And Jonathan Gorstein 
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et al. (1994) notes that when the nature of a nutrition problem is unclear, it should be 

interpreted within the situational context.  

Standard deviation is not indicative of quality control for some studies. There 

are researchers and journals confident enough in the quality of their findings even 

with standard deviations not approximately one. Yirgu Fekadu et al. (2015) found z-

score standard deviations of 1.3 (weight-for-height), 1.33 (height-for-age), and 1.06 

(weight-for-age) in Ethiopian children. Michel Garenne et al. (2009) found weight-

for-height z-score standard deviations of 1.28 and 1.398 for Niakhar, Senegal, and 

Bwamanda, D. R. Congo, respectively. Afework Mulugeta et al. (2010) observed z-

score standard deviations of 1.8 (height-for-age), 1.3 (weight-for-age), and 1.3 

(weight-for-height) for children in northern Ethiopia. Ephraim Chirwa and Harold 

Ngalawa (2008) measure z-score standard deviations of 1.321 (WAZ), 1.903 (HAZ), 

and 1.721 (WHZ) for children across Malawi. Achenef Motbainor et al. (2015) found 

z-score standard deviations of 1.42 (HAZ), and 1.58 (HAZ) for children in the 

Gojjam zones of Ethiopia. Bealu Betebo et al. (2017) report standard deviations of 

1.46 (WAZ), 2.29 (HAZ), and 1.88 (WHZ) for children in East Badawacho District, 

Ethiopia with even larger deviations among food insecure households. 

In addition, Paul B. Spiegel et al. (2004) performed a meta-analytical quality 

assessment of anthropometric surveys with no mention of standard deviation. Daniel 

E. Roth et al. (2017) estimated that across 64 low-and middle-income countries, when 

mean height-for-age z-scores were zero, the standard deviation was 2.10 (95% CI 

2.00 to 2.20), far above most QC thresholds. Examining MUAC (Mid-Upper Arm 
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Circumference) for 852 cross-sectional nutritional surveys of children, Frison et al. 

(2016) found that only 319, or 37.7 percent, follow a normal distribution.  

In his survey of famines and economics, Martin Ravallion remarks on the 

unusual nature of malnourished communities: “I will say that a geographic area 

experiences famine when unusually high mortality risk is associated with an 

unusually severe threat to the food consumption of at least some people in the area” 

(1997, p. 1205).  The phenomenon of malnutrition is by its very nature unusual i.e., 

not normal. It would be bizarre to think that measures would behave the same in lean 

times as in abundance. In their appraisal of different anthropometric indices, André 

Briend et al. get to the heart of the matter when they observe “for most populations, 

little information is available on the amount of nutritional change one has to expect in 

a community and also on the standard deviations of some nutritional indices” (1989, 

p. 770). 

4.6 Peroratio: Eschew the Maxim 

The SD as QC maxim is built on a history of shaky citations, corroborated with 

imprudent tests, substantiated by logical fallacies, and endorsed inconsistently by 

empiricists. It lacks archival, statistical, logical, theoretical, and practical merit. Of 

course, there are inaccurate surveys and samples that don’t deserve our consideration, 

but other tests and conditions must be adopted. The solution to the issue of SD abused 

as QC is simple: stop doing it. I think of the old vaudeville line of a man who says, 

“Doctor, it hurts when I do this,” and the doctor replies, “Then don’t do that!”  

Having abandoned the SD as QC maxim, the therapeutic and ameliorative 

next step is more difficult. But good science is difficult. If it were easy, it would have 
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already been done (Wasserstein et al., 2019). Good science embraces the explicable 

and ineffable (McCloskey, 1994). Doing serious scientific inquiries calls for serious 

thinking about what makes a dataset “good” or “bad” and how its “goodness” may 

impact the results. We need to consider the dozens of sources of real error, and 

reckon their effects on our results. As Ziliak and McCloskey put it, “After all, 

reconciling differences of effect, finding the common ground, is the point of statistics. 

… Most important is to minimize Error of the Third Kind, ‘the error of undue 

inattention’” (2008, p. 246). 
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5 Environmental and Economic Determinants of Malnutrition: 

A Quantitative Spatially Explicit Hierarchical Analysis of 

Children in Kenya and Nigeria 

5.1 Overview 

Despite a remarkable reduction in global poverty and famines, substantial childhood 

malnutrition continues to persist. In 2017, acute malnutrition (wasting) menaced over 

50 million young children while over 150 million young children suffered from 

chronic malnutrition (stunting). Yet the quantifiable impacts of many determinants 

are obscure. I have combined health and demographic data from Kenya and Nigeria 

Demographic Health Surveys (2003, 2008-09, 2013, 2014) with spatially explicit 

precipitation, temperature, and vegetation data. Using four-level random intercept 

hierarchical generalized logit models, I evaluated the responsiveness of malnutrition 

indicators. I found spatial and hierarchical relationships explain 28-36 percent of 

malnutrition outcome variation. Changes in precipitation, temperature, or vegetation 

alone can move malnutrition rates by more than 50%. Wasting is most impacted by 

mother’s education, family wealth, clinical delivery, and vaccinations. Stunting is 

most impacted by family wealth, mother’s education, clinical delivery, vaccinations, 

and children asymptomatic of fever, cough, or diarrhea. Geospatial and disaggregated 

data helps to understand better who is at risk and where to target mitigation efforts. 

Remotely monitored climatic variables are powerful determinants, however, their 

effects vary across different indicators and locations. 
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5.2 Introduction 

Childhood malnutrition is a pernicious public health issue. Malnutrition is a 

detrimental and significant plight for young children; it is responsible for 45% of all 

deaths among children worldwide (Black et al., 2013). Malnutrition not only 

increases child morbidity and mortality, it also inhibits cognitive, social, and financial 

potential (de Onis & Branca, 2016; Smith & Haddad, 2000). Progress to reduce 

malnutrition so far is insufficient to attain the World Health Assembly targets for 

2025 and the Sustainable Development Goals for 2030 (i.e., a 40% reduction in 

stunting prevalence and reduce wasting prevalence to less than 5% by 2025, and by 

2030 end all forms of malnutrition) (Nations, 2015; WHO, 2014). Despite downward 

global trends in undernutrition, only 26 of 202 countries are on track to meet the 

target (Tzioumis & Adair, 2014; UNICEF, 2018). 

Causes of child malnutrition are broadly divided into two etiological 

categories: illness-related or non-illness-related (Mehta et al., 2013). The focus of this 

essay is to evaluate the latent determinants that impact the severity and variability of 

non-illness-related childhood malnutrition. Non-illness-related malnutrition stems 

from economic, social, environmental, political, or cultural factors that decrease 

nutrient intake and negatively affect growth and development. The severity of 

malnutrition is measured by deterioration in key anthropometric indicators. 

The two most widely studied indicators are wasting and stunting. Wasting 

indicates a deficit in tissue and fat mass, either from weight loss or inability to gain 

weight. A child, aged 0 to 59 months, is defined as wasted if their weight-for-height is 

below negative two standard deviations from the median of the WHO Child Growth 
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Standards (UNICEF, 2013). Stunting indicates impeded skeletal growth. It is a 

measure of linear growth, representing chronic malnutrition accumulated over time. A 

child, aged 0 to 59 months, is defined as stunted if their height-for-age is below 

negative two standard deviations from the median of the World Health Organization 

Child Growth Standards (UNICEF, 2013). 

5.3 Background 

Since the introduction of the 1990 UNICEF conceptual framework there has been an 

upsurge in studies attempting to corroborate it with empirical evidence, driven in part 

by demand from various aid agencies to understand the drivers of malnutrition in 

order to better carry out their missions (for more on the state of child malnutrition 

conceptual frameworks, see section 7.3.1). The conceptual framework models child 

malnutrition as a hierarchical system (UNICEF, 2020). The hierarchical strata include 

immediate, underlying, and basic classifications, which some interpretations equate to 

individual, household, and societal levels, whereby factors at one level influence 

other levels (UNICEF, 1998). While other reinterpretations focus on distinguishing 

between proximal and distal determinants (Buisman et al., 2019). 

In their extensive report on the aggregate cross-county determinants of 

malnutrition Smith and Haddad (2000) identify specific sub-categories of the 

UNICEF framework. They specify dietary intake and health status as the immediate 

determinants, which are influenced by the underlying determinants of food security 

(per capita national food availability), care for mothers and children (women’s 

education and women’s status relative to men’s), and health environment quality (safe 

water access), which are in turn influenced by the basic determinants of economic 
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resource availabilities (per capita national income) and the political environment 

(democracy score).  

Despite long observed environmental effects (e.g., Habicht et al., 1974), and 

widely anticipated links between climate change and child malnutrition, evidence for 

the nature of the relationship is just beginning to emerge across expansive spatial and 

temporal scales (Niles et al., 2020). Others have found that much of the evidence for 

the impact of climate on childhood malnutrition is based on a few heterogeneous 

studies with flawed methodologies (Phalkey et al., 2015).  

 Indeed, I find numerous opportunities in the literature for studies, with more 

geographic coverage, and more attention to scale, that include multiple dimensions of 

nutrition outcomes, and are couched in sound inferential theory to quantify the 

spatial, social, political, climatic, and economic determinants of malnutrition. I aim to 

avail myself of these opportunities by quantifying non-illness-related determinants of 

stunting and wasting across Kenya and Nigeria through a spatially explicit 

hierarchical modeling approach consistent with the UNICEF (1990, 1998) conceptual 

framework.  

5.4 Methods 

There are over 4.8 million wasted children and over 10 million stunted children in 

Nigeria, while there are over 278 thousand wasted children and over 1.8 million 

stunted children in Kenya (UNICEF, 2013). Globally Nigeria has the second highest 

number of stunted children behind India. Kenya provides a measure of external 

validity to the analysis and adds variability in terms of malnutrition prevalence rates, 

governance, climate, population, economy and culture. 
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To supply the primary data on child health and household characteristics, I 

employ the Demographic and Health Surveys (DHS) Kids Recode files and the 

Geographic Data files for Kenya and Nigeria of DHS-IV (1997 to 2003), DHS-V 

(2003 to 2008), DHS-VI (2008 to 2013) (see Table 3, Table 4, and Table 5). The 

sample includes 48,086 Nigerian children and 28,421 Kenyan children. To 

understand each variable and its contents, Measure DHS (2008, 2012, 2013) provides 

descriptions of the recode data-files and methodologies in a standardized manual (for 

more on the study design and sample methodology, see section 7.3.2). 

I construct the z-sores of anthropometric indices using Stata Statistical 

Software (Leroy, 2011; StataCorp, 2017). I input the weight and height measurements 

along with the sex and child’s age to calculate z-scores in accordance with the 2006 

World Health Organization growth standards (UNICEF, 2013). The Nigerian sample 

includes 7,361 (15.3% prevalence) wasted and 18,723 (38.9% prevalence) stunted 

children. The Kenyan sample includes 1,775 (6.3% prevalence) wasted and 8,396 

(29.5% prevalence) stunted children. The dependent variables, wasting and stunting, 

are child-level composite binary indicators equal to one if the child’s calculated z-

score is below negative two standard deviations from the reference median and zero 

otherwise.  

Unique identifiers link the georeferenced data to records in the household 

surveys at the cluster level. However, the Demographic and Health Surveys employ 

geographic-masking with a coordinate displacement process to protect respondent 

confidentiality. The process displaces urban clusters up to two kilometers, displaces 

rural clusters up to five kilometers, and randomly selects one percent of the rural 
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clusters to displace up to ten kilometers (Burgert et al., 2013). I link the Kids Recode 

files via timestamps and the cluster-level spatial identifiers to remotely monitored 

climatic variables (for more on composition of variables, see section 7.3.3). 

Selected covariates follow the UNICEF (1998) conceptual framework along 

with spatially explicit temperature (CHIRTS), precipitation (CHIRPS), NDVI 

(Normalized Difference Vegetation Index) and anomaly climatic inputs (Funk et al., 

2015; Vermote et al., 2014). The conceptual framework models child malnutrition as 

a hierarchical system. The multisectoral framework encompasses food, health, and 

caring practices to help identify the most appropriate mixture of actions. The 

emphasis of the model is on accommodating many possible determinants of 

malnutrition and prioritizing the most important within a specific contextual 

application while being easy to communicate across different users (UNICEF, 1990). 

Summary statistics of discrete variables, continuous variables, and the hierarchical 

decomposition are presented in Table 3, Table 4, and Table 5 respectively.  
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Table 3. Summary statistics of discrete variables  

  Nigeria  Kenya 
Variable  Frequency Percent  Frequency Percent 
Wasting Status       

Not wasted  40,716 84.69  26,646 93.75 
Wasted  7,360 15.31  1,775 6.25 

Stunting Status       
Not stunted  29,353 61.06  20,025 70.46 
Stunted  18,723 38.94  8,396 29.54 

Sex        
Male   23,991 49.90  14,369 50.56 
Female  24,085 50.10  14,052 49.44 

Delivery       
Home   29,850 62.38  14,069 49.63 
Clinic   18,002 37.62  14,277 50.37 

Birth       
Multiple   1,428 2.97  734 2.58 
Singleton  46,648 97.03  27,687 97.42 

Weaned       
Breastfed beyond 1 year  16,809 34.96  7,158 25.19 

  Weaned by 1 year  19,645 40.86  14,896 52.41 
  Breastfed up to 1 year  11,038 22.96  4,170 14.67 
  Weaned before 1 year  584 1.21  2,197 7.73 
Vaccines - Minimum        

No   12,181 25.36  1,341 4.72 
Yes  35,850 74.64  27,073 95.28 

Vaccines - Maximum        
No   40,684 84.70  16,965 59.71 
Yes  7,347 15.30  11,449 40.29 

Diet       
Unvaried   35,622 74.10  22,723 79.95 
Diverse  12,454 25.90  5,698 20.05 

Sick       
Symptomatic  12,709 26.66  14,226 50.14 
Asymptomatic   34,957 73.34  14,149 49.86 

Latrine - Improved       
No   32,967 70.96  22,184 82.36 
Yes  13,489 29.04  4,751 17.64 

Water - Improved       
No   22,082 47.07  11,540 41.37 
Yes  24,833 52.93  16,355 58.63 

Residence       
Urban    15,680 32.62  8,179 28.78 
Rural  32,396 67.38  20,242 71.22 

Mothers Education       
None    21,919 45.59  5,992 21.08 
Primary  10,898 22.67  15,521 54.61 
Secondary    12,471 25.94  5,280 18.58 
Higher  2,788 5.80  1,628 5.73 

Wealth Index       
Poorest    10,697 22.25  9,077 31.94 
Poorer  10,813 22.49  5,784 20.35 
Middle    9,678 20.13  4,856 17.09 
Richer  9,035 18.79  4,333 15.25 
Richest  7,853 16.33  4,371 15.38 
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Table 3. (continued) 

  Nigeria  Kenya 
Variable  Frequency Percent  Variable Percent 
Interview Month       

January  0 0.00  1,530 5.38 
February    1,370 2.85  1,265 4.45 
March  7,315 15.22  25 0.09 
April    8,166 16.99  729 2.57 
May  8,709 18.12  4,042 14.22 
June  3,932 8.18  4,718 16.60 
July    6,327 13.16  4,828 16.99 
August  5,698 11.85  4,035 14.20 
September     4,043 8.41  4,163 14.65 
October  2,485 5.17  805 2.83 
November  31 0.06  1,145 4.03 
December  0 0.00  1,136 4.00 

Survey Phase       
DHS-IV  4,386 9.12  4,718 16.60 
DHS-V    19,246 40.02  5,101 17.95 
DHS-VI  24,454 50.85  18,602 65.45 

 
 
 
 

Table 4. Summary statistics of continuous variables 

 Nigeria  Kenya 
  Standard     Standard   
Variable Average Deviation Min Max  Average Deviation Min Max 
Child's Age 

(Months) 
28.3 17.2 0 59  28.9 17 0 59 

Mother's Age 
(Years) 

29.5 6.93 15 49  28.6 6.57 15 49 

Birth Tally 4.3 2.58 1 18  3.8 2.36 1 16 
Precipitation (dm) 21.3 7.95 4.7 61.6  8.3 6.13 0.02 25.2 
Temperature (°C) 31 2.23 24 38.3  26.4 3.7 15.6 35.6 
Precipitation 

Anomaly 
0.2 2.62 -11.3 11.4  -0.5 1.47 -5.5 8.2 

Temperature 
Anomaly 

-0.7 0.46 -1.9 0.7  -0.8 0.45 -2.6 0.9 

NDVI 0.6 0.14 0.09 0.9  0.6 0.14 0.1 0.9 
NDVI Anomaly 0.0 0.026 -0.1 0.2  0.0 0.034 -0.1 0.2 

 
 
 
 

Table 5. Hierarchical decomposition of DHS 

 Nigeria  Kenya 
  Observations per Group   Observations per Group 
Scale Groups Min Average Max  Groups Min Average Max 
State  37 765 1,299.1 2,750  47 339 600.9 1,165 
Cluster  2,131 1 22.6 79  2,365 1 11.9 43 
Household  30,904 1 1.6 8  20,048 1 1.4 6 
Child 48,068     28,241    
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5.5 Analysis 

All results and conclusions are drawn from a four-level random intercept 

hierarchical generalized logit model (for the specification, see section 7.3.5.6). 

However, I performed preliminary supplementary analyses, too, including a linear 

probability specification and logit specification (for their specifications, see sections 

7.3.5.2 and 7.3.5.4). Given the discrete nature of the dependent variables, wasting and 

stunting, I use linear probability and logit models to motivate the initial coefficient 

interpretations and provide a lower bound on effect sizes (for ancillary results tables, 

see section 7.3.9). Exploring multiple model specifications helps to minimizes 

specification error and maximizes validity (for more on the econometric motivation, 

see sections 7.3.5.1 and 7.3.5.5). Utilizing different populations gives protection 

against confounding (Smith & Ebrahim, 2002). 

5.6 Results 

Prevalence rates of wasting and stunting are overall spatially correlated, although 

there are pockets where rates deviate substantially suggesting different causal 

pathways (Figure 6). The variable heterogeneity of malnutrition prevalence over the 

landscape highlights the need for a disaggregate and spatially explicit modeling 

approach (for more detailed spatial distributions and uncertainty estimates, see 

section 7.3.4158). The Demographic and Health Surveys data form a natural 

hierarchical structure: regions within a country, states within a region, clusters within 

a state, households within a cluster, occupants within a household, and children for 

each woman. 
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The results across the various modeling approaches tell a consistent story, 

implying the results are robust to particular modeling variations. My results indicate 

that the hierarchical structure alone explains 28 to 36 percent of the variation in 

malnutrition, meaning the additional model complexity has consequential explanatory 

value (Table 6).  

Table 6. Unconditional Hierarchical Model - Variance Decomposition 

 Wasted  Stunted 
Hierarchical Fully 

Unconditional Nigeria  Kenya  Nigeria  Kenya 

Variance Decomposition – Percent by Level       
States 7.09%   11.35%   10.94%   1.87%  
Clusters 9.48%   6.35%   6.99%   6.11%  
Households 17.50%   20.09%   13.31%   20.08%  
Children 65.93%   62.22%   68.77%   71.94%  

 

The results of the discrete covariates illustrate how much each categorical 

determinant affects malnutrition for a change from a baseline counterfactual (Figure 

7). As a general rule the effect sizes for stunting are larger than for wasting due to the 

smaller prevalence of wasting in the population. Because the model results measure 

the direct impact on the percentage point difference in probability of malnutrition in 

the population (i.e., prevalence), the size of the marginal effects have an upper-bound 

limit of the prevalence in the population (for more on interpretation of results, see 

section 7.3.6). In other words, only already wasted and stunted children can transition 

to being non-wasted and non-stunted.  

In both Nigeria and Kenya, mother’s education plays a greater role in 

determining wasting, whereas household wealth is the leading determinant of 

stunting. On average, in Nigeria, the probability of being wasted is 4 percentage 

points (95% CI: -5.4 to -2.7) lower for a child from a mother with higher education 
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than from a mother with no education (Table 7). Whereas in Kenya, the probability of 

being wasted is 1.7 percentage points (95% CI: -2.6 to -0.89) lower for a child from a 

mother with higher education than from a mother with no education (Table 7). That is 

to say, the absolute prevalence rates of wasting in Nigeria and Kenya would drop 

from 15.31% and 6.25% respectively down to 11.31% and 4.55% if mothers of 

wasted children had higher education holding all else constant. Education plays a 

vital role for reducing stunting prevalence, too. Mothers attaining higher education 

can reduce stunting rates by 13 percentage points (95% CI: -16 to -10) in Nigeria and 

5.9 percentage points (95% CI: -10 to -1.3) in Kenya (Table 8). In other words, 

education alone has the potential to curtail the number of stunted children by over one 

third. 

In terms of quantifying the results in numbers of children, and in numbers of 

deaths prevented, the effects are highly epidemiologically significant. In 2011, the 

Nigeria under-five population was 27,195,000 with a 41% stunting prevalence 

(11,149,950) and a 14% wasting prevalence (3,807,300), with an overall mortality 

rate of 124/1000 for under-fives (3,372,180), which is much lower for non-

malnourished children making the deaths prevented estimates conservative lower 

bounds of their true values (UNICEF, 2013). Using a maximally adjusted, minimum 

hazard ratio, of 2.12 for stunting mortality and 3.47 for wasting mortality, the 

mortality rate becomes 260/1000 at a minimum for stunted children, and 430/1000 at 

a minimum for wasted children (Olofin et al., 2013). If at a maximum education can 

reduce stunting prevalence by 13 percentage points, or by 3,353,350 children, then 

education can prevent at a minimum approximately 490,989 children’s deaths. 
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Similarly, if at a maximum education can reduce wasting prevalence by 4 

percentage points, or by 1,087,800 children, then education can prevent at a minimum 

approximately 315,767 children’s deaths. In 2011, the Kenya under-five population 

was 6,805,000 with a 35% stunting prevalence (2,381,750) and a 7% wasting 

prevalence (476,350), with an overall mortality rate of 73/1000 for under-fives 

(496,765), which is much lower for non-malnourished children making the deaths 

prevented estimates conservative lower bounds of their true values (UNICEF, 2013). 

Using a maximally adjusted, minimum hazard ratio, of 2.12 for stunting mortality and 

3.47 for wasting mortality, the mortality rate becomes 150/1000 at a minimum for 

stunted children and 250/1000 at a minimum for wasted children (Olofin et al., 2013). 

If at a maximum education can reduce stunting prevalence by 5.9 percentage points, 

or by 401,495 children, then education can prevent at a minimum approximately 

32,826 children’s deaths. Similarly, if at a maximum education can reduce wasting 

prevalence by 1.7 percentage points, or by 115,685 children, then education can 

prevent at a minimum approximately 21,206 children’s deaths. 

Wealth also has a powerful influence on malnutrition rates. The richest 

families from the highest wealth quintile can reduce wasting prevalence by 0.95 

percentage points (95% CI: -2.5 to 0.63) in Nigeria and 1.2 percentage points (95% 

CI: -2.3 to -0.17) in Kenya, and can reduce stunting prevalence by 16 percentage 

points (95% CI: -18 to -13 and -19 to -12) in both Nigeria and Kenya (Table 7 and 

Table 8). The richer or second highest wealth quintile can reduce wasting prevalence 

by 1.6 percentage points (95% CI: -2.8 to -0.42) in Nigeria and 1.1 percentage points 

(95% CI: -1.8 to -0.3) in Kenya, and can reduce stunting prevalence by 12 percentage 
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points (95% CI: -15 to -9.9) in Nigeria and 10 percentage points (95% CI: -13 to -6.9) 

in Kenya (Table 7 and Table 8). Moving to the middle wealth quintile reduces 

wasting prevalence by 1.3 percentage points (95% CI: -2.2 to -0.45) in Nigeria and 

0.79 percentage points (95% CI: -1.5 to -0.04) in Kenya, and reduces stunting 

prevalence by 6 percentage points (95% CI: -8.2 to -3.9) in Nigeria and 8.1 

percentage points (95% CI: -11 to -5.4) in Kenya (Table 7 and Table 8). Even moving 

from the poorest to second poorest wealth quintile can reduce wasting prevalence by 

0.06 percentage points (95% CI: -0.92 to 0.8) in Nigeria and 0.92 percentage points 

(95% CI: -1.6 to -0.22) in Kenya, and can reduce stunting prevalence by 2.9 

percentage points (95% CI: -4.7 to -1.1) in Nigeria and 4.3 percentage points (95% 

CI: -6.7 to -1.9) in Kenya (Table 7 and Table 8). Overall, changes in wealth alone 

have a smaller but substantial impact on wasting with reductions up to one fifth. Even 

more substantially, wealth alone has the potential to curtail the number of stunted 

children by more than one half.   
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Figure 6: Empirical Bayesian kriging of sample malnutrition prevalence across Kenya and Nigeria 
DHS-IV, DHS-V, and DHS-VI using ArcGIS software by ESRI (2017). Color gradients indicate 
prevalence of stunting and wasting malnutrition rates.  
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Figure 7: Average marginal effects of categorical determinants of malnutrition (based on Table 7 and 
Table 8). Variables are displayed such that negative values are beneficial for children’s health and 
positive values are deleterious for children’s health. The vertical red line at zero demarks the liminal 
threshold, whereas the green and orange horizontal lines are 95% confidence intervals. 
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Table 7. Interpreted Hierarchical Analyses, Wasted Percentage Point Change  

Interpreted Results  Percent Change in Wasted Probability 
Hierarchical Random 
Intercept 

Nigeria  Kenya 

 
For a Change from Baseline Category with 95% Confidence Interval in Brackets 
Sex - Female -1.2% [-1.9, -0.49]  -0.75% [-1.1, -0.36] 
Delivery - Clinic -0.91% [-1.7, -0.11]  -1% [-1.6, -0.46] 
Birth - Singleton -4.1% [-6.7, -1.4]  -3.2% [-5.5, -1] 
Weaned - By 1 Year Old -0.44% [-1.2, 0.34]  -0.11% [-0.48, 0.26] 
Vaccines - Minimum -1% [-2, -0.03]  -0.44% [-1.4, 0.52] 
Vaccines - Maximum -1% [-2, 0]  -0.27% [-0.85, 0.32] 
Diet - Diverse 0.77% [-0.1, 1.6]  -0.32% [-0.9, 0.25] 
Sick - Asymptomatic -1% [-1.8, -0.25]  -0.16% [-0.58, 0.26] 
Latrine - Improved -0.31% [-1, 0.38]  0.45% [-0.38, 1.3] 
Water - Improved -0.26% [-1.2, 0.66]  -0.02% [-0.41, 0.37] 
Residence - Rural -0.86% [-2.2, 0.47]  -0.03% [-0.51, 0.46] 
Mothers Education      

Primary -0.96% [-1.8, -0.12]  -1.1% [-1.7, -0.56] 
Secondary -2% [-2.8, -1.1]  -0.89% [-1.6, -0.18] 
Higher -4% [-5.4, -2.7]  -1.7% [-2.6, -0.89] 

Wealth Index       
Poorer -0.06% [-0.92, 0.8]  -0.92% [-1.6, -0.22] 
Middle -1.3% [-2.2, -0.45]  -0.79% [-1.5, -0.04] 
Richer -1.6% [-2.8, -0.42]  -1.1% [-1.8, -0.3] 
Richest -0.95% [-2.5, 0.63]  -1.2% [-2.3, -0.17] 
      

For a 1-Unit Increase in Determinant with 95% Confidence Interval in Brackets 
Child's Age -2.2% [-2.8, -1.5]  -0.13% [-0.38, 0.12] 
Mother's Age 0.26% [-0.64, 1.2]  -0.22% [-0.65, 0.2] 
Birth Tally -0.17% [-0.39, 0.05]  0.07% [-0.07, 0.21] 
Precipitation -0.96% [-2.3, 0.41]  -1.5% [-2.5, -0.63] 
Temperature 1.2% [0.79, 1.5]  0.24% [0.12, 0.36] 
Precipitation Anomaly -0.45% [-4.9, 4]  1.1% [-0.88, 3.1] 
Temperature Anomaly -2.7% [-5.2, -0.26]  -0.01% [-0.62, 0.61] 
NDVI -9.2% [-14, -4.9]  -3.9% [-6.6, -1.3] 
NDVI Anomaly 4.4% [-14, 23]  5.5% [-2.1, 13] 
      
For a 1- Standard Deviation Increase in Determinant with 95% Confidence Interval in Brackets 
Child's Age -3.15% [-4.01, -2.15]  -0.18% [-0.54, 0.17] 
Mother's Age 0.18% [-0.44, 0.83]  -0.14% [-0.43, 0.13] 
Birth Tally -0.44% [-1.01, 0.14]  0.16% [-0.17, 0.5] 
Precipitation -0.76% [-1.83, 0.33]  -0.92% [-1.53, -0.39] 
Temperature 2.68% [1.76, 3.35]  0.89% [0.44, 1.33] 
Precipitation Anomaly -0.12% [-1.28, 1.05]  0.16% [-0.13, 0.46] 
Temperature Anomaly -1.24% [-2.39, -0.12]  0% [-0.28, 0.27] 
NDVI -1.29% [-1.96, -0.69]  -0.55% [-0.92, -0.18] 
NDVI Anomaly 0.11% [-0.36, 0.6]  0.19% [-0.07, 0.44] 
      
For a Sample Maximum Increase in Determinant with 95% Confidence Interval in Brackets 
Child's Age -10.82% [-13.77, -7.38]  -0.64% [-1.87, 0.59] 
Mother's Age 0.88% [-2.18, 4.08]  -0.75% [-2.21, 0.68] 
Birth Tally -2.89% [-6.63, 0.92]  1.04% [-1.08, 3.15] 
Precipitation -5.46% [-13.09, 2.33]  -3.78% [-6.3, -1.59] 
Temperature 17.16% [11.3, 21.45]  4.8% [2.4, 7.2] 
Precipitation Anomaly -1.02% [-11.12, 9.08]  1.51% [-1.21, 4.25] 
Temperature Anomaly -7.02% [-13.52, -0.68]  -0.02% [-2.17, 2.14] 
NDVI -7.45% [-11.34, -3.97]  -3.12% [-5.28, -1.04] 
NDVI Anomaly 1.32% [-4.2, 6.9]  1.65% [-0.63, 3.9] 
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Table 8. Interpreted Hierarchical Analyses, Stunted Percentage Point Change  

Interpreted Results  Percent Change in Stunted Probability 
Hierarchical Random 
Intercept 

Nigeria  Kenya 

 
For a Change from Baseline Category with 95% Confidence Interval in Brackets 
Sex - Female -5.1% [-5.9, -4.2]  -7.7% [-9.1, -6.3] 
Delivery - Clinic -2.2% [-3.3, -1.1]  -4.6% [-6.4, -2.8] 
Birth - Singleton -13% [-17, -9.1]  -23% [-28, -18] 
Weaned - By 1 Year Old -0.31% [-1.6, 1]  -1.1% [-2.8, 0.65] 
Vaccines - Minimum -0.56% [-2.8, 1.7]  -2.9% [-5.5, -0.2] 
Vaccines - Maximum -4% [-6, -1.9]  -1.6% [-3.1, -0.22] 
Diet - Diverse -2% [-3.6, -0.37]  -0.51% [-2.3, 1.3] 
Sick - Asymptomatic -3.4% [-5, -1.8]  -1.3% [-2.6, -0.07] 
Latrine - Improved -0.43% [-2, 1.1]  -5% [-7.2, -2.8] 
Water - Improved 0.2% [-1.1, 1.5]  -1.1% [-2.7, 0.51] 
Residence - Rural 1.5% [0.01, 2.9]  -1.4% [-3.6, 0.8] 
Mothers Education      

Primary -1.5% [-3, -0.01]  2.5% [-0.5, 5.6] 
Secondary -5.4% [-7.4, -3.4]  -2.5% [-5.7, 0.84] 
Higher -13% [-16, -10]  -5.9% [-10, -1.3] 

Wealth Index       
Poorer -2.9% [-4.7, -1.1]  -4.3% [-6.7, -1.9] 
Middle -6% [-8.2, -3.9]  -8.1% [-11, -5.4] 
Richer -12% [-15, -9.9]  -10% [-13, -6.9] 
Richest -16% [-18, -13]  -16% [-19, -12] 
      

For a 1-Unit Increase in Determinant with 95% Confidence Interval in Brackets 
Child's Age -0.75% [-1.7, 0.16]  -2.6% [-3.3, -1.8] 
Mother's Age -3.6% [-4.7, -2.5]  -4.6% [-6.1, -3.1] 
Birth Tally 0.37% [0.06, 0.68]  1.1% [0.67, 1.6] 
Precipitation -1.5% [-4.4, 1.4]  3.3% [0.33, 6.3] 
Temperature -0.26% [-1.3, 0.73]  -0.92% [-1.2, -0.61] 
Precipitation Anomaly 5.2% [-1, 11]  -3.4% [-8, 1.2] 
Temperature Anomaly -1.8% [-5.8, 2.1]  1% [-0.43, 2.4] 
NDVI -6.6% [-19, 6.1]  12% [5.7, 18] 
NDVI Anomaly 30% [-20, 80]  -13% [-36, 9.8] 
      
For a 1- Standard Deviation Increase in Determinant with 95% Confidence Interval in Brackets 
Child's Age -1.08% [-2.44, 0.23]  -3.68% [-4.68, -2.55] 
Mother's Age -2.49% [-3.26, -1.73]  -3.02% [-4.01, -2.04] 
Birth Tally 0.95% [0.16, 1.75]  2.6% [1.58, 3.78] 
Precipitation -1.19% [-3.5, 1.11]  2.02% [0.2, 3.86] 
Temperature -0.58% [-2.9, 1.63]  -3.4% [-4.44, -2.26] 
Precipitation Anomaly 1.36% [-0.26, 2.88]  -0.5% [-1.18, 0.18] 
Temperature Anomaly -0.83% [-2.67, 0.97]  0.45% [-0.19, 1.08] 
NDVI -0.92% [-2.66, 0.85]  1.68% [0.8, 2.52] 
NDVI Anomaly 0.78% [-0.52, 2.08]  -0.44% [-1.22, 0.33] 
      
For a Sample Maximum Increase in Determinant with 95% Confidence Interval in Brackets 
Child's Age -3.69% [-8.36, 0.79]  -12.78% [-16.23, -8.85] 
Mother's Age -12.24% [-15.98, -8.5]  -15.64% [-20.74, -10.54] 
Birth Tally 6.29% [1.05, 11.56]  16.5% [10.05, 24] 
Precipitation -8.54% [-25.04, 7.97]  8.31% [0.83, 15.86] 
Temperature -3.72% [-18.59, 10.44]  -18.4% [-24, -12.2] 
Precipitation Anomaly 11.8% [-2.27, 24.97]  -4.66% [-10.96, 1.64] 
Temperature Anomaly -4.68% [-15.08, 5.46]  3.5% [-1.51, 8.4] 
NDVI -5.35% [-15.39, 4.94]  9.6% [4.56, 14.4] 
NDVI Anomaly 9% [-6, 24]  -3.9% [-10.8, 2.94] 
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The climate variables are a remote monitoring corollary to malnutrition. 

