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The transport of intense beams for advanced accelerator applications with 

high-intensity beams such as heavy-ion inertial fusion, spallation neutron sources, and 

intense light sources requires tight control of beam characteristics over long distances. 

The University of Maryland Electron Ring (UMER), which uses low energy, high 

current electron beams to model the transport physics of intense space-charge-

dominated beams, employs real-time beam characterization and control in order to 

optimize beam quality throughout the strong focusing lattice. We describe in this 

dissertation the main beam control techniques used in UMER, which include optimal 

beam steering by quadrupole scans, beam rotation correction using a skew corrector, 

rms envelope matching and optimization, empirical envelope matching, beam 

injection, and phase space reconstruction using a tomographic method. Using these 

control techniques, we achieved the design goals for UMER. The procedure is not 

only indispensable for optimum beam transport over long distances, but also provides 

important insights into the beam physics involved. 
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Chapter 1 Introduction 

Beam control is a key issue in achieving optimum beam transport and 

designing reproducible physics experiments for advanced accelerator research. We 

emphasize here the most important control techniques developed for the University of 

Maryland Electron Ring (UMER) project [1, 2]. They include diagnostics, 

characterization and manipulation of essential beam behaviors, especially the first and 

second order moments of particle spatial distributions such as beam centroid, rms 

radius, and rotation angle. Rigorous control of these parameters is necessary for 

facilitating the intense beam transport experiment in UMER. Other detailed 

information such as phase space distributions can also be determined by combining 

knowledge of beam diagnostics and control, tomographic imaging, and simulations. 

The main topics presented in this dissertation are: (1) beam steering; (2) beam 

rotation correction; (3) beam matching; (4) beam injection; (5) beam phase space 

reconstruction. 

1.1 Beam Physics Background 

The transport of intense charged-particle beams is of great interest to many 

applications such as heavy-ion fusion drivers [3], spallation neutron sources [4], and 

free electron lasers [5]. All these applications demand tight control of beam 

characteristics and require maintaining beam quality over long distances. In order to 

develop efficient and reliable control procedures, we must understand the basic 

physics issues arising from the interplay of self-fields (space-charge forces) and 
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external focusing, especially relevant for intense beams. The effects may have a 

significant impact on beam control, e.g. beam steering, skew correction, matching, 

and emittance measurement. 

It is well known that the X, Y beam envelope evolution in the rms sense is 

governed by the coupled rms envelope equations [6], which have the same form as 

the Kapchinsky-Vladimirsky (K-V) envelope equations [7]. Though the differential 

equations can be easily solved numerically, the scaling with the physics parameters is 

usually obscured by the numerical procedures. To understand fundamental beam 

physics, we can use the “smooth approximation” [8] for the matched beam in a 

uniform focusing channel.  The coupled rms envelope equations, therefore, can be 

reduced to a single equation with a constant beam radius aYX == , i.e. 

03

2
2

0 =−−
aa

Kak ε ,               (1.1a) 

or in another form, 

03

2
2 =−

a
ak ε ,                (1.1b) 

where 00 /2 λπ=k  is the betatron wave-number without space charge and 0λ  is the 

betatron wavelength; λπ /2)/1( 2/122
00 =−= akKkk  is the betatron wave-number 

with space charge; )/2()/( 33
0 γβ⋅= IIK  is the generalized dimensionless perveance 

with the characteristic current qmcI /4 3
00 πε= ≈17 kA for electrons [9]; ε is the 

effective (4×rms, unnormalized) emittance. The quantity ak 2
0  represents the average 

external focusing force that balances the space-charge and the emittance forces 
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combined. The ratio of space-charge force to external focusing force can be expressed 

by the dimensionless intensity parameter [10] 

22
0 ak
K

=χ ,                (1.2a) 

or in an alternative form derived by substituting the analytic result [11] for a 

2
0 )/(411

2
Kk ε

χ
++

= .              (1.2b) 

The definition in Equation 1.2(b) clearly shows that the intensity parameter ranges 

from 0 to 1, which depends only on the ratio Kk /0ε . If 15.0 << χ , the beam is 

space-charge-dominated. If, on the other hand, 5.00 << χ , the beam is in the 

emittance-dominated regime. In terms of χ, the betatron tune depression is given by 

[10] 2/1
00 )1(// χσσ −==kk . 

With the use of the intensity parameter, therefore, existing machines with 

different energies, configurations and applications can be compared on the same 

scale: 10 << χ . For instance, most existing high-energy rings normally operate with 

3.0<χ ; heavy-ion fusion drivers, on the other hand, require 98.089.0 << χ . The 

University Maryland Electron Ring (UMER) [1, 2], currently nearing completion, 

however, can explore a much wider regime with χ ranging from 0.2 to 0.98 by 

varying the electron beam energy and current. The motivation of this dissertation 

hence is to use the flexible features of UMER to study and implement a number of 

control techniques for the transport of intense beams. For example, we typically 

choose two relatively low-intensity beams with the intensity parameters, 0.32 and 

0.78, to establish a baseline for other high-intensity beams. For the correction of beam 
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rotations, however, we normally use very intense beams with χ equal to 0.90 and 

0.98, since these beams are observed to be more sensitive to the quadrupole skew 

errors. To sum up, the UMER facility allow us to investigate, in a realistic setting, 

many beam control issues and related beam physics over a range of intensities never 

explored before. The general features, beam optics and diagnostics of UMER will be 

introduced in the next section. 

