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During recent years, evolutionary computation methods have been used

successfully to discover solutions to problems involving design and invention

in a wide variety of fields. However, for the evolutionary process to remain

computationally tractable when applied to increasingly complex design prob-

lems, new extensions must be developed that increase the efficiency and effec-

tiveness with which evolutionary systems produce optimal designs. To this

end, the goal of the research presented here is to develop one such potential

extension: causally-guided evolution. By this I mean evolutionary systems

where the application of genetic operators to an individual are driven in part

by observing that individual’s performance characteristics and applying these

operators based on explicit cause-effect relations in the domain. This differs

from past evolutionary methods in which, after fitness-based selection, ge-



netic operators are applied to individuals blindly and randomly (i.e., without

respect to the performance characteristics of the individuals).

In this context, this dissertation makes a number of significant con-

tributions. A framework for causally-guided evolution is defined, including

causally-guided genetic operators based on causal knowledge that is supplied

by domain experts. The ability of these methods and causally-guided mu-

tation to produce better solutions than conventional evolutionary processes

is demonstrated on a neural network optimization task. These methods are

then extended to include crossover, and the synergistic effects of causally-

guided crossover and mutation are demonstrated when applied to a real-

world antenna design task. Causally-guided mutation is extended further

to influence both where and how mutation occurs, and the effectiveness of

this approach is shown when applied to a constructive design task that cre-

ates synthetic social networks. Finally, a causally-guided evolutionary sys-

tem that acquires causal knowledge through observation of the evolutionary

process, rather than being given the knowledge a priori, is developed and

successfully applied, demonstrating the applicability of causally-guided evo-

lution to problems in which causal knowledge is not available. Collectively,

this work clearly demonstrates for the first time the promise of causally-

guided evolutionary computation in a variety of forms and when applied to

a range of application problems.
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Chapter 1

Introduction

During recent years, evolutionary computation methods have been used

successfully to discover solutions to problems involving design and invention

in a wide variety of fields. Examples include the evolutionary design of

electronic circuits (Koza, 2003; Koza et al., 1997), antennas (Altshuler and

Linden, 1997; Lohn et al., 2004, 2008), neural network architectures (Gruau

and Quatramaran, 2001; Jung and Reggia, 2006; Stanley and Miikkulainen,

2002; Chen et al., 2012), music compositions (Biles, 2002), artistic endeavors

(Rocke, 2002), control mechanisms for robots (Michel, 2001; Dupuis et al.,

2013) and for cellular automata (Pan and Reggia, 2010), mechanical systems

(Hu et al., 2008; Lipson, 2008; Rubrecht et al., 2011), architectural structures

(Rosenman, 1997; Byrne et al., 2011), and quantum circuitry and algorithms

(Spector and Klein, 2008; Stadelhofer et al., 2008). The design process in

these situations is a human-machine collaboration in which a person defines

the problem, search space, fitness function, etc., while the evolutionary pro-

cess generates and evaluates a much larger number of alternatives than could

be done manually. Sometimes the results of evolutionary systems are even

qualitatively different from previous human-only solutions, such as unex-

pected animal-like forms or “biomorphs” (Dawkins, 1996), patentable elec-
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tronic circuits (Koza, 2003), and novel irregularly shaped antennas (Hornby

et al., 2006).

Evolutionary computation thus appears to be a very promising tool for

supporting the creative design process. However, in order for the evolutionary

process to remain computationally tractable when applied to increasingly

complex design problems, new extensions must be developed that increase the

efficiency and effectiveness with which evolutionary systems produce optimal

designs.

To this end, the goal of the research presented here is to develop one

such potential extension: “causally-guided evolution.” By this I mean evo-

lutionary systems where the applications of genetic operators to an indi-

vidual in an evolving population are driven in part by observing that indi-

vidual’s performance characteristics and performing causal reasoning about

those characteristics based on explicit cause-effect relations in the domain.

This differs from past evolutionary methods in which genetic operators are

applied to individuals blindly and randomly (i.e., without respect to the per-

formance characteristics of the individuals). In my approach, causal knowl-

edge/inference is used to bias (but not control) the application of mutation

and crossover operators while leaving the fitness-based evolutionary search

process otherwise unchanged. To make this idea clearer, it is useful to view

the creation of each generation’s population in a typical evolutionary process

as consisting of two distinct steps:

2



1. selection of designs/individuals to carry forward into the next genera-

tion;

2. modification of designs/individuals via genetic operations.

There is a fundamental difference in the way evolutionary methods

handle these two steps. The selection of individual designs to carry forward

(aspect 1 above) is guided by the evaluated fitness of those designs. In con-

trast, the modification of designs via genetic operations such as crossover

and mutation (aspect 2 above) is not influenced by any individual design’s

performance. In other words, the modification step where new problem so-

lutions are generated using genetic operations is traditionally largely blind

and random.

In the work presented in this dissertation, I introduce the use of ex-

plicit cause-effect relations in the exploration/variation aspect of evolution-

ary computation (aspect 2 above). While there are undoubtedly numerous

cause-effect relations at play in an evolutionary process, in this study I ex-

plore the use of two such relations, which I term diagnostic causal relations

and mechanistic causal relations. Diagnostic causal relations describe a cor-

respondence between or a rule about the relationship between some part of

the individual’s genetic representation and some part of the same indvidual’s

phenotypic performance. Mechanistic causal relations describe the expected

effect of modifying individuals in particular ways, and are described in greater

3



detail in Chapter 5. Each explicit causal relation is specified prior to the be-

ginning of an evolutionary process, but is used during the evolutionary run to

influence the application of a selected genetic/variation operator (mutation,

crossover, etc.) to an individual that is a parent for the next generation. For

example, in applying a mutation operator to an individual parent to produce

a modified offspring, analysis of the parent using diagnostic causal relations

is performed in order to bias the mutation so that the phenotypic problems

of the individual are addressed with higher probability than they would be

were the usual blind operator used.

1.1 Goals and Specific Aims

The central goal of this research is to develop and evaluate meth-

ods for causally-guided evolutionary computation, as described above. My

hypotheses are that ultimately this will make evolutionary systems more

effective by allowing them to explore a much larger number of good designs

while still exploring novel solutions that initially appear unpromising, and

more computationally efficient by decreasing the number of poorly fit indi-

viduals that do not contribute useful information to the evolutionary search

process. I hypothesize that the benefits of causally-guided evolutionary sys-

tems will be most pronounced when applied to design problems in which

domain expertise is present but insufficient for solving problems in closed

form. Causally-guided evolutionary methods are intended to preserve the
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limited dependence on domain knowledge found in traditional evolutionary

computation, while leveraging whatever cause-effect knowledge is available.

There is no a priori guarantee that any of these benefits will hold, and in

fact it is entirely plausible that just the opposite would be true, i.e., adding

causal influences could produce evolutionary search that is less effective and

less computationally efficient. The purpose of the research described in this

dissertation is to examine this issue.

In this context, the following are the specific objectives that guided

this research:

1. Design and evaluate a framework for using diagnostic causal relations

to guide the evolutionary search process through the biasing of where

mutation operators are applied to individuals. Explore the feasibility

of these methods by evaluating their performance when used to solve

parameter optimization problems in which causal knowledge is available

and well-understood. The intent of this first objective was to provide

an initial proof-of-concept.

2. Extend the methods developed under the previous objective by de-

signing and implementing a second genetic operator that is guided by

diagnostic causal knowledge: causally-guided crossover. As in causally-

guided mutation, diagnostic relations are used to bias where crossover

is applied to individuals, in the sense that it influences what parts of

individuals are inherited by offspring. Explore the feasibility of these

5



methods by evaluating their performance when used to solve parameter

optimization problems in which diagnostic casual knowledge is present

but incomplete or unclear. In particular, examine the combined effects

of causally-guided mutation and causally-guided crossover to evaluate

whether they can be applied synergistically.

3. Develop above framework of objectives 1 and 2 for using causal relations

to guide the evolutionary search process when applied to constructive

design problems. In particular, extend the framework to include the

use of mechanistic causal relations to guide how mutation is applied

to indivduals. Explore the feasibility of these methods by evaluating

their performance when used to solve constructive design problems (in

contrast to the parameter optimization problems considered as part of

the first two objectives). In particular, examine the combined effects

of the two types of causal guidance (where guidance based on diagnos-

tic knowledge and how guidance based on mechanistic knowledge) to

evaluate whether they act antagonistically or synergistically.

4. Design and evaluate a framework for applying causally-guided evolution

to application problems in which causal knowledge is not available a

priori and must instead be acquired and applied during the execution

of the evolutionary process. Explore the feasibility of these methods

by evaluating their performance when used to solve design problems

without the use of a priori causal knowledge.
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1.2 Executive Summary

The rest of this dissertation is organized as follows. Chapter 2 dis-

cusses previous work that is directly relevant to the research presented in

this dissertation, including research in the fields of knowledge incorporation

in evolutionary computation, adaptive and self-adaptive parameter control in

evolutionary computation, evolutionary computation for design, and causal

reasoning.

Chapter 3 presents an initial exploration of causally-guided evolution-

ary computation using a single causally-guided genetic operator. A general

framework for causally-guided evolution is presented, including the formalism

by which domain experts may describe diagnostic cause-effect relationships

in their domain, the high-level form of causally-guided genetic operators,

and the general (i.e., application independent) form of one such operator:

causally-guided mutation. To evaluate these ideas, a causally-guided evolu-

tionary system was developed and applied to the task of optimizing a set of

connection weights in a fixed-architecture neural network in order to produce

a network that recognizes mirror symmetry of input patterns. As discussed in

Chapter 3, this task was selected for an initial study in part because there is

clear and known cause-effect relationships in the domain and because histori-

cally it has been a standard difficult test problem in neural network research.

This diagnostic cause-effect knowledge, which serves as the basis for causal

guidance in this study, is described in detail along with the application-
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specific causally-guided mutation operator that is used. Evolutionary sys-

tems with and without causal guidance were developed and used to solve

the neural network design problem. Analysis of these experimental results

is presented, revealing a clear increase in the effectiveness and efficiency of

causally-guided evolutionary computation when compared to control meth-

ods, and establishing for the first time the feasibility of causally-guided evo-

lution.

Chapter 4 presents a number of important extensions to the work de-

scribed in Chapter 3, both in terms of the causally-guided evolutionary meth-

ods themselves as well as the types of application problems to which causally-

guided evolution is applied and evaluated. While Chapter 3 explored the use

of a single causally-guided operator (mutation), the work presented in Chap-

ter 4 introduces a second (crossover), the general (i.e., application indepen-

dent) form of which is presented. These methods are evaluated by applying

them to the real-world task of designing antenna arrays that meet prespec-

ified performance criteria. In contrast to the neural network optimization

task from the previous chapter, the causal knowledge that is available for

this antenna design task is more limited and less complete, and a central

goal of this chapter is to evaluate the feasibility of causally-guided evolu-

tionary computation when applied to such real-world problems. The specific

diagnostic causal knowledge, application-specific causally-guided mutation,

and application-specific causally-guided crossover operators that are used in

this study are presented, followed by an experimental evaluation in which
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evolutionary systems with and without causal guidance are used to solve the

antenna design problem. Analysis of these experiments is presented, reveal-

ing distinct benefits of causally-guided mutation and crossover, as well as

the synergistic effects of applying both causally-guided operators together.

Further analysis examines the types of antenna designs that are produced,

revealing that causally-guided evolution avoids producing particular types

of antenna designs that are directly related to the causal knowledge that is

used. Finally, antenna designs were systematically varied and their changes

in performance examined in order to learn about cause-effect relations in this

domain and more generally.

Chapter 5 explores the feasibility of applying causally-guided evolu-

tionary computation methods to design construction problems, rather than

design optimization problems as in Chapters 3 and 4. To this end, a second

type of causal relation is introduced. Mechanistic causal relations describe

the cause-effect relationship between the application of mutation operators

to design components in an individual, and the resulting change in perfor-

mance of those individuals. A new causally-guided mutation operator is

defined in which “where” guidance based on diagnostic relations and “how”

guidance based on mechanistic relations are both used. These methods are

evaluated by applying them to the task of designing synthetic social net-

works with characteristics that match real-world data sets. The specific

causal knowledge that is employed, as well as the application-specific forms

of causally-guiding where and how mutation are applied are described. Evo-
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lutionary systems that employ and those that do not employ these forms of

causal guidance are used to design synthetic social networks. Analysis of

their performance is presented, revealing a dramatic increase in performance

when causal guidance is used to influence both where and how mutation is

applied, and suggesting some important lessons regarding the proper way to

design causally-guided genetic operators.

Chapter 6 explores the feasibility of applying causally-guided evolution-

ary computation methods to application domains in which causal knowledge

is not available a priori, and instead must be acquired and applied during

the evolutionary process. The evolutionary process presents a wealth of data

from which causal relations may be inferred. Chapter 6 presents one such

way in which mechanistic causal relations may be acquired through observa-

tion of the evolutionary process. These methods are evaluated by applying

them to the same synthetic social network design task as in Chapter 5. How-

ever, in this chapter the evolutionary methods are applied without any a

prior causal knowledge. Analysis of these experiments is presented, reveal-

ing that the learned causally-guided evolutionary systems clearly outperform

the control systems which do not employ any causal guidance. Furthermore,

in many instances the evolutionary systems in which causal knowledge was

acquired through observing the evolutionary process performed just as well

as those for which causal knowledge was supplied a priori. This clearly sup-

ports the feasibility of applying causally-guided evolutionary computation

to application domains in which causal knowledge is not available a prior,
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and suggests that causally-guided evolution may be useful in a wide range of

application domains. Furthermore, because these methods reduce the “start-

up” costs associated with causally-guided evolution (i.e., defining causal re-

lations, causal guidance, etc.,) they may be attractive even in application

domains where a priori knowledge is available.

Chapter 7 presents conclusions, limitations of the work presented here,

a summary of contributions made, as well as various directions for future

research.
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Chapter 2

Background

2.1 Introduction

In this section, existing studies that are relevant to this dissertation

research into causally-guided evolutionary computation for design are pre-

sented. First, a general outline of evolutionary computation algorithms is

presented, followed by a description of the canonical forms of a few major

variants. While causally-guided evolutionary computation has not been pre-

viously studied, some research exists that explores the dynamic guidance of

evolutionary processes through other means. These methods, commonly re-

ferred to as adaptive and self-adaptive parameter control, are presented and

differences from the current research are discussed. The methods for causally-

guided evolutionary computation presented here can also be seen as an in-

stance of knowledge-incorporation. While no previous studies have explored

the use of causal knowledge to bias genetic operators, past research exploring

various other means of leveraging domain knowledge in evolutionary compu-

tation are discussed. There are two major types of design problems which

evolutionary computation can be used to solve: design optimization and de-

sign construction. The research presented in this dissertation investigates the
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feasibility of using causally-guided evolutionary computation to solve both

types of problems. The differences between these types of problems is dis-

cussed, and previous studies involving the use of evolutionary computation

methods to solve these problems are presented. Lastly, an overview of the

use of causal-based diagnostic problem solving is provided. While these tech-

niques are not used directly used in this dissertation research, they help to

shape the cause-effect formalism and the causal guidance that is used and

are particularly relevant to future direction of the research presented here.

2.2 Evolutionary Computation

The term evolutionary computation refers to a set of general-purpose

search algorithms that are inspired by principles of biological evolution.

While there are a substantial number of variations between different ap-

proaches to evolutionary computation, such as genetic algorithms (Holland,

1975; Mitchell, 1996; Goldberg, 1989; De Jong, 2006) evolution strategies

(Rechenberg, 1973; Schwefel, 1981, 1995; Rudolph, 2000), genetic program-

ming (Banzhaf et al., 1998; Koza, 1992), and evolutionary programming (Fo-

gel et al., 1966; Fogel, 1991, 1995; Porto, 2000), most methods work at a

top level as illustrated in Figure 2.1. These algorithms function by creating

successive populations, or generations, of candidate problem solutions. In

each generation, the fitness of each individual in the population is evaluated.

Successive generations are created by selecting the more fit individuals from
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the current generation, and applying genetic operations such as crossover

and mutation to them. The fitness of each individual in this new genera-

tion is calculated, and selection methods and genetic operations are applied

again, creating yet another generation. This continues until some predeter-

mined termination criterion is met. While genetic algorithms, evolutionary

strategies, evolutionary programming and genetic programming follow this

generic outline, the canonical form of each of these algorithms uses distinct

combinations of various encoding methods, selection methods, and genetic

operations.

Genetic algorithms traditionally employ a fixed-length binary string

to encode solutions to a problem. Stochastic fitness-proportionate selection

is used, in which the probability that a solution will survive to the next

generation is equal to its fitness divided by the sum of the fitness of all

individuals. Mutation operators are used sparingly, and usually consist of

simply flipping a random bit in the binary string. The crossover operator,

in which the genetic materials from two individuals are recombined to create

two new individuals, is usually the dominant genetic operator in genetic

algorithms (Mitchell, 1996; Banzhaf et al., 1998; De Jong, 2006).

In contrast, evolutionary strategies employ real-valued vectors to rep-

resent prospective solutions. Each individual consists of a target vector,

which encodes the actual solution being evolved, and a vector of strategy

parameters, which defines how genetic operations are applied to the individ-
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Is Termination 
Criterion Met? 

Select Individuals from P to create P’ 

Create Initial Population P 

Evaluate Fitness of Each Individual in P 

Apply Genetic Operations to Individuals in P’ 

Finish 

Start 

Set P = P’ 

Yes 

No 

Figure 2.1: Schematic overview of a generic evolutionary computation algo-
rithm.

ual. For example, during mutation small normally distributed random val-

ues are added or subtracted from the target vector elements. The variance

of these normal distributions is defined by the strategy parameters. Strat-

egy parameters and target vectors are handled separately during mutation

and recombination. While there has been some work involving recombina-

tion in evolutionary strategies, the primary genetic operator is mutation. As

in all evolutionary computation methods, selection is fitness based, but is

deterministic rather than stochastic (Rudolph, 2000; Banzhaf et al., 1998;

De Jong, 2006).

The goal of evolutionary programming has historically been to design
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small computer programs in the form of finite state machines. In evolution-

ary programming, the actual finite state machine consisting of nodes and

connections is used to encode the solution. In this sense, in contrast to ge-

netic algorithms and evolutionary strategies, there is no separation between

the genotype and phenotype of an individual in evolutionary programming.

Mutation operators such as adding a node, removing a node, etc., are used

to make changes to an individual finite state machine. Deterministic fitness-

based selection is used. Crossover operators traditionally are not used (Porto,

2000; Banzhaf et al., 1998; De Jong, 2006).

Genetic programming is used to evolve computer programs that solve

problems, but otherwise is quite similar to genetic algorithms. Genetic pro-

gramming most commonly uses a tree-based representation, in which each

node represents either a function or terminal. The tree may be parsed and

interpreted as a computer program. The dominant genetic operator in ge-

netic programming is crossover, in which two sub-tress from two individuals

are swapped, resulting in two novel programs. Mutation operators are also

used in which a sub-tree of an individual is selected and replaced with a new

randomly generated sub-tree. Genetic programming variants have used de-

terministic selection methods similar to those used by evolutionary strategies,

and stochastic selection methods similar to those used by genetic algorithms

(Banzhaf et al., 1998; De Jong, 2006).

While the canonical form of these evolutionary computation methods

are presented above, it is worth noting that in recent years these fields have
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borrowed extensively from each other, and the distinction between them

continues to blur. For example, it is common for modern genetic algorithm

approaches to employ real-valued chromosomes, and place more emphasis on

mutation operators than is done in the canonical form of the algorithm.

Similarly, the evolutionary techniques described in this dissertation do

not entirely match any of the canonical forms of evolutionary computation

described above and instead borrow elements from each. In the symmetry

neural network design and antenna design studies (presented in Chapters 3

and 4), real-valued vectors of numbers are used to represent prospective so-

lutions, as is done in evolutionary strategies. In the synthetic social network

design study (presented in Chapters 5 and 6), the genetic representation used

is the social network itself, i.e., there is no separation between the genotype

and the phenotype of the individual, as is done in evolutionary programming.

In all of the studies presented in this dissertation, stochastic fitness-based se-

lection is used, as is done in genetic algorithms and genetic programming.

Most importantly, in each of these evolutionary computation methods the

application of genetic operators to individual prospective solutions is carried

out without regard to the fitness characteristics of those individuals. In con-

trast, the research presented here focuses on the use of causal relations to

influence the application of genetic operators.
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2.3 Knowledge Incorporation in Evolutionary Computation

There have been a significant number of previous studies in which

application-specific domain knowledge has been used to influence how evolu-

tionary search is conducted. Past work on knowledge incorporation has long

recognized that implicitly/explicitly incorporating domain knowledge in an

evolutionary process can be useful in choosing an effective representation for

the individuals in a population, in creating a non-random initial population,

in designing fitness functions, and in composing genetic/variation operators

(De Jong, 1988; Jin, 2004; Du and Rada, 2012).

For example, if one represents solutions to a traveling salesperson prob-

lem as permutations of the cities to be visited, then conventional mutation

and crossover operators will generally produce illegal offspring solutions. Us-

ing this knowledge in advance can lead one to use genetic operators that

instead permute/invert some of the cities of a parent in creating offspring

and thereby avoid generating illegal solutions (Fogel, 2000; Whitley, 2000).

As another example, in evolving rule sets for a pattern classification task, one

may use domain knowledge about rule structure to restrict where crossover

points can be done in the second parent chromosome relative to their loca-

tions in the first to avoid illegal offspring (De Jong et al., 1993). Further, in

attempting to evolve solutions to job shop scheduling problems, it is possi-

ble to use specialized mutation operators based on knowledge from previous
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studies about the occurrence of idle capacity to increase the effectiveness of

the evolutionary process (Becerra and Coello, 2005).

My approach relates more to past studies in fitness approximation (Jin,

2005), where an approximate model of the fitness function is used to effi-

ciently estimate the fitness of individuals. In some of this past work, the

fitness approximations of individuals have been used to guide genetic oper-

ators (Abboud and Schoenauer, 2002; Rasheed et al., 2005). However, in

causally-guided evolution there is no fitness approximation (the actual fit-

ness is calculated) and instead the causal knowledge is used to guide genetic

operators.

Finally, numerous past studies have investigated the combination of

local search with evolutionary computation methods. Inspired in part by

natural systems that combine evolutionary adaptation of a population of

individuals with learning within the lifetime of each of its members, theses

algorithms are sometimes referred to as hybrid evolutionary algorithms, Bald-

winian evolutionary algorithms, Lamarckian evolutionary algorithms, cul-

tural algorithms, genetic local search, or memetic algorithms (Whitley et al.,

1994; De Jong, 2006; Mitchell, 1996; Krasnogor and Smith, 2005; Knowles

and Corne, 2005; Moscato and Cotta, 2010; Neri and Moscato, 2011). In all

of these approaches, local search is applied to each offspring that is produced

by standard genetic operators (Knowles and Corne, 2005). For example,

Lamarckian evolution (genetic transmission of traits acquired during the life
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of an individual to its offspring (Whitley et al., 1994)), although widely

viewed as biologically implausible, has been used with mixed results in past

EC applications (summarized in (De Jong, 2006; Mitchell, 1996)). In this

way, the global search capabilities of evolutionary computation are combined

with the fine-tuned optimization capabilities of local search (Moscato and

Cotta, 2010). These algorithms have been successfully applied to a variety of

problems, including flow-shop scheduling (Ishibuchi et al., 2002), drug design

(Tse et al., 2007), telecommunication routing (He and Mort, 2000), and the

design of control systems for simulated agents (Jung and Reggia, 2009).

As with memetic algorithms, causally-guided evolution involves aug-

menting conventional evolutionary search with additional capabilities; in

this case: causal reasoning. However, it should be noted that the changes

made to individuals by causally-guided genetic operators can be quite large,

and therefore cannot accurately be described as being “local.” Furthermore,

in memetic algorithms the local search occurs during the fitness evaluation

(“lifetime”) of the individual whereas in causally-guided evolution, causal

guidance is applied during reproduction.

2.4 Adaptive and Self-Adaptive Evolutionary Computation

In most evolutionary computation variants, there are numerous param-

eters that govern the execution of the evolutionary process. The values of

parameters such as population size, mutation rate, crossover rate, etc., have
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a strong influence on the overall performance of an evolutionary process.

However, determining a good or optimal set of parameter values a priori can

be very difficult, if not impossible. Additionally, parameter settings that are

optimal early in an evolutionary process may not be optimal later in the

process (Meyer-Nieberg and Beyer, 2007). The fields of adaptive parameter

control and self-adaptive parameter control attempt to address this problem

by dynamically adjusting parameter settings during an evolutionary run in

response to the performance of the evolutionary process (Leung et al., 2012;

Aleti et al., 2012).

There are numerous criteria by which to classify the various parameter

control methods. Angeline (Angeline, 1995) proposes classifying parameter

control methods according to two criteria: the types of rules that govern the

adaptation of parameters and the level at which the adaptation occurs. There

are two types of rules that may be used: absolute update rules and empirical

update rules. Absolute update rules, more commonly known as adaptive pa-

rameter control methods, compute statistics about an evolutionary process

as it is running and use predetermined heuristics to adjust parameter val-

ues in response to the observed statistics. In this sense parameter changes

are made dynamically, but according to fixed rules. In contrast, empiri-

cal update rules, more commonly known as self-adaptive parameter control

methods, encode parameter values into the individual chromosomes in a pop-

ulation and allow the evolutionary process to change them through standard

evolutionary methods. The parameter values encoded into a chromosome
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play no roll in the fitness of that individual, and thus cannot be directly op-

timized by the evolutionary process. However, if a parameter value encoded

in a particular individual results in beneficial modifications being made to

that individual’s offspring, it will spread through the population along with

the offspring. Detrimental parameter values will result in damaged offspring

which are less likely to survive, and thus the detrimental parameter values

themselves are less likely to be persist in the population. In this manner, the

evolutionary process optimizes the encoded parameter values as well as the

actual individual solutions.

The second criteria by which Angeline proposes parameter control meth-

ods should be classified is the level at which parameter adaptation occurs.

Population level adaptation results in global changes that affect the entire

population of individuals. Individual level adaptation modifies parameters

that are associated with particular individuals, independent from other indi-

viduals. Component level adaptation changes parameters that are associated

with individual components of an individual, independent from other compo-

nents in that individual. The various levels at which parameter control may

take place involve important trade-offs. Population level methods are easier

to implement than individual or component level methods, as they involve

fewer parameters and are usually conceptually simpler. However, population

level methods do not have as much potential as individual and component

level methods to efficiently control the evolutionary process. This is because

the types of parameter adjustments that would be ideal for each individual
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will most likely not be the same as those that are ideal for the population

on average. Put differently, lower level methods offer greater control in that

parameters associated with each individual (or each component) may be in-

dependently adjusted. However, the large number of parameters involved

in such methods makes it difficult to adjust them efficiently. For adaptive

parameter control methods, it is difficult to develop heuristics that efficiently

and effectively adjust this large set of parameters (Angeline, 1995).

In addition to these two criteria, Eiben (Eiben et al., 1999) proposes

using what evolutionary characteristic is being adapted, and the informa-

tion about the evolutionary search that is used to guide adaptation, as two

additional classification criteria. In this classification scheme, the primary

criteria for classification are whether the method is adaptive or self-adaptive

(as discussed above) and what evolutionary characteristic is being adapted.

