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Chapter 1. Introduction 

The human desire to duplicate bird flight has existed for hundreds of years.  

From Leonardo Da Vinci’s drawings to Otto Lilienthal’s gliders, the first five 

hundred years of flapping flight research focused on human transport. Today flapping 

flight research has shifted to a much smaller scale with the goal of an autonomous 

ornithopter unmanned air vehicle (UAV). Flapping wing vehicles can fill the niche 

left by traditional fixed and rotary wing vehicles for small, maneuverable and stealthy 

UAVs in military, civilian and research applications. Ornithopter autonomy has not 

yet been achieved because the kinematics, aerodynamics and the stability, guidance 

and navigation of birds are much more complicated than that of a fixed wing aircraft. 

This challenging problem has sparked a wave of research in dynamic modeling, 

flapping aerodynamics, structural behavior, and control methods.  

While it is unlikely that humans can engineer ornithopters that perform as well 

as nature’s flyers in the near term, improvements can be made by characterizing the 

behavior and optimizing the design of ornithopter wings for optimum aerodynamic 

performance and flight control. The goal of this thesis is to provide a predictive 

aerodynamic model for future autonomous ornithopter control applications. This was 

accomplished by experimentally determining the dynamic shape change of a flapping 

membrane wing throughout a complete flapping cycle. A predictive aerodynamic 

model was generated using membrane wing shape data in combination with unsteady 

aerodynamic theory applied to a blade element approximation of the wing.  
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1.1 Introduction to UAVs 

Historical insight and motivation for unmanned air vehicle (UAV) technologies 

are presented in the following sections. The systems required for successful UAV 

flight and comparisons between fixed wing, rotary wing, and flapping wing platforms 

are considered. Also included is an examination of low Reynolds number 

aerodynamics which is important for small, low speed vehicles. 

1.1.1 Historical Overview 

Unmanned air vehicle development actually began before the first planes 

flew. As early as 1863 a hot air balloon designed to carry bombs set off by a timer 

was patented by Charles Perley for use in the Civil War, though it was never 

deployed by the Union troops. Twenty years later Douglas Archibald developed a kite 

used to take aerial photography, a practice that would be adopted for the first time by 

American soldiers in the Spanish-American war to provide crucial surveillance 

information. The first truly unmanned plane was a converted WWI U.S. Navy Curtiss 

N-9 trainer aircraft that used a automatic gyroscopic stabilizer and radio control. This 

plane could carry a 300 pound bomb for 50 miles, but was never used in combat [1].  

After World War I UAV development declined until new programs in the 

1930’s used reusable and returnable UAVs for pilot combat training, all were 

remotely controlled. The first UAV used to deliver weaponry was the German V-1, 

which carried a 2000 lb warhead 150 miles to its target, often civilian cities. 

Countermeasures to the V-1’s were soon developed by the Americans to destroy V-1 

launch sites. Stealth surveillance became a priority mission for UAVs in the Vietnam 

War with more than 1,000 AQM-34 Ryan Firebee UAVs flying over 34,000 missions 
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in Southeast Asia. This period showcased the usefulness and reliability of UAVs for 

military uses. Throughout the 1970’s and 1980’s many countries developed 

successful remotely controlled UAV platforms and the need for UAV’s to fly above 

enemy missiles and for extended durations was established. 

Modern day UAVs are capable of complete autonomy or remote control. 

UAV missions have expanded from military tasks to include civilian applications in 

surveillance, environmental monitoring and communications, and as a test bed for 

new aerospace technologies. With more applications, the UAV field diversified with 

increasing desire for small stealthy surveillance air vehicles and larger, high altitude 

and long endurance UAVs. The following research focuses on small UAV 

applications for aircraft of 1.25m (4ft) wingspan or less, with the ultimate goal of 

developing a UAV with the size and maneuverability of a small bird.  

1.1.2 UAV Mission Definition and Motivation 

UAV uses have broadened significantly since their invention, but all missions 

require carrying a payload for experimentation, deployment, or reconnaissance 

purposes. Two typical military UAV applications were established over a hundred 

years ago: to seek out a target and deploy weapons, or to seek a target and provide 

surveillance; add communications to these two tasks and the general spectrum of 

military UAV missions is completed. NASA recently compiled a more specific set of 

tasks for civilian UAVs which are listed below [2]. 

• Boarder and Coastal Patrol and Monitoring 

• Law Enforcement and Disaster Operations 

• Digital Mapping and Planning/Land Management 
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• Search and Rescue 

• Fire Detection and Firefighting Management 

• Communications and Broadcast Services 

• Ground Transportation Monitoring and Control 

• Satellite Augmentation Systems 

• Air Traffic Control Support 

• Power Transmission Line Monitoring 

• Environmental Research and Air Quality Management/Control 

These types of civil missions can be categorized into four governing areas in 

the private and public sectors: Homeland Security, Earth Science, Commercial, and 

Land Management. Demand in the civil market provides incentive to develop new 

UAV technology not just for research and tactical missions but also for the civilian 

sector. To complete these operations UAV’s vary in size from a few centimeters to 

fifty meters in span or larger. Mission parameters such as payload weight, altitude, 

flight speed and duration, maneuverability and stealth, and the type of launch, control 

and landing determine the type of UAV to be used. Small UAVs are currently 

generating great interest as a new frontier of aviation research.  

In the following sections operational UAVs from 0.5 to 1.25m span is 

compared with a remote control flapping wing ornithopter used for this thesis 

research. This size UAV would typically weigh 0.25 to 1 kg (0.55 to 2.2 lbs), with the 

weight fractions of its components at 21% for the airframe, 11% for the engine, 30% 

for the battery, 21% for payload and 17% for avionics [3]. Small and micro air 

vehicles are desirable for increased maneuverability and stealth on missions which 
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may include urban environments and confined spaces such as disaster zones, where 

they can provide surveillance and search information as well as monitor air quality 

for dangerous contaminants. Small UAVs will fly at low altitudes of a few hundred 

meters or less at speeds under 40 km/h and be capable of obstacle avoidance and 

waypoint navigation.  

Some desirable features of small UAVs are vertical take off and landing 

(VTOL), hover, and the ability to perch and stare at a target. The UAV should be 

capable of both human control and full mission autonomy over a limited range, 

typically a few kilometers based on flight durations averaging one hour or less. 

Another advantage of small UAVs is that they can be transported and launched by 

one or two operators for rapid deployment. Their size also corresponds to a reduced 

radar cross section and a quieter propulsion system through the use of electric motors. 

1.1.3 Comparison of Fixed, Rotary, and Flapping Wing UAVs 

There are three types of small UAV platforms currently in use or under 

development; they are the fixed wing, rotary wing and flapping wing. The fixed wing 

plane is the traditional UAV because it provides a stable, controllable system for a 

wide range of aircraft sizes and missions. Fixed wing aircraft are challenging to adapt 

to the low Reynolds number environment of small UAVs because their limited wing 

span increases the wing loading and decreases lift produced. To avoid this problem 

the wing chord is extended and the planform takes on a “flying wing” geometric 

configuration. However, this planform style decreases the aspect ratio and increases 

induced drag, with the downwash often affecting more than half the wing span 

adversely.  Therefore it is challenging to manufacture a small fixed wing vehicle with 
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good aerodynamic performance. Additionally, most fixed wings cannot perform 

VTOL or hover over a target without a specialized propulsion system. To acquire the 

increased mobility and hovering capability desired for the aforementioned missions, 

rotary wing aircraft such as helicopters and ducted fans have been designed as UAVs 

at scales of one to two meters or less. While helicopters can provide the necessary 

maneuverability and payload, they are typically louder and have reduced range in 

comparison to fixed-wing vehicles.  The helicopter rotor system is also complex and 

unprotected from obstacles which make helicopters prone to maintenance and 

durability issues. Flapping wing UAVs, or ornithopters, have been proposed as a 

viable solution to reduce noise, increase stealth, and improve durability over a 

helicopter while maintaining rotary wing maneuverability. Ornithopters are typically 

between 0.2 and 2 meters span and are designed using avian flight principles. 

Flapping wing vehicles with spans under 0.2 m are called emtomopters and are 

modeled after insect flight. Relative to fixed and rotary wing platforms, ornithopters 

are still in the experimental research stage. The process of applying experimental and 

analytical studies of bird and insect flight to the UAV aeromechanical design is a 

form of biomimetics, or mimicking biology in a synthetic system. Mechanical 

limitations keep ornithopter systems simpler than birds and insects, and current 

designs are still working to achieve the maneuverability, controllability and reliability 

of other UAVs. 

Every UAV platform has essential components or systems for successful 

flight including aerodynamics, propulsion, navigation, communications, and payload 

integration. The most important of these fundamentals is the production of lift, which 
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is discussed in detail in the following section on low speed aerodynamics. The 

remaining systems are discussed below for each UAV platform. 

To generate thrust small fixed wing platforms use propellers powered by an 

electric motor and a bank of batteries or a small internal combustion engine that runs 

on aviation grade fuel. Helicopters generate thrust by changing the angle of the rotor 

plane to move a component of the lift vector into the path of forward motion; they are 

also powered by electric motors or internal combustion engines. Some small UAVs 

use ducted fan engines as an alternative to traditional rotor technology because the 

fan is guarded to protect both the vehicle and the UAV operator. Ducted fans also 

combine the hovering or vertical flight of a helicopter with the classical forward flight 

of a fixed wing when the fan is used as a propeller. The nature of a flapping wing is to 

produce both lift and thrust by twisting the wing throughout the flapping stroke, for 

details on this motion see Sections 2.3 and 5.5.1. Circulatory and non-circulatory 

forces are developed based on the position and acceleration of the wing. 

 For a specified mission, the communications, power supply, and payload 

packages are similar for all three UAV platforms. All onboard UAV communication 

and control systems along with the payload should be capable of operating in the 

environment on the aircraft including electromagnet interference and inertial loading, 

which can be in excess of five times the force of gravity for short durations on a 

flapping wing vehicle [4]. UAVs are controlled by radio frequency transmission from 

a ground station to the aircraft onboard receiver, with either a pilot in the loop or 

autonomous control via an autopilot system.  
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Attitude control is the most important element to achieve maneuverability and 

autonomy in flight. Fixed wing vehicles control roll, pitch and yaw using ailerons and 

elevators or just elevons and a rudder; most autopilots assume this control scheme. 

Flapping wing directional control often mimics bird flight by using a coupled two 

degree of freedom tail that provides pitching, rolling and yawing control torques; 

such a mechanism is identified in Section 1.2.2 and Figure 1.9 for the ornithopters 

used in this thesis research. Characterizing this unconventional navigation system is a 

challenging segment of ornithopter control research which is being studied in parallel 

with ornithopter aerodynamics [4]. Unlike fixed and flapping wing vehicles, rotary 

wing aircraft have no traditional control surfaces for directional control; instead they 

adjust the angles and position of the swash plate and the tail rotor to maneuver. Each 

of these navigation solutions is unique and requires a unique solution for 

implementation of autonomous control.  

Fixed wing and rotary wing UAVs have successfully completed missions 

under piloted and autonomous control. Ornithopters have not advanced to 

autonomous control because their lift and thrust are generated from the same flapping 

mechanism which couples the forces, unlike a fixed wing which has separate lifting 

and propulsions systems. There is also coupling between the rolling and pitching 

control because they are operated using two servos in series to orientate one control 

surface. These coupling phenomenon are not accounted for in traditional fixed wing 

autopilot controls, which is why the aerodynamic modeling presented in this thesis is 

a prerequisite for developing an ornithopter autopilot control scheme. 



 

 9 
 

1.1.4 Low Reynolds Number Aerodynamics 

Maximizing aerodynamic performance is an integral part of UAV design and 

predicting aerodynamic measures such as the lift, drag, and pitching moment are 

necessary for autonomous control. Small UAVs are designed to achieve adequate L/D 

ratios at cruise speeds of 15 to 30 km/h and hover if possible while being stable and 

easy to maneuver. Aerodynamic efficiency is optimal at the maximum lift-to-drag 

ratio, ( )maxdl CC . Lift-to-drag ratio is partially dependent on the local airfoil shape 

and the total wing shape. The local airfoil camber will determine the lift coefficient 

produced with respect to the relative angle of attack. Airfoils with large camber have 

large lift coefficients at small and even negative angles of attack, but they also 

achieve stall at angles of attack lower than small cambered or symmetric airfoils.  

The drag coefficient in the lift-to-drag ratio is the sum of profile and induced 

drag terms. Finite wings experience induced drag due to lift when an induced velocity 

is developed due to pressure discontinuities at the wing edges. Induced drag increases 

with low aspect ratio or “flying wing” designs. Despite the poor induced drag 

performance associated with flying wings, their implementation using moderate 

camber, thin airfoils that imitate bird airfoils have shown increased lift-to-drag 

performance in micro air vehicles [3]. This is because the flying wing is typically 

flown at high angles of attack like a delta wing so that it can use tip vortices to 

maximize lift production. The increase in lift counteracts the poor induced drag 

performance, which can also be alleviated by using flexible wings or winglets at the 

wing tips. Airfoil camber and flight speed determine the profile drag on an airfoil via 

boundary layer development; both cambered and symmetric wings can be designed to 
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reduce the profile drag by avoiding laminar separation bubbles at Reynolds numbers 

below 106. Reynolds number is a dimensionless aerodynamic parameter that 

measures the ratio of inertial forces to viscous forces,  

 
μ

ρ refref Ul
=Re  (1.1) 

 
where ρ is the air density, lref is the reference length (usually the chord length), Uref is 

the reference velocity, and μ is the fluid viscosity. For an airfoil with a 0.25 m chord 

length, an average size for the fixed wing UAV with a one meter span, the airfoil 

would see Reynolds numbers between 75,000 and 200,000 at cruise speeds of 10 to 

30 km/hr. This Reynolds number range is a transition region with increasingly poor 

lift-to-drag ratios for smooth fixed wing airfoils, as identified by Figure 1.1.  

At Reynolds numbers below 200,000 the flow is strongly laminar with more 

significant viscous forces that resist transition. This environment often leads to 

laminar separation bubbles or complete boundary layer separation on a fixed wing 

resulting in stall at low angles of attack. Even partial separation increases drag and 

decreases the maximum lift, leading to the significant drop in the lift-to-drag ratio 

seen in Figure 1.1. Maintaining an attached boundary layer is critical because it 

affects the aerodynamic performance and stability and control of the vehicle. The 

primary means of avoiding boundary layer separation is to encourage turbulent flow 

over the wing. Turbulent boundary layers have more energy and mixing and therefore 

resist separation. Birds use the roughness of feathers to induce turbulent transition 

and maintain attached flow which increases the lift-to-drag ratio. Aircraft also apply 

rough surfaces as turbulent trips on airfoils just before the start of the adverse 
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pressure gradient to reduce the risk of separation. The improved performance of a 

rough, turbulent flow airfoil over a smooth, laminar flow airfoil at low Reynolds 

numbers can be seen in Figure 1.1c.  

 
Figure 1.1: Lift and drag performance with Reynolds number, [3]. 



 

 12 
 

 
Flapping wing fliers find an additional source of lift and thrust at the very low 

Reynolds number regime by utilizing the unsteady flow phenomena generated by 

pitching, bending, and flapping motions of a wing. The added velocity generated 

from the flapping motion increases the local Reynolds number of the wing, allowing 

birds to fly at slower speeds. Flapping flight also utilizes dynamic twisting of the 

wing to maintain a local angle of attack where lift is produced and stall is avoided. 

The degrees of freedom in the “elbow” and “wrist” of birds articulate the shortening 

and lengthening of the chord and span. Decreasing span during upstroke or at high 

speeds reduces parasitic drag by decreasing the wetted area of the wing. Additionally, 

the spanwise twisting and bendng of the wing help to maintain attached flow and 

reduce induced drag at the wing tip. Varying the kinematics between the two wings is 

also a tool used to induce a rolling moment that improves bird mobility. Avian wing 

kinematics, wing structure, flying techniques, and research in avian aerodynamics are 

discussed further in Ch. 2.  

Rotary wing vehicles can also experience low Reynolds numbers, especially 

during hover. Techniques for analyzing and optimizing low Reynolds number rotor 

airfoil and blade designs have been explored by Hein and Chopra [5] and Bohorquez 

and Pines [6]. Low Reynolds number aerodynamics is an area of growing research 

and experimentation in aircraft design with many questions yet to be answered; much 

of what has been learned was gleaned from biological flight [6-11].  
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1.2   The Ornithopter Research Platform 

 To date, there are no known studies that track a membrane wing’s shape and 

motion in three-dimensional space and use the experimental information for 

aerodynamic analysis. In order to complete this research two ornithopters from the 

University of Maryland’s Morpheus Laboratory [12] were selected for analysis, 

hereafter they are designated the blue and white ornithopters as shown in Figure 1.2. 

These ornithopters are commercially available and have spans of 1.07m (42”) and 

1.20m (48”), for the blue and white ornithopter respectively. They were chosen 

because of their stable and controllable flight behavior and because they have a 

relatively large payload capacity, with a typical flight sensor suite of 30 grams. The 

ornithopters are operated via remote control with hand launched take-off and a belly 

landing upon flight completion.  

      

Figure 1.2: Blue ornithopter with 1.07m (42”) span and white ornithopter with 1.22m (48”) span. 

Additional specifications for ornithopter size, weight and flight performance 

can be found in Table 1.1. The vehicle mass without payload typically varies between 

425g and 450g, with an average payload capacity adding 7% to 10% to this mass. 

Also of great importance is the flapping rate of the ornithopter, which varies from 
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depending on steady, climbing, turning flight and wind conditions. For the majority 

of the aerodynamic analysis developed in Ch. 4 and Ch. 5, the flapping rate is 

assumed at an optimal 5 Hz and 4.5 Hz for the blue and white ornithopter 

respectively. These two frequencies are typical of steady flight conditions. 

Table 1.1: Ornithopter geometry, weight and flight specifications. 
Bird Mass Span Max. Chord Flapping Rate Speed Range
Blue 425g  1.07m/42” 0.28m/11” 4.0 – 6 Hz  10-30 km/h  0.8km

White 452g 1.21m/48” 0.36m/14” 3.5 – 5 Hz 10-30 km/h 0.8km 
 

1.2.1 Ornithopter Wing Design and Dynamic Behavior 

For steady level flight conditions the ornithopters flap their wings three to six 

times per second and can reach speeds of thirty kilometers per hour. Wing 

construction consists of nylon stretched over a network of carbon fiber spars and 

fingers. The blue and white ornithopter wings are shown in Figure 1.3 and Figure 1.4 

respectively. There are two spars, one at the leading edge and another placed 

diagonally from the leading edge to the rear of the fuselage. Each spar is held in place 

by a Dacron tape pocket to add stiffness and durability. This spar arrangement creates 

two regions in the wing, the triangular “luff” region, which is a loose membrane, and 

the “flap” region which is kept taught by a series of fingers that run from the diagonal 

spar to the trailing edge.  
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Figure 1.3: Blue wing structure with leading edge and diagonal spars and trailing edge fingers. 

 
 

 
Figure 1.4: White wing has a similar structure to the blue wing. 

 
  

 This skeletal and membrane wing structure is more reminiscent of a bat than a 

bird and the wing behavior exhibits this fact. The flexible skeleton-membrane 

structure allows for highly dynamic passive shape change as the wing moves through 

the air, as demonstrated by the high speed photo sequence of Figure 1.5. This 

flapping sequence shows the downstroke on the left and the upstroke on the right in a 

counterclockwise circle.  

  

Leading edge spar 

Diagonal spar 

Fingers 

Luff 
region Flap 

region 
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Figure 1.5: High speed photography of the stroke cycle of the blue ornithopter. Down stroke is 
presented on the left column, starting at the top of the figure and ending at the bottom. Upstroke 
begins at the bottom of the right column and continues to the top of the right column. 
 

END DOWNSTROKE 

BEGIN DOWNSTROKE END UPSTROKE 

BEGIN UPSTROKE 
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 The large degree of bending and twisting visible in the wing is a result of the 

membrane adjusting its camber and pitch to maintain tension equilibrium throughout 

its surface when the relative inflow speed and inflow angle change throughout the 

stroke. At the beginning of downstroke and upstroke the inertial acceleration of the 

wing causes the leading edge spar to bend significantly around one-quarter and three-

quarters of the semi span length. This results in a variation of the local stroke angle 

along the span and therefore a phase-lag between the wing root and wing tip during 

the stroke period. Additionally, since the flap region is essentially hinged about the 

diagonal spar, it experiences a large rotational deflection which acts like a passive 

flap on an aircraft. The flap deflection, which is the most significant near the wing tip, 

is also a response to the wing inertia. A consequence of the flap deflection is that the 

flap’s force loading exerts a moment on the wing that increases the pitch into the 

flapping motion, so if the wing is in downstroke, it will have downward or negative 

pitch. This pitch adjustment is important to maintain a relative angle of attack with 

minimual stall, whereas an untwisted rigid wing would experience accelerated flow 

separation due to the large inflow angles. 

 The passive morphing behavior of the wing displays the importantance of 

tracking the wing shape and quantizing the membrane airfoil profile and the local 

bending and twisting angles. Including the structural behavior in any aerodynamic 

model is imperitive for accurate results. Membrane aerodynamics and blade element 

theory can be utilized to capture the structural behavior of the wing and provide 

improved results over approaches that apply rigid wing and thin airfoil theory 

methods. Wing tracking and modeling techniques are detailed in Ch. 4 and Ch. 5. 
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1.2.2 Ornithopter Flight Systems 

The flight systems on the ornithopters consist of a drive mechanism and 

power assembly, remote control receiver, servo operated directional control of the 

tail, and electronic payload such as an inertial measurement unit or small camera. A 

unique gear train, shown in Figure 1.6 through Figure 1.8, drives the flapping motion 

of the wing with the gears varying in size, depending on the desired flapping rate. 

Unlike most drive mechanisms the gears are integrated parallel to the fuselage rather 

than perpendicular which reduces the vehicle profile. The crank arm designated in 

Figure 1.6 provides a slightly asymmetric flapping angle at the wing root which 

averages five degrees higher at the maximum stroke angle (30˚) than the minimum 

stroke angle (-25˚). Section 4.4 of this thesis provides a detailed discussion of the 

measured wing kinematics, including how the local stroke angles and twist angles 

vary with wing span position. 

 
Figure 1.6: Front view of ornithopter shows drive gear and crank arms that flap the wing. 

The gear train is powered by a 2 or 3 cell lithium polymer battery with 

operation between 7.4 and 11.1 volts and durations of ten to twenty minutes 

Crank  
Arm 

Flapping 
Axis 

Total Stroke 
Amplitude 
~ 55˚ 

-25˚

+30˚
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depending on battery age, steady or climbing flight requirements, and wind speed. 

The battery powers a speed controller which takes input from the receiver for voltage 

regulation to control the electric motor speed and therefore the flapping frequency. 

These components are identified in Figure 1.7 and Figure 1.8.  

 

 

 

Figure 1.7: Right hand side of ornithopter. Components from left to right include RC receiver, 
speed controller, electric motor, drive gear and crank arm. 

 
 

 

 

 

Figure 1.8: Left side of ornithopter. Components from right to left include lithium polymer 
battery, pinion gear from electric motor, transmission gear and shaft, and crank arm assembly. 
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Figure 1.9: Ornithopter tail assembly, right servo controls elevator, left servo controls roll. 
 
 The tail assembly shown in Figure 1.9 is operated by two servos, one that 

provides elevator control and another that provides roll control; their combined action 

generates drag to develop a torque which induces a turn. The coupling of the elevator 

and roll motion is another complication in the autonomous control of the ornithopter. 

This is currently is being examined during the development of a stability and control 

mechanism for these test vehicles. Now that the research objective, to create a 

flapping wing aerodynamic model using the wing’s structural behavior information, 

has been established, a study of previous work can be completed. 

1.3 Previous Work 

Two areas of research are discussed in this section. First, the successful 

autonomous small UAV designs of industrial and government programs are 

presented, including fixed and rotary wing platforms. Following this, an overview is 

provided of the analytical, numerical and experimental research on the aerodynamics 

of flapping flight. A more detailed discussion of relevant theories and analysis 

Servo #1 
 Elevator 

Servo #2 
    Roll 
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methods are provided in Ch. 2 and Ch. 3, which discuss avian flight and aerodynamic 

theories, respectively. 

1.3.1 Operational UAVs 

There are several companies and government programs which produce small 

autonomous UAVs; one of the most notable is Aerovironment. Three of the smallest 

successful fixed wing UAVs currently in use for low altitude military surveillance 

missions are Aerovironment’s Raven, Dragon Eye, and Wasp, identified in Figure 

1.10. Another small fixed wing UAV platform is the MITE (Figure 1.11), or Micro-

Tactical Expendable UAV, which was developed by the US Navy Research 

Laboratory to explore several different wingspans to optimize performance and 

payload capabilities. Small companies are abundant in the UAV business, with 

products such as Theiss Aviation’s backpackable Ferret UAV of Figure 1.12, Mission 

Technologies’ gas powered “twinwing” Buster UAV shown in Figure 1.13 and 

Applied Research Associates foldable Night Hawk vehicle of Figure 1.14. All of 

these vehicles can be carried to the field and operated by two or three personnel for 

tactical missions utilizing hand launch, catapult systems or missile type launch from a 

tube. Vehicle size, weight, speed, and range specifications are given in Table 1.2. 

Table 1.2: Operational Fixed Wing UAV Specifications 
UAV System Span 

(m) 
Length

(m) 
Wt 
(kg) 

Altitude 
(m) 

Speed 
(km/h) 

Endurance 
(minutes) 

Range 
 (km) 

AV Raven 1.4 0.9 1.9 30-150 20-57 60-110 10 
AV Dragon Eye 1.1 0.9 2.7 30-150 35 45-60 5 
AV Wasp II 0.41 0.15 0.28 15-300 40-60 45-60 2-4 
AV Wasp III 0.72 0.38 0.43 15-300 40-65 45 5 
NRL MITE 0.3-0.5 0.23 0.13-0.35 15-300 16-32 30 1-2 
Theiss Ferret 1.0 0.94 2.5-3.2 < 2400 65 unknown 1.5 
MiTex Buster 1.25 1.04 6.3-7.8 < 3000 65 4 hours 40 
Nighthawk 0.66 0.5 0.7 60-150 33-74 70-90 2-10 
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Figure 1.10: (Clockwise from top left) Aerovironment’s Raven, Dragon Eye, Wasp 3 and Wasp 2.  

 

 
Figure 1.11: Naval Research Laboratory's Micro-Tactical Expendable UAV (MITE). 
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Figure 1.12: Theiss Aviation Ferret UAV. 

 
 

 
Figure 1.13: Buster UAV from Mission Technologies Inc (MiTex). 

 

        
Figure 1.14: Applied Research Associates Nighthawk Micro Air Vehicle. 
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The Wasp, MITE and Nighthawk are the smallest vehicles, and therefore 

experience the lowest Reynolds numbers. Both the Wasp and MITE are “flying wing” 

low aspect ratio designs with relatively thin and high camber wing airfoils. The 

Nighthawk’s wings are larger aspect ratio but are also flexible and foldable, with a 

membrane-like covering over the supporting structure that resembles a bird or bat 

wing.  A very similar in design is shared by the Dragon Eye and Ferret which have 

equal size and payload capacity. Their wings are a more conventional low Reynolds 

number airfoil such as those used by hobby vehicles, the chord is large to increase the 

payload capacity and reduce the wing loading. The Raven has the lowest wing 

loading, with a large span and low weight it is easily hand launched, can fly at low 

and high speeds and has larger range and endurance than most of its counterparts. The 

Buster “twinwing” design is very unique and allows three times the vehicle weight of 

the Ferret and Dragon Eye by providing more wing surface area. However, the 

rugged design of the Buster makes it challenging to carry in the field with more 

equipment required for take-off. Buster also uses a gasoline motor which makes it 

much louder than its electric competition, but also increases its range and endurance.  

Most rotary vehicles also use gasoline powered engines and are heavier than 

similar sized fixed wing UAVs because they use gas based engines. Rotary wing 

UAVs are also less common, the most recognized is the Fire Scout, a full size 

helicopter operated by the US Navy. At the small UAV level it is harder to find 

helicopter style UAVs, but one example is from a small company called Nascent 

Technologies which sells complete helicopter setups with the option for multi-vehicle 

coordinated missions. This complete vehicle system is shown in Figure 1.15.  
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Figure 1.15: Nascent Technologies Helicopter UAV. 

There are alternative rotary solutions to the VTOL problem, and many 

companies are developing ducted fan technologies. At the mini-UAV level 

Honeywell has a promising new ducted fan VTOL UAV which just entered mass 

production for military deployment. This UAV, shown in Figure 1.16, is compact and 

backpackable at 6.5kg and requires minimal assembly and training to fly missions. 

The vehicle provides excellent maneuverability in urban environments, but is gas 

powered and quite loud. This UAV is already being used in military missions to 

detect IED weapons and provide hover and stare surveillance capabilities.  

                 
Figure 1.16: Honeywell Ducted Fan UAV model and demonstrated in active flight tests. 
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Another successful ducted fan VTOL design is Aurora Flight Sciences 

GoldenEye 50, shown in Figure 1.17, which can morph into a fixed wing flyer 

outside of hover, take-off, and landing operations. The GoldenEye’s combination of 

fixed and rotary wing reduces its noise profile and increases its cruise speed and 

range. Another advantage of these ducted fan designs is safety and ease of operation. 

There is a significant niche for these vehicles in both civilian and military markets.  

 

Figure 1.17: Aurora Flight Sciences GoldenEye 50 transitions from vertical to forward flight. 
 

A performance metric of the rotary UAV platforms is provided in Table 1.3. 

As a whole, the rotary wing systems are much heavier due to their large engines and 

fuel systems, but this also increases their payload over fixed wing designs. The speed, 

endurance and range of these vehicles are on par with small fixed-wing UAVs, but 

they also have VTOL technology which increases mission capability.  

Table 1.3: Rotary UAV System Specifications. 
UAV  

System 
Span 
(m) 

Length
(m) 

Wt 
(kg) 

Altitude
(m) 

Speed 
(km/h)

Endurance 
(minutes) 

Range 
 (km) 

Honeywell 0.33 N/A 8 30-150 N/A 55 N/A 
GoldenEye 50 1.37 N/A 9 1500 185 60 N/A 
Nascent Tech 1.37 1.5 7-10 1500 65 60-180 4.8 
 
 Micro sized flapping wing vehicles are currently in development at several 

universities and companies for research as well as constructions by individual 
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hobbyists. Though only limited autonomy has beed achieved, many ornithopters carry 

electronics packages and cameras and can be controlled from a computer rather than a 

traditional R/C transmitter. These ornithopter and entomopter designs with spans less 

than 25 cm utilize insect based unsteady aerodynamics to produce lift, including 

delayed stall, rotational circulation, wake capture, and clap-fling wing motion [13]. 

Some examples of micro sized ornithopters are shown in Figure 1.18, including 

Aerovironment and CalTec’s Microbat, University of Florida’s MAV, University of 

Toronto’s Mentor, the Delfly by the Technical University of Delft, Nathan 

Chronister’s Hummingbird, and the smallest flying ornithopter developed by Petter 

Muren [7]. The Mentor, Delfly and Hummingbird all have hovering flight capabilities 

and the Delfly carries a camera for surveillance. Incentive to build Micro ornithopters 

is strong, generated by government sponsored programs and the International Micro 

Air Vehicle Competition, which acts to achieve autonomy in flapping flight and act as 

a technology exchange.  

     

     
Figure 1.18: Micro sized ornithopters. Top row left to right: Aerovironment/Caltec's Microbat, 
University of Florida MAV, University of Toronto Mentor. Bottom row left to right: Technical 

University of Delft’s Delfly, Nathan Chronister’s Hummingbird and Petter Muren’s MAV. 
 

Larger ornithopters with spans of one to two meters are also being produced 

commercially by hobbyists and experimentally by researchers. These ornithopters 



 

 28 
 

have much higher payloads and are more durable than the micro air vehicle designs. 

Their size also makes these larger vehicles less suceptable to wind gusts which makes 

them easier to fly outdoors in diverse flight conditions. Two successful commercial 

ornithopters include the Cybird and Kinkade models shown in Figure 1.19. As 

discussed earlier in Section 1.2, the Kinkade Parkhawk series of ornithopters was 

chosen for analysis in this thesis because they are proven reliable flapping wing fliers. 

The following subsections will provide an overview of technical research in flapping 

wing and membrane aerodynamics. 