Climate variables have the potential to act as leading indicators for changes in 

malnutrition prevalence with wide coverage and lower costs as compared to 

traditional clinical survey techniques. Malnutrition is often purported to be the most 

significant impact of climate change on children’s health, but little empirical evidence 

exists in the literature (Grace et al., 2014; Phalkey et al., 2015; Shively, 2017). For 

Nigeria and Kenya, NDVI, precipitation, and temperature levels all play a significant, 

if not homogeneous, role in determining wasting and stunting prevalence.  

The effect of temperature on Nigeria wasting shows that higher temperatures 

correspond to higher wasting prevalence, and on average a maximum monthly 

temperature of 38°C in the preceding growing season is associated with a 25% 

wasting prevalence (Figure 9). That is to say, higher temperature corresponds to a 10 

percentage points higher wasting prevalence. In a forecasting regime, the model 

results show that if temperatures in Nigeria reach an average monthly maximum of 

38°C during the growing season, then the following year one in four children will 

experience wasting. Similarly, if temperatures in Kenya reach an average monthly 

maximum of 35°C during the growing season, then the following year one in ten 

children will experience wasting: a nearly two-fold increase from the observed 

prevalence (Figure 9). 

Increases in precipitation levels in the preceding growing season can have an 

ameliorative effect. If precipitation levels in Kenya reach 2.5 dm over the growing 

season, then the following year 3% of children may experience wasting, or over a 

50% reduction from the sample average (Figure 8). And if precipitation levels in 
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Nigeria reach 6.0 dm over the growing season, then the following year one in ten 

children may experience (Figure 8). NDVI in the preceding growing season is a 

further measure with a strong inverse relationship that acts to mitigate wasting rates. 

In both Nigeria and Kenya moving from the lowest to the highest values of 

observable NDVI would cut wasting rates by 50% (Figure 10). 

While the absolute value or level plays the largest and most direct role in 

determining malnutrition outcomes, the long-term variability or anomaly plays a 

substantial secondary role, too. One standard deviation increase in precipitation 

anomaly reduces wasting prevalence by 0.12 percentage points (95% CI: -1.28 to 

1.05) in Nigeria and reduces stunting prevalence by 0.5 percentage points (95% CI: -

1.18 to 0.18) in Kenya. It increases wasting prevalence by 0.16 percentage points 

(95% CI: -0.13 to 0.46) in Kenya and increases stunting prevalence by 1.36 

percentage points (95% CI: -0.26 to 2.88) in Nigeria (Table 7 and Table 8). One 

standard deviation increase in temperature anomaly reduces wasting prevalence by 

1.24 percentage points (95% CI: -2.39 to -0.12) in Nigeria and has zero effect (95% 

CI: -0.28 to 0.27) in Kenya. It reduces stunting prevalence by 0.83 percentage points 

(95% CI: -2.67 to 0.97) in Nigeria, but causes an increase of 0.45 percentage points 

(95% CI: -0.19 to 1.08) in Kenya (Table 7 and Table 8). One standard deviation 

increase in NDVI anomaly increases the prevalence of wasting by 0.11 percentage 

points (95% CI: -0.36 to 0.6) in Nigeria and 0.19 percentage points (95% CI: -0.07 to 

0.44) in Kenya. It increases the prevalence of stunting by 0.78 percentage points 

(95% CI: -0.52 to 2.08) in Nigeria, but causes a decrease of 0.44 percentage points 

(95% CI: -1.22 to 0.33) in Kenya (Table 7 and Table 8). 
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Figure 8: Effect of precipitation on average predicted probability of malnutrition. The horizontal axis is the in-sample range of average total 
monthly rainfall (dm) during the preceding growing season. The horizontal red line demarks the observed malnutrition prevalence and the sloped 
blue line illustrates how much the expected prevalence rates change as precipitation changes. The shaded blue corresponds to a 95% confidence 
interval band on the estimate. 
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Figure 9: Effect of temperature on average predicted probability of malnutrition. The horizontal axis is the in-sample range of average maximum 
monthly temperatures (°C) during the preceding growing season. The horizontal red line demarks the observed malnutrition prevalence and the 
sloped blue line illustrates how much the expected prevalence rates change as temperature changes. The shaded blue corresponds to a 95% 
confidence interval band on the estimate. 
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Figure 10: Effect of NDVI on average predicted probability of malnutrition. The horizontal axis is the in-sample range of the unit-less NDVI for the 
three greenest months during the preceding growing season. The horizontal red line demarks the observed malnutrition prevalence and the sloped 
blue line illustrates how much the expected prevalence rates change as NDVI changes. The shaded blue corresponds to a 95% confidence interval 
band on the estimate. 
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5.6.1 Limitations 

Using a standardized questionnaire model, the Demographic and Health Surveys 

Program aims to collect data that are comparable across countries. However, the 

questionnaire model has been modified across each of the seven phases of the 

Program making it difficult to measure changes through time. The DHS geographic 

displacement process reduces the risk of disclosing confidential personal information, 

but adds artificial uncertainty into the signal-to-noise ratio and lowers the precision of 

estimated covariates. In the survey design, individuals within households are not 

sampled, only clusters are sampled, and then households are sampled within clusters. 

And, given that the DHS datasets do not provide a separate sampling fraction (i.e., 

weights) for clusters, households, and individuals for privacy, weighting in a 

multilevel model is infeasible (DHS, 2008, 2012, 2013). Although the data have a 

temporal component, successive surveys are repeated cross-sections, not a panel. 

There remains a need for similar studies that include more countries, across more 

surveys, across a broader timespan, examining more outcomes with more inputs 

specifically directed at the nexus of climate, conflict, and malnutrition. 

5.6.2 Future Directions 

There exists two distinct binary-outcome econometric models of malnutrition each 

offering valuable insights into the structural design yet they are non-compatible in 

execution. One is the hierarchical model with random effects for the clustered strata 

presented here. The other is a misclassification error corrected logit. Given the model 

specification complexity I did not control for potential misclassification error in the 
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outcome variable, which may cause attenuated coefficient estimates (Sandler & 

Rashford, 2018). Exploratory analysis suggests the accuracy of the observed wasted 

children is as low as 37% (Nigeria) and 21% (Kenya). The accuracy of the observed 

stunted children is better, 78% (Nigeria) and 66% (Kenya). Unfortunately, even 

accuracies as high as 95% can still produce wrong and attenuated results leading to 

incorrect inference about the world. Other estimates for the over dispersion of height-

for-age z-scores suggest variance inflation factors as high as 110% (Ghosh et al., 

2020). The problem remains of combining the two specifications into a more general 

flexible model and implementing it in empirical applications.  

5.7 Discussion 

Malnutrition devastates millions of children every year, yet the latent determinants 

are largely obscure. Across the African malnutrition literature, there exists a 

heterogenous patchwork of research which neglects countries where malnutrition is 

most severe. Furthermore, the disregard for the heterogeneity of social experience, 

which considers how the determinants change across and between different 

hierarchies, is questionable. Disaggregate nationally representative empirical studies 

of childhood malnutrition in Africa are found wanting for answers to two essential 

questions: What are the determinants of malnutrition? And how much do the 

determinants affect malnutrition? Motivated by the hierarchical data structure within 

a well-established conceptual framework model, this analysis begins to provide 

much-needed answers.  

One is best informed by examining determinants on the basis of their 

scientific, quantitative, and epidemiological significance. A determinants impact is 
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most appropriately measured by its ability to change malnutrition prevalence in an 

epidemiologically significant way. I find the most impactful latent determinants each 

have the capacity to reduce prevalence rates by as much as 50%: an 

epidemiologically significant effect.  

Although wasting and stunting are related malnutrition indicators their causal 

pathways, prevalence, duration, impact, and determining factors are distinct. Across 

both Nigeria and Kenya, stunting is most significantly impacted by family wealth, 

followed by mother’s education, a clinical delivery, vaccinations, and children who 

are asymptomatic of fever, cough, or diarrhea. In Nigeria diet diversity manifests as a 

mitigating stunting risk factor, whereas in Kenya access to improved latrine facilities 

and rural households mitigates stunting prevalence. Wasting is most significantly 

impacted by mother’s education, followed by family wealth, a clinical delivery, and 

vaccinations across both Nigeria and Kenya. And in Nigeria children living in urban 

households and those children exhibiting symptoms of fever, cough, or diarrhea are 

also at elevated wasting risk levels. 

Climatic variables are powerful determinants of malnutrition. Across the 

observable range of values, changes in precipitation, temperature, or NDVI (in the 

preceding growing season) alone could curtail or inflate the number of wasted and 

stunted children by more than one half. However, their effects can vary greatly across 

different nutrition indicators and different countries. Due to the distinct causal 

pathways and chronic nature of stunting, the signal to noise ratio of climate 

determinants is markedly diminished. In Kenya higher precipitation and NDVI levels 

were deleterious and significant determinants, while higher temperature levels were a 
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mitigating and significant determinant. Yet in Nigeria higher temperature, 

precipitation, and NDVI levels were mitigating determinants. 

Surprisingly, some oft-purported determinants of malnutrition were not 

significant in both the statistical or epidemiological sense. These include climate 

anomalies, access to improved latrine facilities, access to improved water facilities, 

weaning practices, and diet diversity for wasting. Similarly, for stunting, improved 

water facilities and weaning are not significant. Further research is needed to 

ameliorate these discrepancies. 

The inconsistencies of determinants across space and malnutrition outcomes 

highlight the need for prudent, highly specific, and tailored approaches, especially 

when using climate determinants for any forecasting efforts or policy interventions 

(e.g. Kinyoki, Berkley, et al., 2016a, 2016b). Particular focus should be paid to those 

determinants that are either actionable by policy intervention or serviceable in 

forecasting and intervention efforts as well as epidemiologically significant. 

Identifying effective mitigating determinants to prevent the harmful effects of 

malnutrition in children should be a priority. Only with explicit identification and 

measurement can intervention organizations and governments begin to make 

substantial progress to reduce childhood malnutrition. 
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6 Conclusion 

6.1 Study Summary 

This dissertation provides both theoretical and practical insights. Chapter 1 lays the 

groundwork by introducing the motivation, framework, objectives and key research 

questions. Chapter 2 introduces anthropometric evaluation of children: the most vital 

and widely used instrument of public health and clinical medicine. Anthropometry 

establishes norms, identifies variations, and monitors development. Yet the accurate 

assessment of physical growth and development of children remains a perpetually 

beleaguering subject. In chapter 2, I focus on the evolution of anthropometry as a 

science and its associated measurements, indices, indicators, standards, references, 

and best practices. I clarify aspects of the assessment of child growth, explore the 

historical trajectory of the study of anthropometry and its contemporary limitations, 

and contribute to the debate surrounding references and standards, and the 

applicability of international anthropometric standards to an individual’s health. 

Among my findings is a contested record of events, up to and including 

leading contemporary practices and datasets. I contextualize the legacy of child 

malnutrition studies in a broad framework, including the linkage between eugenics 

and contemporary notions of “normal” children. I show the pertinacious competition 

among individuals and institutions to become the preeminent child growth authority. I 

propose a distinction between reference growth charts and standards of growth, and I 

illustrate the unforeseen consequences of universal growth standards that no longer 

reflect any observable populations.  
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I recommend that moving forward we should continue to interrogate 

contemporary manifestations of anthropometric ontologies. This essay illustrates the 

need for future studies of anthropometry to re-evaluate the orthodoxy. In particular, 

more studies that grapple with the incipient motivations of anthropometry as a science 

and its resultant legacy are needed in addition to studies that explore the 

consequences of universal growth standards. The social determinants of health will be 

better understood through more prodigious and progressive meta-histories of 

anthropometry. 

Chapter 3 reveals that malnutrition devastates millions of children globally 

every year, yet the consensus of determining factors remains mixed and obscure. 

Based on a systematic literature search, I review 184 disaggregate empirical studies 

of the determinants of childhood malnutrition in Africa published since 1990. This 

collection spans 30 years, includes 34 countries, and is the largest and most 

comprehensive review of its kind to date.  

I show that the literature concerning disaggregate empirical studies of 

childhood malnutrition is found wanting for answers to two essential questions: What 

are the determinants of malnutrition? And how much do the determinants affect 

malnutrition? I show that the role of spatial heterogeneity, hierarchical institutions, 

and divergent causal pathways of various non-illness related latent determinants is 

small but growing. I find an over emphasis of stunting and that few studies consider 

conflict and environment etiologies despite being the primary factors attributed to 

malnutrition, hunger, and death in most catastrophic famine events.  
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Despite the extensive body of literature, my findings highlight a number of 

opportunities for future research. I find that a lack of comprehensive and high-quality 

data is a non-binding constraint. The primary need for future research is for more 

rigorous and practically useful findings of epidemiologically significant determinants. 

I recommend that more studies are needed with broad temporal, spatial, and 

hierarchical perspectives, a more exhaustive set of nutrition outcomes, and findings 

that are quantifiable and epidemiologically significant. There is an untapped 

wellspring of opportunity for future research within this realm of social determinants 

of child malnutrition. Not only will a renewed focus on size-matters, 

epidemiologically significant findings prove academically fruitful, it will also be 

enlightening practically for practitioners and policy makers. 

Chapter 4 returns to the science of anthropometry. I find that many 

practitioners have adopted a questionable quality control maxim for judging 

anthropometric surveys. I can find no published study which properly substantiates 

the maxim; however, the practice is pervasive. The practice is endemic with harmful 

consequences. I show practitioners who endorse the maxim transpose the conditional 

and muddle samples with populations and references with standards. Throughout 

chapter 4, I detail the genesis and propagation of the maxim in the literature, expose 

its theoretical and logical weaknesses, illustrate its demerits, and offer an alternative 

approach. Chapter 4 serves to illustrate the consequences first shown in chapter 2 and 

builds upon the foundation laid down by chapter 3. Specifically, statistically “normal” 

universal growth charts, the casual interchange of growth references and standards, 

the hazards of unscrutinized methodology, and the paradoxical nature of translating 
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between qualitative and quantitative determinants. I show that indeed the literature 

would benefit from more focus on size-matters findings. More studies that explore the 

nature of quality control mechanisms and practical post hoc measurement 

methodologies are needed.  

Chapter 5 turns its gaze towards the business of modeling the social 

determinants of health. From earlier chapters, I find that quantifiable impacts of many 

determinants remain obscure. I combine environmental, health, and demographic data 

from three rounds of Kenya and Nigeria Demographic Health Surveys. I use four-

level random intercept hierarchical generalized logit models to evaluate the 

responsiveness of malnutrition indicators. I find spatial and hierarchical relationships 

explain 28-36 percent of malnutrition outcome variation. Furthermore, precipitation, 

temperature, or vegetation alone can move malnutrition rates by more than 50%. I 

determine wasting is most impacted by mother’s education, family wealth, clinical 

delivery, and vaccinations; while stunting is most impacted by family wealth, 

mother’s education, clinical delivery, vaccinations, and children asymptomatic of 

fever, cough, or diarrhea. The present work has many implications for policymakers 

and researchers. I showcase the scope and scale heterogeneity of climatic 

determinants and the divergent causal pathways across malnutrition outcomes. This 

finding should emphasize the need for broad multifactor assessments of health that 

cover a broad range of outcomes.  

Considerable opportunities exist to expand this research to include more 

countries and more nuanced structural frameworks to better understand the varied and 

complex social determinants of child malnutrition. Specifically, as I demonstrate in 
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chapter 3, more attention is needed across a diversity of malnutrition outcomes and 

with a particular renewed examination within context and countries where 

malnutrition is most severe. While more and better data is necessary for certain 

places, a plentiful supply for many of the most severely impacted places already 

exists. However, many etiologies of conflict, climate, and seasonality confounders 

remain underexplored. I have shown in chapter 3 that by far stunting is over 

emphasized and increasingly so throughout the literature, however, my results in 

chapter 5 illustrate that wasting is by far more responsive to climactic disturbances. 

Future efforts with better identification strategies and panel data methodologies 

would go a long way to illuminate these unknowns.   

6.2 Final Thoughts 

The research presented here represents a brief and momentary endeavor. It is the 

nascent burgeoning from an erstwhile conversation (Burke, 1973). As anthropometry 

practices evolve, economic growth persists, public health initiatives are implemented, 

and each is disrupted by ever worse and uncertain climate impacts, new strategies and 

approaches to child malnutrition may evolve. This reality emphasizes the importance 

of continued introspection, debate, and reevaluation of the comprehensive framework 

approach (Figure 1).  

Scholarship is argument, and argument is rhetoric: in the ancient sense of 

discourse and unforced persuasion (Nelson et al., 1987). The heuristic potential of 

analogical discourse is considerable (Gusfield, 1976; Hesse, 1966; McCloskey, 

1998). All too many studies close with prosaic recitations of more data, better data, 

and making future impacts with vague policy initiatives. Critique is what 
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fundamentally advances science (Feyerabend, 1987; Fleck, 1979; Kuhn, 1962; 

Polanyi, 1958). So, too, do geographer’s reinforce the authority of their assertions 

using their traditional craft-skills as rhetorical devices of persuasion (Golinski, 1990).  

The history of scientific thought shows that geography’s institutional 

infrastructure is not fixed and the nature of geography is always negotiated. The 

geographer and historian David Livingston contends, “The idea that there is some 

eternal metaphysical core to geography independent of historical circumstances will 

simply have to go” (1993, p. 28). Geographic knowledge is a product of its time; it 

reflects its contemporaneous social, economic, and political environment (Harvey, 

1984). By understanding how geography’s intramural domain and extramural domain 

interlace, one begins to understand how the methods employed by geographer’s are 

vast and context dependent (Livingston, 1993).  

The final outcome of this dissertation is to demonstrate that basic research, 

close reading, historical appraisal, epistemological introspection, and critical 

discourse are necessary and sufficient components of science and scientific 

advancement. The pinnacle of scholarship is to produce work that is simultaneously 

useful, interesting, unexpected, novel, and above all true. Transcendent scientific 

endeavors bestow incremental knowledge in each facet. Scholarship that achieves 

even one of these dimensions is a worthy undertaking. If I have been able to impart 

even a modicum of progress within this field, I will be content. 
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7 Appendices 

7.1 Appendix A 

7.1.1 Final Search Criteria 

Finalized search executed on February 23, 2021.  
 
TOPIC:  

((stunting) OR (stunted) OR (wasting) OR (wasted) OR (underweight)) AND 
(child*) AND (determin*) AND ((Africa) OR (African) OR (sahara) OR 
(saharian) OR (sub-sahara) OR (sub-saharian) OR (Sahel) OR (Algeria) OR 
(Angola) OR (Benin) OR (Botswana) OR (Burkina Faso) OR (Burundi) OR 
(Cameroon) OR (Cape Verde) OR (CAR) OR (Central African Republic) OR 
(Chad) OR (Comoros) OR (DRC) OR (Democratic Republic of the Congo) 
OR (Republic of the Congo) OR (Congo) OR (Djibouti) OR (Egypt) OR 
(Equatorial Guinea) OR (Eritrea) OR (Ethiopia) OR (Gabon) OR (Gambia) 
OR (Ghana) OR (Guinea) OR (Guinea-Bissau) OR (Ivory Coast) OR (Côte 
d'Ivoire) OR (Kenya) OR (Lesotho) OR (Liberia) OR (Libya) OR 
(Madagascar) OR (Malawi) OR (Mali) OR (Mauritania) OR (Mauritius) OR 
(Morocco) OR (Mozambique) OR (Namibia) OR (Niger) OR (Nigeria) OR 
(Rwanda) OR (Sao Tome and Principe) OR (São Tomé and Príncipe) OR 
(Senegal) OR (Seychelles) OR (Sierra Leone) OR (Somalia) OR (South 
Africa) OR (South Sudan) OR (Sudan) OR (Swaziland) OR (Tanzania) OR 
(Togo) OR (Tunisia) OR (Uganda) OR (Zambia) OR (Zimbabwe))  

LANGUAGE: 
(English) AND 

DOCUMENT TYPES: 
(Article) AND 

INDEXES: 
((SCI-EXPANDED) OR (SSCI) OR (A&HCI) OR (ESCI)) AND 

TIMESPAN: 
(1990-2020) 

 
Results = 903 Articles 

7.1.2 Expanded Search Criteria 

TOPIC: 
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((malnutrition) OR (malnourished) OR (undernutrition) OR (undernourished) 
OR (stunting) OR (stunted) OR (wasting) OR (wasted) OR (linear growth) 
OR (faltering) OR (retardation) OR (cachexia) OR (kwashiorkor) OR 
(underweight) OR (BMI) OR (Body Mass Index) OR (length/height-for-age) 
OR (length/height for age) OR (height for age) OR (height-for-age) OR 
(length for age) OR (length-for-age) OR (HAZ) OR (weight for length) OR 
(weight-for-length) OR (weight for height) OR (weight-for-height) OR (HAZ) 
OR (weight for age) OR (weight-for-age) OR (WAZ) OR (z score*) OR (z-
score*)) AND 

TOPIC: 
((Africa) OR (African) OR (sahara) OR (saharian) OR (sub-sahara) OR (sub-
saharian) OR (Sahel) OR (Algeria) OR (Angola) OR (Benin) OR (Botswana) 
OR (Burkina Faso) OR (Burundi) OR (Cameroon) OR (Cape Verde) OR 
(CAR) OR (Central African Republic) OR (Chad) OR (Comoros) OR (DRC) 
OR (Democratic Republic of the Congo) OR (Republic of the Congo) OR 
(Congo) OR (Djibouti) OR (Egypt) OR (Equatorial Guinea) OR (Eritrea) OR 
(Ethiopia) OR (Gabon) OR (Gambia) OR (Ghana) OR (Guinea) OR (Guinea-
Bissau) OR (Ivory Coast) OR (Côte d'Ivoire) OR (Kenya) OR (Lesotho) OR 
(Liberia) OR (Libya) OR (Madagascar) OR (Malawi) OR (Mali) OR 
(Mauritania) OR (Mauritius) OR (Morocco) OR (Mozambique) OR (Namibia) 
OR (Niger) OR (Nigeria) OR (Rwanda) OR (Sao Tome and Principe) OR 
(São Tomé and Príncipe) OR (Senegal) OR (Seychelles) OR (Sierra Leone) 
OR (Somalia) OR (South Africa) OR (South Sudan) OR (Sudan) OR 
(Swaziland) OR (Tanzania) OR (Togo) OR (Tunisia) OR (Uganda) OR 
(Zambia) OR (Zimbabwe) )  

TOPIC: 
((child*) OR (pediatric) OR (infant*) OR (baby) OR (babies) OR (five years) 
OR (5 years) OR (59 month*) OR (fifty-nine month*) OR (60 month*) OR 
(sixty month*) OR (2 year*) OR (two year*) OR (1000 days) OR (1,000 days) 
OR (one thousand days) OR (youth) OR (young)) AND 

TOPIC: 
((etiolog*) OR (cause*) OR (factor*) OR (determin*) OR (correlat*) OR 
(disaggregat*) OR (empiric*)) AND 

LANGUAGE: 
(English) AND 

DOCUMENT TYPES: 
(Article) AND 

INDEXES: 
((SCI-EXPANDED) OR (SSCI) OR (A&HCI) OR (ESCI)) AND 

TIMESPAN: 
(1990-2020) 

 
Results = 13,893 (as of February 23, 2021) 
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7.2 Appendix B 

7.2.1 SD as QC in the Literature 

The practice of SD as QC is pervasive, almost to the point of being a norm or a given 

first principle of the field were citation and evidence are not required. And I believe 

that the SD as QC maxim is preventing more studies and surveys from being used and 

published. In Google Scholar, Mei and Grummer-Strawn (2007) are cited over 170 

times, not to mention the over 8,950 articles citing WHO (1995) or the 760 citing de 

Onis and Blössner (1997). Clearly not all are relevant to the SD as QC discussion.  

To help illustrate the point I spent an afternoon tracking down articles that 

explicitly and openly abide by the SD as QC maxim in some form or another. Below 

are excerpts from a sample of 32 articles citing Mei and Grummer-Strawn (2007) 

where authors point to the SD as QC maxim. I have put some words in boldface for 

emphasis.  

“Researchers also have analyzed ways in which use of the WHO standards might 
affect prevalences of wasting, stunting, and underweight worldwide, as well as the 
distribution of z scores, a commonly used indicator of data quality in 
international surveys” (Grummer-Strawn et al., 2010, p. 13).  
 
“Accepted best practices for field-level quality control were followed. Systematic 
repeat data entries were done for all anthropometric data. Postanalysis quality checks 
compared SDs of anthropometric data by site to WHO standards and other 
studies for children <2 y of age” (Remans et al., 2011, p. 1636).  
 
“There were another 5,010 children whose length‐for‐age z‐scores (LAZs) were 
flagged in the DHS data files either as missing or as biologically implausible 
according to the WHO flags (Mei & Grummer‐Strawn, 2007). These children were 
excluded from the analysis. We also removed 71 children whose mothers had a 
height of less than 130 cm, as these were considered to be implausible and likely due 
to measurement or recording errors” (Krasevec et al., 2017, p. 2).  
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“z score SDs were within the valid range accepted by the World Health 
Organization (WHO)” (Corvalán  et al., 2009, p. 548).  
 
“Summary statistics showed that standard deviations of the three indices Z score 
(weight for age, height for age and weight for height) were between 0.92 and 1.03, 
indicating high quality data” (El Mouzan et al., 2008, p. 339).  
 
“The data were subjected to post-hoc methods of quality determination, and, if of 
suitable quality, included in the adequacy evaluation. … Accepted practices for field-
level quality control were followed. However, systematic repeat measures, repeat 
sampling and inter-lab sampling were not available for quality control of the MICAH 
data. Therefore alternative, post-hoc methods were used for evaluating the quality of 
data collected. Some of these methods have been used previously, whereas others 
were developed for the purpose of this evaluation. … Comparison of magnitude of 
SDs of continuous variables to SDs in other, well-controlled studies… This method 
of comparing SDs with reference populations has been recommended for 
anthropometrics. We assume that common levels of variations will exist for other 
variables. … SDs of continuous variables in MICAH surveys in baseline (1996 or 
1997), follow-up (2000) and endline (2004) compared with examples from the 
literature, for quality control purposes” (Berti et al., 2010, pp. 613, 617, 618).  
 
“In the analysis, plausibility of anthropometric Z scores were checked using the 
WHO protocol recommendations (2006), which provide standard deviation cut 
points for anthropometric Z-scores as a data quality assessment tool” (Abate & 
Belachew, 2017, p. 6).  
 
“Mei and colleagues previously reported a lack of a relationship between SD and 
mean HAZ across DHS surveys; however, they did not quantitatively assess the 
change in SD with the age-related decline in mean HAZ, and they interpreted their 
findings only as a justification for using SD as an indicator of anthropometric 
survey quality” (Roth et al., 2017, p. e1255).  
 
“Mei and Grummer-Strawn [2007] supported the use of SD as a quality indicator 
for anthropometric data” (Afifi et al., 2012, p. 2655).  
 
“In our opinion reports from surveys with an SD of more than 1.2 are unreliable. 
… An analysis of DHS and MICS shows elevated SD values with all of the mean 
SDs outside the acceptable range; none of mean SDs for any of the surveys was 
less than 1.0Z. In agreement with the data from West Africa, the 5th and 95th 
centiles of the SDs of 51 recent DHS surveys were HAZ 1.35–1.95; WAZ 1.17–1.46, 
and WHZ 1.08–1.50. Mei & Grummer-Strawn conclude that they ‘concur with the 
WHO assertion that SD is in a relatively small range’” (Grellety & Golden, 2016, 
p. 19).  
 