The types of evolutionary characteristics that may be adapted include: repre-

sentation of individuals, evaluation functions, variation operators (crossover,

mutation, etc.,), selection operators, replacement operators, and population.

The secondary criteria for classification are the level/scope at which adap-

tation occurs (as discussed above) and the information that is used to guide

the adaptation.

Numerous adaptive and self-adaptive parameter control methods have

been developed for evolutionary strategies, evolutionary programming, ge-

netic algorithms, and genetic programming (surveyed in (Angeline, 1995;
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Eiben et al., 1999; Meyer-Nieberg and Beyer, 2007)). While adaptive and

self-adaptive methods are common to contemporary evolutionary strategies

and evolutionary programming methods, they are more rarely used in ge-

netic algorithms and genetic programming (Meyer-Nieberg and Beyer, 2007).

Adaptive and self-adaptive methods have been used to adjust representa-

tion interpretations (Shaefer, 1987; Schraudolph and Belew, 1992; Whitley

et al., 1991), mutation operators and their probabilities (Back, 1992; Jul-

strom, 1995; Lis, 1996; Smith and Fogarty, 1996), crossover operators and

their probabilities (Spears, 1995; Angeline, 1996; Julstrom, 1995; Lis, 1996),

and evaluation functions (Eiben and Ruttkay, 1996; Smith and Tate, 1993).

Self-adaptive algorithms have been applied on a component (Angeline and

Pollack, 1993; Angeline, 1996), individual (Schaffer and Morishima, 1987;

Spears, 1995), and population level (Spears, 1995; Teller, 1996). In contrast,

the vast majority of adaptive algorithms have been applied on a popula-

tion level (Rechenberg, 1973; Shaefer, 1987; Schraudolph and Belew, 1992;

Whitley et al., 1991; Smith and Tate, 1993; Julstrom, 1995; Lis, 1996; Eiben

and Ruttkay, 1996), and very little (Iba and de Garis, 1996; White and Op-

pacher, 1994) has been done on an individual or component level. In each of

these studies, it was found that evolutionary computation systems employing

adaptive and/or self-adaptive parameter control outperformed comparable

evolutionary computation systems employing static parameters.

The research presented in this dissertation can be viewed as an instance

of adaptive and self-adaptive parameter control, in which causal relations are
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used as the basis for adapting parameters associated with genetic operators

on an individual level. For example, in a typical evolutionary approach, each

gene in an individual can be viewed as having a parameter associated with

it that specifies the likelihood that the gene will be modified during mu-

tation. In many instances, this parameter may not be explicitly specified

but is still implicitly defined (e.g., equal probability is assumed). In the re-

search presented here, causal relations are used as the basis for examining

the performance characteristics of the individual in question and adapting

these parameter values. Interestingly, there is very little past work (Iba and

de Garis, 1996; White and Oppacher, 1994) involving the use of adaptive pa-

rameter control methods on an individual or component level, as the research

presented in this dissertation does. To my knowledge, no previous studies

use explicit cause-effect relations as the basis for parameter adaptation.

2.5 Evolutionary Design

Evolutionary computation methods may be used to solve two distinct

types of design problems: design optimization and design construction. Typ-

ically, in optimization problems, a great deal is known about the particular

form that a solution will take, and the design process consists of optimizing

a set of parameters associated with that form. It is common to represent

solutions to optimization problems as a fixed-length list of parameter values.

Such a representation is said to be knowledge-rich, as the representation does
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not describe the actual form of a solution. Instead, domain knowledge al-

lows the form of the solution to be assumed by the representation, and only

parameters of that solution must be evolved (Bentley and Corne, 2002).

In contrast, constructive design problems are more open-ended, in that

the structures of solutions are not known a priori, and to some extent must

themselves be designed by the evolutionary process. Typically, in construc-

tive design problems, rather than optimizing a fixed set of parameters, the

evolutionary process must arrange and re-arrange design components to cre-

ate new solutions. For this reason, component-based representations are typ-

ically used. These types of representations are knowledge-lean in that they

do not rely on assumptions about the structure of solutions, and instead

describe the structure of a solution themselves. For example, Lego-block

based representations have been used to evolve build-able structures such as

cranes and bridges (Funes and Pollack, 1999). Multi-layer neural networks

have been evolved by arranging and re-arranging layers of neurons together

to form complete network structures (Chen et al., 2012). Component-based

representations have been used to evolve open-ended designs such as crooked-

wire monopole antennas, in which each component can be viewed as a length

of wire, and these components are arranged and re-arranged together to form

tree-like structures (Hornby et al., 2006; Lohn et al., 2004). In each of these

instances, the evolutionary process is best viewed as “exploring” the various

ways in which components may be arranged together, rather than “optimiz-

ing” parameter values (Bentley and Corne, 2002; Bentley, 1999). Evolution-
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ary computation methods may be applied to constructive design problems

in the hopes of finding optimal designs or in the hopes of discovering novel

design concepts that may not necessarily be optimal. For these reasons, evo-

lutionary approaches to solving constructive design problems are sometimes

referred to as creative evolutionary systems.

These differences in representation have important implications for the

types of genetic operators that may be used when solving either design opti-

mization or constructive design problems. In optimization tasks, it is com-

mon for mutation operators to randomly select locations in an individual’s

genotype and make random modification to the value of genes at those lo-

cations. These types of mutation operators change the value of parameters,

but leave the overall structure of the genotype unchanged. In contrast, in

constructive design problems, mutation operations often involve adding, re-

moving or re-arranging design components, and in the process often change

the form of an individual’s genotype. For example, in the Lego-block design

problem mentioned earlier, mutations may add, remove or adjust the ar-

rangement between blocks in an individual design (Funes and Pollack, 1999).

In Chapters 3 and 4 of this dissertation, methods for causally-guided evo-

lution are applied to design optimization problems, while in Chapter 5 and

6 these methods are extended to address design construction problems. As

discussed later in Chapter 5, these differences in genetic operators have im-

portant implications for the ways in which they may be causally-guided.
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2.6 Causal-Based Diagnostic Problem Solving

Causality is a very difficult and controversial issue (Pearl, 2000). His-

torically, there has been much interest in causality from the AI community,

where the importance of causal reasoning and explanation is widely recog-

nized (Korb and Nicholson, 2004; Spirtes et al., 2000). This interest has

driven considerable work in areas such as Bayesian belief networks and sta-

tistical relational networks (Charniak, 1991; Josephson, 1994; Pearl, 1988;

Poole, 1998; Pearl, 2000). Techniques for causal reasoning have shown to be

an effective tool in a number of domains, from geospatial reasoning (Coucle-

lis, 2009; Shakarian and Subrahmanian, 2011) to human computer interaction

Patokorpi (2009).

One such area is diagnostic problem solving, in which the task is to

generate a hypothesis that best explains a set of observations (Peng and

Reggia, 1990). This relates directly to the cause-effect reasoning that is typ-

ically employed by human designers in an iterative design process, in which

the performance of prospective designs is examined and inferences are then

made about the ways in which the design may be improved. As noted earlier,

this cause-effect reasoning is lacking from current evolutionary computation

methods, and the central goal of the research presented here is to explore

the feasibility of incorporating causal relations into evolutionary computa-

tion methods. As such, diagnostic problem solving is clearly relevant to the

research presented in this dissertation. However, it should be noted that in
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this dissertation neither causal networks or rigorous diagnostic problem solv-

ing is actually used. Instead, past work in these areas informs the research

conducted here in a more general sense (e.g., the form of diagnostic causal

relations).

Domain knowledge in diagnostic problems includes a set of disorders

and their prior probabilities, a set of manifestations, and the causal relation-

ships between disorders and manifestations along with their causal strengths.

The causal strength of a relationship between a disorder and a manifestation

is the probability that the disorder will cause the manifestation, given that

the disorder is present. This information can sometimes be represented by

a bipartite graph, such as the one presented in Figure 2.2. In such a graph,

each node represents either a disorder or a manifestation, and is labeled with

the relevant prior probability. Each link in the graph represents a causal

relationship between a disorder and a manifestation, and is labeled with the

causal strength of that relationship. Such a graph can be thought of as a

special case of Bayesian belief network where all links are causal and prob-

ability calculations are performed using Bayesian methods. The task is to

generate a set of disorders, or explanation, that best explains the presence

of the observed manifestations.

Given this causal knowledge, it is straightforward to evaluate the like-

lihood of any single explanation using classical methods such as Bayesian

networks. However, the challenge of diagnostic problem solving lies in the
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d1 d2 d3 

m1 m2 m3 m4 

0.2 0.4 0.6 

0.44 0.51 0.62 0.28 0.13 0.82 

Disorders 

Manifestations 

Figure 2.2: Example graph representation of causal knowledge for diagnostic
problem solving. Disorders are represented by nodes at the top of the figure
and are labeled with prior probabilities. Manifestations are represented by
nodes at the bottom. Each link represents a causal relationship between a
disorder and a manifestations, and is labeled with the causal strength of that
relationship.

extraordinarily large number of explanations that are possible. For example,

in a problem with D possible disorders, there are 2D possible explanations.

With this in mind, numerous algorithms have been designed to mitigate this

exponential explosion of explanations by using logic to restrict the space of

explanations that are explored.

Parsimonious covering theory is one approach that seeks to generate

an explanation that satisfies two competing criteria: the explanation should

cover all observed manifestations and should be parsimonious (Peng and

Reggia, 1990). An explanation is a cover for a set of manifestations if each

present manifestation may be explained by at least one disorder in the expla-

30



nation. Parsimony, in this context, may mean a number of things including

being a minimal cover, an irredundant cover, or a relevant cover. Parsimo-

nious covering theory allows for the efficient generation of explanations using

only knowledge of the presences of causal relationships (Nau et al., 1983).

By integrating these methods with Bayesian methods, using prior probabil-

ity and causal strength data, one can evaluate competing explanations based

on how probable they are instead of how parsimonious they are (Peng and

Reggia, 1990), thereby providing relative likelihood scores for the various

explanations.

In this dissertation, the full power of diagnostic and Bayesian methods

as described above are not used. For example, situations in which there

are multiple simultaneous disorders and many-to-many relationships between

disorders and manifestations are not considered here. However, past work in

these areas inform the research presented here in a more general sense (e.g.,

the form of diagnostic causal relations).
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Chapter 3

Causally-Guided Mutation for Design Optimization

3.1 Introduction

The goal of this chapter is to provide an initial proof-of-concept study

of the feasibility of causally-guided evolutionary computation. By “causally-

guided evolutionary computation,” I mean an evolutionary system where

cause-effect relations are used as the basis to examine the performance char-

acteristics of individuals in an evolving population and to bias (but not to

control) the application of genetic operators to those individuals in order to

address identified performance problems. To this end, a general framework

for causally-guided evolutionary computation is designed and presented in

detail, and the form of causal knowledge that is supplied by domain experts

and used by causally-guided evolution is defined. The high-level form of

causally-guided genetic operators in general and for mutation specifically are

defined. To evaluate these ideas, the performance of causally-guided evolu-

tion is evaluated when applied to the task of designing neural networks that

detect mirror symmetry of input patterns, a task that is of particular histor-

ical relevance in the field of neural network research and one in which causal

knowledge is apparent. The performance of the causally-guided evolutionary
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system is compared to a carefully matched control system that does not use

causal guidance but is otherwise identical, demonstrating for the first time

the feasibility of casually-guided evolution.

3.2 Framework for Causally-Guided Evolution

3.2.1 General Form of Diagnostic Causal Knowledge

Causally-guided evolutionary computation causal knowledge that is

supplied by domain experts prior to the execution of the evolutionary process.

While mechanistic causal knowledge is introduced in Chapter 5, diagnostic

causal knowledge is used here. Each piece of diagnostic causal knowledge

details the cause-effect relationship between a flawed aspect of the genotype

and a problematic characteristic of the phenotype:

Genotypic Disorder → Phenotypic Problem

The arrow here is not logical implication, but causality. A genotypic disorder

is simply a non-optimal aspect of the genotype; it is analogous to part of a

diagnostic explanation. A phenotypic symptom is a performance problem

that is caused by a genotypic disorder. It is analogous to a manifestation

in diagnostic reasoning. For example, consider a genetic representation of

house designs in which “number of windows” is a “gene”. Suppose that an

architect believes that too few windows may cause the interior of a house to

be too dark:
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Too Few Windows → Interior Too Dark

Here “too few windows” refers to a flaw in the genetic material that defines

the size of windows, while “interior too dark” refers to a phenotypic problem

of the house. This relationship between genotypic disorders and phenotypic

performance problems mirrors the more general disorder-manifestation rela-

tionship that is seen in numerous domains, including the disease-symptom

relationship in medicine, and the design flaw-performance problem relation-

ship in manufacturing.

It should be noted that the term “non-optimal” does not refer to any

genotypic aspect that does not exactly match the optimal value with arbi-

trary precision. Indeed, by such a strict definition almost all aspects of all

evolved individuals would be non-optimal throughout most of the evolution-

ary process. Instead, in this research the terms “non-optimal” or “flawed”

are used to describe genotypic aspects that deviate from the optimal values

to a sufficiently large extent that the functionality of the design is impacted.

Furthermore, it should be noted that individual genotypic aspects cannot

truly be optimal or non-optimal individually, but instead must be optimized

in concert with each other.

The list of causal relationships that a domain expert supplies does not

need to be exhaustive. For most problems it is unlikely that all of the poten-

tially relevant relationships between genotypic disorders and their resulting

phenotypic problems will be known. Domain experts only need to list those
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Generic Causally-Guided Genetic Operator
1) Assess Symptoms: Examine the individual’s performance
characteristics to identify its phenotypic symptoms.
2) Diagnose Disorders: Based on supplied causal relations and
the individual’s phenotypic symptoms, make inferences about the
likelihoods of genotypic disorders in the individual, i.e., determine
what parts of the individual’s genome are likely to be flawed.
3) Prescribe Treatment: Bias the application of the genetic
operator to the individual in order to address the diagnosed dis-
orders.

Figure 3.1: High level overview of the three step process that is followed in
using causally-guided genetic operators.

causal relationships that they believe to be most important. Even a single

causal relation may be used in causally-guided evolutionary computation to

influence the evolutionary search process.

3.2.2 General Form of Causally-Guided Genetic Operators

With causally-guided evolution, once it has been determined in the

usual fashion that a genetic operator is to be applied to a specific individual,

that individual’s performance characteristics, along with causal knowledge

and causal inference, are used to bias the execution of the operator, i.e.,

to bias manner in which the operator is applied to the individual. This is

accomplished in three steps, as shown in Figure 3.1. The exact manner in

which the genetic operations are biased in step 3 depends upon the specific

type of the genetic operator in question.
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3.2.3 General Form of Causally-Guided Mutation

When causally-guided genetic operations are applied to individuals,

causal reasoning is used to bias the execution of the operators. First, the

performance characteristics of the individuals in questions are examined, and

any phenotypic problems that are present are identified. Next, causal rea-

soning uses the identified problems and human-provided causal knowledge

to assess the relative likelihoods of each of the possible genotypic disorders

(i.e., as potential explanations). Finally, this information is used to bias the

execution of the genetic operators as described below.

Causally-guided mutation operations are biased such that those parts of

the genotype with higher relative likelihoods of being flawed are made more

likely to be mutated. Conversely, those parts of the genotype with lower

relative likelihoods of being flawed become less likely to be mutated. In

this work, causal guidance does not change which individuals are selected

for reproduction or the number of modifications that will be made to an

individual, only where the modifications are made.

It remains to be determined experimentally whether these biased ge-

netic operators mislead the evolutionary process toward local minima, have

no significant effect, or improve the quality of and speed with which solutions

are produced. It is worth noting that causal guidance is used to bias genetic

operators, but does not explicitly control them. Just as with fitness-guided

selection, the use of causally-guided operations is probabilistic and does not
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prevent the occurrence of poorly fit individuals that arise in the population

due to random alterations; it simply aims to bias the process towards the

formation of more fit individuals and decrease the formation of very poor in-

dividuals that often occur with standard evolutionary computation methods.

3.3 Symmetry Neural Network Design

As a first step to assess the effectiveness of these ideas, a causally-

guided evolutionary system was developed and applied to the task of opti-

mizing weights in a fixed-architecture neural network. The performance of

this system was compared to a carefully matched evolutionary system that

does not employ causal guidance but is otherwise identical. The goal of this

experiment was simply to evaluate, for the first time, whether causal reason-

ing could be an effective means to guide evolution, thereby making it more

efficient and effective.

3.3.1 Neuroevolution

Neural network design is traditionally a time and labor-intensive pro-

cess in which human experts with extensive domain knowledge and experi-

ence manually design the networks. The expensive nature of this process has

fueled recent interest in automated design methods such as evolutionary com-

putation. Neuroevolution, the use of evolutionary computation methods to

design neural networks, has been successfully used to design various aspects
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of neural networks, including architectures, activation rules, learning rules,

and connection strengths (Yao, 1999; Miikkulainen, 2010; Yang et al., 2010;

Chen et al., 2012; Gomez, 2012). There are many reasons that neuroevo-

lution is an appealing method for designing connection strengths in a fixed

neural architecture. Gradient-descent algorithms are one common method

for finding connection weights in supervised learning tasks. However, these

algorithms are prone to getting stuck in local optima (Sutton, 1986), and

require activation rules that are continuous and differentiable. In contrast,

evolutionary computation methods have been shown to be good at finding

globally optimal solutions, or good approximations to them, in a number of

problem domains.

This task is an ideal one for an initial study of causally-guided evolu-

tionary computation in part because of the availability of cause-effect knowl-

edge in the domain that is already implicitly used. As explained in the sec-

tions below, conventional learning algorithms such as error back-propagation

are based on some simple and well-understood cause-effect relations, which

are adapted as the basis for causally-guided evolution in this study. While

I hypothesize that causally-guided evolutionary computation will ultimately

be most beneficial in application domains where causal knowledge is avail-

able but limited, it is important to conduct an initial evaluation of the idea

in a domain for which well-understood and valid causal knowledge is readily

available. This allows for an evaluation of causally-guided evolution while

mitigating the risk that the causal knowledge being used is not correct.
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3.3.2 Symmetry Networks

In this work, causally-guided evolutionary computation is used to de-

sign the connections strengths of a neural network with a fixed architecture

for the task of detecting mirror symmetry of 1D input patterns. Exam-

ples of symmetric and asymmetric input patterns are illustrated in Figure

3.2. Symmetric and asymmetric input patterns are not linearly separable,

and thus any neural network based on linear threshold neurons that would

correctly classify the input patterns must have hidden neurons (Rumelhart,

1987). While the concept of symmetry is easily grasped by humans, the

design of a neural network to detect symmetry is much more difficult, and

is of historical significance in the field of neural networks (Mehrotra, 1997).

Along with odd-parity classification and exclusive-or classification, symme-

try classification was long seen as being a problem for which neural network

learning was ill-suited (Minsky and Papert, 1969). Accordingly, the success

of modern error back-propagation algorithms at solving these problems was

instrumental in convincing people that modern EBP is an effective way to

train neural networks (Rumelhart et al., 1986). Crucially for us here, it is

generally very hard for an evolutionary process to discover an effective set of

weights and biases to solve symmetry problems.

In this problem, connection weights are evolved for a structurally fixed

neural network. The structure of the network is such that it has two hidden

neurons, and is fully connected between the input neurons and the hidden
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1 0 0 1 1 1 1 0 0 1 1 1 0 1 0 0 0 0 1 0

0 1 0 1 0 0 1 0 1 0 0 0 1 0 0 0 1 1 1 0

1 1 1 0 0 0 0 1 1 1 0 1 1 1 1 1 0 0 0 1

0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 1 1 1 1

0 1 1 0 0 0 0 1 1 0 0 1 1 1 1 0 1 1 1 0

Figure 3.2: Example input patterns for 10-input 1D mirror symmetry prob-
lem. Each box of 10 numbers constitutes an example input pattern. The
input patterns on the left half of the page are each symmetric, while those
on the right are asymmetric.

neurons. Limiting the structure to two hidden neurons creates a narrow path-

way through which the network may perform computation, and makes the

design problem more challenging. The number of input neurons is dictated

by the size of the input patterns that are being processed. For example, a

network that will recognize mirror symmetry of input patterns consisting of

8 input bits will necessarily have 8 input neurons. The two hidden neurons

are fully connected to a single output neuron. Each non-input neuron n is a

linear threshold unit with activation dynamics as follows, where ~a is a vector

of the activation levels of all neurons that have connections to n, ~wr is a

vector of the strengths of those connections, Θn is the threshold of node n,

and ar is the resulting activation of neuron n.

inn = ~wn · ~a =
∑
i

wni ∗ ai

an=


+1 if inn > Θn

0 if inn ≤ Θn
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Input 

Hidden 

Output 

Figure 3.3: A fixed neural architecture for 10-input 1D mirror symmetry task.
Circles are used to represent neurons, while arcs represent connections. Input
patterns are fed into input neurons (left) and activation spreads through
hidden neurons (middle) to a single output neuron (right).

3.4 Genetic Representation and Fitness Function

A linear chromosome of real-valued genes is used to represent the biases

and connection strengths in the network. Genes representing biases and

connections weights (incoming and outgoing) associated with the first hidden

neuron are listed first, followed by genes representing biases and connection

weights associated with the second hidden neuron. The gene representing the

bias of the single output neuron is listed last. This genetic representation is

illustrated in Figure 3.4. Each gene in the chromosome has a genotypic value

between 0 and 1, which maps linearly to a phenotypic connection strength
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b(h[1])

w(h[1],i[1])

…

w(h[1],i[I])

w(o,h[1])

b(h[2])

w(h[2],i[1])

…

w(h[2],i[I])

w(o,h[2])

b(o)w(h[1],i[2]),…,w(h[1],i[I-1]) w(h[2],i[2]),…,w(h[2],i[I-1])

Figure 3.4: Genetic representation of a neural network. Terms are defined
as follows: b(h[x]) is the bias of the xth hidden neuron, b(o) is the bias of
the output neuron, w(h[x],i[y]) is the connection weight from the yth input
neuron to the xth hidden neuron, and w(o,h[x]) is the connection weight from
the xth hidden neuron to the output neuron.

between -1 and +1. When using real-valued chromosomes, it is common

practice to keep genotypic values in the 0 to 1 range, and map them to

whatever range of phenotypic values is desired. This allows for the same

genetic mutation operators to be applied to all values in the chromosome,

regardless of whether the genes map to different phenotypic ranges.

The fitness of an individual is evaluated as follows. A linear threshold

unit neural network is created with the connection weights that are defined

by the individual. The network is used to process each possible unique input

pattern, and the resulting network outputs are examined. The desired output

value for a network is 1 if the input pattern is symmetric and 0 otherwise. The

number of patterns for which the network produces the desired output value

is recorded, and the fitness value assigned to the individual is the percent of

input patterns that are processed correctly by the network.
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3.5 Causal Knowledge

Causal knowledge about neural networks could potentially be con-

structed in multiple ways. For this preliminary work, I took the following

approach, forming one type of causal relation. For every input neuron i and

hidden neuron h, there is one possible genotypic disorder:

f(i,h): the connection weight from i to h is sub-optimal

Thus there are a total of 2*I possible genotypic disorders, where I is the num-

ber of input bits. For each input pattern p, there is one possible phenotypic

performance problem:

x(p): network produces incorrect output when presented with

input pattern p

There is a causal relationship between each genotypic disorder f(i,h) and each

performance problem x(p) based on whether the ith bit of p is on. That is

to say, if the connection weight from input i to hidden neuron h is defective,

it can cause the network to fail to correctly process inputs in which the ith

input is on. For all i, p, and h:

f(i,h) → x(p) iff (ith bit of p = 1)

where → is used to indicate causality (“may cause”), and not logical impli-

cation. If the ith bit of an input pattern is off, connection weights from the
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ith input bit will have no impact on the output produced by the network.

For this reason, there is no causal relationships between f(i,h) and x(p) for

those values of i and p where the ith bit of p is off.

The same piece of causal knowledge can be found implicitly in standard

methods for error back-propagation learning in neural networks:

∆wk,j = ηδp,kxp,j

in which ∆wk,j represents the amount of weight change to the connection

between neuron j and k, δp,k is the error of neuron k when input pattern p is

processed, xp,j is the activation of node j when input pattern p is processed,

and η is a constant (Mehrotra, 1997). Note that if the xp,j term is 0, that is

if the activation of node j is zero, then there will be no change to the weight

from j to k, because that connection cannot be contributing to the error at

k.

For a symmetry problem with 10 inputs and 2 hidden neurons, there are

thus 20 potential genotypic disorders and 1024 potential performance prob-

lems. Each of the 20 genotypic disorders has a causal relationship with 512

of the performance problems. It is worth noting that these 10,240 (20x512)

relationships may be equivalently expressed in one parameterized causal rela-

tion, as was presented above. This raises the question of whether the causal

relations presented here constitute a single relation or many relations. In
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my opinion, the single parameterized causal relation is best viewed as a sin-

gle piece of causal knowledge which abstractly describes the 10,240 causal

relations in the domain.

3.6 Causally-Guided Mutation

When causally-guided genetic operators are applied to an individual

network, that network’s performance characteristics and the given causal

knowledge are used to bias the execution of these operators. As indicated

in Figure 3.1, this is accomplished in three steps, as follows. The first step

is straightforward: if an individual network fails to process an input pattern

p correctly, it is assessed as having the phenotypic symptom s(p). Each

assessed symptom provides evidence that the genotypic disorders that it may

be caused by may be present in the individual. For example, if the phenotypic

symptom s(0000000100) is assessed in an individual, this can be seen as

evidence that the genotypic disorders f(8,1) and f(8,2) may be present, i.e.,

that the weight from input neuron 8 to hidden unit 1 or 2 is not optimal.

In the second step, a heuristic is used to assess the relative likelihood

(RL) score for each genotypic disorder. The specific heuristic for the RL

score of a genotypic disorder used in this work is

RL(f(i,h)) = max( |effects(f(i,h)) ∩ S| , |S|
2

) - |S|
2

effects(f(i,h)) = {x|f(i,h)→ x}
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where S is the set of observed symptoms. Thus, the RL score for a particular

disorder is based on the number of observed symptoms that may be caused

by that disorder. Note that if a disorder causes less than half of the observed

symptoms, it is deemed to be unlikely and its RL score is set to 0. The

minimum and maximum possible RL scores of 0 and |S|
2

occur when the

disorder in question causes less than half or all of the observed symptoms,

respectively.

Finally, in the third step, the genetic operators are causally biased. A

complicating factor when attempting to evolve connection weights of neu-

ral network architectures is the permutation problem (Hancock, 1992). This

problem arises from the fact that multiple networks that are functionally

equivalent may be genetically different simply because their hidden units are

arranged in different orders. The permutation problem makes crossover op-

erators very inefficient and ineffective (Yao, 1999). For example, in some pre-

liminary trials that were performed it was found that evolutionary systems

employing crossover were able to successfully produce neural networks for

the 8-input symmetry problem only 1/5th as frequently as otherwise equiv-

alent evolutionary systems that employed only mutation. For these reasons,

crossover and causally-guided crossover are not employed in this study, and

only causally-guided and control mutation genetic operators are used here.