1.2 UMER Parameters, Magnets and Diagnostics 

UMER is designed as a tool to study the behavior of intense, space-charge-

dominated beams on a scaled basis. By using a low-energy (10 keV), high-current (up 

to 100 mA) electron beam in a compact ring of circumference 11.52 m, UMER 

represents a low-cost laboratory facility for scaled experiments, computer-code 

development and validation, and testing of theoretical models. We summarize the 

normal lattice and main beam parameters of UMER in Table 1.1. For achieving 

beams with different intensity parameters, we can vary the beam current (and 

emittance) by using collimating apertures. Several typical beams with different 

currents and emittances are shown in Table 1.2, which covers a wide intensity range 

from 32.0=χ  to 98.0=χ  when UMER operates at 10 keV and 0σ = 76o. These 

beams have served as the main objects for experiments and simulations throughout 

this dissertation. 
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Table 1.1: UMER lattice and main beam parameters 

Electron beam energy 10 keV 
Main beam current 100 mA 
Main beam emittance (4×rms, unnormalized) 60 mm⋅mrad 
Pulse length 100 ns 
FODO period 32 cm 
Circumference 11.52 m (36 FODOs) 
Zero-current phase advance per FODO (σ0) 76o 

Betatron tune depression > 0.16 
 

Table 1.2: UMER beam parameters at 10 keV and σ0 = 76o 

I (mA) ε (mm⋅mr) a0 (mm) a (mm) χ σ/σ0 

100 60 3.2 9.5 0.98 0.16 
24 30 1.5 4.8 0.90 0.31 
7 15 0.875 2.8 0.78 0.47 

0.6 5.5 0.25 1.3 0.32 0.82 
(a0 : beam size at the aperture plate; a : average matched beam size in the ring;  

 ε : 4×rms, unnormalized emittance;) 
 

At present stage, UMER is still under construction (see Fig. 1.1), so our 

experiments are confined to a 10-meter transport distance that only includes the 

injector line and the first 24 FODO sections (240o). Though it is a relatively short 

transport distance, a wealth of new phenomena [12, 13] has came into sight, which 

offers a unique opportunity for developing various beam control techniques for the 

transport of intense beams. For example, severe beam rotations for highly space-

charge-dominated beams were observed in the UMER ring lattice. We therefore 

developed a controlled experiment [14] that not only can reduce the existing beam 

rotations, but also allow us to deliberately introduce rotation errors to study some 
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important physics issues, e.g. halo formation [13], x-y energy transfer, coupling, and 

emittance growth. The details of the rotation correction scheme will be covered in 

Chapter 2. In addition, the single-turn transport allows us to measure beam density 

distributions (by means of a phosphor screen) in every diagnostic chamber as 

functions of upstream quadrupole strengths, thus making viable the study of the phase 

space distribution evolution. The relevant topic will be discussed in Chapter 6. 

 

 

 

Figure 1.1: Current UMER layout: 2/3 ring + injector + temporary extractor. 

 

The main focusing lattice of UMER is composed of 36 FODO periods, each 

of which consists of two printed-circuit (PC) quadrupoles for focusing and a PC 

dipole [15, 16] for 10 deg. bending, with a period length of only 32 cm. The stringent 
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space requirement dictates the need for short PC quadrupoles and dipoles that follow 

the design of Lambertson magnets [17, 18]. Figure 1.2 shows the layout of a ring 

FODO and the wire patterns of a PC quadrupole and a PC dipole. These PC magnets 

have been characterized with a Rawson-Lush rotating coil [19] of special design. We 

will give a brief introduction about the rotating coil measurements in Chapter 3. A 

complete description of PC magnets and the measurements is beyond the scope of 

this dissertation. One can refer to previous work [15, 16] for details. For control 

purposes, the PC magnets offer great flexibility in the field strength adjustment. The 

normal current and power consumption of a PC quadrupole is only about 1.88A and 

12W, respectively, for 0σ = 76o. A standard power supply can therefore easily drive 

several PC quadrupoles in series. Also, using a specially designed switch, we can 

easily take any quadrupole off line, which is important for quad current scans. On the 

contrary, setting up quad-scans in big accelerators is usually a complicated process 

due to the large magnet power involved. In addition, independent quad control in big 

machines is normally accomplished by means of an electronic shunt, so the quad 

current can only be reduced. In our case, not only can the quadrupole current be 

varied up to 3.5A (focal length ≈ 6.4cm), but also the quadrupole polarity can be 

reversed. Therefore, quad-scan is a convenient and powerful tool in UMER for all 

types of beam control: steering (Chap. 2), skew correction (Chap. 3), empirical 

matching (Chap. 4), and phase space tomography (Chap. 6). 
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Figure 1.2: Ring FODO layout and wire patterns of a PC quadrupole and a PC dipole. 

 

The dipole magnets in UMER are also based on printed-circuits, so they can 

be as easily adjusted as the PC quadrupoles. There are two major types of dipoles in 

UMER: main dipoles for 10 deg. bending and steering dipoles for small angle 

corrections. Ideally, a main dipole needs 2.95A (<20W) to bend the beam in the 

horizontal plane by 10 deg. However, the deflection from the Earth’s magnetic field 

cannot be neglected for the low energy electron beams in UMER. UMER therefore is 

designed to circulate the beam in a “right” direction so the vertical component of the 

Earth’s magnetic field can assist bending. This can introduce an additional 2 deg. 

deflection on average, so the main dipole currents are reduced to around 2.4A. In 

addition, since the actual Earth’s field varies along the ring’s reference trajectory, 

each ring dipole must be individually adjusted to compensate. We will describe the 

process to determine the optimal currents of ring dipoles in Chap. 2. Similar to the 
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ring dipoles, each steering dipole is powered with a different current source, and 

additionally, is configured with an “electronic” polarity switch for bi-polar control. 