“Before turning to multivariate regressions, we relate our results to two indicators of 
measurement error used in previous work. The first step is to compare our December–
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January gap with the SD of HAZ. The SD of HAZ could reflect genuine dispersion 
related to health inequality but is widely used as an indicator of survey errors in 
both height and age (Assaf et al. 2015; Mei and Grummer-Strawn 2007)” (Larsen et 
al., 2019, pp. 716-717).  
 
“Standard recommendations state that a standard deviation of greater than 1.3 
for HAZ reflects excessive random variation in either height measurements or age 
estimates. The standard deviation of HAZ in the three DHS greatly exceeds this 
threshold for data quality; however, this recommendation is based on the use of the 
old NCHS:CDC:WHO reference population. There is evidence that standard 
deviations for HAZ greater than 1.3 are common in DHS in other countries and may 
be normal when using the WHO Child Growth Standard (Mei & Grummer-Strawn 
2007)” (Woodruff et al., 2017, p. 15).  
 
“Many DHS surveys have standard deviations greatly exceeding the quality 
criteria defined by the World Health Organization. … Ranges are then used to 
describe the overall quality of the survey and arbitrary cut-offs are used to decide 
whether the data are acceptable or not” (Tuffrey & Hall, 2016, pp. 4-5, 14).  
 
“We calculated z-score standard deviations (SD) and analyzed SD disaggregated by 
age (under and over two years of age) to determine if the quality of measurements 
differed by age. … We can consider z-score standard deviation to illustrate the 
importance of reaching consensus on interpretation and action. WHO and the US 
CDC promote the use of normative ranges of SD to determine if survey quality is 
acceptable, but the ranges are based on surveys that have evidence of poor data 
quality. The most recent DHS data quality assessment showed that 30 of 52 countries 
had HAZ SD greater than 1.5, but only one country suppressed data because of poor 
quality. According to SMART data quality is not acceptable if HAZ SD is above 
1.2, and a recent modeling study showed that SD of 1.5 can result in substantial 
overestimation of stunting prevalence. Meanwhile, the published normative range for 
HAZ SD that some organizations use to deem data quality acceptable is 1.35–1.95” 
(Conkle et al., 2017, pp. 5, 10).  
 
“Few studies have assessed the distribution of WFH. Two looked at the standard 
deviations of the WFH distributions. In 1977, Waterlow et al. showed that the 
WFH distributions were skewed at the upper centiles. Their analysis was 
performed on data from surveillance or surveys involving nutrition and 
anthropometry in young children up to the age of 10 years. In 2006, Mei et al. 
analysed data from 51 DHS surveys representing 34 developing Countries. They 
found a mean WFH and SD WFH (z-scores) of 0.06 and 1.40 respectively. The 
mean ranged from −0.91 to 0.83 and the SD range [sic] from 1.03 to 1.55. They 
concluded that their analysis confirms the WHO assertion that the SD remains 
in a relatively small range (i.e. close to SD from a standard normal\ distribution), 
no matter the Z-score mean although the observed range of SD for was [sic] 
consistently wider” (Frison et al., 2016, p. 7).  
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“Summary statistics showed SDs of the 3 indices’ Z score (weight for age, height for 
age, and weight for height) between 0.92 and 1.03, indicating high-quality data” (El 
Mouzan et al., 2009, p. 68).  
 
“Previous research has demonstrated that Z-scores within a population are normally 
distributed with a SD of approximately 1.0; the shape of the distribution does not vary 
based on the nutritional status of the population, as measured by the mean Z-score. 
Based on the finding that SD remains in a relatively narrow range for each indicator 
regardless of mean Z-score, WHO guidance recommends that the SD of Z-scores 
can be used as a data quality indicator as well as a measure of variability. The 
introduction of random non-directional errors, such as those introduced when age is 
estimated rather than calculated or when teams are imprecise in measuring height or 
weight, can result in wider SD relative to the acceptable ranges outlined by WHO. … 
We therefore included SD of the Z-scores to assess the degree to which data 
quality in addition to variability impact DEFF in anthropometric surveys. … The SD 
of WHZ and WAZ were approximately 1.00, as expected in high-quality 
anthropometry surveys (WHZ median = 1.03, WAZ median = 1.04)” (Hulland et al., 
2016, pp. 2-3, 10).  
 
“Anthropometry data quality indicators were extremely high (median SDs for 
weight-for-length, length-for-age and weight-for-age z-scores 1.01, 0.98, and 1.03, 
respectively), likely due to extensive training, standardization, and monitoring efforts. 
… Anthropometry data quality indicators were monitored throughout the study. The 
medians of monthly standard deviations for weight-for-length, length-for-age, and 
weight-for-age z-scores were 1.01, 0.98, and 1.03, respectively; close to the expected 
value of 1.0 for a reference distribution. Standard deviations for z-scores varied 
month-to-month, but never reached the WHO thresholds for measurement error or 
incorrect age reporting” (Aceituno et al., 2017, pp. 2, 8).  
 
“The standard deviations reported in this study are much lower than the suggested 
standard deviations reported by Mei and Grummer-Strawn estimations in a cross-
country analysis” (Sharma et al., 2020, p. 17).  
 
“We also examined the quality of the 2009 data by assessing the SD as a quality 
indicator for anthropometric data (Mei and Grummer-Strawn 2007) and examining 
whether or not age heaping was evident. These assessments did not reveal any 
concerns” (Boylan et al., 2017, p. 2261).  
 
“Based on the WHO Technical Report, the SD for Weight-for-Height (WFH) 
should be between 0.8 and 1.2 Z-score units in all well-conducted surveys. This 
has been confirmed empirically with well conducted surveys in both the developed 
world where large national surveys of heterogeneous populations have been 
conducted, for example the National Health and Nutrition Examination Survey 
(NHANES) from USA’s National Centre for Health Statistics (NCHS) and the 
developing world. … The SD of organisation “t” differs significantly from the others 
(Student’s t test < 0.0001), with 69% (53/77) of their surveys for WHZ having an SD 
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of more than 1.2 Z. … For most anthropometric measurements the SD from single 
surveys should lie between 0.8 and 1.2, with about 80% between 0.9 and 1.1Z. For 
these reasons the SD has been used as a useful measurement of data quality” 
(Grellety & Golden, 2018, pp. 2, 3, 10).  
 
“The median SD and range for HAZ were greater overall and across all surveys than 
for WHZ. The absolute difference in HAZ by MOB of age reporting should be close 
to 0 if there is no systematic error in age reporting, but was 0.25 (in z score units) 
overall and up to 0.90 in Timor-Leste in 2009. … HAZ SD and WHZ SD had the 
highest factor loadings in the data quality indices indicating that SD is an important 
measure of anthropometric data quality” (Perumal et al., 2020, pp. 809S, 812S).  
 
“Absent measurement error, distributions are expected to be approximately normal 
with a SD close to 1. … To exclude surveys with exceptionally poor anthropometry 
data quality or where data manipulation might be suspected, we excluded from 
analysis surveys where the SD for WHZ, WAZ, HAZ, or BMIZ was outside of 
the following empirically defined cutoffs: greater than 1.8 or lower than 0.8; or the 
SD for MUACZ greater than 1.8 and less than 0.7” (Bilukha et al., 2020, pp. 2, 3).  
 
“Anthropometric data collected during the 2008 to 2009 and 2014 Kenya surveys 
were reanalyzed to assess standard parameters of quality: standard deviation, 
skewness, and kurtosis of z-score values for 3 anthropometric indicators (weight for 
height, height for age, and weight for age)… The primary objective of the 
comparative analysis was to observe the quality of anthropometric variables. The first 
metric of quality, standard deviation, is presented in Table 3. … One key measure 
is SD of the continuous z-score distributions. As noted, previous research suggests 
that for a given population, Z-scores are normally distributed with an SD of 
approximately 1.0” (Leidman et al., 2018, pp. 406, 412, 414).  
 
“Careful interpretation is required, as the standard deviations for our anthropometric 
measurements are outside the World Health Organization range for data quality 
assessment purposes” (Bennett et al., 2020, p. 2038).  
 
“Note that the standard deviations (SD) of WHZ and MUACZ in all rounds are near 
or even below 1.0, which gives us confidence in the quality of the anthropometric 
data (Grellety and Golden 2016b; Mei and Grummer-Strawn 2007). The average 
SD—across all four survey rounds—is 1.03 for WHZ and 0.95 for MUACZ” (Ecker 
et al., 2019, p. 10).  
 
“Seventeen surveys had large standard deviations (SD) for HAZ, which could result 
in attenuated regression coefficients when HAZ was used as an explanatory variable 
in regression analyses. To avoid attenuation, HAZ values for each child were 
adjusted to obtain a standard deviation for HAZ of 1.2 for each of these surveys 
by subtracting the survey mean for HAZ, dividing by the survey SD for HAZ, 
multiplying by 1.2, and then adding back the survey mean for HAZ” (Frongillo et al., 
2017, p. 3038).  
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“The World Health Organization (WHO) has recommended the use of Z-score of 
these indicators to classify nutritional status, given the constancy of their values, 
independent of nutritional status, and can even be used as indicators of the quality 
of anthropometric data” (Martins et al., 2010, p. 1106).  
  
“Z-score plausibility was determined using WHO cutoffs. We used the following 
WHO-defined standard deviation (SD) ranges to assess the quality of data (HAZ 
1.1–1.3, WAZ 1.0–1.2, and WHZ 0.85–1.1)” (Gupta et al., 2020, pp. 2-3).  
 
“...as per WHO standards. Some individuals may have met >1 exclusion criterion” 
(Varghese & Stein, 2019, p. 1208).  
 
“Protocol used for obtaining data was an adaptation of that published by Lapham et 
al. and Mei et al.” (Samiak & Emeto, 2017, p. 2). 
 
“Studies investigating the quality of the DHS data report the quality to be good (Mei 
Z and Grummer-Strawn LM., 2007, Mishra et al., 2006)” (Reda & Lindstrom, 2014, 
p. 1160). 
 

7.2.2 Z-score SD Proof 

The aim here is to move away from the discussion of z-scores and standard deviations 

of z-scores to simply anthropometric index measurements and standard deviations of 

anthropometric index measurements. To make this simplification I will show that a z-

score standard deviation is equivalent to the ratio of standard deviations of an 

anthropometric index to that of the reference population. The standard deviation of a 

given survey’s anthropometric index is calculated as: 

!! = #
1

% − 1
'()" − )̅)#
$

"%&
 

where: 

• !!: anthropometric index sample standard deviation 

• %: is the number of children in the sample  
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• )": is a child’s anthropometric index value (e.g., weight-for-height)  

• )̅: is the anthropometric index sample average given by: 

)̅ = 	
1

%
')"

$

"%&
 

 

A z-score tells you how many standard deviations away an individual data value falls 

from the mean. It is calculated as: 

-" =
()" − .)

/
 

where: 

• -": is a child’s z-score 

• )": is a child’s anthropometric index value (e.g., weight-for-height)  

• .: is the reference mean 

• /: is the reference standard deviation 

A given survey’s z-score standard deviation is calculated as: 

!' = #
1

% − 1
'(-" − -̅)#
$

"%&
 

where: 

• !': z-score sample standard deviation  

• %: is the number of children in the sample  

• -": is a child’s z-score 

• -̅: sample average z-score given by  
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-̅ = 	
1

%
'-"

$

"%&
 

Thus, we are left with the question:  

Is the statement, if an anthropometric survey has a z-score standard deviation 

greater than 1.3 it fails the test, equivalent the statement, if the sample standard 

deviation of an anthropometric index is 1.3 times that of the standard deviation of the 

reference population it fails the test? 

Or in other words, is the ratio of the sample standard deviation of (weight-for-

height) to the reference population standard deviation of (weight-for-height) 

equivalent to the standard deviation of (weight-for-height) z-scores. 

Claim: 

#
1

% − 1
'(-" − -̅)#
$

"%&
=

0
1

% − 1
∑ ()" − )̅)#$
"%&
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Squaring both sides and reducing gives: 

'(-" − -̅)#
$

"%&
=
1

/#
'()" − )̅)#
$
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Note )" is a random variable and . and / are constants such that -" =
(!!)*)
, =

)*
, +

&
, )" is a linear transformation of the form -" = 3 + 4)". 

If -" = 3 + 4)" then,  

5[-"] = 5[3 + 4)"] = 3 + 45[)"] = 3 + 4)̅ 

and  

839[-"] = 839[3 + 4)"] = 	 4#/!# 
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where  

1
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and  
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giving  
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Note for our purposes 4 = &
, such that 4# = &

," giving  
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which reduces to 
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QED 

7.2.3 Quantifying the SD Rule 

Although the maxim is widely practiced, it is not always consistent. WHO suggests 

the z-score “distribution should be relatively constant and close to the expected value 

of 1.0 for the reference distribution” (1995, p. 218). de Onis and Blössner, citing 

WHO (1995), claim good quality SD ranges of HAZ (1.10 to 1.30), WAZ (1.00 to 

1.20) and WHZ (0.85 to 1.10) and state these values are “the expected ranges of 
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standard deviations of the z-score distributions for the three anthropometric 

indicators” (1997, p. 51). de Onis and Blössner also state that “[a]ny standard 

deviation of the z-scores above 1.3 suggests inaccurate data” (1997, p. 51).  

Golden and Grellety, suggest “The spread of the standard deviations … was 

small; ranging from 0.8 to 1.2 in 95% of the surveys” (2002, p. 5). Grellety and 

Golden, citing WHO (1995) and Golden and Grellety (2002), state “the SD for 

Weight-for-Height (WFH) should be between 0.8 and 1.2 Z-score units in all well-

conducted surveys, with about 80% between 0.9 and 1.1Z” (2018, p. 2).  

Mei and Grummer-Stawn, citing WHO (1995), present the same example z-

score table of HAZ (1.10 to 1.30), WAZ (1.00 to 1.20) and WHZ (0.85 to 1.10) and 

claim these values are a “recommendation from a WHO expert panel” as the “ranges 

for data quality assessment” (2007, p. 445). Mei and Grummer-Stawn (2007) also 

suggest the ranges for data quality assessment should be wider, given by HAZ (1.35 

to 1.95), WAZ (1.17 to 1.46) and WHZ (1.08 to 1.50).  

We are told by USAID “that high quality anthropometric data should be 

normally distributed with a standard deviation of approximately 1” (2016, p. 15). But 

later USAID informs us that “very large standard deviations, for example greater than 

2, might be a sign of poor quality” (2016, p. 15).  

Bilukha et al., citing WHO (1995) and WHO and UNICEF (2019), give the 

recommendation that “Absent measurement error, distributions are expected to be 

approximately normal with a SD close to 1” (2020, p. 2). However, Bilukha et al. 

choose the exclusion criteria of “greater than 1.8 or lower than 0.8” (2020, p. 3). 
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7.2.4 The Multicentre Growth Reference Study 

The Multicentre Growth Reference Study (July 1997–December 2003) consists of 

both cross-sectional and longitudinal surveys from six cities: Davis, California, USA; 

Muscat, Oman; Oslo, Norway; Pelotas, Brazil; in select affluent neighborhoods in 

Accra, Ghana; and South Delhi, India (WHO, 2006b). The distributions of children 

across the different survey countries for the longitudinal component are: 119 USA; 

149 Oman; 148 Norway; 66 Brazil; 227 Ghana; and 173 India. The distributions of 

children across the different survey countries for the cross-sectional component are: 

476 USA; 1,438 Oman; 1,385 Norway; 480 Brazil; 1,403 Ghana; and 1,487 India. 

Prior to constructing the standards, if a child was 3 SDs above the sample 

median or 3 standard deviations below the sample median they were excluded. For 

the cross-sectional sample the truncation procedure was even stricter. If a child was 2 

SDs above the sample median or 2 SDs below the sample median they were 

excluded. Children were selected for inclusion based on: no known health or 

environmental constraints to growth, mothers willing to follow feeding 

recommendations, no maternal smoking before and after delivery, single term birth, 

and absence of significant morbidity. Of the 13,741 children screened for the 

longitudinal survey, less than 7% or 882 children (428 boys and 454 girls) were 

eligible and included in the final study. In addition, of the 21,520 children screened 

for the cross-sectional survey, less than 31% or 6,669 children (3,450 boys and 3,219 

girls) were eligible, and included in the final study. In other words, 93% to 69% of 

the populous did not fit the standard.  
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After selective sampling and exclusion, the sample was exceedingly skewed 

to the right (WHO, 2006b). To rectify the non-normality, the data were cleaved at the 

median, and then reflected to create two symmetrical distributions. Each mirrored 

distribution was used to derive standard deviation cut-off values (i.e., what is the 

severe wasting cutoff value where a WHZ score is less than 3 SDs from the median) 

for the respective upper and lower portions of the data. 

7.2.5 Transposed Conditional and Affirmed Consequent 

The fallacy of the transposed conditional, also known as confusion of the inverse or 

the statistical equivalent to the fallacy of affirming the consequent, is the jumbling of 

the probability of a set of data given a hypothesis, and the probability of a hypothesis 

given a set of data.  

In statistical terms, the fallacy of the transposed conditional is corroborated 

through Thomas Bayes’ (1763) theorem, given by: 

Pr(:|<) =
Pr(<|:)Pr(:)

Pr(<)  

where : and < are two different outcomes or events (i.e., a hypothesis and a data set) 

and Pr(<) ≠ 0. Therefore, we can see Pr(:|<) = Pr(<|:) holds true if and only if 

Pr(:) = Pr(<) at the same time. 

It is a fallacy if one claims to test the likelihood of a null hypothesis assuming 

the data are true, if what is actually tested is the likelihood of the data assuming the 

null hypothesis is true. It is incorrect to assume Pr(Data|H-) = Pr(H-|Data).  

In terms of rhetoric and logic, the fallacy of affirming the consequent is stated: 

E → G,G

∴ E
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where one takes the true statement E → G and incorrectly concludes the converse 

G → E to be true. In plain terms, the fallacy is demonstrated with the simple and 

absurd statement: All dogs are animals; therefore, all animals are dogs.  
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7.3 Appendix C 

7.3.1 Conceptual Frameworks in Context 

The 1990 UNICEF multisectoral framework encompasses food, health, and caring 

practices to help identify the most appropriate mixture of actions (UNICEF, 1998). 

The original presentation warns that the UNICEF conceptual framework is not a 

predictive model, but instead a deliberately flexible model adaptable to different 

prescriptive and causal contexts. The emphasis of the model is on accommodating 

many possible determinants of malnutrition and prioritizing the most important within 

a specific contextual application while being easy to communicate across different 

users (UNICEF, 1990).  

Since its inception the UNICEF conceptual framework has been the standard 

for modeling the broad causes of child malnutrition. And it has been adapted into 

many new interpretations (e.g., Blessing J. Akombi, Kingsley E. Agho, John J. Hall, 

et al., 2017; Blessing J. Akombi, Kingsley E. Agho, Dafna Merom, et al., 2017; Black 

et al., 2008; Boah et al., 2019; Brown, 2008; Darteh et al., 2014; de Groot et al., 2017; 

Engebretsen et al., 2008; Engle et al., 1999; Fernandes et al., 2017; Fernandez et al., 

2002; Habaasa, 2015; Kavle et al., 2015; Lesiapeto et al., 2010; Müller & Krawinkel, 

2005; Ricci et al., 2019; Smith & Haddad, 2015; Stewart et al., 2013; UNICEF, 1998, 

2013; Wamani et al., 2006; WHO, 2014; Willey et al., 2009).  

But by no means is the UNICEF framework the only contemporary 

framework of malnutrition. Other conceptualizations focus on other factors such as 

food security (e.g., Akinyele, 2009; Brown et al., 2008; Grace et al., 2012; Stamoulis 

& Zezza, 2003; Von Braun et al., 1999), risk factors (e.g., Bhutta et al., 2008; Black 
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et al., 2013; Chopra, 2003; Dearden et al., 2017; Griffiths et al., 2004; Jolliffe, 1962; 

Mehta et al., 2013; Sastry, 1997; Victora et al., 1997; Walker et al., 2011), national 

economic growth (e.g., Rashad & Sharaf, 2018; Subramanyam et al., 2011), spatial 

composition (e.g., Grace, 2017; Khatab, 2010; Smith et al., 2000), and utility 

maximization (e.g., Chirwa & Ngalawa, 2008; Ssewanyana & Kasirye, 2012) all 

disseminating from a wider historical epistemology. Simple or incorrect perceptions, 

however, are often the bases for policy research resulting in mistaken guidance and 

action (Jonsson, 1993).  

More generally, Turner II et al. (2003) in their synthesis and revision of 

vulnerability analysis build out a systematic conceptual framework structure. The 

revisionist structural framework models system vulnerabilities, hazards, risks, 

perturbations, stressors, entitlements, endowments, sensitivities, feedbacks, resilience, 

and multiequilibria within institutions, heterogeneous subsystems, and social units 

across various spatiotemporal, nested, and functional scales.  

7.3.2 Study Design and Sample Methodology 

The Demographic and Health Surveys (DHS) remain the most ubiquitous resource of 

its kind, with more than 350 surveys in over 90 countries across 30 years. Published, 

peer-reviewed articles analyzing the Demographic and Health Surveys data have 

increased precipitously over the last quarter century, contributing to substantial 

insights into public health around the world (Fabic et al., 2012). The Demographic 

and Health Surveys comprise seven overlapping phases: DHS-I, 1984 to 1990; DHS-

II, 1988 to 1993; DHS-III, 1992 to 1998; DHS-IV, 1997 to 2003; DHS-V, 2003 to 
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2008; DHS-VI, 2008 to 2013; and DHS-VII, 2013 to 2018. The Surveys have a 

coarse temporal granularity despite the protracted record. 

The Demographic and Health Surveys Program uses calibrated survey 

instruments, and quality assurance personnel assess collection procedures and 

administer technician training. The technicians recruit skilled field staff with 

experience as enumerators. They spend weeks training staff through a detailed, 

question-by-question explanation of the Questionnaires, and demonstration with role-

play, group discussion, and practice interviews. They also provide anthropometry 

training to all staff to instruct, demonstrate, and practice measuring children (Macro, 

2009). 

Anthropometric measurements include weight (recorded in tenths of a 

kilogram) and height (recorded in tenths of a centimeter). Field staff use specially 

manufactured measuring boards for survey settings and lightweight digital scales, 

designed and manufactured under the authority of the United Nations Children’s 

Fund. If a child is younger than two years old, staff measure their height with 

recumbent length instead of standing height. 

Following the World Fertility Survey and the Contraceptive Prevalence 

Survey projects designed to study reproductive health and household characteristics 

in developing countries, the United States Agency for International Development 

(USAID) established in 1984 the Demographic and Health Surveys Program 

(Rutstein & Rojas, 2006). The Program was first put into effect by Westinghouse 

Health Systems, which later became part of Macro Systems, ORC Macro, Macro 

International, and is now executed by the management consulting firm ICF 
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International and its partner organizations Path, Avenir Health, Johns Hopkins Center 

for Communication Programs, Vysnova, Blue Raster, Kimetrica, and Encompass 

(Croft et al., 2018). 

The sampling procedure of the Demographic and Health Surveys Program 

employs a multistage probability sample design, drawn from the sampling frame of 

the most recent census. That is to say, the population is partitioned into strata, within 

which a sample is defined and selected independently. The sample design describes 

the non-zero and predefined probability of every person in the population to be 

selected for the study, where the sampling frame defines subpopulation clusters 

described by a national census. Regions, zones or provinces stratify national 

populations, and states or counties stratify regions. The final stratum contains a 

subpopulation from which to randomly sample clusters. The extent of clusters vary; 

they can be a city block or apartment building in urban areas whilst being a village or 

group of villages in rural areas. Generally, geographic regions and urban or rural 

areas within each region partition the stratified samples of the Demographic and 

Health Surveys (Burgert et al., 2013). 

For example, the sampling frame for Nigeria partitions the country into 6 

geographical regions, 36 states and the Federal Capital Territory, 774 local 

government areas, 8812 wards, and 665,000 census enumeration areas, each 

containing 48 households on average. The sample design for Nigeria DHS-VI 

selected 893 wards with a selection probability proportional to its population and 

stratified across urban and rural local government areas in each state. The sample 

design then selects 904 census enumeration areas from within the 893 wards and if a 
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selected enumeration area contains less than 80 households, a neighboring 

enumeration area is added to form the primary sampling units or clusters. Finally, the 

sample design selects a fixed number of 45 households from each cluster in order to 

determine who to interview. 

The probability of selecting a household is the probability of selecting the 

cluster multiplied by the probability of selecting the household within the cluster. The 

overall probability of selecting a household will differ from cluster to cluster. 

Households per cluster vary across time and country. Kenya DHS clusters all have 25 

households whereas Nigeria DHS-VI clusters have 45 households; Nigeria DHS-V 

clusters have 41 households; and Nigeria DHS-IV clusters have 22 households on 

average. Nor do the number of clusters remain constant. For example, Kenya DHS-V 

and DHS-IV have 400 clusters whereas Kenya DHS-VI has 1,612 clusters and 

Nigeria DHS-IV has 365 clusters; Nigeria DHS-V has 888 clusters; and Nigeria 

DHS-VI has 904 clusters. The stratified samples produce homogeneity within groups 

and heterogeneity between groups. The objective of the procedure is to reduce 

sampling errors and to increase precision and representation (Kenya et al., 2004; 

KNBS & International, 2015; KNBS & Macro, 2010; Nigeria & International, 2014; 

Nigeria & Macro, 2009; Nigeria & Macro, 2004).  

The Demographic and Health Surveys collect a plethora of population, health, 

and nutrition statistics from a representative sample of the population. Participating 

countries are primarily those that receive assistance from the United States Agency 

for International Development, and surveys are administered in collaboration with 

country specific partners such as the National Bureau of Statistics, the Ministry of 
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Health, the National Population Commission, and Medical Research Institutes. Using 

a standardized questionnaire model, the Demographic and Health Surveys Program 

aims to collect data that are comparable across countries. Participating countries 

typically adopt the standardized questionnaires in their entirety. However, the 

questionnaire model has been modified across each of the seven phases of the 

Program making it difficult to measure changes through time.  

The Demographic and Health Surveys collect data with four main 

questionnaires. The Household Questionnaire characterizes the household in terms of 

physical amenities and a roster of the members of the household. The Biomarker 

Questionnaire characterizes the anthropometric measurements and biochemical 

indicators of eligible members of the household. Eligible household members are 

typically children under age 5 and women and men ages 15 to 49. Specific 

information regarding eligible household members is collected in the Woman’s 

Questionnaire and Man’s Questionnaire respectively. Because of specific family 

planning, reproductive health, and child health subject matter, the Demographic and 

Health Surveys focus on women of reproductive age. 

In addition to characteristics about the woman, the Woman’s Questionnaire 

contains a birth history roster of detailed health and nutrition statistics for select 

eligible children. The birth history forms the basis for the Kids Recode file, a 

standardized module containing information related to the child's pregnancy and 

postnatal care and immunization, health and nutrition data (Croft et al., 2018). The 

recode file is a standardized file that facilitates cross-country analysis. 
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The Demographic and Health Surveys Program uses calibrated survey 

instruments, and quality assurance personnel assess collection procedures and 

administer technician training. The technicians recruit skilled field staff with 

experience as enumerators. They spend weeks training staff through a detailed, 

question-by-question explanation of the Questionnaires, and demonstration with role-

play, group discussion, and practice interviews. They also provide anthropometry 

training to all staff to instruct, demonstrate, and practice measuring children (Macro, 

2009). 

7.3.3 Variable Composition 

7.3.3.1 Child-level 

The sex variable is an unadulterated binary indicator equal to one if the child is 

female and zero if male. The delivery variable is a collapsed binary indicator equal to 

one if delivery occurred in a hospital facility or health clinic and zero otherwise. The 

birth variable is a collapsed binary indicator equal to one if the delivery was a 

singleton birth and zero if delivery involved multiple births (i.e., twins). The weaned 

variable is a composite categorical indicator equal to one if the child is weaned by 1 

year, two if the child is breastfed up to 1 year, three if the child is weaned before 1 

year, and zero if the child is breastfed beyond 1 year. The vaccines - minimum 

variable is a composite binary indicator equal to one if the child received at least 1 of 

9 vaccinations (Polio 0, 1, 2, 3; DPT 1, 2, 3; BCG, and Measles) and zero otherwise. 

The vaccines - maximum variable is a composite binary indicator equal to one if the 

child received all 9 vaccinations and zero otherwise. The diet variable is a composite 
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binary indicator equal to one if the child received a diverse variety of 4 or more food 

groups (of 7 possible including: grains, legumes, dairy, meat or fish, eggs, fruits and 

vegetables high in vitamin A, and other fruits and vegetables) in the past 24 hours or 

3 or more food groups plus breast milk and zero otherwise. The sick variable is a 

composite binary indicator equal to one if the child is asymptomatic (i.e., did not 

present with diarrhea, a fever, or a cough in the past 2 weeks) and zero otherwise. The 

child’s age variable is an unadulterated continuous indicator of the child’s age in 

months, from date of birth to date of interview. 

7.3.3.2 Household-level 

The latrine variable is a composite binary indicator equal to one if the facility is 

“improved,” meaning it is not shared and the type of toilet facility for the household 

is a flush toilet (either to a sewer system, septic tank, pit, or anywhere else); 

ventilated improved pit latrine or pit latrine with slab; or a composting toilet and zero 

otherwise if the facility is shared or an open pit; no facility, brush or field; bucket 

toilet; hanging toilet; or anywhere else. The water variable is a collapsed binary 

indicator equal to one if it is “improved,” meaning the major source of drinking water 

for the household is piped water into the dwelling, yard, or plot; a public tap, 

standpipe, or borehole; a protected well or protected spring water; rainwater; or 

bottled water and zero otherwise from sources including unprotected wells or springs, 

water delivered by tanker trucks, or surface water. The mother’s education variable is 

an unadulterated standardized categorical indicator of highest education level 

attended equal to zero if no education, one if primary, two if secondary, and three if 

higher. The wealth index variable is an unadulterated composite categorical indicator 
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of a household’s cumulative standard of living, calculated using ownership of assets 

(e.g., televisions and bicycles); housing construction materials; types of water and 

latrine facilities, and generated by placing all interviewed households along a 

continuous scale of relative wealth and then separating them into 5 wealth quintiles: 

poorest, poorer, middle, richer, and richest. The mother’s age variable is an 

unadulterated continuous indicator of the mother’s current age in completed years of 

decades, from date of birth to date of interview. The birth tally variable is an 

unadulterated continuous indicator of the total number of births of the mother. 