Causally-guided mutation operators are biased such that those parts

of the genotype with higher relative likelihoods of being flawed are made
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more likely to be mutated. First, a single gene is randomly selected with

uniform probability from the set of all genes. If the selected gene represents

a hidden-to-output weight, a hidden bias, or the output bias, then the gene

value is modified as described below. However, if the selected gene represents

an input-to-hidden weight, then causal knowledge is used in reconsidering

which input-to-hidden gene should be modified. Specifically, a new input-

to-hidden gene is selected from the set of all input-to-hidden genes, with

probability proportional to each gene g’s RL(f(g)) score. The selected gene

is then modified as described below. In this way, causally guided mutation

steers modifications to those input-to-hidden connections that have higher

relative likelihoods of being flawed. It is worth noting that causally-guided

mutation is probabilistic and does not prevent the occurrence of poorly fit

individuals that arise in the populations due to random alterations; it sim-

ply aims to bias the process towards the formation of more fit individuals

and decrease the formation of very poor individuals that often occur with

standard evolutionary computation methods.

Whichever gene is ultimately selected for mutation is modified by adding

or subtracting (with equal probability) a small randomly generated number

to the gene value. If the resulting gene value is outside the legal range ([0,1]),

it is incremented / decremented back within range. The small random num-

ber is generated in a manner that is reminiscent of a Gaussian distribution,

in which the majority of values are clustered about a central mean. However,

unlike a normal distribution, the method used here avoids generating num-

47



bers that are excessively small to the point of being irrelevant. Specifically,

the random number is generated from one of the following five uniform dis-

tributions: [ 1
32

, 1
16

], [ 1
16

, 1
8
], [1

8
, 1

4
], [1

4
, 1

2
], [1

2
, 1]. Which uniform distribution

is used is selected randomly and with equal probability.

The control mutation operator is not causally-guided, but otherwise

operates in the same way as the causally-guided mutation operator described

above. When control mutation is applied to an individual, exactly one gene

is selected uniformly and randomly and its value is mutated as described

above.

3.7 Experimental Methods

Two different evolutionary systems were used to adapt symmetry neu-

ral networks. One version uses control mutations rather than causally-guided

mutations, and serves as the control in these experiments (CONTROL). The

other version (CAUSAL) uses causally-guided mutations as describe above.

Each of the systems was used to optimize the weights of symmetry networks

with 8 inputs and symmetry networks with 10 inputs. One hundred trials

of each evolutionary system were run for each symmetry problem, yielding

200 trials overall. Creating successful network weights for the 10 input task

requires optimizing 25 real-valued genes/weights to construct a network that

correctly processes 1024 input patterns. This is a non-trivial task even for

learning methods such as error back-propagation (which could not be used
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here as a direct comparison due to the non-differentiable activation functions

used). Each evolutionary trial was allowed to run for up to 15000 gener-

ations or until a set of network weights that correctly processes all input

patterns was found. As discussed earlier, crossover was not used. In each

of the experiments conducted, a population size of 500, a mutation rate of

0.80, tournament selection with tournament size of two, and single-individual

elitism were used. For each system, the fraction of trials that found optimal

network weights was measured at various generations.

3.8 Results

As shown in Figure 3.5 (left), for an 8 input symmetry problem, the

CONTROL algorithm was able to produce a successful network in 27 out of

100 trials. In contrast, the matched CAUSAL algorithm was able to produce

successful networks 51 times out of 100 trials. This difference in performance

is statistically significant at a 99% confidence level. As shown in Figure 3.6

(right) the difference in performance between the CONTROL and CAUSAL

systems was even more dramatic when applied to the 10 input symmetry

problem. In this problem, the CONTROL system failed to find a successful

network in all 100 trials. In contrast, the CAUSAL system was able to find

successful networks in 20 out of 100 trials, within 15000 generations.

Exploring the performance of the evolutionary systems in terms of num-

ber of generations required does not fully address the computational costs

49



0.00

0.10

0.20

0.30

0.40

0.50

0.60

0 2000 4000 6000 8000 10000 12000 14000

Fr
ac

tio
n 

Su
cc

es
sf

ul
 R

un
s

Generation

8 Input Symmetry

Control

Causal

Figure 3.5: Fraction of successful runs when using the CAUSAL and CON-
TROL algorithms to solve an 8 input mirror symmetry recognition problem.

involved. Specifically, introducing causal guidance into the evolutionary pro-

cess requires additional computation per generation to make inferences and

influence genetic operations. To better understand this issue, 30 additional

trials of the CONTROL and CAUSAL system were applied to the 8 and

10-input problems, the CPU time required by each trial was measured, and

the differences between the two systems were analyzed.

For the 8-input problem, it was found that a CONTROL system trial

averaged 480 seconds to execute 15,000 generations, while a CAUSAL sys-

tem trial averaged 491 seconds. Similar results were found for the 10-input

problem, for which a CONTROL system trial averaged 1753 seconds, and a

CAUSAL system trial averaged 1805 seconds. For both problems, at a 95%
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Figure 3.6: Fraction of successful runs when using the CAUSAL and CON-
TROL algorithms to solve a 10 input mirror symmetry recognition problem.
Results with the CONTROL algorithm cannot be seen as all runs failed (i.e.,
CONTROL results are a horizontal line at 0% that is obscured by the x-axis).

confidence level a CAUSAL system trial requires less than 4% more CPU

time than a CONTROL system trial.

3.9 Discussion

In this first chapter, I have taken some initial steps to evaluating the

effectiveness of using evolutionary computation methods that have been mod-

ified so that casual knowledge can guide the application of genetic operators.

I have used causally-guided evolutionary methods to design neural net-

works that recognize 1D mirror symmetry. There was no guarantee a priori
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that introducing causally-guided genetic operators would make the evolu-

tionary system more effective. It was entirely possible that just the opposite

would be true, i.e., adding causal influences could produce evolutionary sys-

tems that are less effective and less computationally efficient.

Instead I found that causally-guided evolution could be used success-

fully to design neural networks that recognize mirror symmetry in one di-

mensional input patterns. The performance of this system was compared to

a carefully matched control evolutionary system that does not employ causal

guidance. When applied to an eight input symmetry problem, the systems

employing causally-guided mutation found successful networks nearly twice

as frequently (88% more frequently) as the system employing non-causally-

guided or “control” mutation. Furthermore, when applied to a ten input

symmetry problem, the causally-guided system found successful networks

20% of the time, whereas the control system failed to find a successful net-

work in any of the 100 trials. It was found that the causally-guided system

required less than 4% more CPU time per generation than the control system.

This very marginal increase in computational costs per generation would be

overwhelmingly outweighed in practice by the fewer number of generations

that would be required to find optimal solutions.

The fact that causally-guided systems were able to solve the symmetry

network design task with greater frequency than the control systems provides

a first demonstration that incorporating human-provided causal knowledge
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into the evolutionary search process can have a meaningful positive impact.

The fact that evolutionary systems that employ causally-guided mutation

are able to solve the 10-input problem and control systems are not is quite

encouraging, but raises the question of whether this result will carry over to

real world problems. The next two chapters address this question.
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Chapter 4

Integration of Causally-Guided Crossover for Design

Optimization

4.1 Introduction

In this chapter the initial work presented in Chapter 3 is extended in

a number of important ways, both in terms of the causally-guided evolu-

tionary methods themselves as well as the types of application problems to

which causally-guided evolution is applied and evaluated. While the previous

chapter described the use of a single causally-guided operator (mutation), in

this chapter a second causally-guided operator (crossover) is introduced. An

important goal of this chapter is to evaluate the feasibility of causally-guided

crossover when used in isolation and when combined with causally-guided

mutation in the same evolutionary process. Can multiple causally-guided

genetic operators be used synergistically, or do they interfere with each other?

To evaluate these ideas, causally-guided evolutionary systems are de-

veloped and applied to a real-world antenna design task. This evaluation

is significant for two reasons. First, successfully applying causally-guided

evolution to a second application problem demonstrates the general appli-

cability of these methods. Second, the antenna design task is a real-world
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problem in which causal knowledge is available but hardly comprehensive.

When designing antennas, human experts regularly use vague heuristics or

“rules of thumb” to iteratively revise designs based on performance charac-

teristics. However, this knowledge is far from complete and a long trial and

error design process is typically needed. While the neural network design

task in Chapter 3 was selected for an initial study precisely because causal

knowledge was well understood and known to be effective, the application of

causally-guided evolution to antenna design is an important step in demon-

strating that these methods are applicable even when causal knowledge is

less comprehensive.

In the remainder of this chapter, the high-level (i.e., application in-

dependent) form of causally-guided crossover is presented. Next, antenna

design is discussed in greater detail, including the particulars for the dipole

antenna array design task considered here. The causal knowledge that is

used in this study (provided by two expert electrical engineers) and the

application-specific forms of causally-guided mutation and crossover oper-

ators are presented. An experimental evaluation is conducted in which the

performance of evolutionary systems that employ causal guidance are com-

pared to carefully matched control systems that do not. Further analysis ex-

amines the types of designs that are produced by these various systems and

the relationship between those designs and causal guidance are discussed.

Evolved optimal antenna designs are systematically varied and their changes

in performance examined to validate the causal knowledge that was used in
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this study as well as to learn about cause-effect relations in this domain more

generally.

4.2 General Form of Causally-Guided Crossover

In Chapter 3, the general form of causally-guided genetic operators and

causally-guided mutation was defined. Here, causally-guided crossover is de-

fined analogously as follows: Causally-guided crossover operations are biased

such that those parts of parent individuals’ genotypes that have lower relative

likelihoods of being flawed are made more likely to be combined together when

creating offspring. Consequently, those parts of the individuals’ genotypes

that have higher relative likelihoods of being flawed are made less likely to

be used when creating offspring. In this way, causally-guided crossover in-

creases the chances that the best parts from each parent are combined into

the produced offspring.

As with all causally-guided genetic operators, the causal guidance here

is used to bias but not explicitly control crossover. The use of causally-guided

crossover is probabilistic and does not prevent the occurrence of poorly fit

individuals that arise in the population due to random alterations; it simply

influences the process towards the formation of more fit individuals and fewer

very poor individuals than would otherwise occur.
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4.3 Dipole Antenna Array Design

To assess the effectiveness of these ideas, I explore the use of causally-

guided evolution to solve an antenna array design problem. A generational

genetic algorithm augmented with causally-guided genetic operators was de-

veloped, and its performance in solving the antenna array design problem

was compared to a carefully-matched genetic algorithm that uses no causal-

guidance but is otherwise equivalent. Unlike the previous chapter, a causally-

guided crossover operator is defined and used, in addition to causally-guided

mutation. The effects of using both causally-guided genetic operators to-

gether and in isolation are examined. With the exception of the causally-

guided genetic operators, all aspects of the evolutionary systems (described

in more detail below) are conventional and widely used (De Jong, 2006). The

goal of these experiments is to determine if causally-guided genetic operators

mislead the evolutionary process toward local minima, have no significant ef-

fect, or improve the quality of and speed with which solutions are produced.

4.3.1 Evolutionary Antenna Design

The design of many real-world antennas is a challenging problem that

requires significant domain expertise (Altshuler and O’Donnell, 2011; Drabow-

itch et al., 1998; Elliot, 2003; Setiean, 1998). Complex interactions between

neighboring components of an antenna make it impossible to solve all but

the most simple antenna design problems in closed form. Instead, human

57



designers typically employ an iterative trial-and-error design process, which

is both time and labor intensive and often results in very simple antenna de-

signs that may not be optimal. While there have been a few previous studies

of evolving antenna arrays, most past related work has focused on evolving

single isolated antennas.

These difficulties have motivated research into automated methods for

antenna design. While various methods have been studied (including particle

swarm optimization (Robinson and Rahmat-Samii, 2004), ant colony opti-

mization (Rajo-Iglesias and Quevedo-Teruel, 2007; Panduro et al., 2009), and

simulated annealing (C.M. Coleman and Ross, 2004)), evolutionary compu-

ation methods appear to be particularly well-suited to the antenna domain,

and have been successfully used to design Yagi-Uda antennas, quadrifiliar

antennas, and crooked wire monopole antennas (Luo et al., 2010; Siakavara,

2010; Haupt and Werner, 2007; Lohn et al., 2002, 2004, 2008, 2001). The

proven ability of evolutionary methods to effectively search large and un-

known design spaces make them a natural fit for antenna design problems

(Lohn et al., 2001). Compared to optimization techniques such as gradi-

ent descent and hill-climbing, evolutionary methods have been shown to be

less susceptible to getting stuck in local optima when applied to problems in

which the fitness landscape may be discontinuous and include numerous local

optima, as is the case with many antenna design problems (Haupt, 1995).

While past studies have shown the effectiveness of applying conven-

tional evolutionary computation methods to antenna design problems, these

58



methods do not effectively leverage available human expertise regarding cause-

effect dynamics in the application domain. As others have noted, effec-

tive antenna design by humans requires not only knowledge and intelligence

about antennas, but also experience and artistry (Lohn et al., 2001). In-

deed, human antenna design experts often modify and refine existing an-

tenna designs based on intuitions and rules-of-thumb that have been ac-

quired through years of experience. In contrast to conventional evolutionary

methods, causally-guided evolutionary computation is designed specifically

to leverage this cause-effect knowledge in order to guide the evolutionary pro-

cess. To our knowledge, no antenna system has ever been designed through

causally-guided evolution, as described here.

4.3.2 Antenna Performance Characteristics

There are a number of performance characteristics that are important

to antenna design, and that will be used later in this chapter. The term

directivity refers to the capability of an antenna to radiate more energy in

certain directions than in others. Gain is a measure of the amount of energy

that an antenna radiates in a specific direction. It is calculated by computing

the ratio of energy radiated in that direction to the amount that would be

radiated by an isotropic radiator (a theoretical antenna that radiates equally

in all directions). Gain often has very high values and is most often expressed

in decibels. Another important characteristic is the impedance mismatch be-
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tween transmission lines and antenna, which can cause electrical signals to

reflect back through the feed network. These reflected waves react construc-

tively and destructively with incoming signals, resulting in peaks and valleys

in the signal envelope along a transmission line. At best, impedance mis-

matches in an antenna result in inefficient use of energy. In some cases, the

constructive interference can even result in voltages that are high enough to

damage circuitry in the feed network. Voltage standing wave ratio (VSWR)

quantifies impedance mismatch between transmission lines and radiating el-

ements (VSWR = 1 is ideal). Finally, with antenna design problems, cost

can mean many different things, including manufacturing difficulty, weight,

size, volume of material, etc.

4.3.3 Dipole Antenna Arrays

The specific task used in this work is that of designing a directional

dipole antenna array that meets prespecified performance criteria. Dipole

antenna arrays consist of an array of parallel lengths of wires, known as

dipoles, which are positioned above a ground plane. A transmission line

connects to the center of each dipole and carries the signal that is radiated

or received by the antenna. The complete design specifications for such an

antenna include the number of dipoles, the lengths of dipoles, the height of

dipoles off the ground plane, the spacing between dipoles, and the phases

and voltages with which each dipole is fed. For this work, dipole antenna
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arrays were limited to having uniform spacing, height, and length. Known

formulas are used to calculate the desired voltage and phase with which each

dipole should be fed, based on each dipole location and the desired direction

of broadcast. The uniform nature of such designs makes them appear to be

very simple. However, in practice and despite the small dimensionality of

the search space, it is quite difficult for a human designer to optimize these

four values by hand because of the rugged fitness landscape. Furthermore,

greedy or local search algorithms often get stuck in the many local optima

that exist.

4.3.4 Performance Criteria

In the particular antenna design task considered here the specific goal,

provided a-priori, is to maximize gain between -10 and +10 degrees off bore-

sight in the plane that bisects the dipoles, minimize VSWR, and minimize

cost. Specifically, a successful antenna must have an average gain of at least

10 dB in the target angle range and a VSWR of less than 3.0 (a commonly

used limit for VSWR in antenna design). The number of dipoles in the

antenna array is used as a rough approximation for cost, which should be

minimized but does not have a required value. The antenna is to be oper-

ated at 1200 MHz with 50 ohm transmission lines. These particular design

specifications and performance requirements define an easily understandable

antenna design problem that is complex enough to be of real-world interest.
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As in previous studies, the antennas are simulated over an infinite ground

plane in order to keep computational costs down (Lohn et al., 2004). Soft-

ware was implemented in Java and C, and runs on Linux-based PC’s. All

antennas were simulated using an open source version of the Numerical Elec-

tromagnetic Code software package (Burke and Poggio, 1981) available at

http://www.si-list.net/swindex.html.

4.4 Fitness Evaluation and Genetic Representation

A fitness function was designed to capture the specific performance

criteria outlined above. The overall fitness function is made up of three

components that reflect the three distinct performance criteria:

FitnessOverall = FitnessV SWR + FitnessDirectivity + FitnessCost

The FitnessV SWR component rewards low VSWR values, and was calculated

as:

FitnessV SWR =


−2 ∗ V SWRmax if V SWRmax ≥ 3.0,

−1 ∗ V SWRmax if V SWRmax < 3.0.

where V SWRmax is equal to the maximum VSWR observed at any dipole

in the antenna. If the V SWRmax is above 3.0, the FitnessV SWR score is

multiplied by -2 instead of -1, increasing its negative impact on the overall

fitness value. This was done because, as noted earlier, a VSWR value of 3
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Figure 4.1: Genetic representation of a dipole antenna array.

is a commonly used limit in antenna design, beyond which antennas are not

useable. The FitnessDirectivity score measures the directivity of the antenna

in the target angle range, and is calculated as:

FitnessDirectivity =
10∑

i=−10

Gaini

where Gaini is the amount of gain observed in the XY-plane at i degrees off

boresight. There are 21 terms here, each in the -10 to +10 degree range, so

an antenna that meets the design requirements of 10 dB average in this range

would have a FitnessDirectivity score of at least 210. Lastly, the FitnessCost

component is equal to the number of dipoles in the antenna array multi-

plied by -1. These three components are summed to yield the overall fitness

score (FitnessOverall), which is maximized by the evolutionary system. This

multi-component fitness function, in which each component reflects a differ-

ent performance goal, and the stepped nature of the VSWR component are

inspired by previous studies showing such an approach to be successful when

evolving antenna designs (Hornby et al., 2006; Lohn et al., 2004).
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The genetic representation used to represent a dipole antenna array

consists of a vector of four numbers (see Figure 4.1). The first is a whole

number between 1 and 10 that represents the number of dipoles. The remain-

ing numbers in the vector are real-valued and may have values between 0.1

and 2.0. These three values represent distances, expressed in wavelengths, for

the length of dipoles, height of dipoles and spacing between dipoles. Since

the operating frequency of this antenna is 1200 MHz, a wavelength corre-

sponds to roughly 0.25 meters. For example, an individual in the population

with genetic vector of [4, 1.0, 2.0, 0.5] describes an antenna with 4 dipoles

of 0.25 m length, spaced 0.5 m apart and 0.125 m off the ground plane. The

four vector elements are distinct parts of the genome and are referred to as

genes. The letters N, L, S, and H are used to refer to these four genes.

4.5 Causal Knowledge

The non-linear interactions between antenna design aspects and per-

formance qualities are not easily characterized and are quite complex. Here

the case in which only a few pieces of diagnostic causal knowledge are incor-

porated into the system is considered. This allows an exploration into the

feasibility of causally-guided evolution, while delaying the need to seriously

address complex situations in which multiple genotypic disorders influence

multiple phenotypic symptoms simultaneously. It is known by antenna de-

sign experts that sub-optimal dipole lengths can cause high VSWR, but that
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the height, length, and number of dipoles have limited effect on the VSWR

of an antenna 1. This is the diagnostic causal knowledge that I use in this

study:

Sub-optimal Dipole Length → High VSWR

The defects on the left side of these causal relations are genotypic disorders

because they refer to sub-optimal gene values in the genetic representation

(see Figure 4.1). The right side of these causal relations is a phenotypic symp-

tom. As noted earlier, a high VSWR value is an indication of impedance mis-

match between transmission lines and dipoles. Such impedance mismatches

result in inefficient use of energy, and can even result in voltages that are high

enough to damage circuitry in the feed network. As discussed earlier, the →

symbol is not logical implication but causality. There are three additional

genotypic disorders: sub-optimal number of dipoles, sub-optimal spacing of

dipoles, and sub-optimal height of dipoles. These three genotypic disorders

do not cause high VSWR. The terms d(N), d(L), d(S), and d(H) are used to

represent the four genotypic disorders.

4.6 Causally-Guided Genetic Operators

As discussed in Section 3.2, causally-guided genetic operations occur

in three steps: the performance characteristics of the individuals in question

1These causal relationships were derived with assistance from electrical engineers who
are experts in antenna design - Jason Lohn at CMU and Derek Linden of X5 Systems.
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are examined to assess phenotypic symptoms, inferences are made about the

likelihoods of the genotypic disorders, and these inferred likelihoods are used

to bias the execution of the genetic operator. In the antenna array design

task, identifying phenotypic symptoms (Step 1) and making inferences about

the relative likelihood of genotypic disorders (Step 2) is straightforward. If an

antenna has a VSWR greater than 3.0, it is assessed as having the phenotypic

symptom of high VSWR, otherwise it is assessed as not having the symptom

of high VSWR. An antenna that has the symptom of high VSWR can be

reasoned to have an increased chance of having sub-optimal dipole lengths, as

this is the only genotypic disorder that is known to cause the symptom. On

the other hand, if the antenna lacks the symptom of high VSWR, it can be

reasoned that there is a decreased chance that the antenna has sub-optimal

dipole lengths. Finally, the way in which these inferences are used to bias

the execution of genetic operators (Step 3) depends on the particular genetic

operator in question. Because real probability values of causal relationships

were not available, the heuristic methods for causal guidance presented be-

low were developed based on intuition and not on any formal probabilistic

reasoning. However, as described in the Appendix to this chapter, these

heuristic methods are consistent with probabilistic approaches.

When an individual is selected for causally-guided mutation, there are

a number of specific mutations that may or may not be applied to the indi-

vidual, and these are controlled by the algorithm Causal-Mutation that

is outlined in Figure 4.2. The decision of whether to apply each specific mu-
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tation is made stochastically and independently, and is influenced by causal

guidance. There are eight specific mutations that may be applied to an in-

dividual during each causally-guided mutation: for each of the four genes

there is a specific mutation that makes large changes to the gene value, and

a specific mutation that makes small changes. In this manner, large changes

allow the evolutionary process to make big steps through the solution space,

while small mutations make finer-grained changes to a gene’s value. The

terms MN , mN , ML, mL, MS, mS, MH , and mH are used to refer to these

eight specific mutations. A lowercase m is used for small mutations, an up-

percase M is used for large mutations, and single character indices are used

to identify the relevant gene.

Each large specific mutation replaces the relevant gene with a random

value, selected uniformly from the appropriate legal range for that gene.

Thus large specific mutations very often (though not always) make large

changes to the gene value. For example, if MS is applied to an individual,

that individual’s spacing gene will be set to a random value between 0.1 and

2.0. If mN is applied to an individual, the value of the gene that specifies

the number of dipoles is either incremented or decremented by 1, with equal

probability. For the other three genes, small mutations either increase or

decrease the gene’s value by a small random value. This small random value

is selected with equal probability from one of five uniform distributions: [0,

0.2], [0, 0.1], [0, 0.01], [0, 0.001], and [0, 0.0001]; this has the effect of making

smaller changes (e.g., < 0.0001) more probable than other small changes
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(e.g., 0.1 to 0.2). These small mutations allow the evolutionary process to

make smaller moves through the solution space and fine tune solutions.

When causally-guided mutation is applied to an individual, the proba-

bilities with which each of these specific mutations are applied is biased based

on the likelihoods of the various genotypic disorders (see Figure 4.2). Specifi-

cally, a utility score is calculated for each specific mutation. The utility score

of a specific mutation is used as an indication of how useful it would be to

apply that specific mutation to the individual. Initially, each specific muta-

tion is assigned a utility score of 1.0. For each gene that has an increased

likelihood of being flawed (i.e., the corresponding genotypic disorder has an

increased likelihood of being present), the utility value of the corresponding

large mutation is increased by multiplying by a constant ∆1 > 1.0. For those

genes with lower likelihoods of being flawed, the utility score of the corre-

sponding large mutation is decreased by dividing by a constant ∆2 > 1.0.

Lastly, the utility scores are rescaled so that the sum of all eight specific mu-

tations’ utility scores is equal to one. Thus large mutations that correspond

to genes with higher relative likelihoods of being flawed have higher utility

scores. Each specific mutation is then applied with probability equal to its

utility score. It is worth nothing that, because the utility scores are scaled to

sum to 1.0, the expected number of specific mutations that will be applied

during any single causally-guided mutation operation is 1.0.

For example, when causally-guided mutation is applied to an antenna

design with the symptom of high VSWR, the causal knowledge indicates an
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function Causal-Mutation(Individual A)
// STEP 1: assess phenotypic symptoms
if (A has VSWR > 3.0) then

hasSymptom(A, High VSWR) = true
else

hasSymptom(A, High VSWR) = false
end if
// STEP 2: make inferences about likelihood of genotypic disorders
increasedLikelihood(A, d(g)) = false ∀ g ∈ {N,L,H,S}
decreasedLikelihood(A, d(g)) = false ∀ g ∈ {N,L,H,S}
if (hasSymptom(High VSWR)) then

increasedLikelihood(A, d(L)) = true
else

decreasedLikelihood(A, d(L)) = true
end if
// STEP 3: bias mutation
utility(s) = 1.0 ∀ specific mutations s
for all genes g ∈ {N,L,H,S} do

if (increasedLikelihood(A, d(g))) then
utility(Mg) = utility(Mg) * ∆1

else if (decreasedLikelihood(A, d(g))) then
utility(Mg) = utility(Mg) / ∆2

end if
end for
rescale all utility scores to sum to 1.0
for all specific mutations s do

if Random(0,1) < utility(s) then
apply s to A

end if
end for

end function

Figure 4.2: Pseudocode for the causally-guided mutation operator as im-
plemented for the dipole antenna array design task. Input argument A is
an individual antenna array design, while d(g) represents the assertion that
gene g of A is flawed (see text). Mutations s refer to the 8 specific mutations
listed in the text. Constants ∆1 and ∆2 are constrained to be greater than
1.0, and Random(0,1) returns a uniformly random floating point number in
(0.0, 1.0).
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function Causal-Crossover(Individual M, Individual F)
// STEP 1: assess phenotypic symptoms
for all parents P ∈ {M, F} do

if (P has VSWR > 3.0) then
hasSymptom(P, High VSWR) = true

else
hasSymptom(P, High VSWR) = false

end if
end for
// STEP 2: make inferences about likelihood of genotypic disorders
increasedLikelihood(P, d(g)) = false ∀ g ∈ {N,L,H,S}, P ∈ {M, F}
decreasedLikelihood(P, d(g)) = false ∀ g ∈ {N,L,H,S}, P ∈ {M, F}
for all P ∈ {M, F} do

if (hasSymptom(P, High VSWR) then
increasedLikelihood(P, d(L)) = true

else
decreasedLikelihood(P, d(L)) = true

end if
end for
// STEP 3: bias crossover
create child Individual C
inh(P, g) = 1.0 ∀ g ∈ {N,L,H,S}, P ∈ {M, F}
for all P ∈ {M,F} do

for all genes g ∈ {N,L,H,S} do
if increasedLikelihood(P, d(g)) then

inh(P,g) = inh(P,g) - ∆3

else if decreasedLikelihood(P, d(g)) then
inh(P,g) = inh(P,g) + ∆3

end if
end for

end for
for all genes g ∈ {N,L,H,S} do

if Random(0,1) < ( inh(M,g)
(inh(M,g) + inh(F,g))

) then
replace C’s value of g with M’s

else
replace C’s value of g with F’s

end if
end for
return C

end function

Figure 4.3: Pseudocode for the causally-guided crossover operator as imple-
mented for the dipole antenna array design task. Same notation as in Figure
4.2, where 0 < ∆3 < 1 is a constant. A parent P’s inheritance score for gene
g is given by inh(P,g), as explained in text.
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increased probability that dipole lengths are sub-optimal. Thus, the utility

score of the specific mutationML, which makes changes to the gene associated

with dipole length, is increased, while the utility scores of all other specific

mutations are effectively decreased through the normalization process. Thus,

the specific mutation ML will be applied with a higher probability than

each of the other specific mutations. In this way, causal guidance biases the

mutation operator towards modifying those parts of the individual that have

higher relative likelihoods of being flawed.