The implementation of this hardware is crucial for real-time and optimal steering via 

automatic computer control. 

The main beam diagnostics are phosphor screens and beam position monitors 

(BPMs) [20, 21], housed in all diagnostic chambers. Figure 1.3 illustrates the diagram 

of a diagnostic chamber, where a phosphor screen is placed under a BPM. While the 

BPMs are intended to obtain beam centroid position for multi-turn operation, 

phosphor screens at present stage provide more reliable and accurate information not 

only for steering but also for matching, skew correction, and phase space 

measurement. We therefore rely on phosphor screen diagnostics for almost all control 

issues in this dissertation. In the experiment, we can raise up a phosphor screen to the 

beam line by means of an actuator. The beam image is reflected via a mirror oriented 

at 45o to the screen and can be captured through a window by a CCD camera outside 

the chamber. The camera is an analog black/white video camera. The analog/digital 

conversion is done with a grayscale video capture card (8-bit, 640×480, 30 frm/sec) 

plugged into a computer. Figure 1.4(a) shows a typical beam cross-section density 

picture obtained via the combination of phosphor screen and video capturing system. 

Though the density resolution is only from 0 to 255, it is sufficient for accurate 

determinations of various particle distribution moments, e.g. >< x , >< y , >< 2x , 

>< 2y , >< xy , which are the key parameters for steering, matching and skew 

corrections. The detailed x or y density profile can also be used to reconstruct ),( xx ′  
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or ),( yy ′  phase space distribution. Moreover, some interesting physics phenomena 

like halo formation can be seen clearly from false-color visualizations of the original 

grayscale image (see Fig. 1.4b). Additionally, we can accurately determine the 

phosphor screen edge from the false-color image and hence calibrate the relation 

between the screen pixels and the real distance. The false-color imaging plus real-

time display (30 frm/sec) is an important feature in our computerized control system. 

The control system including both hardware and software will be introduced in the 

next section. 

 

 

Figure 1.3: Diagram of diagnostic chamber. 
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Figure 1.4: Typical beam cross-section density picture taken at the phosphor screen 

plane in a diagnostic chamber (256 colors, 640×480, phosphor screen diameter 1.25 

inch). (a) grayscale; (b) false-color representation. 

 

1.3 Beam Control System 

The importance of beam control systems in advanced accelerators cannot be 

overemphasized. For instance, optimal steering in UMER can be done on a daily 

basis with the automatic control system, and the results are very reproducible. As 

another example, the on-site phase space mapping using a tomographic technique 

only takes about 10 minutes for a specific beam. 

We introduce here the control system developed for UMER applications. It 

involves real-time control of quadrupoles, steering/bending dipoles and diagnostics. 

The latter consists of phosphor screens and beam position monitors placed in every 

diagnostic chamber. The diagram of the control system structure is illustrated in 

Figure 1.5. The system allows us to do systematic control of focusing/steering 

elements and image/signal processing from the diagnostics. The main functions of the 
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control system at present stage are: beam steering, skew corrections, empirical 

matching, emittance measurements and phase-space tomography. It not only allows 

us to operate the machine from the computer screen, but also provides function 

encapsulations to control and obtain the key beam parameters, i.e. centroid positions, 

rms transverse dimensions, cross-section rotation angle, etc. Moreover, a major 

feature of the system is its modularity: functional modules can be programmed and 

plugged into the system dynamically according to our needs. For example, one can 

write a halo-control program by iteratively changing currents of several injector 

quadrupoles and observing the halo changes in a diagnostic chamber. 

 

 

Figure 1.5: Diagram of UMER control system structure. 
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As shown in Fig. 1.5, the control system software is distributed over a number 

of computers. We could call it a distributed computer control system, but in the strict 

sense, it is a system that follows the client/server model. From a computer science 

point of view, the control system core and all the control application programs 

(steering, matching, etc.) are clients; the hardware control and data collection 

programs, on the other hand, are servers or service providers. The servers are 

responsible for driving power supplies, collecting data from oscilloscopes or cameras, 

and furthermore, processing the collected data or images to retrieve the key 

parameters for beam control, e.g. centroid, rotation angle and rms radius. The clients 

and servers communicate mostly through local Ethernet via predefined protocols, 

except for the “video control” server, which resides in the same computer with the 

system core for easier image data communication. Also, all the servers can be 

installed in the same computer if it can handle the loads. As a specification of the 

system, we have only defined the communication protocols between different servers 

and the system core. The servers can be implemented by any means as long as the 

protocols are followed. A direct advantage of this implementation is its 

transformability. It implies that the system core and the application programs can be 

used in other beam system (having similar control requirements) with little changes. 

The necessary work therefore may only involve re-programming the hardware control 

and data acquisition servers while maintaining the communication protocols. 

The layered structure of the control system software is illustrated in Figure 

1.6. At the bottom part is the operating system (OS). The targeted OS for the system 
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core and the control application programs is Microsoft Windows (9X, NT, 2000 or 

XP). The OS for the hardware control servers, however, could be a Linux or a Mac 

OS depending on the their implementations. In our case, all the servers are 

implemented in Microsoft Windows. In the figure, API stands for “application 

programming interface”. It is a series of “C-program” functions that bridge the 

control applications and the system core. A programmer can easily implement a 

control application by linking it to the APIs without knowing the hardware details. 