  

Figure 1.19:  Cybird (left), Kinkade Parkhawk (right). 
 
 

1.3.2 Flapping and Membrane Wing Research 

The founders of modern flapping flight research are Lilienthal, Lighthill, 

Ellington, Penneycuick, Rayner, Tucker, Dial, and Weis-Fogh. These 

aerodynamicists and biologists produced the greatest advancements in flapping flight 

during the 1970’s and 1980’s, paving the way for current day research.  A broad 

overview of flapping and low Reynolds number flight research is presented in several 

texts including: Fixed and Flapping Wing Aerodynamics for Micro Air Vehicle 

Applications [3], Avian Flight [8], Aerodynamics of Low Reynolds Number Flyers [9], 
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The Biokinetics of Flying and Swimming [10], and Biophysical Aerodynamics and the 

Natural Environment [11]. Research progress is also summarized in Anders’ 

“Biomimetic Flow Control” [13] and Shyy et al’s “Flapping and flexible wings for 

biological and micro air vehicles” [14]. Additional analytical, experimental and 

computational studies are summarized in the following sections with further 

discussion of relevant theories to be presented in Ch. 2 and Ch. 3. 

1.3.2.1 Analytical Methods 

Analytical approaches to the flapping wing aerodynamic problem can be 

separated into two realms, quasi-steady models and unsteady models. The quasi-

steady model assumes that flapping frequencies are slow enough that shed wake 

effects are negligible, while the unsteady approach attempts to model the wake. There 

are six techniques generally used to solve the quasi-steady problem, they include: 

momentum theory, blade element theory, hybrid momentum theory, lifting-line 

theory, thin-airfoil theory and lifting-surface theory [16].   

Momentum theory provides simple but imprecise measurements of 

aerodynamic forces and power requirements and requires little aerodynamic 

background; it is therefore a popular estimation method for biologists. Blade element 

theory separates the wing into chord-wise sections and applies a two dimensional 

aerodynamic analysis to each section, such as thin airfoil theory. Each section’s 

aerodynamic forces and moments are then combined to solve the three dimensional 

problem. Blade element theory is commonly used to solve rotary wing problems and 

is now being utilized for flapping wing analysis by DeLaurier [17], whose methods 

are used in part in this thesis. Blade element approaches are also introduced by Shyy 
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[9], Azuma [10], and Singh and Chopra [18], and can be found in most rotary wing 

aerodynamics texts. Lifting-line theory is very popular in the flapping wing field, 

with early application by Betteridge and Archer [19] who combined it with actuator 

disc theory to predict induced flows, aerodynamic loading and to optimize lift 

distributions.  

Lifting line theory can also be applied to an unsteady wing with wake 

modeling. A discrete nonplanar vortex element method is utilized by Phlips, East and 

Pratt [22] assuming a rigid, non-twisting wing. Rayner produced a model that 

assumes the wing is aerodynamically active only during downstroke, therefore 

forming a vortex wake of closed rings [23]. Lighthill amended Rayner’s model by 

assuming the upstroke produced the net thrust, and the vortex can be a continuous 

“concertina” wake rather than requiring starting and stopping vortices at the peaks of 

a wing stroke [24]. Azuma recently developed an unsteady method for two-

dimensional, thin and angular airfoils that utilizes potential theory and Polhamus’s 

leading edge suction analogy; it is especially useful for insect wing airfoils [25]. 

Many analytical studies of flapping wing flight assume sinusoidal plunging 

and pitching of the wing. This approach lends itself to the application of 

Theodorsen’s [20] and Garrick’s [21] lift deficiency function which accounts for the 

reduction in lift caused by the sinusoidal wing motion. Additional unsteady affects 

that can be accounted for include spanwise bending and twisting of the wing, leading 

edge suction, camber drag and post stall behavior [17].  

Membrane wing aerodynamics is another important area of research where 

many of the same methods can be applied with slight variations to account for the 
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structural/aerodynamic interactions of the membrane. Early research was completed 

by Thwaites [27], who analyzed the nonlinear membrane equation. Newman presents 

an excellent overview of linear membrane aerodynamics and solution methods [28]. 

Current membrane research focuses on nonlinear solutions, computational methods 

and applications; a summary is provided in Shyy et al’s “Membrane wing 

aerodynamics for micro air vehicles” [15]. 

1.3.2.2 Numerical Methods 

Numerical methods are typically employed to resolve the complex unsteady 

aerodynamics associated with flapping wings. A thorough investigation of various 

numerical and experimental methods for the analysis of flapping wing propulsion is 

presented by Jones et al [29]. A simpler approach is given by Neef and Hummel who 

formed an inviscid solution to the 2D and 3D Euler equations on a plunging and 

pitching rectangular wing [30]. Vest and Katz produced an unsteady aerodynamic 

model and created an experimental test platform to verify their results [31, 32]. Lian 

et al studies the performance, including stall behavior, of a pitching and plunging 

airfoil at a transitional Reynolds number of 60,000 by comparing experimental PIV 

measurements with a variety of computational simulations [33]. A comparison of 

potential flow methods and high fidelity methods is presented by Willis et al, 

including the application of wake only, panel and Arbitrary-Lagrangian-Eulerian 

(ALE) schemes to a flapping wing problem [34].  

Membrane aerodynamics problems are extensively solved using numerical 

methods. Smith and Shyy produced a several articles on computational fluid 

dynamics and structural solvers for membrane problems [35-37], these are 
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summarized for UAV applications in [15]. An inviscid solution for a nonlinear two-

dimensional membrane is given by Vanden-Broeck [38], while de Matteis and de 

Socio solves the viscid problem with boundary layer separation considerations [39]. 

A computational fluid dynamics analysis is currently being completed by staff 

scientists at NASA Langley for the membrane wing examined in this thesis research. 

Preliminary results are compared with the analytical model in Ch. 5. 

1.3.2.3 Experimental Methods 

Experimental design, testing, and analysis provide the most important 

information to the flapping flight field of research because experiments measure 

actual aerodynamic performance and describe the motion of the wing and the fluid 

dynamic response to the motion. The aerodynamic design and testing of an 

ornithopter focuses on the wing and the mechanism driving the flapping process. 

DeLaurier produced two large scale ornithopters, one model with a span of 

approximately nine feet and another large enough for a human passenger [40, 41]. His 

work focused on the wing design, including analysis of structural flexibility, 

aerodynamic performance and stability and control with documented wind tunnel and 

flight tests. Raney et al. provides an overview of biologically inspired micro air 

vehicles and the experimental design of a hummingbird style wing and flapping 

mechanism that is tuned to the resonance of the structure like an insect [42]. Flapping 

mechanisms and wing planform design are examined by Malolan et al. who measured 

lift using strain gauge instrumentation to find the optimal membrane wing design for 

various free stream velocities [43]. Additional wind tunnel research by this group 

explored the lift, thrust and unsteady aerodynamic effects on the wing by changing 
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parameters such as aspect ratio, reduced frequency, advance ratio and planform shape 

[44]. The effect of Strouhal number on the performance of a flapping membrane wing 

design optimized by Malolan is explored by Aditya, with important results relating to 

optimal thrust [45]. Another detailed flexible wing design and aeroelastic analysis is 

given by Unger et al with performance comparisons to a rigid airfoil [46]. DeLuca et 

al. used wind tunnel tests and XFOIL predictive code to show that flexible membrane 

wings further delayed stall and increased lift-to drag ratios by 30 percent over rigid 

fixed wings [47].  

Experimental analysis of membrane aerodynamics at low Reynolds numbers 

is presented by Tamai et al. with research inspiration from bat flight [48]. Particle 

Image Velocimetry was utilized by Rojratsirikul et al. to study the unsteady 

aerodynamics of a two dimensional membrane airfoil. This study also includes 

measurements of the membrane shape, dynamic analysis of membrane vibration 

modes, and flow visualization as the angle of attack and velocity change to 

understand the effects of separation on membrane oscillations [49]. 

There are many more technical papers involving experimental designs and 

aerodynamic analysis than those provided above. The field of aerodynamic and 

kinematic research on birds, bats, and insects is examined in Ch. 2 and relevant 

aerodynamics theories and tools are discussed in Ch. 3. 
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1.4 Thesis Outline 

This thesis is composed of seven chapters; a brief description of each is given below. 

Chapter 1:  Introduction:  

Chapter one provides an overview of UAV history, mission definition and the 

challenges associated with small UAV’s while examining successful small UAV 

platforms. Flapping wing vehicle designs and related aerodynamic research are 

explored and the thesis research ornithopters are introduced. 

Chapter 2: Avian Flight and Biomimetics: 

Chapter two begins with a historical overview of avian flight studies and their 

influence in the aerodynamic field. An introduction to avian wing structure, 

kinematics and flight modes is given, followed by a summary of experimental and 

analytical research of avian flight mechanisms and aerodynamics. 

Chapter 3: Aerodynamic Theory: 

Chapter three examines relevant aerodynamic theory and its application to flapping 

flight, including traditional fixed wing aerodynamics, blade element theory, 

membrane aerodynamics and unsteady aerodynamic affects. 

Chapter 4: Wing Tracking Experiments: 

Chapter four details the dynamic wing shape visualization and quantization 

experiments completed on the Morpheus Laboratory research ornithopters as well as 

lift and thrust force measurements recorded during the testing. These experiments 

provide vital information about the membrane shape, local wing pitch and bending 

angles which were used in the aerodynamic modeling. 
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Chapter 5: Aerodynamic Modeling Theory 

Chapter five details the aerodynamic modeling theory starting with the modeling 

algorithm. Blade element definition and wing geometry are addressed along with 

quasi-steady wing kinematics. Reference quantities and aerodynamic parameters such 

as Reynolds number and reduced frequency are analyzed. Drag and power 

requirements are estimated to establish an optimimum flight condition. Finally, the 

aerodynamic equations used by the predictive model are presented. 

Chapter 6: Aerodynamic Modeling Results: 

Chapter six presents results of the aerodynamic model when applied to both 

ornithopters at their optimal flapping rate and flight speeds. Comparisons are drawn 

between the vertical and horizontal forces predicted by the model and those measured 

during motion tracking experiments. The forces predicted by the model are separated 

into circulatory and noncirculatory components and the contribution of the luff and 

flap region of the wing is examined. Model results are also compared to 

computational fluid dynamics predictions for the hovering case. Conclusions are 

drawn about the models predictive capability and reasons for disagreement with 

measurements are presented.  

Chapter 7: Conclusions: 

Chapter seven provides a summary of the thesis and presents conclusions from the 

research with suggestions for future work in the field. 
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Chapter 2. Avian Flight and Biomimetics 

Bird flight has fascinated humans for millennia, with scientific studies of bird 

flight starting during the Renaissance and expanding to the current day with the 

discovery of the laws of fluid mechanics and modern computational capabilities. 

There are two fields of science that study bird flight: the biomimetic engineers and 

physicists who wish to develop theories that explain bird flight and use the 

information to build new flying vehicles, and the experimental biologists who directly 

analyze birds to obtain an improved understanding of their biological systems. A 

history of pre-modern avian flight study including its relevance in the development of 

aerodynamic theory and engineering is discussed in the following section. Later 

sections provide a detailed description of avian wing geometry and kinematics, 

followed by a summary of current day avian flight research. 

2.1 Historical Influence of Avian Flight Research 

Leonardo da Vinci’s (1452-1519) dream of engineering a human flying 

machine provided the first significant insight into fluid mechanics through the study 

of flying and swimming animals and fluid flow over objects. Da Vinci’s experiments, 

recorded by sketches and notes not deciphered until the nineteenth century, 

conceptualized the concept of continuity of a fluid as well as the lift and pressure drag 

forces over a bird wing [8]. His sketches showed the shape of fluid flow over an 

object and postulated that both the surface area and shape of a body determines the 

drag it experiences. Da Vinci designed many flying contraptions including a human 

powered flapping wing vehicle which is sketched in Figure 2.1. 
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Figure 2.1: Leonardo da Vinci’s human powered ornithopter design. 
 

After the Renaissance, a scientific age was born. The modern laws of physics 

and the principle of conservation of energy arose in the seventeenth century with 

Newton (1642-1727), Huygens (1629-1695), and Leibniz (1646-1716). Bernoulli 

(1700-1782) and Euler (1707-1783) used these laws to quantitatively explain the 

relationship between pressure and velocity in inviscid fluids. Navier (1785-1836) and 

Stokes (1819-1903) introduced viscosity to Euler’s equations and produced the 

modern day fluid equations which are now solved using computers [8]. 

Bird flight was also used during the nineteenth century to aid the design of 

aircraft. Sir George Cayley (1773-1857) studied avian flight and recognized the lift 

and thrust forces. Cayley produced the first quantitative kinematic data on flapping 

flight, recording the forward flight speed of birds and the flapping rate and vertical 
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velocity of the wing. His studies of birds and fish led to the design of streamlined 

bodies including the first airfoil designs which were used to build and test the first 

flapping manned airplane, which was also unsuccessful.  

Cayley was followed by Otto Lilienthal (1848-1896), a German engineer who 

studied bird wings and kinematics and was the first to measure the lift force generated 

by a cambered wing using a force balance. He proposed that the outer portion of the 

wing generated thrust while the interior produced lift and he identified the three types 

of flight: hover, flapping forward flight and gliding forward flight. Lilienthal built 

large gliders and flew successfully (Figure 2.2), but later died from injuries sustained 

while testing a glider. The most significant problem of glider flight at this time was 

achieving stability and control in an aircraft; the Wright brothers would solve this 

problem by using a wing twisting mechanism to adjust lift on each wing and induce a 

turn. This technique which is adapted from avian flight is also used by Abdulrahim et 

al. on a modern flexible membrane fixed wing UAV [51].  

 

Figure 2.2: Otto Lilienthal's successful gliding attempt. 
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With the invention of the camera, the first high speed photographs of flying 

birds were taken in the 1890’s by Marey (1830-1904), shown in Figure 2.3. Marey 

used the photographs to analyze the kinematics of the flapping motion. From the 

photographic studies Marey postulated eight kinematic rules of avian flight which can 

be partially identified in Figure 2.3, [8]. While modern research has found these rules 

to be sometimes inaccurate, they do note trends in kinematic behavior:   

1. The downstroke lifts the body and increases the speed; the upstroke also 

generates lift but decreases the velocity. 

2. The wing tip describes an elliptic trajectory  

3. The direction of the movement of the trajectory is such that the wing tip goes 

forward and downward, and upward on the way back. 

4. The wing is extended and almost flat during the downstroke. 

5. During the upstroke the surface of the wing is inclined with respect to the 

flight direction, the underside faces forward. 

6. The duration of the downstroke is generally longer than that of the upstroke. 

7. In flight the wing is only rigid during the downstroke and partly folded during 

the upstroke.  

8. During the upstroke the primary feathers (tip feathers) rotate around their 

longitudinal axis. These feathers leave slits to let the air pass freely. 

 
Figure 2.3: First high speed photographs of bird flight, a stork, taken by Marey, [8]. 
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Marey also designed and completed experiments that monitored the flight 

muscles and wing beat of flying birds as shown in Figure 2.4. To understand the lift 

forces during the flapping motion Marey built mechanical models and complex test 

equipment to measure the pressure changes around the wing. These tests revealed the 

need for a drag coefficient in addition to measuring drag based on surface area.  

 

Figure 2.4: Marey's experiment setup to examine birds in flight, [8] 

By the turn of the twentieth century engine powered airplanes were being 

constructed and avian inspired flight was put to the side as a source for human 

transport. Wind tunnels were soon in use and experimental and theoretical knowledge 

grew dramatically leading to Prandtl’s discovery of the boundary layer and 

commercialization of fixed and rotary wing aviation. Research into avian flight and 

wing structures was pursued primarily by biologists during the first two-thirds of the 

twentieth century as fixed wing aviation grew. Unmanned air vehicles brought back 

the fervor for flapping flight as small biomimetic UAVs became desirable in the 

1980’s with advancements in low Reynolds number flows and unsteady aerodynamic 

theory. Today engineers and biologists are working together to solve the small and 

micro UAV challenge using avian and insect flight techniques. 
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2.2 Wing Structure  

In addition to the forward motion that a fixed wing experiences, a bird wing 

also flaps up and down, sweeps forward and back, twists along the span, and folds to 

adjust the wing wetted area. The bone, joint and feather structure of birds and bats is 

integral to understanding the kinematics of the wing. Compared to the human arm in 

Figure 2.5, the bird skeleton has a shortened humerus bone in proportion to the radius 

and ulna, and the wrist and fingers, or “hand wing”, are fused to support the weight of 

the primary feathers and provide strength to the wing tip [8]. A bat on the other hand 

has long rib-like fingers which support the membrane covering and provide the ability 

to alter camber and tension in the membrane for lift adjustments and dynamic control. 

The bat wing also has a membrane section forward of the arm bones that behaves like 

a leading edge flap to help maintain attached flow for a wide range of angle of attack; 

future ornithopter design may emulate this wing structure. 

 
Figure 2.5:  Schematics for (a), (b) a bird wing, (c) bat wing, (d) human arm, [9]. 
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Every bird species has different proportions in the arm and hand bones which 

are optimized for its dominant flight mode, some scaled examples of avian wing 

skeletons are shown in Figure 2.6. The hand wing, shown between the two vertical 

lines in Figure 2.6, provides the dynamic control for the bird and can comprise as 

much as eighty percent of the wing length for small birds which fly in highly 

unsteady flight conditions, such as hover [8]. Arm bones in larger birds compose 40% 

to 60% of the total wing length because they fly at higher Reynolds numbers in quasi-

steady flows and use prolonged gliding. Slow flapping or gliding flight modes benefit 

from a larger region of secondary and tertiary feathers that can act like a fixed wing. 

The longer arm wing also allows for more bending and spanning to reduce drag on 

upstroke and vary the wing area. To demonstrate the influence that bone proportion 

has on flight, a hummingbird is compared to a hawk in Figure 2.7 and Figure 2.8. 

 
Figure 2.6: Proportion of hand wing to arm wing, for (a) Calliope hummingbird; 

(b) Rock dove; (c)  Blue grouse; (d) Starling; (e) Albatross, [8]. 
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Figure 2.7: Hummingbird in hover mode. 

 

 

Figure 2.8: Soaring flight of a red tailed hawk with separated primary feathers. 
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The behavior of the wing covering material is also essential to achieving 

flight. Bird wings utilize feathers to support themselves in the air, while bats and 

insects use a membrane reinforced by the skeletal structure of the wing. Both 

feathered wings and membrane wings provide a thin, highly cambered lifting surface 

that varies in shape along the span.  

Early structural and aerodynamic analysis of bird wings as fixed airfoils was 

completed by Withers in 1980, [52]. Recently, Liu et al. used non-contact surface 

measurements to create three dimensional computer models of bird wings and 

develop equations to characterize the wing planform, camber and thickness along the 

span [53]. The modeled airfoil shapes of the avian wings are then compared 

aerodynamically using XFOIL with the high lift low Reynolds number S1223 airfoil 

for a range of angle of attack. Liu also developed a two joint kinematic model of the 

wing by simulating the shoulder and elbow motions of the birds as they were captured 

on high speed video. Shyy also examines the similarities and differences between 

avian and fixed wing airfoil sections along the wing span as shown in Figure 2.9 [9].  

 

Figure 2.9: A pigeon airfoil versus a conventional wing at the root, midspan and wing tip, [9]. 
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Note the thick, high camber leading edge near the root of the avian wing 

which provides large lift values. The wing airfoil quickly thins to a very sharp trialing 

edge because it is composed of feathers with no bone structure, making it highly 

flexible and very structurally responsive to aerodynamic loads. This flexibility allows 

the feathers near the trailing edge to morph the airfoil shape by lifting up and 

reducing the adverse pressure gradient to reattach flow as stall is breached. 

 The avian airfoil shape improves the low Reynolds number aerodynamic 

performance over a traditional low-speed fixed wing which is prone to stall at low 

speeds and high angles of attack. Birds avoid stall at these conditions in part because 

the leading edge roughness or “leading edge comb” which provides a turbulent trip to 

encourage attached flow and alleviate laminar separation bubbles from forming. 

Leading edge comb in owls has also been shown to create a stationary spanwise 

vortex sheet over the primary feather region which prevented flow separation and 

alleviated laminar separation bubbles on the outer portion of the wing [10]. 

Leading edge comb is one of many unique evolutionary developments in 

feathers and wings to improve flight performance and stealth. When combined with a 

jagged leading edge, the wooly leading edge comb of owls reduces the sound 

generated by the wing motion and makes the owl a very successful stealth hunter. The 

alula or “bastard wing” which is shown in Figure 2.5a acts like a leading edge flap to 

maintain attached flow on the outer wing at high angles of attack. The tail can also be 

used as a high lift device when operated as a slotted trailing edge flap to increase the 

wing camber. Many birds that utilize soaring to minimize power requirements also 

have slotted primary feathers under full wing extension, such as the hawk in Figure 
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2.8. Much like a winglet on a plane, slotted primary feathers increase the spreading of 

the vortex wake which reduces kinetic energy in the wake and therefore decreases the 

induced drag [54]. The reduction of induced drag also extends the operating range of 

the wing to higher angles of attack before the onset of stall. This practice can lead to a 

significant increase in lift to drag ratios and simulate an increase in span and aspect 

ratio. Adapting these high performance techniques to UAV design could provide 

significant improvements in performance.  

2.3 Wing Kinematics 

In addition to bone proportion and structure the rotational mobility in the wing 

joints, particularly the shoulder, define a wing’s motion. Rotation about the 

“universal” shoulder joint is powered by the pectoralis muscles and includes three 

types of motion: flapping, feathering, and lead-lag; each is described below. 

− Flapping:  The up and down plunging motion of the wing. Flapping 

produces the majority of the bird’s power and has the largest degree of 

freedom with a typical range of motion between forty degrees down and 

ninety degrees up. The flapping cycle of the wing is broken down into two 

components, 1) downstroke or power stroke, when the wing moves from 

its uppermost to its lowermost position, 2) upstroke or recovery stroke, 

when the wing moves from its lowermost to its uppermost position. 

− Feathering:  The pitching angle of the wing. It can vary along the span 

due to rotation in the shoulder, elbow and hand joints and also from the 

flexibility of the feathers and bone structure. Positive or pitch up motion 

of the wing is called supination while downward pitch is referred to as 
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pronation. Birds can vary pitch angles between the left and right wings to 

induce a rolling moment for directional control.  

− Lead-lag: An in-plane lateral rotation of the wing about the bird’s vertical 

axis, it is positive for forward or leading motion.  

These three rotations can be idealized as Euler angles about the bird’s body axis 

system as shown in Figure 2.10. The elbow and hand joints of the wing are also 

instrumental in adjusting the twist, bending and spanning or folding of the wing to 

optimize flight performance and maneuverability. When combined with the bending 

and spanning motion of the elbow and hand wing, the three rotational motions of the 

shoulder result in an adaptive structure capable of producing lift, thrust and 

directional control for all flight modes. 

        

Figure 2.10: Three angular motions of the wing: flapping β, pitching θ, lead-lag ξ. 

 The flapping motion is of primary importance because it generates the lift and 

thrust forces that enable flight. Near the wing tips where the vertical induced flow 

from flapping motion is large the leading edge of the wing must pitch into the 

flapping direction to maintain attached flow. Therefore the pitching motion is also 

x 

z 

y ξ = lead-lag

θ = pitch β = flapping 
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critical to achieve flight. The forces generated by a positively cambered flapping 

wing during upstroke and downstroke are shown in Figure 2.11. Maintaining positive 

angle of attack during upstroke requires significant upward twist because the 

downward inflow angle due to the flapping motion increases with increasing span 

position. If a positive angle of attack is achieved, the lifting force will be upwards and 

backward, increasing the drag on the wing. However, if the angle of attack on 

upstroke is negative, the lift vector will be negative and forward, creating thrust but 

also causing negative lift. During downstroke, the wing is always at a positive angle 

of attack with significant upward inflow near the wing tip. The relative inflow tilts the 

lift vector forward so that it produces thrust, especially near the wing tip. This 

reasoning shows how the motion of the wing tip is instrumental in increasing thrust 

and decreasing drag, while the interior of the wing primarily produces lift. 

 

Figure 2.11: Forces generated by a flapping wing during a) upstroke and b) downstroke, [10]. 

Each bird, bat or insect uses a different type of wing motion to fly, and they 

are generally categorized by the path of the wing tip during one beating cycle, as 

shown in Figure 2.12. Wing tip paths also vary based on flight modes including 

taking off and landing or flight speeds. Two common tip path shapes are ovals and 
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figure eights. The line connecting the top and bottom of the tip path is called the 

stroke plane; it varies from vertical for forward flight to horizontal for hovering.  

 

Figure 2.12: Tip paths for (a) albatross, fast gate; (b) pigeon, slow gate; 
(c) horseshoe bat, fast gate; (d) horseshoe bat, slow gate, [9]. 

 
 Experiments similar to the reflective marker motion tracking experiments of 

this thesis (Ch. 4) were completed by Tian et al. on bats to identify the exact 

kinematic motion of the membrane wing in conjunction with PIV measurements of 

the wing wake velocities [55]. This work from Tian et al. provides a source of 

comparison for the thesis because it identifies the behavior of a membrane wing in a 

successful natural flyer. Findings of the bat flight research included characterizing the 

wing tip motion, which shows an elliptical tip path with wing extension during the 

downstroke and a wing contraction during the upstroke. Tian et al. also modeled the 

wing beat frequency and amplitude at the wing tip using a Fourier series, a method 

that can be utilized to reduce data to an accurate kinematic model. 

2.4 Flight Modes 

Flapping flight is the traditional cyclic power source utilized to gain or 

maintain altitude and speed, hover, or act as a tool for take-off, landing and 

maneuverability [10]. Forward flapping flight or cruising flight is typified by slow to 
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moderate flapping rates of two to four Hertz for large birds with high aspect ratio 

wings and faster rates of four to ten Hertz for small birds such as sparrows. As 

explained in the previous section, large birds in flapping flight utilize the inner 

portion of the wing for lift and the outer portion of the wing for thrust, this helps to 

maximize their cruising flight efficiency.  Analysis of steady cruising flapping flight 

presents the simplest, quasi-steady aerodynamic case and therefore is the primary 

focus of the aerodynamic model in this thesis. 

Both take-off and landing are accomplished at high angles of attack with 

typical push off and landing angles of seventy degrees [8]. The take off requires the 

bird to push off with it legs at a force of one to four times its weight in order to gain 

altitude as it begins to flap. Landings are generally approached from a glide and use a 

few cycles of flapping at the end of an approach to maneuver and reverse the thrust 

and momentum of the bird so that it can land safely.  

Maneuverability is a measure of the speed and radius of a turn that can be 

achieved in flight. Turning results from a rolling moment caused by variations in lift 

produced by the right and left wings. Three methods commonly used by birds and 

bats to achieve this rolling moment are downstroke velocity asymmetries, angle of 

attack asymmetries or surface area asymmetries between the wings. Warrick and Dial 

studied the kinematic mechanisms used in the maneuvering flight of pigeons and 

discovered they utilize variations in downstroke velocities between the wings to 

induce a banking angle, with counteracting motions active in the upstroke [56]. 

Norberg and Rayner studied the wing morphology in bats via the aspect ratio and its 

effect on optimal flight speed, power requirements and maneuverability. They found 
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the turning radius of a flapping bird or bat is limited by the wing loading and flight 

speed, with lower wing loading and low speeds producing the smallest turns [57].  

Whether a bird utilizes forward flapping flight, gliding or hovering is largely 

determined by wing size, structural proportion and the flight path to be covered.  

Long duration hovering is achieved only by the smallest birds and insects which 

utilize highly unsteady aerodynamics to fly. Birds achieve hovering by bringing their 

body to a vertical position so the wings can track a horizontal figure eight motion, 

much like treading water; a hummingbird’s hover stroke is identified in Figure 2.13.  

 
Figure 2.13: Tip path's of a hovering hummingbird, [8]. 

 
The kinematics for hovering flight at flapping rates up to seventy times per 

second requires very low inertia wings with large degrees of freedom. Hummingbirds 

attain this motion by maximizing the hand wing dimension and minimizing size and 

motion of the arm wing. Larger birds can hover briefly but generally lack the ability 

to quickly rotate the angle of attack between forward and backward strokes; instead 

they fold the wing on upstroke to reduce drag. Hovering in large birds is used 
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temporarily for maneuvering and landing. “Windhovering” matches the forward 

speed to the oncoming wind speed to achieve a hover condition; this technique is used 

by birds to isolate prey and could be utilized on a UAV for point and stare purposes.  

Gliding and soaring flight is very common among medium and large birds and 

bats which have a large wing surface area. While any air vehicle can glide, those that 

maximize their glide ratio, a measure of how far a vehicle flies horizontally to the 

amount of altitude it loses, are the most effective. Many birds have glide ratios in the 

10:1 to 20:1 range, and sailplanes can achieve glide ratios up to 60:1. There are many 

techniques to supplement a glide such as thermal, gust and dynamic soaring which 

extract energy from the air to gain altitude and speed. Small birds often fly sinusoidal 

paths in altitude, with flapping flight to increase speed over the lower part of the cycle 

and closely folded wings over the top of the path. This intermittent flap-bounding 

method minimizes energy expenditure for birds that cannot achieve prolonged glides. 

2.5 Aerodynamic Parameters  

As with fixed wing flight, there are important non-dimensional parameters 

that provide insight into flapping flight aerodynamics and performance. The flapping 

kinematics are essential to developing and understanding these parameters. 

2.5.1 Reduced Frequency 

An important non-dimensional parameter of forward flapping flight is the 

reduced frequency k, a ratio of the flapping velocity to the reference velocity 
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In Eq. (2.1) ω is the angular velocity of the flapping wing, cref is the wing’s reference 

chord length and Uref is the reference velocity which is the forward flight velocity. 

Reduced frequency indicates the degree to which unsteady aerodynamic effects are 

present. As k approaches zero the wing tends toward a quasi-steady state while slow 

forward flight with large flapping frequencies result in unsteady flows [9]. 

2.5.2 Strouhal Number 

Another non-dimensional parameter that describes kinematics of flapping flight is the 

Strouhal number, which divides flapping frequency f and vertical wing tip amplitude 

A by the forward vehicle speed U.  

 
U
fASt =  (2.2)

 
Strouhal number has been shown to indicate propulsive efficiency, a measure of 

mechanical power input to mechanical power output. Efficiencies as high as 70% 

have been achieved within the optimal Strouhal number range of 0.2 < St < 0.4 with a 

peak efficiency at St ~ 0.3. Taylor et al. summarized this phenomenon, noting that 

peak efficiency occurs “when the kinematics cause maximum amplification of the 

shed vortices in the wake and an average velocity profile equivalent to a jet” [58]. 

Clearly Strouhal number is an important parameter that should be considered when 

optimizing a flapping wing design. Aditya and Malolan completed experiments on a 

flapping membrane wing utilizing Strouhal number to optimize thrust [45].  
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2.6 Experimental Research in Avian Flight Theory 

Biological avian flight research since the 1950’s has focused on establishing 

empirical formulas to understand wing sizing, flapping frequency and forward 

velocity. These findings, as well as studies of aerodynamics and muscle use are often 

utilized in calculating the power requirements for various flight modes. Power 

calculations are very important when understanding flight patterns that optimize 

range, endurance or speed; this is often the goal of avian flight research. The pioneers 

of this spectrum of avian flight research include Pennycuick [59, 60], Tucker [54, 61], 

Rayner [23, 57], Spedding [62], and Lighthill [24, 63]. Relevant empirical results and 

aerodynamic modeling methods of these and other researchers are now examined. 

2.6.1 Empirical Results  

Several empirical results have been established relating avian sizing, such as 

wing area S, bird mass m or weight W, to the optimal flapping frequency, flight speed, 

power available and power required for flight. The geometry of the wing is generally 

determined by the mass, with the span b and area S given by Eqs. (2.3), with wing 

area and wing loading relations varying based on the type of bird. 

 31704.1 mb =  
78.071.0 ~~ mSormS  

 
(2.3)
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It is also possible to relate the airspeed U of the bird to its wing geometry or mass by 

examining airspeed versus lift coefficient or airspeed versus wing loading [9].  
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The wing beat frequency range for birds can also be related back to the mass 

through the use of the aerodynamic power, AP , which is proportional to the product of 

the wing area and the cube of the tip speed, by the relation 335 fmPA ∝ . Flapping 

frequency is also related to the power generated during flapping via fmPA
32∝ . 

