
ABSTRACT

Title of dissertation: Efficient Solutions to
High-Dimensional and Nonlinear
Neural Inverse Problems

Sayyed Sina Miran
Doctor of Philosophy, 2019

Dissertation directed by: Professor Behtash Babadi
Department of Electrical and Computer Engineering

Development of various data acquisition techniques has enabled researchers

to study the brain as a complex system and gain insight into the high-level func-

tions performed by different regions of the brain. These data are typically high-

dimensional as they pertain to hundreds of sensors and span hours of recording. In

many experiments involving sensory or cognitive tasks, the underlying cortical activ-

ity admits sparse and structured representations in the temporal, spatial, or spectral

domains, or combinations thereof. However, current neural data analysis approaches

do not take account of sparsity in order to harness the high-dimensionality. Also,

many existing approaches suffer from high bias due to the heavy usage of linear

models and estimation techniques, given that cortical activity is known to exhibit

various degrees of non-linearity. Finally, the majority of current methods in com-

putational neuroscience are tailored for static estimation in batch-mode and offline

settings, and with the advancement of brain-computer interface technologies, these

methods need to be extended to capture neural dynamics in a real-time fashion. The



objective of this dissertation is to devise novel algorithms for real-time estimation

settings and to incorporate the sparsity and non-linear properties of brain activity for

providing efficient solutions to neural inverse problems involving high-dimensional

data. Along the same line, our goal is to provide efficient representations of these

high-dimensional data that are easy to interpret and assess statistically.

First, we consider the problem of spectral estimation from binary neuronal

spiking data. Due to the non-linearities involved in spiking dynamics, classical

spectral representation methods fail to capture the spectral properties of these data.

To address this challenge, we integrate point process theory, sparse estimation, and

non-linear signal processing methods to propose a spectral representation modeling

and estimation framework for spiking data. Our model takes into account the sparse

spectral structure of spiking data, which is crucial in the analysis of electrophysiology

data in conditions such as sleep and anesthesia. We validate the performance of our

spectral estimation framework using simulated spiking data as well as multi-unit

spike recordings from human subjects under general anesthesia.

Next, we tackle the problem of real-time auditory attention decoding from elec-

troencephalography (EEG) or magnetoencephalography (MEG) data in a competing-

speaker environment. Most existing algorithms for this purpose operate offline

and require access to multiple trials for a reliable performance; hence, they are

not suitable for real-time applications. To address these shortcomings, we inte-

grate techniques from state-space modeling, Bayesian filtering, and sparse estima-

tion to propose a real-time algorithm for attention decoding that provides robust,

statistically interpretable, and dynamic measures of the attentional state of the lis-



tener. We validate the performance of our proposed algorithm using simulated and

experimentally-recorded M/EEG data. Our analysis reveals that our algorithms

perform comparable to the state-of-the-art offline attention decoding techniques,

while providing significant computational savings.

Finally, we study the problem of dynamic estimation of Temporal Response

Functions (TRFs) for analyzing neural response to auditory stimuli. A TRF can

be viewed as the impulse response of the brain in a linear stimulus-response model.

Over the past few years, TRF analysis has provided researchers with great insight

into auditory processing, specially under competing speaker environments. However,

most existing results correspond to static TRF estimates and do not examine TRF

dynamics, especially in multi-speaker environments with attentional modulation.

Using state-space models, we provide a framework for a robust and comprehensive

dynamic analysis of TRFs using single trial data. TRF components at specific lags

may exhibit peaks which arise, persist, and disappear over time according to the

attentional state of the listener. To account for this specific behavior in our model,

we consider a state-space model with a Gaussian mixture process noise, and devise

an algorithm to efficiently estimate the process noise parameters from the recorded

M/EEG data. Application to simulated and recorded MEG data shows that the

proposed state-space modeling and inference framework can reliably capture the

dynamic changes in the TRF, which can in turn improve our access to the attentional

state in competing-speaker environments.
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Chapter 1: Introduction

Recent technological developments in neural data acquisition have provided

researchers with abundant neural data sets with various spatiotemporal resolutions

and recording modalities to study the brain. Neuroimaging techniques can be classi-

fied into invasive technologies, such as electrocorticography (ECoG), and noninvasive

technologies, such as M/EEG and functional magnetic resonance imaging (fMRI).

The high temporal resolutions of M/EEG (∼1 ms), convenient recording procedure,

and widespread applications in Brain-Computer Interface (BCI) systems and neural

prosthetics have increased the popularity of M/EEG in studying the human brain.

In order to relate the recorded data from the brain to the underlying func-

tions, one needs to solve the so-called ”neural inverse problem”. The general goal

in a neural inverse problem is to make inference on the activity of neuronal popula-

tions inside the brain or to decode the performed cognitive or sensory task, having

observed the neuroimaging data. Existing algorithms for such problems, however,

face the following key challenges in deciphering the underlying dynamic behavior of

the brain.

First, in many experiments involving sensory or cognitive tasks, the under-

lying cortical domains responsible for information processing are relatively focal,
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structured, and sparse [1]. This feature has been observed in various domains such

as the spectral, temporal, or spatial representations of neural data. On the other

hand, neuroimaging data usually pertain to hundreds of sensors and can span hours

of recording. Hence, neural data are relatively high dimensional with respect to the

number of involved regions of the brain in typical experiments. For instance, fMRI

data stream is approximately 1 million voxels per second, where each voxel corre-

sponds to a cube of 1 mm×1 mm×1 mm in the brain [2]. An important challenge in

computational neuroscience is, therefore, how to exploit the aforementioned sparse

and structured representations in order to harness the high-dimensionality of neural

data.

Second, it is known that there are various nonlinearities involved in cortical

processing. In order to have easily interpretable results and to reduce the complexity

of the models as well as their inference procedure, many existing approaches adopt

linear models in processing neural data. However, this heavy usage of linear models

and estimation techniques can induce large biases in the solutions themselves or the

computed measures and features from them. Therefore, it is important to devise

nonlinear models and estimation frameworks for neural inverse problems, which is

motivated by the brain function itself.

Finally, most existing approaches for neural inverse problems involve offline

processing and operate in batch-mode. In other words, they require either the whole

duration of an experiment or multiple training trials to be available prior to process-

ing. This type of processing and training data may not be possible or available in the

emerging applications of neuroimaging such as BCI systems, neural prosthetics, and
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smart hearing aid devices, which require real-time processing of neural data with

minimal amount of training data. Moreover, even in the batch-mode, most existing

methods in computational neuroscience result in static estimates and do not provide

a comprehensive dynamic picture of the brain function. Thus, the development of

real-time and low-complexity algorithms for dynamic analysis of neuroimaging data

is an important challenge to be addressed.

In this thesis, our goal is to design efficient algorithms for specific examples of

the discussed high-dimensional and nonlinear neural inverse problems. At the same

time, we consider efficient representations for the neural data, which are easily in-

terpretable for diagnosis or soft-decision making purposes and effectively summarize

the neuroimaging data for the task at hand. In Chapter 2, we consider the problem

of devising a sparse spectral representation for binary neuronal spiking data, which is

recorded invasively in the form of single- or multi-unit recordings. Neuronal spiking

data exhibit sparse oscillatory components in their spectrum under conditions such

as sleep or anesthesia [3,4]. Using the point process theory [5] and nonlinear signal

processing techniques, we propose a new model for spectral representation of binary

spiking data, which accounts for sparsity, and develop a fast procedure for its esti-

mation. Chapter 3 considers the problem of real-time auditory attention decoding

from M/EEG recordings in competing-speaker environments. Adopting techniques

from Bayesian filtering, state-space modeling, and nonlinear signal processing, we

develop a real-time algorithm for attention decoding in a dual-speaker setting which

uses a minimal amount of training data for parameter tuning. The algorithm out-

puts a robust, statistically interpretable, and dynamic measure of the attentional

3



state which can be used for soft-decision making in emerging applications such as

smart hearing aid devices. In Chapter 4, we study the problem of dynamic TRF

estimation, specially in competing-speaker environments, using state-space models.

TRF components at specific lags may exhibit heterogeneous dynamics during the

course of an experiment. These dynamics could be governed by the attentional state

in a cocktail party setting. For instance, these components can include peaks that

arise, persist, and disappear over time. To account for such dynamic behavior in our

model, we consider a state-space model with Gaussian mixture process noise, where

each mixture component captures a specific dynamic pattern. Then, we develop an

algorithm to estimate the parameters of the Gaussian mixture process noise from

single trial data. The Gaussian mixture process noise allows for reliable estimation

of rapid changes in the TRF, which can enhance the utility of TRFs in attention

decoding applications. Finally, we close this dissertation in Chapter 5 by concluding

remarks regarding our contributions, discussing potential limitations, and outlining

future directions of research.
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Chapter 2: Robust Estimation of Sparse Narrowband Spectra from

Binary Neuronal Spiking Data

Spectral analysis of time-series recorded from the brain, such as electroen-

cephalography (EEG), has long been used for monitoring and characterizing brain

activity in both clinical and research settings. Presence of specific oscillations in

the EEG has been identified as the neural correlate of a variety of cognitive func-

tions. Examples include the occipital alpha rhythms [6] and the somatomotor mu-

rhythms [7]. Benefiting from the well-developed theory of spectral analysis of time-

series, the spectral EEG signal processing techniques have been proven successful

for diagnosis purposes such as the identification of epilepsy seizures [8, 9] and sleep

disorders [10, 11].

Analysis of data from noninvasive recordings is limited by the low spatial reso-

lution of the measurement mechanism, as the sensors record the integrated electrical

activity of a large population of neurons in the brain. With the development of inva-

sive recording procedures, acquisition of Local Field Potential (LFP) and single- and

multi-unit recordings have also been made possible [12, 13]. The LFP captures the

electrical activity of a more localized population of neurons compared to EEG, and

single- and multi-unit recordings capture the neural activity at the neuronal level.
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Although EEG signal processing techniques can be readily applied to LFP record-

ings, analysis of spike recordings has set forth various signal processing challenges

due to their binary nature [14].

In recent years, the theory of point processes has been successfully employed

to model and analyze binary spiking data [5,15,16]. These models provide a math-

ematically principled framework to relate the observed neuronal responses to the

underlying covariates such as the sensory stimuli. In most of these applications,

the point processes are used to model the neuronal responses in the time domain

by enforcing temporal smoothness. The few exceptions which aim at calculating a

frequency domain representation of the spiking data often proceed by computing

an estimate of the spiking rate (as a continuous function) and then analyzing the

spectral properties of the estimated rate. The spiking rate estimation techniques

range from simple smoothing of the spiking histogram [17–19] to more sophisticated

models which use generalized linear Gaussian state-space models to estimate the

conditional intensity function (CIF) of the point process using Kalman filtering and

smoothing techniques [20, 21]. The objective of these techniques is to provide a

smoothed estimate of the spiking rate as a surrogate function whose power spec-

tral density (PSD) is interpreted as the spectral representation of the spiking data.

However, this interpretation has three immediate shortcomings. First, it is known

that smoothing in the time domain results in blurring in the frequency domain [22],

and hence these techniques are limited in terms of their spectral resolution. Second,

spectral estimation requires estimating the second-order statistics of the underlying

time-series, and even if the spiking rate is estimated accurately, the second-order

6



statistics may not be. Third, these techniques are blind to the low-dimensional

structure of neural data in conditions such as sleep [3], anesthesia [4], and epileptic

seizures [23]. This low-dimensional structure is often manifested as sparsity in the

spectral domain.

In this chapter, we address these shortcomings by casting the problem of spec-

tral estimation from binary spiking data in the traditional discrete-parameter har-

monic spectral estimation framework, where the objective is to estimate the second

moments of a harmonic process driving the spiking activity. To this end, we model

the spiking statistics of the underlying neurons by a conditional Bernoulli point

process model, where the CIF is formed by mapping a stationary harmonic process

through a logistic link function. Given the spiking data and considering sparsity-

promoting priors, we compute the maximum a posteriori (MAP) estimate of the

PSD of the harmonic process using the Expectation-Maximization (EM) algorithm.

In addition, we construct confidence intervals for these estimates via sampling from

the posterior distribution. Simulation studies concerning spiking data driven by

sparse harmonic and autoregressive (AR) processes as well as application to real

spiking data from anesthesia illustrate the superior performance of our proposed

technique as compared to several existing techniques. Although our motivation

stemmed from neuronal spiking data, it is worth noting that our modeling and es-

timation framework can be applied to any binary data modeled by point processes,

such as the heart beat [24, 25], in order to extract a sparse spectral representation

of the data.

The rest of this chapter is organized as follows: In Section 2.1, we introduce
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our model for the spiking activity of a population of neurons driven by a harmonic

process. In Section 2.2, we derive the sparse MAP estimator of the PSD associated

with the harmonic process. Section 2.2.3 discusses the construction of confidence

intervals for the PSD estimate based on the Metropolis-Hastings sampling. Section

2.3 provides simulation results comparing our sparse PSD estimates with those ob-

tained by existing methods for extracting the PSD of spiking data. Furthermore, we

apply our estimator to real multi-unit recordings of spiking activity under general

anesthesia. This is followed by our discussion and concluding remarks in Sections

2.4 and 2.5, respectively.

2.1 Preliminaries and Problem Formulation

Let (0, T ] be an observation interval during which the spiking activity of a

neuron is recorded. For t ∈ (0, T ] let N(t) be a point process representing the

number of spikes in (0, t] and Ht denote the spiking history in the interval (0, t). We

define the Conditional Intensity Function (CIF) of a point process N(t) as [26]:

λ(t|Ht) := lim
∆→0

P(N(t+ ∆)−N(t) = 1|Ht)

∆
(2.1)

In order to discretize the continuous-time point process, we consider bins of length

∆ such that T = K∆, for some integer K. Assuming that ∆ is small enough, the

probability of having two or more spikes in an interval of ∆ becomes negligible and

the point process can be approximated in the kth bin by a Bernoulli random variable

nk with success probability of λk := λ
(
k∆|Hk∆

)
∆, for 0 ≤ k ≤ K . This assumption

is biophysically plausible due to the absolute refractory period of neurons, and a
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choice of ∆ ∼ 1 ms is typically sufficient to ensure that at most one spike occurs in

any bin [5].

In general, oscillatory behavior of the neuronal spiking can be directly at-

tributed to the oscillatory nature of the CIF. Our objective is to develop a method

to estimate the PSD of the CIF from the observed binary spiking data. We consider

an ensemble of L neurons driven by the same CIF, and denote the observed spike

trains by {n(`)
k }L,K`=1,k=1. The CIF, in turn, is modeled by a second-order stationary

random process. We consider a simplified model where {xk}Kk=1 be a realization

of the second-order stationary process with mean µ. In our model, we consider a

logistic link for the CIF, such that λk = 1
1+exp(−xk)

. In summary, the model can be

expressed as: 
λk =

1

1 + e−xk
, 1 ≤ k ≤ K

n
(`)
k ∼ Bernoulli(λk), 1 ≤ k ≤ K, 1 ≤ ` ≤ L

(2.2)

and the objective is to estimate the PSD of xk given the observations {n(`)
k }L,K`=1,k=1.

In general, the PSD of second-order stationary processes can be characterized

using the Spectral Representation Theorem [22]. This theorem implies that for the

zero-mean, second-order stationary time series xk−µ with spectral density function

S(ω), there exists a continuous, orthogonal increment, and complex process Z(ω)

such that

xk − µ =

∫ π

−π
ejωkdZ(ω) (2.3)

where the integral is in the Riemann-Stieltjes sense and E{|dZ(ω)|2} = S(ω)dω.

The function S(ω) is referred to as the PSD. Several nonparametric estimation

9



techniques, such as the Welch’s method and multitaper estimate [22], exist to es-

timate S(ω) given a finite sequence of observations {xk}Kk=1. In our setting, due

to the non-linearity of the model, these techniques cannot be directly applied. We

therefore consider a discrete approximation to the PSD by assuming that the process

Z(ω) defines a discrete-parameter harmonic process, i.e., it is constant over intervals

of length π
N

for large enough N [22]. With this assumption, we can replace Z(ω)

by a jump process in [0, π) with jumps of π
N

(ai + jbi) at ωi = iπ
N

, where ai and bi

are some random variables, for i = 1, 2, . . . , N − 1, and π
N

is a normalization factor.

Given that the process xk is real, and invoking the symmetry Z(ω) = Z∗(−ω), we

can express the integral in Eq. (2.3) as:

xk − µ =
2π

N

N−1∑
i=1

(
ai cos(ωik)− bi sin(ωik)

)
. (2.4)

where ωi := iπ
N

. Using the property E{|dZ(ω)|2} = S(ω)dω, the PSD at ωi for

i = 1, 2, . . . , N − 1 can be expressed as:

S(ωi) =
π2

N2
E{a2

i + b2
i }. (2.5)

Letting x = [x1, x2, . . . , xK ]T ∈ RK , v = [ N
2π
µ, a1, b1, a2, b2, . . . , aN−1, bN−1]T ∈

R2N−1, and defining A ∈ RK×(2N−1) as

A := 2π
N



1 cos( π
N

) − sin( π
N

) . . . cos
(

(N−1)π
N

)
− sin

(
(N−1)π

N

)
1 cos(2π

N
) − sin(2π

N
) . . . cos

(
2(N−1)π

N

)
− sin

(
2(N−1)π

N

)
...

...
...

. . .
...

...

1 cos(Kπ
N

) − sin(Kπ
N

) . . . cos
(
K(N−1)π

N

)
− sin

(
K(N−1)π

N

)


(2.6)
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we can express Eq. (2.4) as follows:

x = Av. (2.7)

It is worth noting that the matrix A resembles the DFT/DCT synthesis ma-

trices; however, it is not in general full rank. A would have full column rank (resp.

full row rank) if K ≥ 2N−1 (resp. K ≤ 2N−1). We further assume that the process

Z(ω) is Gaussian, and hence the variables vi ∼ N (0, σ2
i ), for i = 2, 3, · · · , 2N − 1.

Note that vi’s are independent due to the orthogonality of the increments of Z(ω).

According to Eq. (2.5), we have S(ωi) = π2

N2 (σ2
2i + σ2

2i+1), which corresponds to the

discrete PSD approximation at ωi = iπ
N

, for i = 1, · · · , N − 1, with N controlling

the degree of approximation. Since we are interested in the oscillatory behavior of

the CIF, estimation of µ (i.e., the DC component) is not of particular importance.

Nevertheless, in order to have a consistent prior on all the elements of v, we assume

an independent Gaussian prior on µ such that v1 ∼ N (0, σ2
1).

2.2 Bayesian Estimation of the PSD

As a result of our formulation in Section 2.1, estimating the PSD of xk is

reduced to estimating the parameters θ := [σ2
1, σ

2
2, ..., σ

2
2N−1]T . Using a Bayesian

formulation, we will perform the parameter estimation in a computationally efficient

way. In addition, we can enforce the sparsity of the PSD by incorporating sparsity-

promoting priors on θ. To this end, we use an exponential prior with parameter γ

for the elements of θ resulting in a log-prior log fθ(θ) = (2N−1) log γ− γ∑2N−1
i=1 σ2

i .

Note that the log-prior is akin to the `1-norm of θ modulo constants, which is known

11



to promote sparsity. Using the shorthand notation

D :=
{
n

(`)
k

}L,K
`=1,k=1

, (2.8)

the maximum a posteriori (MAP) estimate of θ is defined as:

θ̂MAP = arg max
θ

(
log fθ|D (θ|D)

)
= arg max

θ

(
logP (D|θ) + log fθ(θ)

)
(2.9)

2.2.1 MAP Estimation via the Expectation-Maximization Algorithm

Expressing P (D|θ) solely in terms of the data D results in an intractable

function of θ. However, if the vector v was known, the log-likelihood of the complete

data could be expressed as:

log f(D,v|θ) = logP (D|v,θ) + log fv|θ(v|θ)

=
K∑
k=1

L∑
`=1

n
(`)
k (Av)k − log (1 + exp ((Av)k))

−
2N−1∑
i=1

(
v2
i

2σ2
i

+
1

2
log σ2

i

)
+ cnst. (2.10)

where cnst. stands for terms which are not functions of v or θ. We can thus use

the Expectation-Maximization (EM) algorithm to calculate the MAP estimate in

(2.9) [27].

The E Step: Suppose that at iteration r, we have an estimate of θ, denoted

by θ̂(r) =
[
σ2

1
(r)
, σ2

2
(r)
, · · · , σ2

2N−1
(r)]T

. Given that in the complete data (D,v), the

vector v is unobserved, in the E step we calculate the function

12



Q
(
θ|θ̂(r)

)
:=Ev|D,θ̂(r)

{
log f(D,v|θ)

}
+ log fθ(θ)

=Ev|D,θ̂(r)
{

log fv|θ(v|θ)
}

+ log fθ(θ) + cnst. (2.11)

=
2N−1∑
i=1

(
− 1

2
log σ2

i −
1

2σ2
i

Ev|D,θ̂(r)
{
v2
i

}
− γσ2

i

)
+ cnst.

where, similar to (2.10), we have used the conditional independence P (D|v,θ) =

P (D|v). In (2.11), the term cnst. represents all terms which are not functions of θ.

In order to compute the expectation in (2.11), the distribution of v|D, θ̂(r) or

its samples are required. However, calculating the distribution of v|D, θ̂(r) involves

computing intractable integrals, and sampling from v|D, θ̂(r) by numerical methods

such as the Metropolis-Hastings is not computationally efficient considering that it

has to be carried out in every iteration. As a result, Monte Carlo methods are not

computationally efficient when N is large.

As shown in [5,16], the density of v|D, θ̂(r), which is proportional to the prod-

uct of the Gaussian density v|θ̂(r) and a Binomial D|v, can be well approximated

by a multivariate Gaussian density N
(
µ

(r)
v ,Σ

(r)
v

)
. Noting that the mean and mode

of a multivariate Gaussian coincide, and that the Hessian of its natural logarithm is

equal to −
(
Σ

(r)
v

)−1
, we calculate the mode of fv|D,θ̂(r)(v|D, θ̂(r)) as the mean of the

Gaussian approximation and the Hessian of log fv|D,θ̂(r)(v|D, θ̂(r)) evaulated at the

13



mode as −
(
Σ

(r)
v

)−1
. For µ

(r)
v , we have:

µ(r)
v = arg max

v
log fv|D,θ̂(r)(v|D, θ̂(r))

= arg max
v

(
logP (D|v) + log fv|θ̂(r)(v|θ̂(r))

)
(2.12)

= arg max
v

( K∑
k=1

L∑
`=1

n
(`)
k (Av)k − log (1 + exp ((Av)k))−

2N−1∑
i=1

v2
i

2σ2
i

(r)

)
.

The maximization problem in (2.12) is concave, and the Hessian is negative

definite. Hence, we can use the Newton’s method to efficiently compute µ
(r)
v . The

method is summarized in Algorithm 1. The stopping condition SN can be either a

convergence constraint or a limit on the number of iterations.

Algorithm 1 Newton’s method for finding µ
(r)
v

Inputs: ensemble average spiking dataa n̄k := 1
L

∑L
`=1 n

(`)
k , for k = 1, 2, · · · , K,

current parameter estimate θ̂(r), Newton’s stopping condition SN .

Output: µ
(r)
v .

1: m(0) = 0.

2: iteration number i = 0.

3: while ¬SN do

4: i← i+ 1

5: x = Am(i−1).

6: λk = 1
1+e−xk

, for 1 ≤ k ≤ K.

7: q =
[
m

(i−1)
1

σ2
1
(r) , . . . ,

m
(i−1)
2N−1

σ2
2N−1

(r)

]T
.

8: calculate the gradient as g = LAT (n̄− λ)− q

9: U = diag
{

1

σ2
1
(r) , . . . ,

1

σ2
2N−1

(r)

}
.

10: G = diag
{

e−x1
(1+e−x1 )2

, . . . , e−xK
(1+e−xK )2

}
.

11: calculate the Hessian as H = −LATGA−U.

12: m(i) = m(i−1) −H−1g.

13: end while

14: µ
(r)
v = m(i).

an̄k is often referred to as the Peristimulus Time Histogram (PSTH).
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Letting aTi denote the ith row of the matrix A, the inverse covariance can be

computed as:

(
Σ(r)

v

)−1

= LATFA + diag

{
1

σ2
1

(r)
, · · · , 1

σ2
2N−1

(r)

}
(2.13)

where

F = diag

{
e−aT1 µ

(r)
v

(1 + e−aT1 µ
(r)
v )2

, · · · , e−aTKµ
(r)
v

(1 + e−aTKµ
(r)
v )2

}
(2.14)

Going back to (2.11), using solutions of (2.12) and (2.13), we have Ev|D,θ̂(r)
{
v2
i

}
=(

(µ
(r)
v )i

)2
+
(
Σ

(r)
v

)
i,i

, which we denote by E
(r)
i for notational simplicity.

The M Step: In the M step, we maximize Q(θ|θ̂(r)) with respect to θ. The

function Q(θ|θ̂(r)) is quasi-concave over the positive orthant with a unique maxi-

mizer. We have:

∂

∂σ2
i

Q(θ|θ̂(r)) = − 1

2σ2
i

+
E

(r)
i

2σ4
i

− γ = 0 (2.15)

Noting that γ and E
(r)
i are both positive, solving the quadratic equation 2γσ4

i +

σ2
i −E(r)

i = 0 for 1 ≤ i ≤ 2N−1 in terms of σ2
i ’s and picking the positive root gives

the updated parameter vector as:

(θ̂(r+1))i = σ2
i

(r+1)
=
−1 +

√
1 + 8γE

(r)
i

4γ
, 1 ≤ i ≤ 2N−1 (2.16)

It is worth noting that if no prior on σ2
i ’s is used, the EM algorithm can be

used similarly to calculate the Maximum Likelihood (ML) estimate of θ given the

data D. In that case, the update rule of the EM algorithm is simply given by:

(θ̂(r+1))i = σ2
i

(r+1)
= E

(r)
i , 1 ≤ i ≤ 2N−1 (2.17)

Algorithm 2 summarizes the MAP estimation of the PSD. The EM stopping

condition SEM again can be either a convergence condition or a limit on the number
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of iterations. A random vector with small positive elements can be considered as

the initialization point θ(0). It is worth noting that the maximization problem of

Eq. (2.9) is not concave or quasi-concave in general. Hence, the EM algorithm

may converge to a local maximum, depending on its initialization. However, our

numerical analysis suggests that initializing the EM algorithm with θ(0) taking small

positive values, results in meaningful and interpretable estimates as shown in our

simulations and real data analysis in Section 2.3.

Algorithm 2 MAP estimate of the PSD

Inputs: Ensemble spike observations D = {n(`)
k }L,K`=1,k=1, exponential prior hyper-

parameter γ, EM stopping condition SEM , EM initialization θ(0), frequency
spacing of the PSD estimate as the number of bins N in [0, π].

Output: N−1 uniform samples in (0, π) of the PSD associated with the ensemble
CIF.

1: Construct the matrix A as in Eq. (2.6).

2: Iteration number r = 0.

3: while ¬SEM do

4: Using Algorithm 1 with θ(r), solve the optimization problem of (2.12) to

calculate the mean of the Gaussian approximation, i.e. µ
(r+1)
v .

5: Using θ(r) and µ
(r+1)
v , calculate (2.13) as the covariance inverse of the Gaussian

approximation, i.e.
(
Σ

(r+1)
v

)−1
.

6: Update θ based on (2.16) to get θ̂(r+1)

7: r ← r + 1

8: end while

9: Using the last updated parameter vector θ̂(r), calculate the PSD estimates Ŝi =
π2

N2 (σ2(r)
2i + σ2(r)

2i+1) for 1 ≤ i ≤ N − 1.