For example, SetQuadCurrent(“QR3”, 2.88) is a call to set the current of a quadrupole 

named QR3 to 2.88 A; SetDipoleCurrent(“D1”, 2.5) is a call to set the current of a 

dipole named D1 to 2.5 A; StartCapture( ) is a command to request the video system 

to start capturing beam images; CalcCentroid(&x, &y) asks for the present beam 

centroid position; Calc2RmsRadius(&xrad, &yrad) asks for the present beam radii; 

SwitchBpm(“BPM1”) is a command asking the multiplexer to switch to BPM1. One 

can refer to the manual of control system SDK [22] for a detailed description of the 

prototypes. The importance of the APIs resides in that they make the system 

expandable. This is the modularity we mentioned before. We currently have four 

main control applications: steering, skew corrections, empirical matching, and phase-

space tomography. In the future, multi-turn operation requires better optimization 

routines added to the control system. With the help of APIs, a good mathematics 

background plus simple programming skills is all that is needed for the expansion of 

the control system. Finally, let us look at Figure 1.7 that shows a screen shot of the 

graphical user interface (GUI) of the control system. The black window at the bottom 

is the input/output console for the control applications (see the notation in Fig. 1.6). It 
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shows a running tomographic program to reconstruct the phase space distribution of 

the 0.6 mA beam in the sixth ring chamber (RC6). The false-color picture on the left 

represents a captured beam cross-section image, and the black/white one on the right 

the reconstructed phase space distribution. Readers can refer to Chap. 6 for a detailed 

description of the reconstruction process. 

 

 

Figure 1.6: Layered structure of control system software. 
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Figure 1.7: Screen shot of the GUI of the control system core. 

 

1.4 Outline of this Dissertation 

We organize the dissertation as follows. In Chap. 2, we present a scheme for 

optimal beam steering based on quadrupole scans. The idea is to use quadrupoles as 

beam position monitors. We developed a very sophisticated algorithm that involves 

two dipoles as the steering elements and two quadrupoles defining the target axes. 

The algorithm is very suitable for computer control. We also discuss certain 

experimental constraints related to the algorithm, in particular, the optics setup for 

avoiding singularity. The experimental results via the automatic steering program as 

mentioned earlier are reported for two low-intensity beams (0.6 mA and 7 mA). The 
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steering obtained here establishes baseline for the transport of other high-intensity 

beams (24mA an 100 mA).  

In Chap. 3, we describe the development of a PC skew quadrupole for 

compensating beam rotation errors. Beam rotation errors are usually caused by the 

skewness of quadrupoles resulting from assembly and mounting errors. They can be 

detrimental to the beam quality, lead to beam distortions, mismatch, and a net 

increase in beam emittance. The skew quadrupole we developed can electronically 

rotate the quadrupole field with high accuracy, thus making skew correction possible. 

In order to gain a better understanding of the effects of rotated quadrupoles and to 

explore beam transport dynamics with rotation errors, we have designed a controlled 

experiment by deliberately introducing quadrupole rotation errors with our new 

quadrupole. The experimental observations agree very well with the simulated 

predictions. We hence employ the skew quadrupole in UMER for actual corrections.  

In Chap. 4, we present matching studies for intense space-charge-dominated 

beams, such as in UMER. We employ both simple rms envelope codes and complex 

particle-in-cell (PIC) simulations to aid us in designing the beam optics. These studies 

have verified a dipole model that can be included into envelope codes. The advantage 

of envelope codes resides in their simplicity and their use for optimization of the 

matching section. The central issue here is matching of the beam from the electron 

gun through the injector into the ring lattice. The UMER injector has seven adjustable 

parameters (the strengths of one solenoid and six quadrupoles). Ideally, we only need 

four parameters to achieve rms matching, since there are four constraints (x, y beam 

radii and slopes) for the problem as dictated by the results of periodic FODO 
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matching. An infinite number of solutions therefore exist for the matching section 

design. Our solution based on a brute-force method is presented. However, it is 

normal that the implementation of the calculated magnet strengths in a real 

experiment does not yield true matching conditions. We report at the end of chapter 4 

an empirical matching technique to solve this problem. 

In Chap. 5, a new optics design for beam injection in UMER is proposed for 

multi-turn operation. We first review a previous method that involves two pulsed and 

physically overlapping quadrupoles. The design and construction of these pulsed 

quadrupoles are difficult because of the requirements for fast switching and small 

mutual inductance. In addition, more complicated glass gap geometry with the 

overlapping magnets is required, which makes the design difficult to implement. In 

order to overcome these disadvantages, we have chosen a simpler scheme, which 

reduces both the mechanical and electrical complexities, but also makes the beam 

optics more complicated than in the former case. We present here calculation of the 

beam centroid motion as well as intense beam matching to evaluate the new design. 

The stability of the design is also discussed for multi-turn operation. 

In Chap. 6, we report the implementation of beam phase space tomography in 

UMER. Tomographic imaging was originally developed in the medical community to 

process x-ray images. It reconstructs the two-dimensional image of a human object 

from information obtained at different angles. Phase space mapping can be done in a 

similar way by means of quadrupole scans. In this chapter, we present the general 

reconstruction theory, the implementation in UMER, and the experimental results for 
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the 0.6 mA and the 7 mA beam. For the latter beam, we also describe the method 

used to include the space-charge effects. 