Combining the two power relations gives the final relation for maximum flapping 

frequency fmax given in Eq. (2.5). Some texts also limit the maximum flapping rate 

based on how much heat the body can sustain. 

 31
max

−∝ mf  (2.5)

 
The lower flapping rate boundary is determined by the induced velocity at low speeds 

which must still support the lift of the bird as shown in Eq. (2.6), [9]. 

 6121
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An exact relation for the flapping frequency given in Eq. (2.7) was developed by 

Pennycuick in the examination of fourty-five different bird species; it includes a 

dependence on weight, wingspan, wing area, wing inertia and air density. 

 ( ) 838131241721 ρ−−−−= ISbmgf (2.7)
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2.6.2 Aerodynamic Models 

Many methods have been utilized to study flapping wing aerodynamics, from 

momentum theory to blade element analysis to vortex wake studies and 

computational fluid dynamics. The following sections will introduce the techniques 

and important findings from momentum theory and vortex wake analysis, a more 

thorough discussion of aerodynamics is presented in Ch. 3. 

2.6.2.1 Momentum Theory 

Momentum theory is often used to generate a “back of the envelope” estimate 

of induced aerodynamic forces and power requirements, as well as the vertical and 

horizontal induced velocities. The theory models the circular swept area of the 

flapping wing as an actuator disk which accelerates the surrounding air, increasing its 

momentum. All momentum changes must act via an induced velocity whose energy 

balances the thrust and lift or equivalently the vehicle drag and weight in steady 

flight. Momentum theory requires that the induced velocity field across the span be 

uniform. While this approximation is not realistic, it may only vary by 10% from the 

actual distribution, which is highly non-uniform and challenging to calculate.  

The following presentation of momentum theory is adapted from Azuma’s 

Biokinetics of Flying and Swimming. Figure 2.14 pictures a bird at a flight path angle 

γ, angle of attack α, and flight speed U. The total induced velocity w has parallel and 

normal components u and v respectively. The mass flow must be constant for 

momentum theory; therefore the mass per unit length is given by Eq. (2.8). 

 
Ubm ρπ

4

2

=  
 

(2.8)



 

 57 
 

 
Figure 2.14: Representation of induced velocities and forces, [10]. 

 
 Lift equilibrium is established by setting the weight component equal to the 

lift and the downward momentum as shown in Eq. (2.9), where the factor of two 

comes from the fact that the induced flow is doubled far downstream. 
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Likewise, the thrust and the induced momentum are set equal to the drag and weight 

component in the horizontal direction as shown in Eq. (2.10), where e is the 

deficiency factor for non-elliptical wings ( e < 1 ).  
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The induced power required is the sum of the components for lift and thrust 

and is given by Eq. (2.11) for small flight angle γ. This equation can be converted to a 

form that uses only the lift to drag ratio and flight angle if required. More accurate 

approximations can also be made if the actuator disk area is reduced to the actual 

swept area of the wing, which will likely be 70% of the larger disk area.  

 ( )
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222 +
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If the bird is in a hovering condition, only the weight must be equalized and 

only the vertical induced velocity is generated as identified in Eq. (2.12).  

 

A
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Note that the induced velocities decrease as forward flight speed increases and 

therefore the power required to overcome induced effects reduces with increasing 

forward velocity. The normal induced velocity effects can also be alleviated by an 

increase in the wing aspect ratio or the use of winglets to reduce tip vortices. While 

this uniform flow result does not capture the variation of u across the span, it only 

underestimates the longitudinal induced power loss by 5-10%, making momentum 

theory a common tool in estimations of aerodynamic performance. 

2.6.2.2 Vortex Wake Theory 

Many biologists wished to find a more accurate method for modeling bird 

flight than momentum theory. The result was vortex wake theory applied to flapping 

flight, with extensive experimental research completed by Pennycuick, Rayner and 

Spedding to determine the wake behavior in different flight modes. A shed vortex 
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wake analysis calculates lift by measuring the production of new downward 

momentum in the wake, while the induced drag must equal the wake’s kinetic energy 

per unit length. The accuracy of the lift and drag measurements proved the worth of 

vortex wake aerodynamic models. Several attempts were made to describe the wake 

behavior before the correct models were found; the final result included two types of 

wake, one each for low and high speeds. At low speeds and in intermittent flight the 

vortex ring gate, first proposed by Rayner, may be used; while at high speeds a 

continuous and constant circulation or “concertina” wake is established.  

Vortex ring theory was the first to gain ground in scientific circles in the 

1970’s, but later research found its application limited to low speed fliers, birds that 

fold the wing extensively on upstroke and intermittent flight modes. The vortex ring 

gate, shown in Figure 2.15, proposes that the steady flapping flight vortex wake can 

be modeled by a chain of elliptical vortex rings, each of which is generated by a 

single downstroke. Under vortex ring theory the upstroke is inactive and does not 

contribute any force. This inactivity causes the discontinuous rings because of the 

abrupt shed of circulation at the end of downstroke. 

 
Figure 2.15: Vortex ring gate of a chaffinch flying through a cloud of dust. 

Downstroke Vortex Rings 
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A vortex ring is started by both wings at the top of the downstroke. As each 

wing sweeps down it forms a side of the ring until the sides reattach at the bottom of 

the downstroke and the ring is completed. The vortex ring’s shape and orientation 

depend on the motion of the downstroke, while the ring size is determined by the 

circulation the wing produces. Researchers found that vortex rings for finches and 

pigeons were positioned at oblique angles of about ten degrees from the horizontal [8, 

23]. Further experimental study of the vortex ring gate showed that the momentum 

measured in the wake was one-third to one-half the amount required to support the 

weight of the bird. This discrepancy is significant and shows that the vortex ring 

model is too simplistic to capture the unsteady aerodynamic behavior used by birds in 

the vortex ring gate flight mode.  

While the vortex ring discrepancy was being explored a new vortex behavior 

was discovered by Spedding that consisted of two continuous trailing vortices with 

constant circulation; Lighthill named this the “concertina” wake [24, 62]. This wake 

behavior is produced by a wing with active downstroke and upstroke, with the 

upstroke wake shedding from the beginning of the primary feathers which are folded 

to reduce drag. The inner secondary and tertiary feathers remain in the flow and 

actively produce lift and therefore circulation in a concertina wake. Spedding’s flow 

visualization of the vortices from experiments with kestrels are shown in Figure 2.16.  

 
Figure 2.16: Two trailing vortices of constant circulation from a kestrel in flight, [62]. 
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Spedding characterized the concertina wake via the diagram of Figure 2.17. 

During the upstroke the two trailing vortices are held parallel at a distance '
22b  apart 

and move diagonally upward at an angle 2ψ  for a distance L2. Through the 

downstroke the vortices arc out and back in the circular motion of the wingtip with a 

maximum span of '
12b . The downstroke vortices follow a diagonally downward path 

at angle 1ψ  for a distance L1. The maximum height of the vortices is h which is 

partially defined by the stroke amplitude φ . 

 

 
Figure 2.17: Spedding’s model of the concertina wake, [62]. Part A shows the amplitude h of the 
wake which matches the stroke amplitudeφ . Part B, the side view, shows the length and angles of 
the vortex during downstroke (L1 and ψ1) and upstroke (L2 and ψ2). Part C shows the top view 
and indicates the lateral separation of the vortices with 2b1 for downstroke and 2b2 for upstroke, 
where the bird’s wingspan is 2b. Also U is the velocity, T is the stroke period, and τ is the ratio of 
time spent during downstroke over the total stroke period. 

(A) 

(B) 

(C) 
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If one assumes the simple description of the concertina wake provided by 

Spedding in Figure 2.17 then the analysis of the wake becomes quite simple. First 

Spedding provides an estimate for the two distances between the trailing vortices by 

defining a dimensionless wake spacing R. For gliding flight R is about 0.76, while 

flapping flight values average 0.9. Using this dimensionless wake spacing the 

upstroke and downstroke spacing are defined in Eqs. (2.13), where 2b is the total 

wing span, and 22b  is the wing span with the primary feathers folded down. The 

difference between the maximum widths of the vortices is given by B: 
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 If the time period of one complete wing stroke is given by T and the 

downstroke ratio, or fraction of a period spent in downstroke, is given by τ, then the 

incidence angles of the vortices can be calculated using the maximum vortex height h. 

The vortex height and incidence angles are presented in Eqs. (2.14) and the lengths of 

the vortices during upstroke and downstroke are defined in  Eqs. (2.15). 
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Finally, the planar areas of the downstroke and upstroke wakes, A1 and A2, are 

determined by assuming 21Ll = . 
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 Using the planar areas, the total lift and drag are calculated as a function of the 

circulation in Eqs. (2.17). If the lift is assumed to equal the bird’s weight or the drag 

can be estimated by profile and parasite values, then the total circulation can be 

determined by these equations.  
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 Spedding also examines the induced drag value by using a quasi-steady 

aerodynamic analysis which is applicable because of the constant circulation wake. 

The induced drag is calculated by assuming a fixed wing, elliptical circulation 

distribution where the peak circulation is given by Γ . 

 2

8
1

Γ= πρiD  (2.18)

 
The concertina wake solution is accurate at predicting the lift and induced 

drag for birds in cruising flight at medium or fast speeds with active lift production on 

the upstroke. This solution is elegant because the circulation is constant while the 

change in wake width adjusts the momentum of the flow. During downstroke the 

wake widens to carry greater momentum and therefore a heavier load, while the 

narrow wake of the upstroke contributes a small momentum and less lift loading. 

Additionally, the concertina wake is simple to model analytically. All that is required 

to use Speddings method is knowledge of the full and adjusted wing spans for 
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downstroke and upstroke, and a measure of the stroke amplitude, downstroke time 

ratio and total stroke time. These quantities are readily measured experimentally 

which makes the concertina wake a useful model. 

2.6.3 The Power Curve 

Steady forward flapping flight of birds requires equalizing the thrust and drag 

forces as well as the lift to the bird’s weight. There are three types of drag which must 

be accounted for when estimating power, they include form drag due to pressure, skin 

friction drag, and wake induced drag. The sum of the form drag and skin friction drag 

is refered to a profile drag for two dimensional airfoils and as parasite drag for three 

dimensional airfoils. The parasite drag increases with flight speed, while induced drag 

decreases with flight speed. Section 2.6.2.1 provided equations to calculate the 

induced power using momentum theory [10]. A similar approach can be used to 

calculate power requirements using vortex wake theory.  

A graphical presentation of the power curve for a bat is given by Norberg and 

Rayner in Figure 2.18.  In this case Norberg and Rayner assumed that parasite power 

is caused by skin friction and that profile power is caused by the pressure distribution 

on the wing. Rayner’s method utilizes his vortex ring theory to calculate the induced 

power with the other power terms determined experimentally or empirically. At low 

speeds, the induced power dominates because induced velocities have a greater effect 

on the angle of attack, while high speeds are dominated by the parasite or profile 

power terms. Also note the minimum power (mp) speed is less than the maximum 

range speed (mr), though the optimal speed often depends on more than power or 

range requirements. 
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Figure 2.18: Power required for flight, [57]. 

 
Rayner’s interpretation of the total power required is given by Eq. (2.19) which uses 

non-dimensional coefficients for the induced, parasite and profile power 

terms: propari ppp ,, . In this equation m is the body mass, g is gravity, b is the 

wingspan, S is the wing area, and V is velocity.  
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The power curve is a very important performance measure that will define the 

active flight envelope and optimal operating conditions for a bird or aircraft; it also 

demonstrates the importance of minimizing induced drag at low speeds. In summary, 

this chapter provides a necessary introduction to flapping flight kinematics and 

aerodynamics that can be utilized in the design and analysis of flapping vehicles. 
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Chapter 3. Review of Aerodynamic Theory  

This chapter reviews relevant aerodynamic theories, methods of analysis and 

empirical results that are necessary to understand or develop the analysis tools that 

are applied to generate an aerodynamic model of the research ornithopter. A review 

of two and three dimensional fixed wing aerodynamics is presented first, followed by 

a discussion of membrane aerodynamics with important empirical results. Finally the 

blade element method of analysis is introduced along with methods to model the 

unsteady aerodynamics experienced by the wing. 

3.1 Fundamentals of Fixed Wing Aerodynamics 

Fixed wing aerodynamic theories provide essential concepts for solving the 

flapping wing problem such as lift and drag coefficients, angle of attack (AOA), and 

the effect of induced flows. Aircraft aerodynamics are typically explored first from a 

two dimensional perspective to simplify the problem and develop fundamental ideas 

such as circulation and vortex representations of a flow, which are then used to 

characterize the aerodynamic performance of an airfoil. The expansion to three 

dimensional finite wings introduces the concept of downwash and induced drag with 

vortex analysis methods such as lifting-line and lifting-surface theories as well as 

numerical vortex lattice methods. Important concepts from these theories are 

discussed in the following sections; for a thorough review see Anderson [64]. 
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3.1.1 Aerodynamic Coefficients 

Aerodynamic coefficients provide a method to calculate the lift and drag 

forces and the pitching moment of an airfoil or finite wing. The coefficients also 

relate to the aerodynamic performance of the airfoil or wing through measures such 

as lift-to-drag ratio and stability derivatives. An essential quantity in these 

dimensionless equations is the dynamic pressure, ∞q , identified in Eq. (3.1) where 

∞ρ and ∞V are the free stream density and velocity respectively. 

 2

2
1

∞∞∞ = Vq ρ  (3.1)

 
Utilizing the dynamic pressure the dimensionless force and moment 

coefficients are given in Table 3.1. The three-dimensional (3D) equations are for 

finite bodies where S indicates the wing area and c is the chord length. For the two-

dimensional (2D) bodies, the coefficients are lowercase and the apostrophe after the 

force or moment indicates a per unit length quantity; likewise the surface area 

assumes a unit length and reduces to the chord length, c.  

Table 3.1: Aerodynamic coefficients for 2D and 3D bodies. 
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The aerodynamic forces are indicated in Figure 3.1. Lift, L, and drag, D, measure the 

force components that are vertical and horizontal to the free stream velocity, 

respectively. The normal force, N, and axial force, A, are aligned perpendicular and 

parallel to the airfoil chord, respectively. 

 
Figure 3.1: Direction of aerodynamic forces, [64]. 

3.1.2 Two-Dimensional Airfoil Theory 

Thin airfoil theory applies a vortex sheet to a two dimensional airfoils chord 

line to determine the circulation, and therefore the lift, generated by the airfoil at a 

specific AOA. While thin airfoil theory is restricted to airfoils at small AOA in steady 

inviscid flows, it provides an accepted and accurate baseline for the two dimensional 

lift coefficient lC  of airfoils as well as pitching moment mC . While the details of thin 

airfoil theory are left to aerodynamic texts, the important elements are presented now 

for the general cambered airfoil solution [64].  

For an airfoil at an angle of attack α whose camber line is described by 

dxdz , the vortex distribution ( )θγ  along the chord is given by Eq. (3.2).  
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Where the x variable has been transformed by ( )0cos1
2

θ−=
cx  and 0θ  varies 

between zero and 2π. The vortex distribution takes the form of a cosine Fourier 

expansion of dxdz  where the solutions for the Fourier coefficients are determined by 

the slope of the camber line and the angle of attack as shown in Eqs. (3.3). 
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 These coefficients can be solved for using the known airfoil shape. Then the 

vortex distributions and circulation can be found. The lift is determined based on the 

circulation, and can be calculated directly from the Fourier coefficients as shown in 

Eq. (3.4). This solution can be rewritten in terms of the effective angle of attack and 

the zero lift angle of attack, which is provided in Eq. (3.5). Likewise, the pitching 

moment coefficient at the quarter chord and the center of pressure location are given 

in Eq. (3.6) and Eq. (3.7) respectively. 
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The lift coefficient equation is valid for any thin airfoil, and reduces to πα2  

for symmetric airfoils, where the zero lift angle of attack 0α  is zero. For most airfoils 

the lift slope is approximately proportional to the AOA and is equal to π2  until stall 

is breached, typically between ten and twenty degrees as shown in Figure 3.2. 
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Figure 3.2: Effect of camber from trailing edge flap on lift curve, [64] 

 
Figure 3.2 also shows the effect of positive camber through the use of a 

trailing edge flap. Increasing camber causes an increase in lift over a symmetric 

airfoil at lower AOA as indicated by a leftward shift of the lift curve to intersect with 

the airfoil 0α  value. Adjusting the camber of an airfoil is possible by changing the 

design or adding flaps to the trailing edge which can shift the lift curve to improve 
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performance at a specific AOA, such as high angle of attack landings. Leading edge 

devices, such as flaps or slats, can also be utilized to extend the lift coefficient to 

higher values at higher AOA by delaying stall as in Figure 3.3. 

Leading and trailing edge devices are simple ways to manipulate the flow over 

an airfoil for improved performance, and birds use similar techniques in flight to 

delay stall and boost lift. Thin airfoil theory provides a simple and accurate tool for 

analyzing both symmetric and cambered airfoils and the effect of leading and trailing 

edge devices in the two dimensional realm. However, to understand the true behavior 

of a wing, the theory must be expanded to three dimensions. 

 
Figure 3.3: Delayed stall effect of leading edge device, such as a flap, on lift curve; [64]. 

 

3.1.3 Finite Wing Aerodynamics 

Finite wings experience flow in three dimensions because of the sudden 

pressure difference at the wing tips. The pressure differential causes the high pressure 
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flow on the bottom surface to wrap around the wing tip to the low pressure of the 

upper surface and produce a spanwise flow component that moves outward on the 

bottom surface and inward on the upper surface. Another effect of this circular 

motion is to generate wing tip vortices that trail downstream as the wing moves 

forward. The downstream wing tip vortices generate a vertical induced flow at the 

wing called downwash, w, which effectively reduces the local geometric angle of 

attack, α , by an amount called the induced angle of attack, iα . The effective angle of 

attack, effα ,  is then given by Eq. (3.9) and is illustrated in Figure 3.4. 

 ieff ααα −=  (3.9)

 
 

 
Figure 3.4: Representation of downwash, w, with induced AOA and induced drag indicated, [64]. 
 
Figure 3.4 shows the effects of downwash on the relative velocity and relative AOA, 

including the tilting of the lift vector back by the induced AOA, iα . The new 
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horizontal component of lift is called the induced drag, iD , which is a measure of the 

kinetic energy lost by the vehicle engine to generate the wing tip vortices.  

Induced drag for a fixed wing is estimated by Eq. (3.10), where e has a 

maximum value of one for elliptical circulation distributions which have minimum 

induced drag. The value of e reduces as the wing takes alternate load shapes with 

average values ranging between 0.8 and 1.0. Note that the induced drag is 

proportional to the lift coefficient squared; therefore induced drag is a large factor at 

high angle of attack. 
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Downwash velocities vary along the span and therefore each part of the span 

should be considered locally. Techniques for solving for the nonuniform downwash 

must be able to account for variations in wing geometry as well. Most methods for 

determining the downwash, circulation and aerodynamic forces and moments on a 

finite wing are extensions of the vortex theories from the two dimensional cases.  

Prandtl’s lifting-line theory is often used as an alternative to more complex 

numerical methods. Lifting-line theory utilizes a superposition of horseshoe vortices 

attached as a bound vortex of varying length to the leading edge, or “lifting-line”. The 

vortices then extend downstream as two free-trailing vortices at symmetrical locations 

along each half-span. Figure 3.5 shows the change in circulation that occurs between 

each pair of bound vortices as indicated by the strength of each trailing vortex. 
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Figure 3.5: Lifting line with three horseshoe vortices showing superposition of circulation, [64]. 

 
Using the Biot-Savart law, the downwash due to all vortices at a location 0y  

along the lifting line can be calculated if the circulation, Γ , of each vortex is known. 

This method is described by Eq. (3.11) and can be explored visually in Figure 3.6. 
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Figure 3.6: Representation of the downwash solution for lifting-line theory, [65]. 



 

 75 
 

The induced angle of attack iα  is formed in Eq. (3.12) by assuming the 

downwash is much slower than the free stream so small angle approximations apply. 
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To determine the circulation distribution, the lift slope result from thin airfoil theory 

must be used along with the local airfoil properties at 0y , including α , 0=Lα  and the 

chord length. The fundamental lifting-line solution of is then formed. 
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Equation (3.13) simply restates the angle of attack relation from Eq. (3.9) with the 

circulation as the only unknown. If the lift distribution is known, the lifting line 

equations can be solved directly, however this is not usually the case. Kuethe and 

Chow present a solution method to the lifting-line equation for an arbitrary circulation 

distribution on an arbitrary wing in Foundations of Aerodynamics [65]. The solution 

assumes that the circulation distribution is symmetric and can be expressed as a 

Fourier series in terms of spanwise location. The lifting-line equation is then solved 

by segmenting the wing and forming a system of equations based on the known 

geometric angle of attack values for each wing section. Results can be achieved even 

for twisted wings and provide an estimate of the local induced angle of attack or 

downwash for each section as well as the circulation and lift distribution on the wing. 

Beyond lifting-line theory, computational techniques that include viscosity and 

turbulence models can provide more accurate results to the finite wing problem. 



 

 76 
 

3.2 Membrane Aerodynamics 

Recall that the Morpheus Laboratory’s research ornithopters use membrane 

wings. The luff region of the membrane wing, defined as the region between the 

leading edge spar and diagonal spar of the ornithopter wing, is analyzed using the 

linear results of the following sail theory analysis. The study of membrane 

aerodynamics was first explored to improve sail design, a field of research which is 

dominated by experimental innovation and sailors’ intuition. Sail theory was 

introduced by Thwaites, whose discourse on sail aerodynamics provided a basis for 

later research [27]. Two dimensional sail theory is presented in detail along with a 

discussion of modern membrane aerodynamics research. 

3.2.1 Thwaites Two-Dimensional Sail Theory 

While sails or membranes could be idealized as high incidence, thin airfoils, 

their behavior is quite different, especially in their response to dynamic flows. This is 

because pressure or load differences on the sail from a change in velocity or angle of 

attack will cause the sail curvature to adjust and turn the luff, or the slack portion of 

the sail, into the wind to counteract pressure changes. In light of this behavior, 

Thwaites describes why rigid wing aerodynamic theory cannot be applied directly to 

sails and membranes [27]: 

“In flow past wings, either the shape of the wing or the aerodynamic 
pressures on it may be prescribed in advance; so the purpose of a theory is to 
determine the one given the other. But for a sail which is flexible, it is a manifest 
reality that its shape cannot be arbitrarily assigned; this arises from the necessity for 
each element of sail to be in static equilibrium – or, in other words, for the curvature 
of the sail to be such that the tension exactly counterbalances the aerodynamic load. 
Thus both dynamic and static conditions have to be satisfied, and as a result, the 
analysis for sails is different from that for rigid wings.”    
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The following sections present the two-dimensional sail problem and the derivation 

of the fundamental sail equation. Solutions to the sail problem and important 

conclusions are summarized. 

3.2.1.1   Derivation of the Fundamental Sail Equation 

The fundamental equation for two dimensional sails is similar to Prandtl’s 

wing equation, but differs in two primary ways. First, there are additional conditions 

applied to the integral and the lack of geometric symmetry makes conventional wing 

theory inapplicable. Second, the sail equation includes a parameter λ which is 

inversely proportional to the membrane tension. The eigenvalues of λ indicate 

whether the flow is smoothly attached at the leading edge; such a condition requires a 

wavy sail with zero lift. Likewise, inviscid theory dictates that a wholly concave sail 

has a sharp leading edge that experiences a theoretical infinite velocity; only this type 

of sail formation produces lift.  

The task at hand is to develop an aerodynamic equation connecting the shape 

of the sail to the pressure distribution on it. The first step towards this sail equation is 

to simplify the problem to the two-dimensional flow of an inviscid, incompressible 

fluid past an infinitely long, inelastic, non-porous sail. Assuming the sail is fixed at 

the leading and trailing edge, the chord length is given by c and the total length of the 

sail is c+l where l is a measure of the slack, as identified in Figure 3.7. The sail is 

positioned along the x-axis with its camber in the z-axis; the leading edge is located at 

the origin and the trailing edge at ( )0,c . 
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Figure 3.7: Example of a membrane with chord length c and slack length l 
 

To further define the problem shape and notation a free stream velocity U is 

applied to the sail at an angle of attack α . At any location cx ≤≤0  the slope of the 

sail is given by ( )xψ  and the vortex sheet strength per unit length on the z-axis is 

given by ( )xγ . The x-axis variable of integration for the vortex is ξ , with an 

infinitesimal element ξd . This notation is shown in Figure 3.8. 

 
 

Figure 3.8: Sail theory notation, including integration element ξd . 

Equilibrium is enforced to relate the sail aerodynamics to the sail shape. The 

slope ( )xψ  of the sail at a location x must equal its local velocity inflow angle, which 

is a combination of the free stream angle of attack and the induced flow or downwash 

angle from the vortex sheet. The induced flow angle is given by thin airfoil theory. 
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Equating the inclination angle of the combined velocities with the slope at x gives: 
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Rewriting Eq. (3.15) gives the aerodynamic equilibrium in Eq. (3.16). 
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Continuing the discussion of static equilibrium, one can analyze the pressure 

and tension on the sail element shown in Figure 3.9. As with thin airfoil theory, the 

lift on the sail element dx  due to the vortex is ( )dxxUγρ , where ρ  is the free stream 

fluid density. The pressure difference between the upper and lower sail surfaces is 

then given by Eq. (3.17). 

 ( )xUp γρ=Δ  (3.17)

 
 

 

Figure 3.9: Equilibrium of a sail segment dx. 
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Since the flow is assumed to be inviscid, there can be no viscous shearing forces 

acting on the sail and therefore the tension must be constant. Equating the normal 

forces on the sail element due to pressure and tension results in Eq. (3.18). 

 ( ) dxdTxUdTdxp ψγρψ −=→−=Δ (3.18)

 
Equation (3.16) and Eq. (3.18) provide two simultaneous equations to solve 

for the sail slope ( )xψ  and vortex distribution ( )xγ . These equations are constrained 

by the Kutta condition and the slope condition that the leading and trailing edges must 

lie on the x-axis, these constraints are summarized by Eq. (3.19) and Eq. (3.20). 

Constraints 

Kutta Condition: ( ) 0=cγ  (3.19)

 
Slope Condition: ( ) 0

0

=∫
c

dxxψ  
 

(3.20)

 
Since Eq. (3.16) cannot be solved directly Thwaites inverts the aerodynamic 

equilibrium equation using the Muskheishvili method while incorporating the 

constraints; this results in the aerodynamic equilibrium of Eq. (3.21). 
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The transformations of Eqs. (3.22) are made to simplify Eq. (3.21). The two 

geometric quantities x  and ξ  are transformed into angular representations in a 

manner similar to thin airfoil theory. Also, the tension parameter λ  is defined and the 

slope and vortex strength are established as functions of angle of attack and airspeed. 

All further equations are solved for ( )xΨ , which is a dimensionless ratio of the local 

slope to the angle of attack of the incoming velocity. 
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Using these transformations, Eq. (3.18) and Eq. (3.21) are simplified to: 
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Equations (3.23) and (3.24) can now be combined to form Eq. (3.25) which is 

constrained by the transformed slope boundary condition of Eq. (3.26). 
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Thwaites finally forms the fundamental sail equation of Eq. (3.27) by integrating Eq. 

(3.25) while satisfying the boundary equation in Eq. (3.26).  
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The sail equation cannot be solved analytically, but solutions can be 

determined iteratively if the tension parameter λ  is set. As λ approaches zero the 

tension in the sail approaches infinity and the sail is forced to a flat condition where 

( ) 0=Ψ θ . For increasing λ the slack l in the sail increases and purely concave shapes 

are achieved for 316.20 << λ . The sail geometry is defined by the slack ratio cl  

and height coordinates ( )θz  which are determined by the sail slope ratio ( )θΨ  in Eq. 

(3.28) and Eq. (3.29) respectively. The lift and pressure coefficients as well as fluid 

speeds along the sail can also be calculated based on the tension parameter and slope 

function. These results are provided in Eq. (3.30) through Eq. (3.32) respectively. 
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3.2.1.2 Sail Equation Solutions: Large Tension 

Sails of very large tension behave like a flat plate. These results are applied to 

the trailing edge flap region of the ornithopter wing, which is stretched taught with a 
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neglible slack length. In large tension cases the tension parameter is constrained to 

5.0<λ and the sail has very little slack with 001.0≈cl . The concaveity of the sail is 

so small that it is not sensitive to the aerodynamic forces and therefore the sail shape 

( )θz  is independent of the angle of attack α . Also, the lift coefficient, center of 

pressure and velocity over the sail are reduced to the flat plate solutions below. 

 πα2=lc  (3.33)
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3.2.1.3   Sail Equation Solutions: Critical Incidence Angle 

Critical incidence angle cα  is defined as the angle of attack where the flow 

attaches smoothly to the leading edge and therefore produces no load at the leading 

edge of the sail. For a rigid airfoil if the angle of attack is higher than the critical 

incidence, cαα > , then the sail will have a stagnation point on it lower surface; 

likewise if cαα < the stagnation point will move to the upper surface. On a sail, these 

incidence changes would cause curvature adjustments, especially at the leading and 

trailing edges, which then readjust the incidence and stagnation point to maintain 

concave curvature. Thwaites therefore proposed and later proved that critical 

incidence angles cannot be achieved on sails of purely concave curvature, but only 

exist for sails of more complex shapes. Solving for these complex shapes requires 

constraining the fundamental sail equation to reduce it to an eigenvalue problem. The 

solutions of the eigenvalue problem are given in terms of λ , with only sail shapes 
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symmetric about πθ 5.0= satisfying the critical condition. Due to their symmetry, 

these solutions require that their lift coefficients be zero and therefore all critical 

flows produce zero lift. The first three critical shapes are shown in Figure 3.10. 

 
Figure 3.10: The first three critical shapes, 08.18,78.11,507.5 642 === λλλ , [27]. 

 
 

3.2.1.4   Sail Equation Solutions: General Case 

Thwaites presents an eigenvalue method to solve the fundamental sail 

equation numerically. This method can be reviewed in his publications and only the 

important results are presented here. The critical cases described above represent the 

limits of each shape of the sail, with the eigenvalue number describing the number of 

sail inflexion points, or locations where the camber changes sign. If a solution falls 

between two critical eigenvalues, it will have the same number of inflexion points as 

the critical solution below it. Examples of sail shape solutions for 83 << λ  are given 

in Figure 3.11 
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Figure 3.11: Sail shape solutions for 83 << λ , [27]. 

 
The number of mode shapes a sail can take on depends on the values of α and 

cl , which determine the tension parameter λ . Solutions for specified lcα  are 

shown in Figure 3.12, which indicates there is only one solution for 99.0>lcα , 

but there are three possible solutions for 99.04.0 << lcα  and so on. The sign of 

the lift coefficient for each solution is indicated by the sign at the apex of each curve. 

 
Figure 3.12: Solution curve for varying lcα , [27]. 
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3.2.1.5   Sail Equation Solutions: Concave Sails 

Recall that purely concave sails are only present when 316.20 << λ , and 

most sails follow this behavior. This concave sail result is applied to the luff region of 

the ornithopter membrane wing. The relationship between lcαλ  and λ  is nearly 

linear for concave sails as identified in Figure 3.13; this leads to the evaluation of λ  

based on known values for known values of α and cl . 

 
Figure 3.13: Relationship between lcαλ  and λ , [27]. 

 
The shapes of a concave sail vary little as shown in Figure 3.14, with the point of 

maximum camber shifting rearward for increasing λ  and forward for decreasing λ . 

 
Figure 3.14:  Concave sail shapes showing shift of maximum camber, [27]. 
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Changes in shape are so small for purely concave sails that they can be approximated 

as an average shape. The resulting variations in the sail aerodynamics are small and 

behave linearly with the slack ratio cl  and angle of attack α . Thwaites concludes 

that the lift coefficient for a concave sail can be represented by the flat plate lift 

coefficient equation with the addition of a term dependent on the square root of the 

slack ratio. The result is an empirical solution for the sal lift coefficient:  

 clcl 636.02 += πα  (3.36)

 
This lift coefficient is utilized in the aerodynamic model in Ch. 5 to accurately 

capture the behavior of the luff region of the flapping membrane wing. 

 

3.2.2 Modern Membrane Aerodynamics 

Thwaites introduction of two-dimensional sail theory provided a basis for 

future research which would include a variety of theoretical, experimental and 

numerical approaches to membrane aerodynamics. Some researchers simplified the 

membrane problem while others tackled its complexities by moving to three 

dimensions and including viscous flows and nonlinearities in the problem. The 

elements of these studies relevant to the flapping wing problem are presented now. 