Remark 2.1. It is worth noting that if there exists any prior information on the max-

imum frequency content of the data, this information can be incorporated into the

model in order to reduce the computational cost. For instance, neural data is often

sampled at rates much higher than the significant frequency content. Suppose fspc

16



is the frequency spacing we require, and we know the maximum frequency content

would not be larger than fmax. Thus, The number of bins in [0, fs
2

) corresponding

to this spacing is Nspc = d fs
2fspc
e, and we want to focus on the first Nmax = dfmax

fspc
e

bins. In this case, the matrix A in Eq. (2.6) can be reduced to an M × (2Nmax−1)

matrix rather than a M × (2Nspc−1) matrix. This modification can greatly reduce

the computational cost of the problem.

Remark 2.2. In general, the spectral resolution of a possibly infinite stationary

signal depends on the number of acquired samples, i.e. the main lobe width of the

sampling window. Similarly, the number of spiking samples K externally limits the

frequency resolution in the spectrum estimate of the neural covariate. In order not

to confuse this resolution with π
N

, we keep referring to π
N

as the frequency spacing in

the estimated spectrum rather than the spectrum resolution. As mentioned before,

N represents the desired number of spectrum estimate samples in [0, π) and controls

the degree of approximation.

Remark 2.3. Note that the as long as K ≥ 2Nmax − 1, the full column rank virtue

of the matrix A guarantees stable estimates of the spectra from Eqs. (2.12) and

(2.13). When K ≤ 2Nmax − 1, the matrix will only have full row rank, which may

result in instability of the Newton’s algorithm. Although the `1-regularization in

this case may mitigate the latter shortcoming (i.e., γ in Eq. (2.15)), we assume in

what follows that the number of observations K satisfies K ≥ 2Nmax − 1.
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2.2.2 Hyper-Parameter Selection

We choose the optimal value of the hyper-parameter γ using cross-validation.

We will use a two-fold cross-validation algorithm [28] to this end. We divide the

ensemble into two groups, thereby partitioning the data into D1 and D2. In this

case, the cross-validation criterion for each value of γ is the likelihood of D1 (res.

D2) given the estimated parameter vector θ̂ using D2 (res. D1). Considering the

generic data set D, we have:

P
(
D|θ̂

)
=

∫
· · ·
∫

v∈R(2N−1)

f(D,v|θ̂)dv1dv2 · · · dv2N−1 (2.18)

=

∫
· · ·
∫

v∈R(2N−1)

P (D|v)fv|θ̂(v|θ̂)dv1dv2 · · · dv2N−1 = Ev|θ̂

{
P (D|v)

}
.

We also have:

P (D|v) =
K∏
k=1

( 1

1 + e−aTk v

) L∑̀
=1
n
(`)
k
(

1− 1

1 + e−aTk v

) L∑̀
=1

(1−n(`)
k )

. (2.19)

Due to the independent Gaussian priors on the elements of v in our model,

we have v|θ̂ ∼ N (0, diag{θ̂}). Thus, the expectation in (2.18) can be estimated

in arbitrary precision using the Monte Carlo method [28] by drawing R samples

v1, . . . ,vR from N (0, diag{θ̂}) and calculating the sample average of P (D|v) in

(2.19), i.e., P (D|θ̂) ' 1
R

∑R
i=1 P (D|vr). Note that in order to ensure numerical

stability, we compute logP (D|vr), which from Eq. (2.19) takes an additive form over

k. Algorithm 3 summarizes the steps of the cross-validation algorithm to determine

the optimal value of the hyper-parameter γopt among a set of test values.
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Algorithm 3 Two-fold cross-validation for optimizing the hyper-parameter γ

Inputs: Two subsets of data D1 and D2, and a set of candidate values of γ given
by Γ.

Output: Optimal value of the hyperparameter γopt.

1: for each test value of γ do

2: Estimate θ̂1 using D1 from Algorithm 2.

3: Draw R samples v1, . . . , vR from N (0, diag{θ̂1}).
4: Estimate L2|1 := P (D2|θ̂1) using Monte Carlo sampling from (2.19).

5: Repeat steps 2 to 4 interchanging the roles of D1 and D2 to calculate L1|2.

6: L(γ) = 1
2
(L2|1 + L1|2).

7: end for

8: γopt = arg maxγ∈Γ L(γ).

2.2.3 Constructing Confidence Intervals

It is possible to construct confidence intervals for the estimated PSD values

{Ŝ1, · · · , ŜN−1} obtained from Algorithm 2 by sampling from the density fθ|D(θ̂|D).

We have:

fθ̂|D(θ̂|D) ∝ P (D|θ̂)fθ(θ̂) ∝ Ev|θ̂

{
P (D|v)

}
e
−γ

2N−1∑
i=1

σ2
i︸ ︷︷ ︸

g(θ̂,D, γ)

(2.20)

We can therefore use the Metropolis-Hastings algorithm [28] to sample from

fθ|D(θ̂|D). The expectation term in g(θ̂,D, γ) can be estimated using the Monte

Carlo sampling procedure explained in Section 2.2.2. Algorithm 4 summarizes the

Metropolis-Hasting algorithm for our sampling purpose. For simplicity, we have

considered a Gaussian proposal density q(u|w), i.e. u|w v N (u,Σq), where Σq

is a diagonal matrix in R(2N−1)×(2N−1) with diagonal elements proportional to the

estimated parameter vector θ̂. It is worth noting that g(θ̂,D, γ) is zero for any

vector θ̂ which is not element-wise non-negative. Thus, if the normally distributed

candidate z in line 3 of Algorithm 4 has negative components, it would be discarded.
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Algorithm 4 Constructing confidence intervals for {Ŝi}N−1
i=1

Inputs: Neural spiking data D, cross-validated hyperparameter γopt, MAP estimate

of θ (θ̂MAP), number of samples M , symmetric proposal density function q(.|.).
Output: confidence intervals for {Ŝi}N−1

i=1 .

1: Initialize ϑ(0) = θ̂MAP.

2: while m ≤M do

3: Generate a candidate z for the next sample by sampling from the density
q(z|ϑ(m−1)).

4: Calculate the acceptance ratio α := g(z,D,γopt)
g(ϑ(m−1),D,γopt)

.

5: If α ≥ 1, accept z as the next sample; otherwise, accept z as the next sample
with probability α.

6: If z is accepted as the next sample set ϑ(m) = z; otherwise set ϑ(m) = ϑ(m−1).

7: m← m+ 1

8: end while

9: Transform each sample ϑ(m), 1 ≤ m ≤ M , into a sample for Ŝi as Ŝ
(m)
i =

π2

N2 (σ2(m)
2i + σ2(m)

2i+1) for 1 ≤ i ≤ N − 1.

10: Construct confidence intervals at a level 1 − ν for {Ŝi}N−1
i=1 using the samples

{Ŝ(m)
i }M,N−1

m=1,i=1.

2.3 Application to Simulated and Real Data

In this section, we first demonstrate the performance of our method in two

simulated settings. The two settings correspond to CIFs from noisy two-tone line

spectra and an autoregressive process, respectively. We compare the performance

of our method with three existing techniques: 1) calculating the periodogram of the

spiking data of each neuron and averaging over the periodograms across neurons,

which we refer to as PER-PSD [29]; 2) smoothing the ensemble average spiking

(PSTH) and computing the PSD of the resulting smoothed PSTH, which we refer

to as the PSTH-PSD; 3) Using a state-space model to estimate the CIF, followed

by computing the PSD of the estimated CIF [16], which we will refer to as SS-PSD.
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Finally, we apply our method to ECoG data from a human subject under general

anesthesia and compare the extracted PSD from the spiking data to that of the

LFP.

It is worth noting that the class of spectra which is identifiable from neuronal

spiking data, is generally limited by the spiking rate in the PSTH. In a way, the

spiking rate represents the amount of information available for inference procedures

such as spectral estimation. The higher the PSTH spiking rate is, the larger and

more complex the class of identifiable spectra would be. In order to conduct simu-

lation studies and perform comparisons with existing methods in a setting akin to

real neuronal data, we have limited the simulation setting to PSTH spiking rates

of %5–%10 and sparse spectra which can potentially be identified under these low

spiking rates.

2.3.1 Spike Trains Driven by a Noisy Dual-Tone Signal

Consider the dual-tone signal

x(t) = 1.48 cos(2πf0t) + 0.685 cos(2πf1t) + 0.17n(t)− 5.7 (2.21)

with f0 = 1 Hz, f1 = 10 Hz, and n(t) representing a zero-mean white Gaussian

noise with unit variance. When sampled at fs = 300 Hz, the discretized data forms

xk. The bias term of −5.7 is chosen to make sure that the resulting spiking rate

is low enough and consistent with real-world neuronal spiking rates. The tones at

f0 and f1 are chosen as a model of neuronal spiking modulated by slow and alpha

oscillations, respectively. We consider K = 1000 samples of xk and simulated the
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spiking data for L = 10 neurons based on our model in (2.2). The signal xk and the

raster plot of the ensemble are shown in Figure 2.1–(a) and 2.1–(b), respectively.

The average spiking rate of the ensemble from the PSTH is 0.056.
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Figure 2.1: (a) Dual-tone signal x1:K (b) Raster plot of the ensemble.

Figure 2.2 shows the results obtained by our proposed method as well as

the PER-PSD, PSTH-PSD and SS-PSD methods. Figure 2.2–(a) shows the PSTH

smoothed via two Gaussian kernels: a narrow kernel (green trace) and a wide kernel

(dotted red trace). Figure 2.2–(b) shows the normalized multitaper estimate [22,30,

31] of the PSD corresponding to the smoothed PSTH values shown in panel 2.2–(a)

as well as the PER-PSD estimate. The multitaper method is arguably the most

reliable nonparametric spectral estimation technique, as it addresses the estimation

bias and variance trade-off in an optimal fashion [30]. The spectral resolution of the

multitaper method is chosen as 0.125Hz. The means of all spiking signals in PER-

PSD method, smoothed n̄ks in PSTH-PSD method, and x̂k|Ks in SS-PSD method

are subtracted prior to calculating the periodogram or multitaper estimate to make

sure the significant oscillatory components would not get dominated by the DC
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component. Also, all of the PSD estimates are normalized for comparison.
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Figure 2.2: Noisy dual-tone CIF model for a neuronal ensemble: (a) Normal-
ized smoothed PSTH using Gaussian kernels with small and large variances
(b) Normalized PER-PSD estimate and normalized multitaper estimate of the
PSD corresponding to the smoothed PSTHs (c) Estimate of xk using state-
space smoothing (d) Normalized multitaper estimate of the PSD of x̂k|K (e)
Raw PSTH of the data n̄k with 0.056 spiking rate (f) Normalized PSD esti-
mate using the proposed method after 130 EM iterations together with %95
confidence intervals.

The PER-PSD method considers each spiking signal as samples of a stationary

signal, and does not make use of the ensemble average (PSTH). Since periodogram

is not a consistent estimator of the PSD and needs further smoothing, the average

of the resulting periodograms across the realizations is calculated [29]. Hence, the

PER-PSD method can be viewed as the average of the periodogram PSD estimates

obtained from individual neurons. Figure 2.2–(b) (purple trace) shows the PER-

PSD estimate. Although a significant peak is retrieved at 1Hz, the 10Hz component

is not recovered due to the high variability of the estimate.

The estimate corresponding to the narrow smoothing kernel in PSTH-PSD
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(Figure 2.2–(b), green trace) detects the two peaks at 1 Hz and 10 Hz, but has a

high variability in higher frequencies. In addition, two spurious peaks at 2 Hz and

9 Hz are detected in the PSD. On the other hand, the estimate corresponding to the

wide smoothing kernel (Figure 2.2–(b), dotted red trace) has a smaller variability

but misses the 10 Hz component of the data. These results show the high sensitivity

of the PSTH-PSD approach to the choice of the smoothing kernel. Comparing to

PER-PSD, the PSTH-PSD method results in estimates with lower variability as it

forms PSD estimates by employing the more informative ensemble average signal

(PSTH) rather than the spiking data of the individual neurons.

Figure 2.2–(c), shows the estimate of xk using state-space smoothing [16]. The

state-space framework corresponding to our model is given by:

xk = xk−1 + εk, 1≤k≤ K

εk
iid∼ N (0, ν2), 1≤k≤ K

λk = 1
1+e−xk

,

n
(`)
k ∼ Bernoulli(λk), 1≤k≤ K, 1≤`≤L

(2.22)

Using a forward/backward filtering, this method computes the MAP estimate

of xk given all the data, denoted by x̂k|K , which is plotted in Figure 2.2–(c). The

parameter ν2 is estimated via the EM algorithm. Similar Gaussian density approx-

imations to (2.12) and (2.13) have been used in [16] specially in the filtering and

smoothing parts. As observed from Figure 2.2–(c), the estimate x̂k|K correlates with

the smoothed PSTH estimate via a wide kernel (Figure 2.2–(a), dotted red trace).

The normalized multitaper estimate of the PSD of x̂k|K , namely the SS-PSD esti-
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mate, is shown in Figure 2.2–(d). Similar to the PSTH-PSD estimate using a wide

Gaussian kernel, the 10 Hz cannot be recovered using this method.

The raw PSTH of the data n̄k = 1
L

∑L
`=1 n

(`)
k , 1 ≤ k ≤ K is shown in Figure

2.2–(e), followed by our estimate of the PSD in Figure 2.2–(f). We have chosen

N = 1200 corresponding to a frequency binning of 0.125 Hz for fs = 300 Hz,

which is comparable to the design resolution of the multitaper method used for the

PSTH-PSD and SS-PSD methods. We have used the first 140 bins (0.125 Hz to

17.375 Hz) in constructing the matrix A, in order to reduce the computational com-

plexity (Nmax = 140). Furthermore, the 95% confidence intervals for the identified

oscillatory components are calculated using Algorithm 4 with M = 1000 samples

and shown in Figure 2.2–(f) (gray hulls). The upper confidence bound at f = 10 Hz

is at ≈ 1.4 and is truncated in the graph for graphical convenience. The cross-

validated value for γ using Algorithm 3 is 10−4. Clearly, both of the tones at 1 Hz

and 10 Hz are recovered (unlike the PSTH-PSD with a wide kernel and the SS-PSD),

while the irrelevant frequencies are significantly suppressed (unlike the PER-PSD

method and the PSTH-PSD with a narrow kernel). Note that we have used 130

EM iterations to obtain the estimate. Figure 2.3 shows the estimated PSD vs. EM

iterations. The dominant frequency of 1 Hz is detected at around iteration 30, and

by continuing the EM iterations the component at 10 Hz is eventually discovered

at around iteration 100. A MATLAB implementation of our algorithm, as well as

the existing ones, producing Figure 2.2 is archived on the open source repository

GitHub and made publicly available [32].

The foregoing simulation demonstrated the superior performance of our method
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Figure 2.3: PSD vs. EM iterations corresponding to Figure 2.2–(f).

in application to ensemble neuronal activity. An intriguing comparison setting is to

assess the performance of our method, as well as the existing ones, when applied to

spiking data from a single neuron (L = 1). As mentioned earlier, we consider spiking

data from a single neuron with sufficiently high spiking rate in order for the PSD

estimation methods to have meaningful results. To this end, for the single neuron

simulation, we change the bias term of −5.7 in Eq. (2.21) for the noisy dual-tone

neural covariate to −3.7. This results in the average spiking rate of 0.05 for the

single neuron spike train shown in Figure 2.4–(e). All the other parameters, includ-

ing those of the dual-tone neural covariates, are the same as those in the foregoing

simulation setting.

Figure 2.4 shows the estimated PSDs using the different methods applied to the

spike train from a single neuron. Since the output of the narrow kernel PSTH-PSD

method is nearly identical to that of the PER-PSD method in the case of a single

neuron, we have only shown the PSD estimate of the PSTH-PSD method in Figure

2.4–(b). Similar to the foregoing simulation results using an ensemble of L = 10

neurons, we observe that the narrow kernel PSTH-PSD method identifies the two

frequency peaks at 1Hz and 10Hz. However, the estimate also contains significant
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Figure 2.4: Noisy dual-tone CIF model for a single neuron: (a) Normalized
smoothed spiking signal using Gaussian kernels with small and large variances
(b) Normalized PSD estimates corresponding to the smoothed spiking signal
(c) Estimate of xk using state-space smoothing (d) Normalized multitaper
estimate of the PSD of x̂k|K (e) Single neuron spiking signal nk with 0.05
spiking rate (f) Normalized PSD estimate using the proposed method after
300 EM iterations together with %95 confidence intervals.

redundant peaks at 2Hz, 4Hz, and around 9Hz, while having a high variability at

higher frequencies. Furthermore, both the wide kernel PSTH-PSD method and the

SS-PSD method smooth the spiking data to the degree that results in missing the

10Hz peak in the PSD. In contrast, as shown in Figure 2.4–(f) and Figure 2.5,

our proposed method recovers the two peaks and only contains a minor redundant

low-frequency component in the PSD estimate. Note that since only one spiking

realization is employed by our algorithm, it takes more EM iterations to decode the

smaller peak at 10 Hz in this case, as compared to the foregoing simulation (∼ 200

EM iterations in Figure 2.5 vs. ∼ 100 EM iterations in Figure 2.3).

In summary, these two simulation studies demonstrate the superior perfor-

mance of our algorithm as compared to several existing techniques. In addition,
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Figure 2.5: PSD vs. EM iterations corresponding to Figure 2.4–(f).

they highlight the difference of considering the ensemble spiking data vs. single-

neuron spiking data for PSD estimation. If the PSTH corresponding to an ensemble

of low spiking neurons is rich enough to identify a specific spectral structure, in

order to get comparable results using data from a single neuron, the spiking rate

must be chosen high enough to account for the lack of multiple realizations. In other

words, an ensemble of low spiking neurons can provide much more information than

considering each of them in isolation. This observation explains the performance

gap between the PER-PSD and PSTH-PSD estimates shown in Figure 2.2–(b); the

PER-PSD method forms periodogram estimates using single neuron spiking data

rather than the PSTH, and hence exhibits inferior performance in comparison to

the PSTH-PSD methods.

2.3.2 Spike Trains Driven by an AR(6) Process

In the second set of simulations, we examine a more complex scenario where the

driving signal xk is generated from a 6th order autoregressive (AR) process. Figure

2.6–(a) shows the PSD corresponding to the AR process with third-order poles at

ω1 = π
20

= 0.1571 rad and ω2 = π
5

= 0.6283 rad with magnitudes of 0.997 and 0.999,
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respectively. The sample realization of this process of length K = 500 as well as the

raster plot of the spike trains for L = 10 neurons are depicted in Figures 2.6–(b) and

–(c), respectively. Similar to the previous simulation, a significant negative mean

is added to the AR signal to make the PSTH spiking rate close to real neuronal

spiking rates. The average spiking rate of the PSTH corresponding to the ensemble

in Figure 2.6–(c) is 0.058.
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Figure 2.6: (a) PSD of the dual peak AR process (b) Sample realization of
the AR process (c) Raster plot of the ensemble.

Figure 2.7 shows the estimated PSDs using the different methods. The spacing

of our estimate is 0.105 rad corresponding to N = 300 bins in our model, out of

which 100 bins have been considered to cover 0.0105 rad to 1.0395 rad frequency

range (Nmax = 100). Similar to the previous example, the PER-PSD estimate in
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Figure 2.7–(b) (purple trace) is so noisy that the two peaks at 0.1571 rad and

0.6283 rad are comparable to noisy retrieved components. Also in the PSTH-PSD

method, we observe that the multitaper estimate corresponding to the narrow kernel

in 2.7–(b) tends to have a high variability and detects undesired peaks around

0.4 rad and 0.8 rad, comparable in magnitude to the correctly identified peaks at

0.1571 rad and 0.6283 rad. While reducing the variability at higher frequencies, the

wide smoothing Gaussian kernel has resulted in dismissing the peak at 0.6283 rad.

Thus, the inevitable effect of tuning the width of the smoothing kernel persists

in this example as well. Figures 2.7–(c) and 2.7–(d) show the results of the SS-

PSD method in time and frequency domains, respectively. Again, we observe a

correlation between the estimated x̂k|K in Figure 2.7–(c) and the smoothed n̄k using

a wide Gaussian kernel in Figure 2.7–(a). However, the SS-PSD method similarly

dismisses the peak at 0.6283 rad. In addition, the recovered peak at 0.1571 rad is

dominated by other falsely recovered low frequency components due to the temporal

smoothing nature of the estimated x̂k|K . Figures 2.7–(e) and 2.7–(f) respectively

show the PSTH and the output of our method for 100 EM iterations, with the

cross-validated value of 0.045 for γ. The convergence of the EM algorithm follows a

similar pattern to that of the preceding section and is depicted in Figure 2.8. Similar

to the previous simulation setting, M = 1000 samples are used for constructing 95%

confidence intervals (grey hulls). The upper confidence bound at ω = 0.1571 rad is

at ≈ 1.2 and is truncated in the graph for graphical convenience. As observed in

Figure 2.7–(f), the two peaks are perfectly recovered while the undesired frequency

components are nearly estimated zero.
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Figure 2.7: AR(6) generated CIF model for a neuronal ensemble: (a) Normal-
ized smoothed PSTH using Gaussian kernels with small and large variances
(b) Normalized PER-PSD estimate and normalized multitaper estimate of the
PSD corresponding to the smoothed PSTHs (c) Estimate of xk using state-
space smoothing (d) Normalized multitaper estimate of the PSD of x̂k|K (e)
Raw PSTH of the data n̄k with 0.058 spiking rate (f) Normalized PSD esti-
mate using the proposed method after 100 EM iterations together with %95
confidence intervals.
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Figure 2.8: PSD vs. EM iterations corresponding to Figure 2.7–(f).

2.3.3 Application to Neuronal Spiking Data from Anesthesia

Finally, we apply our proposed algorithm on multi-unit recordings from a hu-

man subject under Propofol-induced general anesthesia (data from [33]). The data

set includes the spiking activity of 41 neurons as well as the LFP recorded from a
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patient undergoing intra-cranial monitoring for surgical treatment of epilepsy using

a multichannel micro-electrode array implanted in temporal cortex [33]. Recordings

were conducted during the administration of Propofol for induction of anesthesia.

The experimental protocol under which the data was collected is extensively ex-

plained in [33]. Given that the the original multi unit recordings are oversampled

at a rate of 1 KHz, to reduce computational complexity, the spike recordings were

downsampled by the factor of 40, and the sampling rate of the LFP signal was

reduced from the original 250 Hz to 25 Hz. A time frame of 50 s is considered con-

taining K = 1250 samples of the downsampled multi-unit recordings and the LFP

signal. In our analysis, we have considered L = 27 neurons with at least two spikes

in the 50 s time frame. Figure 2.9 shows the raster plot of the neuronal ensemble.

The average spiking rate of the population from the PSTH is given by 0.1064.

0 600400200

1

12001000800

10

20

27

Figure 2.9: Raster plot of the neuronal ensemble corresponding to multi-unit
recordings from a human subject under Propofol-induced general anesthesia.

Figure 2.10 shows the results of the different PSD estimation techniques. For

our method, we have chosen a spacing of 0.02 Hz which corresponds to N = 625

frequency bins in our model, considering the reduced sampling rate of 25 Hz. Given
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that the relevant frequencies modulating neuronal spiking under anesthesia pertain

to slow oscillations [33], we have considered the first 100 frequency bins in our

method covering 0.02 Hz to 2 Hz (Nmax = 100). Figures 2.10–(a) and 2.10–(b)

respectively show the smoothed PSTH with the two Gaussian kernels and their

corresponding PSD estimates as well as the PER-PSD estimate. As was the case in

our simulation studies, the PER-PSD estimate is noisy everywhere. Also, the PSTH-

PSD estimate corresponding to the narrow kernel contains considerable variability

in high frequencies. In contrast, the PSTH-PSD estimate using the wide smoothing

kernel significantly suppresses the PSD components beyond 0.4 Hz. Figures 2.10–

(c) and –(d) show the estimates of xk|K and the PSD using the SS-PSD method.

Similar to the preceding simulation studies, low frequency components dominate the

PSD estimate due to the heavy time-domain smoothing in estimating xk|K .

The PSTH and the output of our method after 100 EM iterations ensuring

convergence are shown in Figures 2.10–(e) and 2.10–(f), respectively. The EM con-

vergence vs. iteration is shown in Figure 2.11. The cross-validated value for γ is

0.075, and M = 1000 samples are used in Algorithm 4 to construct 95% confidence

intervals (grey hulls). The upper confidence bound at f = 0.42 Hz is at ≈ 1.35

and is truncated in the graph for graphical convenience. Figure 2.10–(g) and 2.10–

(h) show the LFP and its multitaper PSD estimate respectively. The PSD of the

LFP signal shows a dominant peak around 0.42 Hz, with a few others extending to

0.8 Hz. Strikingly, the PSD obtained by our method is the most similar to the PSD

of the LFP: the PSTH-PSD fails to suppress the high frequency variability (narrow

kernel) or dismisses the PSD peaks beyond 0.42 Hz (wide kernel). The SS-PSD
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Figure 2.10: Neuronal spiking data from anesthesia: (a) Normalized
smoothed PSTH using Gaussian kernels with small and large variances (b)
Normalized PER-PSD estimate and normalized multitaper estimate of the
PSD corresponding to the smoothed PSTHs (c) Estimate of xk using state-
space smoothing (d) Normalized multitaper estimate of the PSD of x̂k|K (e)
Raw PSTH of the data n̄k with 0.1064 spiking rate (f) Normalized PSD esti-
mate using the proposed method after 100 EM iterations together with %95
confidence intervals (g) Recorded LFP signal (h) Normalized multitaper esti-
mate of the PSD corresponding to the recorded LFP signal.

method recovers dominant low frequency component which do not exist in the PSD

of the LFP signal. This result corroborates the findings of [33] that the neuronal

spiking under general anesthesia is highly phase-locked to the LFP signal, and hence

the LFP can be considered as a salient neural covariate driving the spiking of the

nearby cortical neuronal ensemble.
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Figure 2.11: PSD vs. EM iterations corresponding to Figure 2.10–(f).

2.4 Discussion

The preceding section demonstrated the superior performance of our algorithm

on simulated data as well as real data recordings. In order to explain this perfor-

mance gap as well as to characterize the computational cost of our algorithm, two

discussion points are in order.

2.4.1 Pursuit Domain Comparisons of the PSD Estimators

The significant performance gain of our proposed PSD estimation framework

over methods such as the PSTH-PSD or PER-PSD mainly stems from the difference

in the underlying pursuit domains. The PSTH-PSD and PER-PSD methods gener-

ate the spectral estimates by forming a second-order combination of the data from a

finite collection of binary sets, i.e., Fourier transforms of the PSTH n̄k = 1
L

ΣL
l=1n

(l)
k

or the spiking data of each neuron n
(l)
k , in which n

(l)
k ∈ {0, 1}. Given that the PSTH

signal takes values in the set {0, 1
L
, · · · , L−1

L
, 1} and the spiking of each neuron is a

binary variable, the pursuit domains of the PSTH-PSD and PER-PSD algorithms
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are limited to small and finite subsets of R. Perhaps the poor performance of the

PER-PSD compared to the PSTH-PSD method is due to the fact that the former

generates estimates using a second-order function of variables in {0, 1}, while the

latter does so using the richer set {0, 1
L
, · · · , L−1

L
, 1}.