7.3.3.3 Cluster-level 

The residence variable is an unadulterated binary indicator equal to one if the de facto 

place of residence is rural (based on whether the cluster is defined as rural in the 

sample design––a country-specific designation) and zero if defined as urban. The 

precipitation variable is a composite continuous measure of average total monthly 

rainfall in decimeters during the preceding growing season derived from the Climate 

Hazards Group InfraRed Precipitation with Station (CHIRPS) dataset replete with a 

0.05° spatial resolution (Funk et al., 2015). The temperature variable is a composite 

continuous measure of average maximum monthly temperature in Celsius during the 

preceding growing season derived from the Climate Hazards Group InfraRed 

Temperature with Station (CHIRTS) dataset replete with a 0.05° spatial resolution 

(Funk et al., 2015). The precipitation anomaly variable is a composite continuous 

measure of average monthly rainfall anomaly from the previous five-year average in 

decimeters during the preceding growing season. The temperature anomaly variable 

is a composite continuous measure of average maximum monthly temperature 
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anomaly from the previous five-year average in Celsius during the preceding growing 

season. The greenness index variable is a composite continuous unit-less index 

measure between zero and one of the Normalized Difference Vegetation Index 

(NDVI) for the three greenest months during the preceding growing season replete 

with a 0.05° spatial resolution (Vermote et al., 2014). 

7.3.3.4 State-level and Other Controls 

State-level indicators are First-level Administrative Divisions, and include 47 

counties for Kenya and 36 states plus one federal capital territory for Nigeria. The 

interview month variable is an unadulterated categorical control indicator of the 

month in which the survey took place. The survey phase variable is an unadulterated 

categorical control indicator of the phase in which the survey took place (DHS-IV 

from 1997 to 2003; DHS-V from 2003 to 2008; and DHS-VI from 2008 to 2013) 

(DHS, 2008, 2012, 2013). 



 

 158 

7.3.4 Spatial Dispersions and Distributions 

 

 
Figure 11: Empirical Bayesian kriging model uncertainty estimates across Kenya and Nigeria based on 
projections in Figure 6.  
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Figure 12: Empirical Bayesian kriging of sample wasting prevalence across Nigeria in 2003, 2008 and 2013 DHS surveys.  
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Figure 13: Empirical Bayesian kriging of sample stunting prevalence across Nigeria in 2003, 2008 and 2013 DHS surveys. 
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Figure 14: Empirical Bayesian kriging of sample wasting prevalence across Kenya in 2003, 2008 and 2014 DHS surveys. 
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Figure 15: Empirical Bayesian kriging of sample stunting prevalence across Kenya in 2003, 2008 and 2014 DHS surveys. 
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Figure 16: Empirical Bayesian kriging model uncertainty estimates of sample wasting prevalence across Nigeria in 2003, 2008 and 2013 DHS surveys. 
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Figure 17: Empirical Bayesian kriging model uncertainty estimates of sample stunting prevalence across Nigeria in 2003, 2008 and 2013 DHS surveys. 
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Figure 18: Empirical Bayesian kriging model uncertainty estimates of sample wasting prevalence across Kenya in 2003, 2008 and 2014 DHS surveys. 
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Figure 19: Empirical Bayesian kriging model uncertainty estimates of sample stunting prevalence across Kenya in 2003, 2008 and 2014 DHS surveys. 
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7.3.5 Econometric Methodology 

7.3.5.1 Motivating Principles  

The term regression can refer to a wide range of procedures, which model the 

relationship between a dependent outcome variable (e.g., malnutrition), and a set of 

independent regressors or latent determinants. Let !! denote the dependent 

anthropometric variable and "!" denote the independent latent determinants, where 

# = 1, 2, … , ) indexes the sample of children and * = 1, 2, … , + indexes the different 

regressors. The outcome variable is binary so that	!! = 0 if child # is healthy (z-score 

is greater than or equal to negative two standard deviations from the reference 

median) and !! = 1 if child # is malnourished (z-score is less than negative two 

standard deviations from the reference median). The values of 0 and 1 are arbitrary 

and chosen for simplicity without any loss of generality. 

For exposition, it is convenient to think of a regression as a conditional 

prediction or more precisely a projection, which Cameron and Trivedi show can 

always be pertinent and derivable even if the causal or structural relationship is 

undefined (Cameron & Trivedi, 2005). Let !.! denote the predictor defined as a 

function of "!" and let /! ≡ !! − !.! denote the prediction error so that L(/!) =

L5!! − !.!6 denotes the loss associated with random error. The optimal predictor 

minimizes the expected loss.  

The specific functional form of the loss function should depend substantively 

on the losses associated with prediction errors. Implicitly in most econometric 

applications the loss function is quadratic, such that L(/!) = /!
# and 75!!|"!"6 is the 
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optimal predictor (Cameron & Trivedi, 2005). But the convention of a quadratic loss 

function has its basis in convenience and not substance.  

A regression models the distribution of anthropometric malnutrition (!!) 

corresponding to a fixed level in the variables that determine malnutrition ("!), for 

example wealth or plant vitality. In other words, it gives the conditional distribution 

of !! conditional upon the given values of "!. The conditional expectation 

summarizes the conditional distribution relationship, denoted by 75!!|"!"6, or plainly 

the expected value of ! given the specific values of "!". Because the dependent 

variable of malnutrition is binary, the conditional expectation also corresponds to the 

conditional probability, denoted as 75!!|"!"6 = Pr5!! = 1|"!"6 = ;!. Because they 

follow a Bernoulli model, binary outcomes are relatively straightforward to model. If 

the probability of, say, wasting equals ;!, then the probability of not wasting must be 

(1 − ;!). For regression applications the probability ;! will vary across children as a 

function of the regressors.  

7.3.5.2 Linear Probability Specification 

The symbology and explication reveal the conditional expectation and by 

extension the conditional probability is some function of "! denoted by ;! = <("!). 

The specific functional form of <("!) is specified by the purpose of the analysis. For 

the purposes of modeling the latent determinants of malnutrition, suppose the 

conditional probability function is linear and additively separable so the linear 

probability model specification takes the form 
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!! = =$ +?=""!"

%

"&'
+ /! , 

where, "!" for * = 1, 2, … , + is the set of explanatory variables, and /! is the 

unobservable stochastic error term. Since the relationships are not deterministic, the 

error term is conceptualized as the random deviation of a child’s expected outcome. 

The coefficients, =$ and =", are unknown but fixed parameters that quantify the 

relationship between the explanatory variables and the malnutrition. Again, because 

the dependent variable of malnutrition is binary, one can interpret the regression 

coefficient =" as the change in the probability a child is malnourished associated with 

a change in "", holding all other regressors constant.  

The objective of regression analysis is to estimate the values of the 

coefficients. Specifically, of interest is measuring the marginal effect (i.e.,	@; @""⁄ ) 

of the latent determinants or plainly the change in the conditional probability of !! for 

a given change in "". In a linear probability model the coefficient estimates (=") are 

equivalent to the marginal effects. The interpretation of a marginal effect is consistent 

across specifications, however, the equivalence of coefficients to marginal effects 

does not hold for the other model specifications.  

Marginal effects have different interpretations depending on whether they are 

from discrete or continuous variables. For a discrete change in a binary independent 

variable (i.e., getting a vaccine), the marginal effect measures how much the 

predicted probabilities (i.e., likelihood a child is wasted) will change in response. For 

a continuous independent variable, the marginal effect measures an instantaneous rate 

of change (i.e., how much would a 1-unit change in rainfall impact the likelihood a 
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child is wasted). Analyzing how much predicted probabilities are likely to change in 

response to perturbations is insightful for measuring the impact and extent of latent 

determinants of childhood malnutrition.  

Forecasting, which is by definition an out-of-sample process, should not be 

confused (but often is muddled) with the “predictions” of internally valid marginal 

effects. It may seem a pedantic distinction, but the what-if scenarios of marginal 

effects are established by a sturdy, internally consistent, and impelling epistemology.  

To begin to establish a causal inference. One must specify and satisfy a set of 

underlying assumptions about the model and data generation process, what 

Goldberger refers to as a structural model (Goldberger, 1972). Derived from the 

foundation laid by Gauss (1821):  

(1) The outcome variable and the regressors are independent and not identically 
distributed over B, which is necessary because of the stratified sampling 
structure and will affect the asymptotic properties of the estimators. 

(2) The model is correctly specified, which may seem obvious, but is devilishly 
tricky to ensure since it encompasses linearity, omitted variables, 
measurement error, and random parameters.  

(3) The regressors have a defined finite second moment (i.e., variance) and have 
no perfect linear relationship (i.e., multicollinearity).  

(4) The expected value of the errors conditional on the regressors is zero, which 
in turn implies the errors are uncorrelated with the regressors (i.e., all 
excluded factors have no impact on the outcome).  

(5) The errors are independent and uncorrelated with the regressors (i.e., the 
conditional covariance of the errors is zero).  

(6) The number of observations is greater than the number of estimated 
coefficients.  
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Making the assumptions of the linear probability model regression explicit is not only 

a prudent deed in the name of precision; it also emphasizes the need for alternative 

specifications when the assumptions are violated.  

7.3.5.3 Interlude: A Methodological Rejoinder  

Anthropometry is ineluctably linked to regression analysis. The very term regression 

originates with the titan of anthropometry, Francis Galton (Gujarati, 1995). Galton 

(1886) observed that, although tall parents beget tall children and short parents beget 

short children, the average height of children for a given parental height tended to 

“regress” towards the average height in the population. In a typical eugenic spirit, 

Galton referred to this phenomenon as “regression to mediocrity.” For better or 

worse, the terminology and its application has since been reclaimed.  

Regression models have many applications, which include: data summary, 

prescient forecasting, and causal inference, which is my primary modeling task. 

Causal inference depends on a strict nexus of assumptions regarding data collection, 

analysis, and presentation; the full set of assumptions is embodied in a model that 

underpins the method (Greenland et al., 2016). For empirical studies, however, 

establishing causal inference is like Ahab and his White Whale:  

To me the white whale … tasks me; he heaps me … with an inscrutable 
malice. … All visible objects, … are but as pasteboard masks. … [S]ome 
unknown but still reasoning thing puts forth the moudlings of its features from 
behind the unreasoning mask. (Melville, 1892, p. 157) 
 

The task of an investigator of scientific truth is to strike through the mask; indeed: 

Truth hath no confines. And for some outcomes there is no limit to the sum of 

possible causes (Rothman, 1976; Wensink et al., 2014). 
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The distinguished mathematical statistician, David A. Freedman, suggests that 

causal inference is “the most interesting and the most slippery” of the uses of 

regression models (2005, p. 1). To make matters slipperier, my data is observational 

(as opposed to experimental). “When using observational data to make causal 

inference,” remarks Freedman, “the key problem is confounding” (2005, p. 1). 

“Confounding is the major concern in epidemiological analyses of observational 

studies” agrees clinical biostatistician Ewout Steyerberg (2009, p. 27). If a hidden 

factor is associated with the independent variable and influences the dependent 

variable, then it is confounding––causing spurious results.  

Experimental designs assume that it is possible and desirable to isolate 

specific relations between the small set of variables under experimental control. In 

experimental design, Peter Lunt makes the point that, “The ontological assumptions 

are a mechanics based on the putative interaction between these relatively 

independent variables that can be linked to both empirical evidence and theory 

through operationalization” (Lunt, 2004, p. 563). In contrast, regression designs 

assume that there are a multitude of indicators in complex interaction that can be 

measured rather than controlled, elucidating complex structural relations between 

multiple variables.  

The controlled experiment paradigm aligns physical and mechanical 

ontological assumptions with verifiable epistemological assumptions connecting data 

and causal inference (Lunt, 2004). Establishing causal inference is more 

straightforward with experimental data from randomized controlled experiments or 

even natural experiments, where differences between treatment and control groups 
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are random and investigators rely on the random error to control for confounding 

factors. Whereas in observational studies, treatment and control groups are self-

assigned, or at least non-randomly assigned, and investigators simply observe what 

happens. Indeed, as Freedman notes, “one objective of statistical modeling is to create 

an analogy, perhaps forced, between an observational study and an experiment” 

(2006, p. 691). 

But don’t be mistaken and think a randomized control trial (RCT) is the only 

answer or even a good answer. Astronomers only work with observational data, and 

yet they manage to do good science. Even in the medical and public health fields 

many vitally important findings exist outside of RCTs. Implementation of a RCT for 

sudden infant death syndrome (SIDS) would have been an unethical proposition. 

However, observation of a prone sleeping position as a risk factor led to education 

programs with significant and substantial reduction in SIDS (Mitchell et al., 1991). 

Deaton (2006) is skeptical about the general usefulness of randomized controlled 

trials in the context of international aid and development initiatives. 

Ziliak and Teather-Posadas suggest “randomization enthusiasts have paid little 

attention to the ethical issues, economic costs, and theoretical difficulties caused by 

the so called randomization principle” (2016, p. 1). Angus Deaton and Nancy 

Cartwright argue:  

Contrary to frequent claims in the applied literature, randomization does not 
equalize everything other than the treatment in the treatment and control 
groups, it does not automatically deliver a precise estimate of the average 
treatment effect (ATE), and it does not relieve us of the need to think about 
(observed or unobserved) covariates. (Deaton & Cartwright, 2018, p. 2) 
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Similarly, we cannot observe the individual treatment effects, we can only observe 

their mean, assuming that the mean is a linear operator, such that the difference in 

means is the mean of differences. Medians, percentiles, or variances of treatment 

effects, cannot be identified from an RCT (Deaton, 2010). Others note RCTs lack 

external validity, the ability to assess effect duration, and cannot identify rare but 

serious adverse effects (e.g., Chavez-MacGregor & Giordano, 2016; Frieden, 2017; 

Rothwell, 2005).  

Similar to evaluating the latent determinants of childhood malnutrition, for 

example, studies of smoking’s effect on one’s health are necessarily observational. 

Freedman explains that, “There is a strong association between smoking and disease. 

Generally, association is circumstantial evidence for causation. However, the proof is 

incomplete” (2005, p. 2). Association (i.e., correlation) is not the same as causation.  

The distinguished epidemiologist, Kenneth J. Rothman warns that the strength 

of an association (model fit) has little bearing on causality since weak associations 

can be causal and strong associations can be noncausal. 

Strength of association depends on the prevalence of other factors. Some 
causal associations, such as the association between cigarette smoking and 
coronary heart disease, are weak. Furthermore, a strong association can be 
noncausal, a confounded result stemming from the effect of another risk 
factor… that is highly correlated with the one under study. (Rothman, 2012, p. 
33) 
 
To ascribe causality, one must appeal to a priori theoretical considerations 

(Gujarati, 1995). Freedman notes that, “Statisticians like Joseph Berkson and R. A. 

Fisher did not believe the evidence against cigarettes, and suggested possible 

confounding variables” (2005, p. 2). Epidemiologists, however, observed that death 

rates for smokers were higher because cigarettes kill and carefully showed the 
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possible confounding variables were not plausible. Once more, the task of an 

investigator is to establish causal inference with careful scrutiny of observational 

studies and to control for confounding factors.  

Many leading observers of mathematical statistics take umbrage with 

statistical models that embrace unrealistic or unjustified assumptions, such as random 

sampling or randomization. William Sealy Gosset aka “Student”—of Student’s test of 

statistical significance—in explicit opposition to R. A. Fisher, ventures to point out 

“advantages of artificial randomization are usually offset by an increased error” 

(1938, p. 363). The great scientist and polymath, Harold Jeffreys, agrees, stating that 

the “hypothesis of the randomness of the residuals, which is needed for the validity of 

the method of least squares, has nothing to do, intrinsically, with the intended 

randomness of the original design” (1939, p. 1). 

In their guide to misinterpretations, Greenland et al. emphasize that 

randomization assumptions “are often deceptively simple to write mathematically, yet 

in practice are difficult to satisfy and verify, as they may depend on successful 

completion of a long sequence of actions,” which they catalog as “identifying, 

contacting, obtaining consent from, obtaining cooperation of, and following up 

subjects, as well as adherence to study protocols for treatment allocation, masking, 

and data analysis” (2016, p. 338). Nobel Prize-winning economist Angus Deaton 

(2007) does not believe randomization is a panacea for identification problems in 

econometrics, calling those who do believe “randomistas.” In their illocutionary work 

on the randomization principle in economics and medicine, Ziliak and Teather-

Posadas (2016) show the “principle” was fabricated out of nothing by R. A. Fisher. 
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James Heckman (also a Nobel Laureate) and Edward Vytlacil note that 

“Randomization is a metaphor and not an ideal or “gold standard””(2007, p. 4836). 

And Deaton and Cartwright warn: “The gold standard or ‘truth’ view does harm when 

it undermines the obligation of science to reconcile RCTs results with other evidence 

in a process of cumulative understanding” (2018, p. 5). 

In his reprimand of charlatan econometrics, Edward Leamer (1983) points out 

randomization is only a necessary condition of experimental data; it is not sufficient 

to establish causal inference. Leamer even states that, “One should not jump to the 

conclusion that there is necessarily a substantive difference between drawing 

inferences from experimental as opposed to nonexperimental data.” He goes on to say 

“we must resist. “Random” does not mean adequately mixed in every sample. 

Randomization implies that the [estimate] is “unbiased,” but that definitely does not 

mean that for each sample the estimate is correct” (1983, p. 31). It would be ignorant 

and insincere of me to rely on unrealistic or unjustified assumptions, which are 

unnecessary to establish my task of causal inference. I believe the observers of 

mathematical statistics make an impelling argument.  

Many leading observers of mathematical statistics will also point out 

observational studies are not necessarily even at a loss when it comes to establishing 

controls. “Why are we not content simply to describe specific parts of the 

heterogenous world that we see around us, using the rigorous methods of science,” 

wonders Michael Goodchild, the foremost expert in geographic information science. 

And he is exasperated by the insistence “instead that inferences be made about some 

poorly conceived and nonexistent hypothetical world” (2009, p. 415). “The 
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nonexperimental scientist by definition cannot control the levels of extraneous 

influences” observes Leamer, which is not to say the experimental scientist is free 

from extraneous influences. Further, the nonexperimental scientist can control for an 

extraneous influence (i.e., a confounding factor) by including it as a variable in 

estimating equation (provided that it is not perfectly collinear with treatment 

variable). “The collinearity in naturally selected treatment variables may mean that 

the data evidence is weak,” notes Leamer, “but it does not invalidate in any way the 

[effect of the] estimates. Here, again, there is no essential difference between 

experimental and nonexperimental inference” (1983, p. 34).  

There are two competing epistemologies of econometric analysis: fit versus 

oomph. The fit approach desires to explain as much of the variation in malnutrition as 

possible (i.e., high precision) regardless of theoretical or practical implications. If the 

hem length of a mother’s skirt or which end of an egg a person cracks improves fit, 

then it should be included in the analysis, argue the high fit camp, regardless of 

whether or not in Truth the covariate actually has an effect on malnutrition. And it is 

tempting to value fit and precision above all else, since we can never really know the 

Truth. Marketers and financial analysts value fit, but the students of Science value 

oomph.  

In their monograph on the subject, John Aldrich and Forrest Nelson contend, 

“Regression may be one of the most abused statistical techniques in the social 

sciences” (1984, p. 9). Of particular relevance to this research they warn, “use of the 

coefficient of determination [i.e., measurement of fit] as a summary statistic should 

be avoided in models with qualitative dependent variables” (1984, p. 15). 
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As the illustrious economist, historian, and rhetorician Deirdre McCloskey 

asserts, “What matters is oomph. Oomph is what we seek.” She goes on to note, 

“Statistical significance, which now guides a large part of the intellectual life of 

economists, has nothing to do with oomph” (1986, p. 5). Even by 1939, as 

McCloskey annotates, the Statistical Dictionary of Terms and Symbols stated plainly: 

“A significant difference is not necessarily large, since, in large samples, even a small 

difference may prove to me a significant difference. Further, the existence of a 

significant difference may or may not be of practical significance” (Kurtz & 

Edgerton, 1939; 1985, p. 203).  

Given my samples are stratified and relatively large, I do not have a genuine 

worry about a sampling error of excessive skepticism, but instead should be worried 

about more significant sources of error, such as confounding effects, specification 

error, non-linear fertility slopes, the bias of the auspices, measurement error, 

experimental error, sample selection bias, efficiency, consistency, misclassification, 

endogeneity, heterogeneity, heteroskedasticity, multicollinearity, idiosyncratic error, 

specification error, and functional form (see Ziliak & McCloskey, 2008). 

The problem of pernicious p-values is not new (Berkson, 1942; Boring, 1919; 

Neyman & Pearson, 1928; Student, 1908a, 1908b, 1927) nor relegated to the fringe of 

contrarian publications (Bruns & Ioannidis, 2016; Cohen, 1990, 1994; Freiman et al., 

1978; Leamer, 1983; McCloskey, 1985; McCloskey & Ziliak, 1996; Nuzzo, 2014; 

Rothman, 1978; Siegfried, 2010) nor a notion incapable of orthodox reverence (Fidler 

et al., 2004; Ioannidis, 2005; Rothman, 1998; Shrout, 1997; Sullivan & Feinn, 2012; 



 

 179 

Wasserstein & Lazar, 2016; Wasserstein et al., 2019), yet the problem persists at full 

tilt.  

Of the 184 disaggregate empirical studies of the determinants of childhood 

malnutrition in Africa since 1990 that I scrutinized for review––undoubtedly 

representing a supermajority of the highest quality scientific literature on the topic–– 

98% of studies mistakenly rely only on statistical significance to ascertain the 

importance of the determinants. A good sign for potential future discoveries from 

researchers aptly employing what Goodchild (2009) and many others call the 

“rigorous methods of science” and a bad sign for the millions of children who 

continue to suffer because we, as a scientific community, continue to be satisfied with 

fooling ourselves.  

Roger E. Kirk, distinguished professor of psychology and statistics, highlights 

three major criticisms of statistical significance. The first and most blatant is the fact 

that “significance testing and scientific inference address different questions” (Kirk, 

1996, p. 747). In effect, statistical significance does not answer the question 

researchers are asking. The empirical studies that mistakenly rely only on statistical 

significance are guilty of the fallacy of the transposed conditional. The mistaken 

studies claim to observe the likelihood of a null hypothesis assuming the data are true, 

gleaned from what they actually test, which is the likelihood of the data assuming the 

null hypothesis is true. No. It is wrong to assume Pr(Data|H$) = Pr(H$|Data).  

Even falsification of H$ implies either that the hypothesis is wrong or that any 

number of tacit variables, side conditions, or alternative hypotheses H', H#, H(, …	H) 

intervened (Ziliak & McCloskey, 2008). Furthermore, Kirk explains it is also wrong 
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to believe “the p-value is the probability that the null hypothesis is correct, and the 

complement of the p-value is the probability that a significant result will be found in 

replication” (1996, p. 747). Distinguished epidemiologist and longtime decrier of 

statistical abuse, Steven Goodman, is convinced that the  

most serious consequence of this array of p-values misconceptions is the false 
belief that the probability of a conclusion being in error can be calculated 
from the data in a single experiment without reference to external evidence or 
the plausibility of the underlying mechanism. (2008, p. 135) 
 
The second criticism is that statistical significance is trivial. As the profound 

mathematician and statistician John Tukey explains, “the effects of A and B are 

always different—in some decimal place—for any A and B. Thus asking “Are the 

effects different?” is foolish” (1991, p. 100). And Tukey drives the point by 

explaining that statisticians are not only asking the wrong question, but are lying if 

they are willing to answer no. One can always reject a hypothesis given a large 

enough sample and one can always fail to reject a hypothesis given a large enough 

precision. “You cannot “test” mechanically for nonzero along some scale that has no 

dimension of substance and cost” state Ziliak and McCloskey; they insist that “Real 

scientific tests are always a matter of how close to large or how close to some 

parameter value, and the standard of how close must be a substantive one, inclusive 

of tolerable loss” (2008, p. 98). Kirk laments the irony that  

a ritualistic adherence to null hypothesis significance testing has led 
researchers to focus on controlling the Type I error (false positives) that 
cannot occur because all null hypothesis are false while allowing the Type II 
error (false negatives) that can occur to exceed acceptable levels. (1996, p. 
747) 
 
If I were to offer you a cup of tea, you would probably want to know how hot 

it was before you drank it: a meaningful quantitative question. But if you were to rely 
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only on statistical significance to make that decision—just as too many studies 

have—you would only really learn whether or not the tea is in fact exactly zero 

degrees or not. Interesting, maybe, but not informative. Statistical significance can 

only answer the qualitative question: Is the temperature of my tea exactly zero or not? 

Even if the answer is measured imprecisely, the more informative and relevant 

question is, “How hot is my tea?”  

The third criticism is that statistical significance testing profligates a 

continuum of uncertainty into a dichotomous decision. “Statistical significance is not 

a scientific test,” note Ziliak and McCloskey, “It is a philosophical, qualitative test. It 

does not ask how much it asks “whether”” (2008, pp. 4-5). By his own admission we 

know that Fisher’s “rule of 2” (i.e., p = 0.05; i.e., a 1 in 20 chance), is not a universal 

transcendental truth, but merely a matter of convenience (Fisher, 1925, 1926, 1935). 

Or as Rosenthal and Rubin would put it, “Surely, God loves the 0.06 nearly as much 

as the 0.05” (1989, p. 1227). The philosophical, qualitative, dichotomization of 

science further leads to the misconception that failure to reject the null hypothesis is 

evidence for accepting it. No. “A more refined goal of statistical analysis” notes 

Greenland et al. “is to provide an evaluation of certainty or uncertainty regarding the 

size of an effect” (2016, p. 339).  

The oomph approach values the impactfulness of a variable (i.e., a large 

coefficient) within the setting of an impelling, persuasive story, (i.e., theoretical 

model) as to why the variable would actually matter (i.e., practical usefulness) even if 

the variable is imprecisely measured (i.e., large standard errors or low fit). Students of 

Science have long understood that precision is nice, but oomph is essential (Ziliak & 
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McCloskey, 2004a). Or as Tukey proclaims, “Empirical knowledge is always fuzzy! 

And theoretical knowledge…is always wrong-in detail, though possibly providing 

some very good approximations indeed” (1991, p. 101).  

The point, note Ziliak and McCloskey (2008), has been reiterated by 

Edgeworth, Gosset, Egon Pearson, Jeffreys, Borel, Neyman, Wald, Wolfowitz, Yule, 

Deming, Yates, L. J. Savage, de Finetti, Good, Lindley, Feynman, Lehmann, 

DeGroot, Bernardo, Chernoff, Raiffa, Arrow, Blackwell, Friedman, Mosteller, 

Kruskal, Mandelbrot, Wallis, Roberts, Granger, Leamer, Press, Moore, Berger, 

Gigerenzer, Freedman, Rothman, and Zellner. As such my scientific paradigm is 

oomph––a tradition with historical exemplars (Kuhn, 1977).  

The purpose of the analysis specifies its paradigm and defines what is of 

value. In the clinical setting of public health and epidemiology, a diagnostic 

application helps to estimate the probability that malnutrition is present, identifying 

the nature or cause of the malnutrition; whereas a prognostic application helps to 

predict how malnutrition will develop and target preventive interventions to children 

at relatively high risk. Diagnostics can be described as the probability of malnutrition 

conditional on a set of latent determinants, whereas prognostics can be thought of as 

the obverse or the probability of future outcomes conditional on being malnourished. 

From a study design perspective, prognostic studies are inherently longitudinal in 

nature, whereas diagnostic studies are most often cross-sectional (Steyerberg, 2009). 

The terminology is easily muddled since the predictive characteristics in diagnostic 

studies relate to an underlying diagnosis. 
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Estimated effects from latent determinants provide the diagnostic insights. An 

assiduous diagnostic study examines a well-defined cohort of children suspected of 

being malnourished, where the outcome is the underlying diagnosis and several 

covariates may simultaneously be latent determinants. Harm versus benefit 

establishes the prognostic framework. The purpose of a prognostic model is that 

better decisions are made with the model than without. Within the prognostic 

framework reliability of predictions is key. It is my purpose to estimate the 

probability of malnutrition in a diagnostic sense, and to help target preventive 

interventions in a prognostic sense, though strictly speaking my study is not 

prognostic.  

There is a further competition of modeling epistemologies between prescient 

forecasting and causal inference. Much like fit versus oomph, prescient forecasting is 

tempting, but theoretically licentious; whereas causal inference is more ephemeral 

and precious, but scientifically motivated. Prediction is an oft misunderstood and 

abused concept. We cannot know the future; haruspex remain ineffectual. Indeed, 

economists can forecast business cycle peaks and are generally correct in their 

predictions, but generally a good deal out in their dates with lead times ranging from 

1 to 19 months (McCloskey, 1992). Such a wide lead time is little better than 

predicting if it’s August in southern Florida, then there will be an ensuing hurricane 

after a while. It is a prediction, but not an economically profitable one. At any rate, it 

is not nearly valuable enough to short orange juice concentrate futures on the Chicago 

Stock Exchange for a cheap fortune. Economically profitable predictions are 

impossible by definition. Pioneering econometrician Halbert White acknowledges 
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that “Even when no exploitable forecasting relation exists, looking long enough and 

hard enough at a given set of data will often reveal one or more forecasting models 

that look good, but are in fact useless” (2000, p. 1097). 

Each of us can “predict” that the sun will rise in the east tomorrow morning 

and even the morning after, but knowing as much does not provide cheap fortunes in 

economic profits beyond the usual discounted returns that we all possess. With 

careful observation and technical prowess, it is possible to make similar “predictions” 

about more obscured phenomena. A meteorologist knows low pressure predicts 

thunderstorms. A gastroenterologist knows how acute pain in the lower abdomen 

predicts appendicitis. To the uninitiated, the meteorologist and gastroenterologist 

seem clairvoyant. Their “predictions” are useful, but not economically profitable nor 

true prescience. McCloskey notes that “Prescience”: 

much like cheap fortunes, is an oxymoron: “Pre-science” is knowing before 
one knows. … In human affairs a forecast beyond what earns a usual return is 
impossible, except by entrepreneurs, idiot savants, auteurs, and other 
prodigies of tacit knowledge. (1992, pp. 35-36)  
 

As such, when I refer to my predictions, predicted probabilities, or predicted effects, I 

hope it is painfully clear that I do so in an inferential, diagnostic sense and not a 

prescient one.  

Clinical prediction models often use decision analysis to support models that 

estimate the probability of an underlying disease (e.g., malnutrition)(Steyerberg, 

2009). The methodology of decision analysis formally weighs the costs and benefits 

of a decision using a treatment threshold and loss function. The threshold demarcates 

the probability where the expected benefit from treatment is equal to the expected 

benefit of avoiding treatment. The relative weight of false-negative vs. false-positive 
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decisions determines the threshold (Steyerberg, 2009). Data dredging is remains a 

major problem, contend Smith and Ebrahim:  

When a large number of associations can be looked at in a dataset where only 
a few real associations exist, a P value of 0.05 is compatible with the large 
majority of findings still being false positives. These false positive findings 
are the true products of data dredging, resulting from simply looking at too 
many possible associations…. As with bias, increasing the significance level 
provides no protection against being misled by confounded associations. 
(Smith & Ebrahim, 2002, p. 1437) 

 
Clinical prediction models are useful when the diagnosis is sufficiently 

uncertain for effective decision-making. One source of uncertainty is from 

measurements of malnutrition with error—sensitivity or specificity below 100%. 

Among the sample of possibly malnourished children, sensitivity is the fraction of 

true-positives, and specificity is the fraction of true-negatives. Unfortunately, it is 

common in diagnostic evaluations to have misclassification error in the predictive 

characteristics and outcome assessments. Avenues for error, which dilute the 

association of predictors with malnutrition, include observer variability and 

biological variability. And misclassification error in the outcome variable causes 

inconsistent coefficient estimates in discrete-response models (Hausman et al., 1998; 

Sandler & Rashford, 2018). 

