
Using Simple Abstraction to Guide the Reinvention of
Computing for Parallelism

Uzi Vishkin
The University of Maryland Institute for Advanced Computer Studies (UMIACS) and Electrical and

Computer Engineering Department
vishkin@umd.edu

ABSTRACT
The sudden shift from single-processor computer systems
to many-processor parallel computing systems requires rein-
venting much of Computer Science (CS): how to actually
build and program the new parallel systems. CS urgently
requires convergence to a robust parallel general-purpose
platform that provides good performance and is easy to pro-
gram. Unfortunately, this same objective has eluded decades
of parallel computing research. Now, continued delays and
uncertainty could start affecting important sectors of the
economy. This paper advocates a minimalist stepping-stone:
settle first on a simple abstraction that encapsulates the new
interface between programmers, on one hand, and system
builders, on the other hand.

This paper also makes several concrete suggestions: (i)
the Immediate Concurrent Execution (ICE) abstraction as
a candidate for the new abstraction, and (ii) the Explicit
Multi-Threaded (XMT) general-purpose parallel platform,
under development at the University of Maryland, as a possi-
ble embodiment of ICE. ICE and XMT build on a formidable
body of knowledge, known as PRAM (for parallel random-
access machine, or model) algorithmics, and a latent, though
not widespread, familiarity with it. Ease-of-programming,
strong speedups and other attractive properties of the ap-
proach suggest that we may be much better prepared for the
challenges ahead than many realize.

Categories and Subject Descriptors
C.1.4 [Processor Architectures]: Parallel architectures;
C.5.3 [Computer System Implementation]: Microcom-
puters; D.1.3 [Programming Techniques]: Parallel pro-
gramming; F.1.2 [Computation by Abstract Devices]:
Parallelism; I.1.2 [Computing Methodologies]: Algorithms

General Terms
Algorithms, Design, Performance, Economics, Human Fac-
tors, Languages, Theory

Keywords
Parallel computing, Parallel algorithms, Abstraction

.

1. INTRODUCTION
Until 2004, standard (desktop) computers comprised a

single processor core. Since 2005 we appear to be on track
with a prediction [7] of 8-core computers in 2008 and 64-core
ones by 2012. Transition from serial (single core) computing
to parallel (many-core) computing mandates the reinvention
of the very heart of computer science (CS) as these highly
parallel computers need to be built and programmed differ-
ently from the single-core machines that dominated standard
computer systems since the inception of the field. The first
computers in the 1940s were controlled by a clock that ticked
at a rate of about 5,000 times per second (5KHz). In 2003,
the clock of a high end desktop processor ticked at a rate
approaching 4,000,000,000 times per second (4GHz). This
nearly million-fold improvement in clock rate over less than
six decades occurred through a more or less regular doubling
of the clock rate every three years. At that rate we should
have had processors approaching 16GHz in 2009, but clock
rates of processors have hardly improved since 2003. The
bad news that prompted this change is that the industry
did not find a way to continue improving clock rates within
acceptable power budgets [7]. Computers are built using
digital logic. Fortunately, due to miniaturization and other
hardware technology improvements, the amount of logic that
a computer chip can contain continues to grow, doubling
every 18 to 24 months. This means that CS has entered
a new era in which performance growth will have to rely
on increased parallelism in processing. Computers with an
increasing number of cores are expected without significant
improvements in clock rates. Exploiting these cores in paral-
lel for faster completion of a computing task will be the only
way to improve performance of single tasks from one gen-
eration of computers to the next, since the number of cores
will be the main difference between successive generations.

Unfortunately, commercial multi-core computers struggle
to harness even the few cores they currently have for faster
completion of a computational task. A perception of near
despair in the community was reflected in the last posting of
a special series on the problems posed by many-core proces-
sors on the Computing Community Consortium blog [17].
The problem is not new. Many parallel computer architec-
tures have been proposed and built over the last 40 years,
but with limited success. The new frontier of exploiting their
parallelism is exactly what has often eluded their users. Ob-
serving that nowadays language researchers are locked into
mechanisms supported by commodity hardware and hard-
ware researchers are locked into fully supporting any current
software, [17] calls on all involved communities to collabora-
tively start with a clean slate.

A clean slate can better accommodate a quest to repro-
duce salient tenets of the now-derailed serial paradigm for
the many-core era. The presentation is guided by three
tenets: (i) the high-level (macro) view in the form of the
“software spiral” that sets a context for restating the main
challenge, (ii) the single nail that holds everything together
(micro view) in the form of a very simple and concise ab-
straction, and (iii) the engine of algorithmic thinking and
knowhow; serial algorithms will have to be generalized to
parallel algorithms. The paper concludes with an example
of a comprehensive platform. Its computer programming,
computer system specifications, architecture and implemen-
tation and their future evolution address these tenets.

1.1 The Software Spiral
The term software spiral reflects the cyclic process of hard-

ware improvements leading to software improvements, which
lead back to hardware improvements and so on. What fa-
cilitated the software spiral is a stable application-software
base that could be reused effectively and enhanced from one
hardware generation to the next. Better performance was
assured with each generation if only the hardware could be
improved. The scalability parameter for the serial software
spiral had been the time for executing (any) serial code,
where each hardware generation executed serial code faster.
Andy Grove (Intel) noted that the software spiral had been
an engine of sustained growth for Information Technology
for many decades. It offered unique advantages. The soft-
ware spiral provided a joint platform bringing into the fold
many players, some with conflicting interests, agendas and
backgrounds. They included users and builders of general-
purpose computers, novices, casual contributors, and vet-
eran (applications software, system software and hardware)
developers alike. Due to the software spiral they all con-
tributed to the same scalability parameter.