In contrast, our MAP estimator employs the same observations from the small

subset {0, 1
L
, · · · , L−1

L
, 1}, but performs inference of the latent variables x, v, and

θ directly over the richer set R. To this end, the MAP estimates are obtained by

solving an optimization problem seeking a spectral estimate with elements in R

that is consistent with the observed data and sparse priors in the Bayesian sense.

Therefore, by searching over a much richer set, the MAP-based PSD estimator

outperforms methods such as PSTH-PSD or PER-PSD. The SS-PSD method also

searches for the latent variable x in R, but due to enforcing smoothness of xk in the

time domain, generates spectral estimates which undergo distortion in the spectral

domain.

2.4.2 Computational Comparisons of the PSD Estimators

The memory requirement of our approach is O(KNmax), as we need to store

the matrix A ∈ RK×(2Nmax−1). For each EM iteration, we have a concave optimiza-

tion problem in Eq. (2.12) which includes a logistic log-likelihood as its objective

function plus a quadratic term. As Newton’s method is widely used for logistic

as well as approximately quadratic regression problems, we have chosen to use it

as our main optimization algorithm. To achieve quadratic convergence, the New-
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ton’s method requires the calculation and inversion of the Hessian of the objective

function. Calculation of the Hessian in line 11 of Algorithm 1 requires O(KN2
max)

operations as G is diagonal and its inversion in line 12 has a computational cost

of the order O(N3
max). To reduce the computational cost, we can also use quasi-

Newton methods such as BFGS. While enjoying a super-linear convergence, these

methods require O(KNmax) operations to calculate the gradient and O(N2
max) op-

erations for the Hessian approximation [34]. For each EM iteration, the calculation

of E
(r)
i in Eq. (2.16) for i = 1, · · · , 2Nmax−1, requires a matrix inversion with a cost

of O(N3
max) operations. However, since we only need the diagonal elements of the

inverse, this complexity can be reduced by methods in [35], in case Nmax is large. In

summary, the computational complexity of Algorithm 2 is O(KN2
max), if Newton’s

method is used, under the assumption of K ≥ 2Nmax−1. The PSTH-PSD, SS-PSD,

and PER-PSD algorithms, however, have a complexity of O(K logK), thanks to the

underlying FFT procedure, in computing K samples of the PSD. There are other

steps in our method, such as the cross-validation for the selection of the sparsity

hyperparameter γ (Algorithm 3), and constructing confidence intervals (Algorithm

4). However, these steps involve multiple runs of Algorithm 2, and are common

in MAP-based inference algorithms such as the SS-PSD algorithm. In light of the

preceding comparison, the performance gain of our proposed algorithm comes with

an increase of O
(
N2

max

logK

)
in computational complexity.
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2.5 Concluding Remarks

In this chapter, we considered the problem of computing the power spectral

density of the neural covariates underlying spiking data. Existing methods first

compute an estimate of the ensemble PSTH or CIF through a temporal smoothing

procedure. Then, the PSD estimates of the smoothed PSTH or CIF are computed as

the spectral representation of the data. This two-step procedure, although results

in a smoothed estimate of the spiking rate, distorts the frequency content of the

data. In addition, existing technique do not exploit the underlying sparsity of the

frequency content of the data in favor of estimation accuracy.

In order to address these issues, we considered a model where the neuronal

ensemble is driven by a harmonic second-order stationary process through a logistic

link and according to Bernoulli statistics. We integrated techniques from point pro-

cess modeling and spectral estimation of second-order stationary process in order

to perform the PSD estimation in a Bayesian framework. Our proposed technique

enjoys from several features which improve over existing techniques for obtaining

spectral representations of neuronal spiking data. First, we directly estimate the

PSD from spiking data by regressing the second-order statistics of the underlying

process to the observed data, without any time-domain smoothing. Second, mo-

tivated by the spectral sparsity of biological signals such as EEG and LFP, we

incorporated sparsity-enforcing priors in our PSD estimation. Third, we provided

an algorithm for constructing confidence intervals for the PSD estimates.

We compared our proposed method with existing techniques for computing
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spectral representations of point processes using simulated as well as real data. As

for the simulated data, we considered neuronal ensembles driven by oscillatory co-

variates in the form of dual-tone signals as well as autoregressive processes. Our

results showed that the proposed method significantly outperforms the aforemen-

tioned existing techniques. Application of our method to multi-unit recordings from

a patient undergoing anesthesia showed that the estimated PSD of the neuronal

ensemble using our method exhibits a striking resemblance to the PSD of the cor-

responding LFP signal. This results confirms the findings of [33], which show that

the spiking dynamics under general anesthesia is governed by the LFP as a salient

neural covariate.

The complexity of the spectra which are identifiable from ensemble neuronal

observations is limited by the average spiking rate in PSTH, i.e., the amount of

available information for inference purposes. A potential limitation of spectral esti-

mation from binary data is thus in extracting complex (and not necessarily sparse)

spectral structures under low neuronal spiking rates. Nevertheless, we have demon-

strated the significant performance gain of our proposed method over the existing

techniques in estimating sparse narrowband spectral structures detectable under

low neuronal spiking rates. This performance gain, however, comes at the cost of a

higher computational complexity.

Our technique is particularly useful in analyzing the harmonic structure of

spiking activity independently of the local field potentials, without any prior as-

sumption of the spectral spread and content of the underlying neural processes.

Our method can be modified in a straightforward fashion to handle other spiking

39



models such as Poisson statistics. In addition, although we have posed the problem

in the neuronal spiking data application, our algorithm can be applied to a wide

variety of binary data, such as heart beat data, in order to obtain a robust spectral

representation. In the spirit of easing reproducibility, we have archived a MATLAB

implementation of our method on the open source repository GitHub and made it

publicly available [32].
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Chapter 3: Real-Time Tracking of Selective Auditory Attention from

M/EEG: A Bayesian Filtering Approach

The ability to select a single speaker in an auditory scene, consisting of multiple

competing speakers, and maintain attention to that speaker is one of the hallmarks

of human brain function. This phenomenon has been referred to as the cocktail

party effect [36–38]. The mechanisms underlying the real-time process by which the

brain segregates multiple sources in a cocktail party setting has been the topic of

active research for decades [39,40]. Although the details of these mechanisms are for

the most part unknown, various studies have underpinned the role of specific neural

processes involved in this function. As the acoustic signals propagate through the

auditory pathway, they are decomposed into spectrotemporal features at different

stages, and a rich representation of the complex auditory environment reaches the

auditory cortex. It has been hypothesized that the perception of an auditory object

is the result of adaptive binding as well as discounting of these features [41–44].

From a computational modeling perspective, there have been several attempts

at designing so-called “attention decoders”, where the goal is to reliably decode the

attentional focus of a listener in a multi-speaker environment using non-invasive

neuroimaging techniques like electroencephalography (EEG) [45–47] and magne-
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toencephalography (MEG) [48–52]. These methods are typically based on reverse

correlation or estimating linear encoding/decoding models using off-line regression

techniques, and thereby detecting salient peaks in the model coefficients that are

modulated by the attentional state [53]. The aforementioned salient peaks have

been observed at a typical lag of ∼ 200 ms for EEG [46] and ∼ 100 ms for MEG [48],

implying the longer-lasting effect and further processing of the attended stimuli as

compared to the unattended ones.

Although the foregoing approaches have proven successful in reliable attention

decoding, they have two major limitations that make them unsuitable for emerging

real-time applications such as Brain-Computer Interface (BCI) systems and smart

hearing aids. First, the temporal resolution for decoding the attentional state is

on the order of tens of seconds, whereas humans can switch their attention from

one speaker to another at a much shorter time scale. This is due to their so-called

“batch-mode” design, which requires the entire data from one or multiple trials at

once for processing. Second, approaches based on linear regression (e.g., reverse

correlation) need large training datasets, often from multiple subjects and trials, to

estimate the decoder/encoder reliably. Access to such training data is only possible

through repeated calibration stages, which may not always be possible in real-time

applications. While recent results [50,51] address the first shortcoming by employing

state-space models and thereby producing robust estimates of the attentional state

from limited data, they are not yet suitable for real-time applications.

In this chapter, we close this gap by designing a modular framework for real-

time attention decoding from non-invasive M/EEG recordings that overcomes the
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aforementioned limitations using techniques from Bayesian filtering. Our proposed

framework includes three main modules. The first module pertains to estimating

dynamic models of decoding/encoding in real-time. To this end, we use the for-

getting factor mechanism of the Recursive Least Squares (RLS) algorithm together

with the `1 regularization penalty from Lasso to capture the dynamics in the data

while preventing overfitting [52, 54]. The real-time inference is then efficiently car-

ried out using a Forward-Backward Splitting (FBS) procedure [55]. In the second

module, we extract an attention-modulated feature, which we refer to as “attention

marker”, as a function of the M/EEG recordings, the estimated encoding/decoding

coefficients, and the auditory stimuli. For instance, the attention marker can be a

correlation-based measure or the magnitude of certain peaks in the model coeffi-

cients. We carefully design the attention marker features to capture the attention

modulation and thereby maximally separate the contributions of the attended and

unattended speakers in the neural response in both MEG and EEG applications.

The extracted features are then passed to a novel state-space estimator in the

third module, and thereby are translated into robust and dynamic measures of the

attentional state. The state-space estimator is based on Bayesian fixed-lag smooth-

ing, and operates in near real-time with controllable delay. The fixed-lag design

creates a trade-off between real-time operation and robustness to stochastic fluc-

tuations. In addition, we modify the Expectation-Maximization algorithm and the

nonlinear filtering and smoothing techniques of [51] for real-time implementation.

Compared to existing techniques, our algorithms require minimal supervised data

for initialization and tuning. In order to validate our real-time attention decoding
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algorithms, we apply them to both simulated and experimentally recorded EEG

and MEG data in dual-speaker environments. Our results suggest that the perfor-

mance of our proposed framework is comparable to the state-of-the-art batch-mode

algorithms of [45,47,51], while operating in near real-time with ∼ 1 s delay.

The rest of the chapter is organized as follows: In Section 3.1, we develop the

three main modules in our proposed framework as well as the corresponding esti-

mation algorithms. We present the application of our framework to both synthetic

and experimentally recorded M/EEG data in Section 3.2, followed by discussion and

concluding remarks in Section 3.3.

3.1 Material and Methods

Figure 3.1 summarizes our proposed framework for real-time tracking of selec-

tive auditory attention from M/EEG. In the Dynamic Encoder/Decoder Estimation

module, the encoding/decoding models are fit to neural data in real-time. The At-

tention Marker module uses the estimated model coefficients as well as the recorded

data to compute a feature that is modulated by the instantaneous attentional state.

Finally, in the State-Space Model module, the foregoing features are refined through

a linear state-space model with nonlinear observations, resulting in robust and dy-

namic estimates of the attentional state.

In Section 3.1.1, we formally define the dynamic encoding/decoding models

and develop low-complexity and real-time techniques for their estimation in Section

3.1.2. This is followed by Section 3.1.3, in which we define suitable attention markers
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Figure 3.1: A schematic depiction of our proposed framework for real-time
tracking of selective auditory attention from M/EEG.

for M/EEG inspired by existing literature. In Section 3.1.4, we propose a state-

space model that processes the extracted attention markers in order to produce

near real-time estimates of the attentional state with minimal delay, and we discuss

its estimation procedure in Section 3.1.5.

3.1.1 Dynamic Encoding and Decoding Models: definition

The role of a neural encoding model is to map the stimulus to the neural

response. Inspired by existing literature on attention decoding [45, 48, 51], we take

the speech envelopes as covariates representing the stimuli. The neural response is

manifested in the M/EEG recordings. Encoding models can be used to predict the

neural response from the stimulus. In contrast, in a neural decoding model, the goal

is to express the stimulus as a function of the neural response. Inspired by previous

studies, we consider linear encoding and decoding models in this work.
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The encoding and decoding models can be cast as mathematically dual for-

mulations. In a dual-speaker environment, let s
(1)
t and s

(2)
t denote the speech en-

velopes (in logarithmic scale), corresponding to speakers 1 and 2, respectively, for

t = 1, 2, . . . , T . Also, let ect denote the neural response recorded at time t and chan-

nel c, for c = 1, 2, . . . , C. Throughout the chapter, we assume the same sampling

frequency for both the M/EEG channels and the envelopes. Consider consecutive

and non-overlapping windows of length W , and define K :=
⌊
T
W

⌋
. We consider

piece-wise constant dynamics for the encoding and decoding coefficients, in which

the coefficients assume to be constant over each window.

In the encoding setting, we define the vector s
(i)
t := [s

(i)
t , s

(i)
t−1, . . . , s

(i)
t−Le ]

> for

i = 1, 2, where Le is the total lag considered in the model. Also, let Et denote a

generic linear combination of e1
t , e

2
t , . . . , e

C
t with some fixed set of weights. These

weights can be set to select a single channel, i.e., Et = ect for some c, or they can

be pre-estimated from training data so that Et represents the dominant auditory

component of the neural response [56]. The encoding coefficients then relate s
(i)
t

to Et. In the decoding setting, we define the vector et := [e1
t , e

2
t , . . . , e

C
t ]> and

E t :=
[
1, e>t , e

>
t+1, . . . , e

>
t+Ld

]>
, where Ld is the total lag in the decoding model and

determines the extent of future neural responses affected by the current stimuli. The

decoding coefficients then relate E t to s
(i)
t .

Our goal is to recursively estimate the encoding/decoding coefficients in a

real-time fashion as the new data samples become available. In addtion, we aim

to simultaneously induce adaptivity of the parameter estimates and capture their
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sparsity. To this end, we employ the following generic optimization problem:

θ̂k = arg min
θ

k∑
j=1

λk−j ‖yj −Xjθ ‖2
2 + γ ‖θ ‖1 , k = 1, 2, . . . , K (3.1)

where yj and Xj are the vector of response variables and the matrix of covariates

pertinent to window j, θ is the parameter vector, λ ∈ (0, 1] is the forgetting factor,

and γ is a regularization parameter. The optimization problem of Eq. 3.1 is a

modified version of the LASSO problem [57].

For the encoding problem, we define yk :=
[
E(k−1)W+1, E(k−1)W+2, . . . , EkW

]>
and X

(i)
k :=

[
s

(i)
(k−1)W+1, s

(i)
(k−1)W+2, . . . , s

(i)
kW

]>
, for k = 1, 2, . . . , K and i = 1, 2.

Therefore, the full encoding covariate matrix at the kth window is defined as Xk :=[
1W×1,X

(1)
k ,X

(2)
k

]
, where the all-ones vector 1W×1 corresponds to the regression in-

tercept. In the decoding problem, we define yk :=
[
s

(i)
(k−1)W+1, s

(i)
(k−1)W+2, . . . , s

(i)
kW

]>
,

where i ∈ {1, 2}. Also, the full decoding covariate matrix at the kth window is

Xk :=
[
E (k−1)W+1,E (k−1)W+1, . . . ,EkW

]>
, for k = 1, 2, . . . , K.

The optimization problem of Eq. (3.1) has a useful Bayesian interpretation: if

the observation noise were i.i.d. Gaussian, and the parameters were exponentially

distributed, it is akin to the maximum a posteriori (MAP) estimate of the param-

eters. The quadratic terms correspond to the exponentially-weighted log-likelihood

of the observations up to window k, and the `1-norm corresponds to the log-density

of an independent exponential prior on the elements of θ. The exponential prior

serves as an effective regularization to promote sparsity of the estimate θ̂k. Note

that we have θ ∈ R1+2(Le+1) for the encoding model and θ ∈ R1+C(Ld+1) for the

decoding model in (3.1).
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Remark 3.1. The hyperparameter λ provides a tradeoff between the adaptivity and

the robustness of estimated coefficients, and it can be determined based on the

inherent dynamics in the data. The case of λ = 1 corresponds to the natural data

log-likelihood, i.e., the batch-mode parameter estimates. It has been shown that W
1−λ

can serve as the effective number of recent samples used to calculate θ̂k in (3.1) [58].

The parameter W
1−λ can also be viewed as the dynamic integration time: it needs

to be chosen long enough so that the estimation is stable, but also short enough to

be able to capture the dynamics of neural process involved in switching attention.

The hyperparameter γ controls the tradeoff between the Maximum Likelihood (ML)

fit and the sparsity of estimated coefficients, and it is usually determined through

cross-validation.

Remark 3.2. In the decoding problem, Eq. (3.1) is solved separately at each window

for each speech envelope, resulting in a set of decoding coefficients per speaker. In

the encoding setting, we combine the stimuli as explained and solve Eq. (3.1) once

at each window to obtain both of the encoder estimates. If the encoding/decoding

coefficients are expected to be sparse in a basis represented by the columns of a

matrix G, such as the Haar or Gabor bases, we can replace Xj in (3.1) by XjG,

for j = 1, 2, . . . , k, and solve for θ̂k as before. Then, the final encoding/decoding

coefficients are given by Gθ̂k. In the context of encoding models, the coefficients

are referred to as the Temporal Response Function (TRF) [48, 52]. The TRFs are

known to exhibit some degree of sparsity and smoothness in the lag domain, which

can be represented over a basis consisting of shifted Gaussian kernels (see [52] for
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details).

Remark 3.3. Throughout the chapter, we assume that the envelopes of the clean

speeches are available. Given that this assumption does not hold in practical sce-

narios, recent algorithms on the extraction of speech envelopes from acoustic mix-

tures [59–63] can be added as a pre-processing module to our framework.

3.1.2 Dynamic Encoding and Decoding Models: parameter estima-

tion

There are several standard optimization techniques that can be used to find the

minimizer in (3.1). Off-line algorithms such as interior point methods do not meet

the real-time requirements of our dynamic estimation. The SPARLS algorithm has

been introduced in [64] to solve the problem in (3.1) through EM iterations, and it

has been successfully adopted in [52] to estimate encoding coefficients in a dynamic

fashion. However, the EM algorithm and the constant step-size in SPARLS may

result in low convergence rates. Hence, to adapt our estimation procedure for real-

time applications, we use the Forward-Backward Splitting (FBS) method [55], also

known as the proximal gradient method, to solve for θ̂k in (3.1). FBS is suited for

optimization problems where the objective function can be expressed as the sum

of a differentiable term, e.g., the log-likelihood term in (3.1), and a simple non-

differentiable term, e.g., the `1-norm in (3.1). This type of problems frequently arise

in signal processing and machine learning [65–67].

In summary, each FBS iteration for the optimization problem in (3.1) includes
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two steps: 1) taking a descent step along the gradient of the log-likelihood term, and

2) applying a soft-thresholding shrinkage operator [58,68]. This procedure provides

an algorithm that uses recursive and low-complexity updates in an online fashion to

solve Eq. (3.1) upon the arrival of a new data window. The optimization problem

in (3.1) can be rewritten as:

θ̂k = arg min
θ

θTAkθ + bTk θ + γ ‖θ ‖1 , k = 1, 2, . . . , K, (3.2)

where Ak and bk can be updated recursively. Algorithm 5 summarizes the steps of

the FBS algorithm to solve for θk in (3.1), when moving from window k−1 to window

k, as well as the required recursive update rules for Ak and bk. The parameter SFBS

in Algorithm 5 denotes the stopping condition for the FBS algorithm, which can be

a maximum iteration number or a convergence criterion on the objective function.

Algorithm 5 Parameter Estimation in Dynamic Encoding and Decoding Models by

Forward-Backward Splitting

Inputs: yk, Xk, θ̂k−1, Ak−1, bk−1, λ, γ, SFBS.

Output: θ̂k, Ak, bk.

1: Ak = λAk−1 + XT
kXk

2: bk = λbk−1 − 2XT
k yk

3: initialize θ with θ̂k−1

4: while ¬SFBS do

5: choose stepsize τ

6: u = θ − τ (2Akθ + bk)

7: θi = sign(ui)×max
{
|ui| − γτ, 0

}
, for each element of θ

8: end while

9: θ̂k = θ

Remark 3.4. A proper step-size choice in Alg. 5 at each FBS iteration is crucial

to the convergence of the algorithm. For a fixed step-size, it has been shown that
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τ < 2
L(∇fk)

ensures the stability and convergence of the algorithm [55], where L(.)

represents the Lipschitz constant, and fk represents the log-likelihood term in (3.1).

Through standard Cauchy-Schwarz and triangle inequality manipulations, we can

calculate the simple upper bound L(∇fk) ≤ Lub = 2
∑k

j=1 λ
k−j trace

{
XT
kXk

}
, im-

plying that τ < 2
Lub

ensures stability; however, this loose upper bound may decrease

the convergence rate of the algorithm. Thus, it is more beneficial to ensure sta-

bility through backtracking and employing acceleration schemes such as adaptive

step-size selection or the Nesterov’s method [69]. In this work, we have used the

FASTA software package [69] available online [70], which has built-in features for all

the foregoing FBS step-size adjustment methods.

3.1.3 Attention Markers

We define the attention marker as a mapping function from the estimated

encoding/decoding coefficients for each speaker as well as the data in each window

to positive real numbers. To be more precise, at window k and for speaker i, in

the context of encoding models, the attention marker takes the speaker’s estimated

encoding coefficients θ̂
(i)
k , the speaker’s covariate matrix X

(i)
k , and the M/EEG re-

sponses yk as inputs; similarly, in the context of decoding models, the attention

marker takes the speaker’s estimated decoding coefficients θ̂
(i)
k , the M/EEG covari-

ate matrix Xk, and the speaker’s speech envelope vector y
(i)
k as inputs. In both

cases, the attention marker outputs a positive real number, which we denote by m
(i)
k

henceforth, for i = 1, 2 and k = 1, 2, . . . , K. Thus, in the modular design of Fig.
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3.1, at each window k, the two outputs m
(1)
k and m

(2)
k are passed from the Attention

Maker module to the State-Space Model module as measures of the attentional state

at window k.

In [45], a correlation-based measure has been adopted in the decoding model

to classify the attended and the unattended speeches in a dual-speaker environ-

ment. The approach in [45] is based on estimating an attended decoder from the

training data to reconstruct the speech envelope from EEG for each trial. Then,

the correlation of this reconstructed envelope with each of the two speech envelopes

is computed, and the speaker with the larger correlation coefficient is deemed as

the attended speaker. This method cannot be directly applied to the real-time

setting, since the lack of abundant training data hinders a reliable estimate of

the attended decoder. However, assuming that the auditory M/EEG response is

more influenced by the attended speaker than the unattended one, we can expect

that the decoder corresponding to the attended speaker exhibits a higher perfor-

mance in reconstructing the speech envelope it has been trained on, as suggested

by the classification comparisons in [45]. Inspired by these results, we can define

the attention marker in the decoding scenario as the correlation magnitude be-

tween the speech envelope and its reconstruction by the corresponding decoder, i.e.,

m
(i)
k = f

(
θ̂

(i)
k ,Xk,y

(i)
k

)
:=
∣∣∣corr

(
y

(i)
k ,Xkθ̂

(i)
k

)∣∣∣ for i = 1, 2 and k = 1, 2, . . . , K. As

we will demonstrate later in Section 3.2, this attention marker is suitable for the

analysis of EEG recordings.

In the context of cocktail party studies using MEG, it has been shown that the

magnitude of the negative peak in the TRF of the attended speaker around a lag of
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100 ms, referred to as the M100 component, is higher than that of the unattended

speaker [48, 51, 52]. Inspired by these findings, in the encoding scenario applied to

MEG data, we can define the attention marker m
(i)
k to be the magnitude of the θ̂

(i)
k

coefficients corresponding to the M100 component, for i = 1, 2 and k = 1, 2, . . . , K.

Due to the inherent uncertainties in the M/EEG recordings, the limitations

of non-invasive neuroimaging in isolating the relevant neural processes, and the

unknown and likely nonlinear processes involved in auditory attention, the foregoing

attention markers derived from linear models are not readily reliable indicators of

the attentional state. Given ample training data, however, these attention markers

have been validated using batch-mode analysis. However, their usage in a real-time

setting requires more care, as the limited data in real-time applications adds a major

source of uncertainty to the foregoing list. To address this issue, a state-space model

is required in the real-time setting to correct for the uncertainties and stochastic

fluctuations of the attention markers caused by the limited integration time in real-

time application. We will discuss in detail the formulation and advantages of such

a state-space model in the following subsection.

3.1.4 Dynamic State-Space Model: definition

In order to translate the attention markers m
(1)
k and m

(2)
k , for k = 1, 2, . . . , K,

into a robust and statistically interpretable measure of the attentional state, we

employ state-space models. Inspired by the models used in [51], we design a new

state-space model and a corresponding estimator that operates in a fixed-lag smooth-
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ing fashion, and thereby admits real-time processing while maintaining the benefits

of batch-mode state-space models. Recall that the index k corresponds to a window

in time ranging from t = (k−1)W + 1 to t = kW ; however, we refer to each index

k as an instance when talking about the state-space model not to be confused with

the sliding window of the fixed-lag design.

Figure 3.2 displays the fixed-lag smoothing design of the state-space estimator.

Suppose that we are at the instance k = k0. We consider a window of length

KW = KB +KF + 1 as shown in Fig. 3.2, where KF and KB are respectively called

the forward-lag and the backward-lag. In order to carry out the computations in

real-time, we assume all of the attentional state estimates to be fixed prior to this

window and only update our estimates for the instances within, based on m
(1)
k ’s

and m
(2)
k ’s inside the window. In a fixed-lag framework, at k = k0, the goal is to

provide an estimate of the attentional state at instance k = k∗, where k∗ = k0−KF .

The parameter KF creates a tradeoff between real-time and robust estimation of

the attentional state. For KF = 0, the estimation is carried out fully in real-time;

however, the estimates lack robustness to the fluctuations of the outputs of the

attention marker block. The backward-lag KB incorporates the information before

k∗ in order to make the estimates more reliable, and controls the computational

cost of the state-space model for fixed values of KF . Throughout the rest of the

chapter, we use the expression real-time for referring to algorithms that operate

with a fixed forward-lag of KF . We will discuss specific choices of KF and KB and

their implications in Section 3.2.

Suppose we are in a window of length KW where the instances are indexed
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Figure 3.2: The parameters involved in state-space fixed-lag smoothing.

by k = 1, 2, . . . , KW . Inspired by [51], we assume a linear state-space model on the

logit-probability of attending to speaker 1. We define the binary random variable

nk=1 when speaker 1 is attended and nk=2 when speaker 2 is attended, at instance

k. The goal is to obtain estimates of pk := P (nk=1) together with its confidence

intervals for 1 ≤ k ≤ KW . The state dynamics are given by:

pk = P (nk=1) = 1− P (nk=2) = 1
1+exp(−zk)

zk = c0zk−1 + wk

wk ∼ N (0, ηk)

ηk ∼ Inverse-Gamma (a0, b0)

(3.3)

The dynamics of the main latent variable zk are controlled by its transition

scale c0 and state variance ηk. The hyperparameter 0 ≤ c0 ≤ 1 ensures the stability

of the updates for zk. The state variance ηk is modeled using an Inverse-Gamma

conjugate prior with hyper-parameters a0 and b0. The log-prior of the Inverse-

Gamma density takes the form ln P (ηk) = −(a0 + 1) ln ηk − b0
ηk

+ C for ηk > 0,

where C is a normalization constant. By choosing a0 greater and sufficiently close

to 2, the variance of the Inverse-Gamma distribution takes large values and therefore
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can serve as a non-informative conjugate prior. Considering the fact that we do not

expect the attentional state to have high fluctuations within a small window of time,

we can further tune the hyperparameters a0 and b0 for the prior to promote smaller

values of ηk’s. This way, we can avoid large consecutive fluctuations of the zk’s, and

consequently the pk’s.