As implemented in algorithm Causal-Crossover (see Figure 4.3),

causally-guided crossover is a variation of uniform crossover, in that offspring

are created by stochastically selecting one copy of each gene from each of the

two parents M and F, and each gene is inherited independently. Unlike in

typical uniform crossover, where two offspring are produced simultaneously,

the genes that are inherited by one offspring have no influence on which

genes are inherited by the other offspring. The inferred likelihood of the

various genotypic disorders is used to bias the crossover operation as follows.

As shown in Figure 4.3, each gene in each parent is initially assigned an

inheritance score (inh) of 1.0. The inheritance score of a gene is designed

to be an indication of how unlikely it is that the gene is sub-optimal, and

accordingly how useful it would be for offspring to inherit that gene. The

inheritance score of each gene that has an increased likelihood of being flawed

is decreased by subtracting the constant 0 < ∆3 < 1. This same constant is

added to the inheritance score of each gene that has a decreased likelihood
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of being flawed. The chance that an offspring will inherit a copy of a gene

from one parent is equal to that parent’s gene’s inheritance score divided

by the sum of both parents’ genes’ inheritance scores. In this manner, those

genes in a parent with high relative likelihoods of being flawed will have lower

inheritance scores and therefore be less likely to be inherited by offspring.

Compared to more commonly used crossover operators, such as single-point

crossover, uniform crossover can sometimes be very destructive, due to the

high number of crossover points. However, for the antenna array design

task the chromosome consists of only four genes, which limits the potential

for overly destructive crossover. Additionally, using a variant of uniform

crossover allows for using causal guidance to steer the inheritance of each

gene independently.

The control mutation and control crossover operators are not biased by

causal reasoning, but operate very similarly to their causally-guided counter-

parts. As their names suggest, control genetic operations are used to serve

as a baseline to which one may compare the effectiveness of causally-guided

operations. During control mutation, each of the eight specific mutations

may or may not be applied to an individual, just as in causally-guided muta-

tion. However, in control mutation, the probability of applying each specific

mutation is fixed at 1
8
. In this sense, the control mutation is exactly like

the causally-guided mutation, except that probabilities of applying specific

mutations are fixed and not influenced by causal reasoning. During control

crossover, offspring are created by stochastically selecting one copy of each
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gene from one of the two parents, just as in causally-guided crossover. How-

ever, in control crossover, each gene that is inherited has an equal chance of

coming from either of the two parents. Control crossover can be viewed as

being exactly like causal crossover, except that the probabilities that gov-

ern from which parent a gene will be inherited are fixed and not influenced

by causal reasoning. The fact that control operators are so similar to their

causally-guided counterparts helps to ensure that any differences in perfor-

mance between systems employing causal and control operators are due only

to the presence or absence of causal guidance. What is critical for this current

comparative study is that the causally-guided and control crossover operators

are identical except for the use of causal guidance.

4.7 Experimental Methods

Four different evolutionary systems were used to design dipole antenna

arrays that satisfy the pre-specified performance criteria described above.

The CONTROL system used control crossover and control mutation opera-

tors, and serves a control process in these experiments because it makes no

use of causally-guided genetic operators. In contrast, causal mutation and

control crossover were used by the CAUSALM system, control mutation and

causal crossover were used by the CAUSALC system, and both causal muta-

tion and causal crossover were used by the CAUSALCM system. Two hundred

trials of each of these four evolutionary systems were conducted using a dif-
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ferent random number stream for each trial. Each trial was started with a

randomly generated initial population of 50 antennas and executed for 1000

generations, yielding 50,000 antenna array simulations. Each individual in

the initial population was created by selecting gene values uniformly from the

range of legal values. A population of size 50 and tournament selection with

tournament size two were used in all trials. In each generation, exactly one

offspring was created by elitism. Each of the remaining 49 offspring in each

generation was created by using exactly one of the following stochastically

chosen operators: crossover (47.5% chance), mutation (47.5%), or reproduc-

tion (5%). Thus, the number of offspring created by each method in each

generation was not constant or predetermined. However, given a population

size of 50, in each generation the expected number of individuals created by

crossover, mutation and reproduction were approximately 23.3, 23.3, and 2.4,

respectively (with an additional single offspring via elitism). The constant

values ∆1, ∆2, and ∆3 were fixed at 20.0, 2.0, and 0.2, respectively. These

parameter values were found via a small number of test runs; they may not

be optimal, but were found to be effective in this study, and were the same

in both control and experiment trials.

The results of the 800 trials (200 trials times 4 evolutionary systems)

were examined and analysis was performed as follows. Of all the antenna

designs produced by the evolutionary systems, there appears to be a clear

delineation between those that reach a fitness level of 310 and those that do

not. That is, the fitness of each antenna produced by each evolutionary pro-
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cess is either just above 310 or else considerably lower. Thus, a fitness level

of 310 offers useful criteria by which to classify antennas as being “optimal”

for the purpose of analysis. Data was collected to determine how often each

of the four evolutionary systems was able to find an optimal antenna within

various numbers of generations. Additionally, the average number of gener-

ations required by each system to find an optimal antenna was calculated.

When computing these averages, trials that did not find an optimal antenna

design in 1000 generations were counted as having found one in generation

1000. Therefore, this average is actually a rough approximation of the true

average.

Multi-start strategies, in which evolutionary processes are terminated

and restarted if an adequate solution is not found within a certain gener-

ational limit, often find adequate solutions faster than by running a single

process indefinitely (Hornby et al., 2006). This is because once an evolution-

ary process converges to a solution it is unlikely that the process will move

away from that solution. Accordingly, additional computation time may be

better spent starting a new evolutionary process from scratch rather than

continuing the already-converged process.

A multi-start strategy was not used in the 200 trials of each system

done in this work. However, by using the results of each system’s 200 trials

as an approximation for how that system performs across all random number

streams, one can calculate the expected number of generations required by
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each system to find an optimal antenna when used in conjunction with a

multi-start strategy, thus providing a measure of computational cost that is

very practical. To do this, E(req gens(S, f, g)) is calculated, which repre-

sents the expected value of the number of generations required by system S

to find an antenna with fitness f when used with a multi-start strategy and

a generation limit of g. Here success rate(S, f, g) is the fraction of system

Ss 200 trials that find an antenna with fitness of at least f by generation g,

and avg gens(S, f, g) represents the average number of generations required

by these trials.

E(req gens(S, f, g)) =
(

g
success rate(S,f,g)

)
− g + avg gens(S, f, g)

This follows from probability formulas related to Bernoulli trials, as each

evolutionary process can be thought of as a Bernoulli random variable and

the multi-start approach is a Bernoulli trial. Because it is difficult to know

a good generation-limit value a priori, the expected number of generations

required by each system to find an optimal antenna was calculated with a

variety of generation-limits: 100, 200, 300, 400 and 500. This gives a very

practical measure of the different computational costs associated with using

each of the four evolutionary systems to find an optimal antenna design.

The various antenna designs produced by the four systems were ex-

amined. The antennas were visually inspected, found to fall into clusters

according to their genotype similarity, and the clusters were arbitrarily la-

beled. The frequencies with which the various systems arrived at these dif-
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ferent designs were calculated, in an effort to understand the ways in which

causal-guidance affects the types of designs that are produced.

Introducing causal guidance into the evolutionary process requires ad-

ditional computation per generation relative to control processes in order to

make inferences and influence genetic operations. Causally-guided evolution-

ary computation is only worthwhile if the additional computational costs per

generation are outweighed by the reduced number of generations required to

find solutions. The analysis presented above explores performance in terms

of the number of generations required, which does not directly address the

computational costs involved. For this reason, 5 trials of the CONTROL and

CAUSALCM systems were executed for 5000 generations, the CPU time re-

quired by each trial was measured, and differences between the two systems

were analyzed.

4.8 Results

Numerous trials from all four evolutionary systems successfully de-

signed antennas that met the prespecified performance criteria. The most

fit individual, which was discovered by some trials in each system, was a

five-element dipole array with dipoles of length 0.4635 λ, height of 1.7094 λ

off the ground plane, and spacing of 0.6956 λ. This antenna had a VSWR

of only 1.31 and the total directivity score was just over 316, indicating an

average of just over 15 dB of gain in the target range. A schematic of this
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antenna design and a radiation plot illustrating its directivity can be seen in

Figure 4.4, and 4.5. The ground plane, which would occupy the XY-plane

where Z is equal to 0, and the feed-lines are not pictured. The radiation

plot can be thought of as corresponding to the XZ-plane where Y is equal

to 0, which bisects the dipoles (main lobe points in the positive Z-direction).

The axis labeled 0 deg in Figure 4.5 corresponds with the positive Z axis in

Figure 4.4. The radiation plot is in terms of gain, which simply shows rela-

tive strength in particular directions. The overall fitness score of this most

fit antenna was 310.04, compared to typical fitness values of 250 to 290 in

the initial generation. The distribution of the fitness values of the evolved

antennas is such that there is a clear delineation between the fittest anten-

nas and the less fit ones. For the most part, evolved antennas either have a

fitness score of just over 310 or a fitness score that is much lower (< 308.5).

As noted earlier, any antenna with a fitness of 310 or higher is considered to

be an “optimal” antenna design.

A higher fraction of the causally-guided evolutionary systems’ trials

than control systems’ trials found an optimal antenna design within 1000

generations. An individual trial is said to be successful by generation g if it

finds an optimal antenna design (as defined above) at or before generation g.

Figure 4.6 illustrates, for each of the four evolutionary systems, the fraction

of trials that were successful by generation 100, 250, 500 and 1000. At each

generation listed, the causally-guided systems found optimal antennas with

greater frequency than the control system. Furthermore, the performance of

78



Figure 4.4: A schematic of the fittest evolved antenna. The ground plane is
located in the XY plane (not shown).

the four systems relative to each other appears to be the same in all genera-

tions. CAUSALCM outperforms CAUSALM, which outperforms CAUSALC,

which outperforms the CONTROL system. A z-test revealed the difference

between CAUSALCM and CONTROL to be statistically significant at a 99%

confidence level at generation 250, 500 and 1000. At generation 1000 and

500, the differences between all pairs of systems were statistically significant

at a 95% confidence level, with the exception of CONTROL and CAUSALC,

which still had a low p-value of less than 0.10 in generation 1000. Note that

the 99% confidence intervals of CONTROL and CAUSALCM never overlap.

The average number of generations required by each evolutionary sys-

tem to find antenna designs with scores of 308, 309, and 310 are illustrated in
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Figure 4.5: A radiation plot illustrating the directivity of the fittest evolved
antenna. The ground plane is located in the XY plane (now shown).

Figure 4.7. For each fitness score, the CAUSALCM system averaged the lowest

number of generations, followed by CAUSALM, CAUSALC, and CONTROL.

The CAUSALCM system averaged less than 16%, 29%, and 42% as many

generations as the CONTROL system. The differences between CAUSALCM

and all other systems, as well as CAUSALM and all other systems, was sta-

tistically significant to a 99% confidence level, for each fitness score. The

difference between the CAUSALC system and the CONTROL system was

statistically significant to a 95% confidence level.

By using the 200 trials for each system as an approximation for how the

system performs across all initial random seeds, one is able to calculate the
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Figure 4.6: Fraction of trials of each system that find an optimal antenna
design within 100, 250, 500 and 1000 generations. Vertical bars are used to
illustrate a 99% confidence interval.
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Figure 4.7: The average number of generations that each system requires
to find antenna designs of various fitness scores. Vertical bars are used to
illustrate a 99% confidence interval.
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Figure 4.8: Expected number of generations required by each system to
find an optimal antenna design when used in conjunction with a multi-start
strategy, with varying generation limits.

expected number of generations required to find an optimal antenna, when

used in conjunction with multi-start strategies using generation limits of 100,

200, 300, 400 and 500 (see Section 4.7). As illustrated in Figure 4.8, all of

the causally-guided systems outperformed the CONTROL system, regardless

of which generation limit was used. The CAUSALCM system has the lowest

expected value, followed by CAUSALM and CAUSALC. The CAUSALCM

system requires less than 43% as many generations as the CONTROL system

does, regardless of the generation limit.

It was also found that each of the most fit antenna designs that were

produced by each trial of each evolutionary system may be grouped, based

on the similarity of their genotypes, into one of seven design categories. The

mean values of the design aspects and performance characteristics of anten-
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nas from each of these categories are detailed in Table 4.1, and the categories

are assigned arbitrary labels A through G. In categories A through F, there

is very little variation among antenna designs. The maximum Euclidean dis-

tance of any antenna from the average characteristics of its assigned category

is less than 0.08. Category G captures 3 outlier antennas that do not fit into

any of the other six categories. These outlier antennas are tightly clustered in

terms of dipole length, dipole height, and dipole spacing but, unlike antennas

from the other six categories, may have different numbers of dipoles (9 or

10). Category-A antennas represent the fittest class of antenna designs. The

other categories of antennas represent local optima at which the evolutionary

systems sometimes got stuck.

Table 4.1: The Seven Classes of Antenna Designs Produced by All Evolu-
tionary Systems.

Mean Defining Feature of Genome Mean Fitness Scores
Type Number Length Height Spacing Overall Directivity VSWR

A 5 0.4635 1.7094 0.6957 310.03 316.35 1.32
B 6 0.5047 1.7094 0.5689 308.35 316.89 2.54
C 7 0.5222 1.7130 0.4850 307.39 317.39 3.00
D 7 1.2827 1.7394 0.4740 307.29 346.89 16.30
E 8 1.2588 1.7342 0.4269 307.37 350.66 17.65
F 6 1.3267 0.7589 0.5384 306.72 336.12 11.70
G 9.33 1.2636 1.7244 0.3710 306.15 353.42 18.97

There appears to be little difference between the types of antenna de-

signs that were evolved by the control system and causal systems. With

the exception of category-G antennas, which are only 3 out of 800 evolved

antennas, there are no antenna designs that were produced by the causal
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systems that were not evolved, in at least one trial, by the control system.

However, there are significant differences in the frequency with which the

different systems converged to antenna designs in the seven categories. The

distribution of categories is illustrated in Figure 4.9. Of the 200 CONTROL

system trials, 123 converged on an optimal category-A antenna design, com-

pared to 139, 177, and 199 of the CAUSALC, CAUSALM, and CAUSALCM

trials, respectively. The causally-guided system trials converged to category

D, E, and F with less frequency than the control system trials. All 200 of

the CAUSALCM trials avoided D, E, and F and all but one (category-C)

converged to an optimal category-A solution. It is worth noting that the

categories that causal systems avoided (D, E, and F) typically have dipole

lengths that are longer than optimal and VSWR values that are so high as to

be unusable. This relates directly to the user-supplied causal knowledge that

is employed by the causal evolutionary systems in these simulations, sup-

porting the hypothesis that the causal relations are contributing effectively

to the design process.

To explore the issue of computational cost per generation, 5 trials of

the CONTROL and CAUSALCM systems were executed for 5000 genera-

tions and the CPU time required for each trial was measured. Surprisingly,

it was found that despite the expected increased costs associated with the

causally-guided systems, on average the CONTROL system required more

than 7 times as much CPU time as the CAUSALCM system (5893 seconds

and 793 seconds, respectively). Further investigation revealed that this dif-
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Figure 4.9: Distribution of the categories of antenna designs to which each
system’s trials converge. All but one CAUSALCM trials (not shown) con-
verged to category-A designs.
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ference is largely due to differences in the types of antenna designs that are

explored by the two systems. Specifically, the CONTROL system tends to

explore antenna designs with longer and more numerous dipole lengths than

the causally-guided systems. These types of antennas are more computation-

ally expensive to simulate during fitness evaluation than smaller antennas.

Thus, the increased computation per generation required by the CAUSALCM

system to provide causal guidance is dwarfed by the computational savings

of evaluating smaller antennas.

An attempt was made to incorporate an alternative causal relation into

the evolutionary system, but this failed to improve performance. Specifically,

antenna design experts indicate that there is a strong cause-effect relationship

between the height of dipoles and the directivity of an antenna. However,

causal relations to that effect did not improve the performance of the sys-

tem. In an attempt to better understand the cause-effect relationships in

this domain and the nature of causal relationships in general, some addi-

tional experimentation was performed. The single most highly fit antenna

of all trials described above was identified and experimented upon. Four

separate experiments were conducted. In each experiment, three of the four

antenna genes were held fixed, while the fourth was incrementally adjusted,

and changes in antenna performance were observed, yielding insight into the

causality in this domain and presumably more generally.

Figures 4.10 through 4.13 illustrate the effects that changing the op-

timal antenna’s number of dipoles, length of dipoles, height of dipoles, and
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spacing between dipoles has on that antenna’s VSWR and directivity. In

each graph, a thick black hash on the horizontal axis indicates the unmod-

ified value of the optimal antenna. Consistent with the causal knowledge

employed by our system, it can be seen in Figure 4.11 that the length of

dipoles has a large effect on the VSWR of an antenna. Noting that the right

vertical axis labels of Figure 4.11 differ from those of the other plots shown

here, the range of VSWR values when dipole lengths are varied are seen to

be an order of magnitude larger than when number, spacing, or height of

dipoles are varied. Figure 4.12 reveals a clear and seemingly cyclical causal

relationship between the height of dipoles and the directivity of antennas. It

is clear from Figure 4.11 and 4.13 that the length of dipoles and the spacing

between dipoles also has an effect on the directivity of an antenna, but it is

difficult to characterize these interactions. These results indicate the pres-

ence of a number of causal relationships in this application domain, but also

illustrate the complexity of these relationships.

4.9 Discussion

While my hypothesis was that introducing causally-guided genetic op-

erators would ultimately make evolutionary systems more effective and effi-

cient, there was no guarantee of this fact a priori. It was entirely possible

that just the opposite would be true, i.e., adding causal guidance could pro-

duce evolutionary systems that are less effective and less computationally
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Figure 4.10: Effect that changing the number of dipoles has on FitnessDi-
rectivity score (left axis) and VSWR (right axis) of the optimal antenna.
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Figure 4.11: Effect that changing the length of dipoles has on FitnessDirec-
tivity score (left axis) and VSWR (right axis) of the optimal antenna. The
range of VSWR values plotted here is an order of magnitude larger than
Figures 4.10, 4.12 and 4.13.
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Figure 4.12: Effect that changing the height of dipoles has on FitnessDirec-
tivity score (left axis) and VSWR (right axis) of the optimal antenna.
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Figure 4.13: Effect that changing the spacing of dipoles has on FitnessDirec-
tivity score (left axis) and VSWR (right axis) of the optimal antenna.
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efficient. Instead, I found that causally-guided evolutionary systems could

be used successfully to design dipole antenna arrays that meet pre-specified

performance criteria. The performance of these systems was compared to

carefully matched control systems that do not employ causally-guided ge-

netic operators. At various generations it was found that the causally-guided

systems discovered the fittest antennas with significantly greater frequency

than the control system. On average, the causally-guided systems also re-

quired significantly fewer generations to find antenna designs with various

fitness scores. The causally-guided systems found optimal antenna designs

much more frequently, largely by avoiding specific sub-optimal designs. In-

terestingly, these sub-optimal designs were characterized by dipoles that are

longer than optimal and have high VSWR values, factors that relate di-

rectly to the specific cause-effect relations that the causally-guided system

employed. In each result discussed, it was found that the systems using only

causal mutation or only causal crossover outperformed the control system,

but that the system employing both causal mutation and causal crossover

performed even better, indicating that these causally-guided operators were

synergistic/complementary.

The additional computational costs required by the causally-guided

system to perform causal inference were very minor compared to the over-

all computational costs of the system. Specifically, it was found that the

causally-guided system required 1/7th as much CPU time per generation as

the control system. This unexpected result was due to differences in the
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characteristics of antennas that were explored by the various systems, and

the different computational costs of simulating those antennas. While this is

a promising result for causally-guided evolutionary computation in this par-

ticular domain, this result is of limited interest as it is domain-specific and

may not be relevant to causally-guided evolutionary computation in gen-

eral. However, it does demonstrate the possibility that in some domains

the computational costs of causal inference will be dwarfed by the overall

computational costs of the evolutionary systems.

The fact that causally-guided systems were able to solve the dipole

antenna array design problem with greater frequency than the control sys-

tems demonstrates the positive effect of using causal guidance to bias genetic

operations in real-world application domains for which causal knowledge is

limited. The tremendous computational savings of using causally-guided sys-

tems with a multi-start strategy are particularly convincing, as this is a very

practical measure of computational cost. The fact that the causally-guided

system avoids local optima that are directly related to the supplied causal

relations is especially encouraging, as this suggests that the causal knowledge

is successfully steering the search process away from local optima, much as

a human designer might do. It is also encouraging that incorporating either

causally-guided mutation or causally-guided crossover into the evolutionary

process results in improved performance, and that incorporating both re-

sults in even greater performance improvements, suggesting that the value of
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causal guidance is not critically dependent upon the specific genetic operator

being used.

In an effort to explore the causal relationships in this antenna design

domain and to better understand causality in general, additional experi-

ments were conducted in which design aspects of the fittest antenna were

systematically varied and changes in performance were measured. These ex-

periments validated our belief in a causal relationship between dipole length

and antenna VSWR. Furthermore, the influence of dipole length on VSWR

was found to be an order of magnitude stronger than the influence of any

other design aspect on VSWR (at least in the vicinity of an optimum). It is

clear from these experiments that there are other causal relationships in the

domain, but that such causality can be quite complex. For example, there

appears to be a cyclical relationship between dipole height and antenna di-

rectivity. This is because some of the energy that radiates from an antenna

is reflected off of the ground plane and passes back over the antenna. There

are certain dipole heights at which these reflected waves react destructively

with energy radiating directly from the antenna, creating nulls in the an-

tenna’s directivity. The heights at which this happens are directly related to

the wavelength at which the antenna is operated. Unlike the effect of dipole

length on VSWR, it appears that the effects of all design aspects on directiv-

ity are of similar magnitude. These results help to explain why preliminary

efforts to include a causal relationship between dipole height and antenna

directivity into the evolutionary system were unsuccessful, while the causal
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relationship between dipole length and VSWR was successfully incorporated.

They suggest that with our current approach very strong and straightforward

relationships may be incorporated, while more complex relationships involv-

ing multiple design aspects may be problematic.

4.10 Appendix

The methods described in Section 4.6 for influencing mutation were

developed based on intuition, and as such are not grounded in any formal

probabilistic reasoning. However, in this Appendix, I show that these heuris-

tic calculations are consistent with a more principled approach for assessing

the relative likelihood of disorders, such as one based on a naive Bayesian

classifier.

This approach can be represented as a very simple Bayesian network

as pictured in Figure 4.14, in which a single symptom node, VSWR, is de-

pendent upon a single disorder node, D. The disorder node can take a value

of either d(N), d(L), d(S), or d(H), which represent the genotypic disorders

of suboptimal number of dipoles, length of dipoles, spacing of dipoles, or

height of dipoles, respectively. In naive Bayesian classifiers such as this one,

there is an implicit assumption that the possible values of the disorder node

are mutually exclusive and exhaustive. In this application problem, this is

an incorrect assumption as it is clearly possible for multiple disorders to be

present (e.g., the number of dipoles and the length of dipoles in a design can
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Figure 4.14: A simple Bayesian network representation of a naive Bayesian
classifier. The node labeled D represents different mutually exclusive and
exhaustive genotypic disorders and the node labeled VSWR represents the
presence or absence of the single phenotypic symptom in this application
problem.

both be flawed). However, despite their naive assumptions, naive Bayesian

classifiers have been shown to be effective in many real-world applications.

The symptom node can have a value of true or false, indicating the presence

or absence of high VSWR. Given the state of the symptom node (i.e., that

high VSWR is present or that it is absent) the posterior probability of the

disorder node may be calculated by applying Bayes theorem. For example:

P(D=d(L) | VSWR=true) = P(VSWR=true | D=d(L)) * P(D=d(L))
P(VSWR=true)

In order to perform this calculation, the prior probability distribution of the

disorder node and the conditional probability distribution of the symptom

node must be specified. Absent any clear reason to set the prior probability

of the disorder node to some particular values, we assume that each possible

value is equally probable. Given this assumption, the actual value of this

probability does not matter when calculating the posterior probability of

each disorder. A variety of possible values for the conditional probability of
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Figure 4.15: The posterior probability of each disorder given that high VSWR
is present, calculated through a naive Bayesian classifier and by heuristic
methods described in Section 4.6.
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Figure 4.16: The posterior probability of each disorder given that high VSWR
is absent, calculated through a naive Bayesian classifier and by heuristic
methods described in Section 4.6.
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VSWR were evaluated through a trial-and-error approach, and it was found

that the following values yield a naive Bayesian classifier that behaves very

similarly to the heuristic methods described in this chapter. Specifically, the

relative values of the posterior probability of each disorder as produced by

the naive Bayesian classifier closely match the relative likelihood with which

each disorder is targeted for mutation (via a large mutation operator being

applied to the associated gene) in the heuristic causally-guided mutation

operator described in Section 4.6.

P(VSWR=true | D=d(L)) = 0.50

P(VSWR=true | D=d(N)) = 0.01

P(VSWR=true | D=d(S)) = 0.01

P(VSWR=true | D=d(S)) = 0.01

Interestingly, the conditional probabilities specified above are consistent with

the causal relations described in this chapter, which suggest that P(VSWR=true

| D=d(L)) should be much higher than P(VSWR=true | D=d) for all d ∈

{d(N), d(S), d(H)}. The relative likelihood of each disorder, as calculated by

the heuristic and naive Bayesian classifier approach are illustrated in Figure

4.15 and 4.16.

It should be noted that a full Bayesian (i.e., non-naive) network in

which four distinct nodes are used to represent the disorders (and accord-

ingly the disorders are not assumed to be mutually exclusive) can also be

used to produce posterior probability values that are arbitrarily similar to
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the heuristic methods. However, the intent of this appendix is not to produce

arbitrarily similar values to the heuristic methods, but rather to demonstrate

that the methods used in this chapter, while based on heuristics, are com-

patible with a more rigorous probabilistic approach.
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Chapter 5

Causally-Guided Mutation for Design Construction based on

Mechanistic Relations

5.1 Introduction

The goal of this chapter is to extend the ways in which causal-guidance

can influence genetic operators, particularly as applied to open-ended or

“constructive” design problems. Specifically, while previous chapters ex-

plored the use of diagnostic causal relations to influence where mutations

occur in an individual, in this chapter a second type of causal knowledge in

the form of mechanistic causal relations is used to influence how each mu-

tation is done. The chapter begins with a more detailed presentation of the

motivation for this extension and its relationship to “constructive design.”