Finally, we summarize the dissertation in Chap. 7. 
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Chapter 2 Beam Steering 

The transport of intense beams over long distances requires that the beam 

centroid trajectory deviate as little as possible from the design orbit. In the ideal case, 

the axes of the magnets define the orbit. In practice, however, there are imperfections 

associated with the placement of magnets and beam position monitors (BPMs) and 

other diagnostics during the installation phase. Since these mechanical misalignments 

cannot be completely corrected by conventional optical surveying techniques, an 

alternative approach, beam-based alignment (BBA) [23], has become the tool of 

choice to compensate for the unavoidable mechanical problems. The idea behind 

conventional BBA is quite simple: a beam that is offset relative to a quadrupole axis 

will be deflected with an angle proportional to the quadrupole strength. The offset can 

therefore be corrected by iteratively making mechanical adjustments to the 

quadrupole and checking with changes in the quadrupole strength. 

In UMER, we can achieve sub-millimeter mechanical accuracy for magnet 

positioning with the conventional optical surveying method [24]. However, the lack 

of room for magnet movers in small machines such as UMER makes the conventional 

BBA technique infeasible. In addition, the action of the Earth’s field on the low 

energy electron beam orbit has to be taken into account. Under these circumstances, 

steering dipoles become very important in compensating for residual alignment errors 

and the influence from the Earth’s field, as well as correcting other beam centroid 

errors. In this chapter, we will describe the steering algorithm based on the BBA 

method: the beam centroid errors are obtained by quadrupole scans, and corrections 
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implemented through steering dipoles. It is tested in UMER, but does not lose the 

generality to be used in other machines having similar problems. 

2.1 Optimal Beam Steering 

We assume that the horizontal (x) and vertical (y) beam steering are 

decoupled, which is usually the case. The steering algorithm works for both the 

planes. In figure 2.1, we illustrate a simple optics system that consists of two steering 

dipoles (S1, S2), a quadrupole (Q1) and a beam detector. In order to steer the beam 

towards the axis of Q1, S1 is used to correct the position error, and S2 to correct the 

angle error. Hence, the problem of beam steering becomes finding the right deflection 

angles ∆θ1 and ∆θ2 induced by the dipoles, where 11 Ss I⋅=∆ αθ , 22 Ss I⋅=∆ αθ , IS1 

and IS2 are the currents to the dipoles, and αs is a constant coefficient meaning the 

deflection angle resulting from a unit current. The detector downstream of Q1 can be 

either a BPM or a phosphor screen. By varying the strength of Q1, we can find a 

group of combinations (IS1, IS2) which all steer the beam through Q1’s center. Among 

these pairs of dipole settings, only one solution (IS1, IS2) will steer the beam through 

Q1’s axis. This can be determined only if the detector is calibrated with respect to the 

axis of Q1, which is normally not guaranteed, especially for the phosphor screens in 

our case. 
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Figure 2.1: Steering optics: two steering dipoles (S1, S2), a quadrupole (Q1) and a 

beam detector (phosphor screen or capacitive BPM). 

 

For steering purposes, we prefer smaller beams so as to avoid the image-

charge effects of large beams. We therefore choose two low-current beams to 

establish a baseline for steering in UMER: 0.6 mA and 7 mA (see Table 1.2). Since 

the signal-to-noise ratio of our BPMs is lowest with the smallest beam currents, we 

use a phosphor screen to more accurately determine the beam positions. The 

phosphor screens are placed under the BPMs inside each diagnostic chamber (see Fig. 

1.3), which can be raised up to the beam-line by means of an actuator. The geometric 

centers of the screens are therefore not normally aligned with adjacent quadrupoles. 

To avoid the problem of finding the location of the phosphor screen center relative to 

the adjacent quadrupole center, we need to implement a steering algorithm that is 

independent of the absolute center of the screen. This requires scanning two 

quadrupoles located upstream from the detector. We illustrate the algorithm in Figure 

2.2, where the detector center is not aligned with the reference orbit defined by the 

centers of Q1 and Q2 (the polarities of Q1 and Q2 are reversed because it is a FODO 

system). The steering procedure, which uses two quadrupoles, can be summarized in 

two steps: (1) look for several points in the two-dimensional space (IS1, IS2) 
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corresponding to beams going through the center of Q1  (this is done by scanning Q1’s 

current and observing the beam position change on the screen); (2) scan Q2 to 

determine which point (IS1, IS2) is the optimal. 

 

 

Figure 2.2: Schematics of basic steering unit: two steering dipoles (S1, S2), two 

quadrupoles (Q1, Q2), and a beam detector (phosphor screen or capacitive BPM). The 

beam centroid trajectory “1” corresponds to the optimal steering. M1, M2, M are 

transfer matrices from S1 to S2, S2 to Q1, and Q1 to the detector, respectively. 

 

As for the first step, the question is how to find the right current combinations 

(IS1, IS2) that will bend the beam towards Q1’s center. Intuitively, IS1 and IS2 will lie on 

a straight line because linear optics dominates the beam centroid motion when 

misalignments are relatively small. This is apparent if we assume that the steering 

dipoles S1, S2 and the quadrupole Q1 are thin lenses. The beam’s position 1qx  and 

slope 1qx′  just before Q1 can be represented by 
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where x0 and 0x′  are the initial beam’s position and slope just before S1; M1 and M2 
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are the transfer matrices from S1 to S2, and S2 to Q1, respectively; 11 Ss I⋅=∆ αθ  and 

22 Ss I⋅=∆ αθ  are the deflection angles induced by S1 and S2. Equation 2.1 can be 

further simplified in terms of IS1 and IS2, i.e. 
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where a0, a1, a2, b0, b1 and b2 are a number of parameters related to Eq. 2.1, the 

transfer matrices, the initial beam position, and slope. Steering beams to the center of 

Q1 implies 01 =qx , thus requiring the current relation: 022110 =++ SS IaIaa . 