3.2.2.1   Simplified Theoretical Approaches 

Newman provides the essential overview of progress in membrane 

aerodynamics through 1986, when numerical solutions were becoming attainable. 

This review reexamines two dimensional sails and compares experimental results for 

the lift and thrust coefficient to theory. Newman also explains the loss of lift at the 

trailing edge and the presence of leading edge suction due to thick boundary layers 
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and separation bubbles [28]. Leading edge suction forces occur because of the vortex 

flows at the leading edge and can provide thrust on the order of 1/10th the amount of 

lift if utilized effectively. Newman also examines oscillating sails, double membrane 

airfoils, bluff membranes, and introduces three-dimensional membrane wings and the 

complications they present. 

A very simple and relatively accurate two-dimensional sail model was 

developed by Jackson in 1983 [67]. Rather than determining the sail length via a 

complex numerical solution, Jackson assumed the concave sail shape could be closely 

represented by a cubic shape. If the sail’s leading and trailing edges were fixed at 

( )b,0  and ( )b−,0  respectively then the cubic sail shape is given by Eq. (3.37) where x 

and y are the chord and camber height coordinates, respectively.  
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 The two cubic parameters A and B can be formulated from the geometry of 

the membrane as 21 θθ +=A  and 12 θθ −=B , where 1θ and 2θ are the slope angles of 

the leading and trailing edges respectively. The lift and leading edge moment 

coefficients can be determined by the angle of attack and the cubic parameters A and 

B as shown in Eq. (3.38) and Eq. (3.39). The center of pressure location cx  is also set 

by the membrane shape in Eq. (3.40). 
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The results of Jackson’s analysis compare well with historical membrane 

theory results and are very simple to solve for concave sails. These simple two-

dimensional models provide useful estimations of the local behavior of a sail and can 

be improved with more complex models as increased accuracy becomes necessary. 

3.2.2.2   Sail and Membrane Experiments 

Experiments on both two and three dimensional sails provide an essential 

point of comparison for theoretical and numerical results as well as reasoning for 

discrepancies between them. Greenhalgh et al. examined the effectiveness of two 

dimensional sail theory to predict the behavior of inextensible flexible airfoils in a 

wind tunnel [68]. Greenhalgh’s experiments measured lift and drag of flexible airfoils 

with up to 5.6% slack operating at positive and negative AOA. Results proved that 

the operating range of a membrane airfoil is limited by the slack percentage which 

determines the stall due to separation at high AOA and when the airfoil reverses 

camber at negative AOA. The lift curve experiences hysteresis from the onset of stall 

stall through the negative AOA values as shown in Figure 3.15 where the sign of the 

lift coefficient indicates positive or negative camber. Membrane camber will be 

posive for positive angles of attack and negative at negative angles of attack. 
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Figure 3.15: Example of lift hysteresis of a flexible airfoil with 1.4% slack, [68]. 

Positive lift was achievable for all slack values at negative angles of attack 

provided the camber reversal has not occurred. As slack values increased the 

maximum lift increased but the operating range decreased due to earlier onset of stall; 

the lift slope was also reduced. As a whole, flexible airfoils display an advantage over 

fixed airfoils because their camber adjusts to alleviate adverse pressure gradients and 

extend the operating range to higher angles of attack before stall is reached [48]. 

Greenhalgh found the same relation between the slack ratio and the lift coefficients 

for the airfoils as Thwaites, with a slight variation of the empirical coefficient B 

depending on the test case. The empirical lift coefficient is given by Eq. (3.41), where 

B is 6.36 for Thwaites and 7.0 for Greenhalgh. 

 clBcl 1.02 += πα  (3.41)

 
  The aerodynamic and structural dynamic behavior of elastic membrane wings 

is discussed by Song et al. [50]. This research examined the influence of the Weber 

number, a ratio of the aerodynamic load to the membrane elasticity, as well as aspect 

ratio and membrane thickness or compliancy on the aerodynamic performance. Song 



 

 91 
 

et al. found that compliant wings had a higher lift slope and maximum lift coefficient, 

but also suffered from increased drag. Stall was delayed by up to ten additional 

degrees over a rigid wing and the onset of stall was milder with a more gradual 

reduction of lift. The unsteady membrane motions were also measured, with vibration 

frequencies that correlate to the natural frequency and modal shapes of the membrane 

at a specific tension, as could be expected.  

The influence of structural behavior on performance is important to consider 

near stall and camber reversal. Rojratsirikul et al. conducted experiments on the 

unsteady aerodynamics of two-dimensional membrane airfoils using high speed 

cameras, particle image velocimetry (PIV) and flow visualization [49]. The effect of 

angle of attack and velocity on membrane vibrations and mode shapes was examined. 

Findings indicated the membrane shape was only slightly sensitive to angle of attack 

and that the vibrations depended on the unsteadiness of the separated shear layer, with 

coupling between the membrane oscillations and the vortex shedding in the wake at 

post-stall incidences. Again, membrane airfoils were shown to delay stall at high α . 

3.2.3 Nonlinear and Computational Membrane Models 

Analysis of membrane behavior advanced dramatically with numerical 

methods that solve the nonlinear structural and aerodynamic equations in parallel. 

Early numerical approaches, such as that of de Matteis and DeSocio, divided the two-

dimensional sail into panels based on an initial guess of the sail shape [39]. The 

panels are then evaluated aerodynamically under the static equilibrium tension 

constraints and the panel positions are adjusted based on results; the process iterates 

until a solution is found. Matteis and DeSocio’s process can be used for both attached 
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and partially separated flow with results that compare well to experiment and improve 

linearized analytical solutions.  

Significant strides have also been made in solving the viscous flow, finite 

membrane wing problem. A series of articles by Smith and Shyy provide a detailed 

approach to the problem by combining an incremental, continuum based, finite 

element formulation of the membrane structural problem with a control volume 

formulation of the Navier-Stokes equations [35-37]. This approach simultaneously 

solves for the membrane shape, stress and the viscous flow field variables. Several 

cases are examined using this solver, including elastic wings with no pretension, the 

constant tension case, and the inextensible wing case. The response of the constant 

tension test case to harmonically varying free streams is examined using an arbitrary 

Lagrangian-Eulerian method for the Navier-Stokes solver with a Runge-Kutta time 

step. Results show periodic separation and reattachment which indicate the 

importance of the viscosity in the calculations. Also, the membrane shape 

continuously adjusts in aeroelastic response to the free stream variations. However, 

the membrane oscillations are not necessarily determined by the flow frequency. 

Using these results and computational techniques, Lian et al. and Levin et al. 

produced optimization schemes for low Reynolds number membrane airfoils and 

applied them experimentally to micro air vehicles [69, 70].  Similar techniques could 

be used to optimize ornithopter wing design to maximize desired performance 

specifications.  
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3.3 Blade Element Theory  

Blade element theory is a tool developed to calculate the aerodynamic forces 

of a moving wing or blade such as a helicopter rotor, but it can be easily applied to a 

flapping wing as well.  In helicopter analysis, blade element theory is the application 

of lifting-line theory to the rotating wing. For more general applications, blade 

element theory is the aerodynamic analysis of a wing segmented into sections that are 

idealized as two-dimensional airfoils or membranes, as shown in Figure 3.16. Each 

segment has an individual airfoil shape and a specific inflow velocity and angle of 

attack that depend on the segments’ local motion and the induced flows generated by 

the entire wing at that location. The aerodynamics of each blade section are analyzed 

individually, and then integrating over the sections to accumulate the total forces and 

moments experienced by the moving wing. Blade element theory is a simple tool that 

can provide adequate results without the complexity of computational methods. 

 
Figure 3.16: Blade element diagram of a flapping wing with eight sections per semi-span. 
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3.4 Unsteady Aerodynamics 

One challenge in modeling flapping wing aerodynamics is accounting for the 

effects of oscillatory wing motion which causes unsteady flow behavior. The degree 

of unsteadiness is determined by the reduced frequency shown in Eq. (3.42), which is 

a ratio of the oscillatory velocity to the flight velocity 

 
U
ck

2
ω

=  (3.42)

 
Reduced frequency can be used to measure the influence of any oscillatory 

motion experienced by a wing, but it focuses on the flapping frequency for an 

ornithopter. The value of the reduced frequency determines whether the flow is 

considered steady, quasi-steady or unsteady, these ranges are given in Table 3.2. 

When the reduced frequency reaches 0.2 or higher the flow becomes highly unsteady 

and acceleration effects become large. An accurate model must account for the 

unsteady effects which introduce changes in the amplitude and phase of the 

aerodynamic loads. 

Table 3.2: Flow unsteadiness level based on reduced frequency. 
Degree of Unsteadiness Reduced Frequency Value 

Steady 0=k  
Quasi-Steady 05.00 << k  

Unsteady 2.005.0 <≤ k  
Highly Unsteady 2.0≥k  

 

This section will provide equations for the quasi-steady flow and explain the 

types of unsteady flow phenomenon associated with large flapping wing vehicles 

such as lift deficiency, apparent mass, induced flows and dynamic stall. Methods are 

presented to account for these unsteady effects in the aerodynamic model. 
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3.4.1 Quasi-Steady Thin Airfoil Theory 

Unsteady flow can be characterized by the existence of a normal perturbation 

velocity across the chord. This normal velocity can be accounted for in the solution of 

the vortex sheet strength in classical thin-airfoil theory which requires flow tangency 

at the chordline. There are three types of airfoil positions or motion that produce 

perturbations normal to the chord, they include an angle of attack, α , a plunge 

velocity, h& , and a pitch rate α&  about location a on the airfoil. The plunging 

(flapping) and pitching motions are captured by Leishman in Figure 3.17A, with the 

velocity acting normal to the airfoil chord due to the motion given by w(x) Figure 

3.17B. Finally, the equivalent angle of attack at the quarter chord due to the wing 

motion eqα , is shown in Figure 3.17C, [71]. 

 

 

 
Figure 3.17: (A) – The plunging and pitching motion of an airfoil, (B) – The resulting vertical 
velocity, w(x), acting on the airfoil due to its motion, (C) – The equivalent angle of attack. 
 
  

 

(A) (B) (C) 
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The Fourier coefficients from thin airfoil theory can be rewritten using the 

ratio of normal velocity to the free stream velocity, doing so gives Eqs. (3.43): 
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Utilizing the normal velocity distributions of the three quasi-steady motions Fourier 

coefficients 0A through 2A can be calculated as shown in Table 3.3. 

Table 3.3: Fourier coefficients for AOA, plunging and pitching airfoils. 

Velocity Term 0A  1A  2A  
α  α  0 0 
h&  Vh&  0 0 
α&  Vabα&−  Vbα&−  0 

 

The values of the Fourier coefficients are substituted into the lift and pitching 

moment from Eq. (3.5) and Eq. (3.6) where the effects of angle of attack, plunging 

and pitching are summed to produce the total quasi-steady lift and pitching moment 

coefficients of Eq. (3.44) and Eq. (3.45). Note that the pitching moment at the quarter 

chord is independent of the pitching axis location a. Also, if the pitching axis is 

assume to act at the quarter chord so that 21−=a , the term inside the brackets for 

lift coefficient is the effective angle of attack at the ¾-chord or rear neutral point. 
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3.4.2 Lift Deficiency Function 

The quasi-steady solution provides a necessary start in accounting for 

unsteadiness, but additional adjustments are needed which use the reduced frequency 

to account for the degree of unsteadiness in the problem. The lift deficiency function 

provides a method to account for wake-induced lift loss caused by transverse or 

rotational changes in an airfoil position. This lift loss can be visualized as the energy 

used when changing the circulation around an airfoil as its position changes; the 

variation in the vortex wake circulation causes variation in downwash at the airfoil.  

Theodorsen developed the lift deficiency function to quantize these wake 

loses due to oscillations such as pitching and plunging of airfoil and airfoil-aileron 

combinations [20]. The analysis assumes a simple harmonic motion of a thin airfoil in 

a uniform flow so the wake is harmonic with one time period. Potential flow theory 

and the Kutta condition are then applied to arrive at a numerical solution for the 

adjustment to the quasi-steady circulatory lift described in the previous section. The 

resulting lift deficiency function ( )kC  is a complex equation resulting from the 

evaluation of multiple Bessel functions at the reduced frequency. The real and 

imaginary parts of the Bessel function evaluations are represented by the F and G 

functions respectively, to give ( )kC  in Eq. (3.46).  

 ( ) ( ) ( )kGikFkC +=  (3.46)

 
The relation between ( )kC  and its real and imaginary parts is plotted in 

Figure 3.18. Note that the phase shift increases as 2.0→k and then falls again as k 

increases. Lift magnitudes are reduced by up to 10% for quasi-steady flows and by 
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10-30% for unsteady flows. Highly unsteady flows, especially for 1>k , reach the 

maximum 50% loss of circulatory lift.  

 
Figure 3.18: The lift deficiency function C(k) versus F and G, [71]. 

Values for ( )kC  are generally evaluated using tables or graphs found in most 

aerodynamics texts. The lift deficiency function is applied by multiplying it with the 

quasi-steady circulation lift; however circulation lift is not the only lift force acting on 

an oscillating wing. For flows that are not uniform, as is the case with flapping wings 

and helicopters, it has been found that the lift deficiency correction remains 

appropriate for flow oscillation amplitudes up to 70% of the mean velocity and 

additional unsteady free-stream effects can be ignored [71]. 

3.4.3 Apparent Mass Effect 

Apparent mass effect is the force generated when a flapping wing pushes the 

surrounding air perpendicular to the wing surface. This acceleration of air is the 

primary non-circulatory force experienced by a flapping wing vehicle and can be 



 

 99 
 

utilized to generate lift even when there is no forward motion of flying vehicle. The 

amount of air accelerated by the wing is estimated as the mass of air within a circular 

cylinder whose diameter is the chord and whose length is the local section or span 

length of the wing. This mass of air is multiplied by the acceleration of the wing 

section normal to the chord to calculate the apparent mass force shown as shown in 

Eq. (3.47). The apparent mass force acts normal to the wing section and is 180° out of 

phase with the wing displacement. 

 
onacceleraticNapparent ⋅= ρπ

4

2
'

(3.47)

 
 Theodorsen took into account the apparent mass force when he was solving 

the two-dimensional unsteady aerodynamics problem with lift deficiency. The final 

Theodorsen equations for the lift and moment coefficients including both circulatory 

and non-circulatory terms are summarized in Eq. (3.48) and Eq. (3.49).  
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As the reduced frequency increases, the accelerations of the airfoil become 

more important and the non-circulatory or apparent mass forces will become more 

relevant in the total loading on the wing. The strength of the apparent mass effect will 

also shift the phase angle of the total loading because it acts ninety degrees out of 

phase with the circulation force. The apparent mass effect is very important for 
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flapping wing vehicles especially in hover or at very low speeds when circulation 

forces are only induced by the wing motion instead of fast forward flight. 

3.4.4 Induced Flows 

The total inflow or relative velocity at each segment of a flapping or rotating 

wing is a combination of the free stream flight speed, the rotational velocity of the 

wing and induced flow components from the vortex wakes that form as the wing 

moves through the air. Induced velocities have components in the longitudinal, lateral 

and vertical plane of the wing as shown in Figure 3.19; each of these flow 

components is discussed in the following subsections. 

 
Figure 3.19: Depiction of induced flow directions. 

 
 

3.4.4.1   Uniform Induced Flow 

The longitudinal and vertical induced velocities u and v are the primary 

induced flows. As discussed in Section 2.6.2.1 the simplest technique for their 
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analysis is to assume a uniform variation of the flow across the span so that 

momentum theory can be applied. The uniform induced flow results are calculated 

using known values for required lift (weight) and thrust (drag) to maintain flight. 

These inflow relations are restated below in Eq. (2.9) and Eq. (2.10) for a vehicle 

with flight speed U at a flight path angle γ . 
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3.4.4.2   Lateral or Spanwise Induced Velocity 

Spanwise induced flows are generally neglected and have only recently come 

into consideration in the flapping wing aerodynamics field. Two articles have been 

published by Hong and Altman who experimentally explored the lift contributions of 

spanwise flow in flapping wings [72, 73]. This research isolated the vortices due to 

spanwise flow over the wing and proved that there was a measurable lift produced. 

There is still speculation as to how these vortices produce lift, but it was postulated 

that they may act like a delta wing vortex or tip vortices to increase lift. Spanwise 

flow research is still in its infancy, and the ability to model its effects are yet to be 

developed. Spanwise flow will not be included in the aerodynamic flapping wing 

model of this thesis, but its effects are interesting to consider. 
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3.4.5 Dynamic Stall 

Dynamic stall occurs in oscillating wings and is seen as a hysteresis in the lift, 

drag and pitching moment curves of wings or rotors undergoing pitching and 

plunging motions or vibrations. Helicopter rotors, wind turbines, and any flapping or 

pitching wing can experience dynamic stall, which results from the repetitive motion 

between attached, separated and stalled flow over the airfoil. The dynamic stall 

process is explained pictorially by Leishman in Figure 3.20, [71]. Dynamic stall 

causes a delay in separation to higher angles of attack, which momentarily increases 

the airfoil lift. When stall is breached, a vortex detaches from the leading edge and 

momentarily increases lift as it sits above the leading edge. As the vortex moves 

toward the trailing edge, it induces a large pitch-down moment and an increase in 

loading and stress on a wing or rotor. Once the vortex is shed, a more typical lifting 

stall occurs, followed by reattachment as the angle of attack reduces to an operational 

level. The instability of loading during dynamic stall creates a dangerous boundary 

for the flight envelope that should not be crossed. Computational fluid dynamics or 

wind tunnel experiments are used to predict the onset and behavior of an airfoil in 

dynamic stall so that it can be avoided in flight. Generally, membrane wings and 

feathers reduce the presence of dynamic stall on an oscillating wing. 
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Figure 3.20: The dynamic stall process and its effect on forces and moments, [71]. 
 

3.5 Conclusions 

This chapter provided a review of fixed wing aerodynamics and analysis tools 

and an introduction to membrane aerodynamics and unsteady aerodynamic 

phenomena as they apply to flapping flight. Several simple analytical methods were 

re-derived to solve complex problems, including the linear membrane lift equation, 

blade element analysis and momentum theory to quantify finite wing problem. These 

methods are used to formulate an aerodynamic model of flapping flight in Ch. 5. 
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Chapter 4. Wing Tracking Experiments 

The primary task of this thesis is to produce an aerodynamic model of 

flapping flight for application in autonomous control and stability. This task is 

completed by analyzing the flapping wing kinematics and flexible wing membrane 

shapes of two remote control ornithopters. The kinematic results are then applied to a 

blade element model which utilizes the linear membrane aerodynamic equation and 

unsteady aerodynamics results from Ch. 3. This chapter will present the motion 

tracking experiments required to characterize the wing kinematics and the flexible 

membrane shapes as well as force measurement results.  

4.1 Experiment Objective 

There were two primary objectives to be completed through the wing tracking 

experiments, first to isolate the wing shape and kinematics with time in three 

dimensional space, and secondly to measure the vertical and horizontal forces 

produced by the ornithopter during the tracking period for a variety of flapping 

frequencies. The following sections present the experimental setup and equipment, 

procedure and post-processing. A detailed analysis of wing kinematics will follow, 

including a discussion of tip paths and leading edge bending as well as membrane 

behavior. The post-processed wing tracking data is used as input to a MATLAB® 

aerodynamic modeling program to predict the vertical and horizontal forces produced 

as a function of forward flight speed and stroke angle in Ch. 5. 
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4.2 Experiment Setup and Procedure 

The following sections examine the experimental setup including equipment 

and placement of the motion tracking markers. The test matrix and operating 

procedures are established for recording the kinematic and aerodynamic load data.  

4.2.1 Vicon Motion Tracking System 

Key to the experimental process was the use of a Vicon MX motion tracking 

system, available in the Autonomous Vehicle Laboratory at the University of 

Maryland. The Vicon MX motion tracking system was an ideal solution for 

characterizing the dynamic wing shapes during flight because it is a passive sensor 

with minimal interference on the wing motion and can record data with resolution of 

1-2 millimeters at rates of 350 Hertz. Six cameras are included in this Vicon setup 

with the capability of tracking a 15 by 15 meter capture volume. Vicon targets are 

tracked using small retro-reflective markers placed on the moving object, in this case 

the ornithopter wing. The reflective markers are highlighted when the cameras 

illuminate the wing at a specific wavelength and image sensitivity level to remove the 

background image so only the markers are visible. Each camera looks onto the wing 

from a different angle to assure each marker’s motion is captured by enough cameras 

to locate the marker’s position in 3D space over time. Data from the cameras is sent 

to the Vicon Tracker software which reproduces the motion with a 10 ms delay. This 

data can be exported directly or used as post-processor input to develop a six degree 

of freedom motion model that can interpolate a markers location if it goes missing for 

a frame and also reformat the data for further analysis. Specific experimental details 

follow. 
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4.2.2 Wing Marker Placement 

To prepare for this experiment the left wing of each ornithopter was outfitted 

with approximately one hundred 3 mm hemispherical reflective markers in a grid 

pattern over the wings, as shown in Figure 4.1 and Figure 4.2. Additionally, four 

markers were placed on the tail and two along the spine to locate the origin of the 

body coordinate system and track the tail rotation and vibrations. Rather than place 

the markers on a purely rectangular grid, the placement was determined largely by the 

location of the carbon fiber fingers that support the trailing edge. To avoid 

influencing the shape of the flap region, markers were placed directly next to these 

fingers. The locations of the leading edge marker columns were determined by the 

intersection of the fingers with the diagonal spar to minimize the quantity of markers 

required. This grid forms a series of twelve blade elements, four aft of the diagonal 

spar along the trailing edge and eight in the triangular lifting region; the blade pattern 

is indicated on Figure 4.2.  

 
Figure 4.1: Wing marker placement on the blue wing (42” span), to be tracked visually. 

leading 
edge 
column 
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Figure 4.2: Locations of reflective marker on white wing with blade elements marked. 
 

The markers weighed 0.01 gram each to give a total added weight of one gram 

to the wing. Previous research regarding ornithopter wing design determined that an 

added mass of five grams or more is required to negatively affect the wing dynamics; 

therefore the added mass of the reflective markers was considered negligible.  

4.2.3 Test Setup 

The experiment was setup in the middle of a large laboratory space so that the 

cameras could be best placed to register the reflective markers. When each camera 

was set in place the system was calibrated and the measurement coordinate system 

was established using a T-bar with reflective markers at the tips as shown in Figure 

4.3. The final ornithopter coordinate system origin is located at the intersection of the 

leading edge and the symmetry axis of the body, the markers are used to locate this 

point and adjust the marker locations to the appropriate reference frame. 

X axis 
markers 
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Figure 4.3: Setting the tracking coordinate system. 
 

The ornithopters were rigidly secured by a custom test stand consisting of an 

aluminum base plate attached to a reinforced PVC pipe by means of large aluminum 

slugs shown in Figure 4.4. A six degree of freedom strain gauge transducer from 

Advanced Mechanical Technology Inc was mounted between the test stand and the 

vice that held the ornithopter to measure the vertical and horizontal forces produced 

during the flapping tests. This mounting setup is shown in Figure 4.5.  

T-Bar for 
coordinate 
system 
orientation
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Figure 4.4: Vicon system testing setup. 

 

 
Figure 4.5: Test mount setup with 6-DOF force transducer 
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This constrained testing method limits the ornithopter to a hovering condition 

for experiment simplicity and allows the force measurements to be taken. Free flight 

or tethered experiments would provide more accurate wing motions, but would not 

allow force measurements to be made. A wind tunnel test is planned to measure 

forces and moments on the ornithopter in a low speed flow, with the option of 

tracking the wing motions. It is believed that the wing motions will be similar 

between hover and low speed forward flight, therefore the kinematics will be used for 

both hover and forward flight conditions in the aerodynamic model. However, 

additional motion tracking experiments should be completed with a freestream flow 

to confirm the similarity between hover and forward flight wing kinematics. 

In addition to the force measurements, the wing stroke angle, which is 

required to synchronize the measured forces to the motion tracking data, was 

measured by magnetic potentiometer. The potentiometer, shown in Figure 4.6, was 

mounted to the ornithopter body just behind the wing root where it could track the 

rotation angle of a small permanent magnet placed on the rotating wing root. The 

wing angle signal was noisy due to electro-magnetic interference from the electric 

motor, but the underlying motion was still detectable.  

 
Figure 4.6: Magnetic potentiometer placed behind wing root to track wing angle. 

potentiometer
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The force measurement data channels in the experiment were conditioned by 

strain gauge amplifiers before being connected to the data acquisition module and 

recorded on a separate computer using LabVIEW and a National Instruments 6036E 

data acquisition card as shown in Figure 4.7.  

 
Figure 4.7: DAQ module and force observation station 

Since the experiments were relatively short, data channels were sampled at 1 

kHz. Each signal had a channel as specified in Table 4.1. Channel three was a throttle 

measurement; however it could not be obtained successfully from sampling the pulse-

width modulated signal from the RF transmitter. Instead, throttle was estimated as a 

percentage of the maximum value using the throttle position on the remote 

transmitter. These voltage supplied by the throttle settings are not repeatable due to 

variable battery voltage levels, instead the flapping frequencies produced are 

measured and matched for different test cases. The resulting data, including the time 

history, force measurements, and stroke angle were then recorded to text files. 

Table 4.1: Force and stroke angle measurement channels. 
MEASUREMENT CHANNEL
Time 1 
Horizontal Force 2 
Throttle 3 – N/A 
Vertical Force 4 
Stroke Angle 5 
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4.2.4 Test Matrix and Procedure 

A test matrix was created before testing and adjusted based on time 

availability and lessons learned as the testing progressed. The final test matrix is 

shown in Table 4.2; it is based upon testing at a series of throttle levels, and therefore 

flapping rates. Both ornithopters reach throttle saturation and peak flapping rate at 

approximately 70% throttle and no tests went higher than this. Flapping rates varied 

from 3 to 7 Hertz. Typical flapping rates during flight are 4.5 to 5 Hz. 

Table 4.2: Completed test matrix for each ornithopter 
Case 1 2 3 4 5 6 7 8 9 
Blue 30% 

Level  
40% 
Level  

50% 
Level 

60% 
Level 

60%
Up  

60% 
Down 

60% 
Right

60% 
Left 

Step 25-70%
Level 

White 15% 
Level  

30% 
Level  

45% 
Level 

60% 
Level 

55%
Up 

55% 
Down 

55% 
Right 

55% 
Left  

Step 20-65%
Level 

 

First, a series of tests were completed with the tail trimmed for zero elevator 

and roll at incremental flapping rates, followed by moving the tail to its full left, right, 

up and down positions at the optimal throttle level of 55-60%. This was done to 

detect if the tail had any affect on the wing shape and loading and provide 

information on tail vibrations frequencies for tail redesign. Additionally, a throttle 

sweep with a trimmed tail was completed to identify directly how the aerodynamic 

forces changed with variable flapping rate. All the tests for the blue ornithopter were 

completed with zero fuselage angle of attack while the white ornithopter was tested at 

zero and ten degrees because time allowed extra testing. Future testing should include 

angle of attack variation and low speed oncoming flow, if possible, to observe 

changes in wing shape and loading for more realistic flight conditions. 
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4.3 Post-processing  

Post-processing of the reflective marker data was completed using Vicon 

software to label the marker locations and create a model of their kinematic motion so 

any brief loss of a marker during tracking could be interpolated by the software. With 

full matrices of marker data points over the tracking time, the data was formatted into 

a text file for use in the MATLAB aerodynamic modeling program. In addition, the 

aerodynamic force and stroke angle measurements which were recorded separately 

from the Vicon data must be synchronized to the marker data in order to compare 

results from the aerodynamic modeling. These post-processing steps are discussed in 

the following sections. 

4.3.1 Labeling and Formatting 

Post-processing of the Vicon data first required the identification and labeling 

of every marker in a single frame of the wing motion. Labeling was completed using 

a combination letter-number scheme similar to quantifying matrix rows and columns 

as specified below. The blue ornithopter’s reflective markers are labeled in Figure 4.8 

using this scheme. 

• Leading Edge (LE#): LE1 to LEn from root to tip for both ornithopters 

• Luff Region (M##): M11…Mnm in a matrix-like format for luff region 

• Middle Leading Edge (ME#): ME1 at root to MEn at end of luff region 

• Middle Trailing Edge (MT#): MT1 at root to MTn at end of luff region 

• Fingers (F##): F11 closest to root, F2n to Fnn moving toward wing tip 

• Trailing Edge (TE#): TE1 to TEn, with final value called TIP at wing tip 

• X Axis set by X1 and X2 

• Tail: TUL (upper left), TLL (lower left), TUR (upper right), TLR (etc) 
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Figure 4.8: Labeling of marker points on blue wing. 
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Once labeled in the Vicon software, as shown in Figure 4.9, the Vicon post-

processing module creates a model for the behavior of the wing so it can successfully 

follow a specific marker motion. If a marker is not visible for a few frames, the 

system interpolates where it would be based on previous and future motions. This 

process was completed for each test case to generate a file containing the (x,y,z) 

coordinates of each labeled marker with the time also specified in matrix format.  

 
Figure 4.9: Post-processing of tracking data 

 
Two MATLAB® programs were created to read the Vicon data sets for each 

ornithopter and separate individual marker information into variables using the 

marker’s Vicon label. The programs first locate the origin of the coordinate system at 

the intersection body symmetry axis (X1, X2) and the wing leading edge. Marker 

points are then calibrated to this origin to ensure the correct coordinate system is used 

by the aerodynamic code. The entire set of marker variables and the time variable are 

then saved in ‘.mat’ files for future use.  
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4.3.2 Data Synchronization 

Another post processing task was to synchronize the marker tracking data to 

the force measurement data set because the two data sets started recording at slightly 

different times. This correlation was completed by filtering and smoothing the noisy 

stroke angle measurement which is included in the load measurement files and 

comparing it to the stroke angle calculated from the position of the first three 

reflective markers on the leading edge (LE1, LE2, LE3). The stroke angles are 

correlated by determining the time offset of the measured stroke angle to the 

calculated stroke angle. This time offset is requested as input by the aerodynamic 

modeling program which shifts the measured data by the appropriate amount of time. 

While this technique can be completed without synchronization programs, there are 

cross-correlation codes (xcorr.m) available which are used to determine lag between 

data, if a different approach synchronization method is preferred.  

4.4 Kinematic Results 

The reflective marker motion tracking data is an outstanding tool for both 

quantitative and qualitative analysis of the wing kinematics. The following sections 

will examine the kinematic behavior, including the wing tip path, membrane shape 

and leading edge bending as the stroke angle and flapping frequency vary. Chapter 5 

will bring the kinematic analysis to the aerodynamic realm by forming blade elements 

characterized by the marker generated membrane airfoil sections. High fidelity 

measurements of each section’s membrane slack, position, velocity and acceleration 

will then be used to calculate the aerodynamic forces. 
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4.4.1 Wing Tip Paths  

As explained in Ch. 2, variations in the wing tip path direction and stroke 

plane angle can provide insight into how a flapping wing produces both lift and 

thrust. Unlike birds, the remote control ornithopters are limited to vertical flapping by 

their single rotational degree of freedom; any variation from this vertical motion is 

due to passive bending of the wing. Figure 4.10 and Figure 4.11 show the side view 

and top view of the wing tip path for the blue and white ornithopters respectively. The 

side view only shows the 5.0 Hz and for the blue ornithopter and the 4.65 Hz result 

for the white ornithopter because the vertical tip path taken during all frequencies was 

too similar to differentiate. The top view shows the lead-lag motion of the tip for 

three flapping frequencies because there path varies with frequency. Arrows also 

indicate the direction of motion in the both views. 
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Figure 4.10: Normalized tip paths x vs z and x vs y for the blue ornithopter, R = 0.533m. 
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Figure 4.11: Normalized tip paths x vs z and x vs y for the white ornithopter, R = 0.599m. 