Alas, the software spiral is now broken (e.g., as implied by
[18]): (i) Nobody builds hardware that provides improved
performance on the old serial software base. (ii) There is
no broad parallel computing application software base for
which hardware vendors are committed to improve perfor-
mance. (iii) No agreed-upon architecture currently allows
application programmers to build such software base for the
future.

Foremost among current challenges is the many-core

convergence challenge: Seek timely convergence to a ro-
bust many-core platform coupled with a new many-core soft-
ware spiral that will serve the world of computing for many
years to come.

1.2 Case for Abstraction
[TEXT BOX BEGINS] One of the dictionary definitions of
abstract is difficult to understand, or abstruse. In CS, how-
ever, abstraction has become synonymous with the quest
for simplicity. Interestingly, the word abstraction in Hebrew
shares the same root with simple (as well as undress and
expansion). [TEXT BOX ENDS]

Many-core convergence is, of course, not the first time
that CS is facing a complex system problem requiring a so-
lution that involves many different players and should be
robust withstanding future system upgrades. Addressing
such problems by figuring out a simple abstraction that acts
as a single nail holding everything together would be a char-
acteristic CS intellectual success story. Abstractions that
present the user with a virtual machine that is easier to un-
derstand and program than the underlying hardware, while

allowing for the effective use of the hardware, have indeed fa-
cilitated significant CS accomplishments. Broad consensus
built around these simple abstractions was crucial. Some
formative abstractions were: (i) that any single instruction
available for execution in a serial program executes imme-
diately, henceforth called immediate serial execution (ISE).
Since an instruction may apply to any location in memory,
ISE actually extended another formative abstraction that
we call immediate memory access (IMA): that any partic-
ular word of an indefinitely large memory is immediately
available. And (ii) that a computer is serving the task that
the user is currently working on exclusively, henceforth ex-
clusive computer availability (ECA). The IMA abstraction
abstracts away a hierarchy of memories, each with greater
capacity, but slower access time, than the preceding one, and
the ISE abstraction extends it to immediate execution of any
operation. The left side of Figure 1 depicts the execution of
a serial algorithm as implied by the ISE abstraction, where
unit time instructions execute one at a time. The ECA
abstraction abstracts away virtual file systems that can be
implemented in local storage or a local or global network,
access to the Internet, and other tasks that may be con-
currently using the same computer system resources. These
abstractions have improved the productivity of programmers
and other users, and contributed towards broadening partic-
ipation in computing.
[TEXT BOX BEGINS] Ideally one would desire an in-

definitely large memory capacity such that any par-

ticular ... word would be immediately available ...

We are ... forced to recognize the possibility of con-

structing a hierarchy of memories, each of which has

greater capacity than the preceding but which is less

quickly accessible, [8]. Representing one of the most
formative efforts in the history of the field, this quote re-
flects tension between a desired abstraction and physical re-
alization. Six decades later, the verdict on how this tension
was resolved is clear. As imperfect as this abstraction is,
mainstream CS holds that the abstraction won. A prevail-
ing working assumption for nearly every computer scientist
is the IMA abstraction (as well as the more general ISE
abstraction). In fact, many computer system and compiler
professionals have labored to mitigate the gaps between the
memory hierarchy and the IMA abstraction allowing pro-
grammers to incorporate the abstraction in their program-
ming model, improving their productivity. The only excep-
tion to all those who conformed with the IMA abstraction
is the relatively few who seek to get the most out of the
memory hierarchy for their application, by avoiding the IMA
abstraction. [TEXT BOX ENDS]

For the first writing on the clean slate sought in [17], we
suggest a simple and robust abstraction. Since we will then
need to introduce a software spiral for parallel computing,
we first reflect on the issues and then present our abstrac-
tion desiderata. (1) Educating users to co-lead the discus-
sion, and embolden them to lead it if a platform is buildable.
Achieving convergence to a many-core platform requires ac-
tive collaboration from numerous programmers, users and
educators, and is quite a challenge: (a) the world is yet to
see a parallel platform that merits such collaboration. A Na-
tional Science Foundation panel [6] reports: to many users,
programming existing parallel computers is as intimidating
and time-consuming as programming in assembly language;
(b) even when a systems vendor introduces a new system

to the market, application-software vendors will not rush to
invest in the first generation of a platform betting that there
will be future generations; (c) off to a bad start, the dynam-
ics of parallel computing is not encouraging. J. Hennessy, a
leading computer architect, said in a recent interview: Many
of the early ideas were motivated by observations of what was
easy to implement in the hardware rather than what was easy
to use. These early systems led to the parallel programming
languages that the [6] report is complaining about. Still they
became the basis for language standards. Consequently, ap-
plication benchmarks that emerged from a wrong-headed
architecture direction are guiding systems researchers and
developers. Hennessy’s advice on pursuing what is easy to
use is still second priority, at best; (d) if programming will
come to be viewed as hacking around the way a machine
was engineered, US presence in CS will greatly weaken, as
this would repel many capable prospective students. We ar-
gue that there is a better way. If a platform is buildable,
users are best qualified to determine prospects for