Next, the form of mechanistic causal relations is presented, followed by a

general (i.e., application independent) framework for using these relations

during causally-guided mutation. To evaluate these ideas, evolutionary sys-

tems that use diagnostic relations to influence where mutations are applied

and use mechanistic relations to influence how mutations are done are ap-

plied to the task of designing synthetic social networks that match predefined
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characteristics of real-world social networks. The performance of these evo-

lutionary systems are compared to carefully matched control systems that

do not employ causal guidance. Finally, the results of these experiments and

their implications for causally-guided evolution are discussed.

5.2 Mechanistic Causal Relations and Design Construction

There are two further extensions made in this chapter. First, in Chap-

ters 3 and 4, diagnostic causal relations are used to bias mutation operators

such that those parts of the individual with higher relative likelihoods of be-

ing flawed are made more likely to be mutated. In this manner, causal guid-

ance is used to influence where mutation is applied to an individual. In this

chapter, a second type of causal knowledge in the form of mechanistic causal

relations is introduced and used to influence how mutation is done. Second,

we now consider design construction for the first time. Recall the distinc-

tion between between design optimization and design construction discussed

in Section 2.5. In design optimization problems it is common to represent

solutions to problems as fixed-length lists of parameter values. Mutations

to these individuals commonly consist of selecting one parameter value for

mutation, and then modifying its value by adding or subtracting some ran-

domly selected value. In contrast, in design construction problems the very

structure of the solution is unknown and therefore must be designed by the

evolutionary process. For this reason, component-based representations are
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often used, and the evolutionary process must arrange and re-arrange these

components together to create new solutions.

This distinction also suggests that the benefits of guiding how mu-

tation occurs may be particularly beneficial when applied to constructive

design problems. In these types of problems the possible mutations that

can be applied to an individual design are often quite numerous and quali-

tatively distinct. For example, consider an approach to evolving the design

of a bridge, in which each individual bridge design consists of a number of

trusses arranged together. Any single mutation of this design can involve

adding, removing, re-orienting, or re-sizing a truss. Each of these changes

also requires additional specifications, such as the new start and end points

of a re-oriented or newly added truss. In any sizable bridge design, this is a

non-trivial decision with numerous distinct possibilities. In contrast, while

there are arbitrarily many ways in which to modify a numeric parameter

value in a design optimization problem, it is difficult to view these much

simpler changes as being qualitatively different. In constructive design, the

qualitative difference between possible mutations provides an opportunity to

reason about which mutation is best to apply, and the large number of pos-

sible mutations means that any guidance to help select the best mutations

may be very beneficial.
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5.2.1 General Form of Mechanistic Causal Relations

In this work, as in Chapters 3 and 4, diagnostic causal relations that

describe the cause-effect relationship between genotypic disorders and pheno-

typic symptoms are used. The term “phenotype” is used broadly here, as it

is sometimes used in biology, to include not only the structure/form that the

genotype develops into, but also the behavioral/performance characteristics

of that form. As described below, the experimental study presented in this

chapter involves an evolutionary approach to designing networks in which a

direct representation is used, i.e., there is no distinction between the geno-

type and the structure/form that the genotype develops into. Instead, the

genotype of the individual is the network itself. In order to avoid confusion

regarding the terms genotype and phenotype in this context, I have reformu-

lated diagnostic causal relations with alternate but equivalent terminology,

as follows:

Design Flaw → Performance Symptom

As in Chapters 3 and 4, the left hand of the expression refers to some part of

the individual design that is sub-optimal, while the right side refers to some

performance or fitness problem that the design flaw can cause. For example,

in the bridge design problem described above in which an evolutionary pro-

cess arranges and re-arranges trusses in order to construct a bridge, a design

flaw of a particular truss being too thin may cause the performance symptom

of poor structural integrity.
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In addition to diagnostic causal relations, a second type of causal re-

lation is introduced here. Mechanistic causal relations describe the cause-

effect relationship between the application of particular mutation types to

particular design components, and the resulting mitigation of performance

symptoms:

Mutation Type x Design Component→ Mitigation of Symptoms

The arrow here is not logical implication, but causality. A design component

is any type of “building block” that the evolutionary process arranges to

construct a solution. For example, in the bridge design example problem

described above a design component may be a particular type of truss. A

mutation type is any particular type of change that may be made to or “with”

a design component, e.g., a particular truss may be added, removed, re-sized,

or re-oriented so that its start and end connection points are changed. The

mitigated symptoms are the expected effect of applying the mutation to the

design component, e.g., removing a large truss could result in the mitigation

of the performance symptom of excessive bridge weight.

5.2.2 Causally-Guided Mutation Using Mechanistic Relations

In Chapters 3 and 4, diagnostic causal relations are used to influence

where mutation is applied to an individual such that those parts of the indi-

vidual that are more likely to be flawed are made more likely to be mutated.
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For convenience, and to distinguish it from the new form of causal guidance

introduced in this chapter, we refer to this diagnostic relation-based guid-

ance as “where” guidance, i.e., it influences where mutation is applied. In

this chapter, a second type of causal guidance is introduced that uses mech-

anistic causal relations to influence how mutation is done. “How” guidance

uses mechanistic causal relations to influence how mutation is done, such that

mutation types that mitigate observed performance symptoms are made more

likely to be applied. Note that “where” guidance and “how” guidance are

not mutually exclusive and can be used together in a single causally-guided

mutation operator.

As described in Figure 3.1, causally-guided mutation occurs in three

steps. In the “Assess Symptoms” step, performance characteristics of in-

dividuals are examined and performance symptoms are assessed. In the

“Diagnose Flaws” step, diagnostic causal relations are used to assess the rel-

atively likelihood of various design flaws. Both “where” and “how” guidance

are applied in the “Prescribe Treatment” step to influence the execution of

the mutation operation. As seen in Chapters 3 and 4, “where” guidance is

used to direct mutation toward those parts of the individual that have higher

relative likelihoods of being flawed. “How” guidance is used to influence mu-

tation such that those mutation types that mitigate observed performance

symptoms are made more likely to be selected.

In the work presented in this chapter, an evolutionary system is used

to design synthetic social networks that match predefined characteristics of
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real-world social networks. While past studies have examined evolving net-

work structures and developing crossover operators to work on these network

structures, there is currently no standard way of performing crossover that

has been shown to be broadly effective. Accordingly, in this chapter crossover

operators are not used, and instead we focus on using mechanistic causal re-

lations to influence the mutation operator.

5.3 Synthetic Social Network Design

To evaluate the effectiveness of incorporating “how” guidance based on

mechanistic causal relations, evolutionary computation systems that employ

“where” and “how” guidance were applied to the task of designing synthetic

social networks. A generational genetic algorithm augmented with “where”

and “how”-guided mutation operators was developed, and its performance in

solving this problem was compared to a carefully matched genetic algorithm

that uses no causal guidance but is otherwise equivalent. Additional exper-

imentation compares the effects of “how” and “where” guidance when used

independently. With the exception of the causally-guided genetic operators,

all aspects of the evolutionary systems (described in more detail below) are

conventional and widely used (De Jong, 2006).

There are a number of goals for these experiments. The first is to deter-

mine if the increased effectiveness and efficiency of “where”-guided mutation

that was observed in previous studies is repeated in this new application
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problem. Second, these experiments evaluate whether using “how”-guided

mutation yields benefits, has no significant effects, or misleads the evolu-

tionary process toward local minima. Third, the combined effects of “where”

and “how” guidance for mutation are examined in order to determine if these

mechanisms for causal guidance are synergistic or if they interfere with each

other.

5.3.1 Motivation for Synthetic Social Network Data

Driven in part by the recent rise of social media as a means of widespread

communication, interest in social network analysis and research has increased

dramatically in recent years. This has resulted in increasing demands for so-

cial network and social media data from researchers engaged in these areas.

While large amounts of social network data are being collected by various

military, government, and commercial entities, this data is not freely shared

due to proprietary and privacy concerns. This limited availability of social

network and media data for researchers is a bottleneck for the field of social

network research.

For this reason, there has been much recent interest in developing meth-

ods for creating synthetic social network data that has high fidelity with re-

spect to real-world data. Such methods would allow researchers to take a

small set of real-world data and generate synthetic social network data that

is very similar. Research could be conducted on this synthetic data, and the
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data itself could be shared freely. Furthermore, the ability to create synthetic

data with pre-specified characteristics would allow researchers to systemat-

ically vary characteristics of the data, facilitating the evaluation of analysis

algorithms on a range of social network data sets in a controlled and rigorous

fashion.

5.3.2 Related Work

One approach to generating synthetic data is through the use of ran-

dom graph models. Numerous past studies have explored the use of graph

models to explain various commonly observed characteristics of real world

data (Erdos and Renyi, 1959; Watts and Strogatz, 1998; Barabasi and Al-

bert, 1999; Newman, 2009; Reittu and Norros, 2012; Jin et al., 2001). For

example, the Watts-Stogartz random graph model (commonly referred to as

the “small-world” model) was a ground-breaking study that illustrated how

the tendency of individuals to connect to others who are like them combined

with the existence of a small number of weak ties connecting distant parts of

a network can result in networks that are both highly clustered and have low

average path length; two characteristics that may be incorrectly perceived

as being contradictory. Other prominent graph models (Erdos and Renyi,

1959; Barabasi and Albert, 1999) have been essential to explaining how the

interplay of simple local interaction can lead to the emergence of global net-

106



work phenomena such as the existence of very large connected components

and power law distributions of connections.

In addition to explaining the existence of observed phenomena, these

graph models can also be used to produce synthetic network data. However,

this type of approach has some important limitations. First, many graph

models have been designed to explain aggregate characteristics of networks

(Barrett et al., 2009) but do not produce synthetic networks that match on

node and connection-level characteristics. For example, the Watts-Stogartz

model is capable of producing networks with desired average clustering and

path length values, but these networks tend to have degree distributions that

are unrealistic. Furthermore, many real-world networks cannot be easily

matched to any single graph model. For example, some terrorist networks

exhibit properties that are consistent with both small-world and scale-free

graph models (Rothenberg, 2002). Indeed, some past studies evaluating the

effectiveness of prominent graph models to produce high fidelity synthetic

data have found poor performance in most instances (Sala et al., 2010).

This is in part because graph models have been designed to explain general

phenomena that are observed in a wide variety of networks, and have not

been tailored to specific domains or data sets. Instead, what is needed is a

way to automatically produce synthetic data that matches the characteristics

of target real-world data sets.

A second approach to generating synthetic networks is through simula-

tion. In these types of approaches, real-world data sources are combined with
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behavioral and social theories to synthesize networks. For example, (Barrett

et al., 2009) use a variety of real-world information sources to construct an

entire synthetic urban population of individuals and households. Models of

expected activities for each household are then constructed and used to sim-

ulate the actions of these synthetic persons, resulting in the construction of

a social contact network. While this very ambitious approach has shown

some promise and continues to be an active area of research, one important

limitation is the availability of data. In the absence of extensive information

about the demographics and household activities of real persons, simulating

their behavior is not possible. In the work presented here, the task is to gen-

erate synthetic network data that matches the characteristics of a real-world

network, with only the real-world network itself as a guide.

Many past studies have explored using evolutionary computation meth-

ods to solve a variety of problems related to social network analysis (Firat

et al., 2007; Stonedahl et al., 2010), but only one has explored using evolu-

tionary computation to create synthetic social network data (Bailey et al.,

2012). In that study, a genetic programming approach is used to create a

graph model that can be used to generate a synthetic network that matches

the characteristics of a target network. In that regard, the problem addressed

by (Bailey et al., 2012) is very similar to the one that is used in this study

to evaluate causally-guided evolution. However, there are a few important

differences. First, in the work presented here the social network itself is di-

rectly evolved, while in Bailey’s work a graph model is evolved. While there
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are potential pros and cons to each approach (an evolved graph model may

scale better whereas a directly evolved network may have higher fidelity to

real-world data), the main importance of this distinction is that it is not pos-

sible to directly compare the techniques presented here with Bailey’s study.

Second, in this study I evaluate the performance of the evolutionary system

in terms of its ability to match the characteristics of real-world data sets,

while in Bailey’s study the performance is evaluated in terms of its ability

to match the characteristics of other synthetic data sets that were created

by well-known graph models. Third, there are some differences in terms of

the graph metrics that are used in each study, with Bailey’s work focusing

on aggregate clustering, path length, and distribution of node degree, while

my work focuses on the distribution of clustering coefficients. As noted in

(Bailey et al., 2012), the selection of characteristics is somewhat subjective.

Last, and most importantly in the context of the research interests of this

dissertation, Bailey’s approach employs a conventional genetic programming

approach that does not involve any causal knowledge or guidance.

5.3.3 The Importance of Clustering

Synthetic social networks are only useful if they exhibit a high degree of

fidelity to real world networks. However, the set of specific characteristics and

criteria that constitute “high-fidelity” is not objectively clear. As others have

noted, if we view any real-world social networks as being the result of some
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process then our goal is to create synthetic data that could have plausibly

been created by that same process (Bailey et al., 2012). The central challenge

here is that the process that created the real-world network is not known a

priori and so the fidelity of synthetic social network data to this process

cannot be directly evaluated. Instead, we must select some set of graph

metrics by which we evaluate the “similarity” of the synthetic data to the

real-world target data. The problem here is not one of graph isomorphism,

because the goal is not to produce the same graph but rather a graph with

“similar properties as the given graph” (Bailey et al., 2012).

In the interest of simplicity for this first-ever experimental evaluation of

“how” guidance based on mechanistic relations, the task considered here is to

design a synthetic social network that matches target real-world networks in

one very important aspect: the distribution of local clustering coefficients in

the network. The term triadic closure refers to the phenomena that if person

B and person C have a common friend in person A, then there is an increased

likelihood that B and C will be friends (Easley and Kleinberg, 2010). It has

been theorized that triadic closure occurs in social networks for three major

reasons: 1) there is an increased opportunity for B and C to meet since they

share a common friend; 2) there is a basis for trust between B and C given

that they both trust and are trusted by A; and 3) there is incentive for B and

C to become friends as it alleviates stress for A that may be present if B and

C are not friends (Easley and Kleinberg, 2010). Triadic closure is observed

in most real-world social networks, in which the prevalence of tightly knit
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groups of persons is far more prevalent than could be explained by random

phenomena. Furthermore, the number of closed triads surrounding nodes has

been shown to be a salient characteristic that has greater implications. For

example, previous studies have found that teenage girls with small numbers

of triadic closures among their friends tend to be more likely to contemplate

suicide (Bearman and Moody, 2004).

The importance of triadic closure in social networks has led to the for-

mulation of measures to quantify it, one of which is the clustering coefficient.

The clustering coefficient of a node A is defined as the probability that two

randomly selected neighbors of A are neighbors with each other. In other

words, it is the fraction of pairs of A’s neighbors that are connected to each

other by edges (Easley and Kleinberg, 2010). For example, consider an undi-

rected graph in which a node has four neighbors. There are six possible

connections between these neighbors. If five of those six connections actually

exist then the clustering coefficient of the node is 5
6
.

Note that the overall clustering of a network can be quantified in a

single aggregate numeric value by calculating the global clustering coefficient

or the network averaged clustering coefficient. However, it is possible to have

two networks that are similar in terms of these aggregate clustering metrics

but have dramatically different local clustering coefficients of nodes. The

goal of the problem considered here is not to match aggregate clustering of a

network, but rather to evolve synthetic social networks whose distribution of
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local clustering coefficients closely matches the distribution of local clustering

coefficients in a target real-world network.

5.4 Fitness Measure and Genetic Representation

A fitness evaluator was constructed to quantify the difference between

the distributions of clustering coefficients in an evolved synthetic network

and in a target network (i.e., the real-world network). Fitness evaluation

takes place in three steps. First, the clustering coefficients of each node in

the synthetic network and each node in the target network are calculated.

Second, a histogram is created for the clustering coefficients observed in the

synthetic social network and for those observed in the real-world network.

Third, the histograms for the synthetic and target networks are compared to

each other and the difference between them is quantified. This difference is

used as the inverse fitness (cost or error) of the synthetic individual, which

the evolutionary process seeks to minimize. Each of these steps is discussed

in greater detail below.

First, the clustering of each node in the target and synthetic network

is calculated in a straightforward process. For clarity, we differentiate be-

tween the clustering of a node and the clustering coefficient of a node. The

clustering of a node i, represented by the term Ci, is defined by the number

of nodes in i’s open neighborhood and the number of connections between

those nodes. The notation
{
e
k

}
is used to represent a clustering in which a
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node has k neighbors and e connections between those neighbors. The open

neighborhood of a node i is defined as the set of nodes that are neighbors of i.

The open neighborhood of each node i is examined and the following calcu-

lations are performed, where N is the set of nodes in the open neighborhood

of i and E is the set of edges between those nodes. Not that for each node

in the target network, these calculations only need to be performed once, at

the very beginning of the evolutionary process.

Ci =
{
e
k

}
,where e = |{ejl : vj, vl ∈ N, ejl ∈ E}|, and k = |N |

Coeff(Ci) =
e

k ∗ (k − 1)/2

All target and synthetic networks in this study are treated as being undi-

rected. This decision was made because creating synthetic networks that

match the distribution of clustering coefficients of real-world networks is

much more difficult in the undirected case than the directed case.

Second, histograms of the clustering coefficients are constructed for

both the target and the synthetic network. Each histogram has 12 bins, with

the first two bins representing isolates and pendants, and the remaining ten

representing clustering coefficients with value [0.0, 0.1), [0.1, 0.2), [0.2, 0.3),

[0.3, 0.4), [0.8, 0.9), [0.9, 1.0]. Isolates are nodes that are completely dis-

connected from the rest of the network, while pendants are nodes that are

connected to the network by only one tie. Because isolates do not have any

neighbors and pendants have only one neighbor, there is no opportunity for
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clustering to take place and therefore their clustering coefficients are not de-

fined. Pendants cannot be ignored (e.g., by removing them from the target

network) as their presence defines the clustering coefficient of the nodes to

which they are connected. As such they are an important and non-trivial

part of the overall clustering characteristic of a target network, which our

synthetic data should ideally match.

In constrast, isolates are removed from the target network a priori.

This decision was made because isolates, unlike pendants, are not very in-

teresting or relevant in this task. For example, if 10% of a target real-world

network nodes are isolates, this can be easily replicated by simply adding

an appropriate number of isolates to the synthetic network after it has been

generated. The presence of these disconnected nodes does not need to be

addressed as part of the synthesis process. In this context, the key task ex-

amined here is to design synthetic social networks that match the clustering

characteristics of the connected components of a target real-world network.

Figure 5.1 shows a graph representation of a social network derived from the

study of a karate club (Zachary, 1977), while Figure 5.2 shows a histogram

plot of the clustering coefficients of nodes in that social network.

Third, the difference between the target and synthetic histograms is

quantified. To accomplish this, a root mean square error (RMSE) calculation

is used as follows, where T is the target network, S is the synthetic network,

error(T, S) is the quantified difference between the histograms for T and S,
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Figure 5.1: Social network from the study of a karate club. The highlighted
nodes are two leaders within the group: the club president (node 34) and the
instructor (node 1).
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Figure 5.2: Histogram of the clustering coefficient of all 34 nodes in the karate
social network.
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Figure 5.3: Histogram of clustering coefficients observed in two different
social networks. The RMSE of these two distributions is 4.73.

Ti is the ith value in T ’s histogram, and Si is the ith value in S’s histogram.

Figure 5.3 shows histogram data for two social networks. The RMSE measure

error(T, S) =
√

1
n

∑n
i=1(Ti − Si)2

of the difference between these two histograms is 4.73. In the RMSE calcula-

tion, a single large deviation results in a larger error measure than a number

of small deviations that sum to the same magnitude as that large deviation.

That is to say, RMSE has the effect of magnifying large deviations more

than small deviations. In the context of social network synthesis this is a

desirable property as exact matches of histogram data are not as important

as avoiding large mismatches.

A direct genetic representation is used in which there is no distinction

between the genotypic and the phenotype of the individual. Instead, the
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genetic representation is the network itself and consists of nodes and con-

nections. Accordingly, all genetic operators modify the individual by making

changes directly to the network. Each individual network has a fixed number

of nodes, defined a priori, which does not change throughout the evolutionary

process. While it would be possible to allow mutation to add and remove

nodes from the network, for simplicity in this study these types of mutations

were not used. Instead, in all of the evolutionary systems in this study (de-

scribed below) four distinct types of mutations are defined which either add

or remove connections: 1) adding a connection from node n to another node;

2) deleting a connection from n to one of its neighbors; 3) adding a connec-

tion between two of n’s neighbors thereby introducing an instance of triadic

closure; and 4) deleting a connection between two of n’s neighbors thereby

removing an instance of triadic closure. These mutation are referred to using

the notation ADDE, DELE, ADDT, DELT, respectively. The subscripts T

and E are used to indicate “triad” and “edge.”

5.5 Causal Knowledge

Two types of causal relations are used in this study. First, diagnostic

relations are used to relate design flaws to performance symptoms, as in

Chapter 3 and 4. For every node in a network, there is one possible design

flaw:

flaw(node n): the local neighborhood of node n is sub-optimal,
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i.e., the presence or absence of connections differ from what would

be observed in an optimal design

Thus, in a network with N nodes, there are N possible design flaws. Addi-

tionally, for each histogram bin b there are two types performance symptoms:

excess(bin b) : there are too many nodes in histogram bin b

insufficient(bin b) : there are too few nodes in histogram bin b

Note that in any individual design, there may be multiple instances of any

one performance symptom. For example, an individual that has six more

nodes in the fifth histogram bin than is desired is viewed as exhibiting six

instances of the symptom excess(5). For every node n and histogram b, there

is a causal relationship between flaw(n) and excess(b) whenever the clustering

coefficient of n is such that it is placed in histogram bin b. Put differently, if

the clustering coefficient of node n is sub-optimal and its clustering coefficient

is such that it is placed in histogram bin b, this can cause there to be too

many nodes in histogram bin b. For all n and b:

flaw(n) → excess(b),iff Bin(Coeff(Cn)) = b

where → is used to represent causality and Bin(X) is the histogram bin in

which clustering coefficient X belongs.

Note that this causal knowledge is intuitive and yet incomplete. It

is obvious that a node with a sub-optimal local neighborhood may have a
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sub-optimal clustering coefficient, and that this can result in the node being

placed into a histogram bin that is different than where it would be placed

in an optimal design. While this is clearly possible, it is not necessarily

the case in all instances. For example, consider the scenario in which node

n is “supposed to” have a clustering coefficient of 0.33. It is possible for

the local neighborhood of n to be sup-optimal in the sense that a misplaced

connection between n’s neighbors results in one of n’s neighbors having a sub-

optimal clustering coefficient, and yet the clustering coefficient of n remains

0.33. In this scenario, the flaw would not necessarily cause the count of

nodes in the histogram containing 0.33 to be higher than it would be in

an optimal network. This highlights one of the central questions of the

research: can cause-effect relationships that are only approximately correct

still productively guide the evolutionary process?

Note that no diagnostic causal relations are specified between design

flaws and insufficient() performance symptoms. It could be argued that

flaw(n) should have a causal relationship with insufficient(b), for every b

such that Bin(Coeff(Cn)) != b, based on the notion that the flawed local

neighborhood of node n can cause it to be placed in a histogram bin that

is not ideal, thus depriving the ideal histogram bin of a needed entry and

resulting in the insufficient() symptom. However, I opted to not include such

relations in this study because I believe they will be ineffective. Specifically,

these relations are so non-specific (each flaw would be a potential cause of

almost every insufficient symptom) and weak that I suspect they would not
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be useful in guiding genetic operators. Instead, and in keeping with the de-

scription of causally-guided evolution in previous chapters, I opted to only

include the strongest causal relations: those between the flaw()’s and excess()

symptoms.

Mechanistic causal relations, the second type of relation used, describe

the cause-effect relationship between the application of a particular type of

mutation to particular design components, and the performance symptoms

that are expected to be mitigated as a result. In this study, the design com-

ponents are nodes with particular clustering characteristics. The notation

n(C) is used to represent a node with clustering of C. Alternatively, the no-

tation n
{
e
k

}
is used to represent a node with clustering

{
e
k

}
. The mutation

types are ADDE, DELE, ADDT, DELT, as described previously. In order to

describe the mechanistic causal relations used in this study, we must first

define a number of supporting terms.

The term ExpMtoN(m,n(C)) is used to represent the expected effect

(i.e., how the design component will be changed) of applying mutation m

to design component n(C), and is central to the mechanistic causal relations

used in this study. It is calculated as follows:

ExpMtoN(ADDE, n
{
e
k

}
) = n

{
e

k+1

}
ExpMtoN(DELE, n

{
e
k

}
) = n

{
round(e− 2e

k
)

k−1

}
ExpMtoN(ADDT, n

{
e
k

}
) = n

{
min(e+1,k∗(k−1)∗ 1

2
)

k

}
ExpMtoN(DELT, n

{
e
k

}
) = n

{
max(e−1,0)

k

}
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Each of these equations is explained here and examples are provided.

The ADDE mutation, which adds a connection between a node n and a

stranger (i.e., a node that was previously not directly connected to n), has the

expected effect of increasing the number of nodes in n’s open neighborhood

by one while leaving the number of edges unchanged. For example, applying

ADDE to a node with clustering of
{
2
3

}
will result in one more neighbor but

no additional edges between those neighbors:
{
2
4

}
.

The DELE mutation, which deletes a connection between node n and

one of its neighbors is the most complex. Each node in the open neighborhood

is involved in an average of 2e
k

edges. Therefore, removing any node from

n’s open neighborhood has the expected effect, on average, of decreasing

the number of edges in the open neighborhood by 2e
k

while decreasing the

number of nodes by one. For example, removing a random edge from a node

with clustering of
{
6
5

}
will on average result in clustering of

{
4
4

}
. Note that

rounding is used to ensure that a valid clustering measure is produced (e.g.,{
4
4

}
rather than

{
3.6
4

}
in the above example).

The ADDT mutation, which adds a connection between two of node n’s

neighbors, has the expected effect of increasing the number of edges in n’s

open neighborhood by one, while leaving the number of nodes unchanged.

For example, when ADDT is applied to a node with clustering of
{
4
4

}
, the

expected clustering measure that will result is
{
5
4

}
. If there is no edge to

be added between two of n’s neighbors (i.e., all k ∗ (k − 1) ∗ 1
2

edges already
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exist) then the number of edges in n’s open neighborhood is not changed by

the mutation.

Similarly, the DELT mutation, which removes a connection between

two of node n’s neighbors, has the expected effect of decreasing the number

of edges in n’s open neighborhood by one, while leaving the number of nodes

unchanged. For example, applying DELT to a node with clustering of
{
5
4

}
will result in clustering of

{
4
4

}
. If there is no edge to be removed, then the

number of edges in n’s open neighborhood remains zero.

Note that the causal knowledge used here is not universally accurate.

For example, in the case of the ADDE mutation, it is possible to add a

connection between node n and a non-neighbor node o where o is already

connected to one of n’s neighbors. In that instances, the number of edges in

n’s open neighborhood would also increase. Similarly, the ExpMtoN formula

for DELE is based on an average expected outcome and may not be accurate

in many or even most specific instances. However, just as in the relationship

between design flaws and performance symptoms discussed previously, the

causal knowledge described here is approximately correct. It remains to be

seen experimentally if this is sufficient to guide the evolutionary process.