For practical diagnostic identification and comparative prognostic usefulness, 

ideally a gold standard is available where both sensitivity and specificity are 100%. A 

gold standard is definitive, but may not be available, suitable, practical, or even exist 

at all. The very phrase gold standard is itself equally revealing. It is amusing that just 

as the U.S. government abandoned the dubious gold standard financial practice in the 

1970s, the medical community adopted the term for clinical, diagnostic, and treatment 
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“best practices” and in particular for randomized controlled trials (Jones & Podolsky, 

2015).  

To classify a child as malnourished or not, one must apply a cutoff value to 

the predicted probability. It is common to use 50% as the cutoff, but it is not 

defendable in a medical context (Steyerberg, 2009). It implies false-positive and 

false-negative classifications are equally important. Instead, I employ the loss-

function to maximize net benefit, by examining the sensitivity and specificity values 

over the entire range of cutoffs (0% to 100%). The clinical usefulness of the model is 

measured by the gap between the predicted outcome and the actual outcome. 

Remember, the purpose of my analysis is to evaluate the latent determinants 

that impact the severity and variability of childhood malnutrition. The eminent 

econometrician, Jeffrey Wooldridge (2010), asserts that determining the change in 

one variable caused by another variable is the goal of most empirical studies and at 

the crux of establishing that causal relationship is the notion of ceteris paribus, that is, 

holding all other relevant factors fixed. Now, it would be impractical—not to mention 

unethical—to run a controlled experiment to uncover the causality of malnutrition in 

young children (see Ziliak & Teather-Posadas, 2016); so instead, I use econometric 

methods to effectively hold all other relevant factors fixed.  

But the equivocal question then arises of which method to use among a 

staggering plethora of choices. In truth, choosing which methodology to use and 

which is most effective is not a positivistic, operationalistic, or dialectic endeavor, but 

a rhetorical one (McCloskey, 1983). Or as the philosopher of science Richard Rorty 

puts is, “scientific breakthroughs are not so much a matter of deciding which of 
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various alternative hypotheses are true, but of finding the right jargon in which to 

frame hypotheses in the first place” (1982, p. 193). The Nobel Laureate and prodigy, 

Kenneth Arrow, evaluated the soundness of competing theories based on 

persuasiveness. He asked of a theory, “Does it correspond to our understanding of the 

economic world? … If you find a new concept, the question is, does it illuminate your 

perception? Do you feel you understand what is going on in everyday life?” 

irrespective of fit (Feiwel, 1987). Indeed, as the pioneering econometrician Edward 

Leamer proclaims, “Models are neither true nor false. Models are sometimes useful 

and sometimes misleading” (2004, p. 555).  

As I previously discussed model fit is never the ultimate aim of scientific 

research. It can be illuminating, but it is only one of many subordinate findings to the 

central aim of oomph. Fit has an added layer of obscurity in binary outcome models 

such as these, since the predicted outcome (discrete prediction of a child being 

malnourished or not) is a function of the modeled predicted probability (continuous 

prediction from 0% to 100% of a child being malnourished). The choice of function 

and its parameters will drive most of the findings. For example, if your only goal was 

to develop a model with perfect sensitivity (i.e., 100% true positive rate) or the 

percentage of wasted and stunted children correctly identified as being wasted and 

stunted, then the modeling task is trivial. Simply take all observed children and assign 

each one a predicted probability of one, no other inputs required. You will never 

mistakenly predict that a malnourished child is actually healthy. Obviously, actually 

implementing such a model is absurd, but it helps to illustrate the point. The point 

being that without a loss function the clinical usefulness of a model is moot.  
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Again, to classify a child as malnourished or not, one must apply a cutoff 

value to the predicted probability. It is common to use 50% as the cutoff, but it is not 

defendable in a medical context (Steyerberg, 2009). It implies false-positive and 

false-negative classifications are equally important. Instead, I employ the loss-

function to maximize net benefit, by examining the sensitivity and specificity values 

over the entire range of cutoffs (0% to 100%). The clinical usefulness of the model is 

measured by the gap between the predicted outcome and the actual outcome. The 

cutoff values for the hierarchical model specification from the decision curve analysis 

are an average 15.3% for Nigeria wasting; 4.5% for Kenya wasting; 38.7% for 

Nigeria stunting; and 31.1% for Kenya stunting. The subsequent measures of 

sensitivity (true-positive rate) and specificity (true-negative rate) under the 

maximized net benefit regime range from 77.2% at a minimum to a maximum of 

95.3% with a value of 84.2% on average: indicating a good fit.  

I also calculate other measures of fit such as percent correctly classified, 

McIntosh-Dorfman criterion, and McFadden’s pseudo-R-squared. If the predicted 

probability is at least .5 (or .15 as the case may be under a maximized net benefit 

decision curve analysis), then the predicted outcome takes a value of one, and zero 

otherwise. The percent correctly classified measure is the percentage of times each 

pair of predicted outcomes and observed outcomes match; either when both are zero 

or one. The McIntosh-Dorfman criterion is similar to the percent correctly classified, 

but ranges between zero and two, where a value greater than one indicates a good fit. 

It is calculated by adding up the fraction of correctly predicted zeros and the fraction 

of correctly predicted ones. Unlike the percent correctly classified measure, the 
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McIntosh-Dorfman criterion would indicate that a predicted outcome function that 

only returns ones (100% sensitivity and 0% specificity) is not a good fitting model. 

Bounded between zero and one, McFadden’s pseudo-R-squared measure is given by 

1 − ℒ* ℒ+⁄ , where ℒ* is the log-likelihood value from the estimated model, and ℒ* is 

the log-likelihood value from a model with only an intercept.  

Although I, too, will add my voice to what many scholars (much more 

qualified than myself) have echoed ad infinitum, that not only are tests of fit often 

subordinate, superfluous, and misused, there is no single best measure of fit, either 

(Amemiya, 1981; Cameron & Trivedi, 2005; Cohen et al., 2003; Cramer, 1999; 

Greene, 2012; Gujarati, 1995; Kennedy, 2003; Maddala, 1983; McFadden, 1974; 

McIntosh & Dorfman, 1992; Steyerberg, 2009; Train, 2009; Wooldridge, 2010; Ziliak 

& McCloskey, 2008). Indeed, one does not select the maximum likelihood estimator, 

which is the basis for many of the measures of fit (e.g., pseudo-R-squared), so as to 

maximize fit, but rather one selects a maximum likelihood estimator to maximize the 

joint density of the observed dependent variables (Greene, 2012). Wooldridge aptly 

notes that as a goodness-of-fit measure, percent correctly predicted is misleading; “In 

particular, it is possible to get rather high percentages correctly predicted even when 

the least likely outcome is very poorly predicted,” and getting to the heart of the 

matter he affirms that, “goodness of fit is not as important as statistical and economic 

significance of the explanatory variables” (2010, pp. 574-575). 

7.3.5.4 Logit Specification  

Again, a linear probability model specification is useful to motivate the initial 

intuitions and coefficient interpretations, but it ignores the discreteness of the 
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dependent variable and does not necessarily constrain the predicted probabilities 

between zero and one. A more appropriate specification is a discrete choice model, 

which ensures that the probabilities are bounded between zero and one (i.e., 0 < ;! <

1). A logit model is by far the easiest and most widely used discrete choice model due 

to the closed form of the choice probabilities and readily interpretable results (Train, 

2009). First described by Pierre-François Verhulst (1845), a pupil of Quételet, the 

logistic function is given by 

;! = Pr(!! = 1|" = "!) =
/,!-∑ ,"/#"$"%&

1 + /,!-∑ ,"/#"$"%&
. 

The function traces a sigmoid curve in which ;! rises monotonically between 

zero and one, and the rate varies according to the definition of the variables (Cramer, 

2002). Since the regression includes an intercept term (=$), the average in-sample 

predicted probability necessarily equals the sample frequency (Cameron & Trivedi, 

2005). Alternatively, for estimation purposes one can transform the probability 

function into an odds ratio or relative risk, given by  

;!
1 − ;!

= /,!-∑ ,"/#"$"%& , 

which represents the odds a child will be malnourished given their exposure to a set 

of latent determinants. A further transformation by taking the natural log gives the log 

odds ratio, denoted as 

J! = ln M
;!

1 − ;!
N = =$ +?=""!"

%

"&'
+ /! , 

which for estimation purposes is linear in the regressors ("!"). Although some in the 

statistics and epidemiology literature interpret their coefficients in terms of a marginal 
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effect on the odds ratio or even log odds ratio, I use the marginal effect on the 

probabilities for their intuitiveness and clarity. Unlike the linear probability model 

where the marginal effect of "" is given by =" the marginal effect of "" in the logit 

model is given by  

@;!
@"!"

= ;!(1 − ;!)=". 

Because the conditional probability that a child is malnourished ;! is 

conditional on "!", the value of the marginal effects change based on the point of 

evaluation of "!". Generally, it is best to use the sample average of the observation-

wise marginal effects (Cameron & Trivedi, 2005). Otherwise known as the average 

marginal effect or estimated prevalence difference, it is given by  

)0'?;!(1 − ;!)="

1

!&'
. 

7.3.5.5 Hierarchical Modeling Motivation 

Hierarchical models address the interdependency explicitly and use it as an 

advantage. In other modeling frameworks, such interdependencies violate necessary 

underlying assumptions and are a hindrance. For example, variables affected by 

national policymakers are endogenous at the national level, but are exogenous to 

children’s health at a household level (Smith & Haddad, 2000). Inherently, child 

malnutrition is an individual and household-level phenomenon, yet it is at the country 

(and subnational) levels that many policy decisions are made. Using average data can 

be misleading if distribution is important and differs across countries and conclusions 
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from cross-national data may not be applicable to individual countries’ situations 

(Smith & Haddad, 2000). 

One advantage of hierarchical modeling is the careful and explicit 

consideration of the units of observation at different levels. With a hierarchical 

modeling structure, one can specify and measure the variability associated with each 

level––child, household, cluster, and state––to match the Demographic and Health 

Surveys data structure. I assume each level is a pure hierarchical set, such that all 

clusters are contained within one and only one state, all households are contained 

within one and only one cluster, and all children are contained within one and only 

one household. The assumption is for modeling specificity and one can safely assume 

the set structure holds in reality, too. Variables at each level explain the measurement 

variability and its effect on malnutrition. Effects may also vary randomly among the 

units at higher levels (i.e., cross-level variability). For example, the magnitude of the 

effect of a child’s gender on their probability of being wasted may depend on cluster 

level characteristics, such as easy access to an improved toilet. Random variability 

may also exist at the household, cluster, or state scale––implying random intercepts. 

Explicit formulation of a hierarchical model with effects at, within, and between 

levels ameliorates issues of impoverished conceptualization (Raudenbush & Bryk, 

2002). 

Specifically, hierarchical models provide improved estimation of effects 

within individual units, formulation and testing of hypotheses of cross-level effects, 

and partitioning of variance and covariance components among levels. Hierarchical 

models respect the heterogeneity of social experience (Paterson & Goldstein, 1991). 
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To understand the latent determinants of malnutrition, one must confront how the 

effects change across and between scales. Each child, household, cluster, and state 

has its own distinctive variation and characteristics. Understanding how the 

distinctiveness of location effects malnutrition provides clarity to a dire situation. 

Economic geography and spatial economic models have played an essential 

role in determining the nature of hierarchical structures as far back as 1826 with von 

Thünen’s foundational volume The Isolated State (Samuelson, 1983). Studies of 

urban and regional science envisage hierarchies of cities containing communities, 

regions containing cities, and countries containing regions (Corrado & Fingleton, 

2010).  

The error of aggregation bias occurs when a variable has a different meaning, 

and thus a different effect, at different hierarchical levels. For example, the average 

quality of water and sanitation in a cluster may have an effect on a child’s health 

above and beyond the effect of an individual child’s water and sanitation 

circumstances at home. Hierarchical models alleviate confounding effects by 

partitioning the effect of water and sanitation quality on health into separate 

components.  

The error of misestimating precision occurs in standard error estimates if the 

model fails to account for dependence among individual responses within a group. 

Once the grouping has been established, even if it is established at random, the group 

itself will tend to become differentiated (Corrado & Fingleton, 2010). The group and 

its members can both influence and be influenced by the composition of the group 

(Goldstein, 1998). Continuing from the previous example, the survey design may 
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have selected the survey clusters at random yet the composition of children within a 

cluster is likely interdependent. An individual child’s water and sanitation 

circumstance is reliant on the available infrastructure and cultural conventions of that 

child’s community and so, too, is the child living next door, but far less so is the child 

living five states away. Hierarchical models alleviate derelict dependence by 

providing a unique random effect for each organizational unit. The standard error 

estimates incorporate the variability of the random effects, or in survey research 

terminology, they adjust for intraclass correlation (Raudenbush & Bryk, 2002). 

Different data come from different organizational levels depending on their 

unit-of-analysis: Local, regional, global; personal, familial, communal; or organelle, 

cell, tissue, organ, organism, population, ecosystem, biosphere. Hierarchical 

modeling is special because the units-of-analysis are preserved across levels in a 

combined structure. Inference about the nature of an individual, deduced from 

inference of the group to which the individual belongs, is known as the ecological 

fallacy. If you observe that some countries in sub-Saharan Africa have a high 

prevalence of malnutrition, you would fall victim to the ecological fallacy concluding 

that, therefore, if an individual lives in sub-Saharan Africa, they must be 

malnourished. Or conversely, emergent properties of a group cannot be inferred from 

its constituent part (Mill, 1843). The obverse is known as the atomistic fallacy, where 

associations found at the individual level are assumed to hold for the group as a 

whole. Hierarchical modeling avoids these fallacies by considering all levels 

simultaneously (Roux, 2002).  
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Effective hierarchical models use the entire assemblage of data across each 

organizational level to provide separate predicted probabilities for each category of 

interest. The estimators are weighted composites from the category of interest and the 

overall sample. Within group units are more similar than between group units and 

across levels, which mimics the first law of geography––everything is related to 

everything else, but near things are more related than distant things (Tobler, 1970). 

Children within the same household tend to be more similar to each other than those 

in other households, similarly for households within clusters, and clusters within 

states, and even for children within clusters, and households within states. One reason 

for this is that clustering occurs through some mechanism interconnected to unit 

characteristics (e.g., a family or a community). Siblings do not end up in the same 

household by random chance. 

There are many guises of hierarchical models across different disciplines. For 

example, they are called multilevel linear models in sociology; mixed-effects models 

and random-effects models in biometrics; random-coefficient regression models in 

econometrics; and covariance components models and generalized linear mixed 

models (GLMMs) in statistics (Grace et al., 2016; Raudenbush & Bryk, 2002). To be 

as clear, concise, and precise as possible, I abide by the designation of hierarchical 

models. Various disciplines recognize hierarchical models provide clarity and 

precision. 

Researchers have long used cross-level models as a hierarchical simulacrum, 

where the individual level outcome is a function of both individual and higher group 
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level variables (Hofmann & Gavin, 1998). For example, a common specification for a 

cross-level regression is given by 

!!2 = =$ + ='"!2 + =#O2 + =("!2O2 + /!2 

where !!2is the individual level outcome, "!2 is the individual level explanatory 

variable, O2 is the group level explanatory variable, such that everyone in the same 

group has the same value, and /!2is the unobservable stochastic error term. The 

coefficient =# is the effect of group level explanatory variable on the individual level 

outcome. The coefficient, =( indicates how much effect of the individual level 

variable, "!2, on the outcome,	!!2, varies across groups, O2.  

However, given this specification and knowledge of the data generating 

process, the assumptions of ordinary regression techniques I outlined earlier are likely 

violated, and the model is misspecified (Rabe-Hesketh & Skrondal, 2008). 

Individuals within the same group are all perfectly correlated with respect to the 

group level variable. As such, the covariance between any two error terms within a 

group are likely to be non-zero, violating the assumption of no serial correlation (see 

above assumption 4). As Raudenbush and Bryk (2002) describe, a portion of the 

random error is group random error, which is constant across individuals within a 

given group. In addition, the conditional variances of the error terms are likely to vary 

across groups, further violating the stronger restrictive assumption of homoscedastic 

errors. Statistical procedures often violate the important assumption of uncorrelated 

error, fortunately hierarchical models correctly account for the error structure 

(Garson, 2012). 
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A hierarchical model provides appropriate generalization of the equation to 

account for differences across groups (Paterson & Goldstein, 1991). Generalization of 

classical regression methods with hierarchical methods is almost always an 

improvement in terms of fit, prediction and inference (Gelman, 2006). Instead, one 

could specify a hierarchical regression for the same phenomenon, given by 

Individual-level: 

!!2 = =$2 + ='2"!2 + /!2 , 

Group-level: 

=$2 = P$$ + P$'O2 + Q$2 , 

='2 = P'$ + P''O2 + Q'2 , 

or in single equation mixed form as 

!!2 = P$$ + P'$"!2 + P$'O2 + P''"!2O2 + Q$2 + Q'2"!2 + /!2 , 

where ='2 and =$2 are random individual-level coefficients, and P$$, P'$, P$', and P'' 

are group-level fixed effects. The last three terms comprise the random error, where 

/!2 is the individual-level error component, Q$2 is the random effect of grouping 

between groups, and Q'2"!2 is the random effect of grouping within the group.  

One can specify a hierarchical model as a level-by-level model or as a single 

mixed model. Functionally they are identical, but the level-by-level specification is 

useful for understanding how and at what level specific covariates enter the model, 

whereas the mixed model specification is useful for understanding where the fixed 

effects and the random effects enter the model. In econometric parlance, mixed-effects 

models contain both fixed effects and random effects. The fixed effects are simply 

estimated directly, analogous to a standard regression. The random effects are not 
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estimated directly, but are summarized by their estimated variance and covariance 

structure. Random effects can model random intercepts or random coefficients, and 

represent various grouping and hierarchical structures. 

The modeling framework is easily adaptable to different grouping and random 

effects structures: suppose ='2 = P'$ so that it is fixed across group-level units or 

suppose ='2 = P'$ + Q'2 so that it only varies randomly without specifying any 

predictors for ='2. The framework is also scalable to accommodate more detailed 

stratification with more meticulous random slopes and intercepts, while maintaining 

its tractability and intuition, although the requisite specification and computation 

increase exponentially. Accompanying each additional random component is not only 

an additional variance parameter, but also an additional covariance component for 

each pair of random effects. As such, random elements should only be included if 

theoretically sound and empirically sufficient.  

Accompanying the increased complexity is the opportunity to mis-specify the 

model. For example, Rabe-Hesketh and Skrondal forewarn that “It rarely makes sense 

to include a random slope if there is no random intercept” (2008, p. 171). And they 

note “it is seldom sensible to include a random slope without including the 

corresponding fixed slope because it is strange to allow the slope to vary randomly 

but constrain its population mean to zero” (2008, p. 171). Similarly, within the 

hierarchical framework, Rabe-Hesketh and Skrondal conclude, “It is generally not a 

good idea to include a random coefficient for a covariate that does not vary at a lower 

level than the random coefficient itself” (2008, p. 172).  
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For example, it does not make sense to include a district level random slope 

for the variable number of hospitals in a district as it does not vary within the district. 

Because one cannot estimate the effect of number of hospitals in a district for 

individual districts, it also appears impossible to estimate the variability of the effect 

between hospitals. Inversely, the issue of low within cluster variance is not much of 

an issue at all. It does not matter if some of the clusters have insufficient data as long 

as there are an adequate number that do have sufficient data. 

7.3.5.6 Hierarchical Specifications 

The first exploratory step in a hierarchical analysis is to estimate an unconditional, 

intercept-only model. This is the simplest hierarchical model specification, and is 

fully unconditional, meaning no predictor variables at any level. The purpose of the 

exercise is to determine the variance components; the unconditional, intercept-only 

model assumes random effects coefficients have a mean of zero. This procedure is 

important to discover how variation in wasting and stunting is distributed across the 

different hierarchies–– child, household, cluster, and state. And it provides evidence 

to justify the application of a hierarchical model in the first place. The variance 

decomposition shows both the within and between group variability for the 

proportion of the variance of the outcome. 

Child-level: 

!!234 = =$234 + /!234 

!!234: anthropometric indicator (e.g., wasting or stunting) of child #, in household R, in 

cluster S, in state T. 

=$234: mean indicator of household R, in cluster S, in state T. 
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/!234: random child effect, deviation of child #RST’s indicator from household RST’s 

mean; ~V(0, W#).  

Household-level: 

=$234 = P$$34 + X$234 

P$$34: mean indicator of cluster S, in state T. 

X$234: random household effect, deviation of household RST’s indicator mean from 

cluster ST’s mean; ~V(0, Y,).  

Cluster-level: 

P$$34 = Z$$$4 + [$$34 

Z$$$4: mean indicator of state T. 

[$$34: random cluster effect, deviation of cluster ST’s indicator mean from state T’s 

mean; ~V(0, Y5).  

State-level: 

Z$$$4 = \$$$$ + Q$$$4 

\$$$$: grand indicator mean. 

Q$$$4: random state effect, deviation of state T’s indicator mean from grand mean; 

~V(0, Y6).  

The subscripts #, R, S, and T denote children, households, clusters, and states where,  

 # = 1, 2, … , V234 children within household R, in cluster S, in state T; 

 R = 1, 2, … , ]34 households, within cluster S, in state T; 

 S = 1, 2, … , 4̂ clusters, within state T; and 

 T = 1, 2, … , J states. 
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The complementary mixed model for the unconditional, intercept-only model is given 

by, 

!!234 = \$$$$ + Q$$$4 + [$$34 + X$234 + /!234 . 

The unconditional, intercept-only model is important for estimating the grand 

mean, \$$$$ too, and provides information about the outcome variability at each level. 

Partitioning the variation shows the proportion of variance in the outcome variable 

that is explained by the grouping structure of the hierarchical model. The variance of 

the outcome is given by,  

Var5!!26 = Var5Q$$$4 + [$$34 + X$234 + /!2346 = 	 Y6 + Y5 + Y, + W#. 

Total variability in outcome !!234 is partitioned across each level: level 1, W# 

among children within households; level 2, Y,among households within clusters; 

level 3, Y5 among clusters within states; and level 4, Y6 among sates. The proportion 

of variation attributed to each level is given by,  

Level 1: 

	
W#

Y6 + Y5 + Y, + W#
 

Level 2: 

	
Y,

Y6 + Y5 + Y, + W#
 

Level 3: 

	
Y5

Y6 + Y5 + Y, + W#
 

Level 4: 

	
Y6

Y6 + Y5 + Y, + W#
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The proportion of variation is related to, but is not the same as, the intraclass 

correlation coefficient measurement, which show the amount of unexplained 

variation that is attributed to the grouping variable, as compared to the overall 

unexplained variance (within and between variance). For example, at the household 

level, an intraclass correlation value of 0.35 would suggest that 35% of the variation 

in wasting can be explained by which household the child lives in. Intraclass 

correlation coefficients only apply to random-intercept models (i.e., fully 

unconditional specification with no predictor variables at any level). The coefficient 

is often referred to as rho and is also known as the cluster effect (Raudenbush & 

Bryk, 2002). For the 4-level fully unconditional hierarchical model the intraclass 

correlation coefficients are given by,  

Level 2: 

	`# =
Y6 + Y5 + Y,

Y6 + Y5 + Y, + W#
 

Level 3: 

`( =
Y6 + Y5

Y6 + Y5 + Y, + W#
 

Level 4: 

`7 =
Y6

Y6 + Y5 + Y, + W#
 

Note the level-1 intraclass correlation is undefined and that by definition `# ≥

`( ≥ `7. In the case of two-level models the intraclass correlation coefficient is the 

same as the proportion of the variance in the outcome that is between groups, 

specifically ` = Y, 5Y, + W#6⁄ . More generally, the intraclass correlation coefficient 
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of the highest level is equivalent to the proportion of the variance at that level. As 

such these two variance measurements are often confused and incorrectly specified.  

The second order specification for the 4-level hierarchical model permits 

random intercepts, which account for the unique effects of each household, cluster, 

and state on the anthropometric indicator outcome variable.  

Child-level: 

!!234 = =$234 +?="234". 1"!234

%

"&'
+ /!234 

!!234: anthropometric indicator of child #, in household R, in cluster S, in state T. 

=$234: child-level intercept for household R, in cluster S, in state T, which varies 

between children according to the household-level specification. 

="234: child-level fixed effects coefficients for each child-level characteristic ". 1"!234. 

". 1"!234: * = 1,…+ child-level characteristics. 

/!234: random child effect, deviation of child #RST’s indicator from the predicted 

indicator; ~V(0, W#).  

Household-level: 

=$234 = P$$34 +?P$834". 28234

9

8&'
+ X$234 	 

="234 = P"$34 	∀	* 

P$$34: household-level intercept for cluster S, in state T, which varies between 

households according to the cluster-level specification. 

P$834: household-level fixed effects coefficients for each household-level 

characteristic ". 28234. 
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P"$34: equivalent child-level fixed effects in household-level notation. 

". 28234: c = 1,… , d household-level characteristics.  

X$234: random household effect, deviation of household RST’s indicator from the 

predicted indicator; ~V(0, Y,).  

Cluster-level: 

P$$34 = Z$$$4 +?Z$$:4". 3:34

;

:&'
+ [$$34 	 

P$834 = Z$8$4 	∀	c 

P"$34 = Z"$$4 	∀	* 

Z$$$4: cluster-level intercept for state T, which varies between clusters according to 

the state-level specification. 

Z$$:4: cluster-level fixed effects coefficients for each cluster-level characteristic 

". 3:34. 

Z$8$4: equivalent household-level fixed effects in cluster-level notation. 

Z"$$4: equivalent child-level fixed effects in cluster-level notation. 

". 3:34: X = 1,… , f cluster-level characteristics. 

[$$34: random cluster effect, deviation of cluster ST’s indicator from the predicted 

indicator; ~V(0, Y5).  

State-level: 

Z$$$4 = \$$$$ +?\$$$<". 4<4

=

<&'
+ Q$$$4 	 

Z$$:4 = \$$:$	∀	X 

Z$8$4 = \$8$$	∀	c 
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Z"$$4 = \"$$$	∀	* 

\$$$$: grand intercept. 

\$$$<: state-level fixed effects coefficients for each state-level characteristic ". 4<4. 

\$$:$: equivalent cluster-level fixed effects in state-level notation. 

\$8$$: equivalent household-level fixed effects in state-level notation. 

\"$$$: equivalent child-level fixed effects in state-level notation. 

". 4<4: h = 1,… i state-level characteristics. 

Q$$$4: random state effect, deviation of state T’s indicator from the predicted 

indicator; ~V(0, Y6).  

The mixed model is given by, 

!!234 = \$$$$ 	+?\"$$$". 1"!234

%

"&'
+?\$8$$". 28234

9

8&'
+?\$$:$". 3:34

;

:&'

+?\$$$<". 4<4

=

<&'
+ Q$$$4 + [$$34 + X$234 + /!234 

where it is easier to parse the model composition in terms of \ representing the fixed 

effects and Q$$$4, [$$34, X$234, and /!234 representing the random effects.  

Although there exist many alternative permutations and liminal model sub-

specifications, the most general specification for the 4-level hierarchical model 

permits random intercepts and random slopes for each of the intercepts and 

coefficients for each of the four levels.  

Child-level: 

!!234 = ?="234". 1"!234

%

"&$
+ /!234 
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!!234: anthropometric indicator of child #, in household R, in cluster S, in state T. 

="234: child-level coefficients for each child-level characteristic ". 1"!234. 

". 1"!234: * = 0,…+ child-level characteristics, assuming ". 1$!234 = 1	∀	# to specify 

the intercept for household R, in cluster S, in state T. 

/!234: random child effect, deviation of child #RST’s indicator from the predicted 

indicator; ~V(0, W#).  

Household-level: 

="234 =?P"834". 28234

9"

8&$
+ X"234 	∀	* 

P"834: household-level coefficients for each household-level characteristic ". 28234. 

". 28234: c = 0,… , d" household-level characteristics, assuming ". 2$234 = 1	∀	R to 

specify the intercept for cluster S, in state T. Each ="∀	* may have a unique 

set of household-level characteristics, ". 28234 , c = 0,… , d". 

X"234: random household effect, deviation of household RST’s indicator from the 

predicted indicator; ~V(0, Y,).  

Cluster-level: 

P"834 =?Z"8:4". 3:34

;"'

:&$
+ ["834 	∀	*, c 

Z"8:4: cluster-level coefficients for each cluster-level characteristic ". 3:34. 

". 3:34: X = 0,… , f"8 cluster-level characteristics, assuming ". 3$34 = 1	∀	S to 

specify the intercept for state T. Each P"8∀	*, c may have a unique set of 

cluster-level characteristics, ". 3:34 , X = 0,… , f"8. 
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["834: random cluster effect, deviation of cluster ST’s indicator from the predicted 

indicator; ~V(0, Y5).  

State-level: 

Z"8:4 = ? \"8:<". 4<4

=("'

<&$
+ Q"8:4 	∀	*, c, X 

\"8:<: state-level coefficients for each state-level characteristic ". 4<4. 

". 4<4: h = 0,… i:"8 state-level characteristics, assuming ". 4$4 = 1	∀	T to specify the 

intercept for the state level model. Each \"8:∀	*, c, X may have a unique set of 

state-level characteristics, ". 4<4 , h = 0,… , i:"8. 

Q"8:4: random state effect, deviation of state T’s indicator from the predicted 

indicator; ~V(0, Y6).  

The mixed model is given by, 

!!234 =?". 1"!234

%

"&$
?".28234

9"

8&$
?".3:34

;"'

:&$
?\"8:<". 4<4

=("'

<&$
 

+?". 1"!234

%

"&$
?".28234

9"

8&$
?Q"8:4". 3:34

;"'

:&$
 

+?". 1"!234

%

"&$
?["834". 28234

9"

8&$
 

+?X"234". 1"!234

%

"&$
 

+/!234 . 
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7.3.5.7 Hierarchical Misclassification 

The problem of misclassification arises when the perceived outcome !! does 

not correspond to the true outcome !!∗ (Hausman, 2001; Hausman et al., 1998; 

Magder & Hughes, 1997). That is, for any number of reasons, one mistakenly thinks a 

child is healthy when in fact they are malnourished, or vice versa. Unlike 

measurement error in the classic linear regression model, which only reduces the 

efficiency of parameter estimates, misclassification errors lead to inconsistent and 

inefficient parameter estimates in discrete choice models (Hausman et al., 1998; 

Neuhaus, 1999). 

 Suppose the observed outcome is a function of the true outcome and 

misclassification error given by !! = <(!!
∗, j!) and therefore, Pr(!!∗ = 1) ≠

Pr(!! = 1). For clarity and precision, let ℳ denote a malnourished outcome ℋ 

denote a healthy outcome and !!ℳ = 1 or the inverse !!ℋ = 0 means child # is 

malnourished. By the law of total probability, one can decompose the observed 

probability into constituent conditional probabilities, given by 

Pr(!!ℳ = 1) = Pr(!!ℳ = 1|!!ℳ
∗ = 1)Pr(!!ℳ∗ = 1)

+ Pr(!!ℳ = 1|!!ℳ
∗ = 0)Pr(!!ℳ∗ = 0). 