Both the side and the top view of the tip path show up to 5cm (10% span) of 

rearward variation in the x axis due to passive leading edge bending. However, the 

stroke angle is still essentially vertical as expected so the primary generation of thrust 

must come from the pitch variation across the wing span and the larger beating 

motion of the trailing edge which pushes the bird forward like a swimming fish. The 

top view also shows the normalized span value, y/R, reducing as the wing tip reaches 

the peak of downstroke and upstroke. While the motion of the wing tips out of the 

vertical plane is small, the variation in tip paths between the two ornithopters is quite 

significant. The blue ornithopter has a figure eight vertical tip path, while the white 

ornithopter’s vertical tip path is closer to elliptical. This figure-eight versus elliptical 

pattern is also seen in the lead-lag motion where the blue ornithopter’s wing tip 

crosses its own path at the middle of the stroke, while the white ornithopter has no tip 

path convergence at a 4.65 Hz. The reason for these tip path differences is unknown. 
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4.4.2 Leading Edge Spar Bending 

 Another characteristic of the flexible flapping wing is the bending that occurs 

in the leading edge spar. Figure 4.12 and Figure 4.13 demonstrate the leading edge 

bending in the y-z plane (front view) at the typical flapping frequencies of 5.0 Hz and 

4.67 Hz for the blue and white ornithopter respectively.  
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Figure 4.12: Leading edge bending of the blue ornithopter at 5.0 Hz flapping rate. 
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Figure 4.13: Leading edge bending of the white ornithopter at 4.67 Hz flapping rate. 
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The bending is largest at the beginning of upstroke and downstroke as the wing 

reaches peak acceleration through the stroke transition. This is a response to high 

inertial loading which is especially strong near the wing tip where it increases the 

local stroke angle. A lag then forms between the wing root and wing tip stroke angle, 

which is why the aerodynamic model must take into account the local stroke angle 

rather than the root stroke angle. Chapter 5 will show how the stroke angle lag affects 

the aerodynamic forces due to differences in the sign of the local velocity at the wing 

root and tip near the upstroke-downstroke transitions.  

4.4.3 Membrane Shape 

 The final element of the kinematics to consider is the shape of the wing 

membrane in the luff region during the flapping cycle. (The trailing edge flap region 

is assumed to be a flat plate so the sail theory result does not apply). The triangular 

luff region between the two spars has a large slack ratio which varies as the spars 

move. The larger slack ratio combined with the pitching motion may induce 

inflections in the membrane shape and cause higher order behavior. The membrane 

shape for each blade element in the luff region must be verified to have a 

predominately first order, concave or convex shape, in order to apply the empirical 

relation for the membrane lift coefficient, clcl 636.02 += πα . To verify that the 

membrane behavior is first order, blade element four, which is located in the center of 

the luff region at about 1/3 of the semi-span as shown in Figure 4.14, was examined 

by fitting a cubic function to the reflective marker points at multiple stroke angles for 

downstroke and upstroke.  
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Figure 4.14: Locationof blade element four for both ornithopterwings. 

 

The resulting membrane shape in the x-z plane or side view is shown as a 

sequence of stroke angles in Figure 4.15 and Figure 4.16 for the downstroke and 

upstroke of the blue ornithopter at 5.37 Hz flapping frequency. Likewise, Figure 4.17 

and Figure 4.18 show blade element four’s membrane shape for the white ornithopter 

during downstroke and upstroke at the flight frequency of 4.67 Hz. These figures 

represent half of the wing stroke, with the motion indicated by the arrows to the right, 

and the variation in line color from blue at the beginning of motion to red at the end 

of the motion. The blade length and vertical travel are normalized using the maximum 

stretched blade length L, this allows the amount of slack in the membrane to be seen 

visually. The stroke angle and color legend for for each line is specified to the right of 

the figure for easy reference. 
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Figure 4.15: Blue ornithopter: Downstroke behavior of blade element four’s membrane airfoil.  

 

0 0.2 0.4 0.6 0.8 1

-0.4

-0.2

0

0.2

0.4

0.6

x/L: Normalized Blade Length

y/
L:

 B
la

de
 H

ei
gh

t N
or

m
al

iz
ed

 to
 B

la
de

 L
en

gt
h

Blue Ornithopter Membrane Shape Analysis
Upstroke of Blade 4 at 5.37 Hz

Begin
Upstroke

Transition to
Downstroke

9. Stroke = 31.8 deg
8. Stroke = 39.7 deg
7. Stroke = 24.2 deg
6. Stroke = 16.2 deg
5. Stroke = 7.3 deg
4. Stroke = -2.2 deg
3. Stroke = -11.1 deg
2. Stroke =-18.3 deg
1. Stroke = -22.6 deg

 
Figure 4.16: Blue ornithopter: Upstroke behavior of blade element four’s membrane airfoil.  
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Figure 4.17: White ornithopter: Downstroke behavior of blade element four’s membrane airfoil. 
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Figure 4.18: White ornithopter: Upstroke behavior of blade element four’s membrane airfoil. 
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A closer looks shows that the white ornithopter has a more consistent concave 

or convex membrane shape than the blue ornithopter with smaller inflections near the 

leading and trailing edge the stroke during downstroke and upstroke transitions. This 

is because the blue ornithopter experiences a large degree of pitching motion during 

the entire stroke while the white ornithopters’s blade element chord only varies from 

horizontal when the transition region between upstroke and downstroke is 

approached. If the two dimensional membrane airfoil is at an extreme pitch value or a 

region of transition it is more likely to experience inflections in the membrane shape. 

These inflections would be close to the leading or trailing edge the blade element 

approaches or exits transition. The inflection point moves through the center of the 

membrane as transition occurs and the membrane reverses camber; this is indicated 

by the deep blue and red camber lines at the beginning and end of downstroke in 

these figures. 

As a whole, Figure 4.15 through Figure 4.18 demonstrate that the membrane 

shape is of the first order during the majority of the wing stroke, especially for the 

white ornithopter. The blue ornithopter does experience some deviation from the first 

order shape with slight inflections near the leading and trailing edge; however these 

are minor enough that the membrane lift coefficient equation should still be valid. 

While the transition region clearly violates the first order mode shape rule, it occurs 

in such a short period of time that assuming this region is first order in the lift 

approximation should be negligible. Therefore the assumption of first order 

membrane behavior is assumed to be valid and the linear sail equation for lift 

coefficient can be utilized in the aerodynamic model. 
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4.5 Force Measurement Results 

In addition to the kinematic data, vertical and horizontal force data from the 

strain gauge amplifier can be examined. Some of the most important aerodynamic 

force results came from the throttle sweeps because they clearly show continuous 

force measurement trends with variation in flapping frequency. These throttle sweeps 

are shown in Figure 4.19 and Figure 4.20 for the blue and white ornithopter 

respectively. For flapping frequencies up to 5 Hz, both ornithopters experience a 

linear increase in vertical and horizontal force with increasing flapping rate. Also 

notice that the vertical force is symmetrical about zero which means there is no net 

vertical force produced when the flapping axis is horizontal. This result is expected 

because the wing behavior is almost symmetrical; therefore the wing behaves like a 

symmetrical airfoil which requires positive angle of attack to produce a net vertical 

force. 

0 5 10 15 20

-10

0

10

Blue Ornithopter: Measured Forces for Frequency Sweep

V
er

tic
al

 F
or

ce
, N

0 5 10 15 20
3

4

5

6

7

Fr
eq

ue
nc

y,
 H

z

0 5 10 15 20

0

5

time, s

H
or

iz
on

ta
l F

or
ce

, N

0 5 10 15 20
2

4

6

8

Fr
eq

ue
nc

y,
 H

z

frequency

frequency

analysis region, 5Hz

 
Figure 4.19: Blue ornithopter forces measurements during a frequency sweep from 6Hz to 2Hz. 
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Figure 4.20: White ornithopter force measurements for a frequency sweep from 3.5 to 4.7 Hz. 

 
The blue ornithopter also demonstrates a period of horizontal force resonance 

or vibration from 5.4 to 6 Hz in comparison with results at 5 Hz and below. The 

resonance is seen as both a spike in force magnitude and as a phase shift forward by 

60˚ to the downstroke-upstroke transition. It is not known where or why this 

resonance occurs, it could be in the wing structure, in the ornithopter fuselage or even 

an experimental anomaly. No resonance is experienced by the white ornithopter. The 

phase and magnitude trends of the vertical and horizontal forces versus flapping 

frequency are presented for further analysis in Figure 4.21 and Figure 4.22 for the 

blue and white ornithopters respectively. 
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Figure 4.21: Magnitude and phase angle with respect to beginning of downstroke of measured 
vertical and horizontal force as a function of frequency for the blue ornithopter. 
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Figure 4.22: Magnitude and phase angle with respect to beginning of downstroke of measured 
vertical and horizontal force as a function of frequency for the white ornithopter. 
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The horizontal force operates at twice the flapping frequency and is always 

positive. Horizontal force should achieve a maximum value during the middle of 

downstroke and upstroke which equates to a phase difference of +/- 90˚ from the 

beginning of downstroke. Figure 4.21 shows the blue ornithopter’s horizontal force 

phase at a reasonable °−100  to -60˚ before the beginning of downstroke as frequency 

increases to 5Hz. At 5.4 Hz the horizontal force phase quickly jumps to zero which 

may be caused by the beginning of resonant behavior. The white ornithopter does not 

experience a strucutural resonance, but the maximum horizontal force still occurs 

towards the end of upstroke and downstroke with a phase lag of -65˚ to -45˚ as shown 

in Figure 4.22. It is expected that the maximum positive vertical force, which 

oscillates at the same frequency as the wing angle, should also occur near the middle 

of downstroke at a 90˚ positive phase shift from the beginning of downstroke. The 

white ornithopter achieves this 90˚ phase mark in the vertical force as it reaches 

maximum flapping frequency of 4.545 Hz, while the blue ornithopter has an average 

vertical force phase of about 60˚.  Using these phase and magnitude charts the 

optimal frequency for analysis was chosen as 5Hz for the blue ornithopter and 4.545 

Hz for the white ornithopter. These selections avoid the body resonance and are often 

achieved during flight testing. 

The optimal frequencies are examined detail for one flapping period. The 

resonance and linear behavior in the blue ornithopter’s performance is compared by 

examining the 6.17 Hz and 5 Hz force results in Figure 4.23 and Figure 4.24 

respectively. While the vertical force curves are very similar, the shift in horizontal 
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force phase to 0˚ at the upstroke and downstroke transitions is clear for the 6.17 Hz 

case.  
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Figure 4.23: Blue ornithopter measured forces at 6.17Hz. The horizontal force is out of phase 
with the middle of the downstroke due to resonant structural behavior. 
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Figure 4.24: Blue ornithopter measured forces at 5 Hz, where the structural resonance dissipates 
and the horizontal force is maximum near the middle of downstroke as expected.  
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Figure 4.25: White ornithopter measured forces at 4.545 Hz, where the vertical force is exactly at 
the middle of downstroke. The horizontal force is phased -30˚ from the start of downstroke, as 
frequency decreases both forces shift back in phase to 70˚ and -65˚ respectively. 

 
The white ornithopter’s vertical and horizontal force production at 4.545 Hz 

are shown above in Figure 4.25. Maximum vertical force is at the middle of 

downstroke for this vehicle, rather than the 30˚ lead that existed for the blue 

ornithopter. For both ornithopters the horizontal force is maximum near the end of 

downstroke and upstroke, this may be due to the apparent mass force which results 

from the increasing acceleration near stroke transition. The peak to peak lift 

magnitudes are two to three times larger than the vehicle weight, but the net lift 

remains near zero. It is believed that net lift is produced when the flapping axis has a 

positive pitch angle, which is required in actual flight testing. Also note that the 

duration of downstroke and upstroke, known as the downstroke and upstroke ratios, 

are equal at half of the frequency period. During flight inertial effects are working 
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against the upstroke of the wing and these ratios may change and adjust the net lift to 

a positive value. 

Another way to examine the force production is to plot the forces versus the 

mean stroke angle as shown in Figure 4.26 and Figure 4.27 for the blue and white 

ornithopter respectively. This approach directly correlates the forces to the stroke 

angle for phase estimates and can provide information on the asymmetries in force 

production through the wing stroke. The blue ornithopter force measurements are 

centered at 5˚ positive stroke angle instead of zero, possibly because the maximum 

stroke angle is about 5˚ larger than the minimum stroke angle. The horizontal force 

minumum magnitudes are also asymmetric during downstroke and upstroke. 
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Figure 4.26: Blue ornithopter forces vs stroke angle at 5Hz. 
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Figure 4.27: White ornithopter forces vs stroke angle at 4.545Hz. 

 
  

This discussion of the variation of the measured forces and kinematics with 

flapping frequency and stroke angle was necessary to compare the actual wing 

behavior with the expected performance. Three important findings from this analysis 

include: the presence of phase lag in the wing motion due to leading spar bending, the 

variation in the forces phase with wing angle, and the verification that the membrane 

behavior is first order except near transition. These results are used in Ch. 5 to devlop 

an accurate aerodynamic representation of the wing. 
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Chapter 5. Aerodynamic Modeling Theory 

An aerodynamic model is desired to predict the behavior of the aerodynamic 

forces and moments of the ornithopters at various flight conditions for use in stability 

and control algorithms. The analytical aerodynamic model developed in this chapter 

combines traditional fixed wing force and moment concepts with linear membrane 

aerodynamics and unsteady aerodynamics adjustments. These techniques are then 

applied to the wing using the kinematic data from the motion tracking experiments to 

form a blade element analysis of the wing. The output of the aerodynamic analysis 

predicts the vertican and horizontal force produced throughout the wing stroke at a 

specific steady flapping flight condition specified by the program user. These results 

can then be compared to measured aerodynamic loading data from the same motion 

tracking experiments for specific flapping frequencies. If the results of this analytical 

and empirical model match the measured data then assumptions can be made to 

simplify or reduce the need for complex computational fluid dynamic studies. 

5.1 Assumptions 

The following assumptions were made for this aerodynamic model. 
 

1. The wing kinematics can be defined by quasi-steady motions, including 

flapping or plunging, pitching, and forward motion. 

2. A quasi-steady circulation model can capture the aerodynamic behavior when 

adjusted to account for unsteady motion and membrane aerodynamics 

3. The effects of unsteady flow mechanisms, such as leading edge suction, wake 

capture, dynamic stall, or spanwise-flow, are small enough to be neglected. 
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4. The induced velocity magnitudes can be adequately captured using 

momentum theory with an actuator disk that is the swept area of the wing. 

5. An elliptical lift deficiency factor, e, of 0.8 

6. The membrane behavior in the luff region is first order and has a pitching axis 

located at the ¼-chord point. The length of blade elements in this region is 

time-varying, but the blade width is constant. 

7. The flap region blade elements behave as flat plates with fixed length and 

width. They have pitching roation about their leading edge. 

8. Attached flow is assumed regardless of the relative angle of attack. 

9. The stroke plane is vertical 

10. The inflow angle for blade elements ten to twelve is adjusted by the pitch 

angle of the blade elements that are in the luff region. 

11. The parasite drag of the fuselage can be neglected 

12. The luff region camber is positive during downstroke and negative during 

upstroke, fluctations during stroke transition are neglected. 

5.2 Algorithm 

A series of MATLAB® codes were generated to complete the aerodynamic 

analysis. This section formulates the algorithm established to process the kinematic 

data, apply the aerodynamic equations and produce and compare the model’s results 

with measured aerodynamic force data. A flow chart with tasks and their 

corresponding MATLAB® files has been generated on the following page including 

processing of the measured kinematics and aerodynamic forces so they can be used 

by the primary modeling program. Each process is addressed in a following section. 
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Motion Tracking Data Reduction 
(Trinity_read.m or Odyssey_read.m) 

1. Load post processing kinematic data file 
2. Extract data into matrix format 
3. Extract time step data 
4. Locate coordinate system origin and 

calibrate marker data to origin  
5. Label and save marker (x,y,z) vs time

INPUT 

AERODYNAMIC MODELING CODE 
(aeromodel.m) 

1. Initialize main code with comments on purpose and nomenclature 
2. Specify constants and conversion factors 
3. User input for bird specifications, kinematic and force measurements 
4. Compute basic geometry values: wing area, aspect ratio, mean chord 
5. Synchronize measured forces and kinematics using predetermined lag time 
6. Form blade elements, compute blade pitch and stroke angles, blades.m 

 
 
 
 
 
 
 
 
 
 

7. Compute slack ratio based on maximum stretched chord length 
8. Calculate chord velocity and acceleration using numerical differentiation 
9. Calculate blade angular velocity, acceleration and pitching rate, acceleration 
10. Estimate total drag with induced and parasite drag terms included 
11. Calculate wake induced velocities using momentum theory 
12. Form local relative velocity and relative angle of attack values 
13. Calculate local reduced frequency and lift deficiency value 
14. Compute the circuatory local lift coefficient for each blade element 
15. Calculate the local non-circulatory force for each blade element 
16. Adjust aerodynamic loads by necessary angle for vertical and horizontal values 
17. Sum blade element force components 
18. Compare model results to measured aerodynamic forces 

INPUT 

Bird Specifications 
1. Which bird? 
2. Wing planform shape file? 

Measured Aerodynamic 
Forces Data Reduction 
1. Load data file 
2. Separate lift, thrust and 

time measurements 
3. Filter and smooth 

measured stroke angle 
4. Save data to new file

INPUT: blade number, kinematic data, which bird 

Form blade elements, calculate local angles: blades.m 
1. Form 2D sections for 12 blade elements using marker (x,y,z) 
2. Compute blade element chord length, blade width  
3. Compute local stroke angle based on leading edge 
4. Compute local pitch angle from chord to flapping axis 

OUTPUT: blade (x,y,z), length, width, local pitch and stroke angle 
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5.3 Nomenclature, Inputs, Constants, and Conversions 

The first component of the MATLAB® modeling code is to inform the user of 

the codes’ purpose through comments; this includes an introduction to the 

nomenclature which is used and the sub-programs that are called. A summary of the 

nomenclature was provided at the beginning of this document.  

The important conversion factors used in the model are established first so 

adjustments can be made to the input data to correlate measurement units; metric 

units are assumed for all computations but conversion to English units can be 

completed easily at the end of the analysis if desired. The density and viscocity of the 

air are also set at sea level conditions in this portion of the MATLAB® code. After 

this the user interactively specifies which ornithopter is being analyzed and provides 

the desired ornithopter’s wing geometry file. Wing geometry values are then 

computed using methods specified in Section 5.4.1. Next the motion tracking 

kinematics and measured aerodynamic force files to be used are specified by the user 

along with the time-lag for the measured forces as determined in Section 4.3.2. After 

synchronizing the data, the measured forces are interpolated to match the time points 

of the motion tracking data. This is done to estimate the uniform induced velocities in 

the aerodynamic model using momentum theory and to provide easier comparison of 

results. With synchronization completed, the marker motion tracking variables can be 

formed into blade elements to continue the aerodynamic analysis. 
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5.4 Wing Geometry and Blade Element Definition 

A discussion of the wing geometry and how blade element theory is applied to 

this geometry is discussed in this section. Descriptions and diagrams will show the 

orientation of the blade elements and explain why this orientation was chosen, as well 

as how the blade elements are implemented in the aerodynamic model.  

5.4.1 Wing Geometry 

The wing planform of each ornithopter is unique, though similar in shape. 

Detailed drawings of the wings’ planform were completed on a measurement grid and 

formatted into a data file for each ornithopter; this file is input at the beginning of the 

aerodynamic analyss. The x and y points that mark the wing’s planform are then used 

to compute the span, B, and semi-span length, R as shown in Eq. (5.1). Any spanwise 

point along the wing is designated by its local span position r, which can be 

nondimensionalized for easier interpretation. The wing area, S, aspect ratio, AR, and 

mean chord, c , are found using Eq. (5.1) through Eq. (5.4) respectively.  
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Additionally, the spanwise location of the mean chord is given by r . Table 

5.1 provides these geometric values for both ornithopters. The aspect ratio for both 

ornithopters is between four and five, which is large enough to minimize induced 

velocity effects near the wing root. Mean chord values are approximately 75% of the 

maximum chord at the wing root. The mean chord is located at approximately two-

thirds of the semi-span between blade elements eight and nine, or near where the 

diagonal spar connects with the leading edge spar. 

Table 5.1: Wing geometric values. 
BIRD B (m) R (m) S (m2) AR c  maxcc  r  Rr  
Blue 1.073 0.5366 0.1158 4.972 0.2158 0.759 0.3378 0.6296
White 1.198 0.5994 0.1653 4.347 0.2758 0.7646 0.3981 0.6642
 

5.4.2 Blade Element Selection 

The blade element method was introduced in Section 3.3 as a technique to 

analyze the aerodynamics of a wing with variable geometry that experiences both 

forward and rotary motion. The first choice for blade orientation was a network of 

blades that covered the entire distance from the leading to trailing edge across the 

chord. It was thought that the rotation around the spar could be analyzed using thin 

airfoil theory and treating the trailing edge section as a flap. However the application 

was not valid because the trailing edge region is a very significant portion of the 

chord length and the flap analysis is not accurate for flaps greater twenty five percent 

of the chord. The flap deflections of up to 90˚ are also much larger than the small flap 

angle assumption of thin airfoil theory, which holds up to about 20˚. Therefore blade 

element shapes that covered the entire chord length were eliminated and a fore and aft 

blade element approach was attempted, with much more accurate results. 
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The blade element configuration selected for this analysis separates the wing 

into two regions, one to the fore of the diagonal spar and one to the aft. Using the 

reflective marker tracking variables, these two regions were further subdivided into a 

series of twelve blade elements with a similar orientation utilized for each ornithopter 

as shown in Figure 5.1 and Figure 5.2. While the blades can be configured in a 

variety of ways, the method selected separated the leading edge triangular “luff” 

region of the wing from the trailing edge “flap” region. This orientation was chosen 

because there is significant rotation in the wing about the diagonal spar which causes 

a large pitching motion and an indirect oncoming flow for blades ten to twelve. In 

order to account for these effects blade elements ten to twelve are set perpendicular to 

the diagonal spar with the blade width determined by the location of the carbon fiber 

fingers. Due to their orientation, the oncoming flow for the blades ten through twelve 

is assumed to come directly off the trailing edge of blades one through eight. 

 

 
Figure 5.1:  Blade element identification for blue ornithopter. 
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Figure 5.2: Blade element identification for white ornithopter. 

 
The front or leading edge blades labeled one through eight are parallel to the 

x-axis and are nearly rectangular in shape. These blades experience lower pitching 

values and are more likely to maintain an angle of attack where the flow remains 

attached. The wing tip forms blade element number nine which sits on both the 

leading and trailing edge beyond the end of the diagonal spar.  Blade element nine 

was shaped as shown because wing tip bending rotates the tip region about a line that 

connects the intersection of the two spars to the trailing edge of the third finger. This 

tip rotation can be seen in Figure 1.5. The interior boarder of the tip blade element 

was chosen to fall near this line of rotation. 
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5.4.3 Blade Element Geometry 

 Within the aerodynamic code the blade elements are formed by iterative calls 

to the MATLAB program ‘blades.m’ which requires the blade number, bird 

specification and marker data as inputs. The program outputs the reorganized (x,y,z) 

points that define the blade element camber as well as the blade element length, 

width, pitch and local stroke angle with time. To determine the blade element chord 

length, dc, and the blade width, dr, a series of algorithms is provided for each blade 

element in Table 5.2 and Table 5.3 for the blue and white ornithopter respectively. To 

better understand these equations, refer to the marker labeling diagram of Figure 4.8. 

Also note that dc is considered time varying for the luff region blade elements, but dc 

is a constant for the trailing edge flap region which behaves like a flat plate. The 

blade width, dr, is also assumed to be a constant. In addition to these values, a taught 

blade element chord length, cmax, is defined based upon pre-measured values; this is 

utilized in the membrane aerodynamics computations. 

Table 5.2:  Algorithms for determining blade element length and width of the blue ornithopter. 
Blade # Blue Ornithopter 
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Table 5.3: Algorithms for determining blade element length and width of the white ornithopter. 
Blade # White Ornithopter 
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Blades one through eight utilize the columns of markers down their center to 

form the local cambered airfoil shape. These blades use their leading edge and middle 

edge points to compute blade length, and a mean value for blade width is achieved 

using the neighboring leading edge markers. The flap region of blades nine to twelve 

are treated as flat plates so only the leading and trailing edge points are recorded to 

mark the chord length and orientation. For blades ten through twelve, the chord is 

established by linear interpolation to the center most point on the blade leading and 

trailing edge; this interpolated chord is also used to establish the blade length. The 

blade width is calculated as the average of the blade’s leading edge and trailing edge 

distances, since the blades are nearly trapezoidal this is a good approximation. Blade 

nine is highly irregular in shape. However, since the blade length and width are 

primarily utilized to calculate the surface area, the blade shape can be reconfigured to 

provide a better estimation. The lengths and widths for blade nine are drawn for 
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clarification in Figure 5.3 for both ornithopters. The camber-line (or chord-line) data 

points are recorded for all blades when the ‘blades.m’ program returns a set of matrix 

coordinates representing the blade element to the main program, ‘aeromodel.m’. 

 

        
Figure 5.3: Blade nine length and width approximation. 

 
 

5.5 Blade Element Orientation and Kinematics 

A detailed kinematic description of a flapping wing is the key to creating an 

accurate description of the quasi-steady aerodynamics. This section will analyze the 

blade element orientation, including pitch, stroke angle and camber direction. Blade 

motion, including pitching and plunging rates and accelerations are examined and 

implemented in the aerodynamic modeling code. The membrane slack percentage 

will also be calculated where appropriate.  
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5.5.1 Quasi-Steady Kinematics 

The quasi-steady motions experienced by the flapping and pitching 

ornithopter wing are defined with front and side views in Figure 5.4 and Figure 5.5 

respectively. The front view indicates the wing stroke angle, β , which is positive 

above the Y axis, and the angular velocity and acceleration due to the flapping 

motion, β& and β&& . Also identified is the spanwise location r which varies from zero to 

the half-span; this length can be nondimensionalized by the half-span length R for 

easier interpretation of the span location being considered.  

              
Figure 5.4: Front view diagram of flapping motion. 

 
Figure 5.5 shows the side view (X-Z plane) of the chord of a representative 

blade element at span location r undergoing typical downstroke motion. The flapping 

axis is indicated along the X-axis at the wing root and all pitch angles are taken with 

respect to this symmetry axis of the vehicle. The velocity of the vehicle with respect 

to the surrounding air is given by the vector U. The flapping axis is oriented by the 

angle δ  to U and the flight path angle between U and the ground horizontal line is 

given by γ . This blade element segment is pitched down (negative) θ  degrees with 
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Y 

−β  

ββ &&&,  
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  Fuselage 
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the pitching axis located a distance a from the mid chord, where a can vary from -1 at 

the leading edge to 1 at the trailing edge. The quantity b is the half-chord length as 

indicated in Figure 5.5; b is positive for the trailing edge half of the chord and 

negative for the leading edge half of the chord. Also shown are the pitching rate and 

pitching acceleration, θ&  and θ&& , and the plunging velocity and acceleration of the 

blade element, β&r  and β&&r . 

      

Figure 5.5: Side view diagram of wing under quasi-steady motion. 
 

These quasi-steady motions can be explored further to understand the velocity 

distributions acting on the flapping wing due only to the wing’s motion (no induced 

velocities). Figure 5.6 portrays the velocity distributions acting on the wing during 

downstroke; which are of opposite sign to the wing motions shown in Figure 5.5. This 

diagram also assumes the flight path angle γ  and flapping axis angle δ  are zero for 

easier interpretation. The flight speed U and the plunging velocity, β&r−  are both 

uniform velocity distributions, but the pitching rate velocity varies in a triangular 

distribution fore and aft of the pitching axis a and is given by ( )abx −θ& . Only the 

flight speed U is assumed constant in the aerodynamic model; the flapping velocity, 
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β&r− , will be positive during downstroke and negative during upstroke. The pitching 

velocity sign is less quantifyable, especially near transition where the pitch angle 

fluctuates dramatically. 

 
Figure 5.6: Quasi-steady velocity distribution acting on the flapping wing. 

 

5.5.2 Kinematic Calculations 

The orientation of each blade element is determined by the ‘blades.m’ 

program and returned to ‘aeromodel.m’ as a time history. Pitch, θ, is calculated using 

the relative position of the leading and trailing edge points on the blade chord. Figure 

5.7 shows the two-dimensional membrane element during downstroke and upstroke 

with the pitch sign marked. Figure 5.7 also gives the equations to calculate pitch 

using the distance between the leading and trailing edge points, dz and dx. Also note 

the camber shape of the membrane is specified; it will generally be positive for 

SIDE VIEW: Quasi-Steady Velocity Distribution Acting on Wing 
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positive angle of attack (generally downstroke) and negative for negative angle of 

attack (generally upstroke). 

 
Figure 5.7: Drawing of membrane shape (blue) and pitch during downstroke and upstroke. 

 
In addition to the pitch angle, it is necessary to calculate the local stroke angle 

versus time because spar bending increases the stroke angle near the wing tip and 

causes a phase-lag between the wing root and wing tip in the flapping motion as 

identified in Section 4.4.2. The local stroke angle of a blade element is determined 

using the leading edge reflective markers (or middle leading edge markers for blades 

10 to 12). MATLAB® program ‘local_stroke.m’ takes two leading edge marker 

locations as input and calculates the angle that a line connecting the points makes to 

y-axis; this is a measure of the local stroke angle. For the narrow blade elements one 

through eight, the first leading edge markers inboard and outboard of a blade element 

are used as input to ‘local_stroke.m’ to best estimate the stroke angle over the entire 

width of the blade. For blade elements nine through twelve the blade’s leading edge 

markers furthest inboard and outboard are used to calculate the local stroke angle.  
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Once the bladed element size, stroke angle, and pitch angle are calculated, 

‘blades.m’ returns the blade information to the primary MATLAB® program 

‘aeromodel.m’ which then calculates the amount of slack in each blade element over 

time. The slack length, l, is determined by taking the difference between the blade 

chord length, dc, and the maximum blade length, cmax, set as a constant in the 

program. Zero slack is assumed for blades nine through twelve. The slack ratio, ε , 

which partially determines the membrane lift coefficient, is calculated by dividing the 

slack length with the blade element chord length, dl, as shown in Eq. (5.5).  

 
dc
l

dc
dcc

ratiolack =
−

== maxs ε (5.5)
 

To determine the quasi-steady velocities and accelerations associated with the 

flapping, pitching and plunging of the wing, the MATLAB® program ‘take_deriv.m’ 

was developed to take the derivative of a time varying function. The program uses a 

third-order Adams-Bashforth method (AB3) on the central points with an Euler-

Explicit and second-order Adams-Bashforth method (AB2) near the time boundaries. 

Each of these methods is described in equation format by Table 5.4 where u is the 

time varying function and t is the time for the nth timestep.  

Table 5.4: Methods for taking time derivatives. 
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The Euler-Explicit method is first order accurate while the Adams-Bashforth 

methods are second and third order accurate as their name indicates. In addition to the 

time and function whose derivative is being determined, “take_deriv.m” also low-

pass filters the derivative results to eliminate high frequency spikes in the derivatives 

near kinematic discontinuities. The user must specify the frequency cutoff and the 

time step of used in the u function data and the derivative program will output the 

filtered derivative vector. In total the local flapping angular velocity and acceleration 

( ββ &&&, ), and the pitch rate and acceleration ( θθ &&&, ) are computed using this technique 

with an 8Hz low-frequency cutoff. With these quasi-steady motions determined, the 

aerodynamic equations can be formulated. 

5.6 Application of Aerodynamic Equations 

This section will identify the aerodynamic equations used to calculate the total 

vertical and horizontal forces produced by the flapping membrane wing. This will 

include a discussion of drag estimation, induced velocities, and the circulatory and 

non-circulatory forces developed by the flapping wing with representative diagrams 

and plots where relevant. 

5.6.1 Reference Quantities 

Many of the aerodynamic computations require knowledge of reference 

quantities, including velocities, lengths and parameters such as the Reynold’s number 

and reduced frequency. The mean chord, c , which acts at the span location, r , is 

used as mean reference length for the entire wing. Similarly, a mean reference 

velocity, ( )rV , combines the quasi-steady velocities at r  using Eq. (5.6).  
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This velocity equation includes the angle adjustments for the flight path angle γ  

and the pitch angle of the flapping axis δ , though these values were zero for the 

motion tracking experiments. Likewise, a local velocity magnitude, ( )rV , due to the 

wing motion can be computed for any position r along the span using Eq. (5.7). 
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(5.7)

 
The mean chord and mean velocity are used to compute the mean Reynolds 

number, eR , for the flapping wing in Eq. (5.8). This mean Reynolds number still 

varies with time because of the pitching and flapping motion components of the 

velocity term, its minimum and maximum bounds are considered here. The local 

Reynolds number for a spanwise location r is given by Eq. (5.9).  