adoption by users. This tautology-like recognition is still
a radical departure from current practice. Too timid to offer
opinion, users often act as followers. Emboldening users to
play a more assertive role in seeking convergence to a many-
core platform is one of our goals. Our quest for a simple
abstraction provides an effective vehicle for that. The more
agreeable a system is to programmers the more likely it is
to remedy past parallel computing ills. System researchers
and developers will be the first to benefit as approval by
users renders merit to their work. (2) The future parallel
scalability parameter will have to account for the following
considerations. User of a 16-core or a 1024-core computer
must be able to use the same program, or else performance
code will have to be continuously rewritten. We should ex-
pect that different parallel computer programs will expose
different amounts of parallelism and some will remain serial,
and be aware that the amount of parallelism a program can
exploit tends to grow with the input size for the problem.
(3) One-size-fits-all is the heart of general-purpose comput-
ing. The adaptability of the serial general-purpose platform
to numerous applications that could not have been predicted
when it was conceived benefited from the simplicity of the
ISE abstraction, and has been one of its most attractive fea-
tures. (4) Avoid encouraging the wrong platforms. The more
difficult-to-program a many-core system the more resource-
ful its programmers has to be; since even simple problems
lead to publishable results, academic communities may grow
around systems that have no future. Diverting the focus to
a simple abstraction would sidestep this unintended pitfall.
(5) Quick path to resumption of healthy competition. Timely
agreement on a many-core abstraction will allow bringing
again into the fold many players with possibly different in-
terests and agendas to advance the same scalability param-
eter. Resuming healthy competition among various players
has worked well in the past, and should be contrasted with
ideas for much more elaborate collaborations (sometimes on
open-ended research questions) among competitors with no
record of collaboration or open-ended research.

The desired abstraction will: (i) be simple, hiding the
details of the underlying hardware, (ii) be accessible to the
broadest possible groups of users, (iii) allow strong speedups
for applications, (iv) incorporate a scalability parameter that
suggests the following: each many-core generation should
provide better performance on programs whose parallelism

Time

Serial doctrine (Immediate serial execution) Natural (parallel) algorithm (Immediate concurent execution)

..

..
.. ..

Number of
Operations

Number of
Operations

Time = Number of Operations Time << Number of Operations
Time

Figure 1: A serial algorithm based on the ISE abstraction
versus a parallel algorithm based on the ICE abstraction.

was not fully exploited by the previous generation, and not
fall behind on others, including serial programs; (v) extend,
rather than replace, existing (successful) abstractions; in
particular, when code provides no parallelism, the user will
need to be able to fall back on the serial abstraction ISE; and
last, but definitely not least, (vi) be buildable; we must be
able to build an actual computer system that provides good
performance for users that rely on the abstraction. The ECA
abstraction does not require change.

2. THE ICE ABSTRACTION CANDIDATE
The candidate abstraction we propose is: that indefinitely

many instructions, which are available for concurrent execu-
tion, execute immediately; we dub it immediate concurrent
execution (ICE). A step-by-step explication of the instruc-
tions that are available next for concurrent execution is in-
dependent of the number of processors, and falls back on
ISE, in case of one instruction per step. The right side of
Figure 1 depicts the execution of a parallel algorithm as im-
plied by the ICE abstraction, where at each time unit any
number of unit time instructions that can execute concur-
rently do, followed by yet another time unit in which the
same happens and so on. The discussion below first com-
pares this abstract view of parallel algorithms to a similar
view of serial algorithms. Later, it compares it to other par-
allel approaches. (i) Any (serial) algorithm on the left hand
side is a special case (with concurrency of one at every step)
of the right hand side. However, to make the relationship
between a serial algorithm and the right side more interest-
ing, consider the possibility where the serial algorithm has
several other instructions that could execute concurrently
with its first instruction. Assuming that all these instruc-
tions do execute concurrently, there will be now several other
instructions that can execute next, and so on. Arguably, it
would be more natural to have all instructions that can ex-
ecute next do that, rather than artificially serialize them in
some arbitrary order as the serial doctrine has taught us to
do. Conversely, executing one after the other the operations
that execute concurrently in a parallel algorithm on the right
side of Figure 1 provides a serial algorithm for its left side.
In the serial algorithm the number of time units (also called
“depth”) is the same as the total number of operations (or
“work”) of the algorithm, while in the parallel algorithm it is
lower. Ideally, the work of a parallel algorithm will not much
exceed that of its serial counterpart for the same problem,
and its depth will be much lower than its work. (ii) ICE
requires the lowest level of cognition from the programmer
relative to all current parallel programming models. Other
approaches require additional steps such as decomposition
[10]. (See also Figure 6 in Section 5.2.) The embodiment
below reinforces simplicity and ease-of-programming, and

addresses speedups and implementation.

3. PRAM/XMT EMBODIMENT
In the remainder of this paper, we overview progress we

have already made towards an XMT/PRAM embodiment of
the ICE abstraction. We address all six desiderata above.
Our presentation draws parallels to three layers in the ver-
tical integration of the embodiment of the serial ISE ab-
straction. (i) The algorithms and data structures layer, as
reflected, for example, in standard CS curriculum; (ii) the
programming layer; and (iii) the actual hardware architec-
ture and compiler of the computer system layer. Each sec-
tion below refers to one layer.