Unfortunately, we are unable to calculate a0, a1, a2, since the initial beam position x0 

and the angle 0x′  are unknown to us. In practice, the determinations of a0, a1, a2 must 

come from the actual measurements relying on scanning Q1 and observing the effects 

from the detector. 

At the detector’s location, the beam’s position x and slope x′ can be written as 
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M  are the transfer matrix of Q1 and the 

transfer matrix from Q1 to the detector, respectively; f1 is the focal length of the 

quadrupole. Using the fact that 111/1 qq If ⋅= α  where 1qα  is a constant coefficient 

and Iq1 is the current to the quadrupole, we obtain 

)())(( 221101222110111211 SSSSqq IbIbbmIaIaaImmx ++++++= α .           (2.4) 
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The change of x with respect to the change of Iq1 can be derived from 

Equation 2.4. That is 

)( 221101112 SSqq IaIaaImx ++⋅∆=∆ α .              (2.5) 

This equation shows the relative beam position change in the detector in terms of IS1, 

IS2 and ∆Iq1, provided 01 ≠a , 02 ≠a  and 012 ≠m  (see the discussion in this section 

end). If ∆Iq1 is kept the same during the steering, ∆x will be a linear function of IS1 and 

IS2, i.e. 

2211021 ),( SSSS IAIAAIIxx ⋅+⋅+=∆=∆ ,              (2.6) 

where ),,(),,( 2101112210 aaaIamAAA qq ⋅∆= . 

Steering beams to the center of Q1 requires 0)( 221101 =++= SSq IaIaax  

from the previous analysis. It is equivalent to 022110 =⋅+⋅+ SS IAIAA . Noticing ∆x 

is a linear plane function in terms of IS1 and IS2, we can obtain the unknown 

parameters A0, A1, A2 by a linear regression of ∆x with respect to the variables IS1, IS2.  

To make the above process clear, let us look at Figure 2.3, which 

demonstrates a steering experiment with a 0.6 mA electron beam in the second 

chamber (IC2) of the UMER injector. In Fig. 2.3, ∆x represents the relative beam 

position motion in the phosphor screen when the strength of its upstream quadrupole 

(IQ3) is changed; IS1 and IS2 indicate the currents of the two steering dipoles upstream 

of IQ3. There are 45 (5 × 9) grid points measured in this experiment. For each pair 

(IS1, IS2), ∆x was measured by calculating the difference between two beam positions 

corresponding to ∆IQ3 = 2A, i.e. )1()1( 33 AIxAIxx IQIQ −−+=∆ , where the unit for x 
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is pixel as shown in the figure. Using the 45 grid points (IS1, IS2, ∆x), we obtained the 

plane parameters A0, A1, A2 by the two-dimensional linear regression. The results are, 

A0 = −13.095, A1 = 23.903, A2 = 3.358. Therefore, the required dipoles’ current setting 

for steering beams to Q1’s center is 121102 118.7900.3/)( SSS IAIAAI ⋅−=+−= . The 

goodness-of-fit for this regression is 0.99998, which is calculated by 

∑
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where xz ∆= , 22110ˆ SS IAIAAz ++= , and z  is the average of ∆x. 

 

 

Figure 2.3: Parameter fitting for A0, A1, A2 in the injector diagnostics chamber IC2. ∆x 

was measured by changing the quadrupole (QR3) current ∆IQ3 = 2A. The goodness-

of-fit equals 0.99998, A0 = −13.095, A1 = 23.903, A2 = 3.358. 
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Let us look at another steering experiment that was carried out at the seventh 

ring chamber (RC7) in UMER. There are 50 (5 × 10) grid points measured in the 

experiment. They are plotted in Figure 2.4. The two-dimensional linear regression 

yields A0 = −350.278, A1 = 119.617, A2 = 23.117. The data looks a little noisy, but the 

fitting is still very good (the goodness-of-fit equals 0.99903). 

 

 

Figure 2.4: Parameter fitting for A0, A1, A2 in the ring diagnostics chamber RC7. ∆x 

was measured by changing the quadrupole (QR27) current ∆IQR27 = 2A. The 

goodness-of-fit equals 0.99903, A0 = −350.278, A1 = 119.617, A2 = 23.117. 

 

The next question is how to find the optimal point (IS1, IS2) from the straight 

line 21102 /)( AIAAI SS +−= . If we apply this relation on the steering dipoles (S1, S2), 

the beam position and slope at Q1 have the form: 
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where 2000 / aabc −= , 21211 / aabbc ⋅−=  according to Eq. 2.2, provided 02 ≠a . If 

we assume that it is a drift space from Q1 to Q2 (see Fig. 2.2), the beam’s position x 

and slope x′ at the detector location can be represented by  
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where Iq2 is the current of Q2; where 2qα  is a constant coefficient relating to Q2’s 

focal length ( 222/1 qq If ⋅= α ); d is the distance from Q1 to Q2; [t11, t12; t21, t22] is the 

transfer matrix from Q2 to the detector. Here, we make use of the fact that Q1 does not 

affect the beam centroid when the beam is centered in Q1. We therefore derive x from 

Equation 2.9, i.e. 