 
μ

ρ Vc
=eR  (5.8)

 
 

μ
ρcV

=Re  (5.9)

 
Figure 5.8 and Figure 5.9 present a comparison of the magnitude range 

(minimum and maximum) of the mean chord Reynolds number and local Reynolds 

number at the wing root and wing tip as the flight velocity and flapping frequency are 

varied for the blue and white ornithopter, repectively.  
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Blue Ornithopter: Reynolds Number Comparison at 2, 5 and 8 m/s flight velocity

 

Figure 5.8: Reynolds number of the blue ornithopter at the mean chord, wing root, and wing tip 
for 2, 5 and 8 m/s cases. RE variation is between 20,000 and 260,000, with a mean at 100,000. 
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White Ornithopter: Reynolds Number Comparison at 2, 5 and 8 m/s flight speed

 
Figure 5.9: Reynolds number of the white ornithopter at the mean chord, wing root, and wing tip 
for 2, 5 and 8 m/s cases. RE variation is between 20,000 and 285,000, with a mean of 130,000. 

  

The total Reynolds number range for the blue ornithopter is 20,000 to 260,000 

for the entire flight speed (2 to 8 m/s) and flapping frequency envelope (3.5 to 6 Hz). 
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A slightly higher Reynolds number range from 20,000 to 285,000 is seen by the white 

ornithopter for the same flight speed window and flapping frequcies from 3 to 5 Hz. 

As a whole the wing root Reynolds number seems to be the closest to the average 

value and it essentially constant with flapping frequency. This provides evidence that 

computing the Reynolds number based on the root chord value and the flight velocity 

U is an accurate approximation of the actual Reynolds number value for the entire 

wing. The lower bounds of the mean and tip Reynolds numbers are relatively constant 

with flapping velocity and their magnitude is actually less than the root value because 

some components of the flapping velocity counteract the flight speed U. However, the 

upper bounds for the mean and tip Reynolds number experience a large linear 

increase with flapping frequency, which indicates the impact of the flapping velocity 

on these values. For a typical flight speed of 5 m/s, the average Reynolds number is 

approximately 100,000 for the blue ornithopter and 130,000 for the white ornithopter. 

Next the reduced frequency, k, is considered. Recall that the reduced frequency 

is a ratio of the flapping frequency to the reference velocity. Qualitatively, the 

reduced frequency is a measure of the unsteadiness in the flow, with values of k less 

than 0.05 indicating quasi-steady flow, values between 0.05 and 0.2 indicating 

unsteady flow, and values greater than 0.2 indicating highly unsteady flow. 

 

ref

ref

U
c

k
2
ω

=  
 

(5.10)

 
The reference velocity for the reduced frequency is usually taken as the flight 

speed U for non hovering cases, but for hovering cases it is the the plunging velocity 

of the flapping wing. Since both flapping modes are applicable in this analysis, the 
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combined quasi-steady motion is used as the reference velocity at either the local or 

mean chord location. The mean and local root and tip reduced frequency values are 

plotted versus flapping frequency range and flight speed in Figure 5.10 and Figure 

5.11 for the blue and white ornithopter, respectively. As would be expected, the 

reduced frequency decreases considerably with increasing flight speed, but nearly all 

of the reduced frequency values are within the highly unsteady region with k greater 

than 0.2. In general the white ornithopter has slightly higher reduced frequency values 

under the same conditions as the blue ornithopter, this is because the flapping velocity 

is lower and the chord lengths are higher. For reduced frequencies in this range the 

lift deficiency is very high, with a typical reduction of 30% to 40% of the classical 

circulation lift value. However, the accuracy and implementablity of these results can 

be questioned because of the large magnitude of the wing oscillations, which do not 

fit the lift deficiency theory’s assumptions of small quasi-steady motions. Flow 

visualization experiments are required to accurately quantify unsteady behavior. 
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Figure 5.10: Blue ornithopter reduced frequency at span locations for U = 2, 5 and 8 m/s  
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Figure 5.11: White ornithopter reduced frequency at span locations for U = 2, 5 and 8 m/s 

 
 Finally, the Strouhal number is considered. Recall that Strouhal number is a 

measure of the flapping amplitude to the flight velocity and it can be interpreted as 

the thrust efficiency metric. Strouhal number also provides insight into the length and 

direction of the von Karman vortices. If the ornithopter is producing thrust then the 

vortices are reversed in direction. Optimal thrust is achieved when the Strouhal 

number is in the optimal range of 0.2 to 0.4. 

 
U
fASt =   

(5.11)

 
In this case it is important to use the flight speed U as the reference velocity to 

maintain the meaning of the parameter. The tip amplitude A can vary slightly because 

of leading edge bending near the wing tip, but the flapping frequency variation is the 

most important. Strouhal number versus flight speed and flapping frequency is plotted 

in Figure 5.12 and Figure 5.13 for the blue and white ornithopters respectively.  
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Figure 5.12: Strouhal number for the blue ornithopter vs. flapping frequency and flight speed. 
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Figure 5.13: Strouhal number for the white ornithopter vs. flapping frequency and flight speed. 
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These plots show that the blue ornithopters’ optimal Strouhal number range is 

met for the for low flapping frequencies of 3 to 4 Hz at flight speeds of 4 to 6 m/s, but 

the optimal flapping rate of 5 Hz does not reach the optimal Strouhal number range 

until 7 m/s. The white ornithopters performance is similar, with flapping frequencies 

between 3 and 4 Hz reaching the optimal Strouhal number range at 5 to 6 m/s and the 

typical flapping frequency of 4.5 Hz coming into the optimal Strouhal range at 7 m/s. 

Note that for all possible flapping frequencies, the Strouhal number never drops 

below the minimum optimal bound of 0.2. These plots indicate that optimal thrust is 

achieved at low speeds only for low flapping frequencies, but as the flight velocity 

increases over 7 m/s (25 km/hr), any flapping rate will provide good thrust efficiency. 

 These parameters provide important information about the characteristics of 

the flow surrounding the flapping wing. The Reynolds number range indicates the 

flow is in a low Reynolds number transition region, which is dominated by turbulent 

flow with the possibility of laminar separation bubbles or stall. Reduced frequency 

values are in the highly unsteady region for these vehicles, which indicates there may 

be unsteady methods used by the wing to generate lift and thrust. However, the 

accuracy and relevance of the reduced frequency is questionable because the wing 

kinematics do not meet the small quasi-steady motion assumptions of this theory. 

Finally, Strouhal number indicates that optimal thrust is produced primarily for flight 

speeds greater than 5 m/s, with improving performance as the speed increases further. 

The optimal thrust flight speed is compared to the minimum required power flight 

speed in the following section to generate an optimal flight envelope. 
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5.6.2 Drag Estimates and Power Requirements 

In order to estimate induced velocities in the next section, an approximation of 

the total drag on the flapping wing vehicle must be established. The total drag on a 

vehicle is a sum of the induced drag and parasite drag, where the parasite drag 

includes both the profile and form drag components. A comparison of the drag trends 

with reference velocity was completed for two cases, one with the reference velocity 

equal to the flight speed, U, and a second with the reference velocity equal to the 

mean velocity, V . It is expected that using U as the reference velocity will provide 

better predictions at high velocities, while using V  will be more accurate at lower 

flight velocities when the flapping velocity is dominant. 

Induced drag for steady flight conditions is usually approximated using Eq. 

(5.12) where the lift L can be approximated by the weight of the vehicle adjusted by 

the flight path angle. The elliptical lift deficiency factor, e, is also included and is 

assumed to be 0.8 for the flapping wing vehicles in this research.  

 ( )
22
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22

2 cos22

refref
i UBe

W
UBe

LD
ρπ
γ

ρπ
== (5.12)

 
 The parasite drag is determined using a technique provided by Tucker [54]. 

This method begins by computing the friction drag coefficient, Cf , of a flat plate in 

turbulent flow using Prandtl’s equation, as shown in Eq. (5.13). The reference 

Reynolds number used in Eq. (5.13) is calculated using the flight speed U for case 

one, and using the mean velocity for case two. 

 ( ) 58.2
10 Relog455.0 −= reffC  (5.13)
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Next, the ratio, K, of the flapping wing vehicle’s parasite drag coefficient, 

CDp, to the friction coefficient for a flat plate, Cf, at the specified Reynolds number is 

computed as shown in Eq. (5.14). K has been determined empirically for many bird 

species where it varies from 2 to 4.4; the largest value of 4.4 is assumed for the 

ornithopters in this study.  

 fDp CCK =  (5.14)

 
The parasite drag is computed using Eq. (5.15), where the the drag coefficient 

ratio K and the flat plate drag coefficient are applied to a wetted surface area Sw , 

which is defined as twice the wing area S, (the fuselage drag is neglected). The total 

drag due to induced and parasite components during steady flight conditions is then 

given by Eq. (5.16). 
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Figure 5.14 and Figure 5.15 show the trend in drag values with flapping 

frequency and flight speed for both reference velocity cases for the blue and white 

ornithopter. In general, the red lines indicate induced drag, the blue lines indicate 

parasite drag, and the black lines show the total drag values. The single dashed-dot 

lines are for case one where the flight speed U is used as the reference velocity, while 

the clumps of dotted, dashed and solid lines present case two results for the mean 

velocity at various flapping frequencies from 3 to 6 Hz. The induced drag trend is 

characterized by 2−
refU , therefore the induced drag is maximum at hover and decreases 
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with increasing flapping frequency and flight speed. Conversely, parasite drag is 

characterized by 2V , so it increases as flapping frequency and flight speed increase. 

The mean velocity drag for the optimal flapping rates of 5 Hz and 4.5 Hz are bolded 

for the blue and white ornithopters respectively. If the total drag due to the mean 

velocity at the optimal frequency is compared to the total drag due to only the flight 

speed, a minimum drag flight speed range is formed between 3 m/s and 6 m/s. This 

flight speed range is not atypical from actual cruising flight conditions, and is half the 

optimal speed range from maximum thrust indicated by the Strouhal number analysis.  
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Figure 5.14: Drag curves for the blue ornithopter, total drag is indicated in black. 
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Figure 5.15: Drag curves for the white ornithopter, total drag is indicated in black. 

 
Note that the minimum total drag values are the same for both cases at 

approximately 15% of the ornithopter weight. This would equate to a best case lift to 

drag ratio of 6.6. Likewise, the maximum drag values at large flight velocities are on 

the order of 30% of the vehicle weight, which corresponds to a worst case lift to drag 

ratio of 3.3. These are ideal lift to drag ratio values, actual values will vary based on 

flight conditions and the behavior of the fluid. 

The total power required to overcome drag during flapping flight, neglecting 

electrical and mechanical power requirements from the vehicle, is determined by 

taking the product of the drag and the mean velocity as shown in Eq. (5.17). Note that 

the induced power term varies as 1−
refU  and the parasite power term varies as 3

refU . 

5 Hz
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Equation 5.1: Total power required to overcome drag in steady flight conditions. 
 

 A power curve analysis was completed for each ornithopter to compare the 

contribution of the induced and parasite drag terms to the total power required for 

both reference velocity cases. This analysis is produced in Figure 5.16 and Figure 

5.17 for the blue and white ornithopter respectively. As with the drag curves, the 

induced, parasite and total power are represented by red, blue black lines respectively. 

For the power calculated using the mean velocities there is a decreasing importance 

of the induced power at low flight speeds becase of its 1−V  dependence. However, 

for the power calculated using the flight velocity U, the induced power increases 

significantly as the hover condition is approached.  
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Figure 5.16: Power curves for the blue ornithopter, total power is indicated in black. 
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Figure 5.17: Power curves for the white ornithopter, total power is indicated in black. 

The general trends are the same for both vehicles, with a minimum power of 

about 3 Watts between 2 m/s and 5 m/s (7 to 18 km/hr) flight speed at the optimal 

flapping frequencies of 4.5 and 5 Hz for the blue and white ornithopters respectively. 

Considering these power plots with the Strouhal number and reduced frequency 

results, the 5m/s flight speed is the best compromise to maintain good thrust 

performance, moderate unsteadiness in the flow and acceptable power requirements. 

Therefore, the remaining anlysis is completed at a 5m/s flight condition, which is a 

very common steady flight speed for the ornithopters. The drag and power estimates 

are based on empirical values and assumptions of steady flight conditions – actual 

flight conditions will vary. 
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5.6.3 Induced Velocity 

Recall from Section 2.6.2.1 and Section 3.4.4.1 that the induced velocities 

created by the wake of a flapping or rotary wing vehicle can be approximated using 

an actuator disk and momentum theory. Momentum theory analysis produces uniform 

horizontal and vertical induced velocity values, u and v, for the vehicle. Although 

these induced velocities do not vary with spanwise location, the method is commonly 

used because of its simplicity and because the results are the same as those for an 

untwisted, elliptical, finite wing from thin airfoil theory. Other approaches, such as 

lifting line theory, calculate the local induced velocities using the known geometric 

pitch values at a spanwise location r. However, because of the large and irregular 

pitching angles of the wing, the lifting line theory produces unrealistic results for the 

induced angle of attack, on the order of 1000 degrees. Outside of lifting line theory, 

only computational fluid dynamics or experimental PIV methods can accurately 

analyze the wake produced by the flapping wings and compute the induced velocities. 

 Due to these complications, only the momentum theory approach was used to 

compute the horizontal and vertical induced velocities, u and v. In order to apply 

momentum theory only the flight speed U, actuator disk area Ae, and the vehicle 

vertical and horizontal forces must be known. Two methods were used to compute 

these forces. Method one applies a steady level flight assumption to generate the force 

values, while method two uses the measured vertical and horizontal forces from the 

motion tracking experiments. The momentum theory result from the avian analysis in 

Section 2.6.2.1 is applied to the ornithopters with an adjustment to account for the 

fact that the wing stroke does not cover the entire actuator disk circle. An equivalent 
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disk area, eA , is defined in Eq. (5.18), where Φ  is the stroke amplitude 

(approximately 55˚). The flight path angle is included because the actuator disk is 

tilted by the flight path angle to the horizontal line. 

 γcos2RAe Φ=  (5.18)

 
 With this adjustment, Eq. (5.19) and Eq. (5.20) are the horizontal and vertical 

induced velocities, respectively, for the two methods of application during forward 

flight. The elliptical deficiency factor, e, is included to improve the accuracy. Also 

note that these equations assume only the flight speed U, and not a net velocity due to 

the flapping motion; this is because momentum theory cannot account for the kinetics 

of the wings. This application of the flight speed U also extends to the value of the 

drag, D, used in these equations; no flapping velocity is acknowledged. 
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If the ornithopter is experience a hovering flight condition, then these equations 

are not valid. For a true hover case the thrust produced is zero and therefore u is zero, 

however for the motion tracking experiments the ornithopter was held rigidly while 

the thrust force was still produced. Equation (5.21) and Eq. (5.22) are used to 

compute the induced velocities for this constrained hovering condition. 
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Results for method one and method two are shown in Figure 5.18 and Figure 

5.19 for the blue ornithopter and in Figure 5.20 and Figure 5.21 for the white 

ornithopter, for forward flight and hover conditions respectively. For all of these 

plots, the horizontal induced velocity, u, is indicated by a dashed blue line, while the 

vertical induced velocity, v, is indicated by a red dotted line. Note that the vertical 

induced velocity for all methods is of opposite sign to the actual downwash value; 

this is accounted for in the aerodynamic model. Method one results are shown for 

flight velocities from 1 to 10 m/s, the flight velocity is the only changing variable for 

this method. The induced velocity results for method two are only for the hovering 

condition and are plotted for one flapping cycle at the optimal flapping rate between 

4.5 and 5 Hz. Method two is the only way to compute the horizontal induced velocity 

in hover, and it will provide more accurate and finite results at the hover condition in 

comparison with method one. However, method two is not directly applicable outside 

of the constrained hover scenario because the measured forces will change with 

increasing flight speed, U.  
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Figure 5.18: Blue ornithopter induced velocities using method one in forward flight. 
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Figure 5.19: Blue ornithopter induced velocities using method two in hover. 
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Figure 5.20: White ornithopter induced velocities using method one in forward flight. 
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Figure 5.21: White ornithopter induced velocities using method two in hover. 
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The shape of method one’s results vary as 1−U , while velocity is not 

accounted for in the hover condition of method two. Method one shows a steep 

increase towards infinity of the induced velocities as flight speeds less than 2 m/s. At 

2m/s the horizontal induced velocity has a magnitude of 1.8 and 1.3 m/s and the 

vertical induced velocity has a magnitude of 4 and 2.6 m/s for the blue and white 

ornithopter respectively. As flight speed increases past 2 m/s the horizontal induced 

velocity reduces and levels off at 6 m/s with a magnitude of 0.2 and 0.3 m/s for the 

blue and white ornithopter respectively. The vertical induced velocity levels off more 

gradually to speeds around 0.5 m/s for flight speeds greater than 10 m/s. 

Method one results produce a constant induced velocity value for a given 

flight speed U. In actuality the sign of the vertical or downwash induced velocity 

fluctuates with the sign of the vertical circulatory force at the wing tip, or 

equivalently the sign of the angular velocity at the wing tip. During downstroke the 

circulatory force is positive, so v is expected to be negative; but during the upstroke 

the circulatory force is negative so v is expected to be positive. While this fluctuation 

between positive and negative downwash can be thought of as a square wave, it is 

more likely the downwash behaves sinusoidally with an amplitude that equals the 

constant vertical induced velocity value from method one.  Method two, which uses 

the measured force values, captures this induced velocity sign.  

Method two’s results for the hover case are sinusoidal in shape as postulated 

above. The horizontal induced velocity has a 10 Hz or twice per flapping cycle 

frequency, while the vertical induced velocity has a 5 Hz or once per flapping cycle 

frequency. These oscillations correspond to the oscillations of the measured thrust 
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and lift terms respectively. As with the measured thrust values, the horizontal induced 

frequency is always positive; it oscillates between zero and 2.2 m/s for both vehicles. 

The vertical induced velocity is symmetric about zero with maximum amplitudes of 

3.2 m/s and 3.7 m/s for the blue and white ornithopters, respectively. 

These induced velocity values are large, with magnitudes greater than the 

actual flight speed at flight speeds under 2 m/s, and magnitdes of 10% to 20% of the 

flight speed for moderate speeds of 5 m/s to 6 m/s. The small induced velocity 

assumption that many aerodynamic theories assume is only valid for flight speeds 

greater than 10 m/s, where the induced velocity is reduced to 5% of the flight speed. 

These results are important to consider when establishing the aerodynamic model, 

which is discussed in the following sections. 

 

5.6.4 Quasi-Steady Circulatory Force  

The aerodynamic model will assume a quasi-steady circulatory lift force is 

acting on the membrane wing, with adjustments to the force from sail theory and the 

lift deficiency function C(k). Quasi-steady analysis was introduced in Section 3.4.1 

and the quasi-steady motions were reviewed earlier in Section 5.5.1.  Adjustments for 

sail theory and the unsteady lift deficiency are applied to the classical thin airfoil 

theory result for lift coefficient. The thin airfoil result usually given by efflC πα2= , 

however this is a linearized simplification for small angles of attack. The nonlinear 

thin airfoil theory result for the lift coefficient is given by Eq. (5.23). 

 ( )efflC απ sin2=  (5.23)
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Given this equation, the first task at hand is to calculate the effective angle of 

attack of the inflow velocity on the flapping wing. Figure 5.22 shows the respective 

velocities acting on a flapping and pitching airfoil during the downstroke, including 

the induced velocities. The airfoil pitch, θ , the pitch of the flapping axis with respect 

to the flight velocity vector, δ , the flight path angle, γ , and the zero lift angle of 

attack, 0Lα , are also shown. Given these quantities, the inflow velocity, Vrel, the 

inflow angle, φ , and the relative angle of attack, relα , can be determined. The 

induced velocities are computed using method one introduced in Section 5.6.2. 

However, the vertical induced velocity is made sinusoidal by multiplying by the fixed 

v value by the normalized angular velocity curve. This will allow a smooth transition 

between the positive and negative sign of the vertical induced velocity as the lift force 

changes directions. The horizontal induced velocity, u, remains a constant. 

 

 
Figure 5.22: Determining relative angle of attack. 
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First the inflow velocity, relV , and inflow angle, φ , are determined for the 

angle of attack incident at the ¾ chord location using Eq. (5.24) and Eq. (5.25). Then 

the relative angle of attack is determined by Eq. (5.26). Each of these equations is 

applied to a specific spanwise blade element or airfoil segment with known kinetics 

and orientation to determine the local circulation lift coefficient. 
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 0Lrel αθφα −+=  (5.26)

 
 The relative angle of attack can now be used to compute the two dimensional 

circulatory lift coefficient for that specified spanwise location, r. As shown in Section 

3.4.2, the lift coefficient can be adjusted by the lift deficiency magnitude, C(k), to 

account for the unsteady effects on the vehicle. Additionally, the empirical relation 

for added circulation force for a sail with first order behavior and membrane slack 

length, l, must be added (Section 3.2.1.5). Combining these results in Eq. (5.27) gives 

the final circulation lift coefficient, where dc is the local chord length. 

 ( ) dclkCC relcl 636.0sin2_ += απ (5.27)

  
The left hand term of Eq. (5.27) is the quasi-steady, lift deficiency adjusted lift 

coefficient, and the right hand term is the additional lift due to membrane behavior 

based on the membrane slack ratio. This lift coefficient can be converted to a lift 
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force using Eq. (5.28), for a wing segment or blade element with chord length dc and 

blade width dr.  

 drdcCVqSCdL clrelclc ⋅⋅== _
2

_ 2
1 ρ (5.28)

 
This local circulatory lift force acts normal to the inflow velocity, and therefore 

it produces both vertical and horizontal forces. The transformations necessary to 

compute the vertical and horizontal components of the circulatory lift are discussed in 

Section 5.6.6. 

5.6.5 Quasi-Steady Non-Circulatory Force  

The non-circulatory or apparent mass force generated by a moving wing was 

discussed in Section 3.4.3. Qualitatively, the non-circulatory force is the result of the 

acceleration of a body of air normal to the wing surface as the wing undergoes quasi-

steady motion. For a flapping and pitching wing with a non-zero flight speed, the 

non-circulatory normal force generated by the wing is given by Eq. (5.29).  

 ( )( ) drbarUdcdNnc ⋅−+−= θθβθρπ &&&&& cos
4

2

(5.29)

 
This is the normal force value for a wing segment of length dr, where r is the 

mean spanwise position of the segment and dc is the chord length. The non-

circulatory force acts normal to the wing, and therefore must be broken down into 

vertical and horizontal components as well. 

5.6.6 Vertical and Horizontal Force Components 

The vertical and horizontal force components are computed using the angles 

defined in Figure 5.22. Since the local blade element orientation varies along the 
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span, the vertical and horizontal components of each force should be computed before 

the blade element forces are summed over the entire wing. The resulting vertical and 

horizontal components of the calculated forces are provided in Table 5.5.  

Table 5.5: Vertical and horizontal force components. 
Force Vertical Component Horizontal Component 
Circulatory ( )γδφ += coscos_ ccvert dLdF  ( )γδφ += cossin_ cchoriz dLdF  
Non-Circ.  ncncvert dNdF =_ ( ) ( ) βγδθ coscoscos +− ( ) ( )γδθ +−= cossin_ ncnchoriz dNdF

 
  These force components are computed using the local values for the blade 

element pitch, inflow angle and stroke angle. The non-circulatory vertical force has a 

stroke angle term because there is a spanwise component due to the normal force 

orientation. For the motion tracking experiments the flight path angle and flapping 

axis angle were zero, so ( )γδ +cos  becomes one and the equations will simplify. 

5.6.7 Blade Element Force Summation 

The last step in the aerodynamic model is to sum the vertical and horizontal 

force components over the blade elements as shown in Eq. (5.30) and Eq. (5.31). 
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Also note the presence of the mean drag force, D , adjusted by the inflow 

angle at the mean chord location. The mean drag force is computed using Eq. (5.16) 

with the mean inflow velocity and the mean Reynolds number. This drag should be 

very similar to the mean drag values presented using case two in Section 5.6.2. Now 

the model can be applied and the results compared to measured force values. 
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Chapter 6. Aerodynamic Modeling Results 

The results of the aerodynamic model applied to the wing kinematics are 

presented graphically in this chapter. Modeling results are compared with the 

measured forces and with preliminary results from a computational fluid dynamics 

model [74]. Differences between the model and measured forces are summarized by a 

magnitude and phase analysis for the frequency sweep cases. 

The aerodynamic modeling results are compared with the measured forces for 

an assumed flight velocity of 5m/s in the aerodynamic model. This speed was 

selected because the angle of attack values are generally below thirty degrees and the 

effect of induced velocities are minimized. This is also a velocity that showed great 

promise for minimizing drag and power requirements while maintaining high thrust 

efficiency. A hovering condition could not be met because the inflow angles and 

angles of attack would approach 90˚. At hover, the stall effects and unsteadiness of 

the flow are not adequately captured by this aerodynamic model. While the flight 

conditions are different for the modeled and the experimental cases, comparing the 

magnitude and phase of the results will still indicate model accuracy. 

6.1 Comparison of Modeled and Measured Forces 

This section presents detailed results for the optimal flapping frequencies 

between 4.5 and 5 Hz for both ornithopters; including a magnitude and phase 

comparison of the results in comparison to experimental values.  
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6.1.1 Blue Ornithopter Results 

The blue ornithopter is examined first, starting with Figure 6.1, which shows a 

comparison of the vertical and horizontal forces from the experiment and the model 

versus the non-dimensional flapping period time. This plot also indicates the local 

flapping stroke angle and decomposes the model into its circulatory and non-

circulatory force components. The same modeling results are presented in Figure 6.2 

against the stroke angle to show the cyclical path of the force variation. In this plot 

the direction of wing motion is indicated by the arrows. 
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Figure 6.1: Blue ornithopter model results for one flapping period at 5 Hz. 
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Figure 6.2: Blue ornithopter results vs stroke angle, arrows indicate the direction of motion. 

Examing the model results closely shows better correlation for the vertical 

force than for the horizontal force and the circulation force clearly dominates the non-

circulatory force. The modeled vertical force magnitude is approximately 10% larger 

than the experimental value, while the modeled thrust has a large over-estimation of 

1.5 times the magnitude of the measured value. However, the model captures the 

phase of the horizontal force better than the vertical force, with phase lags of -20˚ and 

20˚ to 75˚, respectively. The vertical force has a phase lag range because the modeled 

force plateaus at a contant maximum magnitude between 40% of the downstroke and 

80% of the downstroke. As expected, the circulatory force peaks near the middle of 

the downstroke and upstroke, while the non-circulatory vertical and horizontal forces 

peak at 80% and and 60% of the downstroke period, respectively. Although the non-

circulatory force seems small, Figure 6.2 shows the horizontal force component 
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precicely matches the measured force’s phase and the relative magnitude between 

maximum and minimum force values. This overestimation of the total horizontal 

force leads to speculation that the circulatory force component may be inaccurately 

modeled, and the contribution of each part of the wing should be analyzed. 

To take a closer look at how the modeled forces are conceived the force 

components due to the luff region (blades 1 to 8), the trailing edge flap region (blades 

10 to 12) and the wing tip blade element are presented in Figure 6.3 and Figure 6.4 

for the circulatory and non-circulatory forces respectively. As expected, the luff 

region creates the most vertical circulatory force, followed by the flap region. The tip 

produced very little vertical circulatory force because it had low angle of attack 

values and the large inflow angle orients the forces horizontally. For the horizontal 

circulatory force, the luff and tip force magnitudes are one-half of the magnitude of 

the actual horizontal force, though they experience a phase lead of 60˚. The flap 

region horizontal circulatory force is very dominant, and produces the primary error 

with a 30% to 40% over-prediction of the measured value. However, the phase lead 

of the flap component is more accurate, with a typical lead of only 10˚ to 15˚. 

Both the vertical and horizontal non-circulatory forces are dominated by the 

flap region in Figure 6.4. The vertical non-circulatory force has a maximum 

magnitude of half the measured value and it acts at the middle of the downstroke. 

This phase is somewhat earlier than the 180˚ phase from the beginning of downstroke 

that the wing acceleration experiences. The luff and tip produce little to no horizontal 

force, and the flap contribution has the same net magnitude and phase as the 

measured value, it is just shifted down to be symmetric about zero. 
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Figure 6.3: Blue ornithopter, circulatory force break-down by wing component. 
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Figure 6.4: Blue ornithopter, non-circulatory force break-down by wing component. 
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6.1.2 White Ornithopter Results 

With these results from the blue ornithopter, the model behavior for the white 

ornithopter must be examined to see if it follows the same trend. The white 

ornithopter’s modeled vertical and horizontal forces are compared to measured values 

for one flapping cycle at 4.5 Hz in Figure 6.5. This plot includes the measured force, 

the total modeled force, and the circulatory and non-circulatory components of the 

modeled forces. The same results are plotted versus stroke angle in Figure 6.6 to 

compare the phase and shape of the forces generated during downstroke and upstroke. 

 Like the blue ornithopter, these figures show excellent correlation between the 

magnitude of the vertical force for the measured and modeled results, with less than 

5% error. Trends for the magnitude and phase of the total vertical force are similar to 

the blue ornithopter, having a maximum value plateau over the entire bottom half of 

the downstroke, while the measured value peaks at 40% of the downstroke. This 

equates to a large phase lag window of from zero to ninety degrees. The vertical 

circulatory force result is particularly good, with exactly the same phase as the 

measured force and an amplitude deficiency of only 10% during the last half of each 

stroke cycle. Figure 6.6 shows the accuracy of the vertical circulation force 

particularly well, with the measured and circulatory curves nearly on top of one 

another for the entire stroke cycle. The vertical non-circulatory force component also 

predicts the vertical measured force within 5%, with a phase precisely at the 

downstroke-upstroke transition which matches theoretical predictions. This non-

circulatory component is what pulls the phase of the total vertical force toward the 

downstroke-upstroke transition.  
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Turning to the horizontal forces, the disparity of the results is even greater 

than with the blue ornithopter. The total modeled horizontal force is nearly three 

times the measured value and has a phase lag of -30˚. Breaking the modeled force 

into components shows that the horizontal circulatory force is the root of both the 

over-amplification and the phase lag. The horizontal circulatory force component is 

maximized near the middle of downstroke, while the measured force and horizontal 

non-circulatory force match in maximum amplitude and have equivalent phases at 

80% of the downstroke period. However, when presented alone, the horizontal non-

circulatory force has a significant negative component near the beginning of upstroke 

and downstroke that is not seen in the measured forces. The large positive magnitude 

of the circulatory force at the beginning of the downstroke helps to alleviate but does 

not eliminate this presence of a negative force component that equates to drag. 
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Figure 6.5: White ornithopter model results for one flapping period at 4.5 Hz. 
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Figure 6.6: White ornithopter results vs stroke angle, arrows indicate the direction of motion. 

 
 The circulatory and non-circulatory forces are broken down into the 

components generated by the luff, flap and tip regions of the wing in Figure 6.7 and 

the Figure 6.8, respectively. Unlike the blue ornithopter, the luff and tip regions, 

which cover the entire leading edge surface, dominate the circulatory forces. The 

phases of these regions match the middle of the downstroke fairly well and 

consequently they match the vertical measured force phase, but lead the horizontal 

measured force phase by 60˚. However, the flap region component of the circulatory 

force is in phase with the measured horizontal force, but its magnitude only 50% to 

80% of the measured value, which is not large enough to counteract the phase of the 

luff and tip horizontal circulatory forces. The total contribution of the circulatory 

force approximates the vertical force magnitude and phase well, but significantly 

over-estimates the horizontal force magnitude and while having a large phase lag. 
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Figure 6.7: White ornithopter, circulatory force components from each wing region. 
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Figure 6.8: White ornithopter, non-circulatory force components for each wing region. 
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The non-circulatory forces on the white ornithopter are much more accurate in 

both phase and magnitude for the horizontal force than the circulatory force. The 

primary contribution to the non-circulatory force comes from the flap region and 

wing tip, with the wing tip having 70% of the flap regions magnitude and a phase lag 

of 15˚ from the flap region. As with the blue ornithopter, there is no appreciable 

contribution of the luff region to the non-circulatory forces. Vertical force predictions 

by the non-circulatory force reach 80% of the measured force magnitude, but the non-

circulatory phase is oriented exactly at the downstroke-upstroke transition, which 

creates a large phase lag up to 135˚ from measured values.  