Rearranging terms gives,  

Pr(!!ℳ = 1) = Pr(!!ℳ = 1|!!ℳ
∗ = 1)Pr(!!ℳ∗ = 1)

+ 51 − Pr(!!ℋ = 1|!!ℋ
∗ = 1)6Pr(!!ℋ∗ = 1). 

From its decomposed form, the one can define the conditional probabilities as 

accuracies, given by 

nℳ
ℳ = Pr(!!ℳ = 1|!!ℳ

∗ = 1), 
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nℋ
ℋ = Pr(!!ℋ = 1|!!ℋ

∗ = 1), 

where the superscript represents conditional probability space. More specifically the 

conditional probability represented by nℳℳ  is the producer’s accuracy of malnutrition 

or 1 minus the omission error of malnutrition also known as sensitivity. The 

conditional probability represented by nℋℋ  is the producer’s accuracy of health or 1 

minus the omission error of health also known as specificity. Because they are 

derived from probabilities, the accuracies and by extension the misclassification 

errors are bound between zero and one.  

Redefining the constituent conditional probabilities as accuracies makes for a 

tractable model with an intuitive structure. Returning to the original issue of the 

perceived outcome !! not corresponding to the true outcome !!∗ one can derive a 

closed-form equation of the relationship, given by 

Pr(!!ℳ = 1) = nℳ
ℳPr(!!ℳ∗ = 1) + 51 − nℋ

ℋ6Pr(!!ℋ∗ = 1) 

= nℳ
ℳPr(!!ℳ∗ = 1) + 51 − nℋ

ℋ651 − Pr(!!ℳ∗ = 1)6 

= 1 − nℋ
ℋ + 5nℳ

ℳ + nℋ
ℋ − 16Pr(!!ℳ∗ = 1). 

The harm sustained from modeling the outcome as having misclassification 

error is negligible. Note that if there is no error (i.e., nℋℋ = nℳ
ℳ = 1) the extra terms 

drop out and the observed outcome is equivalent to the true outcome. Sandler and 

Rashford note that for “a typical (naïve) estimation procedure the [outcome] 

probabilities are estimated along with the latent accuracy term, which results in 

attenuated marginal effects” (2018, p. 532). Hausman and Scott Morton (1994) 

suggest using a maximum likelihood estimation approach with exogenous conditional 

probabilities where the accuracy terms are just directly estimable parameters. 
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Otherwise, the misclassification specification enters the log likelihood function just as 

the standard specification does. In practical terms, correcting for misclassification 

errors tends to produce larger standard errors (i.e., less precision) but reveals much 

larger coefficient estimates (i.e., more oomph). 

7.3.6 Results Interpretation 

The fully unconditional model only has an intercept term for the fixed effects. The 

intercept is the estimated log-odds of a child being wasted or stunted. It is more easily 

interpreted after transforming into a probability through the logistic function i.e., 

/A (1 + /A)⁄ . The probability reflects the estimated proportion of children in the 

sample that are wasted or stunted. Note that the estimated proportions are all 

considerably less than the observed wasting and stunting proportions. The divide 

occurs because of the nonlinear relationship between the outcome log-odds, and the 

outcome probability. The Random effects components reflect the estimated variance 

partitioning. They are the variance between regions, the variance between states 

within regions, the variance between clusters within states, and the variance between 

households between clusters.  

Keep in mind the linear probability model assumes constant marginal effects, 

while the logit and hierarchical model specifications imply diminishing magnitudes of 

the partial effects. Direct comparisons are therefore dubious and extrapolations 

beyond a marginal (small) change are inappropriate. The discrete and categorical 

determinants follow a very precise and intuitive interpretation of their effect. The 

average marginal effect approach relies on counterfactual reasoning to motivate the 

conclusions. In effect, there are two hypothetical populations––one of all rural 



 

 211 

children, one of all urban children––with the exact same values on the other 

independent variables in the model. Since the only difference between these two 

populations is their residence, residence must be the cause of the differences in their 

likelihood of malnutrition. The continuous determinants also follow a very precise but 

less intuitive interpretation of their effect. The continuous determinants are given by 

average adjusted predictions, or the approximate amount of change in the probability 

of malnutrition produced by a marginal change in any given determinant (e.g., 

temperature). 

Marginal effects provide a good approximation of the amount of change in 

malnutrition prevalence that will be produced by a 1-unit (or 1-standard deviation) in 

a determinant. Discrete determinants offer the advantage of only having a single 

counterfactual and, therefore, a single value of the effect, unlike continuous 

determinants, which have a theoretically unlimited number of counterfactuals. 

Instead, the single value given for the continuous determinants is the slope evaluated 

at the average: a true (linear) marginal effect, if only for some small portion of a 

greater nonlinear function.  
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7.3.7 Primary Regression Tables  

7.3.7.1 Full Model Results 

Table 9. Hierarchical Results: Wasted - Base 

 Wasted 
Hierarchical Random Intercept Nigeria  Kenya 
    
Average Marginal Effects with 95% Confidence Interval in Brackets 
Sex - Female -0.012*** [-0.019, -0.0049]  -0.0075*** [-0.011, -0.0036] 
Delivery - Clinic -0.0091** [-0.017, -0.0011]  -0.010*** [-0.016, -0.0046] 
Birth - Singleton -0.041*** [-0.067, -0.014]  -0.032*** [-0.055, -0.010] 
Weaned - By 1 Year Old -0.0044  [-0.012, 0.0034]  -0.0011  [-0.0048, 0.0026] 
Vaccines - Minimum -0.010** [-0.020, -0.00032]  -0.0044  [-0.014, 0.0052] 
Vaccines - Maximum -0.010* [-0.020, 0.000018]  -0.0027  [-0.0085, 0.0032] 
Diet - Diverse 0.0077* [-0.00096, 0.016]  -0.0032  [-0.0090, 0.0025] 
Sick - Asymptomatic -0.010*** [-0.018, -0.0025]  -0.0016  [-0.0058, 0.0026] 
Latrine - Improved -0.0031  [-0.010, 0.0038]  0.0045  [-0.0038, 0.013] 
Water - Improved -0.0026  [-0.012, 0.0066]  -0.00021  [-0.0041, 0.0037] 
Residence - Rural -0.0086  [-0.022, 0.0047]  -0.00029  [-0.0051, 0.0046] 
Mothers Education      

Primary -0.0096** [-0.018, -0.0012]  -0.011*** [-0.017, -0.0056] 
Secondary -0.020*** [-0.028, -0.011]  -0.0089** [-0.016, -0.0018] 
Higher -0.040*** [-0.054, -0.027]  -0.017*** [-0.026, -0.0089] 

Wealth Index       
Poorer -0.00059  [-0.0092, 0.0080]  -0.0092*** [-0.016, -0.0022] 
Middle -0.013*** [-0.022, -0.0045]  -0.0079** [-0.015, -0.00044] 
Richer -0.016*** [-0.028, -0.0042]  -0.011*** [-0.018, -0.0030] 
Richest -0.0095  [-0.025, 0.0063]  -0.012** [-0.023, -0.0017] 

Child's Age -0.022*** [-0.028, -0.015]  -0.0013  [-0.0038, 0.0012] 
Mother's Age 0.0026  [-0.0064, 0.012]  -0.0022  [-0.0065, 0.0020] 
Birth Tally -0.0017  [-0.0039, 0.00054]  0.00069  [-0.00072, 0.0021] 
Fixed Effect - Month & Phase Yes   Yes  
Number of Observations 44,717   26,130  
Log Pseudo Likelihood -17,439.97  -5,572.63 
      
Predicted Outcome Analysis Standard Max Net Benefit  Standard Max Net Benefit 
McIntosh-Dorfman Criterion  1.17  1.71   1.02   1.73 
Percent Correctly Classified  86.88  85.76   93.78  79.93 
Sensitivity  17.92  85.48    1.52  94.36 
Specificity  99.55  85.81  100.00  78.96 
Net Benefit  0.027  0.111   0.001  0.046 
Cut Off Value 0.5  0.158  0.5  0.045 

* p < 0.10, ** p < 0.05, *** p < 0.01 
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Table 10. Hierarchical Results: Stunted - Base 

 Stunted 
Hierarchical Random Intercept Nigeria  Kenya 
    
Average Marginal Effects with 95% Confidence Interval in Brackets 
Sex - Female -0.051*** [-0.059, -0.042]  -0.077*** [-0.091, -0.063] 
Delivery - Clinic -0.022*** [-0.033, -0.011]  -0.046*** [-0.064, -0.028] 
Birth - Singleton -0.13*** [-0.17, -0.091]  -0.23*** [-0.28, -0.18] 
Weaned - By 1 Year Old -0.0031  [-0.016, 0.0100]  -0.011  [-0.028, 0.0065] 
Vaccines - Minimum -0.0056  [-0.028, 0.017]  -0.029** [-0.055, -0.0020] 
Vaccines - Maximum -0.040*** [-0.060, -0.019]  -0.016** [-0.031, -0.0022] 
Diet - Diverse -0.020** [-0.036, -0.0037]  -0.0051  [-0.023, 0.013] 
Sick - Asymptomatic -0.034*** [-0.050, -0.018]  -0.013** [-0.026, -0.00072] 
Latrine - Improved -0.0043  [-0.020, 0.011]  -0.050*** [-0.072, -0.028] 
Water - Improved 0.0020  [-0.011, 0.015]  -0.011  [-0.027, 0.0051] 
Residence - Rural 0.015** [0.000097, 0.029]  -0.014  [-0.036, 0.0080] 
Mothers Education      

Primary -0.015** [-0.030, -0.000055]  0.025  [-0.0050, 0.056] 
Secondary -0.054*** [-0.074, -0.034]  -0.025  [-0.057, 0.0084] 
Higher -0.13*** [-0.16, -0.10]  -0.059** [-0.10, -0.013] 

Wealth Index       
Poorer -0.029*** [-0.047, -0.011]  -0.043*** [-0.067, -0.019] 
Middle -0.060*** [-0.082, -0.039]  -0.081*** [-0.11, -0.054] 
Richer -0.12*** [-0.15, -0.099]  -0.10*** [-0.13, -0.069] 
Richest -0.16*** [-0.18, -0.13]  -0.16*** [-0.19, -0.12] 

Child's Age -0.0075  [-0.017, 0.0016]  -0.026*** [-0.033, -0.018] 
Mother's Age -0.036*** [-0.047, -0.025]  -0.046*** [-0.061, -0.031] 
Birth Tally 0.0037** [0.00062, 0.0068]  0.011*** [0.0067, 0.016] 
Fixed Effect - Month & Phase Yes   Yes  
Number of Observations 44,717   26,130  
Log Pseudo Likelihood -26,250.40  -14,400.96 
      
Predicted Outcome Analysis Standard Max Net Benefit  Standard Max Net Benefit 
McIntosh-Dorfman Criterion  1.56  1.60   1.43   1.70 
Percent Correctly Classified  80.28  79.20   82.49  85.92 
Sensitivity  66.34  82.32   44.31  82.56 
Specificity  89.24  77.20   98.29  87.31 
Net Benefit  0.217  0.233   0.125  0.205 
Cut Off Value 0.5  0.383  0.5  0.317 

* p < 0.10, ** p < 0.05, *** p < 0.01 
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Table 11. ICC and Variance Decomposition: Wasted - Base 

 Wasted 
Hierarchical Random Intercept Nigeria  Kenya 
    
Random Effect - Variance Component with 95% Confidence Interval in Brackets 
States 0.3 [0.18, 0.41]  0.37 [0.18, 0.57] 
Clusters 0.47 [0.31, 0.62]  0.14 [0.025, 0.25] 
Households 1.17 [0.86, 1.47]  1.19 [0.70, 1.67] 
      
Intraclass Correlation - Coefficients with 95% Confidence Interval in Brackets 
States 0.057 [0.039, 0.081]  0.075 [0.044, 0.124] 
Clusters 0.146 [0.114, 0.186]  0.103 [0.07, 0.149] 
Households 0.370 [0.318, 0.425]  0.340 [0.277, 0.41] 
      
Variance Decomposition - Percent by Level 
States   5.66%     7.50%  
Clusters   8.96%     2.77%  
Households  22.34%    23.76%  
Children  63.04%    65.96%  

 
 
 
 
 

Table 12. ICC and Variance Decomposition: Stunted - Base 

 Stunted 
Hierarchical Random Intercept Nigeria  Kenya 
    
Random Effect - Variance Component with 95% Confidence Interval in Brackets 
States 0.26 [0.16, 0.35]  0.099 [0.048, 0.15] 
Clusters 0.22 [0.17, 0.26]  0.13 [0.071, 0.20] 
Households 0.81 [0.69, 0.93]  1.16 [0.89, 1.43] 
      
Intraclass Correlation - Coefficients with 95% Confidence Interval in Brackets 
States 0.056 [0.039, 0.08]  0.021 [0.013, 0.035] 
Clusters 0.103 [0.083, 0.127]  0.050 [0.037, 0.068] 
Households 0.281 [0.257, 0.306]  0.297 [0.257, 0.341] 
      
Variance Decomposition - Percent by Level 
States   5.58%   2.12%  
Clusters   4.74%   2.87%  
Households  17.74%   24.71%  
Children   5.58%   2.12%  
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Table 13. Hierarchical Results: Wasted - NDVI 

 Wasted 
Hierarchical Random Intercept Nigeria  Kenya 
    
Average Marginal Effects with 95% Confidence Interval in Brackets 
Sex - Female -0.013*** [-0.020, -0.0053]  -0.0077*** [-0.012, -0.0037] 
Delivery - Clinic -0.0094** [-0.018, -0.0010]  -0.010*** [-0.016, -0.0051] 
Birth - Singleton -0.043*** [-0.070, -0.015]  -0.033*** [-0.056, -0.011] 
Weaned - By 1 Year Old -0.0046  [-0.013, 0.0035]  -0.0011  [-0.0050, 0.0027] 
Vaccines - Minimum -0.011** [-0.021, -0.00032]  -0.0049  [-0.014, 0.0046] 
Vaccines - Maximum -0.010* [-0.021, 0.00022]  -0.0026  [-0.0086, 0.0034] 
Diet - Diverse 0.0080* [-0.00096, 0.017]  -0.0032  [-0.0091, 0.0028] 
Sick - Asymptomatic -0.010*** [-0.018, -0.0025]  -0.0016  [-0.0060, 0.0028] 
Latrine - Improved -0.0031  [-0.010, 0.0041]  0.0053  [-0.0034, 0.014] 
Water - Improved -0.0034  [-0.013, 0.0063]  -0.00061  [-0.0045, 0.0033] 
Residence - Rural -0.0059  [-0.019, 0.0074]  0.00012  [-0.0049, 0.0051] 
Mothers Education      

Primary -0.0094** [-0.018, -0.00091]  -0.010*** [-0.016, -0.0042] 
Secondary -0.020*** [-0.029, -0.011]  -0.0079** [-0.015, -0.00032] 
Higher -0.042*** [-0.055, -0.028]  -0.017*** [-0.026, -0.0080] 

Wealth Index       
Poorer -0.00028  [-0.0092, 0.0087]  -0.0090** [-0.016, -0.0020] 
Middle -0.013*** [-0.022, -0.0044]  -0.0078** [-0.015, -0.00036] 
Richer -0.017*** [-0.029, -0.0045]  -0.010*** [-0.018, -0.0029] 
Richest -0.012  [-0.028, 0.0043]  -0.013** [-0.023, -0.0021] 

Child's Age -0.023*** [-0.029, -0.016]  -0.0013  [-0.0039, 0.0013] 
Mother's Age 0.0026  [-0.0067, 0.012]  -0.0024  [-0.0069, 0.0022] 
Birth Tally -0.0017  [-0.0040, 0.00059]  0.00074  [-0.00074, 0.0022] 
NDVI -0.092*** [-0.14, -0.049]  -0.039*** [-0.066, -0.013] 
NDVI Anomaly 0.044  [-0.14, 0.23]  0.055  [-0.021, 0.13] 
Fixed Effect - Month & Phase Yes   Yes  
Number of Observations 44,717   26,130  
Log Pseudo Likelihood -17,433.37  -5,565.46 
      
Predicted Outcome Analysis Standard Max Net Benefit  Standard Max Net Benefit 
McIntosh-Dorfman Criterion  1.18   1.71   1.02   1.74 
Percent Correctly Classified  86.88  83.38   93.79  80.54 
Sensitivity  17.96  88.78    1.70  94.06 
Specificity  99.55  82.38  100.00  79.63 
Net Benefit  0.027  0.110   0.001  0.047 
Cut Off Value 0.5  0.141  0.5  0.046 

* p < 0.10, ** p < 0.05, *** p < 0.01 
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Table 14. Hierarchical Results: Stunted - NDVI 

 Stunted 
Hierarchical Random Intercept Nigeria  Kenya 
    
Average Marginal Effects with 95% Confidence Interval in Brackets 
Sex - Female -0.051*** [-0.059, -0.042]  -0.077*** [-0.091, -0.063] 
Delivery - Clinic -0.022*** [-0.033, -0.011]  -0.047*** [-0.065, -0.029] 
Birth - Singleton -0.13*** [-0.17, -0.091]  -0.23*** [-0.28, -0.18] 
Weaned - By 1 Year Old -0.0032  [-0.016, 0.0098]  -0.011  [-0.028, 0.0061] 
Vaccines - Minimum -0.0058  [-0.028, 0.016]  -0.028** [-0.055, -0.0017] 
Vaccines - Maximum -0.039*** [-0.060, -0.019]  -0.017** [-0.031, -0.0026] 
Diet - Diverse -0.020** [-0.037, -0.0038]  -0.0055  [-0.024, 0.013] 
Sick - Asymptomatic -0.034*** [-0.050, -0.018]  -0.013** [-0.026, -0.00035] 
Latrine - Improved -0.0045  [-0.020, 0.011]  -0.050*** [-0.072, -0.029] 
Water - Improved 0.0012  [-0.012, 0.015]  -0.011  [-0.027, 0.0053] 
Residence - Rural 0.016** [0.0029, 0.029]  -0.016  [-0.038, 0.0057] 
Mothers Education      

Primary -0.015* [-0.030, 0.00016]  0.020  [-0.0090, 0.049] 
Secondary -0.054*** [-0.074, -0.033]  -0.030* [-0.061, 0.00064] 
Higher -0.13*** [-0.16, -0.10]  -0.064*** [-0.11, -0.020] 

Wealth Index       
Poorer -0.029*** [-0.047, -0.011]  -0.045*** [-0.069, -0.021] 
Middle -0.060*** [-0.082, -0.039]  -0.083*** [-0.11, -0.056] 
Richer -0.12*** [-0.15, -0.099]  -0.10*** [-0.13, -0.070] 
Richest -0.16*** [-0.19, -0.13]  -0.16*** [-0.19, -0.12] 

Child's Age -0.0075  [-0.017, 0.0016]  -0.026*** [-0.033, -0.018] 
Mother's Age -0.036*** [-0.046, -0.025]  -0.046*** [-0.061, -0.031] 
Birth Tally 0.0037** [0.00065, 0.0068]  0.011*** [0.0065, 0.016] 
NDVI -0.066  [-0.19, 0.061]  0.12*** [0.057, 0.18] 
NDVI Anomaly 0.30  [-0.20, 0.80]  -0.13  [-0.36, 0.098] 
Fixed Effect - Month & Phase Yes   Yes  
Number of Observations 44,717   26,130  
Log Pseudo Likelihood -26,247.83  -14,395.99 
      
Predicted Outcome Analysis Standard Max Net Benefit  Standard Max Net Benefit 
McIntosh-Dorfman Criterion  1.56   1.59   1.43  1.70 
Percent Correctly Classified  80.33  79.39   82.46  85.10 
Sensitivity  66.42  81.37   44.29  84.55 
Specificity  89.27  78.12   98.26  85.33 
Net Benefit  0.218  0.233   0.125  0.205 
Cut Off Value 0.5  0.391  0.5  0.304 

* p < 0.10, ** p < 0.05, *** p < 0.01 
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Table 15. ICC and Variance Decomposition: Wasted - NDVI 

 Wasted 
Hierarchical Random Intercept Nigeria  Kenya 
    
Random Effect - Variance Component with 95% Confidence Interval in Brackets 
States 0.22 [0.13, 0.30]  0.26 [0.10, 0.42] 
Clusters 0.47 [0.31, 0.62]  0.15 [0.037, 0.26] 
Households 1.17 [0.86, 1.47]  1.19 [0.71, 1.68] 
      
Intraclass Correlation - Coefficients with 95% Confidence Interval in Brackets 
States 0.042 [0.029, 0.061]  0.053 [0.029, 0.096] 
Clusters 0.133 [0.104, 0.168]  0.084 [0.059, 0.118] 
Households 0.360 [0.308, 0.414]  0.328 [0.263, 0.399] 
      
Variance Decomposition - Percent by Level 
States  4.19%    5.33%  
Clusters   9.09%     3.05%  
Households  22.70%    24.38%  
Children  64.02%    67.24%  

 
 
 
 
 

Table 16. ICC and Variance Decomposition: Stunted - NDVI 

 Stunted 
Hierarchical Random Intercept Nigeria  Kenya 
    
Random Effect - Variance Component with 95% Confidence Interval in Brackets 
States 0.22 [0.11, 0.33]  0.081 [0.038, 0.12] 
Clusters 0.21 [0.17, 0.26]  0.13 [0.070, 0.20] 
Households 0.81 [0.69, 0.93]  1.16 [0.89, 1.42] 
      
Intraclass Correlation - Coefficients with 95% Confidence Interval in Brackets 
States 0.049 [0.031, 0.078]  0.017 [0.01, 0.029] 
Clusters 0.097 [0.074, 0.125]  0.046 [0.033, 0.064] 
Households 0.275 [0.25, 0.303]  0.294 [0.253, 0.339] 
      
Variance Decomposition - Percent by Level 
States  4.92%    1.74%  
Clusters   4.73%     2.86%  
Households  17.88%    24.79%  
Children  72.47%    70.61%  
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Table 17. Hierarchical Results: Wasted - Precipitation 

 Wasted 
Hierarchical Random Intercept Nigeria  Kenya 
    
Average Marginal Effects with 95% Confidence Interval in Brackets 
Sex - Female -0.012*** [-0.019, -0.0051]  -0.0079*** [-0.012, -0.0035] 
Delivery - Clinic -0.0092** [-0.017, -0.0013]  -0.011*** [-0.016, -0.0053] 
Birth - Singleton -0.042*** [-0.068, -0.015]  -0.034*** [-0.058, -0.011] 
Weaned - By 1 Year Old -0.0044  [-0.012, 0.0035]  -0.0011  [-0.0051, 0.0028] 
Vaccines - Minimum -0.010** [-0.020, -0.00043]  -0.0044  [-0.014, 0.0054] 
Vaccines - Maximum -0.010* [-0.021, 0.00016]  -0.0027  [-0.0088, 0.0033] 
Diet - Diverse 0.0080* [-0.00098, 0.017]  -0.0034  [-0.0094, 0.0026] 
Sick - Asymptomatic -0.010** [-0.018, -0.0025]  -0.0017  [-0.0061, 0.0027] 
Latrine - Improved -0.0031  [-0.010, 0.0042]  0.0053  [-0.0035, 0.014] 
Water - Improved -0.0029  [-0.013, 0.0068]  -0.00036  [-0.0044, 0.0037] 
Residence - Rural -0.0080  [-0.022, 0.0061]  -0.000098  [-0.0051, 0.0049] 
Mothers Education      

Primary -0.0094** [-0.018, -0.00099]  -0.0097*** [-0.016, -0.0037] 
Secondary -0.020*** [-0.029, -0.011]  -0.0069* [-0.015, 0.00080] 
Higher -0.041*** [-0.054, -0.027]  -0.016*** [-0.025, -0.0073] 

Wealth Index       
Poorer -0.00038  [-0.0093, 0.0085]  -0.0089** [-0.016, -0.0018] 
Middle -0.013*** [-0.022, -0.0044]  -0.0077** [-0.015, -0.00015] 
Richer -0.016*** [-0.029, -0.0042]  -0.010*** [-0.018, -0.0027] 
Richest -0.0097  [-0.026, 0.0063]  -0.013** [-0.023, -0.0018] 

Child's Age -0.022*** [-0.029, -0.016]  -0.0013  [-0.0040, 0.0013] 
Mother's Age 0.0026  [-0.0066, 0.012]  -0.0024  [-0.0069, 0.0021] 
Birth Tally -0.0017  [-0.0040, 0.00057]  0.00077  [-0.00068, 0.0022] 
Precipitation -0.0096  [-0.023, 0.0041]  -0.015*** [-0.025, -0.0063] 
Precipitation Anomaly -0.0045  [-0.049, 0.040]  0.011  [-0.0088, 0.031] 
Fixed Effect - Month & Phase Yes   Yes  
Number of Observations 44,717   26,130  
Log Pseudo Likelihood -17,437.95  -5,564.13 
      
Predicted Outcome Analysis Standard Max Net Benefit  Standard Max Net Benefit 
McIntosh-Dorfman Criterion  1.18  1.71    1.02  1.73 
Percent Correctly Classified  86.89  86.16   93.78  79.30 
Sensitivity  17.96  84.90    1.58  94.66 
Specificity  99.55  86.39  100.00  78.27 
Net Benefit  0.027  0.111   0.001  0.046 
Cut Off Value 0.5  0.161  0.5  0.044 

* p < 0.10, ** p < 0.05, *** p < 0.01 
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Table 18. Hierarchical Results: Stunted - Precipitation 

 Stunted 
Hierarchical Random Intercept Nigeria  Kenya 
    
Average Marginal Effects with 95% Confidence Interval in Brackets 
Sex - Female -0.051*** [-0.059, -0.042]  -0.077*** [-0.091, -0.063] 
Delivery - Clinic -0.023*** [-0.034, -0.012]  -0.046*** [-0.064, -0.028] 
Birth - Singleton -0.13*** [-0.17, -0.091]  -0.23*** [-0.28, -0.17] 
Weaned - By 1 Year Old -0.0030  [-0.016, 0.010]  -0.011  [-0.028, 0.0062] 
Vaccines - Minimum -0.0059  [-0.028, 0.016]  -0.029** [-0.056, -0.0027] 
Vaccines - Maximum -0.040*** [-0.060, -0.019]  -0.017** [-0.031, -0.0024] 
Diet - Diverse -0.021** [-0.037, -0.0041]  -0.0053  [-0.024, 0.013] 
Sick - Asymptomatic -0.034*** [-0.050, -0.018]  -0.013** [-0.026, -0.00028] 
Latrine - Improved -0.0049  [-0.020, 0.010]  -0.050*** [-0.072, -0.028] 
Water - Improved 0.00032  [-0.012, 0.013]  -0.011  [-0.027, 0.0047] 
Residence - Rural 0.015** [0.00031, 0.030]  -0.015  [-0.038, 0.0073] 
Mothers Education      

Primary -0.015* [-0.029, 0.00015]  0.020  [-0.0098, 0.049] 
Secondary -0.053*** [-0.074, -0.033]  -0.031* [-0.063, 0.00099] 
Higher -0.13*** [-0.16, -0.10]  -0.065*** [-0.11, -0.021] 

Wealth Index       
Poorer -0.028*** [-0.046, -0.0100]  -0.045*** [-0.069, -0.021] 
Middle -0.058*** [-0.080, -0.036]  -0.083*** [-0.11, -0.056] 
Richer -0.12*** [-0.15, -0.096]  -0.10*** [-0.13, -0.070] 
Richest -0.16*** [-0.18, -0.13]  -0.16*** [-0.19, -0.13] 

Child's Age -0.0076  [-0.017, 0.0015]  -0.026*** [-0.033, -0.018] 
Mother's Age -0.036*** [-0.047, -0.025]  -0.046*** [-0.061, -0.031] 
Birth Tally 0.0037** [0.00067, 0.0068]  0.011*** [0.0065, 0.016] 
Precipitation -0.015  [-0.044, 0.014]  0.033** [0.0033, 0.063] 
Precipitation Anomaly 0.052  [-0.010, 0.11]  -0.034  [-0.080, 0.012] 
Fixed Effect - Month & Phase Yes   Yes  
Number of Observations 44,717   26,130  
Log Pseudo Likelihood -26,245.12  -14,396.91 
      
Predicted Outcome Analysis Standard Max Net Benefit  Standard Max Net Benefit 
McIntosh-Dorfman Criterion  1.56  1.59   1.43   1.70 
Percent Correctly Classified  80.31  79.32   82.48  85.92 
Sensitivity  66.42  81.63   44.40  82.44 
Specificity  89.23  77.84   98.24  87.37 
Net Benefit  0.218  0.233   0.125  0.204 
Cut Off Value 0.5  0.389  0.5  0.318 

* p < 0.10, ** p < 0.05, *** p < 0.01 
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Table 19. ICC and Variance Decomposition: Wasted - Precipitation 

 Wasted 
Hierarchical Random Intercept Nigeria  Kenya 
    
Random Effect - Variance Component with 95% Confidence Interval in Brackets 
States 0.25 [0.13, 0.38]  0.29 [0.14, 0.44] 
Clusters 0.47 [0.31, 0.62]  0.13 [0.016, 0.25] 
Households 1.17 [0.86, 1.47]  1.17 [0.68, 1.66] 
      
Intraclass Correlation - Coefficients with 95% Confidence Interval in Brackets 
States 0.049 [0.031, 0.077]  0.060 [0.036, 0.097] 
Clusters 0.139 [0.106, 0.181]  0.086 [0.062, 0.119] 
Households 0.364 [0.312, 0.42]  0.327 [0.258, 0.404] 
      
Variance Decomposition - Percent by Level 
States   4.89%     5.96%  
Clusters   9.04%     2.68%  
Households  22.52%    24.03%  
Children  63.55%    67.33%  

 
 
 
 
 

Table 20. ICC and Variance Decomposition: Stunted - Precipitation 

 Stunted 
Hierarchical Random Intercept Nigeria  Kenya 
    
Random Effect - Variance Component with 95% Confidence Interval in Brackets 
States 0.22 [0.092, 0.34]  0.099 [0.049, 0.15] 
Clusters 0.21 [0.17, 0.26]  0.13 [0.067, 0.20] 
Households 0.81 [0.69, 0.93]  1.16 [0.89, 1.43] 
      
Intraclass Correlation - Coefficients with 95% Confidence Interval in Brackets 
States 0.048 [0.027, 0.081]  0.021 [0.013, 0.034] 
Clusters 0.095 [0.07, 0.127]  0.049 [0.036, 0.067] 
Households 0.274 [0.249, 0.3]  0.297 [0.256, 0.341] 
      
Variance Decomposition - Percent by Level 
States   4.75%     2.11%  
Clusters   4.70%     2.81%  
Households  17.94%    24.74%  
Children  72.61%    70.33%  
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Table 21. Hierarchical Results: Wasted - Temperature 