3.1 The PRAM parallel algorithmic approach
The parallel random-access machine/model (PRAM) vir-

tual model of computation is a generalization of the random-
access machine (RAM) model. RAM, e.g. [9], is the basic
serial model underlying standard programming languages
assuming that any memory access or any (logic, or arith-
metic) operation takes unit time (the ISE abstraction). The
formal PRAM model assumes a certain number, say p, of
processors, each can concurrently access any location of a
shared memory within the same time as a single access. The
PRAM has several sub-models differing by the assumed out-
come of concurrent access to the same memory location for
either read or write purposes. For brevity, we note here only
one of these sub-models, the Arbitrary Concurrent-Read
Concurrent-Write (CRCW) PRAM: concurrent accesses to
the same memory location for reads or writes are allowed;
reads complete before writes and an arbitrary write (to the
same location) unknown in advance succeeds. PRAM algo-
rithms are essentially prescribed as (a) a sequence of rounds,
and (b) for each round, up to p processors can execute
concurrently. The performance objective is minimizing the
number of rounds. The PRAM parallel algorithmic ap-
proach is well-known and has never been seriously chal-
lenged by any other parallel algorithmic approach on ease of
thinking, or wealth of knowledge-base. However, the PRAM
model is a strict formal model. A PRAM algorithm must
prescribe for each and every one of its p processors the in-
struction that the processor executes at each time unit in a
detailed computer-program-like fashion, which can be quite
demanding. The PRAM algorithms theory mitigates this
using the work-depth (WD) methodology.
The WD methodology (due to [15]) suggests a simpler way:

a parallel algorithm can be prescribed as (a) a sequence
of rounds, and (b) for each round, any number of opera-
tions can be executed concurrently assuming unlimited hard-
ware. The total number of operations is called work and
the number of rounds is called depth (as with the ICE ab-
straction). The first performance objective is reducing work.
The immediate-second priority is reducing depth. The WD
methodology allows significant flexibility for describing these
concurrent operations, including, for example, implicit de-
scriptions. Shiloach and Vishkin [15] conjectured in the early
1980s that deriving a full PRAM description from WD de-
scription would be possible and later become a matter of
teachable skill. The first part of the conjecture was first
validated by PRAM algorithms research in the 1980s. The
methodology of restricting attention only to work and depth
has, in fact, been used as the main framework for the pre-
sentation of PRAM algorithms in texts such as [13, 14], val-
idating the second part; see also the class notes available
through [1]. For concreteness, we demonstrate WD descrip-

tions on two examples (see text boxes). Example 1 gives
a flavor of parallelism in a very simple way. Example 2
demonstrates advantages of the WD methodology and re-
quires some (truly) minimal CS background.
[TEXT BOX BEGINS] Example 1: Given are two variables
A and B, each containing some value. The Exchange problem
is to exchange their values; e.g., if the input to the exchange
problem is A=2 and B=5, then the output is A=5 and B=2.
The standard algorithm for this problem uses an auxiliary
variable X, and works in 3 steps: 1. X:=A. 2. A:=B. 3.
B:=X. Namely, in order not to overwrite A and lose its con-
tent, the content of A is first stored in X, then B is copied
to A, and finally the original content of A is copied from
X to B. The work in this algorithm is 3, the depth is 3,
and the space requirement (beyond the input and output)
is 1. Next, consider a generalization of the Exchange prob-
lem, called Array Exchange. Given two arrays A[0..n-1] and
B[0..n-1], each of size n, exchange their content, so that A(i)
exchanges its content with B(i), for every i=0..n-1. The ar-
ray exchange serial algorithm serially iterates the standard
exchange algorithm n times. Its pseudo-code follows.
For i =0 to n−1 do

X:=A(i) ; A(i):=B(i) ; B(i):=X

The work is 3n, depth is 3n, and space is 1. A parallel array
exchange algorithm uses an auxiliary array X[0..n-1] of size
n, the parallel algorithm applies concurrently the iterations
of the above serial algorithm, each exchanging A(i) with B(i)
for a different value of i. Note the new pardo command in
the following pseudo-code.
For i =0 to n−1 pardo

X(i):=A(i) ; A(i):=B(i) ; B(i):=X(i)

This parallel algorithm requires 3n work, as the serial algo-
rithm. Its depth has improved from 3n to 3. If n is 1,000 this
would constitute speedup by a factor of 1,000 relative to the
serial algorithm. The increase in space to n demonstrates a
cost of parallelism. [TEXT BOX ENDS]
[TEXT BOX BEGINS] Example 2: Consider the directed
graph whose nodes are all the commercial airports in the
world. There is an edge from node u to node v if there is
a non-stop flight from airport u to airport v. s is one of
these airports. The problem is to find the smallest number
of non-stop flights from s to any other airport. The WD al-
gorithm works as follows. Suppose that: (a) following step
i we found the smallest number of non-stop flight from s to
all airports that can be reached from s in at most I flights,
and (b) all other airports are marked “unvisited”. Step i+1
will: (a) concurrently find the destination of every outgo-
ing flight from any airport to which the smallest number
of flights from s is exactly i, and (b) for every such desti-
nation that is marked “unvisited”, mark it as requiring i+1
flights from s. Figure 2 depicts the execution of the algo-
rithm. Starting at the node marked s all the nodes marked
1 are found. Exploring from the outgoing edges from all the
nodes marked 1 the nodes marked 2 are found. Some nodes
marked 2 have more than one incoming edge. In such cases
the Arbitrary CRCW convention implies that one of the at-
tempting writes succeeds. While we don’t know which one
succeeds we do know that they would all enter the number
2 (in general, however, Arbitrary CRCW allows also dif-
ferent values). Finally, exploring the outgoing edges from
all the nodes marked 2 the nodes marked 3 are found, and
then the algorithm terminates in Step 4 as no new nodes are

3

s 1

1

1
2

2

22

2

2

3

3

Figure 2: Finding the smallest number of non-stop flights
from s to all other airports.