Next, we develop an observation model relating the state dynamics of Eq.

(3.3) to the observations m
(1)
k and m

(2)
k for k = 1, 2, . . . , KW . To this end, we use

the latent variable nk as the link between the states and observations:




m

(i)
k

∣∣∣ nk= i ∼ Log-Normal
(
ρ(a), µ(a)

)
m

(i)
k

∣∣∣ nk 6= i ∼ Log-Normal
(
ρ(u), µ(u)

) , i = 1, 2

ρ(a) ∼ Gamma
(
α

(a)
0 , β

(a)
0

)
, µ(a)

∣∣∣ ρ(a) ∼ N
(
µ

(a)
0 , ρ(a)

)

ρ(u) ∼ Gamma
(
α

(u)
0 , β

(u)
0

)
, µ(u)

∣∣∣ ρ(u) ∼ N
(
µ

(u)
0 , ρ(u)

)
(3.4)

When speaker i = 1, 2 is attended to, we use a Log-Normal distribution on

m
(i)
k ’s, with log-prior given by ln P

(
m

(i)
k

∣∣ nk= i
)

= − lnm
(i)
k +1

2
ln ρ(a)−ρ(a)

2

(
lnm

(i)
k −µ(a)

)2

+

C(i), where µ(a) ∈ R, ρ(a) ∈ R>0, and C(i) is a normalization constant, for i = 1, 2,

and k = 1, 2, . . . , KW . Similarly, when speaker i = 1, 2 is not attended to, we use

a Log-Normal prior on m
(i)
k with parameters ρ(u) and µ(u). As mentioned before,

choosing an appropriate attention marker results in a statistical separation between

m
(1)
k and m

(2)
k , if only one speaker is attended. The Log-Normal distribution is a

distribution on R>0 which lets us capture this concentration in the values of m
(i)
k ’s.
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In contrast to [51], this distribution also leads to closed form update rules, which

significantly reduces computational costs. We have also imposed conjugate priors on

the joint distribution of (ρ, µ)’s, which factorizes as ln P(ρ, µ) = ln P(ρ) + ln P(µ |ρ).

The hyperparameters α0, β0, and µ0 serve to tune the attended and the unattended

Log-Normal distributions to create separation between the attended and unattended

cases. These hyperparameters can be determined based on the mean and variance

information of m
(i)
k ’s in a supervised manner, where the attended speaker is known.

The parameters of the state-space model are therefore Ω =
{
z1:KW

, η1:KW
,

ρ(a), µ(a), ρ(u), µ(u)
}

, which have to be inferred from m
(1)
1:KW

and m
(2)
1:KW

. As mentioned

before, our goal in the fixed-lag smoothing approach is to estimate zk∗ and ηk∗ in

each window, where k∗ = KW−KF . However, in order to do so in our model, we

perform the inference step over all the parameters in Ω and output the estimates of

{zk∗ , ηk∗} ∈ Ω. The estimated Ω would then serve as the initialization for parameter

estimation in the next window.

Remark 3.5. The state-space models given in Eqs. 3.3 and 3.4 have two major

differences with the one used in [51]. First, in [51], the distribution over the cor-

relative measure for the unattended speaker is assumed to be uniform. However,

this assumption may not hold for other attention markers in general. For instance,

the M100 magnitude of the TRF estimated from MEG data is a positive random

variable, which is concentrated on higher values for the attended speaker compared

to the unattended speaker. In order to address this issue, we consider a parametric

distribution in Eq. (3.4) over the attention marker corresponding to the unattended
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speaker and infer its parameters from the data. If this distribution is indeed uni-

form and non-informative, the variance of the unattended distribution, which is

estimated from the data, would be large enough to capture the flatness of the distri-

bution. Second, the parametrization of the observations using Log-Normal densities

and their corresponding priors factorized using Gamma and Gaussian priors, admits

fast and closed-form update equations in the real-time setting. As we will show in

Section 3.1.5, these models also have the advantage of incorporating low-complexity

updates by simplifying the EM procedure. In addition, the Log-Normal distribution

as a generic unimodal distribution allows us to model a larger class of attention

markers.

3.1.5 Dynamic State-Space Model: parameter estimation

For notational simplicity, hereafter we use the boldface version of a variable

to denote a vector containing all its instances, e.g., z := z1:KW and m(i) := m
(i)
1:KW

for i = 1, 2. The inference problem for Ω from m(1) and m(2) can be expressed as:

Ω̂ = arg maxΩ ln P
(
Ω
∣∣m(1),m(2)

)
= arg maxΩ ln P

(
m(1),m(2)

∣∣Ω)+ ln P (Ω) ,

(3.5)

where the log-likelihood and the log-prior are respectively expanded as:

ln P
(
m(1),m(2)

∣∣Ω) = ln

 ∑
n1:KW

KW∑
k=1

pk P
(
m

(1)
k

∣∣ nk,Ω)P
(
m

(2)
k

∣∣ nk,Ω)
 , (3.6)
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ln P(Ω) = ln P
(
ρ(a), µ(a)

)
+ ln P

(
ρ(u), µ(u)

)
+

KW∑
k=1

[
−1

2
ln ηk −

(zk − c0zk−1)2

2ηk
+ ln P(ηk)

]
︸ ︷︷ ︸

ln P(z,η)

+cnst.

(3.7)

Similar to the treatment in [51], we use an Expectation Maximization (EM) algo-

rithm with n as the latent variables to infer Ω. Note that the optimization problem

in (3.5) is non-convex in general; thus, the choice of initial conditions and hyperpa-

rameters for priors are important for reaching a desirable local maximum. Having

the estimate Ω̂(`) for Ω at the `th EM iteration, we will next derive the E-step and

M-step of the (`+1)th EM iteration.

3.1.5.1 The E-step

In the E-step, the surrogate function Q
(
Ω
∣∣ Ω̂(`)

)
is calculated as:

Q
(
Ω
∣∣ Ω̂(`)

)
=

1

KW

E
{

ln P
(
m(1),m(2),n

∣∣Ω)}︸ ︷︷ ︸
A

+ ln P(Ω), (3.8)

where the expectation of the complete log-likelihood ln P
(
m(1),m(2),n

∣∣Ω) needs

to be calculated with respect to n given m(1),m(2), Ω̂(`). For notational simplicity,

hereafter we drop the n
∣∣m(1),m(2), Ω̂(`) subscript of the conditional expectations.

We have used a normalized version of the log-likelihood in Eq. (3.8) for two

reasons. First, the window length KW is a hyperparameter in our framework, which

we can modify to find the optimal trade-off between the dimensionality of the state-

space and history-dependence of the model. Thus, to change the window length

for fixed priors, it is important to normalize the contribution of the log-likelihood
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in (3.8). Second, as noted before, we have a non-convex inference problem, which

makes the resulting local maximum dependent on the conjugate priors used. We

can use samples of m
(i)
k ’s to estimate the attended and the unattended Log-Normal

distributions and tune the hyperparameters to these distributions. By normalizing

the log-likelihood term, we are enforcing informative and empirical prior distribu-

tions which would guide the inference procedure towards a plausible local maximum.

For instance, for the correlation-based attention marker, we expect that a plausible

solution would result in the attended Log-Normal distribution being concentrated

around larger correlation values compared to the unattended distribution. Never-

theless, the forthcoming derivations can be carried out without the normalization

factor 1/KW in a similar fashion.

Let Iu(v) represent the indicator function, i.e., it is equal to one if v=u and

zero otherwise. Conditioning on n and using the conditional independence of m(1)

and m(2) given n and Ω, the expected log-likelihood A in (3.8) can be simplified

as:

A =
2∑
i=1

E
{

ln P
(
m(i)

∣∣ n,Ω)}+ E
{

ln P
(
n
∣∣Ω)}

=

KW∑
k=1

[
2∑
i=1

E
{

ln P
(
m

(i)
k

∣∣ nk,Ω)}+ E
{

ln P
(
nk
∣∣Ω)}] (3.9)

=

KW∑
k=1

[
2∑
i=1

2∑
j=1

E {Ij(nk)} ln P
(
m

(i)
k

∣∣ nk=j,Ω
)

+ E {I1(nk)} pk + E {I2(nk)} (1−pk)︸ ︷︷ ︸
E
{

ln P

(
nk

∣∣Ω

)}
]
.

Note that m
(i)
k

∣∣ nk,Ω pertains to either the attended or unattended Log-Normal
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distributions in Eq. (3.4) depending on the values of i and nk. Considering that

the nk’s are binary random variables and the expectations are with respect to

n
∣∣m(1),m(2), Ω̂(`), the term E {Ij(nk)} can be computed for j = 1, 2 using Bayes’

rule and conditional independence as:

E {Ij(nk)} = P
(
nk=j

∣∣m(1),m(2), Ω̂(`)
)

(3.10)

= P
(
nk=j

∣∣m(1)
k ,m

(2)
k , Ω̂(`)

)
=

P
(
m

(1)
k ,m

(2)
k

∣∣ nk=j, Ω̂(`)
)

P
(
nk=j

∣∣ Ω̂(`)
)

P
(
m

(1)
k ,m

(2)
k

∣∣ Ω̂(`)
)

=
P
(
m

(1)
k

∣∣ nk=j, Ω̂(`)
)

P
(
m

(2)
k

∣∣ nk=j, Ω̂(`)
)

P
(
nk=j

∣∣ Ω̂(`)
)

∑
nk

P
(
m

(1)
k

∣∣ nk, Ω̂(`)
)

P
(
m

(2)
k

∣∣ nk, Ω̂(`)
)

P
(
nk
∣∣ Ω̂(`)

) .

The parameters of the Log-Normal distributions for m
(i)
k

∣∣ nk, Ω̂(`) are determined

from the estimated
(
ρ(a), µ(a), ρ(u), µ(u)

)
in the previous EM iteration, i.e., Ω̂(`). Also,

P
(
nk
∣∣ Ω̂(`)

)
= 1

1+exp
(
−ẑ(`)k

) in (3.10), where ẑ
(`)
k is the estimate of zk from the pre-

vious EM iteration. Note that E {I1(nk)} = 1−E {I2(nk)} as nk is a binary random

variable. Defining ε
(`)
k := E {I1(nk)} with the expectation over nk

∣∣m(1)
k ,m

(2)
k , Ω̂(`),

we can conclude the E-step by simplifying Q
(
Ω
∣∣ Ω̂(`)

)
in Eq. (3.8) as:
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Q
(
Ω
∣∣ Ω̂(`)

)
=

KW∑
k=1

{
− ρ(a)

[
ε

(`)
k

(
lnm

(1)
k −µ(a)

)2

+
(

1−ε(`)k
)(

lnm
(2)
k −µ(a)

)2
]

− ρ(u)

[(
1−ε(`)k

)(
lnm

(1)
k −µ(u)

)2

+ ε
(`)
k

(
lnm

(2)
k −µ(u)

)2
]

+ ln ρ(a) + ln ρ(u)

}
1

2KW

− ρ(a)

[
β

(a)
0 + 0.5

(
µ(a)−µ(a)

0

)2
]

+
(
α

(a)
0 −0.5

)
ln ρ(a) (3.11)

− ρ(u)

[
β

(u)
0 + 0.5

(
µ(u)−µ(u)

0

)2
]

+
(
α

(u)
0 −0.5

)
ln ρ(u)

+

KW∑
k=1

{
ε

(`)
k pk +

(
1−ε(`)k

)
(1−pk)− (a0+1.5) ln ηk

− 1

ηk

[
b0+0.5(zk−c0zk−1)2

]}
+ cnst.

where the cnst. term includes all the terms that are independent of Ω.

3.1.5.2 The M Step

In the M step, we maximize Q
(
Ω
∣∣ Ω̂(`)

)
in Eq. (3.11) with respect to Ω. The

maximizers form the parameter updates for the (`+1)th EM iteration. As we observe

in Eq. (3.11), having n as the latent variables separates the terms in Q
(
Ω
∣∣ Ω̂(`)

)
depending on the distribution parameters, i.e.,

(
ρ(a), µ(a), ρ(u), µ(u)

)
, and the terms

depending on the state-space parameters, i.e., z and η. The derivation of the

update rules for the distribution parameters is straightforward through taking the

derivatives of Q
(
Ω
∣∣ Ω̂(`)

)
and solving for their joint zero-crossings. Consequently,

the closed-form formulas for the distribution parameters maximizing Q
(
Ω
∣∣ Ω̂(`)

)
can be expressed as:
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µ(a)∗ =
1

2

{
µ

(a)
0 +

1

KW

KW∑
k=1

[
ε

(`)
k lnm

(1)
k +

(
1−ε(`)k

)
lnm

(2)
k

]}
, (3.12)

µ(u)∗ =
1

2

{
µ

(u)
0 +

1

KW

KW∑
k=1

[(
1−ε(`)k

)
lnm

(1)
k + ε

(`)
k lnm

(2)
k

]}
, (3.13)

ρ(a)∗ =
2KWα

(a)
0

KW∑
k=1

[
ε
(`)
k

(
lnm

(1)
k −µ(a)

∗
)2

+
(

1−ε(`)k
)(

lnm
(2)
k −µ(a)

∗
)2]

+KW

[
2β

(a)
0 +

(
µ(a)

∗−µ(a)0

)2] ,
(3.14)

ρ(u)∗ =
2KWα

(u)
0

KW∑
k=1

[(
1−ε(`)k

)(
lnm

(1)
k −µ(u)

∗
)2

+ε
(`)
k

(
lnm

(2)
k −µ(u)

∗
)2]

+KW

[
2β

(u)
0 +

(
µ(u)

∗−µ(u)0

)2] ,
(3.15)

where
(
ρ(a)∗, µ(a)∗, ρ(u)∗, µ(u)∗) will be the updated distribution parameters in Ω̂(`+1).

The next step is to maximize Q
(
Ω
∣∣ Ω̂(`)

)
with respect to z and η. Note that

this joint maximization is non-convex in general. Consider the following state-space

model with parameters (z′,η′) and binary observations n′.

n′k ∼ Bernoulli
(

1
1+exp(−z′k)

)
z′k = c0z

′
k−1 + w′k

w′k ∼ N (0, η′k)

η′k ∼ Inverse-Gamma (a0, b0)

(3.16)

For the inference problem in (3.16), the log-posterior can be expressed as:

arg max
z′,η′

ln P
(
z′,η′ ∣∣ n′) = arg max

z′,η′

[
ln P

(
η′ ∣∣ n′)+ P

(
z′
∣∣ η′,n′) ]. (3.17)
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If we replace the observations n′k in (3.17) with ε
(`)
k , for k = 1, 2, . . . , KW , the

inference problem becomes equivalent to maximizing Q
(
Ω
∣∣ Ω̂(`)

)
in (3.11) with

respect to z and η.

In [16, 71], the inference of the parameters in (3.16) has been carried out

through the EM algorithm, where in each iteration, a Kalman filtering and smooth-

ing algorithm has been employed together with Gaussian approximations. Similar

to [51], we refer to this EM algorithm as the inner EM not to confuse it with the

EM algorithm we have already adopted, which we call the outer EM hereafter. The

basic idea behind the inner EM is to approximate the solutions to (3.17) as:
η′∗ = arg maxη′ P

(
η′
∣∣ n′)

z′∗ = arg maxz′ P
(
z′
∣∣ η′∗,n′) , (3.18)

where η′∗ are estimated through the inner EM with z′ as the latent variables, and

z′∗ are just the result of a Kalman filtering and smoothing algorithm in (3.16) for

η′ = η′∗.

In order to make the inference procedure suitable for real-time implementa-

tion, we can avoid the inner EM and instead use crude estimates of η′∗ in (3.18).

Note that ε
(`)
k , which acts as the observation n′k in (3.16) for k = 1, 2, . . . , KW , is

equal to P
(
nk=1

∣∣m(1)
k ,m

(2)
k , Ω̂(`)

)
calculated as in (3.10). Assuming that ε

(`)
k ≈

P (n′k=1) = 1
1+exp(−z′k)

, in the `th outer EM iteration, we can consider
[

logit
(
ε

(`)
k

)
−c0 logit

(
ε

(`)
k−1

) ]
as a sample of N (0, η′k). Therefore, considering the Inverse-

Gamma prior, a crude estimate for η′∗k can be calculated for k=1, 2, . . . , KW as:
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η′
∗
k =

2b0 +
[
logit

(
ε

(`)
k

)
− c0 logit

(
ε

(`)
k−1

)]2

2a0 − 1
. (3.19)

If KW is small enough, we can simplify the state-space model of (3.16) by assuming

a single variance, i.e., η′=η′k for k= 1, 2, . . . , KW , and using an estimate similar to

(3.19) for η′∗. However, in this model, the crude estimate would be more reliable as

it is based on KW samples rather than a single sample. Considering a normalized

log-likelihood and the same Inverse-Gamma prior on η′, the estimate for η′∗ can be

computed as:

η′
∗

=
2b0 + 1

KW

∑KW
k=1

[
logit

(
ε

(`)
k

)
− c0 logit

(
ε

(`)
k−1

)]2

2a0 − 1
. (3.20)

After estimating η′∗k in (3.19) for k=1, 2, . . . , KW , or η′∗ in (3.20), we can proceed as

before to estimate z′∗, i.e., using a Kalman filtering and smoothing algorithm with

Gaussian approximations to estimate z′∗ in (3.18). These estimates, namely z∗ and

η∗, form approximate solutions for z and η in the original problem of maximizing

Q(Ω
∣∣ Ω̂(`)) in (3.11) with respect to the state-space parameters.

Next, we discuss the details of the inner EM algorithm, as in [51], used to

solve for z′ and η′ in (3.16). As mentioned before, the idea is to use an EM al-

gorithm together with Gaussian approximations to maximize P
(
η′
∣∣ n′), and then

maximize the likelihood of z′ with respect to the observations and estimated vari-

ances. Considering z′ as the latent variables, the surrogate function Q(η′
∣∣η̂′(`)) at

`th EM iteration is calculated as:
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Q
(
η′
∣∣η̂′(`)) = E

{
ln P

(
n′, z′

∣∣ η′)}+ ln P(η′) (3.21)

=

KW∑
k=1

[
E
{

(z′k−c0z
′
k−1)2

}
+ 2b0

2η′k
+ (a0+1.5) ln η′k

]
+ cnst.,

where the expectations are with respect to z′
∣∣n′, η̂′(`), and the cnst. term contains

all the terms that are independent of η′.

In the M-step of the inner EM algorithm, Q
(
η′
∣∣η̂′(`)) is maximized with

respect to η′ to calculate the updated variances for the next EM iteration. Taking

the derivative of (3.21) with respect to η′ and equating it to zero results in the

following update rule for η̂′
(`+1)

:

η̂′
(`+1)

k =
1

2a0 + 3

[
E
{

(z′k−c0z
′
k−1)2

}
+ 2b0

]
(3.22)

=
1

2a0 + 3

[
E
{
z′k

2
}

+ c2
0E
{
z′k−1

2
}
− 2c0E

{
z′kz
′
k−1

}
+ 2b0

]
=

1

2a0 + 3

[
σ2
k|KW +z̄2

k|KW +c2
0σ

2
k−1|KW +c2

0z̄
2
k−1|KW−2c0σ

2
k,k−1|KW

−2c0z̄k|KW z̄k−1|KW +2b0

]
,

where the parameters z̄k|KW and σ2
k|KW in Eq. (3.22) are respectively the mean and

the variance of z′k | n′, η̂′
(`)

.

If we consider the Gaussian approximation N
(
z̄k1|k2 , σ

2
k1|k2

)
to the density

z′k1 | n′1:k2
, η̂′

(`)
for 1 ≤ k1 ≤ k2 ≤ KW , these parameters can be computed in a for-

ward and backward pass similar to the conventional Kalman filtering and smoothing

algorithms. The corresponding filtering equations for 1 ≤ k ≤ KW are summarized
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as: 

z̄k|k−1 = c0z̄k−1|k−1

σ2
k|k−1 = c2

0σ
2
k−1|k−1 + η′k

(l)

z̄k|k = z̄k|k−1 + σ2
k|k−1

[
n′k −

exp(z̄k|k)

1+exp(z̄k|k)

]
σ2
k|k =

[
1

σ2
k|k−1

+
exp(z̄k|k)

(1+exp(z̄k|k))
2

]−1

(3.23)

Note that the third equation in (3.23) is a non-linear equation whose solution can

be approximated through standard approaches such as the Newton’s method. The

last two equations in (3.23) come from the Gaussian approximation: assuming that

z′k−1 |n′1:k−1, η̂
′(`) v N

(
z̄k−1|k−1, σ

2
k−1|k−1

)
we calculate the Gaussian approximation

for z′k | n′1:k, η̂
′(`). The mean of the Gaussian approximation z̄k|k is calculated as

the mode of ln P
(
z′k | n′1:k, η̂

′(`)
)

, and its variance σ2
k|k is computed as the negative

inverse Hessian of ln P
(
z′k | n′1:k, η̂

′(`)
)

evaluated at the estimated mean z̄k|k [72].

The smoothing equations are the same as those used for fixed interval smoothing.

Therefore, for 1 ≤ k ≤ KW − 1, we have:

sk = σ2
k|k

/
σ2
k+1|k

z̄k|KW = z̄k|k + sk
(
z̄k+1|KW − z̄k+1|k

)
σ2
k|KW = σ2

k|k + s2
k

(
σ2
k+1|KW − σ2

k+1|k

)
(3.24)

The σ2
k,k−1|KW term in (3.22) is a lagged covariance term that can be computed using

the covariance smoothing algorithm [73]:
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σ2
k,k−1|KW = Cov

{
z′k, z

′
k−1

∣∣ n′, η̂′(`)
}

=
σ2
k−1|k−1σ

2
k|KW

σ2
k|k−1

. (3.25)

Having calculated the variances η′∗ from the inner EM algorithm, z′∗ can be

estimated using a single forward and backward pass for η′ = η′∗, similar to that

used in the inner EM algorithm. In summary, we have transformed the problem

of maximizing (3.11) with respect to z and η into inferring z′ and η′ in (3.16) by

identifying n′k with ε
(l)
k for k = 1, . . . , KW . We have then solved the latter problem

through an EM algorithm combined with Gaussian approximations and Kalman

filtering and smoothing. Therefore, we have z∗ = z′∗ and η∗ = η′∗ in the original

problem.

Algorithm 6 summarizes the overall inference procedure within a fixed-lag

window of length KW . Going back to Fig. 3.2, copied from the paper, we as-

sume k = k0 is the current instance and the goal is to infer the attentional state

at instance k = k0 − KF based on the attention markers within the window in-

dexed from 1 to KW , given by m
(i)
k for i = 1, 2 and k = 1, . . . , KW . We ini-

tialize the state-space model parameter set Ω using the estimates at the previ-

ous instance, and the output of Algorithm 6, i.e., Ω̂, is used for initialization

in the next instance. Defining f(.) as the sigmoid function, f
(
ẑKW−KF

)
deter-

mines the estimated probability of attending to speaker 1 at k = k0 − KF , and[
f
(
ẑKW−KF−1.65σ̂2

KW−KF |KW

)
, f
(
ẑKW−KF +1.65σ̂2

KW−KF |KW

)]
represents the %90

confidence intervals of this estimate, where σ̂2
KW−KF |KW represents the inferred vari-

ance of ẑKW−KF calculated through the discussed Gaussian approximations. The
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parameter SEM in Algorithm 6 is a stopping condition for the outer EM, which can

be a limit on the number of iterations.

Algorithm 6 Parameter Estimation in Dynamic State-Space Model

Inputs: m
(1)
1:KW

, m
(2)
1:KW

, α
(a)
0 , α

(u)
0 , β

(a)
0 , β

(u)
0 , µ

(a)
0 , µ

(u)
0 , a0, b0, SEM

Output: Ω̂ =
{
ẑ1:KW

, η̂1:KW
, ρ̂(a), µ̂(a), ρ̂(u), µ̂(u)

}
1: Set Ω̂(0) as the initialization for state-space model parameter set based on esti-

mates in the previous instance

2: ` = 0

3: while ¬SEM do

4: calculate ε
(`)
1:KW

using (3.10)

5: update the parameters of the Log-Normal distributions, i.e., µ(a), µ(u), ρ(a),
ρ(u), based on equations (3.12), (3.13), (3.14), and (3.15) respectively

6: update the state-space variances, i.e., η1:KW
, using the inner-EM algorithm or

the crude estimates in equations (3.19) and (3.20)

7: update the hidden states in the state-space model, i.e., z1:KW
, using a Kalman

filtering and smoothing algorithm with Gaussian approximations

8: set Ω̂(`+1) as the updated parameter set including the updated distribution
parameters, variances, and hidden states in the state-space model

9: `← `+ 1

10: end while

11: Ω̂ = Ω̂(`).

3.1.6 EEG Recording and Experiment Specifications

64-channel EEG was recorded using the actiCHamp system (Brain Vision LLC,

Morrisville, NC, US) and active EEG electrodes with Cz channel being the reference.

The data was digitized at a 10 KHz sampling frequency. Insert earphones ER-2

(Etymotic Research Inc., Elk Grove Village, IL, US) were used to deliver sound to

the subjects while sitting in a sound-attenuated booth. The earphones were driven

by the clinical audiometer Piano (Inventis SRL, Padova, Italy), and the volume was

adjusted for every subject’s right and left ears separately until the loudness in both
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ears was matched at a comfortably loud listening level. Three normal-hearing adults

participated in the study. The mean age of subjects was 49.5 years with the standard

deviation of 7.18 years. The study included a constant-attention experiment, where

the subjects were asked to sit in front of a computer screen and restrict motion while

any audio was playing. The data used in this chapter corresponds to 3 subjects, 24

trials each.

The stimulus set contained eight story segments, each approximately ten min-

utes long. Four segments were narrated by male speaker 1 (M1) and the other four

by male speaker 2 (M2). The stimuli were presented to the subjects in a dichotic

fashion, where various stories read by M1 were played in the left ear, while stories

read by M2 were played in the right ear for all the subjects. Each subject listened

to twenty four trials of the dichotic stimulus. Each trial had a duration of approx-

imately one minute, and for each subject, no storyline was repeated in more than

one trial. During each trial, the participants were instructed to look at an arrow

at the center of the screen, which determined whether to attend to the right-ear

story or to the left one. The arrow remained fixed for the duration of each trial,

making it a constant-attention experiment. At the end of each trial, two multiple

choice semantic questions about the attended story were displayed on the screen to

keep the subjects alert. The responses of the subjects as well as their reaction time

were recorded as a behavioral measure of the subjects’ level of attention, and above

eighty percent of the questions were answered correctly by each subject. Breaks and

snacks were given between stories if requested. All the audio recordings, correspond-

ing questions, and transcripts were obtained from a collection of stories recorded at
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Hafter Auditory Perception Lab at UC Berkeley.

3.1.7 MEG Recording and Experiment Specifications

MEG signals were recorded with a sampling rate of 1 KHz using a 160-channel

whole-head system (Kanazawa Institute of Technology, Kanazawa, Japan) in a dimly

lit magnetically shielded room (Yokogawa Electric Corporation). Detection coils

were arranged in a uniform array on a helmet-shaped surface on the bottom of the

dewar with 25 mm between the centers of two adjacent 15.5 mm diameter coils. Also,

sensors are set as first-order axial gradiometers with a baseline of 50 mm, resulting

in field sensitivities of 5 fT√
Hz

or better in the white noise region.