6.1.3 Conclusions 

Several important conclusions can be made from the comparison of the 

modeled and measured forces. First, the total circulatory lift very closely 

approximates the measured lift value and phase. This shows that the quasi-steady lift 

model, which was extended to apply unsteady effects and the additional sail theory 

lift, can accurately predict the lift produced by the ornithopters used for research. In 

turn, the quasi-steady model can be applied in a stability and control algorithm to 

implement autonomous flight controls. Secondly, the non-circulatory force provides 

the best prediction of the horizontal or thrust force, with the majority of the force 

being produced by the wing area aft and outboard of the diagonal spar. This confirms 

suspicions that the rotational flexibility of the trailing edge flap region is required to 

generate thrust during flight. If this region of the wing is compromised, the 

ornithopter will not be able to fly. Also note that the forces produced by the trailing 

edge region of the white ornithopter were much larger than that of the blue 
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ornithopter. Comparing the two wings, the flap and tip regions of the white 

ornithopter are much larger in area and the diagonal spar intersection with the leading 

edge occurs earlier. This geometry difference may be why these regions have greater 

importance in the both the circulatory and non-circulatory force magnitudes for the 

white ornithopter. Finally, the contribution of the circulatory force to the horizontal 

force, and the contribution of the non-circulatory force to the vertical force, only act 

to diverge the total modeled forces from the measured quantites. While these forces 

cannot be neglected, they should be examined further to ensure their accuracy. 

Considering the simplicity of the model it does a good job of matching the trends of 

the measured forces, expecially the circulatory vertical force magnitude and phase. 

6.2 Comparison with Computational Fluid Dynamics 

A computational fluid dynamics (CFD) analysis of blue ornithopter was 

completed by two research scientists using the same kinematic data as the analytical 

aerodynamic model [74]. A summary of this research and a comparison of CFD 

results with the analytical model are now presented. Conclusions are drawn regarding 

which method provides the most accuracy and insight while minimizing 

computational expenditure. 

The CFD model was completed by Sitaraman and Roget at the National 

Institute of Aerospace [74]. Their approach involved developing a deforming grid 

mesh that tracks the wing motion and applying a RANS packages, UMTURNS, to the 

ornithopter at the hovering condition for a flapping rate of 3.2 Hz. This frequency is 

quite a bit lower than the actual frequency used in flight, but the shape of vertical 

(lift) and horizontal (thrust) curves are very similar to the 5 Hz case before resonance 
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is reached for the blue ornithopter. Since the CFD approach is capable of modeling 

the flow behavior at hover, it should provide more accurate results than the analytical 

model, which must assume a forward flight velocity. Also, the CFD code will capture 

the unsteadiness of the flow and any stall behavior that is present. The CFD model 

structure was also adjusted to account for the intertial effects of the wings, though 

they were quite small.  

Qualitative results from the CFD analysis showed that the flow around the 

wing separates at the transitions between upstroke and downstroke, shedding a vortex 

which is pushed slowly backward by the horizontal induced velocity. The wing 

passes through this wake region as it moves through its stroke towards the next 

transition point; this causes an increase in the lift force similar to the wake capture for 

insects. The separation that causes the shed vortices is not symmetric for the wing, it 

is larger on the lower side than the upper side, which could effect the net lift value. 

Quantitative comparisons of the CFD results with the measured forces are 

presented in Figure 6.9 and Figure 6.10 for the 3.2 Hz case. The CFD results match 

the measured vertical (lift) force values within 10%, with the majority of 

overprediction occurring at the middle of downstroke where the computed lift lags the 

measured value by 30˚.  Horizontal (thrust) forces results deviate by up to 50% to the 

positive and negative side of the measured horizontal force values, but the thurst 

phase is captured well. 
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Figure 6.9: CFD results compared to measurements for the blue ornithopter at 3.2 Hz. 

 

 
Figure 6.10: CFD results versus mean stroke angle for blue ornithopter at 3.2 Hz. 
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 Comparing the accuracy of the CFD results to the analytical model accuracy 

shows that they have similar trends. Both approaches capture the magnitude of the 

vertical force very well, but overpredict the thrust values. The phase accuracy is also 

similar for the blue ornithopter results, with the vertical force lagging the measured 

force slightly and good correlation between the modeled horizontal force phase and 

measured values.  Where the analytical model produces poorer results, it can be 

partially attributed to the flight condition. The flapping velocity will differ enough 

between 5 and 3.2 Hz to reduce the effect of the non-circulatory force on the 

analytical model results, which reduces the error in the vertical force phase and the 

horizontal force magnitude.  

As a whole, both approaches work fairly well and both could use further 

revision based on additional experiements or more nonlinear and unsteady modeling 

approaches. However, considering the simplicity of the quasi-steady analytical model, 

it does an adequate job of predicting the behavior of a very complex flight system. 

Realistically, the CFD results should be used to amend the analytical model so that it 

can account for stall effects and so that a more accurate model of induced velocities 

can be developed. Using the CFD results to iterate on the analytical model is less 

expensive than doing additional experiments. The advantage of the analytical model 

is its low computational cost and simplicity, which will allow it to be imterpreted into 

a flight model for stability and control purposes.  
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Chapter 7. Conclusions 

This final chapter will present a summary of the research, results and conclusions, 

as well as their impact on the design considerations for future ornithopters. Lastly, 

future work prospects are considered. 

7.1 Summary of Research 

This thesis presented a method to develop a flapping membrane wing 

analytical aerodynamic model using experiments that measure the wing kinematics. 

The motivation for this research was to develop a simple aerodynamic model that can 

be applied to stability and control of the flight dynamics to stabilize the flapping wing 

vehicle and allow an autopilot to be implemented. Background regarding the 

implementation and aerodynamic modeling of man-made ornithopters was presented, 

along with an overview of avian flight which provides a starting point for all flapping 

wing research. Fixed and flapping wing aerodynamics theories were presented to 

support the development of the quasi-steady aerodynamic model utilized for this 

research. The final aerodynamic model accounted for quasi-steady motions with 

unsteady effects and membrane wing performance as well as the non-circulatory 

apparent mass force generated by the accelerating wing. Blade element theory was 

used to apply the aerodynamic theory to the membrane wing so that local kinematics 

could be accounted for.  

Motion tracking experiments were applied to two ornithopters in order to 

capture the wing kinematics. Kinematic results showed the flapping wings utilize a 
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vertical stroke plane but experienced significant leading edge bending and chordwise 

pitching along the wing span. The membrane wing behavior was shown to be first 

order in regions where slack was present, which validated the use of the membrane 

aerodynamic equation for lift coefficient. Finally the vertical and horizontal forces 

measured during the motion tracking experiments were analyzed for magnitude and 

phase trends in relation to the wing stroke angle. 

An analysis of the wing parameters was conducted. Reynolds number was 

found to vary between 20,000 and 285,000, with an average of 100,000 for the 

optimal flapping rate of 5Hz and the optimal flight speed of 5 m/s. The optimal flight 

speed was determined by analyzing the drag and power curves, the optimal flight 

speed range was found to be between 3 and 5 m/s. This optimal velocity range was 

limited to 5 m/s by the Strouhal number calculations, which required flight speeds of 

5 m/s or higher to produce optimal thrust. Reduced frequency was also examined, 

with results varying from 0.2 to 2 depending on flight conditions. This implies the 

wing is in highly unsteady flow and the lift deficiency function will reduce the 

circulatory lift by 50%. An analysis was also completed to determine the induced 

velocities on the flapping wing using momentum theory; these results were utilized 

later in the aerodynamic model. 

Finally, the aerodynamic model was applied to the flapping wing for a flight 

speed of 5 m/s at the optimal flapping frequency range of 4.5 to 5 Hz. Results showed 

a good approximation of the vertical force magnitude, with a phase lag of 30˚ 

between the maximum measured force and the maximum modeled force. The 

circulation forces in particular showed excellent correlation with the vertical force 
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magnitude and phase. Horizontal forces were grosslly overestimated by the model 

due to the impact of the circulatory forces developed by the trailing edge flap region, 

if only non-circulatory forces were considered the horizontal force was fairly accurate 

in both peak to peak magnitude and phase. These general trends seem to indicate that 

the circulatory force dominates the actual vertical or lift force generated by the wing, 

while the non-circulatory force generated by the trailing edge flap region produces the 

majority of the thrust. Further scrutiny of the modeling method would be required to 

improve these results, including a more accurate description of the induced velocities 

and inclusion of additional unsteady effects such as stall behavior and wake capture. 

These effects can be examined using the computational fluid dynamics results 

developed in tandem with the analytical model. Despite its simplicity, the analytical 

model still showed sufficient modeling capacity that was only slightly worse than the 

predictions of the CFD analysis.  

7.2 Impact on Design 

This analysis provides some confirmation regarding how the flapping 

membrane wing produces the lift and thrust necessary to fly. The luff region and the 

wing tip produce the majority of the lift on the wing; while the trailing edge flap 

region produces thrust using both circulatory and non-circulatory methods. These 

results indicate that the wing structure is very important, especially the intersection of 

the two spars at the leading edge. To maintain flight using a membrane wing it is 

necessary to allow for flexibility so the wing can twist and bend to produce both 

circulatory and non-circulatory thrust forces. Without the rotation of the trailing edge 

flap and the twisting along the span the ornithopters are unlikely to fly.  
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Improvements to the wing design are desired to increase the lift and thrust 

efficiency of the ornithopter. Carbon fiber fingers could be inserted into the luff 

region of the wing from the leading edge spar to the diagonal spar to establish a 

desired camber shape while still allowing enough flexibility in the membrane to 

maintain a high stall angle of attack. The wing tip could also be tailored to allow for 

additional bending by placing a passive morphing device such as a torsional spring at 

the intersection of the two spars. The bending retraction of the wing tip will 

significantly increase the net lift without producing a large thrust penalty. This design 

change will require reinforcing the trailing edge flap region to maintain the current 

non-circulatory thrust profile. A long term goal may include applying a more 

complex morphing method, such as multiple degrees of freedom at the shoulder or 

elbow to mimic actual bird anatomy. These joints would fundamentally change the 

way the current wing produces lift and thrust and would allow for more complex 

flight behavior, such as perching. 

Additional design concepts can be taken directly from avian and bat flight. 

Leading edge roughness could be adapted from owl flight to trigger turbulent flow 

and delay the effects of stall, while also decreasing the noise profile of the flapping 

wings. A membrane based leading edge flap similar to that seen on bat wings could 

also be added to act as a high lift device. Perhaps the simplest design feature to 

explore is the use of slots or winglets at the ornithopter wing tips to reduce induced 

drag. Further research studies should be completed on the techniques used by bats and 

birds to influence their aerodynamic performance, efficiency and maneuverability to 
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determine their implementation in ornithopters. Trade studies in the design and 

optimization of membrane wings should also be completed. 

7.3 Future Work 

Both experimental and computational tasks could be completed to improve the 

aerodynamic modeling results and provide more insight into ornithopter flight. These 

tasks are summarized below. 

1. Complete additional motion tracking experiments with test cases that vary the 

flapping axis angle. Experimenting with different wing shapes and structures 

would also be useful to determine the contribution of specific wing design 

elements to the measured force values. 

2. Complete a motion tracking experiment in free flight conditions to confirm 

that the wing kinematics are similar for the constrained hover condition. 

3. Complete a wind tunnel test using the motion tracking setup and PIV 

measurements to extract the vortex wake behavior. Experiment with both 

fixed and free flight conditions.  The wake behavior can then be used to 

determine the circulation and induced velocity values. 

4. Extract the stall conditions and induced velocities from the CFD results and 

apply them to the analytical model. 

5. Isolate the aerodynamic versus inertial forces by measuring the forces 

produced by the ornithopter while flapping in a vacuum. 

6. Measure the individual contribution of the luff and flap regions of the wing by 

making partial wing sections. 

7. Test individual components of the lift coefficient equation for accuracy. 
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Appendices: MATLAB codes 
 
% aeromodel.m 
% Aerodynamic Modeling of Ornithopters with Segmented Wings (TE Flaps) 
  
% Author: Robyn Harmon, UMD Morpheus Laboratory 
  
clear   % Clear workspace 
clc     % Clear command window 
  
%------------------------------- NOMENCLATURE ----------------------------- 
  
%       B = full wing span (m) 
%       b = half-chord length (m) 
%       dc = blade element chord length (m) 
%       dr = blade element width (m) 
%       c = local chord length (m) 
%       r = local span position 
%       c_mean = mean chord length (m) 
%       r_mean = span position at mean chord length (m) 
%       S = total wing surface area (m^2) 
%       AR = wing aspect ratio 
%       n_blades = number of blade elements 
  
%       alpha = relative angle of attack (rad) 
%       beta = flapping angle (rad) (time history input) 
%       theta = blade pitch angle from body axis (rad) 
%       gamma = flight path angle (rad) 
%       delta = pitch of flapping axis with respect to flight velocity 
  
%       U = flight velocity (m/s) 
%       V = total velocity due to quasi-steady motion (m/s) 
%       Vrel = relative velcoity (m/s)  
%       u = longitudinal induced velocity (m/s) 
%       v = vertical induced velocity (m/s) 
%       hdot = vertical plunging velocity of wing (m/s) 
%       beta_dot = time varying angular velocity of wing (rad/sec) 
%       beta_ddot = time varying angular acceleration of wing (rad/sec) 
%       w = mean angular velocity of wing (2*pi*f) (rad/sec) 
  
%       Cl or CL = lift coefficient (local) 
%       Cd or CD = drag coefficient (local) 
%       Cn or CN = normal force coefficient (local) 
%       K = parasite drag coefficient ratio 
%       CDp = parasite drag coefficient of ornithopter 
%       Cf = flat plate drag coefficient 
  
%       Ck = Theodorsen's lift deficiency function 
%       F = Theodorsen's function component 
%       G = Theodorsen's function component 
  
%       k = reduced frequency 
%       f = flapping frequency (Hz) 
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%       rho = air density (kg/m3) 
%       mu = viscosity of air 
%       Re = Reynold's number 
%       Sr = Strouhal number 
  
%------------------------- CONVERSIONS & CONSTANTS ------------------------ 
  
dtr = pi/180;       % degrees to radians 
rtd = 180/pi;       % radians to degrees 
intom = 0.0254;     % inches to meters 
mtoin = 1/intom;   % meters to inches 
NtoP = 0.2248;      % newtons to pounds force 
PtoN = 4.4482;      % pounds to newtons force 
rho = 1.293;        % air density STP (kg/m3) 
mu = 1.8e-5;        % viscosity 
display('Conversion factors and constants calculated'); 
  
%--------------------------------- GEOMETRY ------------------------------- 
  
% Specify which ornithopter is being analyzed: Trinity or Odyssey 
bird = input('What bird is being used, Trinity (T) or Odyssey (O)? ','s'); 
  
% Specify vehicle weight 
mass = input('What is the mass of the vehicle (kg)? '); 
weight = mass*9.81; 
  
% Specify which file has the wing planform (x,y) data 
wing_data = input('What file has the wing planform data ','s'); 
wing = load(wing_data); 
  
% Locate x,y data in file, convert from inches to meters 
x = abs(wing(:,1));    % wing boundary points in x (chord) direction (m) 
y = abs(wing(:,2));    % wing boundary points in y (span) direction (m) 
  
% Calculate wing geometry: span, area, aspect ratio, etc. 
R = max(y);             % half-span (m) 
B = R*2;                % full-span (m) 
C = max(abs(x));        % chord at wing root 
S = trapz(abs(x),y);    % wing surface area for half wing 
AR = B^2/(2*S);         % aspect ratio 
Sw = 4*S;               % approx wetted wing area 
c_mean = B/AR;          % mean chord 
  
% Specify number of blade elements to be used in the analysis 
n_blades = 12; 
  
% Specify maximum blade element lengths for each bird, local r/R, c values 
if bird == 'T' 
    % L = maximum blade length, m 
    Cmax = [230 209 188 162 142 118 92 66 51 100 152 158]/1000; 
    r = [26 42 55 73 87 103 119 137 196 33 88 138]/229*R; 
    c = [123 120 116 113 110 105 102 98 72 121 110 98]/125*C; 
elseif bird == 'O' 
    Cmax = [120 107 94 82 69 58 48 34 64 35 65 85]/235*R; 
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    r = [25 29 56 71 83 97 110 126 202 39 97 142]/235*R; 
    c = [143 141 138 135 133 129 125 122 90 141 129 117]/143*C; 
end 
  
% Nondimensional span 
r_R = r/R; 
  
% Calculate location of mean chord, r_mean is between blades 8 and 9 
r_mean = r(8) + (c_mean-c(8))*(r(9)-r(8))/(c(9)-c(8)); 
  
display('Wing geometry determined'); 
  
%----------------------- VICON & MEASURED FORCE DATA ---------------------- 
  
% Specify and load reflective marker data set, this data set should be 
% preprocessed to correlate with the measured force data in time. 
markers = input('What reflective marker data should be used? ','s'); 
load(markers);    % marker locations on wing, (m) 
display('Vicon experimental data has been loaded') 
  
% Calculate number of time steps (rows) of data, calibrate time sequence 
rows = length(time);    % how many time steps there are 
time = time - time(1);  % calibrate time so initial time is zero 
  
% Load measured force data from the same motion tracking experiment, this 
% data should be cross-correleated with the marker data set. 
forces = input('What measured force data set should be used? ','s'); 
meas_force = load(forces); % will have format: [time thrust 0 lift stroke] 
  
% What is the time delay required for data synchronization? 
sync = input('What time delay synchronizes the measured forces? '); 
  
% Extract measured forces, time sequence and measured stroke angle 
time_meas = meas_force(:,1) + sync;    % Syncronized time 
axial_meas = meas_force(:,2)*PtoN;      % axial force, (N) 
normal_meas = -meas_force(:,4)*PtoN;    % normal force, (N) 
stroke_meas = lsmoo(meas_force(:,5),50);    % measured stroke angle 
% Remember that the normal force must be corrected for sign as shown 
  
% Linear interpolation of axial and normal forces at marker time points 
axial_interp = interp1(time_meas,axial_meas,time);  
normal_interp = interp1(time_meas,normal_meas,time);  
  
% Input frequency and data partitioning information 
freqdata = input('What is the name of the frequency info file? ','s'); 
load(freqdata) 
  
% assign frequencies to time span 
frequency = zeros(rows,1); 
int = 1; 
for j = 1:rows 
    if int <= length(freq)   
        if time(j) >= stop_freq(int)+0.05 
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            freq_change(int) = j; 
            int = int + 1 ; 
        end 
        if int <= length(freq) 
            frequency(j) = freq(int); 
        end 
    end 
end 
  
if bird == 'T' 
    start = 771; 
else 
    start = find(time==start_freq(1)); 
end 
stop = freq_change(end); 
display('Experimental results uploaded and synchronized'); 
display('    '); 
  
%------------------------ SPECIFY FLIGHT CONDITIONS------------------------ 
  
% Input flight speed of ornithopter in m/s 
U = input('What is the flight speed (m/s)? ');    
  
% Input flight path angle of ornithopter (deg) 
gamma_deg = input('What is the flight path angle (deg)? ');  
gamma = gamma_deg*dtr; 
  
% Input pitch angle of flapping axis with respect to flight velocity U 
delta_deg = input('What is the pitch angle of flapping axis (deg)? '); 
delta = delta_deg*dtr; 
  
display('    '); 
display('Flight conditions specified'); 
  
%------------- FORM BLADE ELEMENTS, CALCULATE LOCAL ORIENTATION ----------- 
  
% Initialize pitch, yaw and stroke angle matrices 
theta = zeros(rows,n_blades);    
theta_adj = zeros(rows,n_blades); % final adjusted pitch for rear blades 
yaw = zeros(rows,n_blades); 
beta = zeros(rows,n_blades); 
hdot = zeros(rows,n_blades); 
beta_dot = zeros(rows,n_blades); 
beta_ddot = zeros(rows,n_blades); 
theta_dot = zeros(rows,n_blades); 
theta_ddot = zeros(rows,n_blades); 
  
  
% Set yaw for blades 10 through 12 to 35 degrees 
yaw(:,10:12) = 35*dtr; 
  
% Form leading edge (x,y,z) matrices 
LEx = [LE1(:,1) LE2(:,1) LE3(:,1) LE4(:,1) LE5(:,1) LE6(:,1) LE7(:,1)... 
    LE8(:,1) LE9(:,1) LE10(:,1) LE11(:,1) LE12(:,1) LE13(:,1)];  
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LEy = [LE1(:,2) LE2(:,2) LE3(:,2) LE4(:,2) LE5(:,2) LE6(:,2) LE7(:,2)... 
    LE8(:,2) LE9(:,2) LE10(:,2) LE11(:,2) LE12(:,2) LE13(:,2)]; 
LEz = [LE1(:,3) LE2(:,3) LE3(:,3) LE4(:,3) LE5(:,3) LE6(:,3) LE7(:,3)... 
    LE8(:,3) LE9(:,3) LE10(:,3) LE11(:,3) LE12(:,3) LE13(:,3)]; 
if bird == 'O' 
    LEx(:,14) = LE14(:,1); 
    LEy(:,14) = LE14(:,2); 
    LEz(:,14) = LE14(:,3); 
end 
  
% Calculate mean stroke angle along span 
dy = LEy(:,2:end)-LEy(:,1:end-1); 
dz = LEz(:,2:end)-LEz(:,1:end-1); 
LEangle = atan(dz./dy); 
stroke_mean = mean(LEangle,2)*rtd; 
stroke_amp = (max(stroke_mean) + abs(min(stroke_mean)))*dtr; 
  
% Form blade elements and calculate local pitch, yaw and stroke angle 
for j = 1:n_blades    % 12 blades 
    % Call blades.m for each blade element 
    % Input: Which ornithopter, blade number, marker data, max freq & dt  
    % Output: 2D airfoil points, length and width, pitch and stroke angle 
     
    f_high = 8; % maximum frequency for low pass filter 
    dt = time(2)-time(1);   % time step size 
    [Bx,By,Bz,dr(j),dc(:,j),theta(:,j),beta(:,j)] = ... 
        blades(bird,j,markers,f_high,dt); 
     
    % Calculate maximum stroke size for each blade element 
    stroke_size(1,j) = max(beta(:,j))-min(beta(:,j)); 
     
    % Determine slack percentage in blade 
    % Remove any dc's longer than Cmax due to any inaccurate marker points 
    dc_rough(:,j) = min(dc(:,j),Cmax(j));  
    [dc(:,j),Hgain,fgain,hgain,tgain] = hsmoo(dc_rough(:,j),f_high,dt); 
    if j < 9 
        slack(:,j) = abs(Cmax(j)-dc(:,j)); % slack length 
    else 
        slack(:,j) = zeros(rows,1); 
        dc(:,j) = Cmax(j)*ones(rows,1); 
    end 
    epsilon(:,j) = slack(:,j)./dc(:,j); % slack length as % chord 
    b = dc/2;   % Half chord length 
     
    % Store blade data points, set local yaw angle and adjust pitch for 
    % non leading edge blades by the mean pitch of the blades in front 
    % ... 
    % Blades 1-9 are on the leading edge and have zero yaw and no pitch 
    % adjustments are necessary so set pitch(:,j) = pitch_tot(:,j); 
    if j==1 B1X = Bx; B1Y = By; B1Z = Bz; theta_adj(:,j) = theta(:,j); 
    elseif j==2 B2X = Bx; B2Y = By; B2Z = Bz; theta_adj(:,j) = theta(:,j); 
    elseif j==3 B3X = Bx; B3Y = By; B3Z = Bz; theta_adj(:,j) = theta(:,j); 
    elseif j==4 B4X = Bx; B4Y = By; B4Z = Bz; theta_adj(:,j) = theta(:,j); 
    elseif j==5 B5X = Bx; B5Y = By; B5Z = Bz; theta_adj(:,j) = theta(:,j); 
    elseif j==6 B6X = Bx; B6Y = By; B6Z = Bz; theta_adj(:,j) = theta(:,j); 
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    elseif j==7 B7X = Bx; B7Y = By; B7Z = Bz; theta_adj(:,j) = theta(:,j); 
    elseif j==8 B8X = Bx; B8Y = By; B8Z = Bz; theta_adj(:,j) = theta(:,j); 
    elseif j==9 B9X = Bx; B9Y = By; B9Z = Bz; theta_adj(:,j) = theta(:,j); 
    % ...     
    % Blades 10-12 are on the leading edge and have 55 degree yaw and pitch  
    % is reduced by the mean pitch of the blades in front of them 
    elseif j==10 B10X = Bx; B10Y = By; B10Z = Bz;  
        theta_adj(:,j) = theta(:,j) - mean(theta(:,1:3),2); 
    elseif j==11 B11X = Bx; B11Y = By; B11Z = Bz;  
        theta_adj(:,j) = theta(:,j) - mean(theta(:,3:6),2); 
    elseif j==12 B12X = Bx; B12Y = By; B12Z = Bz;  
        theta_adj(:,j) = theta(:,j) - mean(theta(:,6:8),2); 
    end 
  
%------------------- CALCULATE VELOCITY & ACCELERATION--------------------- 
  
% Calculate local velocities and accelerations, blade slack percentage 
  
% Derivatives will be calculated using take_deriv.m which numerically 
% utilizes Adams-Bashforth 3 method for central points, and Euler-explicit 
% or Adams-Bashforth 2 near boundaries. The motion of the front and rear  
% chord points for each blade will be used for the derivatives because they  
% are limited in vibrations by the leading edge and diagonal spars 
  
    % Determine blade velocity average between LE and TE of blade 
     
    hdot(start:stop,j) = take_deriv(time(start:stop),[Bz(start:stop,1)... 
        Bz(start:stop,end)],f_high,dt); 
           
    % Calculate pitching rate of blades 
    theta_dot(start:stop,j) = take_deriv(time(start:stop),... 
        theta(start:stop,j),f_high,dt); 
     
    % Calculate pitching acceleration of blades 
    theta_ddot(start:stop,j) = take_deriv(time(start:stop),... 
        theta_dot(start:stop,j),f_high,dt); 
     
    % Calculate the angular velocity of the wing (rad/sec) 
    beta_dot(start:stop,j) = take_deriv(time(start:stop),... 
        beta(start:stop,j),f_high,dt); 
     
    % Calculate the angular acceleration of the wing 
    beta_ddot(start:stop,j) = take_deriv(time(start:stop),... 
        beta_dot(start:stop,j),f_high,dt); 
        
    fprintf('Blade element %f complete.\n',j) 
end 
  
display('Blade elements formed and local orientation calculated'); 
disp('Blade velocities and accelerations have been calculated') 
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%---------------------------- AERO PARAMETERS ----------------------------- 
  
% Calculate and set aerodynamic parameters 
K = 4.4;                    % Profile drag factor 
e = 0.8;                    % Elliptical lift factor 
% Define set of test flight velocities, m/s 
Utest = [0.1 1 2 3 4 5 6 7 8 9 10]';  
  
% 
% 
% 
%            ANALYSIS OF LOCAL AND MEAN QUANTITIES, DRAG & POWER 
% 
% 
%------------------------- QUASI-STEADY VELOCITY -------------------------- 
  
% Calculate mean pitch and pitch rate values between blades 8 and 9 
theta_mean = theta(:,8)+(c_mean-c(8))*(theta(:,9)-theta(:,8))/(c(9)-c(8)); 
theta_dot_mean = theta(:,8)+(c_mean-c(8))*(theta_dot(:,9)-... 
    theta_dot(:,8))/(c(9)-c(8)); 
  
% Calculate angular position and velocity at r_mean 
beta_mean = beta(:,8)+(c_mean-c(8))*(beta(:,9)-beta(:,8))/(c(9)-c(8)); 
beta_dot_mean = beta_dot(:,8)+(c_mean-c(8))*(beta_dot(:,9)-... 
    beta_dot(:,8))/(c(9)-c(8)); 
  
% Velocities at Utest values 
for j = 1:length(Utest) 
    % Mean velocity at r_mean, c_mean location 
    V_mean(:,j) = ((-Utest(j)*sin(gamma)+(c_mean/2*theta_dot_mean-r_mean... 
        *beta_dot_mean).*cos(theta_mean)*sin(gamma+delta).*... 
        cos(beta_mean)).^2 + (-Utest(j)*cos(gamma) + (c_mean/2*... 
        theta_dot_mean - r_mean*beta_dot_mean).*sin(theta_mean)*... 
        cos(gamma+delta)).^2).^(1/2);  
     
    % Velocity due to wing motion at wing root 
    V_root(:,j) = ((-Utest(j)*sin(gamma)+(3*c_mean/4*theta_dot(:,1)-... 
        r(1)*beta_dot(:,1)).*cos(theta(:,1))*sin(gamma+delta).*... 
        cos(beta(:,1))).^2 + (-Utest(j)*cos(gamma)+ (3*c_mean/4*... 
        theta_dot(:,1) - r(1)*beta_dot(:,1)).*sin(theta(:,1))*... 
        cos(gamma+delta)).^2).^(1/2);  
  
    % Velocity due to wing motion at wing tip 
    V_tip(:,j) =((-Utest(j)*sin(gamma) + (c_mean/2*theta_dot(:,9) - ... 
        R*beta_dot(:,9)).*cos(theta(:,9))*sin(gamma+delta).*... 
        cos(beta(:,9))).^2 +  (-Utest(j)*cos(gamma) + (c_mean/2*... 
        theta_dot(:,9) - R*beta_dot(:,9)).*sin(theta(:,9))*... 
        cos(gamma+delta)).^2).^(1/2); 
end 
  
%--------------------------- STROUHAL NUMBER ------------------------------ 
  
% Calculate wing tip amplitude in Z direction and frequency values 
for j = 1:length(freq) 
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    A(j) = max(TIP(marker_start(j):marker_stop(j),3)) - ... 
                min(TIP(marker_start(j):marker_stop(j),3)); 
    f(j) = 1/(time(marker_stop(j))-time(marker_start(j))); 
end 
  
% Calculate Strouhal Number 
St = zeros(length(Utest),length(f)); 
for j = 1:length(f) 
    St(:,j) = f(j)*A(j)./Utest; 
end 
  
% Plot Strouhal Number 
for j = 1:length(f) 
    plot(Utest,St(:,j)); 
    hold on 
end 
plot([1 10],[0.2 0.2],[1 10],[0.4 0.4]); 
title('Strouhal Number: Blue Ornithopter') 
xlabel('U, m/s'), ylabel('Strouhal Number, St') 
hold off 
figure 
  
%----------------------------- REYNOLDS NUMBER ---------------------------- 
  
% Reynolds number using test velocity and mean chord 
Re_U = rho*c_mean*Utest/mu; 
  
for j = 1:length(f) 
    for i = 1:length(Utest) 
        % Calculate min and max mean velocities 
        V_mean_max(i,j) = max(V_mean(marker_start(j):marker_stop(j),i)); 
        V_mean_min(i,j) = min(V_mean(marker_start(j):marker_stop(j),i)); 
        Vmean(i,j) = (V_mean_max(i,j) + V_mean_min(i,j))/2; 
        % Calculate Reynolds Numbers 
        Re_mean_high(i,j) = rho*c_mean*V_mean_max(i,j)/mu;      
        Re_mean_low(i,j) = rho*c_mean*V_mean_min(i,j)/mu;    
        Re_mean(i,j) = (Re_mean_high(i,j) + Re_mean_low(i,j))/2; 
        Re_root_high(i,j) = rho*c(1)*max(V_root(marker_start(j):... 
            marker_stop(j),i))/mu;  
        Re_root_low(i,j) = rho*c(1)*min(V_root(marker_start(j):... 
            marker_stop(j),i))/mu;  
        Re_tip_high(i,j) = rho*c(9)*max(V_tip(marker_start(j):... 
            marker_stop(j),i))/mu;  
        Re_tip_low(i,j) = rho*c(9)*min(V_tip(marker_start(j):... 
            marker_stop(j),i))/mu;   
    end 
end 
  