The mechanistic causal relations which describe the cause-effect rela-

tionship between the application of particular mutation types to nodes with

particular clustering characteristics and the performance symptoms that are

addressed as a result, are as follows:
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Mutation m x Node n(C) → Mitigation of insufficient(b)

where b = Bin(Coeff(ExpMtoN(m,n)). For example, these mechanistic rela-

tions tell us that the expected effect of applying the ADDE mutation type to

a node with clustering of
{
3
4

}
is that an instance of the performance symp-

tom insufficient(5) will be mitigated, if any are present. The details of this

calculation are as follows:

ADDE x n
{
3
4

}
→ Mitigation of insufficient(b), where

b = Bin(Coeff(ExpMtoN(ADDE, n
{
3
4

}
)))

b = Bin(Coeff(n
{
3
5

}
))

b = Bin(0.30)

b = 5

5.6 Causally-Guided Mutation with “Where” and “How” Guid-

ance

As discussed in Section 3.2, causally-guided genetic operations occur

in three steps: the performance characteristics of the individuals in question

are examined and performance symptoms are identified, inferences are made

about the likelihoods of design flaws, and these inferred likelihoods are used

to bias the execution of the genetic operator.
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5.6.1 Assessing Symptoms

In this chapter, the performance characteristics of each individual so-

cial network consist of histogram data of the clustering coefficients of nodes

in that individual, which is created during the fitness evaluation of each in-

dividual. Once an individual social network is selected for mutation, the

histogram data is examined and deviations from the target histogram are

used to identify performance symptoms. For each histogram bin b in which

Tb > Sb, (Tb − Sb) instances of insufficient(b) are identified, where Tb is the

number of entries in bin b of the target network histogram, and Sb is the

number of entries in bin b of the synthetic network (i.e., evolved individual)

network. For each histogram bin b in which Tb < Sb, (Sb − Tb) instances

of excess(b) are identified. For example, if the histogram data for the tar-

get network has 16 entries in the 5th bin, and the histogram data for an

evolved synthetic network has 30 entries in the 5th bin, then 14 instances of

the performance symptom excess(5) are identified for the evolved individual.

In this manner, the severity of the deviation between the target and actual

number of entries in histogram is captured by the number of instances of

the associated performance symptom (i.e., larger deviations result in more

instances of the symptom).
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5.6.2 Diagnosing Flaws

Next, the identified performance symptoms are examined and infer-

ences are made about the relative likelihood of design flaws. For each node

n in an individual evolved network the relative likelihood of flaw(n), which

means that the local neighborhood of node n is sub-optimal, is calculated

based on the set of performance symptoms that are present in the individual.

To perform this calculation, first observe that according to our causal knowl-

edge, flaw(n) can cause one instance of excess(b) where b = Bin(Coeff(Cn))

and does not cause any other symptoms. Furthermore, all rival explanations

for the presence of excess(b) (i.e., flaw(m) where Bin(Coeff(Cm)) = b and n

!= m) cannot cause any symptoms other than excess(b). Therefore the like-

lihood of flaw(n) depends only upon the number of instances of the symptom

that it can cause and on the number of rival explanations. Specifically, the

following equation is used to calculate the likelihood of flaw(n) given the

observed symptoms:

likelihood(flaw(n)) =
|instances of excess(b)|

|{node m|flaw(m)→ excess(b)}|

where b = Bin(Coeff(Cn)). This equation is intuitive when described in

plain language using a concrete example. Consider a situation in which an

individual evolved network has been evaluated and the resulting histogram

has 24 entries in the 4th bin, which is 10 more than in the target network

histogram. In this scenario it can be reasoned that 10 of the 24 nodes are
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flawed, thereby causing 10 instances of the phenotypic symptom excess(4).

Without any additional knowledge regarding which of the 24 are more or

less likely to be flawed, it is concluded that the likelihood of each node being

flawed is simply 10
24

.

5.6.3 Causal Guidance of Mutation

Finally, the application of the genetic operator is biased through “where”

and “how” guidance. In this study, mutation occurs in two distinct steps.

First, an individual node in the social network is selected for mutation.

“Where” guidance is used to influence which node is selected for mutation

such that those nodes with higher likelihoods of being flawed are made more

likely to be mutated. Specifically, a single node n is selected from the set

of all nodes with probability proportional to each node’s likelihood(flaw())

score. To dampen the effects of “where” guidance, a mitigation constant m

(between 0.0 and 1.0) is used. Before the selection of a node to modify, a

random number is generated between 0.0 and 1.0. If this random number is

less than m, then “where” guidance is not used and instead a node is selected

from the set of all nodes with equal probability. In this study, a value of m

= 0.10 was found to be effective through a small number of trial and error

runs.

Once a node has been selected for modification, “how” guidance is

used to influence which mutation type is selected such that those mutation
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types that address observed phenotypic symptoms are made more likely to

be used. Once an individual node has been selected for modification, one of

the following four types of mutations is selected and applied to that node:

ADDE, DELE, ADDT, and DELT. To that end, a utility function is defined,

which calculates the expected utility of applying each mutation type m to a

node n:

Utility(m,n(C)) = UtilityMitigate(s)

UtilityMitigate(s) = |instances of s|

where s is symptom that is mitigated by applying m to n(C), (i.e., m x n(C)

→ Mitigation of s).

In other words, to calculate the utility of applying a particular mutation

type to a particular node, we first determine which performance symptoms

such an action is expected to mitigate. The utility is then assessed as being

equal to the number of such instances that have in fact been observed in the

individual. In this manner, higher utility scores are assigned to mutation

type that address phenotypic symptoms of which there are many instances.

More concretely, higher utility scores are assigned to those mutation types

that are expected to result in a node being placed into a histogram bin b in

which there are currently too few entries, thereby addressing the performance

symptom insufficient(b). On the other hand, if the expected effect of applying

the mutation type is that it will place the node in a histogram bin b for which
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there are already enough entries then the utility will be zero as there are no

instances of insufficient(b) in such a scenario.

For example, consider the application of the ADDE mutation type to a

node with clustering of
{
2
5

}
. According to our mechanistic causal relations,

the expected effect of applying this mutation type is that the performance

symptom insufficient(3) is mitigated. If the network has 10 entries in his-

togram bin 3 but the target count for that bin is 18, then there are 8 instances

of insufficient(3) and the utility of applying ADDE to the node is assessed to

be 8.

Once the utility score of all mutation types have been calculated, a sin-

gle mutation type is selected with probability proportional to its utility score.

As in “where” guidance, a mitigation constant of 0.10 is used to dampen the

effects of “how” guidance, resulting in “how” guidance being skipped in 10%

of mutation operations. In these instances one of the four mutation types is

selected randomly with equal probability. Once a mutation type is selected,

it is applied to the individual. For any selected type of mutation there may

be numerous specific ways in which the individual may be changed. For ex-

ample, if the ADDT mutation type is selected for a node n, there may be

several distinct connections that could be added in order to connect two of

node n’s neighbors. Whenever a mutation is selected to be applied to an in-

dividual, exactly one of these distinct changes is selected randomly and with

equal probability from the space of all possible changes. In some instances
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there may be no way to make a change of the selected type. For example,

a DELT modification could be applied to a node whose neighbors are all

disconnected from each other. When this happens, a different mutation type

is selected and applied.

The “where” guidance and “how” guidance described above is used to

influence where mutation is applied to an individual and how that mutation

is done, and mutation operators that employ these forms of guidance serve

as the experimental condition in this study. These mutation operators are

referred to as Causal-W-H where the letters W and H refer to the “where”

and “how,” respectively. A control mutation, referred to as Control, was

defined in which neither “where” nor “how” guidance is used. The Control

mutation follows the same two step process as the Causal-W-H mutation:

first a node is selected for mutation, second a specific type of mutation is

selected and applied. However, unlike the Causal-W-H operator, in the

Control operator neither of these steps is influenced by causal guidance.

Instead, the node that is selected for mutation is simply selected from the

set of all nodes with uniform probability. Similarly, the specific mutation

type to apply to the selected node is selected from the set of all mutation

types with equal probability. In this manner, the Control operator is an

important baseline in that it contains no causal guidance.

However, because the Causal-W-H operator includes guidance for

both where and how mutation occurs, the Control operator is not adequate
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by itself as a basis for control experiments. Additional operators are needed,

which are referred to as Causal-W and Causal-H, to better distinguish

the contribution of “where” guidance and “how” guidance. The Causal-

W operator includes causal-guidance for where mutation is applied (i.e., the

selection of a node for mutation is performed exactly as in the Causal-W-

H operator) but the does not include causal-guidance for how the mutation

occurs (i.e., the modification to the selected node is determined exactly as in

Control). The Causal-H operator is just the opposite: a node is selected

for mutation without any causal guidance as in the Control operator, but

the modification to that node is selected using “how” guidance as in the

Causal-W-H operator.

5.6.4 Experimental Methods

Four evolutionary systems were developed and used to evolve synthetic

social networks, where each evolutionary system used one of the four differ-

ent mutation operators described above. For convenience, these evolutionary

systems are referred to by the name of the mutation operator that they em-

ploy: Control, Causal-H, Causal-W, and Causal-W-H. Each of the

evolutionary systems were used to generate synthetic social networks that

match four different real-world social network data sets. While these data

sets include directional ties and multiple connection types, for this experi-

mental evaluation these facets are ignored (i.e., the connections are treated
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as undirected and all connection types are treated equivalently as one generic

type). These four social networks are described below:

• Academy: This data set contains information gathered from the Chron-

icle of Higher Education’s annual report about 284 PhD granting so-

ciology departments and their connections to each other in terms of

graduation and hiring. A connection from department A to department

B indicates that department B hired a PhD produced by department

A (Grannis, 2010).

• Gang: This data set contains information about 140 residents of a

gang-dominated neighborhood in the Los Angeles area, their connec-

tions with each other, and their affiliation to either gangs, youth groups,

or neither (Grannis, 2009).

• Terrorist: This data set contains a subset of data from the Profile

in Terror (PIT) project which was collected by the MIND Lab at the

University of Maryland. The PIT knowledge base captures terrorism

intelligence extracted from various sources like news media reports.

This particular subset is comprised of over 800 actors such as terror-

ists, terrorist leaders, politicians or people while connections represent

relationships between them (Zhao et al., 2006).

• Attacks: This data set is also a subset from the PIT project. In this

data set nodes represent just under 500 terrorist attacks such as bomb-
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ings, kidnapping, arson, and other attacks, while connections indicate

co-located attacks (Zhao et al., 2006).

Histograms of clustering coefficients for each of these data sets are shown

in Figures 5.4 through 5.7. Note that the four data sets have quite distinct

histograms. The Academy and Gang histograms are much more evenly dis-

tributed than the Attacks and Terrorist histograms. Furthermore, while most

nodes in the Terrorist data set appear to have clustering coefficients in the

middle range, most nodes in the Attacks data set have very high clustering

with a second smaller group of nodes that are pendants.

Three hundred trials of each evolutionary system were conducted for

each target data set with the goal of producing a matching synthetic social

network with 100 nodes. In each trial, an initial population of 128 indi-

viduals was randomly generated and the evolutionary process was executed

for 5000 generations. Individuals in the initial population were created by

constructing a network of 100 nodes and adding 100 random connections.

Tournament selection with tournament size two were used in all trials. In

each generation, exactly one offspring was created by elitism. Each of the

remaining 127 offspring in each generation was created by using tournament

selection to choose a parent, and then either copying that parent without

modification (10% of the time) or applying mutation (90% of the time). A

mitigation factor of 0.10 was used in all causally-guided variants. This pa-
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Figure 5.4: Histogram plot illustrating the distribution of clustering coeffi-
cients observed in the Academy social network.
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Figure 5.5: Histogram plot illustrating the distribution of clustering coeffi-
cients observed in the Gang social network.
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Figure 5.6: Histogram plot illustrating the distribution of clustering coeffi-
cients observed in the Attacks social network.
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Figure 5.7: Histogram plot illustrating the distribution of clustering coeffi-
cients observed in the Terrorist social network.
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rameter value was found via a small number of test runs; it may be not be

optimal but was found to be effective in this study.

The results of all 4800 evolutionary trials (300 trials * 4 evolutionary

systems * 4 target data sets) were examined, and analysis was performed as

follows. For each target data set, data was collected to determine how often

each of the four evolutionary systems reached a number of different error

measures by generation 5000. In the context of generating synthetic social

networks, the selection of a single goal for the error measure is subjective and

largely application-dependent. Furthermore, the ability of the evolutionary

systems to reach any particular error measures is not the same across tar-

get data sets (i.e., some target data sets are “harder” for the evolutionary

systems and therefore the evolutionary systems do not reach as low of an

error measure as with an “easier” target data set). For these reasons, the

goal error measures that were used to evaluate the performance of the vari-

ous evolutionary systems were not held constant across all target data sets.

As is discussed in the next section, it was determined that for each target

data set, there is a range of goal error measures across which the difference

between evolutionary systems is most pronounced. It is across this range of

error measures that results are reported below. Additionally, for each target

data set a single goal error measure was selected at which the performance

of the evolutionary systems was most distinct, and additional data was col-

lected to determine how often each evolutionary system was able to reach

this error measure within various numbers of generation (rather than just by
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the end of the trial). Combined, these analyses reveal how frequently as well

as how quickly trials of each evolutionary system reach goal error measures

for various target data sets. Z-tests with 99% confidence levels were used to

evaluate the statistical significance of the reported results.

5.6.5 Results

Figures 5.8 through 5.15 show the fraction of each evolutionary system’s

trials that were able to reach various error measures by the 5000th genera-

tion as well the fraction of each evolutionary system’s trials that were able

to reach specific error measures by various generation limits when applied to

various target data sets. Error bars in all figures are used to indicated 99%

confidence intervals. There was a fair amount of variation in the performance

of the evolutionary systems when applied the different target data sets. In

other words, some target data sets were “easier” for the evolutionary systems

to match and lower error measures were reached than with other more “dif-

ficult” target data sets. Accordingly, the error measures used in Figures 5.8

through 5.15 are not the same across all data sets, and instead were selected

to highlight the difference in performance between the evolutionary systems

on each particular target data set.

The main results are summarized in a bulleted list here, for convenience,

while more detailed description of the results appear in the paragraphs below.
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• The evolutionary systems that employ “where” guidance clearly out-

perform analogous systems that do not. For example, the fraction of

trials of Causal-W vs. Control systems that reached various mea-

sure are as follows: 95% vs. 0% reached error measure of 0.0 on Gang

data set, 70% vs. 0% reached error measure of 1.75 on Attacks data

set, 70% vs. 3% reached error measure of 1.00 on Academy data set,

and 90% vs. 20% reached error measure of 3.25 on Terrorist data set.

• This relationship appears to hold throughout the evolutionary process,

rather than just at generation 5000. At no point in the evolution-

ary process did Control or Causal-H systems ever outperform the

Causal-W system.

• While there are numerous data points at which Causal-W-H out-

performs Causal-W or Causal-H outperforms Control, only very

few of these differences are statistically significant. “How” guidance is

particularly ineffective when applied to the Attacks data set, with 0%

of Causal-H trials reaching any of the error measures examined.

Figure 5.8 shows the fraction of each evolutionary system’s trials that

were able to reach various error measures by the 5000th generation when

applied to the Academy target data set. None of the trials of any of the sys-

tems reached an error measure of 0.40, and all trials of all systems reached

an error measure of 2.50. A very high fraction of trials (more than 75%) of

all evolutionary systems were able to reach an error measure of 1.75, and

137



very few (about 12% of Causal-W-H trials) were able to reach an error

measure of 0.50. Between these two extremes, however, there was a clear

difference between the various systems. The Control evolutionary system

was generally outperformed by the causally-guided variants. The difference

between Control and both Causal-W and Causal-W-H was very clear

at particular error measures, such as 1.00, which only 3% of the Control

trials reached compared to more than 70% of the Causal-W and Causal-

W-H trials. The Causal-H outperformed the Control at the 1.00, 1.25,

1.50 and 1.75 error measures to a statistically signficant degree with 99%

confidence level. Contrary to my expectations, the difference in performance

between Causal-W and Causal-W-H is difficult to characterize. Only at

the 0.75 error measure is the difference between the two statistically signifi-

cant, with Causal-W-H outperforming Causal-W.

Figure 5.9 shows the fraction of each evolutionary system’s trials that

reach an error measure of 0.75 at various points in the evolutionary process

when applied to the Academy target data set. The Causal-W-H system

outperforms all other systems throughout the evolutionary process. The dif-

ference between the Causal-W-H and Causal-W remains about the same

throughout the evolutionary process, with an extra 10 to 20% of Causal-

W-H reaching the error measure as compared to Causal-W trials. This

difference is statistically significant at all generations listed. Only a very

small fraction of the Causal-H trials (less than 2%) and none of the Con-

trol trials reached this error measure.
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Figure 5.8: The fraction of trials of the Control, Causal-H, Causal-W,
Causal-W-H systems to reach various error measures by generation 5000,
when applied to the Academy target social network. Error bars indicate
99% confidence intervals.
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Figure 5.9: The fraction of trials of the Control, Causal-H, Causal-W,
Causal-W-H systems to reach specific error measures by various genera-
tions, when applied to the Academy target social network. Error bars in-
dicate 99% confidence intervals. Control and Causal-H results are not
visible because no trials of those systems reached the target error measure
(i.e., each bar for those systems is at 0).
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Figure 5.10 and 5.11 illustrate similar analyses when the evolutionary

systems are applied to the Terrorists target data set. None of the trials of

any of the systems reached an error measure of 1.50, and all trials of every

system reached an error measure of 5.50. As shown in Figure 5.10, more

than 90% of Causal-W and Causal-W-H trials reached an error measure

of 3.25 by generation 5000, while only 35% of the Causal-H and 20% of the

Control trials did. A small fraction (less than 25%) of the Causal-W and

Causal-W-H trials were able to reach an error measure of 2.00, while none

of the trials from the other variants did. As with the Academy data set, the

Causal-W and Causal-W-H variants outperform the Control system

to a 99% confidence level at all observed error measures. The Causal-

H variant outperforms the Control as well, but this difference is only

statistically significant at the 3.25 error measure. As with the Academy

data set, it is more difficult to characterize the difference in performance

between the Causal-W and Causal-W-H variants. While the Causal-

W-H variant outperforms Causal-W at all error measures, this difference

is not ever statistically significant.

Figure 5.11 shows the fraction of each evolutionary system’s trials that

were able to reach an error measure of 2.50 by various generation limits

when applied to the Terrorists data set. At generation 1000, roughly 9% of

the Causal-W-H trials reached this error measure, compared to only 1% of

the Causal-W trials, and none of the trials from the other evolutionary sys-

tems. By generation 2000, almost twice (32% vs. 18%) as many trials of the
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Causal-W-H reached this error measure as did the Causal-W system.

This margin of difference between Causal-W and Causal-W-H (about

10%) remains the same from generation 2000 to 5000, but is not statisti-

cally significant. Only very small fractions (less than 5%) of the Control

and Causal-H trials were able to reach the 2.50 error measure, even by

generation 5000.

The Gang target data set proved to be the “easiest” for the evolutionary

systems, as large proportions of trials from all variants were able to reach

substantially lower error measures than when applied to the other target data

sets. Figure 5.12 illustrates the fraction of each evolutionary system’s trials

to reach various fitness levels by generation 5000. All of the trials of every

system reached an error measure of 1.00. Nearly all (100% for Causal-

W and Causal-W-H, 99% for Causal-W, and 89% for Control) the

trials from all evolutionary systems were able to reach an error measure of

0.75. However, for lower error measures of 0.00, 0.15, 0.30, 0.45 and 0.60,

there was a large difference between the various evolutionary systems. While

over 95% of the Causal-W-H trials and over 87% of the Causal-W trials

reached a 0.00 error measure, less than 10% of the Causal-H and none of the

Control trials reached this fitness level. The difference between Causal-

W-H and Causal-W and the difference between these two variants and the

Causal-H and Control systems are all statistically significant to a 99%

confidence level, at error measure 0.0.

Figure 5.13 shows the fraction of each evolutionary system’s trials that
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Figure 5.10: The fraction of trials of the Control, Causal-H, Causal-W,
Causal-W-H systems to reach various error measures by generation 5000,
when applied to the Terrorist target social network. Error bars indicate 99%
confidence intervals.
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Figure 5.11: The fraction of trials of the Control, Causal-H, Causal-W,
Causal-W-H systems to reach specific error measures by various genera-
tions, when applied to the Terrorist target social network. Error bars indicate
99% confidence intervals. In some instances, Control and Causal-H re-
sults are not visible because no trials of those systems reached the target
error measure (i.e., each bar for those systems is at 0).
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reached an error measure of 0.00 over the course of the evolutionary process.

The difference in performance between the Causal-W and Causal-W-

H variants was larger at generation 1000 than it was at generation 5000.

At generation 1000, about 80% of the Causal-W-H trials were able to

reach an error measure of 0.0, while only 43% of the Causal-W trials were.

The Causal-W-H outperforms Causal-W to a statistically significant level

across all generations listed. Only very small fractions (less than 5%) of the

Causal-H trials reached this error measure, and none of the Control

trials.

Figure 5.14 shows the fraction of each evolutionary system’s trials that

reached various error measures when applied to the Attacks target data set.

None of the trials of any of the systems were reached an error measure of

0.50, and all of trials of all systems reached an error measure of 5.00. Between

these two extremes, there was a clear difference in performance between the

systems. Over 70% of the Causal-W and Causal-W-H trials reached an

error measure of 1.75, and almost 20% reached an error measure of 1.00.

None of the trials of the Control or Causal-H systems were able to reach

any of these error measures. There were no large difference between the

Causal-W and Causal-W-H trials at any of the error measures, and none

were statistically significant.

The fraction of each evolutionary system’s trials to reach an error mea-

sure of 1.00 over the course of the evolutionary process is illustrated in Figure
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Figure 5.12: The fraction of trials of the Control, Causal-H, Causal-
W, Causal-W-H systems to reach various error measures by generation
5000, when applied to the Gang target social network. Error bars indicate
99% confidence intervals.
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Figure 5.13: The fraction of trials of the Control, Causal-H, Causal-W,
Causal-W-H systems to reach specific error measures by various genera-
tions, when applied to the Gang target social network. Error bars indicate
99% confidence intervals. In some instances, Control and Causal-H re-
sults are not visible because no trials of those systems reached the target
error measure (i.e., each bar for those systems is at 0).

144



5.15. At each generation listed, there is virtually no difference between the

performance of the Causal-W and Causal-W-H system. None of the

Causal-H or Control trials reached an error measure of 1.00.

5.7 Multi-Step “How” Guidance

It is immediately clear from the results described above that the bene-

fits of using causal-guidance to influence how mutation is applied is question-

able. The Causal-H system did outperform the Control system in most

instances, and this difference was statistically significant in some instances

when applied to the Terrorist, Academy, and Gang target data sets. However,

for the Attacks data set, none of the trials of the Control or Causal-H

were systems were able to reach the error measures examined. Furthermore,

the hypothesized synergistic benefits of combining both “where” and “how”

guidance is not supported by the data. Across most target data sets and

most error measures the Causal-W-H does outperform the Causal-W

system. However, this difference is rarely statistically significant, and there

are a number of instances where the Causal-W system outperform the

Causal-W-H. That is, adding causal guidance of how mutation is applied

does not seem to improve performance. In particular, when applied to the

Attacks data set, Causal-W-H offers no benefit at all over Causal-W, and

Causal-H fails to ever reach any of the listed error measures.

Further examination of these results, particularly with regard to the At-
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Figure 5.14: The fraction of trials of the Control, Causal-H, Causal-W,
Causal-W-H systems to reach various error measures by generation 5000,
when applied to the Attacks target social network. Error bars indicate 99%
confidence intervals.
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Figure 5.15: The fraction of trials of the Control, Causal-H, Causal-W,
Causal-W-H systems to reach specific error measures by various genera-
tions, when applied to the Attacks target social network. Error bars indicate
99% confidence intervals.
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tacks target data set, reveals some reasons why “how” guidance of mutation

is not effective in its current form, and suggests some possible improvements.

The best social networks produced by each of the 300 trials of the Causal-

H system were examined, the best overall network (i.e., the one with the

lowest error measure) was identified, and the effects of applying Causal-H

mutation to this network were examined. In this manner, the best evolved

network that was discovered by the Causal-H system was analyzed in an

effort to determine why the Causal-H evolutionary process did not make

any improvements to this network.

The best Causal-H evolved network has an error measure of over

1.90, which is substantially higher than error measures typically reached

by the Causal-W and Causal-W-H systems (see Figure 5.14). Figure

5.16 shows the histogram of clustering coefficients in this evolved network as

compared to the target histogram derived for Attacks target social network.

The evolved network has too few nodes in the Pendant and [0.9 - 1.0] bins,

and too many nodes in the [0.0 - 0.1), [0.1 - 0.2), [0.2 - 0.3), and [0.3 - 0.4)

bins. The Causal-H mutation operator was applied to this network 1000

distinct times, and each time the utility scores that were calculated for each

mutation type were collected. It was discovered that in all 1000 applications

of Causal-H, the calculated utility score of the ADDE mutation type was

0.0. Examination of the histogram data in Figure 5.16 reveals why this

is the case. If any node in the [0.0 - 0.4) range is selected for mutation,

the expected effect of applying the ADDE mutation will be to decrease the
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Figure 5.16: Histogram data for the clustering coefficients in Attacks target
social network and the most fit social network produced by any Causal-H
trial.

clustering coefficient of the node, effectively moving the node to a bin in

which there are already too many nodes. It is not possible to move a node

from the [0.0 - 0.4) range to a bin that is desired (the Pendant or [0.9 - 1.0)

bin) through a single application of the ADDE mutation type. Similarly,

applying ADDE to a node that is in the Pendant or [0.9 - 1.0] bin will result

in that node being placed in a bin in which there are already too many nodes.

In short, applying the ADDE mutation to any node in the network will not

result in any of the observed performance symptoms being addressed, and

accordingly the utility is assessed as being 0.

This analysis does not suggest that the causal knowledge being em-

ployed is inaccurate. In fact, for each of the observed mutations it was

confirmed that applying the ADDE mutation does in fact increase the error
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of the individual. However, it does highlight the problematic way in which

“how” guidance is applied. While the ADDE mutation type may not result

in an immediate improvement to the network, it is possible that it is a nec-

essary first step in a series of mutations that may ultimately improve the

network. By definition, a local optima is a solution that is located in an area

of solution space such that all nearby solutions are inferior. As such, the only

way for the evolutionary process to move an individual from a local optima

to a global optima is by traversing an area of solution space that is char-

acterized by higher error (poorer fitness). Guiding how mutation is applied

based solely on the immediate effects of applying each mutation type may

actually be preventing the search process from temporarily moving through

an area of solution space that has higher error, resulting in the unintended

effect of the search process getting stuck at local optima.