The two speech signals had approximately 65 dB SPL and were presented

using the software package Presentation (Neurobehavioral Systems Inc., Berkeley,

CA, US). The stimuli were delivered to the subjects’ Õ ears with 50 Ω sound tubing

(E-A-RTONE 3A; Etymotic Research), attached to E-A-RLINK foam plugs inserted

into the ear canal. Also, the whole acoustic delivery system was equalized to give an

approximately flat transfer function from 40 Hz to 3000 Hz. A 200 Hz low-pass filter

and a notch filter at 60 Hz were applied to the magnetic signal in an online fashion

for noise removal. Three of the 160 channels were magnetometers separated from

the others and used as reference channels. Finally, to quantify the head movement,

five electromagnetic coils were used to measure each subject’s head position inside

the MEG machine once before and once after the experiment.

Nine normal-hearing, right-handed young adults (ages between 20 and 31)
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participated in this study. The study includes two sets of experiments: the constant-

attention experiment and the attention-switch experiment, in both of which six

subjects participated. Three subjects took part in both of the experiments. The

experimental procedure were approved by the University of Maryland Institutional

Review Board (IRB), and written informed consent was obtained from each subject

before the experiment.

The stimuli included four non-overlapping segments from the book A Child’s

History of England by Charles Dickens. Two of the segments were narrated by a

man and the other two by a woman. Three different mixtures, each 60 s long, were

generated and used in the experiments to prevent reduction in the attentional focus

of the subjects. Each mixture included a segment narrated by the male speaker and

one narrated the the female speaker. In all trials, the stimuli were delivered dioti-

cally to both ears using tube phones inserted into the ear canals at a roughly 65 dB

SPL, as mentioned. The constant-attention experiment consisted of two conditions:

1) attending to the male speaker in the first mixture, 2) attending to the female

speaker in the second mixture. In the attention-switch experiment, subjects were

instructed to focus on the female speaker in the first 28 s of the trial, switch their

attention to the male speaker after hearing a 2 s pause (28th to 30th seconds), and

maintain their focus on the latter speaker through the end of the trial. Each mixture

was repeated three times in the experiments, resulting in six trials per speaker for the

constant-attention experiment and three trials per speaker for the attention-switch

experiment. After the presentation of each mixture, subjects answered comprehen-

sive questions related to the segment they were instructed to focused on, as a way
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to keep them motivated on attending to the target speaker. Eighty percent of the

questions were answered correctly on average. Furthermore, a pilot study for each

of the nine participating subjects was performed prior to the main experiments.

In this study, the subjects listened to a single speech stream, first segment in the

stimuli set narrated by the male speaker, for three trials each 60 s long. The MEG

recordings in the pilot study were used to calculate the subject-specific linear com-

bination of MEG channels which forms the auditory component of the response, as

will be explained next. Note that for each subject, all the recordings were performed

in a single session resulting in a minimal change of the subject’s head position with

respect to the MEG sensors.

3.2 Results

In this section, we apply our real-time attention decoding framework to syn-

thetic data as well as M/EEG recordings. In order to validate our proposed frame-

work, we perform two sets of simulations. The simulation in Section 3.2.1 pertains

to our EEG analysis and employs a decoding model, while the simulation in Section

3.2.2 corresponds to our MEG analysis and uses an encoding model. The results

for the analysis of EEG and MEG recordings are demonstrated in Section 3.2.3 and

3.2.4, respectively.
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3.2.1 Decoding Model Simulation

3.2.1.1 Simulation Settings

In order to simulate EEG data under a dual-speaker condition, we use the

following generative model:

et = w
(1)
t

(
s

(1)
t ∗ ht

)
+ w

(2)
t

(
s

(2)
t ∗ ht

)
+ µ+ nt (3.26)

where s
(1)
t and s

(2)
t are respectively the speech envelopes of speakers 1 and 2 at time

t; the output et is the neural response, which denotes an auditory component of

the EEG recordings or the measured EEG response at a given channel at time t

for t = 1, 2, . . . , T . Motivated by the analysis of LTI systems, ht can be considered

as the impulse response of the neural process resulting in et, and ∗ represents the

convolution operator; the scalar µ is an unknown constant mean, and nt denotes

a zero-mean i.i.d Gaussian noise. The weight functions w
(1)
t and w

(2)
t are signals

modulated by the attentional state which determine the contributions of speakers 1

and 2 to et, respectively. In order to simulate the attention modulation effect, we

assume that when speaker 1 (resp. 2) is attended to at time t, we have w
(1)
t > w

(2)
t

(resp. w
(1)
t < w

(2)
t ).

We have chosen two 60 s-long speech segments from those used in the MEG

experiment (See section 3.1.7) and calculated s
(1)
t and s

(2)
t as their envelopes for a

sampling rate of fs = 200 Hz. Also, we have set µ = 0.02 and nt
iid∼N (0, 2.5×10−5) in

Eq. (3.26). Fig. 3.3-A shows the location and amplitude of the lag components in
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the impulse response, which is then smoothed using a Gaussian kernel with standard

deviation of 10 ms to result in the final impulse response ht, shown in Fig. 3.3–B.

The significant components of ht are chosen at 50 ms and 100 ms lags, with few

smaller components at higher latencies [51]. The weight signals w
(1)
t and w

(2)
t in Eq.

(3.26) are chosen to favor speaker 1 in the [0 s, 30 s) interval and speaker 2 in the

(30 s, 60 s] interval, with the transition happening within a 3 s interval around the

30 s mark.
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-0.2

0

Lag (s)

0 0.1 0.2 0.3 0.4

sparse lag components smooth filter

Lag (s)

0 0.1 0.2 0.3 0.4

A) B)

Figure 3.3: Impulse response ht used in Eq. (3.26). A) sparse lag compo-
nents, B) the smooth impulse response.

3.2.1.2 Parameter Selection

We aim at estimating decoders in this simulation, which linearly map et and its

lags to s
(1)
t and s

(2)
t . To estimate the decoders, we have considered consecutive non-

overlapping windows of length 0.25 s resulting in K=240 windows of length W =50

samples. Also, we have chosen γ = 0.001 through cross-validation and λ= 0.95 in

estimating the decoding coefficients, which results in an effective data length of 5 s

for decoder estimation. The forward lags of the neural response have been limited
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to a 0.4 s window, i.e., Ld = 80 samples. Given that the decoder corresponds to the

inverse of a smooth kernel ht, it may not have the same smoothness properties of ht.

Hence, we do not employ a smooth basis for decoder estimation. We have used the

FASTA package [69] with Nesterov’s acceleration method to implement the forward-

backward splitting algorithm for encoder/decoder estimation. As for the state-space

model estimators, we have considered 20 (inner and outer) EM iterations for the

batch-mode estimates that use the entire data, while for the real-time estimates, we

use 1 inner EM iteration and 20 outer EM iterations (See Section 3.1.5 for more

details).

There are three criteria for choosing the fixed-lag smoothing parameters: First,

how close to the true real-time analysis the system operates is determined by KF .

Second, the computational cost of the system is determined by KW . Third, how

close the output of the system is to that of batch-mode processing is determined by

both KF and KW . These three criteria form a tradeoff in tuning the parameters

KW and KF . Specific choices of these parameters are given in the next subsection.

For tuning the hyperparameters of the priors on the attended and unat-

tended distributions, we have used a separate 15 s sample trial generated from the

same simulation model in Eq. (3.26) for each of the three cases. The parameters(
α

(a)
0 , α

(u)
0 , β

(a)
0 , β

(u)
0 , µ

(a)
0 , µ

(u)
0

)
have been chosen by fitting the Log-Normal distribu-

tions to the attention marker outputs from the sample trials in a supervised manner

(with known attentional state). The variance of the Gamma priors
α
(a)
0

β
(a)
0

2 and
α
(u)
0

β
(u)
0

2

have been chosen large enough such that the priors are non-informative. This step

can be thought of as the initialization of the algorithms prior to data analysis. For
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the Inverse-Gamma prior on the state-space variances, we have chosen a0 = 2.008

and b0 = 0.2016, resulting in a mean of 0.2 and a variance of 5. This prior favors

small values of ηk’s to ensure that the state estimates are immune to large fluctu-

ations of the attention markers, while the large variance (compared to the mean)

results in a non-informative prior.

3.2.1.3 Estimation Results

Fig. 3.4 shows the results of our estimation framework for a correlation-based

attention marker. Row A in Fig. 3.4 shows three cases considered for modulating

the weights w
(1)
t and w

(2)
t , where the weights are contaminated with Gaussian noise

N (0, 4×10−4). Cases 1, 2, and 3 exhibit increasing levels of difficulty in discriminat-

ing the contributions of the two speakers to the neural response. Rows B and C in

Fig. 3.4 respectively show the decoder estimates for speakers 1 and 2. As expected,

the significant components of the decoders around 50 ms, 100 ms, and 150 ms lags,

are modulated by the attentional state, and the modulation effect weakens as we

move from Case 1 to 3. In Case 1, these components are less significant overall for

the decoder estimates of speaker 2 in the [0 s, 30 s] time interval and become larger

as the attention switches to speaker 2 during the rest of the trial (red boxes in row

C of Case 1). On the other hand, in Case 3, the magnitude of the said components

do not change notably across the 30 s mark.

We have considered two different attention markers for this simulation. Row D

in Fig. 3.4 displays the output of a correlation-based attention marker for speakers
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Figure 3.4: Estimation results of application to simulated EEG data for

the correlation-based attention marker: A) Input weights w
(1)
t and w

(2)
t in

Eq. (3.26), which determine the relative effect of the two speeches on the
neural response. Based on our generative model, the attention is on speaker
1 for the first half of each trial and on speaker 2 for the second half. Case 1
corresponds to a scenario where the effects of the attended and unattended
speeches in the neural response are well-separated. This separation decreases
as we move from Case 1 to Case 3. B) Estimated decoder for speaker 1. C)
Estimated decoder for speaker 2. In Case 1, the significant components of
the estimated decoders near the 50 ms, 100 ms, and 150 ms lags are notably
modulated by the attentional state as highlighted by the red boxes. This
effect weakens in Case 2 and visually disappears in Case 3. D) Output of
the correlation-based attention marker for each speaker. E) Output of the
batch-mode state-space estimator for the correlation-based attention marker
as the estimated probability of attending to speaker 1. F) Output of the
real-time state-space estimator, i.e., fixed-lag smoother, for the correlation-
based attention marker as the estimated probability of attending to speaker
1. The real-time estimator is not as robust as the batch-mode estimator to
the stochastic fluctuations of the attention marker in row D and is more prone
to misclassifications. The red arrows in rows E and F of Case 2 show that the
batch-mode estimator correctly classifies the instance as attending to speaker
2, while the real-time estimator is unable to determine the attentional state.
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1 and 2, which is calculated as m
(i)
k =

∣∣∣corr
(
y

(i)
k ,Xkθ̂

(i)
k

)∣∣∣ for i = 1, 2 and k =

1, 2, . . . , K. As discussed in subsection 3.1.3, this attention marker is a measure

of how well a decoder can reconstruct its target envelope. As observed in row D

of Fig. 3.4, the attention marker is a highly variable surrogate of the attentional

state at each instance, i.e., on average the attention marker output for speaker 1 is

higher then that of speaker 2 in the [0 s, 30 s) interval and vice versa in the (30 s, 60 s]

interval. The reliability of the attention marker significantly degrades going from

Case 1 to 3. This highlights the need for state-space modeling and estimation in

order to optimally exploit the attention marker.

Rows E and F in Fig. 3.4 respectively show the batch-mode and real-time

estimates of the attentional state probabilities pk = P (nk = 1) for k = 1, . . . , K, for

the correlation-based attention marker, where colored halls indicate 90% confidence

intervals. Row F in Fig. 3.4 corresponds to the fixed-lag smoother, using a window

of length 15 s (KW = b15fs/W c), and a forward-lag of 1.5 s (KF = b1.5fs/W c). We

refer to this estimator as the real-time estimator henceforth. Note that by accounting

for the forward-lag in the decoder (Ld), the overall delay in estimating the attentional

state is 1.9 s. Recall that in batch-mode processing, all of the attention marker

outputs across the trial are available the state-space estimator, as opposed to the

fixed-lag estimator which has access to a limited number of the attention markers.

Therefore, the output of the batch-mode estimator (Row E) is a more robust measure

of the instantaneous attentional state as compared to the real-time estimator (Row

F), since it is less sensitive to the stochastic fluctuations of the attention markers
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in row D. For example, in the instance marked by the red arrows in rows E and

F of Case 2 in Fig. 3.4, the batch-mode estimator classifies the instance correctly

as attending to speaker 2, while the real-time estimator cannot make an informed

decision since pk = 0.5 falls within the 90% confidence interval of the estimate at this

instance. However, the real-time estimator exhibits performance closely matching

that of the batch-mode estimator for most instances, while operating in real-time

with limited data access and significantly lower computational complexity.
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Figure 3.5: Estimation results of application to simulated EEG data for the
`1-based attention marker: A) Output of the `1-based attention marker for
each speaker, corresponding to the three cases in Figure 3.4. B) Output of
the batch-mode state-space estimator for the `1-based attention marker as the
estimated probability of attending to speaker 1. C) Output of the real-time
state-space estimator for the `1-based attention marker as the estimated prob-
ability of attending to speaker 1. Similar to the preceding correlation-based
attention marker, the classification performance degrades when moving from
Case 1 (strong attention modulation) to Case 3 (weak attention modulation).

Row A in Fig. 3.5 exhibits the output of another attention marker computed as

the `1-norm of the decoder given by m
(i)
k :=

∥∥∥ θ̂(i)
k

∥∥∥
1

for i = 1, 2 and k = 1, 2, . . . , K,

where the first element of θ̂
(i)
k ∈ RLd+2 (the intercept parameter) is discarded in
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computing the `1 norm. This attention marker captures the effect of the significant

peaks in the decoder. The rationale behind using the `1-norm based attention

marker is the following: in the extreme case that the neural response is solely driven

by the attended speech, we expect the unattended decoder coefficients to be small

in magnitude and randomly distributed across the time lags. The attended decoder,

however, is expected to have a sparse set of informative and significant components

corresponding to the specific latencies involved in auditory processing. Thus, the

`1 norm serves to distinguish between these two cases. Rows B and C in Fig. 3.5

show the batch-mode and real-time estimates of the attentional state probabilities

for the `1-norm attention marker, respectively, where colored halls indicate 90%

confidence intervals. Consistent with the results of the correlation-based attention

marker (Rows E and F in Fig. 3.4), the real-time estimator exhibits performance

close to that of the batch-mode estimator. Comparing Figs. 3.4 and 3.5 reveals

the dependence of the attentional state estimation performance on the choice of

the attention marker: while the correlation-based attention marker is more widely

used, the `1-based attention marker provides smoother estimates of the attention

probabilities, and can be used as a more robust alternative to the correlation-based

attention marker.

3.2.1.4 Discussion and Further Analysis

Going from Case 1 to Case 3 in Fig. 3.4 and Fig. 3.5, we observe that the

performance of all estimators degrades, causing a drop in the classification accuracy

81



and confidence. This performance degradation is due to the declining power of the

attention markers in separating the contributions of the attended and unattended

speakers. However, comparing the outputs of the real-time and batch-mode estima-

tors with their corresponding attention marker outputs in row D of Fig. 3.4 and

row A of Fig. 3.5, highlights the role of the state-space model in suppressing the

stochastic fluctuations of the attention markers and thereby providing a robust and

smooth measure of the attentional state.

It is noteworthy that all the estimators exhibit a systematic delay in detecting

the deflection point at 30 s, even for the well-separated Case 1 and batch-mode

estimation. This delay is due to two main factors: first, the transition period of

3 s in the design of the weight signals contributes to this delay. Second, although

the forgetting factor mechanism used in estimating the decoder coefficients results

in more stable estimates, it causes an extra delay to the overall performance of the

estimator.

Comparing the batch-mode and the real-time estimators in Fig. 3.4 and Fig.

3.5, we observe that the real-time estimators closely follow the output of the batch-

mode estimators, while having access to data in an online fashion. A significant

deviation between the batch-mode and real-time performance is observed in rows

B and C (Cases 1 and 2) of Fig. 3.5 in the form of sharp drops in the real-time

estimates of the attentional state probability. Given that the real-time estimator has

only access to the attention marker within KF samples in the future, the confidence

intervals significantly narrow down within the first half of the trial, as all the past

and near-future observations are consistent with attention to speaker 1. However,
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shortly after the 30 s mark the estimator detects the change and the confidence

bounds widen accordingly (see red arrows in row C of Case 2 in Fig. 3.5).

In order to further quantify the performance gap between the batch-mode and

real-time estimators, we define their relative Mean Squared Error (MSE) as:

MSE=
1

K

K∑
k=1

 1

1 + exp
(
−ẑ(B)

k

) − 1

1 + exp
(
−ẑ(R)

k

)
2

(3.27)

where ẑ
(R)
1:K and ẑ

(B)
1:K denote the real-time and batch-mode state estimates over a

given trial, respectively. We have considered the logistic transformation of ẑ
(B)
1:K and

ẑ
(R)
1:K , which gives the probability of attending to speaker 1.

Figure 3.6 shows the effect of varying the forward-lag KF from 0 s (i.e., fully

real-time) to 5 s with 0.5 s increments for the two attention markers in Case 2 of

Fig. 3.4 and Fig. 3.5, as an example. All of the other parameters in the simulation

have been fixed as before. The left panels in Fig. 3.6 show the MSE for different

values of KF in the real-time setting. As expected, for both attention markers, the

MSE decreases as the forward-lag increases. The right panels in Fig. 3.6 display

the incremental MSE defined as the change in MSE when KF is increased by 0.5 s,

starting from KF = 0 s. Notice that even a 0.5 s forward-lag significantly decreases

the MSE from KF =0 s. The subsequent improvements of the MSE diminish as KF

is increased further. Our choice of KF = 1.5 s in the foregoing analysis was made

to maintain a reasonable tradeoff between the MSE improvement and the delay in

real-time operation.

Finally, Fig. 3.7 shows the estimated attention probabilities and their 90%

confidence intervals for the correlation-based attention marker in Case 2 of Fig. 3.4,
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Figure 3.6: Effect of the forward-lag KF on the MSE for the two attention
markers in case 2 of Fig. 3.4 and Fig. 3.5. A) Correlation-based attention
marker, B) `1-based attention marker. As the forward-lag increases, the MSE
decreases, and the output of the real-time estimator becomes more similar
to that of the batch-mode. This results in more robustness for the real-time
estimator at the expense of more delay in decoding the attentional state. The
right panels show that the incremental improvement to the MSE decreases as
KF increases.

as an example. The three curves correspond to the extreme values of KF in Fig.

3.6 given by KF = 0 s (blue) and KF = 5 s (red), and the batch-mode estimate

(green). All the other parameters have been fixed as explained before. The fixed-

lag smoothing approach with KF = 5 s is as robust as the batch-mode estimate.

The fully real-time estimate with KF = 0 s follows the same trend as the other two.

However, it is susceptible to the stochastic fluctuations of attention marker, which

may lead to misclassifications (see the red arrows in Fig. 3.7).
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Figure 3.7: Estimated attention probabilities together with their 90% con-
fidence intervals for the correlation-based attention marker in Case 2 of Fig.
3.4. The blue, red and green curves correspond to KF = 0 s, KF = 5 s, and
batch-mode estimation, respectively. The estimator for KF = 5 s is nearly
as robust as the batch-mode. However, the fully real-time estimator with
KF = 0 s is sensitive to the stochastic fluctuations of the attention markers,
which results in the misclassification of the attentional state at the instances
marked by red arrows.

3.2.2 Encoding Model Simulation

3.2.2.1 Simulation Settings

Consider the following generative model to simulate MEG data under a dual-

speaker condition:

et = s
(1)
t ∗ τ (1)

t + s
(2)
t ∗ τ (2)

t + µ+ nt, (3.28)

where et, s
(1)
t , and s

(2)
t respectively denote the auditory component of the neural

response, speech envelope for speaker 1, and speech envelope for speaker 2. We

have used the same speech signals for s
(1)
t and s

(2)
t as in the EEG simulation, with

the same sampling rate of fs=200 Hz. In the context of MEG processing, τ
(1)
t and

τ
(2)
t are referred to as the TRF for speakers 1 and 2. We have set µ = 0.001 as
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the unknown constant mean and nt
iid∼N (0, 2.5×10−7) as the observation noise. We

assume an attention modulation effect on the M100 component of the TRFs.

Figure 3.8 shows two cases for the TRFs τ
(1)
t and τ

(2)
t : In the left panels (case

1), there is a strong attention modulation effect on the M100 components, and in

the right panels (case 2), this effect is weakened. In both cases, the attention is on

speaker 1 during the [0, 30) s interval and on speaker 2 during the (30, 60] s interval.

Also, we have considered a length of 0.4 s for the TRFs. Row B in Fig. 3.8 shows

examples of the attended and the unattended TRFs for each of the two cases. In

case 1, there is a large difference between the magnitude of the M100 components

in the attended and the unattended TRFs, while in case 2, this difference is small

compared to our estimation accuracy. We have also considered three higher latency

components in the TRFs which are not modulated by the attentional state, similar

to the M50 component. As shown in row A of Fig. 3.8, a zero-mean Gaussian

i.i.d. noise is added to the TRF components as well. Note that similar to the EEG

simulation, we have used a Gaussian kernel with the standard deviation of 10 ms to

smooth the TRFs. This smoothness property is also observed in TRFs estimated

from experimentally-recorded MEG signals [48,49].

3.2.2.2 Parameter Selection

For the encoder estimation parameters in Algorithm 5, we have considered

consecutive non-overlapping windows of length 0.25 s, i.e., W =50, resulting in K =

240 instances, and we have assumed the same 0.4 s length for the TRFs, i.e., Le=80.
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Figure 3.8: The TRFs τ
(1)
t and τ

(2)
t used for the simulation model in Eq.

(3.28). A) TRFs for case 1 (strong modulation in M100 components) and case
2 (weak modulation in M100 components). B) Snapshots of the attended and
unattended TRFs for the two cases.

We have chosen γ=0.005 through cross-validation and λ = 0.9167, which results in

an effective window length of 3 s for encoder estimation. Considering the smoothing

Gaussian kernel used in the forward model, we have used the Gaussian dictionary

matrix G0 ∈ R(Le+1)×(Le+1) for each speaker in the encoder estimation step to enforce

smoothness in the TRFs. The dictionary columns consist of overlapping Gaussian

kernels with the standard deviation of 10 ms, whose means cover the 0 s to 0.4 s lag

with Ts=5 ms increments. As a result, considering the simultaneous estimation of

the two TRFs, the overall dictionary matrix would be G = diag (1,G0,G0).
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We have used the FASTA package [68] with Nesterov’s acceleration method

to implement the forward-backward splitting algorithm. All the prior distribution

parameters of the state-space models are set similar to the EEG simulation in the

paper, where a0 = 2.008, b0 = 0.2016, and the prior parameters for the attended and

unattended distributions were tuned based on a separate 15 s sample trial. For the

real-time state-space estimator, we have used a sliding window of length 15 s with a

fixed forward-lag of 1.5 s, i.e., KW = b15fs/W c and KF = b1.5fs/W c. The sample

trial for tuning the distribution parameters can be thought of as an initialization

step for the estimator prior to its real-time application.

3.2.2.3 Estimation Results

Figure 3.9 shows the results of our estimation framework. Row A contains the

estimated TRFs for the encoding model. The major components of the TRFs are

retrieved in the estimates while the `1-norm penalty in Eq. (3.1) has significantly

denoised these components as compared with the original noisy versions in row A

of Fig. 3.8. Row B in Fig. 3.9 displays the extracted magnitudes of the M100

components from the estimated TRFs at each instance. The attention marker in

this case is defined as the magnitude of the M100 component, where the M100

component is calculated as the minimum value of the TRF estimate around the

100 ms lag. Notice that there is a significant statistical difference between the

extracted M100 components for the attended and unattended speakers in case 1,

while the estimated M100 components are highly variable in case 2 and do not show
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a strong attention modulation effect.
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Figure 3.9: Estimation results of application to simulated MEG data: A)
Estimated TRFs for case 1 (strong modulation in M100 components) and case
2 (weak modulation in M100 components). B) Estimated M100 magnitudes
as the attention markers. C) Outputs of the batch-mode estimator as the
estimated probability of attending to speaker 1. D) Outputs of the real-time
estimator as the estimated probability of attending to speaker 1. The real-time
estimator is less robust to the statistical fluctuations in the extracted M100
components, which can result in misclassifications as shown for two example
instances marker by red arrows. However, it follows the general trend of the
batch-mode estimator closely despite its online access to data.
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Rows C and D of Fig. 3.9 show the output of the batch-mode and real-time

state-space estimators, respectively. In case 1, both the batch-mode and real-time

estimators perform well in tracking the attentional state. Note that the sharp drop

of the attention probability near ∼ 30 s in Row D is due to the fact that at each

instance the real-time estimator does not observe the attention markers beyond the

1.5 s forward lag, whereas the batch-mode estimator estimates the probabilities given

the entire trial. In case 2, the batch-mode estimator performs well even though the

M100 components are not visually indicative of the attentional state. However, the

classification confidence decreases considerably specially in the (30, 60] s interval.

The real-time estimator in case 2 closely follows the batch-mode estimator, but is

more sensitive to the fluctuations of the extracted M100 components. Thus, its

performance undergoes further degradation going from case 1 to 2, as compared

with that of the batch-mode estimator. The red arrows in rows C and D of case 2

in Fig. 3.9 mark instances where the less robustness of real-time estimator resulted

in misclassifications, while the batch-mode estimator classified the attended speaker

correctly.

It is worth noting that as we are using an encoding model in this case, the

overall delay in estimating the attentional state is the forward-lag window, i.e., 1.5 s,

and unlike the case of using the decoding model, the encoder lag does not contribute

to the delay. Our analysis of the effect of KF on the MSE of the real-time estimator

with respect to the batch-mode was nearly identical to that presented for the EEG

simulation, and is thus omitted for brevity.
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3.2.3 Application to EEG

In this subsection, we apply our real-time attention decoding framework to

EEG recordings in a dual-speaker environment. Details of the experimental proce-

dures are given in Section 3.1.6.

3.2.3.1 Preprocessing and Parameter Selection

Both the EEG data and the speech envelopes were downsampled to fs=64 Hz

using an anti-aliasing filter. As the trials had variable lengths, we have considered

the first 53 s of each trial for analysis. We have considered consecutive windows

of length 0.25 s for decoder estimation, resulting in W = 16 samples per window

and K = 212 instances for each trial. Also, we have considered lags up to 0.25 s

for decoder estimation, i.e., Ld = 16. The latter is motivated by the results of [45]

suggesting that the most relevant decoder components are within the first 0.25 s

lags. Prior studies have argued that the effects of auditory attention and speech

perception are strongest in the frontal and close-to-ear EEG electrodes [46, 74–76].

We have only considered 28 EEG channels in the decoder estimation problem, i.e.,

C = 28, including the frontal channels Fz, F1-F8, FCz, FC1-FC6, FT7-FT10, C1-

C6, and the T complex channels T7 and T8. According to [47], using only this

number of electrodes in the decoding process results in nearly the same classification

performance as in the case of using all the electrodes. Note that for our real-time

setting, a channel selection step can considerably decrease the computational cost

and the dimensionality of the decoder estimation step, given that a vector of size
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1+C(Ld+1) needs to be updated within each 0.25 s window.