found. The standard serial algorithm for this problem [9] is
known as breadth-first search (BFS), and the parallel algo-
rithm above is basically BFS with one difference. Step i+1
above allows concurrent-writes. In the serial version, BFS
also operates by marking all nodes whose shortest path from
s requires i+1 edges after all nodes whose shortest path from
s requires i edges. The serial version then proceeds to im-
pose a serial order. Each newly visited node is placed in
a first-in first-out (FIFO) queue data structure. Two ob-
servations are in order: (i) this serial order obstructs the
parallelism that BFS offers naturally; the freedom to pro-
cess in any order nodes for whom the shortest path from
s has the same length is lost, and (ii) students trained to
incorporate such serial data structures into their program
acquire bad serial habits that are difficult to uproot; it may
be better to preempt the problem by teaching parallel pro-
gramming and parallel algorithms early. To demonstrate
the advantage of the parallel algorithm over the serial one,
assume that the number of edges in the graph is 600,000
(the number non-stop flight links) and the smallest number
of flights from airport s to any other airport no more than 6.
While the serial algorithm requires 600,000 basic steps, the
parallel one requires only 6. While each of the 6 steps may
require longer wall clock time than each of the 600,000 steps,
the factor 600,000/6 provides much leeway for speedups by
a proper architecture. [TEXT BOX ENDS]
Embodiment of the ICE abstraction. By way of the Work-
Depth methodology, the vast PRAM algorithmic knowledge
base provides a direct embodiment of the ICE abstraction.
This is a key point for this paper.

Our broad eXplicit Multi-Threaded (XMT) framework
builds on the WD description methodology in two related
ways: 1. The design and analysis of algorithms direction:
The importance of this direction is that it puts the design
and analysis of parallel algorithms and data structures on
par with their serial counterpart. Given a PRAM with p pro-
cessors, the approach teaches how to analyze the run-time
of an algorithm in a way that resembles the run-time analy-
sis of serial algorithms, as taught by the theory of the field.
This direction preceded XMT. PRAM algorithms courses
have been taught since the mid-1980s. 2. The practical pro-
gramming direction and its teaching are reviewed next.

3.2 The XMT programming model
The programming model underlying the XMT framework

is an arbitrary CRCW SPMD (single program multiple data)
programming model that has two executing modes: serial
and parallel. The two instructions, spawn and join, spec-
ify the beginning and end of a parallel section (executed in
parallel), respectively. See Fig. 3. An arbitrary number of
virtual threads, initiated by a spawn and terminated by a
join, share the same code. The spawn command extends

the embodiment of ICE abstraction from the WD method-
ology to XMT programming. As with the respective PRAM
model, the arbitrary CRCW aspect dictates that concurrent
writes to the same memory location result in an arbitrary
one committing. No assumption needs to be made before-
hand about which will succeed. An algorithm designed with
this property in mind permits each thread to progress at its
own speed from its initiating spawn to its terminating join,
without ever having to wait for other threads; that is, no
thread busy-waits for another thread. The implied “inde-
pendence of order semantics” (IOS) allows XMT to have a
shared memory with a relatively weak coherence model. An
advantage of using this easier-to-implement SPMD model is
that it is also an extension of the classical PRAM model,
with its formidable body of parallel algorithms knowledge.
The programming model also incorporates the prefix-sum
statement. The prefix-sum operates on a base variable, B,
and an increment variable, R. The result of a prefix-sum
is that B gets the value B + R, while the return value is
the initial value of B (such a result is called atomic, and
is similar to fetch-and-increment in [11]). The primitive is
especially useful when several threads simultaneously per-
form a prefix-sum against a common base, because multiple
prefix-sum operations can be combined by the hardware to
form a very fast multi-operand prefix-sum operation. Be-
cause each prefix-sum is atomic, each thread will receive
a different return value. This way, the parallel prefix-sum
command can be used for implementing efficient and scal-
able inter-thread synchronization, by arbitrating an ordering
between the threads. The XMTC high-level language is an
extension of standard C. The extensions are described indi-
vidually in the programmer’s manual included in the soft-
ware release [1]. A parallel region is delineated by spawn
and join statements. Synchronization is achieved through
the prefix-sum and join commands. Every thread executing
the parallel code is assigned a unique thread ID, designated
$. The spawn statement takes as arguments the lowest ID
and highest ID of the threads to be spawned.
[TEXT BOX BEGINS] Code examples: Consider the fol-
lowing example of a small XMTC program for the parallel
exchange algorithm of the previous section:
spawn (0 , n−1){

X($):=A($) ; A($):=B($) ; B($):=X($)
}

The program simply spawns a concurrent thread for each
of the depth-3 serial exchange iterations. Our second code
example assumes an array of n integers A. We wish to ‘com-
pact’ the array by copying all non-zero values to another
array, B, in an arbitrary order. The XMTC code is:
psBaseReg x =0;
spawn (0 , n−1){

i n t e ;
e = 1 ;
i f (A[$]) != 0) {

ps (e , x) ;
B[e] = A[$] }

}

The code above declares a variable x as the base value to be
used in a prefix-sum command (ps in XMTC), and initializes
it to 0. It then spawns a thread for each of the n elements in
A. A local thread variable e is initialized to 1. If the element
of the thread is non-zero, the thread performs a prefix-sum

Figure 3: Serial and parallel execution modes.