)()( 11012122211 Sqq IccttIdtdx +⋅+⋅⋅+⋅= α .           (2.10) 

The relative beam position changes caused by the quad current change of Q2 equals 

)( 1102212 Sqq IccItdx +⋅∆⋅=∆ α .             (2.11) 

Given a constant ∆Iq2 during the steering, ∆x is linearly dependent on IS1, provided 

01 ≠c , 012 ≠t  (see the discussion in this section end), i.e. 

1101 )( SS ICCIxx ⋅+=∆=∆ ,              (2.12) 

where ),(),( 10221210 ccItdCC qq ⋅∆⋅= α . 

In the experiment, we can measure the beam position change ∆x (by varying 

the current of Q2) corresponding to a point (IS1, IS2) lying on the line 

21102 /)( AIAAI SS +−= . Thus, choosing a number of points along the line, we will 
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obtain a group of (IS1, ∆x) pairs. These data can be further used to calculate the 

unknown parameters C0 and C1 via a linear regression. Therefore, the optimal 

currents ( 1
ˆ

SI , 2
ˆ

SI ) for the two steering dipoles can be given in terms of C0, C1, A0, A1 

and A2 (provided 01 ≠C  and 02 ≠A ), i.e.  

101 /ˆ CCI S −= ,             (2.13a) 

21102 /)ˆ(ˆ AIAAI SS +−= .            (2.13b)  

From a previous example shown in Fig. 2.3, we already obtained the linear 

current relation between IS1 and IS2, i.e. 12 118.7900.3 SS II ⋅−= , which will steer 

beams through Q1’s center. To obtain C0 and C1, we chose nine points from the fitted 

line, and applied these currents (IS1, IS2) to the steering dipoles S1 and S2. For each (IS1, 

IS2), we measured the relative beam position motion on the screen while varying Q2 

by 2A. Figure 2.5 shows the beam position change ∆x with respect to IS1. The linear 

regression yielded C0 = 88.944 and C1 = 154.93. The goodness-of-fit is 0.9996. We 

therefore obtained the optimal currents ( 1
ˆ

SI , 2
ˆ

SI ) from Eqs. 2.13(a), 2.13(b). The 

results are 1
ˆ

SI = 0.574A and 1
ˆ

SI = −0.187A. 
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Figure 2.5: Parameter fitting for C0 and C1 in the injector diagnostics chamber IC2. 

∆x was measured by changing the quadrupole (QR4) current ∆IQ4 = 2A. The 

goodness-of-fit equals 0.9996, C0 = 88.944, C1 = 154.93. 

 
We have derived a nice procedure for optimal steering based on the optics 

setup shown in Fig. 2.2, but we still made some assumptions about a number of optics 

parameters, i.e. 01 ≠a , 02 ≠a , 012 ≠m , 01 ≠c , 012 ≠t . If any of them equals or 

approaches zero, the steering experiment will fail, which can be seen from Eq. 2.5, 

)( 221101112 SSqq IaIaaImx ++⋅∆=∆ α  and Eq. 2.11, )( 1102212 Sqq IccItdx +⋅∆⋅=∆ α . 

Therefore, we need to know under what conditions potential singularities about these 

parameters (a1, a2, c1, m12, and t12) may occur. Examining Eqs. 2.1 and 2.2, we found. 

122 2ma s ⋅= α ,              (2.14a) 

121 3ma s ⋅= α ,              (2.14b) 

where we define 122m , 123m  according to the transfer matrices, 
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can therefore avoid the singular cases for a1, a2, by carefully choosing the optics setup 

for M1 and M2 such that 0122 ≠m  and 0123 ≠m . Also for the parameter 

21211 / aabbc ⋅−=  (see Eq. 2.8), explicitly expressing it in terms of the matrix 

elements of M1 and M2, we found 

12121 21 / mmc s ⋅−= α ,             (2.14c) 

which requires 0121 ≠m . 

We therefore have five constraints for the steering: (1) 0121 ≠m ; (2) 

0122 ≠m ; (3) 0123 ≠m ; (4) 012 ≠m ; (5) 012 ≠t . Here, 121m , 122m , 123m , 12m , and 

12t  share a common property, i.e. having the same location in their transfer matrices. 

Reviewing the general form of a transfer matrix from general theory of Courant and 

Snyder [25, 26], we know that a “0” element in the first row and second column of a 

transfer matrix indicates that the betatron phase-advance equals n⋅π (n = integer). For 

that reason, we must avoid a betatron phase-advance of n⋅π occurring for the regions 

corresponding to the matrix M1, M2, M3, M and T. Explicitly, they are the regions 

from S1 to S2, S2 to Q1, S1 to Q1, Q1 to the detector, and Q2 to the detector, 

respectively. In designing a steering experiment, we must pay attention to those 

restrictions. Otherwise, the experiment would fail. 
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2.2 Beam Steering Experiments 

As discussed in Chapter I, the lattice in UMER consists of 36 FODO periods, 

distributed in 18 twenty-degree bending sections. Each FODO period includes two 

quadrupoles in a straight section, with one bending dipole between FODO cells. 

Ideally, a dipole bends the beam in the horizontal plane by 8 deg., approximately, 

while the vertical component of the Earth’s magnetic field introduces an additional 2 

deg. deflection. However, the Earth’s field varies (0.2 to 0.5 Gauss) around the 

lattice. The actual deflection angles resulting from the Earth’s field for different 

places are difficult to measure in practice. Under these circumstances, the ring dipoles 

need to be adjusted individually so they can compensate for the changing Earth fields 

and the other mechanical errors. 