We have determined the regularization coefficient γ= 0.4 via cross-validation

and the forgetting factor λ= 0.975, which results in an effective data length of 10

s in the estimation of the decoder and is long enough for stable estimation of the

decoding coefficients. It is worth noting that small values of λ, and hence small

effective data lengths, may result in an under-determined inverse problem, since the

dimension of the decoder is given by 1+C(Ld+1). Finally, in the FASTA package, we

have used a tolerance of 0.01 together with Nesterov’s accelerated gradient descent

method to ensure that the processing can be done in an online fashion.

In studies involving correlation-based measures, such as [45, 51], the conven-

tion is to train attended and unattended decoders/encoders using multiple trials

and then use them to calculate the correlation measures over the test trials. The

correlation-based attention marker, however, did not produce a statistically signifi-

cant segregation of the attended and the unattended speakers in our analysis. This

discrepancy seems to stem from the fact that the estimated encoders/decoders and

the resulting correlations in the aforementioned studies are more informative and

robust due to the use of batch-more analysis with multiple trials, as compared to

our real-time framework. The `1-based attention marker, however, resulted in a

meaningful statistical separation between the attended and the unattended speak-

ers. Therefore, in what follows, we present our EEG analysis results using the

`1-based attention marker.

The parameters of the state-space models have been set similar to those used in

simulations, i.e., KW =b15fs/W c, KF =b1.5fs/W c, a0 =2.008, b0 =0.2016. Consid-
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ering the 0.25 s lag in the decoder model, the total delay in estimating the attentional

state for the real-time system is 1.75 s. For estimating the prior distribution param-

eters for each subject, we use the first 15s of each trial. As mentioned before, consid-

ering the 15 s-long sliding window, we can treat the first 15 s of each trial as a tuning

step in which the prior parameters are estimated in a supervised manner and the

state-space model parameters are initialized with the values estimated using these

initial windows. Thus, similar to the simulations,
(
α

(a)
0 , α

(u)
0 , β

(a)
0 , β

(u)
0 , µ

(a)
0 , µ

(u)
0

)
for each subject have been set according to the parameters of the two fitted Log-

Normal distributions on the `1-norm of the decoders in the first 15 s of the trials,

while choosing large variances for the priors to be non-informative.

3.2.3.2 Estimation Results

Fig. 3.10 shows the results of applying our proposed framework to EEG data.

For graphical convenience, the data have been rearranged so that speaker 1 is always

attended. The left, middle and right panels correspond to subjects 1, 2, and 3,

respectively. For each subject, three example trials have been displayed in rows A,

B, and C. Row A includes trials in which the attention marker clearly separates

the attended and unattended speakers, while Row C contains trials in which the

attention marker fails to do so. Row B displays trials in which on average the `1-norm

of the estimated decoder is larger for the attended speaker; however, occasionally,

the attention marker fails to capture the attended speaker.

Consistent with our simulations, the real-time estimates (third graphs in rows
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Figure 3.10: Examples of the `1-based attention markers (first panels), batch-
mode (second panels), and real-time (third panels) state-space estimation
results for nine selected EEG trials. A) Representative trials in which the
attention marker reliably separates the attended and unattended speakers.
B) Representative trials in which the attention marker separates the attended
and unattended speakers on average over the trial. C) Representative trials
in which the attention marker either does not separate the two speakers or
results in a larger output for the unattended speaker.

A, B and C) generally follow the output of the batch-mode estimates (second graphs

in rows A, B and C). However, the batch-mode estimates yield smoother transitions

and larger confidence intervals in general, both of which are due to having access to

future observations.
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Figure 3.11 shows the effect of forward-lag KF on the performance of real-time

estimates, similar to that shown in Fig. 3.6 for the simulations. The forward-lag KF

is increased from 0 s to 5 s with 0.5 s increments while all the other parameters of

the EEG analysis remain the same. The MSE in Fig. 3.11 has been averaged over

all trials for each subject. As we observe in the incremental MSE plot, even a 0.5 s

lag can significantly decrease the MSE from the case of KF =0 s (corresponding to

the fully real-time setting). Similar to the simulations, we have chosen KF = 1.5 s

for the EEG analysis, since the incremental MSE improvements are significant at

this lag, and this choice results in a tolerable delay for real-time applications.

0
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Figure 3.11: Effect of the forward-lag KF on MSE in application to real EEG
data. The left panel shows the MSE with respect to the batch-mode output
averaged over all the trials for each subject. The right panel displays the
incremental MSE at each lag, from KF =0 s to KF =5 s with 0.5 s increments.

Finally, Fig. 3.12 summarizes the real-time classification results of our EEG

analysis at the group level. Fig. 3.12-A shows a cartoon of the estimated attention

probabilities for a generic trial in order to illustrate the classification conventions.

We define an instance (i.e., K consecutive windows of length W ) to be correctly

(incorrectly) classified if the estimated attentional state probability together with
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Figure 3.12: Summary of the real-time classification results in application
to real EEG data: A) a generic example of the state-space output for a trial
illustrating the classification conventions. B) Classification results per trial
for all subjects; each circle corresponds to a trial and the subjects are color-
coded. The trials falling below the dashed line have more incorrectly classified
instances than correctly classified ones. C) Average classification performance
over all trials for the three subjects.

its 90% confidence intervals lie above (below) 0.5. If the 90% confidence interval

at an instance includes the 0.5 attention probability line, we do not classify it as

either correct or incorrect. Figure 3.12-B displays the correctly classified instances

(y-axis) versus those incorrectly classified (x-axis) for each trial. The subjects are

color-coded and each circle corresponds to one trial. The average classification

results over all trials for each subject are shown in Figure 3.12-C. In summary, our

framework provides ∼ 80% average hit rate and ∼ 15% average false-alarm per trial

per subject. The group-level hit rate and false alarm rate are respectively given by

79.63% and 14.84%.
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3.2.4 Application to MEG

In this subsection, we apply our real-time attention decoding framework to

MEG recordings of multiple subjects in a dual-speaker environment. The MEG

experimental procedures are discussed in Section 3.1.7.

3.2.4.1 Preprocessing and Parameter Selection

The recorded MEG responses were band-pass filtered between 1 Hz-8 Hz (delta

and theta bands), corresponding to the slow temporal modulations in speech [48,49],

and downsampled to 200 Hz. MEG recordings, like EEG, include both the stimulus-

driven response as well as the background neural activity, which is irrelevant to

the stimulus. For the encoding model used in our analysis, we need to extract

the stimulus-driven portion of the response, namely the auditory component. In

[56,77], a blind source separation algorithm called the Denoising Source Separation

(DSS) has been introduced which decomposes the data into temporally uncorrelated

components ordered according to their trial-to-trial phase-locking reliability. In

doing so, DSS only requires the responses in different trials and not the stimuli.

Similar to [51,52], we only use the first DSS component as the auditory component,

since it tends to capture a significant amount of stimulus information and to produce

a bilateral stereotypical auditory field pattern.

Since DSS is an offline algorithm operating on all the data at once, we cannot

readily use it for real-time attention decoding. Instead, we apply DSS to the data

from pilot trials from each subject in order to calculate the subject-specific linear
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combination of the MEG channels that compose the first DSS component. We

then use these channel weights to extract the MEG auditory responses during the

constant-attention and attention-switch experiments in a real-time fashion. Note

that the MEG sensors are not fixed with respect to the head position across subjects

and are densely distributed in space. Therefore, it is not reasonable to use the same

MEG channel weights for all subjects. The pilot trials for each subject can thus

serve as a training and tuning step prior to the application of our proposed attention

decoding framework.

The MEG auditory component extracted using DSS is used as Et in our encod-

ing model. Similar to our foregoing EEG analysis, we have considered consecutive

windows of length 0.25 s resulting in W = 50 samples per window and a total num-

ber of K = 240 instances, at a sampling frequency of 200 Hz. The TRF length, or

the total encoder lag, has been set to 0.4 s resulting in Le = 80 in order to include

the most significant TRF components [48]. The `1-regularization parameter γ in

Eq. (3.1) has been adjusted to 1 through two-fold cross-validation, and we have

chosen a forgetting factor of λ = 0.975 for capturing the data dynamics resulting in

an effective data length of 10 s, long enough to ensure estimation stability.

As for the encoder model, we have used a Gaussian dictionary G0 to enforce

smoothness in the TRF estimates. The columns of G0 consist of overlapping Gaus-

sian kernels with the standard deviation of 20 ms whose means cover the 0 s to 0.4 s

lag range with Ts = 5 ms increments. The 20 ms standard deviation is consistent

with the average full width at half maximum (FWHM) of an auditory MEG evoked

response (M50 or M100), empirically obtained from MEG studies [52]. Thus, the
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overall dictionary discussed in Remark 3.2 takes the form G = diag (1,G0,G0).

Also, similar to [52], we have used the logarithm of the speech envelopes as the

regression covariates. Finally, the parameters of the FASTA package in encoder

estimation have been chosen similar to those in the foregoing EEG analysis.

The M100 component of the TRF has shown to be more significant for the

attended speaker than the unattended speaker [48, 52]. Thus, at each instance k,

we extract the magnitude of the negative peak close to the 0.1 s delay in the real-

time TRF estimate of each speaker as the attention markers m
(1)
k and m

(2)
k . For the

state-space model and the fixed-lag window, we have used the same configuration

as in our foregoing EEG analysis, i.e. KW =b15fs/W c, KF =b1.5fs/W c, a0 =2.008,

and b0 =0.2016. Note that the total delay in estimating the attentional state is now

only 1.5 s, given that we use an encoding model for our MEG analysis. Furthermore,

the prior distribution parameters for each subject were chosen according to the two

fitted Log-Normal distributions on the extracted M100 values in the first 15 s of the

trials, while choosing large variances for the Gamma priors to be non-informative.

Similar to the preceding cases, the first 15 s of each trial can be thought of as an

initialization stage.

3.2.4.2 Estimation Results

Figure 3.13 shows our estimation results for four sample trials from the constant-

attention (cases 1 and 2) and attention-switch (cases 3 and 4) experiments. For

graphical convenience, we have rearranged the MEG data such that in the constant-
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attention experiment, the attention is always on speaker 1, and in the attention-

switch experiment, speaker 1 is attended from 0 s to 28 s. Cases 1 and 3 corresponds

to trials in which the extracted M100 values for the attended speaker are more

significant than those of the unattended speaker during most of the trial duration.

Cases 2 and 4, on the other hand, correspond to trials in which the extracted M100

values are not reliable representatives of the attentional state. Row A in Fig. 3.13

shows the estimated TRFs for speakers 1 and 2 in time for each of the four cases.

The location of the M100 peaks is shown and tracked with a narrow line (yellow) on

the extracted M100 components (blue). The M50 components are also evident as

positive peaks occurring around the 50 ms lag. The M50 components do not strongly

depend on the attentional state of the listener [48,52,78,79], which is consistent with

those shown in Fig. 3.13-A.

Row B in Fig. 3.13 displays the extracted M100 peak magnitudes over time

for speakers 1 and 2. The attention modulation effect is more significant in cases

1 and 3. Rows C and D respectively show the batch-mode and real-time estimates

of the attentional state based on the extracted M100 values. As expected, the

batch-mode output is more robust to the fluctuations in the extracted M100 peak

values, with smoother transitions and larger confidence intervals. Despite the poor

attention modulation effect in cases 2 and 4, we observe that both the real-time and

the batch-mode state-space models show reasonable performance in translating the

extracted M100 peak values to a robust measure of the attentional state. This effect

is notable in Rows C and D of Case 4. We performed the same analysis as in Fig.

3.11 to assess the effect of the forward-lag parameter KF . Since the results were
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Figure 3.13: Examples from the constant-attention and attention-switch
MEG experiments, using the M100 attention marker, for trials with reliable
(cases 1 and 3) and unreliable (cases 2 and 4) separation of the attended
and unattended speakers: A) TRF estimates for speakers 1 and 2 over time
with the extracted M100 peak positions tracked by a narrow yellow line. B)
Extracted M100 peak magnitudes over time for speakers 1 and 2 as the atten-
tion marker. In cases 1 and 3, the M100 components exhibit a strong mod-
ulation effect of the attentional state, i.e., the attended speaker has a larger
M100 peak, in contrast to cases 2 and 4, where there is a weak modulation.
C) Batch-mode state-space estimates of the attentional state. D) Real-time
state-space estimates of the attentional state. The strong or weak modulation
effects of attentional state in the extracted M100 components directly affects
the classification accuracy and the width of the confidence intervals for both
the batch-mode and real-time estimators.

quite similar to those in Figures 3.6 and 3.11, we have omitted them for brevity and

chose the same forward-lag of 1.5 s.
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Finally, Fig. 3.14 summarizes the real-time classification results for the constant-

attention (left panels) and attention-switch (right panels) MEG experiments. The

classification convention is similar to that used in our EEG analysis, and is illus-

trated in Fig. 3.14-A for the completeness. For the attention-switch experiment,

the 28 s-30 s interval is removed from the classification analysis, as it pertains to

a silence period during which the subject is instructed to switch attention. Fig.

3.14-B shows the corresponding classification results, consisting of 36 trials for the

constant-attention and 18 trials for the attention-switch experiments. Each circle

corresponds to a single trial and the subjects in each experiment are color-coded.

The average classification results per trial are shown in Fig. 3.14-C for each subject.

The average hit rate and false alarm rates in the constant-attention experiments are

respectively given by 71.67% and 20.81%. These quantities for the attention-switch

experiment are respectively given by 64.12% and 26.16%, showing a reduction in hit

rate and increase in false alarm.

3.3 Discussion

In this work, we have proposed a framework for real-time decoding of the

attentional state of a listener in a dual-speaker environment from M/EEG. This

framework consists of three modules. In the first module, the encoding/decoding

coefficients, relating the neural response to the envelopes of the two speech streams,

are estimated in a low-complexity and real-time fashion. Existing approaches for

encoder/decoder estimation operate in an offline fashion using multiple experiment
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Figure 3.14: Summary of real-time classification results for the constant-
attention (left panels) and attention-switch (right panels) MEG experiments:
A) a generic instance of the state-space output for a trial illustrating the
classification convention. B) Classification results per trial for all subjects;
each circle corresponds to a trial and the subjects are color-coded. The trials
falling below the dashed line have more incorrectly classified instances than
correctly classified ones. C) Average classification performance over all trials
for the six subjects.
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trials or large training datasets [45, 51, 60, 63], and hence are not suitable for real-

time applications. To address this issue, we have integrated the forgetting factor

mechanism used in adaptive filtering with `1-regularization, in order to capture the

coefficient dynamics and mitigate overfitting.

In the second module, a function of the estimated encoding/decoding coeffi-

cients and the acoustic data, which we refer to as the attention marker, is calculated

in real-time for each speaker. The role of the attention marker is to provide dynamic

features that create statistical separation between the attended and the unattended

speakers. Examples of such attention markers include correlation-based measures

(e.g. correlation of the acoustic envelopes and their reconstruction from neural re-

sponse), or measures solely based on the estimated decoding/encoding coefficients

(e.g. the `1-norm of the decoder coefficients or the M100 peak of the encoder).

Finally, the attention marker is passed to the third module consisting of a near

real-time state-space estimator. To control the delay in state estimation, we adopt

a fixed-lag smoothing paradigm, in which the past and near future data are used to

estimate the states. The role of the state-space model is to translate the noisy and

highly variable attention markers to robust measures of the attentional state with

minimal delay. We have archived a publicly available MATLAB implementation of

our framework on the open-source repository GitHub to ease reproducibility [32].

We validated the performance of our proposed framework using simulated EEG

and MEG data, in which the ground truth attentional states are known. We also

applied our proposed methods to experimentally recorded MEG and EEG data.

As for a comparison benchmark, we considered the offline state-space attention
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decoding approach of [51]. Our MEG analysis showed that although the proposed

real-time estimator has access to significantly fewer data points, it closely matches

the outcome of the offline state-space estimator in [51], for which the entire data

from multiple trials are used for attention decoding. In particular, our analysis of

the MEG data in constant-attention conditions revealed a hit rate of ∼ 70% and

a false alarm rate of ∼ 20% at the group level. While the performance is slightly

degraded compared to the offline analysis of [51], our algorithms operate in real-time

with 1.5s forward delay, over single trials, and using minimal tuning. Similarly, our

analysis of EEG data provided ∼ 80% hit rate and ∼ 15% false alarm rate at a

single trial level. These performance measures are slightly degraded compared to

the results of offline approaches such as [45].

Our proposed modular design admits the use of any attention-modulated

statistic or feature as the attention marker, three of which have been considered

in this work. While some attention markers perform better than the rest in certain

applications, our goal in this work was to provide different examples of attention

markers which can be used in the encoding/decoding models based on the litera-

ture, rather than comparing their performance against each other. The choice of

the best attention marker that results in the highest classification accuracy is a

problem-specific matter. Our modular design allows to evaluate the performance

of a variety of attention markers for a given experimental setting, while fixing the

encoding/decoding estimation and state-space modules, and to choose one that pro-

vides the desired classification performance.

A practical limitation of our proposed methodology in its current form is the
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need to have access to clean acoustic data in order to form regressors based on the

speech envelopes. In a realistic scenario, the speaker envelopes have to be extracted

from the noisy mixture of speeches recorded by microphone arrays. Thanks to a

number of fairly recent results in attention decoding literature [59–63], it is possible

to integrate our methodology with a pre-processing module that extracts the acous-

tic features of individual speech streams from their noisy mixtures. We view this

extension as a future direction of research.

Our proposed framework has several advantages over existing methodologies.

First, our algorithms require minimal amount of offline tuning or training. The

subject-specific hyperparameters used by the algorithms are tuned prior to real-

time application in a supervised manner. The only major offline tuning step in our

framework is computing the subject-specific channel weights in the encoding model

for MEG analysis in order to extract the auditory component of the neural response.

This is due to the fact that the channel locations are not fixed with respect to the

head position across subjects. It is worth noting that this step can be avoided if the

encoding model treats the MEG channels separately in a multivariate model. Given

that recent studies suggest that the M100 component of the encoder obtained from

the MEG auditory response is a reliable attention marker [48, 49, 52], we adopted

the DSS algorithm for computing the channel weights that compose the auditory

response in an offline fashion.

Second, our analysis allows to characterize the performance of the attentional

state classification using single trials, which is important for practical applications

such as smart hearing aids. Existing studies based on offline algorithms perform
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classification based on cross-trial performance. For instance, in [45], for each 1 min

of test trial, 29 mins of training data are used. In addition, the probabilistic out-

put of our attentional state decoding framework can be used for further statistical

analysis and soft-decision mechanisms which are desired in smart hearing aid appli-

cations. Finally, the modular design of our framework facilitates its adaptation to

more complex auditory scenes (e.g. with multiple speakers and realistic noise and

reverberation conditions) and integration of other covariates relevant to real-time

applications (e.g. electrooculography measurements).
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Chapter 4: Gaussian Mixture Process Noise Inference in State-Space

Models with Application to Dynamic Estimation of Tem-

poral Response Functions

State-space modeling is a commonly-used framework for estimation of latent

dynamic processes, i.e., the states, under limited observations [80]. The application

domains of this approach in time series analysis include control system design [81],

tracking [82], finance [83], and most recently neuroscience [16, 84–86]. State-space

models (SSMs) often consist of two equations: the state (evolution) equation, to

describe the dynamics of the latent process, and the observation equation, to illus-

trate how the observations are related to the process. These equations are typi-

cally described in a parametric fashion using domain-specific expert knowledge of

the problem, and parameter estimation is mostly performed via Expectation Max-

imization (EM) [27, 87] or Variational Inference (VI) [88, 89]. To model the state

evolution and measurement uncertainties, additive noise terms are often considered

in both the state and observation equations. In most applications, i.i.d. Gaussian

statistics are imposed on these terms to account for the aggregate uncertainties

and mismatches in the model. Under linear dynamics and observations, Gaussian

noise, and fixed model parameters, Minimum Mean Square Error (MMSE) state es-
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timation is conducted by the well-known Kalman filter and smoother [80]. For more

general SSMs, Sequential Monte Carlo (SMC) methods can be used for MMSE state

estimation [90].

Gaussian statistics is often consistent with empirical histograms of observation

noise, which can be estimated from stimulus-free measurements in experimental

settings. The noise process driving the state dynamics, often referred to as the

process noise, however, does not necessarily follow Gaussian statistics in various real-

world applications [91, 92]. This is mainly due to the following two reasons: First,

in time series analysis, outliers and abrupt changes in the latent process cannot be

properly represented by a Gaussian random variable. Second, the statistics of the

process noise are reliant upon how the latent process evolves during the course of the

experiment, which heavily depends on the specific experimental requirements, such

as the task demand and subject’s performance, as well as other exogenous variables

not accounted for.

This issue is particularly important in modeling brain function as a latent dy-

namic process: taking the states to represent the underlying neural circuits that

process sensory stimuli, the process noise then consists of both the underlying

behaviorally- and stimulus-driven dynamics as well as the background neural ac-

tivity (not necessarily evoked by the stimulus or behavior), which are typically

quite structured and far from being Gaussian. In this context, the state evolution

model is more prone to model mismatch and biases, as compared to the observation

equation, considering that we generally have more control over the measurement

system than the generative mechanism governing the latent process. As a result,
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the empirical histogram of the process noise (which can be computed from state

estimates) could exhibit multimodal morphology, with each mode corresponding to

a different exogenous process driving the state dynamics during specific portions of

the experiment.

This has led researchers to study SSMs with a Gaussian Mixture (GM) process

noise [93–97] considering that a GM can, in principle, approximate any multimodal

density [98]. These existing results primarily focus on state estimation and ap-

proximation of filtering and smoothing densities under a fixed or known GM noise

density. As such, parameter estimation for a GM process noise in SSMs has not

been well-studied. Switching SSMs has been another direction of research in ex-

tending linear Gaussian SSMs to cope with nonstationarity, model mismatch, and

exogenous processes [89,99–102]. In this approach, several linear Gaussian SSMs are

considered to underlie the observed time-series data, which switch place according

to a Hidden Markov Model (HMM). Although the filtering and smoothing densities

in this model take a GM form, the potential multimodality of the process noise is

not explored nor modeled in this approach.

In this work, we fill this gap by developing an EM-based algorithm for estimat-

ing the parameters of a GM process noise from the observations in an SSM. The EM

algorithm has been widely used for parameter estimation both in state-space mod-

eling [87] and in GM clustering [103], which makes it a promising candidate for our

setting. The EM framework in this setting, however, results in intractable expecta-

tions for parameter updates. We address this issue by leveraging a SMCEM-type

algorithm [104] to approximate the expectations using smoothed particles obtained
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through SMC. A major drawback of particle smoothing approaches is their excessive

computational requirements, or equivalently suffering from sample depletion as the

dimension of the target densities grows while fixing the computational costs [105].

As a more scalable alternative, we develop another method of approximating the

expectations based on closed-form approximations to the smoothing densities as well

as their one-step cross covariances. To this end, we adopt the two-filter formula for

smoothing [94] and devise a belief propagation algorithm in our setting. As a result,

the computational complexity of the E-step in EM for a GM process noise would

be comparable to that of a conventional Gaussian process noise, akin to performing

parallel Kalman filtering and smoothing procedures.

To demonstrate the benefits of a GM process noise and the efficacy of the

developed estimation framework, we consider the problem of estimating Tempo-

ral Response Functions (TRFs) involved in auditory processing [106]. The TRF

can be considered as an evolving Finite Impulse Response (FIR) filter which gets

convolved with speech features in time, e.g., the speech envelope, to produce the

auditory neural response observed through neuroimaging modalities such as elec-

troencephalography (EEG) and magnetoencephalography (MEG) [107]. The TRF

framework has resulted in new insights into the mechanisms of speech processing in

the brain, specially under competing-speaker environments, i.e., the cocktail party

scenario [40, 46, 48, 51]. For instance, TRF components at specific lags may exhibit

peaks which arise, persist, and disappear over time according to the attentional

state of the listener [108]. The different local dynamics of TRF components under

each of these conditions motivates a GM density to capture such evolution patterns.
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Dynamic estimation of TRFs was first discussed in [107] using a Recursive Least

Square (RLS) algorithm. However, smoothing estimates and state-space modeling

are more robust than RLS and filtering estimates in performing a comprehensive

dynamic analysis of TRFs when data from multiple trials is available. Thus, we

study dynamic estimation of TRFs using SSMs and apply our SSM framework with

a GM process noise to both simulated and experimentally recorded MEG data un-

der a dual-speaker environment where the subject switches attention between the

two speakers at will. The results show that our proposed algorithm can effectively

recover the multimodal structure of the process noise from SSM observations, and

that having a richer and more realistic representation of the process noise allows to

capture the TRF dynamics more precisely and more consistent with the subjects’

behavioral reports, as compared to the conventional Gaussian SSM or RLS esti-

mation. While our proposed framework is motivated by and applied to data from

auditory experiments, it is applicable to general state-space modeling problems in

which states exhibit heterogeneous and recurring local dynamic patterns.

The rest of the paper is organized as follows: Section 4.1 presents the SSM

formulation with a GM process noise and defines the main parameter estimation

problem. The corresponding EM algorithm and the two approximation methodolo-

gies are discussed in Section 4.2, followed by our simulation and real data analysis

results in Section 4.3. Finally, Section 4.4 includes our concluding remarks.
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4.1 Problem Formulation

Consider the following generic discrete-time SSM with additive noise:
xn = fn(xn−1) + wn

yn = gn(xn) + vn

(4.1)

where xn ∈ Rdx and yn ∈ Rdy represent the states and the observations at time index

n, respectively. We assume that the functional forms of fn(.) and gn(.) are known

and fixed for n = 1, . . . , N using domain-specific knowledge of the problem. Follow-

ing our introductory discussion, let vn ∼ N (0,R) for the observation noise. Also,

to represent the process noise, consider a GM with M mixture components and

parameter set Θ := {p1:M ,µ1:M ,Σ1:M} containing the mixture probabilities p1:M ,

mean vectors µ1:M , and covariance matrices Σ1:M . We model the state dynamics

over K := N/W consecutive non-overlapping windows of length W . Within each

window i ∈ {1, . . . , K}, the process noise is drawn from one of the mixture compo-

nents, which we denote by zi ∈ {1, . . . ,M}. Therefore, we have wn ∼ N (µzi ,Σzi)

for n = (i−1)W+1, . . . , iW , and we consider the zi’s to be i.i.d. with P(zi=m) = pm

for m = 1, . . . ,M . In other words, zi determines the active mixture component that

governs the state dynamics in window i. This can also be interpreted as a jumping

or switching Gaussian process noise. Note that for special case of W = 1, the re-

sulting model could in principle approximate any arbitrary i.i.d. process noise wn

as it is fitting a GM model to the process noise. In this case, the labels zi of mixture

components can vary at the same rate as that of the states and observations.
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Let Yn2
n1

denote the set of observations from n1 to n2, i.e., yn1:n2 , and simi-

larly define X n2
n1

and Z i2i1 for xn1:n2 and zi1:i2 , respectively. Our goal is to estimate

the GM process noise parameters Θ from SSM observations YN
1 . As estimation of

observation noise covariance R in EM is straightforward [87], we assume R to be

fixed for convenience and will briefly review the update equations for R in Section

4.2, if it need to be estimated from the observed data. As mentioned in the intro-

duction, R can also be estimated from stimulus-free conditions. Finally, we adopt

the Maximum Likelihood (ML) estimation framework to estimate Θ as follows:

Θ̂ML := arg max
Θ

P
(
YN

1

∣∣∣Θ
)

(4.2)

Despite its simple statement, the problem of Eq. (4.2) is challenging due to the

difficulties in computing the optimization argument, i.e., data likelihood, in a com-

putationally scalable fashion. We will address this challenge in the forthcoming

section.