Figure 4: Left side: FPGA board (the size of a car license
plate) comprising three FPGA chips (generously donated
by Xilinx). A, B: Virtex-4LX200. C: Virtex-4FX100. Right
side: 10mmX10mm chip using IBM Flip-Chip technology.

to get a unique index into B where it can place its value.
[TEXT BOX ENDS]
Teaching XMT programming: The author’s graduate par-
allel algorithms course at UMD was upgraded in 2007 to
include 6 programming assignments. The in-class instruc-
tion hardly discussed XMTC programming. Instead, the
students self-studied the programming from the documen-
tation (manual and tutorial) of XMTC. Their feedback re-
garding ease of programming has been very positive. Conse-
quently, 8 complementary pilots were designed to examine
feasibility of teaching developmentally appropriate parts of
the course to undergraduate seniors, undergraduate fresh-
men that major or who do not major in CS, high school
students at various levels and even middle school students.
By Summer 2009, 120 students in grades K-12 will have pro-
grammed XMT. 2008/9 courses have been mostly offered
by high-school teachers relying on a recent software release
[1] and advised by K-12 School of Education learning ex-
perts. Although data collection for all pilots has just be-
gun, observed teacher development and students’ high-level
engagement clearly indicate the teachability of parallel al-
gorithmic thinking (PAT) at high school and even middle
school levels. The UMD graduate course taught the ab-
stract side first: how to mathematically analyze algorithms
in the PRAM model of computation for performance and
correctness. Programming came later. In contrast, the col-
lege freshmen and K-12 students advance directly from al-
gorithms to programming, similar to teaching of serial pro-
gramming at these levels, and learning methods in the field
of Mathematics education. There, an activity-effect rela-
tionship model of learning and teaching (e.g., [16]) builds
on proper sequencing of activities (i.e., programming) and
learning.
3.3 XMT architecture and hardware

The eXplicit Multi-Threading (XMT1) on-chip general-
purpose computer architecture is aimed at the classic goal
of reducing single task completion time. The WD method-
ology equips the algorithm designer with the ability to ex-
press all the parallelism that he/she observes. XMTC pro-
gramming further permits expressing this virtual parallelism
by “dreaming up” as many concurrent threads as the pro-
grammer wishes. To complete the embodiment of the ICE
abstraction, the XMT processor must provide an effective

1The University System of Maryland (USM) has selected
an XMT-based proposal for a Maryland Research Center of
Excellence for Reinvention of Computing for Parallelism in
a competition across all fields among 5 out of 50 proposals.

way for mapping this virtual parallelism onto the hardware.
The XMT architecture provides dynamic allocation of the
XMTC threads onto the hardware for better load balancing.
Since XMTC threads can be very short, the XMT hardware
must directly manage XMT threads. In particular, an XMT
program looks like a single thread to the operating system
(OS). The text box “the XMT processor” reviews the XMT
hardware and provides further links for more information.

Commitments to silicon of XMT include a 64-processor,
75MHz computer2 based on field-programmable gate array
(FPGA) technology [21], and 64-processor ASIC 10mmX10mm
chip using IBM’ s 90nm technology, pictured in Figure 4.
A basic yet stable compiler has also been developed.
[TEXT BOX BEGINS] The XMT processor (see Fig 5)
includes a master thread control unit (MTCU), processing
clusters each comprising several thread-control units (TCUs),
a high-bandwidth low-latency interconnection network, mem-
ory modules (MM) each comprising on-chip cache and off-
chip memory, a global register file (GRF) and a prefix-sum
unit. Fig. 5 suppresses the sharing of a memory controller
by several MMs. The processor alternates between serial
mode, where only the MTCU is active, and parallel mode.
The MTCU has a standard private data cache used only in
serial mode and a standard instruction cache. The TCUs
do not have a write data cache. They and the MTCU all
share the MMs. Due to space limitation we need to refer the
reader to [21] and prior XMT papers for a description of the
way in which: (i) the XMT apparatus of the program coun-
ters and stored program extends the standard von-Neumann
serial apparatus, (ii) virtual threads coming from an XMTC
program are allocated dynamically at run time, for load bal-
ancing, to TCUs, (iii) hardware implementation of the PS
operation and its coupling with a global register file (GRF),
(iv) a more general design ideal, called no-busy-wait finite-
state-machines (NBW FSM), guides the overall design of
XMT. In principle, the MTCU is an advanced serial mi-
croprocessor that can also execute XMT instructions such
as spawn and join. Typical program execution flow was
shown in Fig. 3. The MTCU broadcasts the instructions
in a parallel section, which starts with a spawn command
and ends with a join command, on a bus connecting to all
TCU clusters. In parallel mode a TCU can execute one
thread at a time. TCUs have their own local registers and
they are simple in-order pipelines including fetch, decode,
execute/memory-access and write back stages. The FPGA
computer has 64 TCUs in 4 clusters of 16 TCUs each. (We
aspire to have 1024 TCUs in 64 clusters in the future). A
cluster has functional units shared by several TCUs and one
load/store (LS) port to the interconnection network, shared
by all its TCUs. The global memory address space is evenly
partitioned into the MMs using a form of hashing. In par-
ticular, the cache-coherence problem, a challenge for scala-
bility, is eliminated: in principle, there are no local caches at
the TCUs. Within each MM, order of operations to the same
memory location is preserved; a store operation is acknowl-
edged once the cache module accepts the request, regardless
if it is a cache hit or miss. A ready-to-run version of an XMT
program seeks to optimize: (i) the length of the (longest)
sequence of round trips to memory (LSRTM), (ii) queu-
ing delay to the same shared memory location (known as
queue-read queue-write, QRQW), and (iii) work and depth

2A naming contest for this XMT computer by UMD received
nearly 6000 submissions. The name Paraleap was selected.