 Wasted 
Hierarchical Random Intercept Nigeria  Kenya 
    
Average Marginal Effects with 95% Confidence Interval in Brackets 
Sex - Female -0.013*** [-0.020, -0.0057]  -0.0080*** [-0.012, -0.0038] 
Delivery - Clinic -0.0090** [-0.018, -0.00020]  -0.011*** [-0.016, -0.0051] 
Birth - Singleton -0.044*** [-0.072, -0.016]  -0.034*** [-0.058, -0.011] 
Weaned - By 1 Year Old -0.0044  [-0.013, 0.0040]  -0.00090  [-0.0049, 0.0031] 
Vaccines - Minimum -0.010* [-0.021, 0.00041]  -0.0048  [-0.015, 0.0051] 
Vaccines - Maximum -0.010* [-0.021, 0.00085]  -0.0025  [-0.0086, 0.0037] 
Diet - Diverse 0.0084* [-0.00076, 0.018]  -0.0032  [-0.0093, 0.0030] 
Sick - Asymptomatic -0.011*** [-0.019, -0.0026]  -0.0014  [-0.0058, 0.0030] 
Latrine - Improved -0.0038  [-0.011, 0.0036]  0.0057  [-0.0037, 0.015] 
Water - Improved -0.0038  [-0.014, 0.0061]  -0.00073  [-0.0049, 0.0034] 
Residence - Rural -0.0098  [-0.024, 0.0046]  0.00098  [-0.0044, 0.0064] 
Mothers Education      

Primary -0.0085* [-0.017, 0.00010]  -0.010*** [-0.016, -0.0040] 
Secondary -0.019*** [-0.028, -0.010]  -0.0072* [-0.015, 0.00056] 
Higher -0.041*** [-0.055, -0.028]  -0.017*** [-0.026, -0.0076] 

Wealth Index       
Poorer 0.0013  [-0.0082, 0.011]  -0.0086** [-0.016, -0.0014] 
Middle -0.011** [-0.021, -0.0018]  -0.0070* [-0.015, 0.00061] 
Richer -0.014** [-0.027, -0.0012]  -0.0093** [-0.017, -0.0016] 
Richest -0.0067  [-0.024, 0.010]  -0.011** [-0.022, -0.00058] 

Child's Age -0.024*** [-0.030, -0.017]  -0.0014  [-0.0041, 0.0013] 
Mother's Age 0.0030  [-0.0066, 0.013]  -0.0020  [-0.0066, 0.0026] 
Birth Tally -0.0018  [-0.0042, 0.00061]  0.00066  [-0.00087, 0.0022] 
Temperature 0.012*** [0.0079, 0.015]  0.0024*** [0.0012, 0.0036] 
Temperature Anomaly -0.027** [-0.052, -0.0026]  -0.000052  [-0.0062, 0.0061] 
Fixed Effect - Month & Phase Yes   Yes  
Number of Observations 44,717   26,130  
Log Pseudo Likelihood -17,419.90  -5,561.32 
      
Predicted Outcome Analysis Standard Max Net Benefit  Standard Max Net Benefit 
McIntosh-Dorfman Criterion  1.18   1.71   1.02   1.73 
Percent Correctly Classified  86.92  84.76   93.79  79.12 
Sensitivity  18.22  87.14    1.70  95.33 
Specificity  99.54  84.32  100.00  78.03 
Net Benefit  0.028  0.111   0.001  0.046 
Cut Off Value 0.5  0.150  0.5  0.043 
* p < 0.10, ** p < 0.05, *** p < 0.01 
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Table 22. Hierarchical Results: Stunted - Temperature 

 Stunted 
Hierarchical Random Intercept Nigeria  Kenya 
    
Average Marginal Effects with 95% Confidence Interval in Brackets 
Sex - Female -0.051*** [-0.059, -0.042]  -0.077*** [-0.091, -0.063] 
Delivery - Clinic -0.022*** [-0.034, -0.011]  -0.047*** [-0.065, -0.028] 
Birth - Singleton -0.13*** [-0.17, -0.091]  -0.23*** [-0.28, -0.18] 
Weaned - By 1 Year Old -0.0031  [-0.016, 0.0099]  -0.012  [-0.029, 0.0049] 
Vaccines - Minimum -0.0057  [-0.028, 0.016]  -0.029** [-0.055, -0.0022] 
Vaccines - Maximum -0.040*** [-0.060, -0.019]  -0.017** [-0.031, -0.0029] 
Diet - Diverse -0.020** [-0.037, -0.0038]  -0.0061  [-0.024, 0.012] 
Sick - Asymptomatic -0.034*** [-0.050, -0.018]  -0.014** [-0.027, -0.0011] 
Latrine - Improved -0.0049  [-0.021, 0.011]  -0.051*** [-0.072, -0.029] 
Water - Improved 0.0019  [-0.011, 0.015]  -0.010  [-0.026, 0.0060] 
Residence - Rural 0.014* [-0.000030, 0.029]  -0.018* [-0.040, 0.0033] 
Mothers Education      

Primary -0.015* [-0.030, 0.000066]  0.019  [-0.010, 0.048] 
Secondary -0.054*** [-0.074, -0.034]  -0.033** [-0.064, -0.0012] 
Higher -0.13*** [-0.16, -0.10]  -0.066*** [-0.11, -0.022] 

Wealth Index       
Poorer -0.029*** [-0.046, -0.012]  -0.048*** [-0.072, -0.024] 
Middle -0.060*** [-0.081, -0.038]  -0.087*** [-0.11, -0.060] 
Richer -0.12*** [-0.15, -0.098]  -0.11*** [-0.14, -0.075] 
Richest -0.16*** [-0.18, -0.13]  -0.16*** [-0.20, -0.13] 

Child's Age -0.0076  [-0.017, 0.0016]  -0.026*** [-0.033, -0.018] 
Mother's Age -0.036*** [-0.047, -0.025]  -0.048*** [-0.062, -0.033] 
Birth Tally 0.0037** [0.00065, 0.0068]  0.012*** [0.0071, 0.016] 
Temperature -0.0026  [-0.013, 0.0073]  -0.0092*** [-0.012, -0.0061] 
Temperature Anomaly -0.018  [-0.058, 0.021]  0.010  [-0.0043, 0.024] 
Fixed Effect - Month & Phase Yes   Yes  
Number of Observations 44,717   26,130  
Log Pseudo Likelihood -26,249.11  -14,384.23 
      
Predicted Outcome Analysis Standard Max Net Benefit  Standard Max Net Benefit 
McIntosh-Dorfman Criterion   1.56  1.59    1.43  1.70 
Percent Correctly Classified  80.28  79.23   82.58  84.96 
Sensitivity  66.35  82.06   44.59  84.48 
Specificity  89.24  77.42   98.30  85.16 
Net Benefit  0.217  0.233   0.126  0.204 
Cut Off Value 0.5  0.385  0.5  0.303 

* p < 0.10, ** p < 0.05, *** p < 0.01 
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Table 23. ICC and Variance Decomposition: Wasted - Temperature 

 Wasted 
Hierarchical Random Intercept Nigeria  Kenya 
    
Random Effect - Variance Component with 95% Confidence Interval in Brackets 
States 0.16 [0.078, 0.25]  0.33 [0.14, 0.52] 
Clusters 0.46 [0.31, 0.62]  0.13 [0.012, 0.25] 
Households 1.17 [0.87, 1.47]  1.19 [0.71, 1.68] 
      
Intraclass Correlation - Coefficients with 95% Confidence Interval in Brackets 
States 0.032 [0.02, 0.051]  0.067 [0.038, 0.113] 
Clusters 0.123 [0.092, 0.161]  0.093 [0.064, 0.134] 
Households 0.352 [0.298, 0.411]  0.334 [0.266, 0.41] 
      
Variance Decomposition - Percent by Level 
States   3.18%     6.66%  
Clusters   9.07%     2.65%  
Households  22.98%    24.11%  
Children  64.77%    66.58%  

 
 
 
 
 

Table 24. ICC and Variance Decomposition: Stunted - Temperature 

 Stunted 
Hierarchical Random Intercept Nigeria  Kenya 
    
Random Effect - Variance Component with 95% Confidence Interval in Brackets 
States 0.27 [0.16, 0.38]  0.07 [0.030, 0.11] 
Clusters 0.21 [0.17, 0.26]  0.12 [0.065, 0.18] 
Households 0.81 [0.69, 0.93]  1.16 [0.89, 1.43] 
      
Intraclass Correlation - Coefficients with 95% Confidence Interval in Brackets 
States 0.058 [0.039, 0.086]  0.015 [0.009, 0.026] 
Clusters 0.105 [0.082, 0.134]  0.042 [0.03, 0.058] 
Households 0.282 [0.259, 0.307]  0.291 [0.251, 0.335] 
      
Variance Decomposition - Percent by Level 
States   5.84%     1.50%  
Clusters   4.67%     2.69%  
Households  17.71%    24.95%  
Children  71.78%    70.87%  
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7.3.8 Additional Regression Figures 

 
Figure 20: Ranked effect of categorical malnutrition determinants. Derived from Table 7 and Table 8.  
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Figure 21: Ranked effect of continuous malnutrition determinants. Derived from Table 7 and Table 8.  
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Figure 22: Effect of precipitation anomaly on average predicted probability of malnutrition. The horizontal axis is the in-sample range of average 
total monthly rainfall anomaly (dm) during the preceding growing season. The horizontal red line demarks the observed malnutrition prevalence 
and the sloped blue line illustrates how much the expected prevalence rates change as precipitation anomaly changes. The shaded blue corresponds 
to a 95% confidence interval band on the estimate. 
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Figure 23: Effect of temperature anomaly on average predicted probability of malnutrition. The horizontal axis is the in-sample range of average 
maximum monthly temperature anomaly (°C) during the preceding growing season. The horizontal red line demarks the observed malnutrition 
prevalence and the sloped blue line illustrates how much the expected prevalence rates change as temperature anomaly changes. The shaded blue 
corresponds to a 95% confidence interval band on the estimate. 
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Figure 24: Effect of NDVI anomaly on average predicted probability of malnutrition. The horizontal axis is the in-sample range of the unit-less 
NDVI anomaly for the three greenest months during the preceding growing season. The horizontal red line demarks the observed malnutrition 
prevalence and the sloped blue line illustrates how much the expected prevalence rates change as NDVI anomaly changes. The shaded blue 
corresponds to a 95% confidence interval band on the estimate.  
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7.3.9 Discrete Results Exegesis 

• A child being female reduces their probability of wasting by 1.2 percentage points in Nigeria 

and 0.75 percentage points in Kenya, and reduces their probability of stunting by 5.1 

percentage points in Nigeria and 7.7 percentage points in Kenya.  

• Having clinical deliveries reduces the prevalence of wasting by 0.91 percentage points in 

Nigeria and 1 percentage point in Kenya, and reduces the prevalence of stunting by 2.2 

percentage points in Nigeria and 4.6 percentage points in Kenya.  

• Children of singleton births reduce the prevalence of wasting by 4.1 percentage points in 

Nigeria and 3.2 percentage points in Kenya, and reduce the prevalence of stunting by 13 

percentage points in Nigeria and 23 percentage points in Kenya.  

• Children who are weaned by 1 year old reduce their probability of wasting by 0.44 percentage 

points in Nigeria and 0.11 percentage points in Kenya, and reduce their probability of stunting 

by 0.31 percentage points in Nigeria and 1.1 percentage points in Kenya.  

• Children who have at least one vaccine reduce their probability of wasting by 1 percentage 

point in Nigeria and 0.44 percentage points in Kenya, and reduce their probability of stunting 

by 0.56 percentage points in Nigeria and 2.9 percentage points in Kenya.  

• Children who have all their vaccines reduce their probability of wasting by 1 percentage point 

in Nigeria and 0.27 percentage points in Kenya, and reduce their probability of stunting by 4 

percentage points in Nigeria and 1.6 percentage points in Kenya. Surprisingly the benefits to 

malnutrition are actually smaller in Kenya with more vaccines however the confidence 

interval overlap of the two measures is enough to make them essentially indistinguishable.  

• Children with a diverse diet reduce their probability of wasting by 0.32 percentage points in 

Kenya, and reduce their probability of stunting by 2 percentage points in Nigeria and 0.51 

percentage points in Kenya, whereas a diverse diet increases the probability of wasting by 

0.77 percentage points in Nigeria.  
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• A child being asymptomatic of fever, cough, or diarrhea reduces their probability of wasting 

by 1 percentage point in Nigeria and 0.16 percentage points in Kenya, and reduces their 

probability of stunting by 3.4 percentage points in Nigeria and 1.3 percentage points in 

Kenya.  

• Having access to an improved latrine reduces the prevalence of wasting by 0.31 percentage 

points in Nigeria, and reduces the prevalence of stunting by 0.43 percentage points in Nigeria 

and 5 percentage points in Kenya, whereas improved latrine access increases the probability 

of wasting by 0.45 percentage points in Kenya.  

• Having access to improved water reduces the prevalence of wasting by 0.26 percentage points 

in Nigeria and 0.02 percentage points in Kenya, and reduces the prevalence of stunting by 1.1 

percentage points in Kenya, whereas improved water access increases the probability of 

stunting by 0.2 percentage points in Kenya.  

• Children living in rural areas have reduced prevalence of wasting by 0.86 percentage points in 

Nigeria and 0.03 percentage points in Kenya, and reduced prevalence of stunting by 1.4 

percentage points in Kenya, whereas rural residence increases the prevalence of stunting by 

1.5 percentage points in Nigeria.  
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7.3.10 Ancillary Regression Tables 

7.3.10.1 Unconditional Hierarchical Model Results 

 
Table 25. Hierarchical Results: Wasted - Fully Unconditional 

 Wasted 
Hierarchical Fully Unconditional Nigeria  Kenya 

    
Fixed Effect - Coefficient with 95% Confidence Interval in Brackets 
Constant -2.37 [-2.56, -2.17]  -3.53 [-3.85, -3.20] 
Observations 48,068   28,241  
Distribution Family Bernoulli   Bernoulli  
Link Function  Logit   Logit  
      
Random Effect - Variance Component with 95% Confidence Interval in Brackets 
States 0.35 [0.22, 0.49]  0.6 [0.34, 0.86] 
Clusters 0.47 [0.31, 0.64]  0.34 [0.20, 0.47] 
Households 0.87 [0.62, 1.13]  1.06 [0.66, 1.46] 
      
Intraclass Correlation - Coefficients with 95% Confidence Interval in Brackets 
States 0.071 [0.051, 0.098]  0.110 [0.074, 0.17] 
Clusters 0.170 [0.13, 0.21]  0.180 [0.14, 0.23] 
Households 0.340 [0.29, 0.4]  0.380 [0.33, 0.43] 
      
Variance Decomposition - Percent by Level 
States 7.09%   11.35%  
Clusters 9.48%   6.35%  
Households 17.50%   20.09%  
Children 65.93%   62.22%  
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Table 26. Hierarchical Results: Stunted - Fully Unconditional 

 Stunted 
Hierarchical Fully Unconditional Nigeria  Kenya 

    
Fixed Effect - Coefficient with 95% Confidence Interval in Brackets 
Constant -0.79 [-1.04, - 0.54]  -1.14 [-1.25, -1.03] 
Observations 48,068   28,241  
Distribution Family Bernoulli   Bernoulli  
Link Function  Logit   Logit  
      
Random Effect - Variance Component with 95% Confidence Interval in Brackets 
States 0.52 [0.36, 0.69]  0.086 [0.040, 0.13] 
Clusters 0.33 [0.26, 0.41]  0.28 [0.21, 0.34] 
Households 0.64 [0.51, 0.76]  0.92 [0.70, 1.14] 
      
Intraclass Correlation - Coefficients with 95% Confidence Interval in Brackets 
States 0.110 [0.082, 0.14]  0.019 [0.011, 0.031] 
Clusters 0.180 [0.15, 0.21]  0.080 [0.066, 0.096] 
Households 0.310 [0.28, 0.35]  0.280 [0.25, 0.32] 
      
Variance Decomposition - Percent by Level 
States 10.94%   1.87%  
Clusters 6.99%   6.11%  
Households 13.31%   20.08%  
Children 68.77%   71.94%  
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7.3.10.2 Linear Probability Model Results 

Table 27. LPM Results: Wasted - Base 

Linear Probability Model Wasted 
 Nigeria  Kenya 
Average Marginal Effects with 95% Confidence Interval in Brackets 
Sex – Female -0.014*** [-0.021, -0.0077]  -0.013*** [-0.018, -0.0067] 
Delivery – Clinic -0.029*** [-0.037, -0.021]  -0.017*** [-0.023, -0.010] 
Birth – Singleton -0.041*** [-0.062, -0.021]  -0.046*** [-0.069, -0.024] 
Weaned – By 1 Year Old -0.0050  [-0.013, 0.0025]  -0.0048  [-0.013, 0.0035] 
Vaccines – Minimum -0.021*** [-0.030, -0.013]  -0.029*** [-0.048, -0.0087] 
Vaccines – Maximum -0.010** [-0.019, -0.0014]  -0.0035  [-0.0097, 0.0026] 
Diet – Diverse -0.00040  [-0.0082, 0.0074]  -0.0098** [-0.018, -0.0014] 
Sick – Asymptomatic -0.016*** [-0.023, -0.0079]  0.0022  [-0.0037, 0.0080] 
Latrine – Improved 0.025*** [0.018, 0.033]  0.0070* [-0.00039, 0.014] 
Water – Improved 0.017*** [0.0093, 0.025]  -0.0045  [-0.011, 0.0022] 
Residence – Rural -0.020*** [-0.028, -0.011]  -0.0068* [-0.014, 0.00062] 
Mothers Education      

Primary -0.048*** [-0.057, -0.039]  -0.073*** [-0.083, -0.063] 
Secondary -0.063*** [-0.073, -0.053]  -0.069*** [-0.081, -0.058] 
Higher -0.088*** [-0.10, -0.072]  -0.077*** [-0.091, -0.063] 

Wealth Index       
Poorer -0.014** [-0.025, -0.0028]  -0.025*** [-0.034, -0.016] 
Middle -0.037*** [-0.049, -0.026]  -0.024*** [-0.034, -0.014] 
Richer -0.038*** [-0.050, -0.025]  -0.026*** [-0.036, -0.015] 
Richest -0.029*** [-0.045, -0.014]  -0.032*** [-0.044, -0.019] 

Child’s Age -0.024*** [-0.027, -0.020]  -0.0023  [-0.0053, 0.00072] 
Mother’s Age -0.0078** [-0.015, -0.00033]  -0.00065  [-0.0075, 0.0062] 
Birth Tally 0.00035  [-0.0018, 0.0025]  -0.00018  [-0.0024, 0.0020] 
Fixed Effect – Month & Phase Yes   Yes  
Number of Observations 44,735    26,299   
R2 0.045    0.039   
Outlying Predictions Count 723   227  
* p < 0.10, ** p < 0.05, *** p < 0.01 
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Table 28. LPM Results: Stunted - Base 

Linear Probability Model Stunted 
 Nigeria  Kenya 
Average Marginal Effects with 95% Confidence Interval in Brackets 
Sex – Female -0.042*** [-0.051, -0.034]  -0.068*** [-0.079, -0.058] 
Delivery – Clinic -0.053*** [-0.064, -0.042]  -0.044*** [-0.057, -0.031] 
Birth – Singleton -0.10*** [-0.13, -0.075]  -0.20*** [-0.23, -0.16] 
Weaned – By 1 Year Old -0.012** [-0.022, -0.0014]  -0.015* [-0.031, 0.00037] 
Vaccines – Minimum 0.0036  [-0.0073, 0.015]  -0.014  [-0.042, 0.013] 
Vaccines – Maximum -0.055*** [-0.068, -0.043]  -0.013** [-0.025, -0.00080] 
Diet – Diverse -0.018*** [-0.029, -0.0082]  0.0031  [-0.013, 0.019] 
Sick – Asymptomatic -0.024*** [-0.034, -0.015]  -0.011** [-0.022, -0.00021] 
Latrine – Improved 0.025*** [0.015, 0.034]  -0.039*** [-0.053, -0.025] 
Water – Improved 0.0048  [-0.0051, 0.015]  -0.014** [-0.027, -0.0021] 
Residence – Rural 0.0035  [-0.0077, 0.015]  -0.0086  [-0.023, 0.0058] 
Mothers Education      

Primary -0.073*** [-0.085, -0.061]  0.063*** [0.047, 0.079] 
Secondary -0.12*** [-0.13, -0.11]  0.017  [-0.0035, 0.037] 
Higher -0.16*** [-0.18, -0.14]  -0.0019  [-0.028, 0.024] 

Wealth Index       
Poorer -0.035*** [-0.049, -0.022]  -0.038*** [-0.056, -0.021] 
Middle -0.077*** [-0.092, -0.062]  -0.076*** [-0.095, -0.058] 
Richer -0.13*** [-0.14, -0.11]  -0.088*** [-0.11, -0.068] 
Richest -0.16*** [-0.18, -0.14]  -0.13*** [-0.15, -0.11] 

Child’s Age -0.0045* [-0.0089, 0.000037]  -0.023*** [-0.029, -0.017] 
Mother’s Age -0.045*** [-0.055, -0.035]  -0.032*** [-0.045, -0.020] 
Birth Tally 0.0053*** [0.0026, 0.0080]  0.0079*** [0.0042, 0.012] 
Fixed Effect – Month & Phase Yes   Yes  
Number of Observations 44,735    26,299   
R2 0.12    0.081   
Outlying Predictions Count 553   447  
* p < 0.10, ** p < 0.05, *** p < 0.01 

  



 

 
 

235 
 

Table 29. LPM Results: Wasted - NDVI 

Linear Probability Model Wasted 
 Nigeria  Kenya 
Average Marginal Effects with 95% Confidence Interval in Brackets 
Sex – Female -0.015*** [-0.021, -0.0081]  -0.012*** [-0.018, -0.0064] 
Delivery – Clinic -0.020*** [-0.028, -0.012]  -0.015*** [-0.022, -0.0087] 
Birth – Singleton -0.046*** [-0.066, -0.025]  -0.046*** [-0.068, -0.024] 
Weaned – By 1 Year Old -0.0039  [-0.011, 0.0036]  -0.0038  [-0.012, 0.0045] 
Vaccines – Minimum -0.019*** [-0.028, -0.010]  -0.026** [-0.046, -0.0059] 
Vaccines – Maximum -0.0061  [-0.015, 0.0027]  -0.0025  [-0.0086, 0.0036] 
Diet – Diverse 0.0016  [-0.0061, 0.0094]  -0.0080* [-0.016, 0.00042] 
Sick – Asymptomatic -0.014*** [-0.022, -0.0065]  -0.000019  [-0.0058, 0.0058] 
Latrine – Improved 0.014*** [0.0056, 0.021]  0.0085** [0.0011, 0.016] 
Water – Improved 0.0096** [0.0020, 0.017]  -0.0054  [-0.012, 0.0012] 
Residence – Rural -0.0073* [-0.016, 0.0012]  0.0015  [-0.0060, 0.0091] 
Mothers Education      

Primary -0.030*** [-0.039, -0.020]  -0.049*** [-0.060, -0.038] 
Secondary -0.040*** [-0.051, -0.030]  -0.043*** [-0.056, -0.031] 
Higher -0.067*** [-0.083, -0.051]  -0.051*** [-0.065, -0.036] 

Wealth Index       
Poorer -0.0055  [-0.016, 0.0053]  -0.018*** [-0.027, -0.0090] 
Middle -0.021*** [-0.032, -0.0094]  -0.018*** [-0.027, -0.0079] 
Richer -0.021*** [-0.034, -0.0084]  -0.020*** [-0.030, -0.0094] 
Richest -0.021*** [-0.037, -0.0058]  -0.031*** [-0.043, -0.018] 

Child’s Age -0.024*** [-0.027, -0.020]  -0.0021  [-0.0051, 0.00089] 
Mother’s Age -0.0016  [-0.0090, 0.0059]  -0.0014  [-0.0083, 0.0054] 
Birth Tally -0.00092  [-0.0030, 0.0012]  0.00025  [-0.0019, 0.0024] 
NDVI -0.22*** [-0.25, -0.19]  -0.15*** [-0.18, -0.12] 
NDVI Anomaly 0.26*** [0.13, 0.39]  0.19*** [0.090, 0.28] 
Fixed Effect – Month & Phase Yes   Yes  
Number of Observations 44,717   26,299   
R2 0.050   0.045  
Outlying Predictions Count 838   1,068  
* p < 0.10, ** p < 0.05, *** p < 0.01 
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Table 30. LPM Results: Stunted - NDVI 

Linear Probability Model Stunted 
 Nigeria  Kenya 
Average Marginal Effects with 95% Confidence Interval in Brackets 
Sex – Female -0.043*** [-0.051, -0.034]  -0.069*** [-0.079, -0.058] 
Delivery – Clinic -0.040*** [-0.052, -0.029]  -0.045*** [-0.058, -0.032] 
Birth – Singleton -0.11*** [-0.13, -0.082]  -0.20*** [-0.23, -0.16] 
Weaned – By 1 Year Old -0.010* [-0.021, 0.00012]  -0.016** [-0.032, -0.00079] 
Vaccines – Minimum 0.0069  [-0.0041, 0.018]  -0.018  [-0.045, 0.0094] 
Vaccines – Maximum -0.049*** [-0.062, -0.037]  -0.015** [-0.027, -0.0023] 
Diet – Diverse -0.016*** [-0.026, -0.0056]  0.0010  [-0.015, 0.017] 
Sick – Asymptomatic -0.023*** [-0.033, -0.013]  -0.0091  [-0.020, 0.0017] 
Latrine – Improved 0.0072  [-0.0028, 0.017]  -0.040*** [-0.054, -0.026] 
Water – Improved -0.0062  [-0.016, 0.0036]  -0.013** [-0.025, -0.0010] 
Residence – Rural 0.021*** [0.0097, 0.032]  -0.019** [-0.034, -0.0042] 
Mothers Education      

Primary -0.045*** [-0.058, -0.033]  0.038*** [0.020, 0.055] 
Secondary -0.087*** [-0.10, -0.072]  -0.011  [-0.032, 0.011] 
Higher -0.13*** [-0.15, -0.11]  -0.029** [-0.057, -0.0022] 

Wealth Index       
Poorer -0.023*** [-0.037, -0.0098]  -0.046*** [-0.063, -0.028] 
Middle -0.053*** [-0.068, -0.038]  -0.083*** [-0.10, -0.064] 
Richer -0.10*** [-0.12, -0.087]  -0.095*** [-0.12, -0.075] 
Richest -0.14*** [-0.16, -0.12]  -0.13*** [-0.16, -0.11] 

Child’s Age -0.0046** [-0.0091, -0.00017]  -0.023*** [-0.029, -0.018] 
Mother’s Age -0.036*** [-0.046, -0.026]  -0.032*** [-0.044, -0.019] 
Birth Tally 0.0034** [0.00071, 0.0061]  0.0076*** [0.0038, 0.011] 
NDVI -0.31*** [-0.35, -0.27]  0.18*** [0.13, 0.22] 
NDVI Anomaly 0.61*** [0.45, 0.78]  -0.048  [-0.22, 0.12] 
Fixed Effect – Month & Phase Yes   Yes  
Number of Observations 44,717   26,299   
R2 0.12   0.083  
Outlying Predictions Count 668   471  
* p < 0.10, ** p < 0.05, *** p < 0.01 
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Table 31. LPM Results: Wasted - Precipitation 

Linear Probability Model Wasted 
 Nigeria  Kenya 
Average Marginal Effects with 95% Confidence Interval in Brackets 
Sex – Female -0.014*** [-0.021, -0.0076]  -0.012*** [-0.018, -0.0067] 
Delivery – Clinic -0.028*** [-0.036, -0.020]  -0.018*** [-0.025, -0.012] 
Birth – Singleton -0.042*** [-0.063, -0.022]  -0.046*** [-0.069, -0.024] 
Weaned – By 1 Year Old -0.0035  [-0.011, 0.0040]  -0.0043  [-0.013, 0.0040] 
Vaccines – Minimum -0.021*** [-0.030, -0.012]  -0.027*** [-0.047, -0.0074] 
Vaccines – Maximum -0.0078* [-0.017, 0.00098]  -0.0041  [-0.010, 0.0020] 
Diet – Diverse 0.0012  [-0.0066, 0.0090]  -0.010** [-0.019, -0.0018] 
Sick – Asymptomatic -0.017*** [-0.024, -0.0088]  0.00047  [-0.0053, 0.0063] 
Latrine – Improved 0.020*** [0.012, 0.028]  0.0069* [-0.00046, 0.014] 
Water – Improved 0.012*** [0.0046, 0.020]  -0.0032  [-0.0098, 0.0035] 
Residence – Rural -0.013*** [-0.022, -0.0045]  -0.0049  [-0.012, 0.0025] 
Mothers Education      

Primary -0.035*** [-0.044, -0.025]  -0.061*** [-0.071, -0.050] 
Secondary -0.044*** [-0.055, -0.034]  -0.055*** [-0.067, -0.043] 
Higher -0.072*** [-0.088, -0.056]  -0.062*** [-0.076, -0.047] 

Wealth Index       
Poorer -0.0079  [-0.019, 0.0030]  -0.022*** [-0.031, -0.012] 
Middle -0.026*** [-0.037, -0.014]  -0.021*** [-0.030, -0.011] 
Richer -0.026*** [-0.039, -0.013]  -0.024*** [-0.034, -0.013] 
Richest -0.018** [-0.034, -0.0025]  -0.032*** [-0.045, -0.020] 

Child’s Age -0.024*** [-0.027, -0.020]  -0.0024  [-0.0054, 0.00065] 
Mother’s Age -0.0048  [-0.012, 0.0026]  -0.0028  [-0.0098, 0.0041] 
Birth Tally 0.000052  [-0.0021, 0.0022]  0.00066  [-0.0015, 0.0029] 
Precipitation -0.026*** [-0.030, -0.021]  -0.022*** [-0.027, -0.017] 
Precipitation Anomaly 0.0070  [-0.0054, 0.019]  0.017* [-0.0013, 0.035] 
Fixed Effect – Month & Phase Yes   Yes  
Number of Observations 44,717   26,299  
R2 0.047    0.041   
Outlying Predictions Count 879   976  
* p < 0.10, ** p < 0.05, *** p < 0.01 
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Table 32. LPM Results: Stunted - Precipitation  

Linear Probability Model Stunted 
 Nigeria  Kenya 
Average Marginal Effects with 95% Confidence Interval in Brackets 
Sex – Female -0.042*** [-0.051, -0.034]  -0.068*** [-0.079, -0.058] 
Delivery – Clinic -0.052*** [-0.064, -0.041]  -0.043*** [-0.056, -0.030] 
Birth – Singleton -0.10*** [-0.13, -0.078]  -0.20*** [-0.23, -0.16] 
Weaned – By 1 Year Old -0.0082  [-0.019, 0.0022]  -0.016** [-0.031, -0.0000091] 
Vaccines – Minimum 0.0051  [-0.0058, 0.016]  -0.015  [-0.043, 0.012] 
Vaccines – Maximum -0.050*** [-0.063, -0.038]  -0.013** [-0.025, -0.00042] 
Diet – Diverse -0.015*** [-0.025, -0.0050]  0.0032  [-0.013, 0.019] 
Sick – Asymptomatic -0.026*** [-0.036, -0.016]  -0.0099* [-0.021, 0.00096] 
Latrine – Improved 0.012** [0.0017, 0.021]  -0.039*** [-0.053, -0.025] 
Water – Improved -0.0072  [-0.017, 0.0026]  -0.015** [-0.027, -0.0029] 
Residence – Rural 0.019*** [0.0079, 0.031]  -0.010  [-0.025, 0.0044] 
Mothers Education      