4.2 Parameter Estimation

We use the EM algorithm as a solution method for the ML problem in (4.2).

The EM framework provides an iterative procedure to update the estimated param-

eter set with the guarantee that at iteration (`+ 1) we have

P
(
YN

1

∣∣∣ Θ̂(`+1)
)
≥ P

(
YN

1

∣∣∣ Θ̂(`)
)

(4.3)

where Θ̂(`) is the parameter set estimate from the `th iteration [27]. The EM algo-

rithm guarantees convergence to a local maximum, and most of the work on escaping
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the undesirable local maxima in EM theory have focused on providing an informed

initialization of the algorithm [109,110]. As will be explained in Section 4.3, we will

use fixed-interval smoothed estimates based on a Gaussian model to choose Θ̂(0) and

initialize the algorithm.

Let H =
{
ZK1 ,XN

1

}
denote the set of latent variables in the SSM, which

includes the states and the labels of active mixture component in each window. The

EM algorithm performs the following two steps at the (`+1)th iteration and repeats

them until convergence to a parameter estimate Θ̂:
E-step: Q

(
Θ
∣∣∣Θ̂(`)

)
=EH

{
logP

(
YN

1 ,H
∣∣∣Θ)∣∣∣YN

1 , Θ̂
(`)
}

M-step: Θ̂(`+1) = arg maxΘQ
(
Θ
∣∣∣Θ̂(`)

) (4.4)

where the surrogate function Q
(
Θ
∣∣Θ̂(`)

)
is a lower bound on the data log-likelihood.

The expectation in E-step is over the conditional density H |YN
1 , Θ̂

(`). As all of the

following expectations are also conditioned on YN
1 and Θ̂(`), we drop the conditioning

in the notation for convenience, but keep the expectation subscript to denote the

random variable with respect to which the expectation is taken. Also, hereafter the

subscript (i, j) represents the time index of the jth sample in the ith window, i.e.,

n=(i−1)W+j for brevity. The two steps of the EM algorithm in Eq. (4.4) in our

setting can be expressed as follows:
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E-Step: The surrogate function in the SSM of Section 4.1 is computed as

Q
(
Θ
∣∣∣Θ̂(`)

)
= EH

{
log P

(
YN

1 ,H
∣∣∣Θ
)}

(4.5)

= EH

{
log P

(
ZK1
∣∣∣Θ)+ log P

(
XN

1

∣∣∣ZK1 ,Θ)}+ cst.

=
K∑
i=1

M∑
m=1

EH

{
1{zi=m}

(
log pm+

W∑
j=1

log π(i,j),m

)}
+ cst.,

where 1{.} denotes the indicator function, cst. stands for all the terms not dependent

on Θ and may vary from one equation to another, and π(i,j),m is defined as

π(i,j),m := P
(
x(i,j)

∣∣ x(i,j91), zi=m,Θ
)
, (4.6)

which is computed based on the Gaussian density for w(i,j) in Eq. (4.1) when

zi=m. If we decompose the conditional expectation in Eq. (4.5) into two iterated

conditional expectations with respect to XN
1 |YN

1 , Θ̂
(`) and ZK1 |XN

1 , Θ̂
(`) (where

YN
1 is dropped in the latter due to conditional independence), this equation can be

written as

Q
(
Θ
∣∣∣Θ̂(`)

)
=

K∑
i=1

M∑
m=1

Ex

{
ε̂

(`)
i,m

(
log pm+

W∑
j=1

log π(i,j),m

)}
+ cst., (4.7)

where ε̂
(`)
i,m is the membership probability and can be expressed using the Bayes’ rule

as:

ε̂
(`)
i,m := P

(
zi=m

∣∣∣XN
1 , Θ̂

(`)
)

= P
(
zi=m

∣∣∣X (i,W )
(i,0) , Θ̂

(`)
)

(4.8)

=
p̂

(`)
m

∏W
j=1 π̂

(`)
(i,j),m∑M

m′=1 p̂
(`)
m′
∏W

j=1 π̂
(`)
(i,j),m′

,

The variable π̂
(`)
(i,j),m is defined similarly to (4.6) but for Θ = Θ̂(`), which makes ε̂

(`)
i,m

a constant with respect to Θ in Eq. (4.7).
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M-Step: In this step, we maximize the log-likelihood lower bound with respect

to Θ. Differentiating (4.7) with respect to Θ, enforcing the condition
∑M

m=1 pm = 1,

and invoking the dominated convergence theorem to change the order of expectation

and differentiation, we obtain the following parameter updates for m = 1, . . . ,M :

p̂(`+1)
m =

1

K

K∑
i=1

Ex

{
ε̂

(`)
i,m

}
, (4.9)

µ̂(`+1)
m =

∑K
i=1 Ex

{
ε̂

(`)
i,m

∑W
j=1 v(i,j)

}
W
∑K

i=1 Ex{ε̂(`)i,m}
, (4.10)

Σ̂(`+1)
m =

K∑
i=1

Ex

{
ε̂

(`)
i,m

W∑
j=1

(
v(i,j)−µ̂(`+1)

m

)(
v(i,j)−µ̂(`+1)

m

)>}
W
∑K

i=1 Ex{ε̂(`)i,m}

=

K∑
i=1

Ex

{
ε̂

(`)
i,m

W∑
j=1

v(i,j)v
>
(i,j)

}
W
∑K

i=1 Ex{ε̂(`)i,m}
− µ̂(`+1)

m

(
µ̂(`+1)
m

)>
, (4.11)

where v(i,j) = x(i,j) − f(i,j)

(
x(i,j91)

)
.

Remark 4.1. If the covariance matrix R of the Gaussian observation noise in (4.1)

also needs to be estimated from YN
1 , it can be included in the parameter set Θ. The

update formula for R̂(`+1) in the EM framework then becomes [111]

R̂(`+1) =
1

N

N∑
n=1

Ex

{
(yn − gn(xn)) (yn − gn(xn))>

}
(4.12)

In the definition of ε̂
(`)
i,m in Eq. (4.8), both the numerator and the denominator

include exponential functions of the states. Therefore, the conditional expectations

in Eq. (4.7) and in the update equations above are intractable even if the joint

smoothing density XN
1

∣∣ YN
1 , Θ̂

(`) is known in closed-form [97]. The rest of this
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section is dedicated to developing two approaches to approximately compute these

expectations. Readers who are primarily interested in the algorithmic developments

may proceed with the rest of this section, whereas those who find the application of

the proposed GM inference methods to simulated and experimentally-recorded data

immediately more useful may skip to Section 4.3.

4.2.1 Approach 1: Monte Carlo Approximations

One way to approximate the expectations in the update equations of the M-

step is to utilize Monte Carlo methods. Let x
(u)
(i,0):(i,W ) for u = 1, . . . , U denote a

number of U sample paths, i.e., particles, with corresponding weights of ω
(u)
i inside

the ith window to approximate the joint smoothing density X (i,W )
(i,0) |YN

1 , Θ̂
(`) for

i=1, . . . , K. Using this particle approximation, the update equations of the M-step

become:

p̂(`+1)
m ≈ 1

K

K∑
i=1

U∑
u=1

ω
(u)
i ε̂

(`,u)
i,m , (4.13)

µ̂(`+1)
m ≈

∑K
i=1

∑U
u=1 ω

(u)
i ε̂

(`,u)
i,m

∑W
j=1 v

(u)
(i,j)

W
∑K

i=1

∑U
u=1 ω

(u)
i ε̂

(`,u)
i,m

, (4.14)

Σ̂(`+1)
m ≈

K∑
i=1

U∑
u=1

ω
(u)
i ε̂

(`,u)
i,m

W∑
j=1

(
v

(u)
(i,j) 9 µ̂

(`+1)
m

)(
v

(u)
(i,j) 9 µ̂

(`+1)
m

)>
W
∑K

i=1

∑U
u=1 ω

(u)
i ε̂

(`,u)
i,m

, (4.15)

where v
(u)
(i,j) = x

(u)
(i,j) − f(i,j)

(
x

(u)
(i,j91)

)
, and ε̂

(`,u)
i,m is defined similarly to ε̂

(`)
i,m in (4.8)

with π̂
(`)
(i,j),m’s evaluated at X (i,W )

(i,0) = x
(u)
(i,0):(i,W ) and Θ = Θ̂(`) in Eq. (4.6). Particle

smoothing approaches are SMC methods which provide the sample paths x
(u)
(i,0):(i,W )

and their respective weights ω
(u)
i [90]. The class of algorithms using SMC within EM
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for SSMs are referred to as SMCEM [104]. A forward-backward particle smoothing

algorithm is presented in Alg. 7 as an example of how the approximating particles

can be computed.

Remark 4.2. In general, particle smoothing approaches are computationally inten-

sive, especially for high dimensional problems, which limits their application com-

pared to particle filtering methods. In our setting, densities of dimension dx(W + 1)

have to be approximated by particles. The forward-backward method in Alg. 7

simply re-weights the filtering particles according to future observations and incurs

an O(U2) cost. The two-filter particle smoother [112] samples the particles in the

smoothing step but has a similar computational cost. In [112], an approximation

based on spatial-index methods is introduced to reduce the computational cost to

O(U logU). Finally, a particle smoothing method with O(U) cost (similar to that

of particle filtering) is developed in [113]. However, it operates under the assump-

tion of minimal posterior dependence between xn−1 and xn+1 when sampling for the

smoothing density of xn.

4.2.2 Approach 2: Closed-Form Approximations

In this section, we consider a linear SSM, i.e., fn(xn−1) = Anxn−1 and gn(xn) =

Cnxn in (4.1), to exploit the GM formulation of the smoothing densities [97]. Tech-

niques such as the extended Kalman filter [80] or the unscented Kalman filter [114]

are often used to approximate the general state-space model of Eq. (4.1) with a lin-

ear model. We introduce an approximation to the expectations in the M-step which
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Algorithm 7 A Forward-Backward Particle Smoothing Alg.

Inputs: state-space model in (4.1) and parameter estimate Θ̂(`).

Output: sample paths x
(u)
(i,0):(i,W ) and their weights ω

(u)
i .

1: Initialize x
(u)
0 and their filtering weights ω̄

(u)
0 = 1/U .

2: for i = 1 : K do

3: Sample z
(u)
i according to p̂

(`)
1:M .

4: Sample x
(u)
(i,0):(i,W ) using x

(u)
(i,0) as the starting point and z

(u)
i as the active Gaus-

sian component.

5: ω̃
(u)
i =

∏W
j=1 P

(
y

(u)
(i,j)

∣∣∣ x(u)
(i,j)

)
.

6: Normalize the weights such that
∑U

u=1 ω̄
(u)
i =1.

7: Resample x
(u)
(i,W ) for next window according to ω̄

(u)
i .

8: end for

9: Initialize the smoothing weights ω
(u)
K = ω̃

(u)
K .

10: for i = K − 1 : 1 do

11: ω
(u)
i = ω̃

(u)
i

U∑
u′=1

P

(
x
(u′)
(i+1,1)

∣∣∣ x
(u)
(i,W )

,Θ̂(`)

)
ω
(u′)
i+1

U∑
u′′=1

P

(
x
(u′)
(i+1,1)

∣∣∣ x
(u′′)
(i,W )

,Θ̂(`)

)
ω̃
(u′′)
i

.

12: end for

allows to employ GM smoothing densities for computing the updated parameters

in EM. This is akin to the application of EM in linear Gaussian SSMs [87]. Then,

we construct an algorithm to efficiently compute the required smoothing densities

in closed-form for our setting. As a result, the computational cost of the M-step

would be comparable to performing parallel instances of fixed-interval smoothing,

each corresponding to a component of the GM process noise.

We first consider a 0th-order Taylor expansion for ε̂
(`)
i,m in the update formulas of

(4.9)-(4.11) around the mean of the smoothing densities. In other words, ε̂
(`)
i,m ≈ ε̄

(`)
i,m

where ε̄
(`)
i,m is computed similarly to (4.8) with π̂

(`)
(i,j),m’s evaluated at XN

1 =x̄1:N :=

Ex{x1:N} and Θ = Θ̂(`) in Eq. (4.6).

Remark 4.3. Note that this approximation is valid when the GM smoothing densi-
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ties (over which the expectations are computed) do not exhibit multimodal behavior

with mixture components far from each other. Otherwise, the 0th order approxima-

tion must be carried out at the mean of each mixture component separately (rather

than at the mean of the smoothing density). Under high enough observation signal-

to-noise ratio (SNR), the GM smoothing densities are expected to mainly consist of

mixture components with similar means, so the resulting density exhibits a unimodal

morphology concentrated on the ML estimate of the states. Therefore, approxima-

tion of ε̂
(`)
i,m by its value at the mean of the smoothing density would not introduce

significant error at high SNRs. It is worth noting that, higher order approximations

to ε̂
(`)
i,m can be considered at the cost of more computational cost, which would also

result in higher moments of GM smoothing densities appearing in the M-step update

equations. As we will demonstrate in our numerical experiments in Section 4.3, the

0th order approximation suffices for our applications of interest.

It is known that for a linear SSM with Gaussian mixture noise, the filtering

and smoothing densities also take Gaussian mixture forms [94,97]. Let

P
(
X n

n91

∣∣∣YN
1 , Θ̂

(`)
)

=

ΓS∑
γ=1

ρ(s,γ)
n N


xn91

xn

;µ(s,γ)
n ,Σ(s,γ)

n

 (4.16)

be the one-step joint smoothing density at time n, where the superscript s identifies

smoothing parameters, and ΓS is the number of mixture components forming the

smoothing density. Taking ε̄
(`)
i,m out of the expectations, the M-step update equations

become:

p̂(`+1)
m ≈ 1

K

K∑
i=1

ε̄
(`)
i,m, (4.17)
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µ̂(`+1)
m ≈

K∑
i=1

ε̄
(`)
i,m

W∑
j=1

Ã(i,j)

ΓS∑
γ=1

ρ
(s,γ)
(i,j)µ

(s,γ)
(i,j)

W
∑K

i=1 ε̄
(`)
i,m

, (4.18)

Σ̂(`+1)
m ≈

K∑
i=1

ε̄
(`)
i,m

W∑
j=1

Ã(i,j)

ΓS∑
γ=1

ρ
(s,γ)
(i,j)

(
Σ

(s,γ)
(i,j) + µ

(s,γ)
(i,j)

(
µ

(s,γ)
(i,j)

)>)
Ã>(i,j)

W
∑K

i=1 ε̄
(`)
i,m

− µ̂(`+1)
m

(
µ̂(`+1)
m

)>
,

(4.19)

where Ã(i,j) = [9A(i,j), Idx ] with Idx denoting the identity matrix of dimension dx.

Another approach to approximately compute the expectations in the update equa-

tions (4.9)-(4.11) is to use the Laplace approximation [115]. This approach, however,

requires the computation of the GM joint smoothing density X (i,W )
(i,0)

∣∣ YN
1 ,Θ̂

(`) and

would be more computationally intensive than the current approximation, which

only requires the one-step smoothing covariances regardless of the choice of W .

The smoothing density parameters in Eq. (4.16), i.e.,
{
ρ

(s,γ)
n ,µ

(s,γ)
n ,Σ

(s,γ)
n

}
,

have to be estimated for n = 1, . . . , N in the E-step. In Section II.D of [97], a

forward-backward recursion is used to obtain closed-form solutions for smoothing

densities under a linear SSM with GM noise components. The dimension of the

underlying matrices and matrix inversion costs, however, grows with n as the re-

cursions proceed, which limits the utility of the algorithm for practical applications

even with moderate observation duration. In [94], the two-filter formula is adopted

to compute the GM smoothing densities by transforming the smoothing problem to

a filtering one. An underlying assumption in [94] is that either Cn is invertible or

consecutive observations can be concatenated such that the effective measurement

matrix is invertible. As this assumption does not hold in general, we instead develop
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a recursive algorithm based on the two-filter formula in our setting to compute the

smoothing parameters in (4.16) in closed-form. Since all of the following densities

are conditioned on Θ̂(`) similar to Eq. (4.16), we hereafter drop the conditioning in

our notation for convenience.

Let the filtering density at the endpoint of the (i−1)st window be

P
(
x(i,0)

∣∣∣Y (i,0)
1

)
=

ΓF∑
γ=1

ρ
(f,γ)
(i,0)N

(
x(i,0);µ

(f,γ)
(i,0) ,Σ

(f,γ)
(i,0)

)
(4.20)

where superscript f identifies forward filtering parameters and ΓF is the number

of mixtures forming the filtering density at the end of each window. Also, let the

unnormalized backward information filter [94] at the end of the ith window be defined

as

P
(
YN
iW

∣∣∣xiW)∝ ΓB∑
γ=1

β
(γ)
iW exp

{
−1

2
x>iWB

(γ)
iWxiW +x>iWb

(γ)
iW

}
(4.21)

where ΓB is the number of exponential components forming the information filter at

the end of each window. Note that Eq. (4.21) is not a density in x. Considering the

independence of zi and Y (i,0)
1 , the two-filter formula for window i in our switching

GM process noise model can be written as

P
(
X (i,j)

(i,j91)

∣∣∣YN
1

)
=

P
(
X (i,j)

(i,j91),Y
N
(i,1)

∣∣∣Y (i,0)
1

)
P
(
YN

(i,1)

∣∣∣Y (i,0)
1

)
=

1

P
(
YN

(i,1)

∣∣∣Y (i,0)
1

) M∑
m=1

p̂(`)
m × (4.22)

P
(
x(i,j91),Y (i,j91)

(i,1)

∣∣∣Y (i,0)
1 , zmi

)
P
(
x(i,j)

∣∣∣x(i,j91), z
m
i

)
P
(
YN

(i,j)

∣∣∣x(i,j), z
m
i

)
where zmi stands for the event {zi =m}. The leftmost term in the last line of Eq.

(4.22) is the forward filter and represents an unnormalized filtering density, which
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we express as:

P
(
x(i,j),Y (i,j)

(i,1)

∣∣∣Y (i,0)
1 , zmi

)
=

ΓF∑
γ=1

ρ
(f,γ)
(i,j),mN

(
x(i,j);µ

(f,γ)
(i,j),m,Σ

(f,γ)
(i,j),m

)
(4.23)

for j=1, . . . ,W and compute it through the following unnormalized forward recur-

sion in j:

P
(
x(i,j),Y

(i,j)
(i,1)

∣∣∣Y(i,0)
1 , zmi

)
=

∫
P
(
y(i,j)

∣∣x(i,j)

)
P
(
x(i,j)

∣∣x(i,j91), z
m
i

)
P
(
x(i,j91),Y

(i,j91)
(i,1)

∣∣∣Y(i,0)
1 , zmi

)
dx(i,j91) (4.24)

The recursion is initialized by the filtering density in Eq. (4.20) at window i. This

results in the following forward filter parameter updates:

µ̃ = A(i,j)µ
(f,γ)
(i,j91),m + µ̂

(`)
m

Σ̃ = A(i,j)Σ
(f,γ)
(i,j91),mA>(i,j) + Σ̂

(`)
m

H = Σ̃C>(i,j)

(
C(i,j)Σ̃C>(i,j) + R

)−1

µ
(f,γ)
(i,j),m = µ̃+ H

(
y(i,j) −C(i,j)µ̃

)
Σ

(f,γ)
(i,j),m =

(
I−HC(i,j)

)
Σ̃

ρ
(f,γ)
(i,j),m=ρ

(f,γ)
(i,j91),mN

(
y(i,j); C(i,j)µ̃,C(i,j)Σ̃C>(i,j)+R

)

(4.25)

and filtering density at time (i, j) is computed from Eq. (4.23) as

P
(
x(i,j)

∣∣∣Y (i,j)
1

)
∝

M∑
m=1

p̂mP
(
x(i,j),Y (i,j)

(i,1)

∣∣∣Y (i,0)
1 , zmi

)
(4.26)

Next, we represent the unnormalized backward information filter, i.e., the

rightmost term in the last line of Eq. (4.22), as

P
(
YN

(i,j)

∣∣∣x(i,j), z
m
i

)
∝

ΓB∑
γ=1

β
(γ)
(i,j),m exp

{
−1

2
x>(i,j)B

(γ)
(i,j),mx(i,j) + x>(i,j)b

(γ)
(i,j),m

}
(4.27)
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where we enforce the normalization
∑ΓB

γ=1

∑M
m=1 β

(γ)
(i,j),m=1. Note that this normal-

ization is applied to avoid numerical instabilities while performing the recursions

and does not change the final smoothing density of Eq. (4.22), which has to be

eventually normalized. The backward filter in Eq. (4.27) can be computed through

the following recursion [94]:

P
(
YN

(i,j)

∣∣∣x(i,j), z
m
i

)
=

∫
P
(
y(i,j)

∣∣x(i,j)

)
P
(
x(i,j+1)

∣∣x(i,j), z
m
i

)
P
(
YN

(i,j+1)

∣∣∣x(i,j+1), z
m
i

)
dx(i,j+1) (4.28)

and is initialized by the density of Eq. (4.21) at window i. This results in the

following parameter updates for the backward filter:

Σ = Σ̂
(`)
m

(
I + B

(γ)
(i,j+1),mΣ̂

(`)
m

)
µ = Σ̂

(`)
m b

(γ)
(i,j+1),m + µ̂

(`)
m

B
(γ)
(i,j),m = C>(i,j)R

91C(i,j)

+ A>(i,j+1)

[(
Σ̂

(`)
m

)91

−Σ
91
]
A(i,j+1)

b
(γ)
(i,j),m = C>(i,j)R

91y(i,j) −A>(i,j+1)

(
Σ̂

(`)
m

)91

µ̂
(`)
m

+ A>(i,j+1)Σ
91
µ

β
(γ)
(i,j),m∝β

(γ)
(i,j+1),m

√
|Σ̂(`)
m |
|Σ| exp

{
91

2

(
µ̂

(`)
m

)>(
Σ̂

(`)
m

)91

µ̂
(`)
m

}
× exp

{
1
2
µ>Σ

91
µ
}

(4.29)

and the overall backward filter in the beginning of window i can be computed from

Eq. (4.27) as

P
(
YN

(i,0)

∣∣∣x(i,0)

)
=

M∑
m=1

p̂
(`)
M P

(
YN

(i,0)

∣∣∣x(i,0), z
m
i

)
(4.30)
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Using Eqs. (4.23) and (4.27), the parameters of the joint GM smoothing density in

Eq. (4.22) are computed as:

γ′′ = (γ − 1)MΓB + (m− 1)ΓB + γ′

S11 =
(
Σ

(f,m)
(i,j91),γ

)91

+ A>(i,j)

(
Σ̂

(`)
m

)91

A(i,j)

S12 = S>21 = −A>(i,j)

(
Σ̂

(`)
m

)91

S22 = B
(m)
(i,j),γ′ +

(
Σ̂

(`)
m

)91

Σ
(s)
(i,j),γ′′ =

S11 S12

S21 S22


91

u1 =
(
Σ

(f,m)
(i,j91),γ

)91

µ
(f,m)
(i,j91),γ−A>(i,j)

(
Σ̂

(`)
m

)91

µ̂
(`)
m

u2 =
(
Σ̂

(`)
m

)91

µ̂
(`)
m + b

(m)
(i,j),γ′

µ
(s)
(i,j),γ′′ = Σ

(s)
(i,j),γ′′

u1

u2


ρ

(s)
(i,j),γ′′∝ ρ

(f,m)
(i,j91),γ p̂

(`)
m β

(m)
(i,j),γ′

√
|Σ(s)

(i,j),γ′′ |

|Σ̂(`)
m ||Σ

(f,m)
(i,j91),γ |

× exp

{
91

2

(
µ

(f,m)
(i,j91),γ

)>(
Σ

(f,m)
(i,j91),γ

)91

µ
(f,m)
(i,j91),γ

}
× exp

{
91

2

(
µ̂

(`)
m

)>(
Σ̂

(`)
m

)91

µ̂
(`)
m

}
× exp

{
1
2

(
µ

(s)
(i,j),γ′′

)>(
Σ

(s)
(i,j),γ′′

)91

µ
(s)
(i,j),γ′′

}

(4.31)

where we have γ ∈ {1, . . . ,ΓF}, m ∈ {1, . . . ,M}, and γ′ ∈ {1, . . . ,ΓB}. This brings

the total number of mixture components in the joint smoothing density of Eq. (4.22)

to ΓF×M×ΓB. As number of mixture components grows exponentially in SSMs
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with GM noise components [93], limiting them is a crucial step for practical pur-

poses. To this end, in forming the density of Eq. (4.16), the number of mixture

components obtained from Eq. (4.22) are reduced to ΓS prior to updating the pa-

rameters in the M-step. In this work, we choose ΓS components from the density

of Eq. (4.22) with the largest mixture probabilities for simplicity. However, more

accurate mixture reduction algorithms are available and developed in [93,116,117],

but with additional computational costs. It is worth noting that calculations corre-

sponding to the weights ρ(f)’s in Eq. (4.25), β’s in (4.29), and ρ(s)’s in (4.31) should

be performed in log-scale to avoid numerical errors in practice.

Algorithm 8 summarizes the steps for calculating the smoothing density pa-

rameters in Eq. (4.16) for n = 1, . . . , N . Note that in the case of an unknown

observation covariance matrix R, the smoothing densities in Eq. (4.16) can be

replaced in the expression of Eq. (4.12) to provide a closed-form update for R̂(`+1).

4.2.3 Model Selection

An important issue in applications of GMs for clustering is the choice of

the number of mixtures M . A variety of model selection criteria have been used

in the literature of Gaussian mixtures including the Akaike Information Criterion

(AIC), Bayesian Information Criterion (BIC), and Independent Component Analy-

sis (ICA) [118–121], most of which require the computation of data log-likelihood. In

Approach 1, the log-likelihood can be approximated using the unnormalized particle
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filtering weights ω̃
(u)
i ’s in Algorithm 7 as

log P
(
YN

1

)
≈∑K

i=1 log
(∑U

u=1 ω̃
(u)
i

)
(4.32)

In Approach 2, using the unnormalized filtering densities in closed-form ap-

proximation, the log-likelihood in our model can be computed based on [122] as

log P
(
YN

1

)
=
∑K

i=1log
(∑M

m=1 p̂
(`)
m P
(
Y (i,W )

(i,1)

∣∣∣Y (i,0)
1 , zmi

))
≈∑K

i=1log
(∑M

m=1 p̂
(`)
m

(∑ΓF

γ=1ρ
(f,γ)
(i,W ),m

))
(4.33)

where the last line is derived from integrating the unnormalized filtering density in

Eq. (4.23).

4.3 Results

In this section, we demonstrate the utility of our proposed algorithms in esti-

mating TRFs from auditory neural responses to speech, using both simulated and

experimentally-recorded MEG data. Before doing so, we will give an overview of the

TRF model and how its estimation can be posed within our GM SSM framework.

4.3.1 The TRF Model

Consider a cocktail party setting [40], in which a subject is listening to two

speakers simultaneously, but only attending to one of the speakers. While the

subject is performing this task, his/her neural response is recorded using MEG. Let

yt ∈ R denote the auditory component of the neural response at time t ∈ {1, . . . , T},

extracted from multichannel MEG recordings [56, 123]. Also, let s
(q)
t be a speech
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Algorithm 8 Two-Filter Gaussian Mixture Smoothing Alg.

Inputs: linear state-space model in (4.1), parameter estimate Θ̂(`), and component
limits ΓF, ΓB, and ΓS.