% Plot Re range for each for various U velocities 
subplot(1,3,1); 
plot(f,Re_mean_low(1,:),'k:',f,Re_mean_high(1,:),'k--',... 
        f,Re_root_low(1,:),'r:',f,Re_root_high(1,:),'r--',... 
        f,Re_tip_low(1,:),'b:',f,Re_tip_high(1,:),'b--'); 
xlabel('Flapping Frequency, Hz'); 
ylabel('Reynolds Number'); 
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title('U = 2 m/s'); 
if bird == 'T' 
    axis([f(end) f(1) 0 3e5]); 
else 
    axis([f(1) f(end) 0 3e5]); 
end 
  
subplot(1,3,2); 
plot(f,Re_mean_low(4,:),'k:',f,Re_mean_high(4,:),'k--',... 
        f,Re_root_low(4,:),'r:',f,Re_root_high(4,:),'r--',... 
        f,Re_tip_low(4,:),'b:',f,Re_tip_high(4,:),'b--'); 
xlabel('Flapping Frequency, Hz'); 
ylabel('Reynolds Number'); 
title('U = 5 m/s'); 
if bird == 'T' 
    axis([f(end) f(1) 0 3e5]); 
else 
    axis([f(1) f(end) 0 3e5]); 
end 
  
subplot(1,3,3); 
plot(f,Re_mean_low(7,:),'k:',f,Re_mean_high(7,:),'k--',... 
        f,Re_root_low(7,:),'r:',f,Re_root_high(7,:),'r--',... 
        f,Re_tip_low(7,:),'b:',f,Re_tip_high(7,:),'b--'); 
xlabel('Flapping Frequency, Hz'); 
ylabel('Reynolds Number'); 
title('U = 8 m/s'); 
if bird == 'T' 
    axis([f(end) f(1) 0 3e5]); 
else 
    axis([f(1) f(end) 0 3e5]); 
end 
legend('Mean: Low Boundary','Mean: High Boundary','Root: Low Boundary',... 
    'Root: High Boundary','Tip: Low Boundary','Tip: High Boundary'); 
figure 
  
%---------------------------- REDUCED FREQUENCY --------------------------- 
  
w = 2*pi*f; % angular velocity at frequency f 
  
% Calculate mean, root and tip reduced frequency bounds 
for j = 1:length(f) 
    for i = 1:length(Utest) 
        % Calculate Reynolds Number 
        k_mean_low(i,j) = w(j)*c_mean/(max(V_mean(marker_start(j):... 
            marker_stop(j),i))*2);      
        k_mean_high(i,j) = w(j)*c_mean/(min(V_mean(marker_start(j):... 
            marker_stop(j),i))*2);    
        k_root_low(i,j) = w(j)*c(1)/(max(V_root(marker_start(j):... 
            marker_stop(j),i))*2);  
        k_root_high(i,j) = w(j)*c(1)/(min(V_root(marker_start(j):... 
            marker_stop(j),i))*2);  
        k_tip_low(i,j) = w(j)*c(9)/(max(V_tip(marker_start(j):... 
            marker_stop(j),i))*2);  
        k_tip_high(i,j) = w(j)*c(9)/(min(V_tip(marker_start(j):... 
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            marker_stop(j),i))*2);   
    end 
end 
  
% Plot Re range for each for various U velocities 
subplot(1,3,1); 
plot(f,k_mean_low(1,:),'k:',f,k_mean_high(1,:),'k--',... 
        f,k_root_low(1,:),'r:',f,k_root_high(1,:),'r--',... 
        f,k_tip_low(1,:),'b:',f,k_tip_high(1,:),'b--'); 
xlabel('Flapping Frequency, Hz'); 
ylabel('Reduced Frequency'); 
title('U = 2 m/s'); 
if bird == 'T' 
    axis([f(end) f(1) 0 2]); 
else 
    axis([f(1) f(end) 0 2]); 
end 
  
subplot(1,3,2); 
plot(f,k_mean_low(4,:),'k:',f,k_mean_high(4,:),'k--',... 
        f,k_root_low(4,:),'r:',f,k_root_high(4,:),'r--',... 
        f,k_tip_low(4,:),'b:',f,k_tip_high(4,:),'b--'); 
xlabel('Flapping Frequency, Hz'); 
ylabel('Reduced Frequency'); 
title('U = 5 m/s'); 
if bird == 'T' 
    axis([f(end) f(1) 0 2]); 
else 
    axis([f(1) f(end) 0 2]); 
end 
  
subplot(1,3,3); 
plot(f,k_mean_low(7,:),'k:',f,k_mean_high(7,:),'k--',... 
        f,k_root_low(7,:),'r:',f,k_root_high(7,:),'r--',... 
        f,k_tip_low(7,:),'b:',f,k_tip_high(7,:),'b--'); 
xlabel('Flapping Frequency, Hz'); 
ylabel('Reduced Frequency'); 
title('U = 8 m/s'); 
if bird == 'T' 
    axis([f(end) f(1) 0 2]); 
else 
    axis([f(1) f(end) 0 2]); 
end 
legend('Mean: Low Boundary','Mean: High Boundary','Root: Low Boundary',... 
    'Root: High Boundary','Tip: Low Boundary','Tip: High Boundary'); 
figure 
  
%-------------------- PARASITE & INDUCED DRAG & POWER --------------------- 
  
% Induced drag estimation 
Di_mean = 2*(weight*cos(gamma))^2./(rho*(Vmean.^2)*pi*e*B^2);  
Di_U = 2*(weight*cos(gamma))^2./(rho*(Utest.^2)*pi*e*B^2);  
  
% Flat plate parasite drag coefficient 
Cf_fp_mean = 0.455*(log10(Re_mean)).^-2.58;  
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Cf_fp_U = 0.455*(log10(Re_U)).^-2.58;  
  
% Bird parasite drag coefficient 
CDp_mean = K*Cf_fp_mean;   
CDp_U = K*Cf_fp_U;   
  
% Parasite drag  
Dp_mean = rho*(Vmean.^2)*Sw.*CDp_mean/2;    
Dp_U = rho*(Utest.^2)*Sw.*CDp_U/2;  
  
% Total Drag 
D_mean = Di_mean + Dp_mean;           
D_U = Di_U + Dp_U; 
  
% Plot the drag 
plot(Utest,Di_U,'r-.',Utest,Dp_U,'b-.',Utest,D_U,'k-.'); 
hold on 
for j = 1:length(f) 
    plot(Utest,Di_mean(:,j),'r:',Utest,Dp_mean,'b--',Utest,D_mean,'k'); 
end 
legend('Induced Drag, U_r_e_f = U','Parasite Drag, U_r_e_f = U',... 
        'Total Drag, U_r_e_f = U','Induced Drag, U_r_e_f = V_m_e_a_n',... 
        'Parasite Drag, U_r_e_f = V_m_e_a_n'); 
title('Blue Ornithopter: Drag Curves') 
xlabel('Flight Velocity U, m/s'), ylabel('Drag, N') 
hold off 
figure 
  
% Compute the mean power requirements 
Pi_mean = Di_mean.*Vmean; 
Pp_mean = Dp_mean.*Vmean; 
Pi_U = Di_U.*Utest; 
Pp_U = Dp_U.*Utest; 
P_U = Pi_U + Pp_U; 
Ptot_mean = Pi_mean + Pp_mean; 
  
% Plot the power curves 
plot(Utest,Pi_U,'r-.',Utest,Pp_U,'b-.',Utest,P_U,'k-.'); 
hold on 
for j = 1:length(f) 
    plot(Utest,Pi_mean(:,j),'r:',Utest,Pp_mean,'b--',Utest,Ptot_mean,'k'); 
    hold on 
end 
legend('Induced Power, U_r_e_f = U','Parasite Power, U_r_e_f = U',... 
        'Total Power, U_r_e_f = U','Induced Power, U_r_e_f = V_m_e_a_n',... 
        'Parasite Power, U_r_e_f = V_m_e_a_n'); 
title('White Ornithopter: Power Curves') 
xlabel('Flight Velocity U, m/s'), ylabel('Power Required, Watts') 
hold off 
  
%------------------- INDUCED VELOCITIES: Momentum Theory ------------------ 
  
% Equivalent actuator disk area 
Ae = R^2*stroke_amp*cos(gamma); 
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% Induced velocity from momentum theory using weight, drag 
u_theory = (D_U+weight*sin(gamma))./(2*rho*Ae*Utest*e); 
v_theory = (weight*cos(gamma))./(2*rho*Ae*Utest*e); 
  
% Initialize u,v matrices 
u = zeros(rows,n_blades); 
v = zeros(rows,n_blades); 
q = normalize_z(beta_dot(start:stop),length(time(start:stop))); 
  
question = input('Would method of induced velocities is used (1 or 2?) '); 
for j = 1:n_blades 
    if question == 1  
        g = find(Utest==U); 
        u(start:stop,j) = u_theory(g); 
        v(start:stop,j) = v_theory(g)*q; 
    elseif question == 2 
        % Induced velocities from momentum theory using measured force values 
        u(:,j) = sign(axial_interp).*(abs(axial_interp)/(2*rho*Ae)).^(1/2); 
        v(:,j) = sign(normal_interp).*(abs(normal_interp)/(2*rho*Ae)).^(1/2); 
    end 
end 
  
% Plot momentum theory induced velocity results 
plot(Utest,u_theory,'b--',Utest,v_theory,'r:'); 
legend('u = horizontal','v = vertical'); 
xlabel('Flight Speed U, m/s'); ylabel('Induced Velocity, m/s'); 
title('Induced Velocity from Method 1: Steady Flight Condition'); 
figure 
  
if bird == 'T' 
    T = (time(marker_start(4):marker_stop(4))-time(marker_start(4)))/... 
        (time(marker_stop(4))-time(marker_start(4))); 
    plot(T,u(marker_start(4):marker_stop(4)),'b--',T,... 
        v(marker_start(4):marker_stop(4)),'r:'); 
    title('Blue Ornithopter: Induced Velocity Method 2'); 
else 
    T = (time(marker_start(9):marker_stop(9))-time(marker_start(9)))/... 
        (time(marker_stop(9))-time(marker_start(9))); 
    plot(T,u(marker_start(9):marker_stop(9)),'b--',T,... 
        v(marker_start(9):marker_stop(9)),'r:'); 
    title('White Ornithopter: Induced Velocity Method 2'); 
end 
xlabel('t/T for One Flapping Period at 4.5Hz to 5Hz') 
ylabel('Induced Velocity, m/s') 
legend('u = horizontal','v = vertical') 
  
 
% 
%                       END OF PARAMETER ANALYSIS 
% 
%                       
%                       BEGIN AERO MODEL ANALYSIS 
% 
% 
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% 
%%------------------------- VELOCITY and AOA ------------------------------ 
  
  
% Point of pitch rotation, 1/4 chord for luff region, LE for flap region 
a = [-.5 -.5 -.5 -.5 -.5 -.5 -.5 -.5 -1 -1 -1 -1]; 
  
Vblade = zeros(rows,n_blades); % Blade velocity vertical to flapping axis 
Hblade = zeros(rows,n_blades); % Blade velocity horizontal to flapping axis 
Vtot = zeros(rows,n_blades);   % Total velocity vertical to flapping axis 
Htot = zeros(rows,n_blades);   % Total velocity horizontal to flapping axis  
Vrel = zeros(rows,n_blades); 
  
% Vertical and axial velocities of blade element center points 
for j = 1:n_blades  
    % Leading edge blade elements, one through nine 
    if 1 <= j <= 9 
        Vblade(:,j) = U*sin(gamma) - r(j)*beta_dot(:,j).*cos(beta(:,j))... 
            + theta_dot(:,j).*(-a(j)*b(:,j) + b(:,j)).*cos(theta(:,j))... 
            .*cos(beta(:,j)); 
        Hblade(:,j) = U*cos(gamma) + theta_dot(:,j).*(-a(j)*b(:,j) + ... 
            b(:,j)).*sin(theta(:,j)); 
    % Blade element ten 
    elseif j == 10 
        Vblade(:,j) = U*sin(mean(theta(:,1:3),2)) - r(j)*beta_dot(:,j)... 
            .*cos(beta(:,j)) + theta_dot(:,j).*(-a(j)*b(:,j) + ... 
            b(:,j)).*cos(theta(:,j)).*cos(beta(:,j)); 
        Hblade(:,j) = U*cos(mean(theta(:,1:3),2)) +  theta_dot(:,j).*... 
            (-a(j)*b(:,j) + b(:,j)).*sin(theta(:,j)); 
    % Blade element eleven 
    elseif j == 11  
        Vblade(:,j) = U*sin(mean(theta(:,3:6),2)) - r(j)*beta_dot(:,j)... 
            .*cos(beta(:,j)) + theta_dot(:,j).*(-a(j)*b(:,j) + ... 
            b(:,j)).*cos(theta(:,j)).*cos(beta(:,j)); 
        Hblade(:,j) = U*cos(mean(theta(:,3:6),2)) +  theta_dot(:,j).*... 
            (-a(j)*b(:,j) + b(:,j)).*sin(theta(:,j)); 
    % Blade element twelve 
    elseif j==12  
        Vblade(:,j) = U*sin(mean(theta(:,6:8),2)) - r(j)*beta_dot(:,j)... 
            .*cos(beta(:,j)) + theta_dot(:,j).*(-a(j)*b(:,j) + ... 
            b(:,j)).*cos(theta(:,j)).*cos(beta(:,j)); 
        Hblade(:,j) = U*cos(mean(theta(:,6:8),2)) +  theta_dot(:,j).*... 
            (-a(j)*b(:,j) + b(:,j)).*sin(theta(:,j)); 
    end 
    Vtot(:,j) = Vblade(:,j) + u(:,j)*sin(gamma+delta) - ... 
        v(:,j)*cos(gamma+delta);  
    Htot(:,j) = Hblade(:,j) + u(:,j)*cos(gamma+delta) + ... 
        v(:,j)*sin(gamma+delta); 
    Vrel(:,j) = (Vtot(:,j).^2 + Htot(:,j).^2).^(1/2); 
end 
  
% Estimate a_o based on membrane theory for luff region 
a_o = zeros(rows,n_blades); 
for j = 1:8 
    a_o(:,j) = -0.636*sqrt(epsilon(:,j))/(2*pi).*sign(-beta_dot(:,j)); 
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end 
  
% Calculate inflow angle phi 
phi = atan2(Vtot,Htot); 
  
% Adjust pitch phase slightly (0.02 sec) 
for i = 8:rows 
    for j = 1:n_blades 
            theta_new(i,j) = theta_adj(i-7,j); 
    end 
end 
  
% Relative angle of attack at 3/4 chord 
alpha = zeros(rows,n_blades); 
alpha = theta_new - a_o + phi; 
  
 % ----------------- REDUCED FREQUENCY & LIFT DEFICIENCY ------------------- 
  
% Calculate local reduced frequency at spanwise locations 
for i = 1:n_blades 
    if i < 10 
        k_act(:,i) = 2*pi*frequency*c(i)./(2*Vrel(:,i)); 
    elseif i == 10 
        k_act(:,i) = mean(k_act(:,1:3),2); 
    elseif i == 11 
        k_act(:,i) = mean(k_act(:,3:6),2); 
    elseif i == 12 
        k_act(:,i) = mean(k_act(:,6:8),2); 
    end 
end 
  
% Determine Theodorsen lift deficiency function values @ k 
load theodorsen.mat 
for m = 1:n_blades 
    for n = 1:length(time) 
    Ck_real_interp(n,m) = interp1(k,Ck_real,k_act(n,m));  
    Ck_imag_interp(n,m) = interp1(k,Ck_imag,k_act(n,m)); 
    Ck_mag(n,m) = sqrt(Ck_real_interp(n,m)^2 + Ck_imag_interp(n,m)^2); 
    Ck_phase(n,m) = atan(Ck_imag_interp(n,m)/Ck_real_interp(n,m)); 
    end 
end 
    
% ------------------------- CIRCULATORY LIFT FORCE ------------------------- 
  
% Initialize circulatory lift coefficient matrix 
CL_c = zeros(rows,n_blades); 
  
% Quasi-Steady Lift Coeffient with addition of C(k) factor and sail theory 
CL_c = 2*pi.*sin(alpha).*Ck_mag + 0.636*sqrt(epsilon);   
  
dL_c = rho*(Vrel.^2)/2.*CL_c.*dc;    % Circulatory lift per unit span dr 
  
% Calculate forces over blade spans 
for j = 1:n_blades 
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    L_c(:,j) = dL_c(:,j)*dr(j);     
end 
  
% -------------------------- NON-CIRCULATORY FORCE ------------------------- 
  
% Non-circulatory lift  
for j = 1:n_blades 
    % Acceleration, 180 degrees opposite stroke angle curve 
    accel(:,j) = r(j)*beta_ddot(:,j).*cos(theta(:,j))+theta_dot(:,j).*U ... 
        + theta_ddot(:,j).*(-a(j)*b(:,j)); 
    N_nc(:,j) = pi*rho.*(Cmax(j)^2)/4.*(accel(:,j))*dr(j); 
end 
  
% --------------------------- TOTAL LIFT & DRAG ---------------------------- 
  
% Break circulation force into horizontal (H) and vertical (V) components  
for j = 1:n_blades 
    dV_c(:,j) = L_c(:,j).*cos(phi(:,j))*cos(gamma+delta);  
    dH_c(:,j) = L_c(:,j).*sin(phi(:,j))*cos(gamma+delta); 
    dV_nc(:,j) = N_nc(:,j).*cos(-theta(:,j)).*cos(beta(:,j))... 
        *cos(gamma+delta); 
    dH_nc(:,j) = N_nc(:,j).*sin(-theta(:,j))*cos(gamma+delta); 
end 
  
V_c_luff = sum(dV_c(:,1:8),2)*2; 
H_c_luff = sum(dH_c(:,1:8),2)*2; 
V_nc_luff = sum(dV_nc(:,1:8),2)*2; 
H_nc_luff = sum(dH_nc(:,1:8),2)*2; 
  
V_c_tip = dV_c(:,9)*2;  
H_c_tip = dH_c(:,9)*2;  
V_nc_tip = (dV_nc(:,9))*2; 
H_nc_tip = (dH_nc(:,9))*2; 
  
V_c_flap = sum(dV_c(:,10:12),2)*2; 
H_c_flap = sum(dH_c(:,10:12),2)*2; 
V_nc_flap = sum(dV_nc(:,10:12),2)*2; 
H_nc_flap = sum(dH_nc(:,10:12),2)*2; 
  
% Circulatory and Non-circulatory components 
vert_c = V_c_luff + V_c_tip + V_c_flap; 
vert_nc = V_nc_luff + V_nc_tip + V_nc_flap; 
  
%------------------------ PARASITE & INDUCED DRAG ------------------------- 
  
Vrel_mean = Vrel(:,8)+(c_mean-c(8))*(Vrel(:,9)-Vrel(:,8))/(c(9)-c(8)); 
Di = 2*(weight*cos(gamma))^2./(rho*(Vrel_mean.^2)*2*S*pi*e*AR);  
Re = rho*c_mean*Vrel_mean/mu; 
Cf_fp = 0.455*(log10(Re)).^-2.58;  
CDp = K*Cf_fp;   
Dp = rho*(Vrel_mean.^2)*Sw.*CDp/2;    
  
% Total drag 
drag = Di + Dp;           
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V_induced = -Di.*sin(mean(phi,2))*cos(gamma+delta); 
H_induced = -Di.*cos(mean(phi,2))*cos(gamma+delta); 
V_parasite = -Dp.*sin(mean(phi,2))*cos(gamma+delta); 
H_parasite = -Dp.*cos(mean(phi,2))*cos(gamma+delta); 
  
%-------------------------------------------------------------------------- 
  
  
vert_drag = V_induced + V_parasite; 
horiz_c = H_c_luff + H_c_tip + H_c_flap; 
horiz_nc = H_nc_luff + H_nc_tip + H_nc_flap; 
horiz_drag = H_induced + H_parasite; 
  
% Add force components, final force values 
vert = vert_c + vert_nc + vert_drag; 
horiz = horiz_c + horiz_nc + horiz_drag;  
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% blades.m - Blade Element Formation for Ornithopter Analysis 
  
function [Bx,By,Bz,dr,dl,pitch_smooth,bend] = blades(bird,n,file,f_high,dt) 
  
% bird = 'T' for blue (Trinity) or 'O' for white (Odyssey) 
% n = blade number 
% file = the file containing the wing marker locations 
  
load(file)  % load marker locations 
  
% Form blade elements of wing in triangular/LE region 
% Calculate blade width dr, length dl, and local stroke angle (bend) 
  
% Blade camber points set by Bx, By, Bz containing the x, y, z coordinates 
% for the markers along the camber line. First and last columns of Bx, By, 
% Bz are the leading and trailing edge points that set the blade chord 
  
% Blue and white ornithopter have same blade formation for n = 1-4 
% other blade elements will be handled individually 
  
if n == 1 
    Bx = [LE2(:,1) M11(:,1) M12(:,1) M13(:,1) M14(:,1) ME2(:,1)]; 
    By = [LE2(:,2) M11(:,2) M12(:,2) M13(:,2) M14(:,2) ME2(:,2)]; 
    Bz = [LE2(:,3) M11(:,3) M12(:,3) M13(:,3) M14(:,3) ME2(:,3)]; 
    dr = mean((sum((LE3-LE2).^2,2).^0.5)/2 + (sum((LE2-LE1).^2,2).^0.5)/2); 
    dl = (sum((LE2-ME2).^2,2)).^0.5; 
    bend = local_stroke(LE1,LE3); 
elseif n == 2 
    Bx = [LE3(:,1) M21(:,1) M22(:,1) M23(:,1) M24(:,1) ME3(:,1)]; 
    By = [LE3(:,2) M21(:,2) M22(:,2) M23(:,2) M24(:,2) ME3(:,2)]; 
    Bz = [LE3(:,3) M21(:,3) M22(:,3) M23(:,3) M24(:,3) ME3(:,3)]; 
    dr = mean((sum((LE4-LE3).^2,2).^0.5)/2 + (sum((LE3-LE2).^2,2).^0.5)/2); 
    dl = (sum((LE3-ME3).^2,2)).^0.5; 
    bend = local_stroke(LE2,LE4); 
elseif n == 3 
    Bx = [LE4(:,1) M31(:,1) M32(:,1) M33(:,1) M34(:,1) ME4(:,1)]; 
    By = [LE4(:,2) M31(:,2) M32(:,2) M33(:,2) M34(:,2) ME4(:,2)]; 
    Bz = [LE4(:,3) M31(:,3) M32(:,3) M33(:,3) M34(:,3) ME4(:,3)]; 
    dr = mean((sum((LE5-LE4).^2,2).^0.5)/2 + (sum((LE4-LE3).^2,2).^0.5)/2); 
    dl = (sum((LE4-ME4).^2,2)).^0.5; 
    bend = local_stroke(LE3,LE5); 
elseif n == 4 
    Bx = [LE5(:,1) M41(:,1) M42(:,1) M43(:,1) M44(:,1) ME5(:,1)]; 
    By = [LE5(:,2) M41(:,2) M42(:,2) M43(:,2) M44(:,2) ME5(:,2)]; 
    Bz = [LE5(:,3) M41(:,3) M42(:,3) M43(:,3) M44(:,3) ME5(:,3)]; 
    dr = mean((sum((LE6-LE5).^2,2).^0.5)/2 + (sum((LE5-LE4).^2,2).^0.5)/2); 
    dl = (sum((LE5-ME5).^2,2)).^0.5; 
    bend = local_stroke(LE4,LE6); 
elseif n == 5 
    if bird == 'T' 
        Bx = [LE6(:,1) M51(:,1) M52(:,1) M53(:,1) ME6(:,1)]; 
        By = [LE6(:,2) M51(:,2) M52(:,2) M53(:,2) ME6(:,2)]; 
        Bz = [LE6(:,3) M51(:,3) M52(:,3) M53(:,3) ME6(:,3)]; 
    elseif bird == 'O' 
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        Bx = [LE6(:,1) M51(:,1) M52(:,1) M53(:,1) M54(:,1) ME6(:,1)]; 
        By = [LE6(:,2) M51(:,2) M52(:,2) M53(:,2) M54(:,2) ME6(:,2)]; 
        Bz = [LE6(:,3) M51(:,3) M52(:,3) M53(:,3) M54(:,3) ME6(:,3)]; 
    end 
    dr = mean((sum((LE7-LE6).^2,2).^0.5)/2 + (sum((LE6-LE5).^2,2).^0.5)/2); 
    dl = (sum((LE6-ME6).^2,2)).^0.5; 
    bend = local_stroke(LE5,LE7); 
elseif n == 6 
    if bird == 'T' 
        Bx = [LE7(:,1) M61(:,1) M62(:,1) M63(:,1) ME7(:,1)]; 
        By = [LE7(:,2) M61(:,2) M62(:,2) M63(:,2) ME7(:,2)]; 
        Bz = [LE7(:,3) M61(:,3) M62(:,3) M63(:,3) ME7(:,3)]; 
    elseif bird == 'O' 
        Bx = [LE7(:,1) M61(:,1) M62(:,1) M63(:,1) M64(:,1) ME7(:,1)]; 
        By = [LE7(:,2) M61(:,2) M62(:,2) M63(:,2) M64(:,2) ME7(:,2)]; 
        Bz = [LE7(:,3) M61(:,3) M62(:,3) M63(:,3) M64(:,3) ME7(:,3)]; 
    end 
    dr = mean((sum((LE8-LE7).^2,2).^0.5)/2 + (sum((LE7-LE6).^2,2).^0.5)/2); 
    dl = (sum((LE7-ME7).^2,2)).^0.5; 
    bend = local_stroke(LE6,LE8); 
elseif n == 7 
    if bird == 'T' 
        Bx = [LE8(:,1) M71(:,1) M72(:,1) M73(:,1) ME8(:,1)]; 
        By = [LE8(:,2) M71(:,2) M72(:,2) M73(:,2) ME8(:,2)]; 
        Bz = [LE8(:,3) M71(:,3) M72(:,3) M73(:,3) ME8(:,3)]; 
    elseif bird == 'O' 
        Bx = [LE8(:,1) M71(:,1) M72(:,1) M73(:,1) M73(:,1) ME8(:,1)]; 
        By = [LE8(:,2) M71(:,2) M72(:,2) M73(:,2) M73(:,2) ME8(:,2)]; 
        Bz = [LE8(:,3) M71(:,3) M72(:,3) M73(:,3) M73(:,3) ME8(:,3)]; 
    end 
    dr = mean((sum((LE9-LE8).^2,2).^0.5)/2 + (sum((LE8-LE7).^2,2).^0.5)/2); 
    dl = (sum((LE8-ME8).^2,2)).^0.5; 
    bend = local_stroke(LE7,LE9); 
elseif n == 8 
    if bird == 'T' 
        Bx = [LE9(:,1) M81(:,1) M82(:,1) ME9(:,1)]; 
        By = [LE9(:,2) M81(:,2) M82(:,2) ME9(:,2)]; 
        Bz = [LE9(:,3) M81(:,3) M82(:,3) ME9(:,3)]; 
    elseif bird == 'O' 
        Bx = [LE9(:,1) M81(:,1) M82(:,1) M83(:,1) ME9(:,1)]; 
        By = [LE9(:,2) M81(:,2) M82(:,2) M83(:,2) ME9(:,2)]; 
        Bz = [LE9(:,3) M81(:,3) M82(:,3) M83(:,3) ME9(:,3)]; 
    end 
    dr = mean((sum((LE10-LE9).^2,2).^0.5) + (sum((LE9-LE8).^2,2).^0.5)/2); 
    dl = (sum((LE9-ME9).^2,2)).^0.5; 
    bend = local_stroke(LE8,LE10); 
elseif n == 9 
    if bird == 'T' 
        Bx = [LE12(:,1) TE13(:,1)]; 
        By = [LE12(:,2) TE13(:,2)]; 
        Bz = [LE12(:,3) TE13(:,3)]; 
        dr = mean(2*(sum((LE13-LE11).^2,2).^0.5)); 
        dl = (sum((LE12-TE13).^2,2)).^0.5; 
        bend = local_stroke(LE10,LE13); 
    elseif bird == 'O' 
        Bx = [LE14(:,1) F33(:,1)]; 
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        By = [LE14(:,2) F33(:,2)]; 
        Bz = [LE14(:,3) F33(:,3)]; 
        dr = mean(2*(sum((LE14-LE11).^2,2).^0.5)); 
        dl = (sum((LE14-F33).^2,2)).^0.5; 
        bend = local_stroke(LE11,LE14); 
    end 
end 
  
% Perform simple linear interpolation on some points for rear flap 
% Form rear blades with just LE and TE points, find pitch & yaw 
if n == 10 
    if bird == 'T' 
        mid = (ME2+ME3)/2; 
        Bx = [mid(:,1) TE3(:,1)]; 
        By = [mid(:,2) TE3(:,2)]; 
        Bz = [mid(:,3) TE3(:,3)]; 
        dr = mean((sum((ME4-ME1).^2,2).^0.5 + sum((TE5-TE1).^2,2).^0.5)/2); 
        dl = min((sum((mid-TE3).^2,2)).^0.5,51); 
        bend = local_stroke(ME1,ME4); 
    elseif bird == 'O' 
        Bx = [ME3(:,1) TE3(:,1)]; 
        By = [ME3(:,2) TE3(:,2)]; 
        Bz = [ME3(:,3) TE3(:,3)]; 
        dr = mean((sum((ME5-ME1).^2,2).^0.5 + sum((TE5-TE1).^2,2).^0.5)/2); 
        dl = min((sum((ME3-TE3).^2,2)).^0.5,51); 
        bend = local_stroke(ME1,ME5); 
    end 
elseif n == 11 
    if bird == 'T' 
        mid = (ME5+ME6)/2; 
        Bx = [mid(:,1) TE7(:,1)]; 
        By = [mid(:,2) TE7(:,2)]; 
        Bz = [mid(:,3) TE7(:,3)]; 
        dr = mean((sum((ME7-ME4).^2,2).^0.5 + sum((TE9-TE5).^2,2).^0.5)/2); 
        dl = min((sum((mid-TE7).^2,2)).^0.5,100); 
        bend = local_stroke(ME4,ME7);  
    elseif bird == 'O' 
        mid = (ME6+ME7)/2; 
        Bx = [mid(:,1) TE7(:,1)]; 
        By = [mid(:,2) TE7(:,2)]; 
        Bz = [mid(:,3) TE7(:,3)]; 
        dr = mean((sum((ME8-ME5).^2,2).^0.5 + sum((TE9-TE5).^2,2).^0.5)/2); 
        dl = min((sum((mid-TE7).^2,2)).^0.5,100); 
        bend = local_stroke(ME5,ME8); 
    end 
elseif n == 12 
    if bird == 'T' 
        mid = ME8 + (ME9-ME8)*2/3; 
        Bx = [mid(:,1) TE11(:,1)]; 
        By = [mid(:,2) TE11(:,2)]; 
        Bz = [mid(:,3) TE11(:,3)]; 
        dr = mean((sum((ME10-ME7).^2,2).^0.5 + sum((TE13-TE9).^2,2).^0.5)/2);  
        dl = min((sum((mid-TE11).^2,2)).^0.5,152); 
        bend = local_stroke(ME7,ME10); 
    elseif bird == 'O' 
        Bx = [ME9(:,1) TE11(:,1)]; 
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        By = [ME9(:,2) TE11(:,2)]; 
        Bz = [ME9(:,3) TE11(:,3)]; 
        dr = mean((sum((ME10-ME8).^2,2).^0.5 + sum((TE13-TE9).^2,2).^0.5)/2);  
        dl = min((sum((ME9-TE11).^2,2)).^0.5,152); 
        bend = local_stroke(ME8,ME10); 
    end 
end 
  
[m,n] = size(Bx); % size of each matrix 
  
% Calculate difference between X & Z at LE and TE of blade element 
Zdiff = Bz(:,1)-Bz(:,n);  % positive if pitch up, negative if pitch down 
Xdiff = Bx(:,1)-Bx(:,n);  % negative always if taking LE - TE 
% Calculate blade pitch wrt flapping axis 
pitch = atan(-Zdiff./Xdiff); 
[pitch_smooth,H,f,h,t] = hsmoo(pitch,f_high,dt); 
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% Take derivative in time using Adams-Bashforth 3 for central points, and 
% Euler-Explicit or Adams-Bashforth 2 near boundaries 
  
function Dsmooth = take_deriv(t,x,f_high,dt) 
  
% Take the derivative of x with respect to t, where x can be multiple 
% columns of data whose derivatives will be averaged across rows to give 
% one mean derviative value. 
  
% Determine number of rows or iterations for derivative 
rows = length(t); 
  
D = zeros(rows,1);  % Initialize results vector 
  
% First and last time step using Euler Explicit approximation 
D(1) = mean(((x(2,:)-x(1,:))/(t(2)-t(1))),2); 
D(rows) = mean(((x(rows,:)-x(rows-1,:))/(t(rows)-t(rows-1))),2); 
  
% Second time step using AB2 
D(2) = mean((((x(3,:)-x(2,:))*2/(t(3)-t(2))+D(1))/3),2); 
  
% Remaining time steps using AB3 
for k = 3:rows-1 
    D(k) = mean((((x(k+1,:)-x(k,:))*12/(t(k+1)-t(k)) + ... 
        16*D(k-1) - 5*D(k-2))/23),2); 
end 
  
[Dsmooth,H,f,h,t] = hsmoo(D,f_high,dt); 
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