Primary -0.041*** [-0.054, -0.029]  0.055*** [0.038, 0.072] 
Secondary -0.077*** [-0.091, -0.062]  0.0071  [-0.014, 0.028] 
Higher -0.12*** [-0.15, -0.10]  -0.012  [-0.039, 0.015] 

Wealth Index       
Poorer -0.021*** [-0.035, -0.0073]  -0.041*** [-0.059, -0.024] 
Middle -0.049*** [-0.064, -0.033]  -0.078*** [-0.097, -0.060] 
Richer -0.099*** [-0.12, -0.081]  -0.090*** [-0.11, -0.069] 
Richest -0.13*** [-0.15, -0.11]  -0.13*** [-0.15, -0.11] 

Child’s Age -0.0048** [-0.0092, -0.00030]  -0.023*** [-0.029, -0.017] 
Mother’s Age -0.039*** [-0.048, -0.029]  -0.031*** [-0.043, -0.018] 
Birth Tally 0.0047*** [0.0020, 0.0074]  0.0074*** [0.0036, 0.011] 
Precipitation -0.059*** [-0.065, -0.052]  0.014*** [0.0042, 0.024] 
Precipitation Anomaly 0.041*** [0.025, 0.058]  -0.020  [-0.059, 0.018] 
Fixed Effect – Month & Phase Yes   Yes  
Number of Observations 44,717   26,299  
R2 0.12    0.082   
Outlying Predictions Count 673   443  
* p < 0.10, ** p < 0.05, *** p < 0.01 
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Table 33. LPM Results: Wasted - Temperature 

Linear Probability Model Wasted 
 Nigeria  Kenya 
Average Marginal Effects with 95% Confidence Interval in Brackets 
Sex – Female -0.014*** [-0.021, -0.0076]  -0.012*** [-0.018, -0.0065] 
Delivery – Clinic -0.019*** [-0.027, -0.011]  -0.017*** [-0.023, -0.0100] 
Birth – Singleton -0.045*** [-0.066, -0.025]  -0.046*** [-0.068, -0.023] 
Weaned – By 1 Year Old -0.0027  [-0.010, 0.0048]  -0.0036  [-0.012, 0.0047] 
Vaccines – Minimum -0.015*** [-0.024, -0.0060]  -0.027*** [-0.046, -0.0066] 
Vaccines – Maximum -0.0046  [-0.013, 0.0041]  -0.0028  [-0.0089, 0.0034] 
Diet – Diverse 0.0018  [-0.0060, 0.0095]  -0.0078* [-0.016, 0.00067] 
Sick – Asymptomatic -0.014*** [-0.022, -0.0063]  0.0028  [-0.0031, 0.0086] 
Latrine – Improved 0.0098** [0.0018, 0.018]  0.0075** [0.000085, 0.015] 
Water – Improved 0.0071* [-0.00059, 0.015]  -0.0057* [-0.012, 0.00097] 
Residence – Rural -0.013*** [-0.021, -0.0043]  -0.0032  [-0.011, 0.0042] 
Mothers Education      

Primary -0.023*** [-0.033, -0.014]  -0.065*** [-0.076, -0.055] 
Secondary -0.033*** [-0.044, -0.023]  -0.060*** [-0.072, -0.048] 
Higher -0.060*** [-0.076, -0.044]  -0.068*** [-0.082, -0.054] 

Wealth Index       
Poorer -0.00019  [-0.011, 0.011]  -0.022*** [-0.031, -0.013] 
Middle -0.014** [-0.026, -0.0025]  -0.019*** [-0.029, -0.0096] 
Richer -0.014** [-0.027, -0.0011]  -0.020*** [-0.031, -0.0097] 
Richest -0.0045  [-0.020, 0.011]  -0.025*** [-0.038, -0.013] 

Child’s Age -0.024*** [-0.027, -0.020]  -0.0022  [-0.0053, 0.00078] 
Mother’s Age 0.00090  [-0.0066, 0.0084]  0.0012  [-0.0058, 0.0081] 
Birth Tally -0.0015  [-0.0036, 0.00064]  -0.00076  [-0.0030, 0.0014] 
Temperature 0.017*** [0.015, 0.019]  0.0032*** [0.0022, 0.0041] 
Temperature Anomaly -0.038*** [-0.051, -0.026]  -0.0017  [-0.0095, 0.0060] 
Fixed Effect – Month & Phase Yes   Yes  
Number of Observations 44,717   26,299  
R2 0.052    0.041   
Outlying Predictions Count 716   707  
* p < 0.10, ** p < 0.05, *** p < 0.01 
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Table 34. LPM Results: Stunted - Temperature 

Linear Probability Model Stunted 
 Nigeria  Kenya 
Average Marginal Effects with 95% Confidence Interval in Brackets 
Sex – Female -0.042*** [-0.051, -0.034]  -0.069*** [-0.079, -0.058] 
Delivery – Clinic -0.045*** [-0.056, -0.034]  -0.044*** [-0.057, -0.031] 
Birth – Singleton -0.10*** [-0.13, -0.079]  -0.20*** [-0.24, -0.16] 
Weaned – By 1 Year Old -0.010* [-0.020, 0.00048]  -0.018** [-0.034, -0.0026] 
Vaccines – Minimum 0.0090  [-0.0020, 0.020]  -0.020  [-0.047, 0.0076] 
Vaccines – Maximum -0.051*** [-0.063, -0.038]  -0.015** [-0.027, -0.0028] 
Diet – Diverse -0.017*** [-0.027, -0.0066]  -0.0021  [-0.018, 0.014] 
Sick – Asymptomatic -0.023*** [-0.033, -0.014]  -0.013** [-0.024, -0.0019] 
Latrine – Improved 0.012** [0.0022, 0.022]  -0.040*** [-0.054, -0.026] 
Water – Improved -0.0031  [-0.013, 0.0068]  -0.011* [-0.024, 0.00086] 
Residence – Rural 0.0090  [-0.0023, 0.020]  -0.017** [-0.032, -0.0029] 
Mothers Education      

Primary -0.053*** [-0.066, -0.040]  0.045*** [0.028, 0.061] 
Secondary -0.096*** [-0.11, -0.081]  -0.0063  [-0.027, 0.015] 
Higher -0.14*** [-0.16, -0.12]  -0.023* [-0.050, 0.0035] 

Wealth Index       
Poorer -0.024*** [-0.038, -0.011]  -0.046*** [-0.064, -0.029] 
Middle -0.058*** [-0.073, -0.043]  -0.087*** [-0.11, -0.068] 
Richer -0.11*** [-0.13, -0.092]  -0.10*** [-0.12, -0.082] 
Richest -0.14*** [-0.16, -0.12]  -0.15*** [-0.17, -0.12] 

Child’s Age -0.0047** [-0.0092, -0.00021]  -0.023*** [-0.029, -0.018] 
Mother’s Age -0.038*** [-0.048, -0.029]  -0.037*** [-0.049, -0.024] 
Birth Tally 0.0038*** [0.0011, 0.0066]  0.0094*** [0.0056, 0.013] 
Temperature 0.013*** [0.011, 0.016]  -0.0079*** [-0.0095, -0.0063] 
Temperature Anomaly -0.032*** [-0.048, -0.017]  0.00080  [-0.012, 0.014] 
Fixed Effect – Month & Phase Yes   Yes  
Number of Observations 44,717   26,299  
R2 0.12    0.085   
Outlying Predictions Count 599   493  
* p < 0.10, ** p < 0.05, *** p < 0.01 
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7.3.10.3 Logit Model Results 

Table 35. Logit Results: Wasted - Base 

Logit Model Wasted 
 Nigeria  Kenya 
Average Marginal Effects with 95% Confidence Interval in Brackets 
Sex – Female -0.014*** [-0.021, -0.0076]  -0.013*** [-0.018, -0.0068] 
Delivery – Clinic -0.032*** [-0.040, -0.024]  -0.018*** [-0.025, -0.011] 
Birth – Singleton -0.044*** [-0.067, -0.022]  -0.048*** [-0.072, -0.024] 
Weaned – By 1 Year Old -0.0059  [-0.014, 0.0022]  -0.0036  [-0.011, 0.0040] 
Vaccines – Minimum -0.018*** [-0.026, -0.010]  -0.013** [-0.026, -0.0010] 
Vaccines – Maximum -0.014** [-0.025, -0.0033]  -0.0059* [-0.013, 0.00079] 
Diet – Diverse 0.000013  [-0.0080, 0.0081]  -0.0072* [-0.015, 0.00088] 
Sick – Asymptomatic -0.016*** [-0.024, -0.0084]  0.0032  [-0.0027, 0.0090] 
Latrine – Improved 0.024*** [0.016, 0.032]  0.0092* [-0.00079, 0.019] 
Water – Improved 0.015*** [0.0081, 0.023]  -0.0034  [-0.0097, 0.0030] 
Residence – Rural -0.022*** [-0.031, -0.012]  -0.0095** [-0.019, -0.00047] 
Mothers Education      

Primary -0.047*** [-0.056, -0.038]  -0.060*** [-0.070, -0.051] 
Secondary -0.062*** [-0.072, -0.052]  -0.059*** [-0.071, -0.047] 
Higher -0.090*** [-0.11, -0.074]  -0.071*** [-0.086, -0.056] 

Wealth Index       
Poorer -0.012** [-0.022, -0.0023]  -0.025*** [-0.034, -0.016] 
Middle -0.035*** [-0.046, -0.024]  -0.024*** [-0.034, -0.013] 
Richer -0.035*** [-0.048, -0.022]  -0.026*** [-0.038, -0.015] 
Richest -0.024*** [-0.041, -0.0076]  -0.032*** [-0.045, -0.019] 

Child’s Age -0.026*** [-0.029, -0.022]  -0.0024  [-0.0055, 0.00073] 
Mother’s Age -0.0080** [-0.016, -0.00026]  -0.0022  [-0.0090, 0.0046] 
Birth Tally 0.00037  [-0.0017, 0.0025]  0.00038  [-0.0016, 0.0023] 
Fixed Effect – Month & Phase Yes   Yes  
Number of Observations    44,735     26,299  
Log Pseudo Likelihood   -18,287.02  -5,760.24 
Pseudo R2  0.053    0.072  
Pearson’s !! p-Value  0.341    0.753  
* p < 0.10, ** p < 0.05, *** p < 0.01 
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Table 36. Logit Results: Stunted - Base 

Logit Model Stunted 
 Nigeria  Kenya 
Average Marginal Effects with 95% Confidence Interval in Brackets 
Sex – Female -0.043*** [-0.051, -0.034]  -0.069*** [-0.079, -0.058] 
Delivery – Clinic -0.053*** [-0.064, -0.042]  -0.042*** [-0.055, -0.030] 
Birth – Singleton -0.10*** [-0.13, -0.077]  -0.20*** [-0.24, -0.16] 
Weaned – By 1 Year Old -0.0074  [-0.018, 0.0031]  -0.0092  [-0.025, 0.0063] 
Vaccines – Minimum 0.0014  [-0.0089, 0.012]  -0.019  [-0.045, 0.0074] 
Vaccines – Maximum -0.051*** [-0.064, -0.037]  -0.010* [-0.022, 0.0016] 
Diet – Diverse -0.019*** [-0.029, -0.0085]  0.0026  [-0.013, 0.018] 
Sick – Asymptomatic -0.024*** [-0.034, -0.014]  -0.011** [-0.022, -0.00065] 
Latrine – Improved 0.025*** [0.015, 0.035]  -0.042*** [-0.057, -0.027] 
Water – Improved 0.0044  [-0.0051, 0.014]  -0.014** [-0.025, -0.0019] 
Residence – Rural 0.0046  [-0.0071, 0.016]  -0.0095  [-0.025, 0.0057] 
Mothers Education      

Primary -0.068*** [-0.080, -0.056]  0.059*** [0.045, 0.074] 
Secondary -0.12*** [-0.13, -0.10]  0.0084  [-0.011, 0.028] 
Higher -0.18*** [-0.21, -0.16]  -0.030* [-0.060, 0.00080] 

Wealth Index       
Poorer -0.033*** [-0.046, -0.019]  -0.036*** [-0.053, -0.019] 
Middle -0.072*** [-0.086, -0.057]  -0.072*** [-0.090, -0.054] 
Richer -0.12*** [-0.14, -0.11]  -0.086*** [-0.11, -0.065] 
Richest -0.16*** [-0.18, -0.14]  -0.13*** [-0.16, -0.11] 

Child’s Age -0.0046** [-0.0088, -0.00029]  -0.021*** [-0.027, -0.016] 
Mother’s Age -0.046*** [-0.056, -0.036]  -0.033*** [-0.046, -0.021] 
Birth Tally 0.0059*** [0.0032, 0.0086]  0.0080*** [0.0043, 0.012] 
Fixed Effect – Month & Phase Yes   Yes  
Number of Observations       44,735        26,299  
Log Pseudo Likelihood   -27,099.77  -14,756.69 
Pseudo R2  0.095    0.072  
Pearson’s !! p-Value  0.061    0.192  
* p < 0.10, ** p < 0.05, *** p < 0.01 
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Table 37. Logit Results: Wasted - NDVI 

Logit Model Wasted 
 Nigeria  Kenya 
Average Marginal Effects with 95% Confidence Interval in Brackets 
Sex – Female -0.015*** [-0.021, -0.0080]  -0.012*** [-0.018, -0.0063] 
Delivery – Clinic -0.023*** [-0.032, -0.015]  -0.017*** [-0.024, -0.0096] 
Birth – Singleton -0.050*** [-0.072, -0.027]  -0.049*** [-0.073, -0.025] 
Weaned – By 1 Year Old -0.0047  [-0.013, 0.0034]  -0.0025  [-0.010, 0.0049] 
Vaccines – Minimum -0.016*** [-0.024, -0.0079]  -0.010* [-0.022, 0.0018] 
Vaccines – Maximum -0.010* [-0.021, 0.00090]  -0.0049  [-0.012, 0.0018] 
Diet – Diverse 0.0021  [-0.0060, 0.010]  -0.0045  [-0.013, 0.0039] 
Sick – Asymptomatic -0.014*** [-0.022, -0.0067]  0.0011  [-0.0047, 0.0069] 
Latrine – Improved 0.012*** [0.0044, 0.020]  0.012** [0.0015, 0.022] 
Water – Improved 0.0083** [0.00089, 0.016]  -0.0048  [-0.011, 0.0015] 
Residence – Rural -0.010** [-0.020, -0.00081]  -0.0026  [-0.011, 0.0062] 
Mothers Education      

Primary -0.028*** [-0.038, -0.019]  -0.035*** [-0.045, -0.026] 
Secondary -0.041*** [-0.052, -0.030]  -0.033*** [-0.045, -0.020] 
Higher -0.072*** [-0.089, -0.055]  -0.046*** [-0.062, -0.030] 

Wealth Index       
Poorer -0.0035  [-0.013, 0.0062]  -0.019*** [-0.029, -0.010] 
Middle -0.018*** [-0.029, -0.0072]  -0.018*** [-0.029, -0.0079] 
Richer -0.020*** [-0.033, -0.0067]  -0.021*** [-0.032, -0.0092] 
Richest -0.016* [-0.033, 0.00038]  -0.029*** [-0.042, -0.016] 

Child’s Age -0.026*** [-0.029, -0.022]  -0.0022  [-0.0053, 0.00088] 
Mother’s Age -0.0018  [-0.0095, 0.0060]  -0.0035  [-0.010, 0.0033] 
Birth Tally -0.00096  [-0.0031, 0.0011]  0.00094  [-0.00099, 0.0029] 
NDVI -0.21*** [-0.24, -0.18]  -0.11*** [-0.13, -0.087] 
NDVI Anomaly 0.20*** [0.069, 0.33]  0.21*** [0.13, 0.30] 
Fixed Effect – Month & Phase Yes   Yes  
Number of Observations      44,717        26,299  
Log Pseudo Likelihood   -18,172.69  -5,700.61 
Pseudo R2  0.059    0.081  
Pearson’s !! p-Value  0.596    0.903  
* p < 0.10, ** p < 0.05, *** p < 0.01 
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Table 38. Logit Results: Stunted - NDVI 

Logit Model Stunted 
 Nigeria  Kenya 
Average Marginal Effects with 95% Confidence Interval in Brackets 
Sex – Female -0.043*** [-0.051, -0.035]  -0.069*** [-0.080, -0.059] 
Delivery – Clinic -0.040*** [-0.051, -0.028]  -0.044*** [-0.056, -0.031] 
Birth – Singleton -0.11*** [-0.14, -0.085]  -0.20*** [-0.24, -0.16] 
Weaned – By 1 Year Old -0.0056  [-0.016, 0.0049]  -0.011  [-0.026, 0.0049] 
Vaccines – Minimum 0.0047  [-0.0057, 0.015]  -0.022* [-0.048, 0.0040] 
Vaccines – Maximum -0.044*** [-0.057, -0.030]  -0.012* [-0.024, 0.000023] 
Diet – Diverse -0.016*** [-0.027, -0.0059]  0.00020  [-0.015, 0.016] 
Sick – Asymptomatic -0.023*** [-0.032, -0.013]  -0.0095* [-0.020, 0.0013] 
Latrine – Improved 0.0064  [-0.0037, 0.016]  -0.044*** [-0.059, -0.029] 
Water – Improved -0.0071  [-0.017, 0.0025]  -0.012** [-0.024, -0.00074] 
Residence – Rural 0.021*** [0.0096, 0.033]  -0.019** [-0.035, -0.0038] 
Mothers Education      

Primary -0.039*** [-0.051, -0.027]  0.035*** [0.018, 0.051] 
Secondary -0.084*** [-0.099, -0.070]  -0.017  [-0.039, 0.0039] 
Higher -0.15*** [-0.18, -0.13]  -0.055*** [-0.086, -0.024] 

Wealth Index       
Poorer -0.020*** [-0.033, -0.0066]  -0.043*** [-0.060, -0.026] 
Middle -0.047*** [-0.061, -0.032]  -0.078*** [-0.096, -0.060] 
Richer -0.098*** [-0.12, -0.081]  -0.092*** [-0.11, -0.071] 
Richest -0.15*** [-0.17, -0.12]  -0.14*** [-0.16, -0.11] 

Child’s Age -0.0047** [-0.0089, -0.00041]  -0.022*** [-0.027, -0.016] 
Mother’s Age -0.036*** [-0.046, -0.027]  -0.033*** [-0.046, -0.020] 
Birth Tally 0.0039*** [0.0012, 0.0066]  0.0076*** [0.0040, 0.011] 
NDVI -0.31*** [-0.34, -0.27]  0.17*** [0.13, 0.22] 
NDVI Anomaly 0.63*** [0.46, 0.80]  -0.044  [-0.21, 0.12] 
Fixed Effect – Month & Phase Yes   Yes  
Number of Observations       44,717         26,299  
Log Pseudo Likelihood   -26,929.20  -14,729.00 
Pseudo R2  0.100    0.074  
Pearson’s !! p-Value  0.058    0.175  
* p < 0.10, ** p < 0.05, *** p < 0.01 
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Table 39. Logit Results: Wasted - Precipitation 

Logit Model Wasted 
 Nigeria  Kenya 
Average Marginal Effects with 95% Confidence Interval in Brackets 
Sex – Female -0.014*** [-0.021, -0.0076]  -0.012*** [-0.018, -0.0067] 
Delivery – Clinic -0.030*** [-0.038, -0.021]  -0.019*** [-0.027, -0.012] 
Birth – Singleton -0.046*** [-0.069, -0.024]  -0.050*** [-0.074, -0.026] 
Weaned – By 1 Year Old -0.0044  [-0.012, 0.0037]  -0.0031  [-0.011, 0.0044] 
Vaccines – Minimum -0.018*** [-0.026, -0.0098]  -0.011* [-0.023, 0.0011] 
Vaccines – Maximum -0.011** [-0.022, -0.00012]  -0.0060* [-0.013, 0.00076] 
Diet – Diverse 0.0020  [-0.0061, 0.010]  -0.0071* [-0.015, 0.0011] 
Sick – Asymptomatic -0.017*** [-0.024, -0.0090]  0.0010  [-0.0048, 0.0069] 
Latrine – Improved 0.018*** [0.010, 0.025]  0.0098* [-0.00028, 0.020] 
Water – Improved 0.010*** [0.0029, 0.018]  -0.0031  [-0.0094, 0.0032] 
Residence – Rural -0.015*** [-0.025, -0.0060]  -0.0069  [-0.016, 0.0020] 
Mothers Education      

Primary -0.032*** [-0.041, -0.022]  -0.042*** [-0.051, -0.033] 
Secondary -0.043*** [-0.054, -0.032]  -0.039*** [-0.051, -0.026] 
Higher -0.075*** [-0.091, -0.058]  -0.052*** [-0.068, -0.036] 

Wealth Index       
Poorer -0.0057  [-0.015, 0.0041]  -0.021*** [-0.031, -0.012] 
Middle -0.023*** [-0.034, -0.011]  -0.020*** [-0.031, -0.0100] 
Richer -0.024*** [-0.037, -0.010]  -0.024*** [-0.035, -0.013] 
Richest -0.013  [-0.030, 0.0040]  -0.032*** [-0.044, -0.019] 

Child’s Age -0.026*** [-0.029, -0.022]  -0.0024  [-0.0055, 0.00076] 
Mother’s Age -0.0042  [-0.012, 0.0035]  -0.0038  [-0.011, 0.0030] 
Birth Tally -0.00015  [-0.0023, 0.0020]  0.0011  [-0.00089, 0.0030] 
Precipitation -0.029*** [-0.034, -0.023]  -0.025*** [-0.031, -0.019] 
Precipitation Anomaly 0.0024  [-0.012, 0.016]  0.028** [0.0054, 0.051] 
Fixed Effect – Month & Phase Yes   Yes  
Number of Observations      44,717        26,299  
Log Pseudo Likelihood  -18,225.72  -5,723.46 
Pseudo R2  0.056    0.078  
Pearson’s !! p-Value  0.343    0.620  
* p < 0.10, ** p < 0.05, *** p < 0.01 
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Table 40. Logit Results: Stunted - Precipitation 

Logit Model Stunted 
 Nigeria  Kenya 
Average Marginal Effects with 95% Confidence Interval in Brackets 
Sex – Female -0.042*** [-0.051, -0.034]  -0.069*** [-0.079, -0.058] 
Delivery – Clinic -0.052*** [-0.063, -0.041]  -0.041*** [-0.054, -0.029] 
Birth – Singleton -0.11*** [-0.13, -0.081]  -0.20*** [-0.24, -0.16] 
Weaned – By 1 Year Old -0.0033  [-0.014, 0.0072]  -0.0097  [-0.025, 0.0058] 
Vaccines – Minimum 0.0031  [-0.0072, 0.013]  -0.020  [-0.046, 0.0064] 
Vaccines – Maximum -0.045*** [-0.059, -0.032]  -0.0099  [-0.022, 0.0019] 
Diet – Diverse -0.016*** [-0.026, -0.0058]  0.0027  [-0.013, 0.018] 
Sick – Asymptomatic -0.025*** [-0.035, -0.016]  -0.010* [-0.021, 0.00063] 
Latrine – Improved 0.010** [0.00025, 0.020]  -0.042*** [-0.057, -0.027] 
Water – Improved -0.0083* [-0.018, 0.0013]  -0.014** [-0.026, -0.0027] 
Residence – Rural 0.019*** [0.0071, 0.031]  -0.011  [-0.026, 0.0043] 
Mothers Education      

Primary -0.034*** [-0.046, -0.022]  0.052*** [0.036, 0.067] 
Secondary -0.073*** [-0.088, -0.058]  -0.00074  [-0.022, 0.020] 
Higher -0.15*** [-0.17, -0.12]  -0.039** [-0.070, -0.0081] 

Wealth Index       
Poorer -0.016** [-0.029, -0.0033]  -0.038*** [-0.055, -0.021] 
Middle -0.041*** [-0.055, -0.026]  -0.074*** [-0.093, -0.056] 
Richer -0.091*** [-0.11, -0.074]  -0.087*** [-0.11, -0.066] 
Richest -0.13*** [-0.15, -0.11]  -0.13*** [-0.16, -0.11] 

Child’s Age -0.0049** [-0.0091, -0.00064]  -0.021*** [-0.027, -0.016] 
Mother’s Age -0.039*** [-0.049, -0.029]  -0.032*** [-0.045, -0.019] 
Birth Tally 0.0051*** [0.0024, 0.0078]  0.0075*** [0.0038, 0.011] 
Precipitation -0.060*** [-0.067, -0.054]  0.014*** [0.0041, 0.024] 
Precipitation Anomaly 0.053*** [0.035, 0.071]  -0.020  [-0.059, 0.019] 
Fixed Effect – Month & Phase Yes   Yes  
Number of Observations       44,717         26,299  
Log Pseudo Likelihood  -26,909.39    -14,752.76 
Pseudo R2  0.101    0.073  
Pearson’s !! p-Value  0.050    0.191  
* p < 0.10, ** p < 0.05, *** p < 0.01 
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Table 41. Logit Results: Wasted - Temperature 

Logit Model Wasted 
 Nigeria  Kenya 
Average Marginal Effects with 95% Confidence Interval in Brackets 
Sex – Female -0.014*** [-0.021, -0.0076]  -0.012*** [-0.018, -0.0064] 
Delivery – Clinic -0.022*** [-0.031, -0.013]  -0.018*** [-0.025, -0.011] 
Birth – Singleton -0.049*** [-0.071, -0.026]  -0.048*** [-0.072, -0.024] 
Weaned – By 1 Year Old -0.0037  [-0.012, 0.0043]  -0.0027  [-0.010, 0.0048] 
Vaccines – Minimum -0.012*** [-0.020, -0.0044]  -0.011* [-0.023, 0.0014] 
Vaccines – Maximum -0.0085  [-0.019, 0.0026]  -0.0051  [-0.012, 0.0017] 
Diet – Diverse 0.0021  [-0.0060, 0.010]  -0.0049  [-0.013, 0.0034] 
Sick – Asymptomatic -0.014*** [-0.022, -0.0064]  0.0031  [-0.0028, 0.0090] 
Latrine – Improved 0.0093** [0.0016, 0.017]  0.010** [0.000074, 0.020] 
Water – Improved 0.0052  [-0.0022, 0.013]  -0.0051  [-0.011, 0.0012] 
Residence – Rural -0.015*** [-0.024, -0.0053]  -0.0046  [-0.013, 0.0042] 
Mothers Education      

Primary -0.024*** [-0.033, -0.014]  -0.049*** [-0.059, -0.040] 
Secondary -0.036*** [-0.047, -0.025]  -0.046*** [-0.059, -0.034] 
Higher -0.067*** [-0.084, -0.050]  -0.059*** [-0.075, -0.043] 

Wealth Index       
Poorer 0.00088  [-0.0087, 0.010]  -0.022*** [-0.031, -0.012] 
Middle -0.012** [-0.023, -0.0013]  -0.019*** [-0.029, -0.0086] 
Richer -0.013* [-0.026, 0.00014]  -0.021*** [-0.032, -0.0094] 
Richest -0.00046  [-0.018, 0.017]  -0.025*** [-0.039, -0.012] 

Child’s Age -0.026*** [-0.030, -0.022]  -0.0023  [-0.0055, 0.00080] 
Mother’s Age 0.00051  [-0.0072, 0.0083]  -0.00077  [-0.0076, 0.0060] 
Birth Tally -0.0014  [-0.0035, 0.00073]  -0.000034  [-0.0020, 0.0019] 
Temperature 0.015*** [0.013, 0.017]  0.0031*** [0.0021, 0.0040] 
Temperature Anomaly -0.029*** [-0.042, -0.017]  -0.0034  [-0.010, 0.0033] 
Fixed Effect – Month & Phase Yes   Yes  
Number of Observations      44,717        26,299  
Log Pseudo Likelihood  -18,142.48    -5,736.00 
Pseudo R2  0.060    0.076  
Pearson’s !! p-Value  0.707    0.698  
* p < 0.10, ** p < 0.05, *** p < 0.01 
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Table 42. Logit Results: Stunted - Temperature 

Logit Model Stunted 
 Nigeria  Kenya 
Average Marginal Effects with 95% Confidence Interval in Brackets 
Sex – Female -0.042*** [-0.051, -0.034]  -0.069*** [-0.080, -0.059] 
Delivery – Clinic -0.045*** [-0.057, -0.034]  -0.043*** [-0.055, -0.030] 
Birth – Singleton -0.11*** [-0.13, -0.081]  -0.20*** [-0.24, -0.16] 
Weaned – By 1 Year Old -0.0054  [-0.016, 0.0051]  -0.013  [-0.028, 0.0029] 
Vaccines – Minimum 0.0066  [-0.0038, 0.017]  -0.024* [-0.050, 0.0021] 
Vaccines – Maximum -0.046*** [-0.059, -0.033]  -0.012** [-0.024, -0.00048] 
Diet – Diverse -0.017*** [-0.028, -0.0070]  -0.0028  [-0.018, 0.013] 
Sick – Asymptomatic -0.023*** [-0.033, -0.013]  -0.013** [-0.024, -0.0026] 
Latrine – Improved 0.013** [0.0024, 0.023]  -0.044*** [-0.059, -0.029] 
Water – Improved -0.0035  [-0.013, 0.0061]  -0.010* [-0.022, 0.0016] 
Residence – Rural 0.0098  [-0.0019, 0.021]  -0.018** [-0.034, -0.0032] 
Mothers Education      

Primary -0.048*** [-0.060, -0.035]  0.042*** [0.027, 0.057] 
Secondary -0.095*** [-0.11, -0.080]  -0.013  [-0.034, 0.0077] 
Higher -0.16*** [-0.19, -0.14]  -0.048*** [-0.079, -0.018] 

Wealth Index       
Poorer -0.021*** [-0.035, -0.0081]  -0.045*** [-0.062, -0.028] 
Middle -0.053*** [-0.068, -0.038]  -0.084*** [-0.10, -0.066] 
Richer -0.10*** [-0.12, -0.087]  -0.10*** [-0.12, -0.080] 
Richest -0.14*** [-0.16, -0.12]  -0.15*** [-0.17, -0.13] 

Child’s Age -0.0048** [-0.0091, -0.00053]  -0.022*** [-0.027, -0.016] 
Mother’s Age -0.039*** [-0.049, -0.030]  -0.038*** [-0.051, -0.025] 
Birth Tally 0.0045*** [0.0018, 0.0072]  0.0094*** [0.0057, 0.013] 
Temperature 0.012*** [0.0099, 0.015]  -0.0080*** [-0.0096, -0.0064] 
Temperature Anomaly -0.035*** [-0.051, -0.020]  -0.00011  [-0.013, 0.013] 
Fixed Effect – Month & Phase Yes   Yes  
Number of Observations   44,717         26,299  
Log Pseudo Likelihood   -27,024.73  -14,708.71 
Pseudo R2  0.097    0.075  
Pearson’s !! p-Value  0.082    0.183  
* p < 0.10, ** p < 0.05, *** p < 0.01 
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