Output: smoothing density parameters ρ
(s)
n,γ, µ

(s)
n,γ, Σ

(s)
n,γ in (4.16) for n ∈ {1, . . . , N}

and γ ∈ {1, . . . ,ΓS}.
1: Initialize the filtering density in (4.20) at n=0 as the prior on x0.

2: for i = 1 : K do

3: Run forward recursions of (4.25) for m = 1, . . . ,M in window i starting from
(4.20) and store the parameters.

4: Compute the filtering density at n = iW from (4.26).

5: Out of ΓF ×M mixture components in the filtering density, keep the ΓF ones
with largest probabilities as initialization for window i+1.

6: end for

7: Initialize the backward filter as P
(
yN
∣∣xN), i.e., βN,1 = 1, BN,1 = C>NR91CN ,

and bN,1 = C>NR91yN .

8: for i = K : 1 do

9: Run backward recursions of (4.29) for m = 1, . . . ,M in window i starting
from (4.21).

10: Run smoothing algorithm of (4.31) in window i using backward filtering pa-
rameters and the stored forward filtering parameters.

11: Out of ΓF ×M × ΓB smoothing mixture components, store the ΓS ones with
the largest probabilities for smoothing densities of (4.16) in window i.

12: Compute the overall backward filter at n=(i−1)W from (4.30).

13: Out of ΓB×M backward filtering components, keep the ΓB ones corresponding

to the most significant mixture components of P
(
X (i,1)

(i,0)

∣∣∣YN
1

)
as initialization for

window i−1.

14: end for

15: Output the computed smoothing parameters of (4.16).

feature of speaker q ∈ {1, 2} at time t, e.g., the acoustic envelope, and denote by

s
(q)
t = [s

(q)
t , . . . , s

(q)
t−L−1]> ∈ RL the vector containing the previous L features up to

(and including) time t. In this work, we consider s
(q)
t to be the acoustic envelope in

log scale, which is known to be a reliable predictor of the neural response [107]. Other

features such as phoneme representations, word frequency measures, and semantic

composition have also been considered in the literature [124–126], and can also be
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included in s
(q)
t . A widely-used linear stimulus-response model is given by:

yt = s>t τ̃t + vt (4.34)

where τ̃t =
[
τ̃

(1)
t ; τ̃

(2)
t

]
∈ R2L is the concatenation of τ̃

(1)
t and τ̃

(2)
t as the TRFs at

time t corresponding to speakers 1 and 2, respectively. Also, st =
[
s

(1)
t ; s

(2)
t

]
∈ R2L

is the concatenation of the speech feature vectors at time t, and vt represents the

observations noise. In light of this model, and as mentioned in the introduction, the

TRF τ̃
(q)
t can be thought of as the impulse response of a linear, but time-varying,

system representing the neural activity and taking as input the speech features of

speaker q, for q = 1, 2. Existing results in auditory neuroscience [48, 79, 86, 106–

108] have focused on studying the behavioral significance of the various peaks in

the TRF. For instance, the TRF exhibits an early positive peak at around 50 ms,

referred to as the M50 component, which is known to represent the encoding of the

acoustic envelope. A later negative peak at around 100 ms lag, referred to as the

M100 component, has shown to have an attentional modulation effect, so that it

appears to have a higher magnitude for the attended speaker’s TRF, compared to

the unattended speaker’s TRF. The M50 component is attributed to the effect of

early auditory processing in the brain and is equally represented in both speakers’

TRFs, while the M100 component represents the later processing stages segregate

the attended speaker from the unattended one [48]. Dynamic estimation of the

TRFs can thus provide insights into the underlying neural dynamics that process

speech in the cocktail party setting, and has significant implications for the design

of non-invasive brain-machine interface devices involving auditory processing, such
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as the emerging ‘smart’ hearing aid technology that utilizes neural signals to steer

the hearing aid parameters in real-time.

We assume vt ∼ N (0, σ2) and define the nominal observation SNR as 10 log10

(
Ē/σ2

)
,

where Ē is the average of the signal component in Eq. (4.34) over the trial of length

T . It is common to consider a piecewise-constant approximation to the TRFs over

consecutive non-overlapping time windows of length t0, which is comparable to the

length of the TRF L. In other words, τ̃t = τn for t ∈ {(n− 1)t0 + 1, . . . , nt0}

and n ∈ {1, . . . , N} where N = T/t0 is assumed to be an integer without loss of

generality. We then define yn = [y(n91)t0+1, . . . , ynt0 ]
>, Sn = [s(n91)t0+1, . . . , snt0 ], and

vn=[v(n91)t0+1, . . . , vnt0 ]
>. In [107], dynamic estimation of TRFs was first discussed

using a regularized RLS framework. First, the TRFs are represented over a dictio-

nary G, i.e, τ
(q)
n = Gx

(q)
n , in order to enforce smoothness in the lag domain [46,48].

The dynamic TRF estimation framework of [107] can be stated as:
x̂n = arg minx∈R2L

n∑
i=1

λn−i
∥∥∥yi − S>i G̃x

∥∥∥2

2
+ γh(x)

τ̂n = G̃x̂n

(4.35)

where λ ∈ (0, 1) is the forgetting factor, γ is the regularization coefficient, h(.) can

either be an `1 or `2 penalty [127], and G̃ = diag(G,G) is a block diagonal matrix

with G containing the dictionary atoms. Similar to [86,107], we consider a Gaussian

dictionary G ∈ RL×D where the D columns of G are shifted Gaussian kernels. The

parameter λ in Eq. (4.35) induces a trade-off between adaptivity and robustness of

TRF estimation.

The estimate in (4.35), however, is a filtering estimate by design and is suited
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for real-time estimation of TRFs. For a more precise dynamic analysis of the TRFs

in an off-line fashion, SSMs have the advantage of providing smoothed estimates

and directly modeling the evolution of the TRFs through the state equation. We

use the SSM below to represent the TRF dynamics and its relation to the neural

response: 

xn = αxn−1 + wn

τn = G̃xn

yn = S>n τn + vn

(4.36)

where α∈(0, 1) controls the nominal rate of change of the TRF, similar to the effect

of the forgetting factor λ in Eq. (4.35) for the RLS framework. In [128, 129], a

correspondence between α and λ has been discussed which can result in the same

filtering estimates of the SMM in Eq. (4.36) with Gaussian noise and the RLS model

in Eq. (4.35), without any penalization. The parameter α can either be estimated in

the EM framework as in [87], or it can be set based on the domain-specific knowledge

of the problem to provide a desired adaptivity-robustness trade-off. The estimated

TRFs in (4.36) are computed from the smoothing estimates as τ̂n = G̃x̂n|N .

In the following two subsections we demonstrate the advantages of the pro-

posed GM SSM inference in TRF estimation from both simulated and experimentally-

recorded MEG data, by assuming a GM density for wn in Eq. (4.36). We consider

the RLS framework of Eq. (4.35) and the smoothed estimates from a linear Gaussian

model (Eq. (4.36) with Gaussian wn) as benchmarks.
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4.3.2 Application to Simulated MEG

Consider a 90 s long cocktail party experiment, in which the subject is listening

to two speakers simultaneously and is instructed to switch attention between the

two every 15 s starting at time 7.5 s. We synthesize the putative TRF dynamics

as shown in Fig. 4.3.2-A, based on relevance of the different TRF peaks discussed

in Section 4.3.1. We use a sampling rate of Fs = 100 Hz and a length of 0.25 s for

the TRFs, i.e., L=0.25Fs. Let G be a dictionary consisting of five Gaussian atoms

with variances of 0.018 whose means are separated by 50 ms increments starting

from a lag of 0 ms to 200 ms. This results in G ∈ R25×5 and xn ∈ R10 in Eqs.

(4.35) and (4.36). Furthermore, consider a piecewise-constant model for the TRFs

over windows of length 300 ms resulting in N = 300 TRF samples over the trial for

each speaker. Fig. 4.3.2-A shows the synthesized TRF heatmaps for speakers 1 and

2, where the corresponding states xn’s are designed such that the M50 component

stays relatively constant for the two speakers, the M100 component is modulated

by the attentional state, and a common high-latency component at 200 ms varies

independently of the subject’s attention. Fig. 4.3.2-B shows two snapshots of the

TRF of speaker 2 at 10 s, when speaker 2 is attended, and at 85 s, when speaker

1 is attended. It is worth noting that the corresponding states in Fig. 4.3.2-A

are not generated from an SSM such as the one in (4.36). However, the relatively

smooth temporal changes of the TRFs in Fig. 4.3.2-A (representing neural activity

in controlled experimental conditions) makes the SSM of Eq. (4.36) a suitable

candidate for dynamic TRF analysis. Indeed, the TRF components at lags of 100
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ms and 200ms exhibit heterogeneous dynamics across the trial, including periods of

increasing, decreasing, and remaining relatively constant, which model the changes

in auditory state throughout the experiment. As mentioned in the introduction,

such dynamics can be modeled using a multimodal process noise density as in Eq.

(4.36). Fig. 4.3.2-C shows the histogram of true wn samples in (4.36) along the 3rd

state dimension of speaker 2’s TRF (corresponding to the M100 component). The

process noise samples are computed as ŵn=xn9αxn91, assuming that the true states

xn’s in Fig. 4.3.2-A are available to an oracle. As such, we refer to this histogram as

the oracle histogram and to the maximum-likelihood GM density fit to these oracle

samples as the oracle GM fit in Fig. 4.3.2-C. The constant α is chosen close to

and less than one to enforce temporal continuity. To simulate the observed neural

response yt, we use two speech signals of length 90 s each to generate the stimulus

vectors required in Eq. (4.34).

We first consider the state-space model of Eq. (4.36) and apply our proposed

EM algorithm to the simulated observations to illustrate how the oracle Gaussian

mixture fit in Fig. 4.3.2-C can be recovered from observations, and how the mul-

timodal density representation of the process noise can improve TRF estimation

under various observation SNRs. We consider W = 5, which means that the TRF

dynamics are governed by one mixture component of the process noise in windows

of length Wt0/Fs = 1.5 s. For simplicity, we consider Σ1:M to be diagonal in the

parameter set, which makes the update formulas of Eqs. (4.14) and (4.19) to also

take diagonal forms. The number of mixture components is chosen as M = 5 using

the AIC criterion and log-likelihoods computed using Eqs. (4.33) and (4.32). We
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Figure 4.1: Designed simulation study: A) Heatmaps of the synthetic TRFs
in time for a two-speaker cocktail party scenario, where the M100 magnitudes
are attention-modulated. B) Example instances of speaker 2’s TRF when
the speaker is attended (left plane) and unattended (right plane). C) Oracle
histogram of process noise in (4.35) along the M100 dimension of speaker 2,
which is computed from (A), and the fitted GM as the oracle GM fit.

also set ΓF = ΓB = ΓS = M . To initialize the EM algorithm, we use two methods:

1) initializing with p̂
(0)
1:M = 1

M
, random means µ̂

(0)
1:M close to zero, and Σ̂

(0)
1:M equal to

the estimated process noise covariance in the linear Gaussian model, and 2) setting
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Θ̂(0) as the GM fit to the empirical samples of process noise in the linear Gaussian

model, which are computed from the smoothed state estimates.

Fig. 4.3.2 shows the convergence of the estimated parameters in comparison to

those given by the oracle GM fit for a moderate nominal observation SNR of 6.7 dB,

using the closed-form approximation approach and the first initialization method.

The observation noise variance σ2 is also estimated within the EM algorithm. The

panels for the means and covariances in Fig. 4.3.2 correspond to the 3rd state di-

mension of speaker 2’s TRF (corresponding to the M100 component), in accordance

to those in Fig. 4.3.2-C. The mixture probabilities and means of the oracle GM fit

are recovered within 30 EM iterations. The covariance elements, however, take a

longer time to converge and tend to underestimate those of the oracle GM fit. This

shows that at the example nominal SNR of 6.7 dB in our simulation, the algorithm

is more sensitive to recovering the average TRF dynamics in each 1.5 s window than

to retrieve its detailed variations within the window. It is noteworthy that the ini-

tialization points in Fig. 4.3.2-C, given by the estimated process noise variance in a

linear Gaussian SSM, are approximately 100 times larger than the variances given by

the oracle GM fit. Finally, Fig. 4.3.2-D shows the corresponding estimated process

noise density after 200 EM iterations (blue trace), the oracle GM fit (red trace), and

the Gaussian model fit obtained from a linear Gaussian SSM used for initialization

(yellow trace). While the estimated GM process noise density using our proposed

approach closely matches that given by the oracle GM fit, the process noise density

obtained by a linear Gaussian model is heavily biased and is not able to capture

the multimodal nature of the process. To ease reproducibility, we have archived a
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MATLAB implementation of the closed-form approximation method (Approach 2)

in the GitHub repository, which reproduces the results of Fig. 4.3.2 [32]. Examples

of the convergence curves for the Monte Carlo approximation method (Approach 1)

are previously presented in [130], and are omitted here for brevity.
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Figure 4.2: Convergence of Gaussian mixture parameters for M = 5 in the
EM algorithm with closed-form approximations: A) Mixture probabilities. B)
Mixture means (along the M100 component of speaker 2 as an example). C)
Mixture variances (along the M100 component of speaker 2 as an example).
Bold dash lines show the corresponding parameters of the oracle GM fit. D)
GM densities (along the M100 component of speaker 2 as an example).

Fig. 4.3.2 shows the normalized RMSE in state estimation with respect to the

original states in Fig. 4.3.2-A for nominal observation SNRs in the range [95.3, 9, 7]
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dB with 3 dB increments. The results are averaged over 10 runs of the observation

noise at each SNR value. For the forgetting factor λ in RLS, an effective estimation

length [107] of 2 s is chosen to result in comparable TRF estimates to those of the

SSM with α = 0.99. Also, γ in Eq. (4.35) for an `2 penalty is tuned through two-

fold cross-validation. For the linear Gaussian SSM and linear SSM with GM process

noise in Eq. (4.36), diagonal process noise covariance matrices are considered, and

the model parameters and states are estimated simultaneously for each trial run.

The SSMs clearly outperform the RLS algorithm in recovering the true states. Also,

the SSM with GM process noise with either the closed-form or particle smoothing

approximations outperforms the linear Gaussian SSM. We have considered a total

of U = 2000 particles in Algorithm 7 to approximate densities of dimension 2D(W+

1) = 60 so that state estimates are comparable to those obtained by the closed-

form approximation. This resulted in a ten-fold increase in the run-time compared

to the closed-form approximation method, which shows the advantage of using the

closed-form approximation method. Examples of the estimated TRFs of speaker 1

under the low nominal observation SNR of 95.3 dB are shown in Fig. 4.3.2. The

RLS estimate (panel A) exhibits highest variability compared to Fig. 4.3.2-A. While

the linear Gaussian SSM estimate in Fig. 4.3.2-B fails to capture the rapid M100

dynamics as well as the steady M50 component (note the M50 and M100 estimates

between within the dashed rectangles), the estimate from the SSM with GM process

noise in Fig. 4.3.2-C is nearly indistinguishable from the ground truth TRF shown

in Fig. 4.3.2-A.
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4.3.3 Application to Experimentally-Recorded MEG Data

The data used in this work is a subset of recordings in [108] for an at-will

attention switching experiment. The participants included five younger-adult (22-

33 years old) native English speakers with normal hearing, who were recruited from

the University of Maryland. All protocols and procedures were approved by the

Institutional Review Board of the university, and written informed consent was

obtained from participants.

Experiment Details: Two stories were presented diotically to subjects’ ears,

one narrated by a male speaker and the other one by a female speaker. The stimuli

consisted of two segments from the book, The Legend of Sleepy Hollow by Wash-

ington Irving. Subjects listened to three 90 s-long trials of the same speech mixture

and were instructed to start attending to the male speaker first, and then to switch
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Figure 4.4: Example dynamic TRF estimates for speaker 1 under the low
nominal observation SNR of −5.3 dB: A) RLS algorithm. B) Linear Gaussian
SSM. C) Linear SSM with GM process noise. The dashed rectangles highlight
the differences of these estimates for the sake of comparison.

their attention between the two speakers at their own will for a minimum of one and

a maximum of three times during each trial. Subjects were also given a switching

button that they were instructed to press every time they decided to switch atten-

tion. Prior to the experiment, a single-speaker pilot study was performed where

subjects listened to three 60 s-long trials with similar stimuli. Neuromagnetic sig-

nals were recorded at a sampling frequency of 2 kHz using a 157-sensor whole-head

MEG system (Kanazawa Institute of Technology, Nonoichi Ishikawa, Japan) in a

dim magnetically shielded room.

Preprocessings: Three reference channels were used to measure and cancel the
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environmental magnetic field by using time-shift PCA [131]. All MEG channels were

band-pass filtered between 2 Hz and 8 Hz (delta and theta bands), corresponding to

the slow temporal modulations in speech [48,106], and downsampled to Fs = 100 Hz.

In [56], the Denoising Source Separation (DSS) algorithm is described to decompose

the MEG data into temporally uncorrelated components ordered according to their

trial-to-trial phase-locking reliability. Similar to [51,107], we consider the first DSS

component as the auditory neural response. Thus, we apply the DSS algorithm on

pilot trials to compute the subject-specific linear combination of MEG channels that

compose the first DSS component. The computed channel maps are then applied to

the recorded MEG from the main experiment trials to extract the auditory response

yt in Eq. (4.34). Speech envelopes were similarly filtered and downsampled.

TRF Estimation Results: We set the TRF length to 0.3 s and consider TRFs

to be piece-wise constant over windows of length 0.4 s. Also, we choose W = 5

to enforce homogeneous TRF dynamics over windows of length 2 s. We represent

the TRFs over a Gaussian dictionary with means separated by 20 ms starting from

0 to 280 ms, and variances of 8.5e − 3. The parameters λ and α are set to 0.92

and 0.97, respectively, to achieve comparable TRF estimates from Eqs. (4.35) and

(4.36). The `2 penalty γ in (4.35) is determined via two-fold cross-validation. We

consider diagonal covariance matrices for the process noise to reduce the size of

Θ, also estimate the observation noise σ2 in the EM framework. The forgetting

factor mechanism of Eq. (4.35) enforces a temporal continuity in TRF estimates

over time and increases robustness to noise and artifacts. The same effect can be

replicated in the SSM of Eq. (4.36) by considering α close to one and restricting
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the dynamic range of the process noise wn. To enforce the latter, we consider

Inverse Gamma (IG) conjugate priors [132] on the diagonal elements of the process

noise covariance matrices. For the linear Gaussian SSM with wn ∼ N (0,Q) and

Q=diag ([q1, . . . , q2D]), the log-prior takes the form

κ log P(Q) = 9κ
∑2D

d=1

(
(α̃d+1) log qd + β̃d/qd

)
+cst. (4.37)

where α̃d and β̃d are the parameters of the IG prior for dimension d and cst. includes

terms not dependent on qd’s. The log-prior is then added to the surrogate Q-function

of the EM algorithm, and κ determines the strength of the prior with respect to

the complete data log-likelihood. We choose κ=N for the linear Gaussian case and

κ=N/M for the linear SSM with GM process noise, to correct for the number of

mixture components. We tune the IG parameters using empirical samples of the

process noise from the RLS estimates, computed as ŵn = x̂
(RLS)
n −αx̂

(RLS)
n91 . Thus, the

process noise variance is controlled by the IG priors, which prohibit drastic temporal

changes in the TRF. For the linear SSM with GM process noise, we also bound the

elements of µ̂
(`)
1:M in each EM iteration such that the variance of the estimated GM

process noise along each dimension is not larger than those of the linear Gaussian

case, i.e., estimated qd’s using the EM algorithm. Note that in the absence of such

strong priors, the EM algorithm would likely overfit the observed data, resulting

in TRFs that are highly variable in time and with no meaningful morphological

structure. In our simulation study, the usage of such priors was not necessary, as

the yt’s were directly generated from Eq. (4.34).

Fig. 4.3.3 shows example TRF estimates for two representative trials of one
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subject. The vertical dashed lines mark reported attention switches by the subject.

The number of mixtures M was set to 3 for trial one and 4 for trial two, using the

AIC criterion. Row A shows speaker 1’s TRF estimate using RLS, which exhibits the

highest variability. Rows B and C show the TRF for the linear Gaussian SSM and the

linear SSM with GM process noise and inferred using the closed-form approximation,

respectively. Although the estimated process noise variance in in the GM case is

controlled by that of the Gaussian case in each dimension, we observe that the

estimates in row C clearly delineate the heterogeneity of the dynamics of the various

TRF components, which are blurred by the linear Gaussian SSM estimates of row B.

In other words, the multimodal representation of the process noise allows the model

to adapt to rapid changes goverbed by the subjects’ behavior. Row D displays

speaker 2’s TRF estimate using the linear SSM with GM process noise. Comparing

rows C and D, we observe the aforementioned attention modulation effect in the

magnitude of the M100 components. To illustrate this effect further, row E shows

the difference between the M100 magnitudes of the TRFs of speakers 1 and 2, where

we locate the M100 at each time as the smallest TRF elements in the [0.1, 0.2] s

lag interval. Thus, when speaker 1 (2) is attended, we expect this difference to be

positive (negative). The M100 differences for the RLS exhibit high variability (blue

traces), and result in inconsistencies with the reported attended speakers (e.g., trial

1 after the 35 s mark, downward arrow). The M100 differences obtained by the linear

Gaussian SSM estimates seem to overly smooth those of the RLS (e.g., trial 2, near

the 10 s mark, downward arrow). The M100 differences obtained from the proposed

linear SSM with GM process noise, however, provide a desirable compromise between
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these two extremes: Compared to the linear Gaussian SSM, the M100 differences

benefit from the clearly delineated TRF dynamics and can result in earlier detection

of an attention switch, leading to higher attention decoding accuracy. Instances of

this advantage are marked by green arrows in row E, for both trials.

4.4 Concluding Remarks

We considered a SSM with GM process noise and devised an EM algorithm

to estimate the parameters of the GM density from SSM observations. To approxi-

mate the intractable expectations in EM, we considered two approaches, one based

on particle smoothing and another based on closed-form GM approximations to

the smoothing densities. As an example application, we considered the problem of

dynamic TRF estimation auditory neural responses to speech. We formulated the

problem as a linear SSM with Gaussian or GM process noise, and compared the

TRF estimates to those of the RLS algorithm used in [107]. Application to simu-

lated data shows that the algorithm can effectively recover the parameters of the

underlying GM process noise and that the GM representation improves state esti-

mation for a synthesized latent process exhibiting heterogeneous and rapid dynam-

ics. Application to experimentally-recorded MEG in an at-will attention switching

two-speaker cocktail party setting revealed that the proposed SSM with GM process

noise model and inference methodology clearly delineates the heterogeneous dynam-

ics of the TRF components that are otherwise not captured by the other techniques.

While the proposed methodology can be used as a reliable estimation technique in
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Figure 4.5: TRF estimates for two example trials in an at-will attention
switching experiment with vertical dashed lines showing the reported times
of attention switches by the subject: A) RLS estimate (speaker 1 TRF). B)
Gaussian SSM (speaker 1 TRF). C) SSM with GM process noise (speaker 1
TRF). D) SSM with GM process noise (speaker 2 TRF). E) M100 magnitude
differences between the TRFs of speaker 1 and 2 for the different methods.
The SSM with GM process noise clearly delineates the heterogeneity of the
TRF dynamics and is more consistent with the subjects’ behavioral reports
(see green arrows), while the RLS estimate is highly variable and the estimate
of the Gaussian SSM is overly smooth.

auditory attention decoding applications for the emerging hearing aid technologies,

it can be applied to a wider variety of biological problems in which the underlying

model exhibits heterogeneous and switching dynamics.
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Chapter 5: Conclusion and Future Work

In this thesis we have studied three neural inverse problems: 1) Sparse spectral

estimation for neural spiking data, 2) Real-time auditory attention decoding in dual-

speaker environments using M/EEG, and 3) Application of state-space models with

a Gaussian mixture process noise to dynamic TRF estimation in auditory neuro-

science. These problems share the following four key challenges to different extents:

First, neuroimaging data is relatively high-dimensional as it includes recordings from

hundreds of sensors over potentially large periods of time. However, the underlying

neural activity in controlled experiments is often focal, sparse, and structured to

some extent either in time, frequency, or spatial domains, or a combination thereof.

A major challenge is, therefore, to locate the domain with such characteristics and

exploit the structured representation to harness the high-dimensionality. Second,

most existing methods in computational neuroscience involve heavy usage of linear

models with Gaussian statistics due to their interpretability and convenient estima-

tion. However, to understand the highly complex brain function, we need to move

beyond such assumptions and devise efficient estimation algorithms for the relevant

nonlinear and non-Gaussian models. Third, with the emergence of advanced BCI

systems and neural prosthetics, it is required to develop low-complexity algorithms
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for analyzing neural activity in a dynamic fashion or in real-time. Finally, efficient,

interpretable, and task-specific mathematical representations for neural datasets

have to be devised, which can be adopted for diagnosis or soft-decision making.

Having in mind the foregoing challenges, we developed specific algorithms for

the three discussed neural inverse problems which extract the sparse spectral profile

of neural spiking data, perform near real-time auditory attention decoding using a

minimal amount of training data, and provide a comprehensive dynamic analysis

of TRFs with rapid tracking of TRF variations. However, each of these methods

include specific limitations, which can be overcome either with further algorithm de-

velopment or design of more precise neuroimaging techniques. For instance, all three

of the considered neural inverse problems include non-convex optimization problems,

which we have solved using the EM algorithm. EM only guarantees convergence to

a local optimum and is, therefore, sensitive to its initialization. We have used the

output of simpler models in each task to provide an informed initialization point

for EM in our models. However, a comprehensive theoretical understanding of such

initializations is lacking, and they can fail to steer the EM algorithm to the global

optima or even good-enough local optima. Another example of such limitations is in

extracting the auditory component of neural response from M/EEG recordings. In

the real-time attention decoding and the dynamic TRF analysis problems, we have

adopted the DSS algorithm to compute the auditory portion of the neural response.

However, this version of DSS does not exploit the stimulus to extract the auditory

response and requires multiple trials of the same experiment to detect the common

auditory response and discard the non-persistent parts of the neural response. As a
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result, DSS is not applicable to dynamic settings or trials with different stimuli, and

it can yield responses which are not auditory. Therefore, our dynamic and real-time

estimation algorithms can greatly benefit from an algorithm similar to DSS which

does not have the discussed shortcomings. Another limitation in dynamic estima-

tion using non-invasive neuroimaging data such as M/EEG is the inherent low SNR

of these recordings, which is the main reason why many researchers refrain from

moving beyond static and batch-mode estimates using M/EEG. For example, in the

auditory attention decoding problem, the computed correlation values for invasive

measurements, such as ECoG, are significantly larger than those for M/EEG. As a

result, an improvement in non-invasive recording techniques, either in the form of

better channel placements or enhanced electrodes, can significantly boost the per-

formance of the devised algorithms for real-time attention decoding and dynamic

TRF estimation. As a last constraint, recall that in the real-time attention decod-

ing task, we assumed that the clean speech envelope for each speaker is accessible.

However, in practice, these envelopes and other potential speech features have to

be extracted from microphone recordings in real-time. Such modules have been re-

cently developed [133], and an interesting future direction can be to combine these

modules with the developed algorithm for real-time attention decoding to compare

the resulting performances.

Finally, note that the discussed challenges above are shared among many dis-

ciplines such as social network analysis, astronomical imaging, and communication

systems. Thus, the developed ideas and algorithms in this thesis have potential

applications in other domains as well, and existing methods in such disciplines can
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be leveraged to overcome the foregoing challenges in analyzing neuroimaging data.
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