Figure 5: A block diagram of the XMT architecture.

(as above). Optimizing these ingredients is a responsibility
shared in a subtle way between the architecture, the compiler,
and the programmer/algorithm designer. See [20] for more
information.

Representative performance enhancements include: (i) Broad-
cast: if most threads in a spawn-join section need to read
a variable, it is broadcasted through the instruction broad-
casting bus to TCUs rather than reading the variable serially
from the shared memory. (ii) Software prefetch mechanism
with hardware support to alleviate the interconnection net-
work round trip delay. A prefetch instruction brings the
data to a prefetch buffer at the TCUs. Cost-effectiveness of
nesting spawn commands and current and future ways for
expressing nested spawns in a program is also beyond the
scope of this paper (see [20]). [TEXT BOX ENDS]

4. RELATED EFFORTS
Related efforts come in several flavors. Valiant’s Multi-

BSP bridging model for multi-core computing [19] appears
closest to our focus on abstraction, but since [19] models
relatively low-level parameters of certain multi-core archi-
tectures, it is closer to [20] than to the current paper. In
contrast to both these papers, simplicity drives the “one-
liner” ICE abstraction.

Parallel languages, such as CUDA, MPI, or OpenMP tend
to be different than computation models, as they often do
not involve performance modeling. Languages require a
level-of-detail that distances them further from simple ab-
stractions; however, [3] is pursuing an interesting approach
for mitigating that.

Several industry funded research centers consider the gen-
eral problems discussed in this paper. Their main output
so far have been agendas, informative reviews and opinion
pieces, such as [4, 5, 17]. The UC-Berkeley Parallel Com-
puting Lab and Stanford’s Pervasive Parallelism Laboratory
tend to be application-driven. For example, UC-Berkeley
advocates advancing from applications to a many core plat-
form through quite a few design patterns, each fitting a
group of applications. Such domain-specific abstractions,
have also been already incorporated by XMT (see Figure
6), but are quite different than the (general-purpose) one-
size-fits-all ISE-like ideal, that ICE seeks.

An alternative PRAM-inspired many-core effort is noted
in [2].

5. CONCLUSION
Features of the serial paradigm that made it such a success

include: a simple abstraction at the heart of the “contract”
between programmers and builder, the software spiral, ease-
of-programming and ease-of-teaching, and backwards com-
patibility on serial code and on application programming.
We have presented an approach that reproduces many of
these features for the impending transition to the many-
core era. The only exception is that, like everybody else,
we do not provide speedups for serial code. The approach
is promising as the field can modernize itself, while holding
on to these attractive features.

Besides proposing focus on abstraction, we presented the
ICE abstraction and its XMT/PRAM embodiment.

5.1 The ICE abstraction
Abstraction has facilitated computer-related breakthroughs

before. The memory hierarchy had been a challenge for se-
rial computing. The IMA abstraction addressed that. Hard-
ware needs more time to execute some operations than oth-
ers. ISE extended IMA by abstracting that, but is insuf-
ficient to address parallel processing. Abstractions have
played an important role in parallel programming models.
They should play an even greater role for many-cores, due
to the broad access sought. This paper presents such a can-
didate abstraction along with a comprehensive embodiment
for it. Our main point is that the ICE abstraction, coupled
with an XMT/PRAM platform provide a viable option for
the many-core era. Our solution will hopefully inspire oth-
ers to come up with competing abstraction proposals, or al-
ternative embodiments for ICE. Consensus built around an
abstraction will move us closer to convergence to a many-
core platform and to putting the software spiral back on
track. Note that the paper concludes with a paragraph ex-
plaining why the ICE abstraction reconnects the training of
CS students with the future needs of the field regardless of
whether it becomes the abstraction of choice for many-cores.
Interestingly, teaching has become a CS research issue:
Teachability as a benchmark: Ease-of-programming (programma-
bility) is a necessary condition for the success of a many-core
platform and teachability is a necessary condition for pro-
grammability. We have been using teachability at various
K-20 levels as a benchmark for ICE and XMT and suggest
that others do that as well.
5.2 XMT

The feature of XMT that received most attention in this
paper is its practical implementation of the ICE abstrac-
tion. However, XMT is a comprehensive and coher-

ent solution for the many-core era in its own right.
XMT accounts for: application programming (VHDL/Ver-
ilog, OpenGL, MATLAB, etc), parallel algorithms, parallel
programming, compiling, architecture, power, deep-submicron
implementation, and backwards compatibility on serial code.
We mentioned a 64-processor, 75MHz XMT FPGA-based
computer prototype [21], 90nm ASIC tape-outs, and a basic
compiler. XMT is easy to build. A single graduate stu-
dent, with no prior design experience, completed the XMT
hardware description (in Verilog) in just over 2 years. XMT
is also silicon-efficient. Our ASIC design indicates that a
64-processor XMT needs the same silicon area as a (sin-
gle) current commodity core. The approach goes after any
type of application parallelism regardless of its amount, reg-