Consider a scenario in which a node with 4 nodes in its open neigh-

borhood and 4 connections between those neighbors (a clustering measure

of
{
4
4

}
) has been selected for mutation. Figure 5.17 illustrates clustering

measure of this node (top center of the figure), the expected immediate ef-

fects of applying a mutation type to this node (middle row of clustering

measures in the figure), as well as the expected effects of applying a sec-

ond subsequent mutation (bottom row of clustering measures in the figure),

based on our ExpCofMtoC() calculations. For example, the expected result

of applying the ADDE mutation to n
{
4
4

}
is n
{
4
5

}
, and the expected effect of

subsequently applying DELT is n
{
3
5

}
. In the context of this figure, the cur-
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rent form of “how” guidance only considers the immediate effect of applying

mutation types (middle row), and does not consider the effects of subsequent

mutations (bottom row). For example, in a situation where
{
4
5

}
maps to a

histogram bin that has too many nodes, and
{
3
5

}
maps to a histogram bin

that has too few, the calculated utility of applying DELE to n
{
4
4

}
clustering

will be quite low, despite the fact that this mutation type is a step toward

producing a n
{
3
5

}
, which is highly desired.

Fortunately, this line of thinking also suggests ways in which “how”

guidance of mutation occurs may be improved: rather than considering only

the immediate effects of each mutation, a more long-term view must be

taken in which the effects of subsequent mutations are also considered. The

utility of a particular mutation type must depend not only the performance
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symptoms that it may immediately addresses, but also on the performance

symptoms that may be addressed by subsequent mutations. To that end,

the Utility(m,n(C)) function described earlier is extended to also take into

account the number of mutations to look ahead, as follows:

Utility(m,n(C),x)= max(

Utility(m,n(C)),

d * Utility(ADDE, ExpMtoN(m,n(C)), x-1),

d * Utility(DELE, ExpMtoN(m,n(C)), x-1),

d * Utility(ADDT, ExpMtoN(m,n(C)), x-1),

d * Utility(DELT, ExpMtoN(m,n(C)), x-1))

where x is the number of mutations to look ahead. Additionally, the Utility

function is defined as evaluating to 0 whenever x ≤ 0. In this manner, all

of the clustering measures that are “reachable” within x mutation steps are

examined and considered. As in Section 5.6, the utility of each of reaching

each clustering measure is calculated based on the number of instances there

are of any performance symptoms that this clustering measure addresses.

Multiplying each recursive call by a constant d (≤ 1.0) has the effect of pe-

nalizing the utility scores for clustering measures that require a long sequence

of mutations to reach. For example, the utility of a clustering measure that

is reachable by 3 mutations will be discounted by a factor of d2.

Note that the Utility(m,n(C)) function defined in Section 5.6 is equiv-

alent to Utility(m,n(C),1) as defined here. In this sense, the Causal-H and
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Causal-W-H operators previously defined and evaluated can be seen as

using multi-step “how” guidance presented here, but with a multi-step look

ahead of only 1. As before, when applying multi-step “how” guidance a sin-

gle mutation type is selected stochastically with probability proportional to

its utility score, and a mitigation factor of 0.10 is used to dampen the effects

of the guidance.

To evaluate multi-step “how” guidance, two additional evolutionary

systems were developed: Causal-W-HX and Causal-HX. The Causal-

W-HX system uses “where” guidance and multi-step “how” guidance with

an X step look-ahead. The Causal-HX system is identical, but does not

use “where” guidance. Note that the X is Causal-W-HX and Causal-HX

is actually a parameter value that is replaced for any specific instance. For

example, a Causal-W-HX evolutionary system with 5-step “how” guid-

ance is referred to as Causal-W-H5. Thus, for clarify and consistency, the

Causal-H and Causal-W-H evolutionary systems previously evaluated in

this chapter are referred to below as Causal-H1 and Causal-W-H1.

5.7.1 Experimental Methods

Two new evolutionary systems that use the Causal-W-HX and Causal-

HX operators were developed and used to evolve synthetic social networks

that match the clustering characteristics of the four target social networks

(Academy, Attacks, Terrorist, and Gang). Three hundred trials of each evo-
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lutionary system were conducted, with parameter settings of d = 0.8 and x =

5. All other parameter settings were the same as in the previous section. The

same types of analysis as in the previous study (fraction of each evolution-

ary systems trials to reach various fitness levels) were performed, allowing for

direct comparison of performance with the Control, Causal-W, Causal-

H1, and Causal-W-H1 systems previously presented and analyzed. The

main goal of this experimentation is to evaluate the new methods for causally-

guiding how mutation occurs as compared to the previously presented short-

sighted methods as well as to the control systems that do not employ causal

guidance. Accordingly, the performance of Control, Causal-H1, and

Causal-H5 systems were compared to each other, as were the Causal-W,

Causal-W-H1, and Causal-W-H5.

5.7.2 Results

Figure 5.18 shows the fraction of Control, Causal-H1, and Causal-

H5 trials that reached various error measures by the 5000th generation when

applied to the Academy target data set. Both the Causal-H1 and Causal-

H5 systems outperformed the Control system to a statistically signifi-

cant level. However, there is no discernible difference between the Causal-

H1 and Causal-H5 systems. Figure 5.19 shows a similar analysis for the

Causal-W, Causal-W-H1, and Causal-W-H5 systems. While a larger

fraction of Causal-W-H5 trials than Causal-W-H1 trials reach each of
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the various fitness levels, this difference in performance is not statistically

significant to a 99% confidence level.

Figure 5.20 shows the fraction of Control, Causal-H1, and Causal-

H5 trials that reached various error measures, while Figure 5.21 shows the

same for the Causal-W, Causal-W-H1, and Causal-W-H5 trials when

applied to the Attacks data set. The difference in performance between the

evolutionary systems that employ causal guidance for where mutation oc-

curs (shown in Figure 5.21) and those that do not (shown in Figure 5.20)

was quite large, and so different ranges of error measures were used in each

analysis. As seen in Figure 5.20, the Causal-H5 clearly outperforms the

Causal-H1 system at all listed error measures, such as 77% versus 36%

of trials that reach error measure 3.25. The difference between Causal-

W-H1 and Causal-W-H5 is equally dramatic, as seen in Figure 5.21 with

66% of Causal-W-H5 versus 19% of Causal-W-H1 trials reaching an er-

ror measure of 1.00, and 44% versus 4% reaching an error measure of 0.75.

The difference in performance between these two systems was statistically

significant to a 99% confidence level at all examined error measures.

Figure 5.22 and 5.23 show similar analysis of the evolutionary systems

when applied to the Gang data set. There is little difference in performance

between the Causal-H1 and Causal-H5 systems, as seen in Figure 5.22.

A higher fraction of Causal-H5 trials than Causal-H1 trials reach vari-

ous error measures, but never to a statistically significant level. All of the
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Figure 5.18: The fraction of trials of the Control, Causal-H, Causal-H5
systems to reach various error measures by generation 5000, when applied
to the Academy target social network. Error bars indicate 99% confidence
intervals.
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Figure 5.19: The fraction of trials of the Causal-W, Causal-W-H,
Causal-W-H5 systems to reach various error measures by generation 5000,
when applied to the Academy target social network. Error bars indicate 99%
confidence intervals.
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Figure 5.20: The fraction of trials of the Control, Causal-H, Causal-H5
systems to reach various error measures by generation 5000, when applied
to the Attacks target social network. Error bars indicate 99% confidence
intervals.
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Figure 5.21: The fraction of trials of the Causal-W, Causal-W-H,
Causal-W-H5 systems to reach various error measures by generation 5000,
when applied to the Attacks target social network. Error bars indicate 99%
confidence intervals.
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evolutionary systems in Figure 5.23 performed so well that it is difficult to

characterize any difference between Causal-W-H1 and Causal-W-H5.

The same analysis of the evolutionary systems when applied to the Ter-

rorist data set if illustrated in Figure 5.24 and 5.25. The Causal-H5 system

outperforms the Causal-H1 system at many error measures, including 53%

versus 35% of trials that reached an error measure of 3.25. The difference

between Causal-W-H1 and Causal-W-H5 was clearer, as seen in Figure

5.25. More than twice as many Causal-W-H5 trials (47%) as Causal-

W-H1 trials (21%) reached an error measure of 2.00. The Causal-W-H5

system outperformed Causal-W-H1 to a statistically significant level at all

but the highest error measures listed (3.00 and 3.25).

5.8 Discussion

Some general findings can be distilled from the above analysis and re-

sults. These findings and their implications for causally-guided evolutionary

computation in general are discussed here.

It was observed that across all target data sets there was some high er-

ror measure which all trials of all evolutionary systems reached. Conversely,

for all target data sets there was some very low error measure that none of

the trials of any evolutionary system reached (with the exception of the Gang

data set, for which some trials of all evolutionary systems were able to reach

a 0.0 error measure). It is between these two extremes in error measure goals
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Figure 5.22: The fraction of trials of the Control, Causal-H, Causal-H5
systems to reach various error measures by generation 5000, when applied to
the Gang target social network. Error bars indicate 99% confidence intervals.
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Figure 5.23: The fraction of trials of the Causal-W, Causal-W-H,
Causal-W-H5 systems to reach various error measures by generation 5000,
when applied to the Gang target social network. Error bars indicate 99%
confidence intervals.
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Figure 5.24: The fraction of trials of the Control, Causal-H, Causal-H5
systems to reach various error measures by generation 5000, when applied
to the Terrorist target social network. Error bars indicate 99% confidence
intervals.
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Figure 5.25: The fraction of trials of the Causal-W, Causal-W-H,
Causal-W-H5 systems to reach various error measures by generation 5000,
when applied to the Terrorist target social network. Error bars indicate 99%
confidence intervals.
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that the differences between the performance of the evolutionary systems is

clear, with causally-guided systems generally and clearly outperforming the

control system. This suggests that a key benefit of causally-guided evolution

over conventional evolution is a capacity for pushing the boundaries of the

types of problems that can be solved and the types of solution that can be

discovered. When problems are too “easy” there is little benefit to to includ-

ing causal-guidance, and when problems are too “hard” even including causal

guidance may not be enough for evolution to solve the problem. However, as

this study suggests, there are likely numerous problems that exist in between

these two extremes, and for which the benefits of causal guidance may be

significant.

Evolutionary systems that employ causal guidance to influence where

mutation occurs and those that employ causal guidance to influence how

mutation occurs both outperformed the control evolutionary system. The

difference between Causal-H5 and Control systems was statistically sig-

nificant at a 99% confident level at most error measures across all data sets.

This difference in performance was often quite substantial, such as the nearly

60% of Causal-H5 trials that reached an error measure of 3.00 compared

to less than 20% of Control trials on the Attacks data set. The difference

between Causal-W and Control was more dramatic, with high fractions

of Causal-W trials reaching error measures that none of the Control tri-

als did. For example, 87% of Causal-W trials reached an error measure

of 0.0 on the Gang data set, but none of the Control trials did. This
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clearly demonstrates the effectiveness of causally-guiding where mutation

occurs and causally-guiding how mutation occurs, in isolation (i.e., causally-

guiding where or how, but not both).

Furthermore, the benefits of casually-guiding where and how mutation

occurs appear to be synergistic. This can be seen in that the Causal-W-H5

system outperforms all other evolutionary systems in which only one form

of causal guidance is used. Generally, the Causal-W-H5 systems outper-

formed the Causal-W systems, which in turn outperformed the Causal-

H5 systems. Higher fractions of Causal-W-H5 trials than Causal-W tri-

als reached various error measures, by margins such as 68% to 28% (Terrorist,

2.25 RMSE), 66% to 20% (Attacks, 2.25 RMSE), 66% to 37% (Academy, 0.75

RMSE). The difference between Causal-W-H5 and Control is often quite

substantial, such at 93% of Causal-W-H5 trials reaching an error measure

of 1.00 on the Academy data set, compared to less than 5% of the Control

trials. This qualitative difference in performance clearly demonstrates the

synergistic power of causally-guiding where and how mutation occurs.

In addition to demonstrating the effectiveness of causally guiding where

and how mutation occurs, these results also provide some lessons learned re-

garding the best way to implement these methods. Specifically, causal guid-

ance to influence how mutation occurs proved to be more complicated than

initially anticipated. The initially explored form of causally-guiding how mu-

tation occurs, which only examines the immediate impact of each mutation
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type, resulted in various dubious performance benefits. While the Causal-

H system did generally outperform the Control, and the Causal-W-H

system did generally outperform the Causal-W, these differences in per-

formance were rarely statistically significant and there were some instances

where the reverse was true (i.e., it was better to not causally guide how mu-

tation occurs). Evolutionary systems that employed causal guidance for how

mutation occurs performed particularly poorly when applied to the Attacks

data set.

Deeper analysis of the causal guidance of mutation, particularly as ap-

plied to the Attacks data set, revealed a potential problem. As defined, the

causal guidance of how mutation occurs examined only the immediate effect

of any potential mutation type, and did not consider the effects of any sub-

sequent mutations. In this sense, the causal guidance was “short-sighted”

and it was hypothesized that this could be causing the evolutionary process

to become stuck in local optima. Accordingly, the causal guidance of how

mutation occurs was extended to consider the effects of multiple sequen-

tial mutations. Additional experimental analysis support the effectiveness of

this approach. Across all data sets, there are numerous instances in which

Causal-H5 clearly outperforms Causal-H1, but none where the reverse

is true. Furthermore, the benefits of H5 guidance over H1 appears to be

more dramatic when combined with causal guidance of where mutation oc-

curs. For all target data sets and for most error measures, the difference in

performance between the Causal-W-H1 and Causal-W-H5 systems was

162



larger than the difference between Causal-H1 and Causal-H5. While the

synergy between H1 guidance and W guidance was doubtful (see Section

5.6.5), the results presented here suggest that H5 and W guidance are com-

plementary and synergistic. This clearly demonstrates the effectiveness of

causally guiding how mutation occurs, but also suggests the following lesson:

when influencing how mutation is applied to individuals, it is important to

consider not only the short term effects of applying that mutation, but also

the longer term effects of subsequent mutations.

The importance of considering the long term effects of sequences of

mutations appears to be particularly important when applied to problems

in which many local optima exist. The benefits of H5 versus H1 guidance

appears to be most dramatic when applied to the Attacks and Terrorist data

sets, as opposed to the Academy and Gang data set. Examination of the

distribution of clustering coefficients in these four data sets (see Figure 5.4

through 5.7) reveal that in both the Attacks and Terrorist data sets most

nodes are focused into a small number of bins, whereas in Academy and Gang

the nodes are distributed more evenly across bins. For the latter type of data

set, any single mutation operation may not be sufficient for moving a node

from an undesired bin to a desired one. Instead, only sequences of mutations

may accomplish this. Accordingly, using a mechanism for causally-guiding

mutation that examines multi-step mutations may be particularly important

for these particular data sets. More generally, this multi-step analysis may be
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particularly important when applying causally-guided evolution to solution

spaces in which local optima are surrounded by large sub-optimal regions.
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Chapter 6

Acquiring Causal Relations

6.1 Introduction

The goal of this chapter is to evaluate the feasibility of applying causally-

guided evolution to problem domains in which causal knowledge is not avail-

able a priori and must instead be acquired and used for causal guidance

during the evolutionary process. The chapter begins with a more detailed

discussion of the motivation for this work. Next, a general approach for ac-

quiring mechanistic causal relations through observation of the evolutionary

process is described. As an initial step in evaluating these ideas, an evolution-

ary system that acquires mechanistic causal relations through observation of

the evolutionary process and then uses those relations as the basis for “how”

guidance is applied to the task of designing synthetic social networks. This

is the same application problem as presented in Chapter 4, but here a priori

causal knowledge is not used. The results of this experimental analysis are

presented, and the implications for the feasibility of using causally-guided

evolution when causal relations are not available a priori is discussed. While

it may be possible to acquire both diagnostic and mechanistic causal relations

in this manner, in this initial study we focus on the acquisition of mechanistic
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causal relations, while the acquisition of diagnostic relations is left as an area

for future work.

6.1.1 Motivations

In previous chapters, causally-guided evolutionary computation meth-

ods were evaluated in application domains for which at least some knowl-

edge of cause-effect relations was available a priori. In the work presented

in the previous three chapters, each subsequent study extended and evalu-

ated the ways in which causal relations are used to guide the evolutionary

process. Additionally, the types of application problems against which these

methods were evaluated was varied. In the first study (Chapter 3) causally-

guided evolution was applied to the task of optimizing weights in a neural

network; an application problem for which cause-effect knowledge is both

readily available and has been thoroughly vetted through extensive research

in neural network learning. In the second and third study (Chapters 3 and

4), causally-guided evolution was applied to the task of antenna array design

and synthetic social network design, respectively. In both of these application

problems knowledge about causal relations is available from human experts,

but is potentially incomplete or inaccurate in some instances. However, in

both studies it was demonstrated that these relations can be an effective

basis for causally-guiding the evolutionary process.

In this context, the work presented in this chapter represents the next
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logical step in extending the types of application problems to which causally-

guided evolution may be applied: those in which causal knowledge is not

available a priori. Instead, causal relations are acquired during the evolu-

tionary process by observing the interplay between individuals, mutations,

and changes in performance. These relations are then used as the basis

for causal guidance within the remainder of the same evolutionary process.

If successful, the benefits of causally-guided evolutionary computation that

have been previously demonstrated (more effective and efficient discovery of

solutions) may also be obtained when applied to a wide range of application

problems for which a priori causal knowledge is not available.

Furthermore, it may be desirable to use these methods for acquiring

causal relations even when a priori causal knowledge is available. There

are significant start-up costs associated with implementing causally-guided

evolutionary methods, including specification of causal relations, causal guid-

ance, and integration with genetic operators. The ability to acquire causal

relations and use them for causal guidance without requiring design or input

of causal relations from a human developer is an important step in reducing

the burden of working with causally-guided evolution, and greatly improves

the attractiveness of these methods for real-world use. In this study, while

domain knowledge is used to inform the structure of causal relations and

the mechanisms for causal guidance, initial steps are taken to explore the

possibility of acquiring causal knowledge.
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6.2 Acquiring Causal Relations from the Evolutionary Process

In the previous chapters, diagnostic causal relations were used as the

basis for influencing where mutation and crossover occurs, and mechanistic

causal relations were used as the basis for influencing how mutation is done.

In some problem domains, these types of causal relations may not be avail-

able a priori. However, the evolutionary process itself contains a wealth of

data from which causal relations may potentially be acquired. Throughout

the course of an evolutionary process, individuals with known performance

characteristics are modified by mutation operations, resulting in new individ-

uals with altered performance characteristics. Collectively these occurrences

comprise a data set from which cause-effect relations may be distilled.

While there are likely many ways that one could attempt to learn causal

relations from the evolutionary process, one particular approach is employed

here to learn mechanistic relations. Recall that mechanistic causal relations

take the following form:

Mutation Type x Design Component→ Mitigation of Symptoms

in which a design component is any type of “building block” that the evo-

lutionary process arranges to construct a solution, a mutation type is any

particular type of change that may be made to or “with” a design compo-

nent, and the mitigated symptoms are the expected effect of applying the

mutation to the design component.
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Over the course of some predefined number of learning generations,

every single application of a mutation operator to an individual and change

that results is observed and recorded. After the predefined number of learning

generations are complete, the collected data is analyzed and consolidated into

a set of mechanistic relations as follows. For every design component c and

mutation type m, all observed instances of m being applied to c are analyzed.

Each of these instances results in some change in the performance of the

individual, which may or may not mitigate some performance symptom.

Analysis is performed to determine, on average, what performance symptom s

is mitigated by applying m to c, and the following mechanistic causal relation

is established:

m x c → s

During the rest of the evolutionary process these acquired mechanistic causal

relations are used as the basis for influencing how mutation is applied to indi-

viduals. Evolutionary systems that acquire or “learn” about causal relations

by observing the evolutionary process, and then use those acquired relations

to causally-guide the remainder of that evolutionary process are referred to

as learned casually-guided evolutionary systems.

6.3 Evaluation on Synthetic Social Network Design Problem

To evaluate these ideas, the methods for learned causally-guided evo-

lution described above are applied to the task of designing synthetic social
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networks that match the distribution of clustering coefficients of various tar-

get real-world social networks. This is the same task that was studied in

Chapter 5. However in the study presented here, the mechanistic causal

relations are not defined a priori by human experts, and must instead be

acquired during the evolutionary process. In this sense, the work presented

here “pretends” that the causal relation are not available even though, as

evident in the previous chapter, they are. Conducting this initial evalua-

tion on an application problem for which causal relations are available and

have been successfully used as the basis for causal guidance was a strategic

decision. It was important to conduct this initial evaluation on such an ap-

plication problem in order to be sure that there are in fact causal relations

to be acquired.

The goal of these experiments is to evaluate the feasibility of applying

causally-guided evolutionary computation in situations where causal knowl-

edge is not available a priori. Is it possible to acquire causal relations during

the evolutionary process? Will this causal knowledge be sufficiently accurate

to effectively guide the evolutionary process? How well do these methods

perform relative to a causally-guided evolutionary system in which a prior

causal knowledge is available? All of these questions are explored through

this experimental evaluation.
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6.4 Experimental Methods

The methods for learned causally-guided evolution described above

were evaluated when applied to the task of designing synthetic social net-

works that match the clustering of target real-world networks, under the

hypothetical situation in which no causal knowledge is available a priori.

Recall that mechanistic causal relations describe the cause-effect rela-

tionship between the application of a particular type of mutation to particu-

lar design components, and the performance symptoms that are expected to

be mitigated as a result. As in Chapter 5, the design components here are

nodes with particular clustering characteristics. The notation n(C) is used

to represent a node with clustering of C. Alternatively, the notation n
{
e
k

}
is

used to represent a node with clustering
{
e
k

}
. The mutation types are ADDE,

DELE, ADDT, and DELT. Mechanistic causal relations were defined in the

previous chapter as follows:

Mutation m x Node n(C) → Mitigation of insufficient(b)

where b=Bin(Coeff(ExpMtoN(m,n(C)))). Note that the core piece of causal

knowledge here is actually the ExpMtoN(m,n(C)) function, which captures

the clustering measure that is expected to result when a mutation m is applied

to a node with clustering of C. It is this key piece of knowledge that allows

for the establishment of the mechanistic causal relations described above. In

the previous chapter, the ExpMtoN function was defined a priori, as follows:
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ExpMtoN(ADDE, n
{
e
k

}
) = n

{
e

k+1

}
ExpMtoN(DELE, n

{
e
k

}
) = n

{
round(e− 2e

k
)

k−1

}
ExpMtoN(ADDT, n

{
e
k

}
) = n

{
min(e+1,k∗(k−1)∗ 1

2
)

k

}
ExpMtoN(DELT, n

{
e
k

}
) = n

{
max(e−1,0)

k

}
In this chapter, the above definition of the ExpMtoN function is referred to as

the “a priori ExpMtoN function.” In contrast, in this chapter this definition

of ExpMtoN is not available a prioir, and instead values of the function must

be learned through observation of the evolutionary process. As values of the

ExpMtoN function are learned, they are used to construct the mechanistic

causal relations described above.

To learn values of the ExpMtoN function, the learned causally-guided

evolutionary system analyzes every instance of mutations being applied to a

node and the change in the clustering measure of that node that results. For

each distinct mutation type and clustering measure, the various outcomes are

gathered and averaged. For example, there may be five instances in which

the ADDE mutation type is applied to node with clustering of
{
4
4

}
, resulting

in clustering measure of
{
4
5

}
,
{
4
5

}
,
{
4
5

}
,
{
6
5

}
, and

{
8
5

}
. The average outcome

(
{
5.2
4

}
) is calculated and rounded (

{
5
4

}
), thereby establishing a single value

of ExpMtoN function:

ExpMtoN(ADDE,
{
4
4

}
) =

{
5
4

}
Now that this value of the ExpNtoM value is known, the following mecha-

nistic causal relation is established:
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ADDE x n
{
4
4

}
→ Mitigation of insufficient(8)

based on the fact that Bin(Coeff(ExpMtoN(ADDE,
{
4
4

}
))) can now be evalu-

ated, since we now know this particular ExpMtoN value. In this manner, the

learned causally-guided evolutionary system learns the values of the ExpM-

toN function rather than having it specified a priori, and each learned value

is used to establish a mechanistic causal relation.

A learned causally-guided evolutionary system that uses these methods

was developed and is referred to as Causal-H5L, where H5 indicates that

5-step “how” guidance is used, and the L indicates that learning is being

used to acquire mechanistic causal relations. Three hundred trials of this

evolutionary system were applied to the same four target data sets as in

Chapter 5, yielding 1200 total trials. Through a small number of trial-and-

error evaluations, it was found that 100 learning generations is effective for

the Attacks and Terrorists data sets, while 500 is effective for the Academy

and Gang data sets. All other parameter values are the same as in Chapter

5. The performance of these trials was compared to those of the Control

system and the Causal-H5 system from Chapter 5. The Control system

serves as baseline in which causal knowledge is neither available nor acquired,

and Causal-H5 serves as a comparable system in which causal knowledge

is available a prior and therefore does not need to be acquired.

The mutations that were observed by the Causal-H5L system, and

the ExpMtoN values that were acquired as a result are analyzed, and the
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degree of their agreement with the a priori ExpMtoN function from Chapter

5 are assessed. This analysis is performed in order to answer two similar but

distinct questions: 1) To what extent does the observed effect of mutations

match what is expected according to the a prior knowledge? and; 2) To what

extent do the ExpMtoN values that are acquired by the Causal-H5L system

through observation of these mutations match the a priori ExpMtoN function

from Chapter 5? The overall performance of the Causal-H5L system was

assessed using the same analyses as in the previous chapter (fraction of each

evolutionary systems trials to reach various fitness levels), allowing for direct

comparison with all evolutionary systems presented previously. Z-tests with

99% confidence levels were used to evaluate the statistical significance of the

reported results.

6.5 Results

Across 300 trials, the learned causally-guided evolutionary systems ob-

served an average of 50,800 mutations when applied to the Academy and

Gang data sets, and 10,160 when applied to the Attacks and Terrorist data

sets. The divergent numbers are due to the different numbers of learning

generations that were used on the different data sets (500 vs. 100). From the

observed mutations, the expected value of the ExpMtoN(m,n(C)) was deter-

mined for numerous values of m and n(C). On average, 459, 369, 117, and

137 distinct ExpNtoM() values were acquired when applied to the Academy,
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Gang, Attacks, and Terrorist data sets, respectively. In the remainder of

this section, the effectiveness of the Causal-H5L system compared to the

Causal-H5 and Control system is examined, followed by an analysis of

the ExpNtoM() values that were acquired by the Causal-H5L system.

Figure 6.1 illustrates the fraction of trials from the Control, Causal-

H5L, and Causal-H5 systems that reached various error measures by gen-

eration 5000 when applied to the Academy target data set. As seen in the

figure, while the Causal-H5L system was not as effective as the Causal-H5

system, it did outperform the Control system in which no causal knowl-

edge was used. For example, 53% of the Causal-H5L trials reached an error

measure of 1.50, compared to only 19% of the Control trials. The differ-

ence in performance was statistically significant to a 99% confidence level at

error measures between 1.75 and 1.00. While a higher fraction of Causal-

H5 than Causal-H5L trials reached various fitness levels, this difference

was small and never statistically significant.

The fraction of trials that reached various fitness levels when applied

to the Attacks data set are illustrated in Figure 6.2. The difference in perfor-

mance between the Causal-H5L and Control systems are quite dramatic.