ularity, or grain size and is amenable to standard multipro-
gramming (i.e., where the hardware supports several concur-
rent OS threads). We also demonstrated good performance,
programmability and teachability. Highlights include: evi-
dence of 100X speedups on general-purpose applications on
a simulator of 1000 on-chip processors [12], and speedups
ranging between 15X to 22X for irregular problems such
as Quicksort, breadth-first search (BFS) on graphs, find-
ing the longest path in a directed acyclic graph (DAG), and
speedups in the range of 35X -45X for regular programs such
as matrix multiplication and convolution on the 64-processor
XMT prototype versus the best serial code on XMT [21].
With few exceptions, parallel programming approaches that
dominated parallel computing prior to many-cores are still
favored by vendors and high-performance computing user
communities. These approaches require steps such as: de-
composition, assignments, orchestration and mapping, from
the programmer [10]. Indeed, parallel programming difficul-
ties have failed all general-purpose parallel systems to date
by limiting their use. In contrast, XMT frees its program-
mer from doing any of that, in line with the ICE abstraction.
The left side of Figure 6 compares serial programming (the
path that ends with 1), parallel programming along the line
of [10] (path 2) and XMT parallel programming (path 4),
for performance programming in languages such as C for
serial programming, MPI or OpenMP for standard paral-
lel programming, and XMTC for XMT. Path 3 represents
the very limited success in extracting parallelism from serial
code using compiler, in spite of significant efforts over four
decades. The right side compares application programming,
where it is envisioned that the same application languages
used today with some minor restrictions (such as not using
serial programming style code in MATLAB) will be directly
compiled to run on XMT.
Software release: The XMT environment is available for
immediate adoption in the form of a just released XMTC
compiler and cycle-accurate simulator of XMT that can be
downloaded to any standard desktop computing platform.
This software release is available through the XMT home
page, or sourceforge.net [1] along with extensive documen-
tation. Teaching materials comprising a class-tested pro-
gramming methodology, where college freshmen and even
high-school students are taught only parallel algorithms and
then self-study XMT programming, are also provided.
For teaching parallelism: Most CS programs graduate stu-
dents to a job market certain to be dominated by parallelism
without needed preparation. We propose to base the intro-
duction of the new generation of CS students to parallelism
on the XMT platform, at least until convergence to a many-
core platform is achieved. The level of cognition of paral-
lelism required by the ICE abstraction is so basic that it is
necessary for all other current approaches. XMT is build-
able, which makes the XMT approach also “sufficient”.

6. REFERENCES
[1] Explicit Multi-Threading (XMT): home page

http://www.umiacs.umd.edu/users/vishkin/XMT/ and
software release http://sourceforge.net/projects/xmtc/.

[2] http://www.plurality.com/PR081106.pdf.

[3] White paper: Parallel computing without parallel
programming, www.interactivesupercomputing.com/.

[4] S. Adve and et al. Parallel computing research at
Illinois - the UPCRC agenda, U. Illinois. 2008.

Figure 6: Left side: Productivity of performance program-
ming.
[5] K. Asanovic and et al. The landscape of parallel

computing research: A view from berkeley. Technical
Report UCB/EECS-2006-183, UC Berkeley, 2006.

[6] D. Atkins. Revolutionizing Science and Engineering
Through Cyberinfrastructure: NSF Blue-Ribbon
Advisory Panel on Cyberinfrastructure, 2003.

[7] S. Borkar and et al. Platform 2015: Intel processor and
platform evolution for the next decade. Intel. 2005.

[8] A. Burks, H. Goldstine, and J. von Neumann.
Preliminary discussion of the logical design of an
electronic computer instrument. 1946.

[9] T. Cormen, C. Leiserson, R. Rivest, and C. Stein.
Introduction to Algorithms. McGraw Hill, 2001.

[10] D. Culler and J. Singh. Parallel Computer
Architecture: A Hardware/Software Approach.
Morgan-Kaufmann, 1999.

[11] A. Gottlieb and et al. The NYU ultracomputer -
designing an MIMD shared memory parallel computer.
IEEE Trans. Computers, 32,2:175–189, 1983.

[12] P. Gu and U. Vishkin. Case study of gate-level logic
simulation on an extremely fine-grained chip
multiprocesor. J. Embedded Comp., 2:181–190, 2006.

[13] J. JaJa. An Introduction to Parallel Algorithms.
Addison-Wesley Publishing Company, 1992.

[14] J. Keller, C. Kessler, and J. Traeff. Practical PRAM
Programming. Wiley-Interscience, 2001.

[15] Y. Shiloach and U. Vishkin. An O(n2 log n) parallel
max-flow algorithm. J. Algorithms, 3:128–146, 1982.

[16] M. Simon, R. Tzur, K. Heinz, and M. Kinzel.
Explicating a mechanism for conceptual learning:
Elaborating the construct of reflective abstraction. J.
Research in Mathematics Education, 35:305–329, 2004.

[17] M. Snir. Multi-core and parallel programming: Is the
sky falling? The Computing Community Consortium
Blog, http://www.cccblog.org/2008/11/17/multi-core-
and-parallel-programming-is-the-sky-falling/.

[18] H. Sutter. The free lunch is over - a fundamental shift
towards concurrency in software. Dr. Dobbs Journal,
30, March 2005.

[19] L. Valiant. A bridging model for multi-core
computing. In Proc. European Symp. on Algorithms.
LNCS, Vol 5193, Springer-Verlag, 2008.

[20] U. Vishkin, G. Caragea, and B. Lee. Models for
Advancing PRAM and Other Algorithms into Parallel
Programs for a PRAM-On-Chip Platform. In
Handbook on Parallel Computing (Eds S. Rajasekaran,
J. Reif). Chapman and Hall/CRC Press, 2008.

[21] X. Wen and U. Vishkin. FPGA-based prototype of a
PRAM-on-chip processor. In Proc. ACM Computing
Frontiers, Ischia, Italy, May 2008.