Approximately 53% of Causal-H5L trials reached an error measure of 3.00,

compared to only 19% of Control trials. The difference in performance be-

tween Causal-H5 and Causal-H5L trials was not statistically significant

at any error measure.
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Figure 6.1: The fraction of trials of the Control, Causal-H5, Causal-
H5L systems to reach various error measures by generation 5000, when
applied to the Academy target social network. Error bars indicate 99%
confidence intervals.
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Figure 6.2: The fraction of trials of the Control, Causal-H5, Causal-
H5L systems to reach various error measures by generation 5000, when ap-
plied to the Attacks target social network. Error bars indicate 99% confidence
intervals.
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Figure 6.3 shows the fraction of trials from the evolutionary systems

that reached various error levels when applied to the Gang data set. For

higher error measures (above 0.80, not listed) there is little difference in

performance between the systems. However, at error measures between 0.75

and 0.45, there is a clear difference between the Causal-H5L and Control

systems. 87% of the Causal-H5L trials reached an error measure of 0.60,

compared to only 63% of the Control trials. At an error measure of 0.45,

the difference was 38% of Causal-H5L trials compared to 16% of Control

trials. The difference in performance between Control and Causal-H5L

was statistically significant to a 99% confidence level at all examined error

measures. In contrast, there was no statistically significant difference between

Causal-H5L and Causal-H5 systems.

Figure 6.4 shows similar analysis when the evolutionary systems were

applied to the Terrorist data sets. As seen in Figure 6.4, while the Causal-

H5L system outperformed the Control system at all error measures, this

difference was never statistically significant, nor was the difference in perfor-

mance between the Causal-H5 and Causal-H5L systems.

Analysis of the mutations that were observed by the Causal-H5L

systems and the ExpMtoN values that were learned from them is best un-

derstood by examining each mutation type separately. Analysis of the ADDT

and DELT mutation types are trivial. Across all 1200 trials of the Causal-

H5L system (300 trials * 4 data sets), more than 5 million ADDT and 7
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Figure 6.3: The fraction of trials of the Control, Causal-H5, Causal-
H5L systems to reach various error measures by generation 5000, when
applied to the Gang target social network. Error bars indicate 99%
confidence intervals.
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Figure 6.4: The fraction of trials of the Control, Causal-H5, Causal-
H5L systems to reach various error measures by generation 5000, when ap-
plied to the Terrorist target social network. Error bars indicate 99% confi-
dence intervals.
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million DELT mutations were observed. Every single instance of these mu-

tations resulted in a clustering measure that matches what is expected ac-

cording to the a priori ExpMtoN function. This is a trivial result, as adding

or removing a triad from a node’s open neighborhood definitively determines

the resulting clustering of that node (i.e., there is no way for the a priori

knowledge to be wrong). Accordingly, all of the ExpMtoN() values that the

Causal-H5L systems acquires based on these observed mutations match

the a priori values exactly.

Table 6.1: Observed ADDE Mutations, Acquired Knowledge, and Agreement
with A Priori Knowledge

Academy Gang Attacks Terrorist

# Observed ADDE Mutations 17248 17193 4243 4440
Fraction Match A Priori 0.93 0.94 0.96 0.96

# Acquired ExpMtoN Values 118 96 32 38
Fraction Match A Priori 0.92 0.95 0.97 0.96

# Acquired ExpMtoN Values (30) 79 66 26 22
Fraction Match A Priori 0.99 1.00 0.99 1.00

Table 6.1 summarizes the analysis of ADDE mutation type. In the

vast majority of instances, the ADDE mutation resulted in the mutated node

having a clustering measure that exactly matches what is expected according

to the a priori ExpMtoN function. However, in roughly 5% of instances, the

resulting clustering measure differed from the a priori ExpMtoN function.

These instances occur when an edge is added from the mutated node n to a

non-neighbor that happens to already be connected to one of n’s neighbors.

In such a circumstance, the number of neighbors of n will increase by one
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(as expected in the a priori definition) but the number of edges in n’s open

neighborhood will also increase by one (or more), which is not expected

according to the a priori ExpMtoN function. Because of these instances,

roughly 5% of the acquired ExpMtoN values do not match a priori values.

This tends to occur when ExpMtoN values are acquired based on a very

small number of observed instances of the ADDE mutation being applied

to a particular clustering type. For example, if only 2 instances of ADDE

being applied to a node with clustering of
{
3
4

}
are observed and both of

these instances result in an edge being added to a neighbor of the node,

then the acquired value for ExpMtoN(ADDE,
{
3
4

}
) will be

{
4
5

}
, rather than{

3
5

}
as expected according to the a priori ExpMtoN function. Among those

acquired values of ExpMtoN that are based on at least 5 observations, over

99% match the a priori ExpMtoN function.

Figures 6.5 illustrates the effect of applying DELE mutations as ob-

served by the Causal-H5L system compared with what is expected accord-

ing to the a priori ExpMtoN function. Specifically, each point in these figures

represents the application of DELE mutations to nodes with a particular clus-

tering measure. Each point is plotted on the horizontal axis based on how

many edges the mutated node is expected to have in its open neighborhood

(the e in
{
e
k

}
), on average, according to the a priori ExpMtoN function. Each

point is plotted on the vertical axis based on how many edges the mutated

node has in its open neighborhood, on average, as observed in all 300 trials

of the Causal-H5L systems. All data points that are based on less than 30
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Figure 6.5: The observed average number of edges in a node’s open neigh-
borhood after DELE mutation has been applied (vertical axis), compared
against the average number of edges that is expected according to a priori
knowledge (horizontal axis). Each data point represents the application of
DELE mutation to a node with a distinct clustering measure.

observed mutations are omitted from these figures (thereby removing spuri-

ous results based on a few data points). As can be seen in Figure 6.5, there

is wide agreement between the expected effect of applying DELE mutations

and the effect that is actually observed.

Table 6.2 summarizes the analysis of the DELE mutation types. The

majority of instances of the DELE mutation resulted in the mutated node

having a clustering measure that matches what is expected according to the a

priori ExpMtoN function. However, significant fractions of these DELE mu-

tations result in clustering measures that do not match a priori knowledge,

including 24% of the observed DELE mutations on the Academy data set.

Similar fractions of the acquired ExpMtoN values, which are learned through
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Table 6.2: Observed DELE Mutations, Acquired Knowledge, and Agreement
with A Priori Knowledge

Academy Gang Attacks Terrorist

# Observed DELE Mutations 14064 15514 3217 2911
Fraction Match A Priori 0.76 0.81 0.93 0.87

# Acquired ExpMtoN Values 117 95 31 36
Fraction Match A Priori 0.72 0.75 0.83 0.81

# Acquired ExpMtoN Values (30) 78 65 21 25
Fraction Match A Priori 0.84 0.86 0.92 0.90

analysis of the observed mutations, differ from the a priori ExpMtoN func-

tion. When ExpMtoN values that are based on less than 5 instances of an

observed mutation are removed, large fractions of acquired ExpMtoN values

that differ from the a priori values still remain, including 16% of ExpMtoN

values on the Academy data set.

Further analysis reveals some potential reasons for these deviations.

It is important to note that unlike DELT and ADDT mutations, there are

often many outcomes that can result from applying the DELE mutation to

a node. For example, consider the scenario in which the DELE mutation is

applied to a node n with three neighbors and one connection between those

neighbors (a clustering of
{
1
3

}
). In a DELE mutation, a connection between

the node n and one of its neighbors o is removed. If o had been party to the

single connection in n’s open neighborhood, then that single connection will

be removed from n’s open neighborhood as well, resulting in a clustering of{
0
2

}
. Otherwise, the resulting clustering of n will be

{
1
2

}
. For this reason,

it is expected that some instances of the DELE mutation being applied will
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not result in a clustering measure that matches the average outcome, which

is what the a priori ExpMtoN function specifies.

While this explains the existence of DELE mutations that result in

clustering measures that do not match the a priori ExpMtoN function, it

does not explain the differences between the ExpMtoN values acquired by

the Causal-H5L system and the a priori ExpMtoN function. Indeed, if the

observed average effect of applying DELE mutations closely matches the a

prioir ExpMtoN function, as seen in Figure 6.5, why do so many acquired

ExpMtoN values deviate from the a priori function? Closer examination

of these differing acquired ExpMtoN values reveal that in all instances the

deviation appears to be due to rounding error. For example, when applied

to the Academy data set, the Causal-H5L system observed over 525,000

instances of DELE mutation being applied to a node with clustering of
{
3
4

}
.

After the DELE mutation was applied, the nodes had an average of 1.4958

edges in their open neighborhoods. When constructing an ExpMtoN value

from this data, the Causal-H5L system rounds this number, yielding the

acquired ExpMtoN value: ExpMtoN(DELE,
{
3
4

}
) =

{
1
3

}
. In contrast, the

expected number of edges according to the a priori knowledge is 1.5, which is

rounded up to 2, resulting in the a priori ExpMtoN value: ExpMtoN(DELE,{
3
4

}
) =

{
2
3

}
. Note that despite the fact that the observed and expected

number of edges are almost exactly the same (1.50 compared to 1.4958), the

use of rounding results in two distinct clustering measures for the acquired

and a priori knowledge.
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6.6 Discussion

With the exception of the Terrorist data set, the Causal-H5L system

clearly outperformed the Control system when applied to all of the target

data sets. This difference in performance was statistically significant to a 99%

confidence level at most error measures across all three data sets. In some

instances, the difference in performance was quite dramatic, with nearly twice

as many Causal-H5L trials as Control trials reaching an error measure

of 3.00 on the Attacks data set, 0.50 on the Gang data set, and 1.25 on

the Academy data set. This clearly demonstrates the benefits of learned

causally-guided evolution, and shows that it is possible to acquire and apply

causal knowledge during the evolutionary process even when that knowledge

is not available a priori.

Interestingly, the difference in performance between the Causal-H5

and Causal-H5L systems was not statistically significant for any error mea-

sure on any target data set. Indeed there are a number of instance in which

the Causal-H5L system actually performed better than the Causal-H5

system, though again this was not statistically significant. This suggests

that, at least for this particular application problem, there is little benefit to

having mechanistic causal relations a prior as opposed to acquiring and ap-

plying them online. While this finding is too limited to necessarily have any

general applicability across problem domains, it is still encouraging in that

it suggests effective causal knowledge can be collected and applied during
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an evolutionary process. Due to the expensive nature of specifying a priori

causal relations and causal guidance, the ability of learned causally-guided

evolution to successfully acquire and use causal relations is particularly at-

tractive. By building upon these methods, it may be possible to further

reduce the start-up costs of causally-guided evolution, which in turn makes

these methods applicable to a wider range of application problems.

Analysis of the causal relations that are acquired by the Causal-H5L

systems reveal some interesting directions for future research. The a priori

knowledge from Chapter 5 did not match the effects of all observed instances

of the ADDE or DELE mutation operator. In particular, large fractions

of observed DELE mutations and the acquired relations that involve DELE

mutations do not match a priori knowledge. This was shown to be due to

two distinct factors. First, applying a DELE mutation can result in numerous

different clustering outcomes, thus in many instances the result of applying

DELE does not match the average result of applying DELE. Second, because

there is a range of possible outcomes when DELE is applied, the average

result of clustering can involve a non-integer number of edges in the open

neighborhoods and rounding is used to produce clustering measures that are

valid. This rounding can thus produce acquired causal relations that differ

from the a priori ones, even when the observed effects of applying DELE

are very close to what was expected according to the a priori ExpMtoN

function. This raises an interesting question regarding the way in which

mechanistic causal relations have been structured and used thus far: Given
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that the application of a mutation type to a design component can result in

a range of different outcomes, would it be more effective to construct and

use causal relations that explicitly recognize that range of outcomes, rather

than basing such relations on the average outcome, as has been done thus

far? This remains an important area for future research. Interestingly, such

an approach would require specification of more detail in the causal relations

(a range of outcomes rather than an average outcome) which is potentially

more burdensome on human users. In this context, the techniques that were

investigated in this chapter for automatically acquiring causal relations may

be even more valuable.
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Chapter 7

Conclusion and Future Work

This chapter concludes this dissertation by summarizing the work and

highlighting the contributions that were made to the study of causally-guided

evolutionary computation. It also discusses the limitations of this work, as

well as some possible directions for future work.

7.1 Summary and Contributions

The use of evolutionary computation methods as a design tool has

been in part encouraged by the incredible innovativeness of biological evo-

lutionary processes (e.g., the “invention” of optical lenses, sonar, pumps,

valves, winged flight, neural computation, and many other things long be-

fore they were thought of by people (Bentley, 1999)), and in part by the

growing number of successful applications discussed in Section 2.5. While

evolutionary computation appears to be a promising tools for supporting the

design process, in order for the evolutionary process to remain computation-

ally tractable when applied to increasingly complex problems, new techniques

must be developed that increase the efficiency and effectiveness with which

evolutionary systems produce optimal designs.
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This dissertation focuses on one such possible extension: causally-

guided evolutionary computation. In contrast to conventional forms of evo-

lutionary computation, in causally-guided evolutionary computation the ap-

plication of genetic operators to an individual is driven in part by observing

that individual’s performance characteristics and performing causal reason-

ing based on explicit cause-effect relations in the domain. As such, genetic

operators can be influenced to address the specific design issues that are

present in the individual to which they are applied, and not are not blind

and random as in conventional evolutionary methods. The central hypothe-

sis that guided this research is that ultimately causal guidance will make the

evolutionary process more effective by allowing it to explore a much larger

number of good designs while still exploring novel solutions that initially

appear unpromising, and more computationally efficient by decreasing the

number of poorly fit individuals that do contribute useful information to the

search process. To evaluate this hypothesis, various forms of causally-guided

evolutionary systems were designed and developed, applied to a range of ap-

plication problems, and their performance was evaluated against carefully

matched control evolutionary systems that do not employ causal guidance

but are otherwise identical.

The first major contribution of this dissertation is the demonstration,

for the first time, of the feasibility of a casually-guided genetic operator. As

presented in Chapter 3, the form of one type of causal knowledge that is

used by causally-guided evolution was defined, in which diagnostic cause-

188



effect relationships between genotypic flaws and phenotypic problems in an

individual may be described using a simple formalism. The generic form of

causally-guided genetic operators was defined, consisting of three steps: 1)

the performance characteristics of individuals is examined and phenotypic

flaws are assessed; 2) using supplied causal knowledge, inferences are made

about the relative likelihood of various genotypic flaws, and; 3) the applica-

tion of the genetic operator is biased accordingly. In this initial study, one

such genetic operator was defined as follows: Causally-guided mutation op-

erations are biased such that those parts of the genotype with higher relative

likelihoods of being flawed are made more likely to be mutated.

These ideas were evaluated by applying a causally-guided evolution-

ary system to the task of optimizing a set of connection weights in fixed-

architecture neural network in order to produce a network that recognizes

mirror symmetry of input patterns. The performance of this system was com-

pared to a carefully matched control system in which causal guidance was

not used but was otherwise identical. When applied to the 8-input symme-

try problem, the causally-guided system discovered optimal network nearly

twice as frequently as the control system. When applied to a ten-input sym-

metry problem, the causally-guided system found optimal networks 20% of

the time, while the control system was unable to find an optimal network

in any of the 100 trials. A small increase (less than 4%) in computational

time per generation was found to be required by the causally-guided system

as compared to the control. This marginal increase is far outweighed by the
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fewer number of generations required to find optimal solutions. This work

demonstrates for the first time the feasibility of using causal relations to

guide the evolutionary process.

The second major contribution of this dissertation is the development

of a second causally-guided genetic operator, demonstrating the feasibility

of combining multiple causally-guided genetic operators together in a sin-

gle evolutionary process, and validating their effectiveness when applied to

a task in which causal knowledge is present but incomplete. In addition to

causally-guided mutation, the causally-guided form of the crossover opera-

tor was defined as follows: Causally-guided crossover operations are biased

such that those parts of parent individuals’ genotypes that have lower rela-

tive likelihoods of being flawed are made more likely to be combined together

when creating offspring. To evaluate the effectiveness of this second causally-

guided genetic operator and the feasibility of applying multiple causally-

guided operators together, these methods were applied to the real-world task

of designing antenna arrays that meet pre-specified performance criteria. In

contrast to neural network design task in the previous chapter, knowledge of

cause-effect relations in the antenna design domain is less complete and com-

prehensive, and a central goal of this chapter was to evaluate the feasibility

of causally-guided evolutionary computation when applied to such problems.

This causal knowledge as well as the specific forms of causally-guided muta-

tion and crossover were defined, and an evolutionary system that uses them
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was developed, applied to the antenna design task, and its performance was

compared to a control evolutionary system that does not use causal guidance.

It was found that, at various generations, the causal systems found the

fittest antennas with significantly greater frequency than the control system.

On average, the causally-guided systems also required significantly fewer gen-

erations to find antenna designs with various fitness scores. The causally-

guided systems found optimal antenna designs much more frequently largely

by avoiding specific sub-optimal designs. Interestingly, these sub-optimal de-

signs were characterized by dipoles that are longer than optimal and have

high VSWR values, factors that relate directly to the specific cause-effect

relations that were employed. In each result discussed, it was found that

the systems that use only causal mutation or causal crossover outperformed

the control system, but that the system that uses both causal mutation

and causal crossover performed even better, indicating that these causally-

guided operators are synergistic/complementary. Additional experimenta-

tion in which design aspects of the fittest antenna were systematically varied

and changes in performance were measures validated the causal knowledge

that was employed, revealed some more complex cause-effect relationships in

the domain, and suggested some possible extensions for the ways in which

causal knowledge may be described.

The third major contribution of this dissertation is the development

of an extended form of casually-guided evolution for design construction, in
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which causal guidance is used to influence both where and how mutation is

applied to individuals, as well as discovering some important guidelines for

effective design of methods for causally-guiding where mutation is applied.

Chapter 5 presents the extension of causally-guided evolution to a design

construction problem, in contrast to the design optimization problems in

Chapter 3 and 4. To this end, a new casually-guided mutation operator is

defined in which both where and how mutation is applied to an individual are

guided by causal reasoning. To influence how mutation is applied, a second

type (mechanistic) of causal knowledge is defined that relates the application

of mutation operators to genotypic components and the resulting change

in phenotype, and a formalism for describing this type of causal relation is

defined. This extended form of causally-guided mutation is defined as follows:

Causally-guided mutation operators are biased such that those components in

the genotype with higher relative likelihoods of being flawed are made more

likely to be mutated, AND are biased such that the mutations that are more

likely to address those flaws are made more likely to be applied.

These methods are evaluated by applying them to the task of design-

ing synthetic social networks with characteristics that match real-world data

sets. The specific diagnostic and mechanistic causal relations that are em-

ployed, as well as the application specific forms of causally-guiding where

and how mutation occurs are described. Evolutionary systems that employ

causally-guidance to influence where and how mutation occurs were devel-

oped and applied to the synthetic network design problem, as were systems
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that only guide where mutation occurs, systems that only guide how muta-

tion occurs, and control systems that do not use any causal guidance. It was

found that across a number of target data sets and a number of goal error

measures, the evolutionary system that uses causal guidance dramatically

outperform the control system. For example, across the Academy, Attacks,

Gang, and Terrorist data sets, there were error measures that none of the

control system trials reached, compared to 66%, 94%, 100% and 47% of the

causally-guided evolutionary system trials. Furthermore, it was discovered

that employing causal guidance to influence both where and how mutation

is applied clearly outperforms only influencing only one or the other. Lastly,

the work in this chapter reveal some principles for proper design of causally-

guiding how mutation is applied based on mechanistic relations. Specifically,

it was discovered that when influencing how mutation is applied, it is impor-

tant to consider not only the immediate effects of that mutation, but also

the potential effects of subsequent mutations. Failing to do so can result in

an evolutionary process that is short-sighted and tends to get stuck at local

optima.

Finally, the fourth major contribution of this dissertation is the demon-

stration that causally-guided evolution may be applied in application do-

mains where a priori causal knowledge is not available, and must instead

be acquired and applied during the execution of the evolutionary process.

Because such methods do not require as much “start-up” costs as causally-

guided evolution (i.e., there is no need for the a priori specification of causal
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relations, etc.,) they may even be desirable in application domains in which a

priori knowledge is available. While the work presented in Chapters 3, 4, and

5 all rely upon causal knowledge that is supplied a priori, Chapter 6 exam-

ines situations in which no such knowledge is available. A general approach

was outlined in which each application of a mutation to a genotypic compo-

nent and the resulting change in phenotype is recorded and used to construct

causal relations. These relations are then used to influence how mutation oc-

curs, as described in Chapter 5. These methods were evaluated by applying

them to same synthetic social network design problem as in Chapter 5, but

in this case without the use of a priori causal knowledge. It was revealed

that the learned causally-guided evolutionary system clearly outperformed a

control evolutionary system in which causal knowledge was not supplied a

priori, acquired, or used to guide the evolutionary process. Furthermore, it

was determined that there was little difference in performance between the

learned causally-guided system and the causally-guided system (from Chap-

ter 5) in which causal knowledge was supplied a priori. This striking result

clearly demonstrates the potential for acquiring and applying causal knowl-

edge, particularly in application domains for which causal knowledge may

not be available.
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7.2 Limitations and Future Directions

There are a number of important limitations on the work presented in

this dissertation, which also suggest some important directions for continued

research.

The first limitation is the formalisms by which causal knowledge may

be described by human experts. Using the current formalisms, domain ex-

perts may indicate the existence of causal relationships in the domain, but

there is no way for them to describe the strength/conditional probability of

those relationships. This lack of detail may obscure a great deal of informa-

tion about cause-effect dynamics in some domains, which could be used to

more effectively guide the evolutionary process. The causal strength (con-

ditional probabilities) associated with causal relations have been shown to

be a natural and intuitive way for humans to describe causal relationships

(Peng and Reggia, 1990). This extension would be particularly valuable in

situations where multiple causal relations have an impact on the same perfor-

mance characteristics with varying degrees of influence, as it would provide

a means to bias the search process by an appropriate amount depending on

the strengths of various relations.

With this extension, the causal knowledge that is supplied by domain

experts would implicitly define a causal Bayesian network, and this would

permit the posterior probability of genotypic flaws given observed symptoms

to be computed using standard Bayesian inference methods. These more
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principled methods may produce more accurate measures of the relative like-

lihoods of flaws than the methods I’ve used, potentially resulting in a more ef-

fective evolutionary process. Further, using a causal Bayesian network would

allow not only for the expression of noisy-OR relationships between flaws and

symptoms, but also for noisy-AND relationships or even the conditional prob-

ability tables of symptom nodes, allowing domain experts to describe more

complex causal relationships, such as when two genetic flaws together cause

a phenotypic symptom that they would not cause independently. These prin-

cipled methods for performing causal inference also support reasoning about

multi-disorder explanations, in situations where there are many-to-many re-

lationships between flaws and symptoms, a complex situation that is not

examined in this dissertation.

There are considerable start-up costs associated with using causally-

guided evolutionary computation, including defining the design flaws, per-

formance symptoms, mutation types, causal relations, and the specific forms

of causally-guided operators. While much of this work is application specific,

an important area for future research is to explore methods for facilitating or

even automating this process. For example, numerous evolutionary compu-

tation software packages exist in which developers can select from a set pre-

programmed representation types, mutation operators, crossover operators,

fitness functions, etc., in order to rapidly assemble an evolutionary system

for the problem they wish to solve. It should be possible to develop simi-

lar software frameworks that can be used to rapidly assemble causally-guided
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evolutionary systems to solve problems. When coupled with the ability to au-

tomatically acquire causal relations, such a software framework could greatly

enhance the usability of causally-guided methods.

Aside from the work presented in Chapter 6 (in which causal relations

are learned), a limitation of the causally-guided systems presented in this

dissertation is their reliance on the ability of human experts to supply accu-

rate information about causal relationships in the problem domain. In many

applications, it may be difficult for domain experts to supply anything more

than very limited information about causal relationships. Furthermore, it is

possible that the supplied causal knowledge may even be inaccurate. In such

circumstances, far from helping to guide the evolutionary process, causal

reasoning may in fact influence the evolutionary process away from fruitful

areas of the search space. While such an issue would require extensive study

to clarify, I conducted a few preliminary simulations in which intentionally

incorrect causal knowledge was supplied to the evolutionary process. Specif-

ically, the causal relationship (Number of Dipoles → High VSWR), which

is known by domain experts to be incorrect, was used. Indeed, as can be

seen in Figure 4.10, the number of dipoles in an antenna appears to have

very little effect on the VSWR of the antenna. Fifty trials of an evolutionary

system, using both causally-guided mutation and causally-guided crossover

while supplied with this erroneous causal knowledge, were applied to solve

the antenna design problem. In 1000 generations, only 20 out of the 50 trials

resulted in the discovery of an optimal antenna design. This 40% success rate
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is significantly lower than the 60% success rate of the CONTROL system,

and dramatically inferior to the 99% success rate enjoyed by the CAUSALCM

system.

These results clearly demonstrate the potential for incorrect causal

knowledge to negatively impact the evolutionary process. Situations in which

supplied causal knowledge is only valid in part of the solutions space could

present similar problems. The results presented above suggest that when the

causally-guided evolutionary process moves into areas of the solution space

for which the supplied causal knowledge is invalid, the search process may be

misled resulting in a negative impact on performance. An important area for

future research is to examine this issue further in order to better understand

the sensitivity of causally-guided evolution to incorrect knowledge.

The situation described above, in which supplied causal knowledge is

incorrect, as well as the situation in which causal knowledge is simply not

available a priori both suggest the need for automated methods to acquire

and/or revise causal knowledge. While the work in Chapter 6 explores the

feasibility of acquiring causal knowledge during the evolutionary process, it

is quite limited in that it only addresses one type of causal knowledge and

assumes a very specific form of that knowledge. More general purpose and

powerful techniques for acquiring and refining causal knowledge through ob-

servation of the evolutionary process should be explored in order to overcome

situations in which causal knowledge is unavailable or incorrect. Extending
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these methods so that causal knowledge is represented as a Bayesian network,

as described above, would also allow for the use of existing statistical rela-

tional learning methods to revise and improve network structure and values

through observation of the evolutionary process. Additionally, these methods

could be used to identify causal relationships that were previously unknown

by the domain expert.

As discussed in Chapter 2, recent interest in evolutionary computation

has been driven in part by the demonstrated capability of evolutionary sys-

tems to produce “innovative” designs that are qualitatively different than

previously encountered solutions. In this context, an important area of fu-

ture research into causally-guided evolutionary computation is to evaluate

what impact causal guidance has on the discovery of truly novel solutions by

the evolutionary process. In this dissertation, I have conducted some lim-

ited analysis of the types of solutions produced by the various evolutionary

processes. However, a more rigorous evaluation should be performed in ap-

plication domains where creativity is at a premium, such as the evolutionary

design of art, music, etc. Does causally-guided evolution constrain the search

process, preventing the formulation of truly novel solutions? Or does it ac-

tually facilitate novel design by focusing the search process on more fruitful

areas of the search space?

There has also been much interest in recent years in the use of “develop-

mental representations” in evolutionary computation. In these approaches,
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rather than evolving a solution to a problem directly, a set of instructions

or commands for creating a solution to a problem or created. For example,

rather than evolving a neural structure directly using an adjacency matrix,

a set of rules or a cell-growing grammar can be evolved which is then used

to produce a neural architecture. All of the studies conducted in this disser-

tation employ a direct encoding. Accordingly, an important area of future

research is to investigate how causally-guided evolutionary computation can

be used with developmental representations and evaluating the impact of

causal guidance on such an evolutionary system.

Lastly, as with any new technique, it is import to further evaluate the

methods introduced here by applying causally-guided evolutionary compu-

tation to a wider range of challenging problems from a variety of domains,

in order to assess the generality of the results presented here.
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