In the steering experiment for first-turn operation, we treat the ring dipoles as 

horizontal steering elements. The goal is to find the “right” current for each dipole, 

which will reflect a local optimum based on the local Earth’s field and other 

mechanical errors. This will establish a baseline for multi-turn operation. In the 

future, the global optimization of the multi-turn steering must lie in the vicinity of the 

dipole setting found here. 

Figure 2.6 illustrates three ring sections of the UMER lattice, each of which 

consists of one diagnostic chamber and two FODO cells. In the figure, D1 to D6 are 

ring dipoles; QR2 to QR13 are quadrupoles; RC1 to RC3 are diagnostic chambers 

where the phosphor screens and BPMs are located inside. If we aim to find the 

optimal currents of D2 and D3, the two quadrupoles to be scanned are QR7 and QR8. 

The diagnostic chamber involved is not only RC2, but also RC3. These six elements 
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(two dipoles, two quadrupoles, two chambers) define a basic steering unit, which 

satisfies all the requirements we discussed in the last section. For example, the 

betatron phase-advance from D2 to D3 is 76o for this case, which avoids c1 = 0. 

 

 

Figure 2.6: Layout of three ring sections: D1 to D6 are ring dipoles; QR2 to QR13 are 

ring quadrupoles; RC1 to RC3 are diagnostics chambers. 

 

The steering procedure is almost the same as that discussed in the previous 

section. There are two steps: (1) Scan QR7 and use the screen/BPM inside RC2 to 

find the linear dipole current relation between D2 and D3. This will steer beams 

through QR7’s center. (2) Apply these dipole currents, scan QR8, and observe in RC3 

to find the optimal currents from Eqs. 2.13(a) and 2.13(b). The only difference 

between this implementation and the previous algorithm is that we use two diagnostic 
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chambers instead of one. Similarly, if we want to find the dipole currents of D4 and 

D5, the involved quadrupoles and chambers are QR11, QR12, RC3 and RC4. 

There are several points worth noting. (1) We must do the steering 

sequentially. That is, we need to first find the dipole currents of D0 and D1 by 

scanning QR3 and QR4; then find the currents of D2 and D3 by scanning QR7 and 

QR8, and so on. (2) The two scanned quadrupoles for each steering unit, e.g. QR7 

and QR8, need to reside in a straight section. Though the algorithm still works when a 

bend is between the two quadrupoles, the optimal steering may lead to a solution that 

only steers the beam through the centers of both quadrupoles, but not their axis. It is 

because there is a bending dipole between them and the optimal setting of that dipole 

is still unknown in this case. (3) In reality, we can steer the beam through the centers 

of only half the ring quadrupoles, because the number of dipoles is one half the 

number of quadrupoles, e.g. (QR3, QR4), (QR7, QR8), (QR11, QR12), etc. These 

centers actually define the reference orbit for the ring. (4) The translation error of the 

quadrupole mounting in the x and y directions is only about 0.05 mm [24]. The beam, 

therefore, in general would not deviate much from the centers of the other half 

quadrupoles.  

 As mentioned before, we choose two low-current beams (0.6 mA and 7 mA) 

for steering in UMER to avoid the image-charge effects of large beams. 0.6 mA is the 

lowest current we have in UMER. We call it the pencil beam. It has the smallest beam 

radius and induces the weakest image charge effect among all beams. In order to 

detect its position, we must employ the phosphor screens and the video capturing 

system. Computer control of both dipole and quadrupole currents, combined with 
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real-time image processing, has made this a very powerful tool for optimal beam 

steering in UMER. The results are highly reproducible, with an uncertainty in dipole 

currents corresponding to beam position changes on the screen of only one pixel, or 

0.08 mm, approximately.  

Let us look at the experimental results for the pencil beam. The dipole 

currents of D0 to D21 (from ring chamber RC1 to RC11) are plotted in Figure 2.7. 

Since the vertical component of the Earth’s fields are cancelled for the first three 

dipoles by a Helmholtz coil, the average current of D0, D1, and D2 is 2.95 A, which is 

approximately the dipole current to bend the beams by 10 degrees. The average 

current of the other downstream dipoles is 2.43 A. It indicates the average vertical 

Earth field of about 350 mG. The variations of dipole currents reflect the non-

uniformity of the Earth’s fields and mechanical mounting errors associated with the 

magnets. 
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Figure 2.7:  Dipole currents from the steering experiment for a pencil beam (0.6 mA). 
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We also carried out the steering experiment using the 7 mA beam. The 

optimal dipole currents are plotted in Figure 2.8 in comparison to the pencil beam. 

The advantage of using this beam lies in the possibility of employing BPMs to 

measure the beam position change. The measurement process with BPMs is much 

faster than with the phosphor screens, but the resolution of BPMs is still not high for 

this beam. Although the steering process with the video system involves repeatedly 

moving the screens and re-focusing the cameras, it gives more reliable and accurate 

results. Therefore, we still chose the video system for the 7 mA beam’s steering. 

From Fig. 2.8, the results for the two beams agree very well. It demonstrates the high 

accuracy of this steering method. 
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Figure 2.8: Dipole currents from the steering experiment for a 7 mA beam. 
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Chapter 3 Beam Rotation Correction 

Beam rotation (skew) errors about the magnet axis, resulting from assembly 

and mounting errors, can be detrimental to the beam quality. A rotated quadrupole 

imparts an angular momentum to the beam, which will then rotate back and forth. 

This rotation manifests itself as an rms envelope mismatch, and the extra degrees of 

freedom lead to additional envelope modes not present in the normal case [27, 28]. 

These additional mismatch modes can result in faster emittance growth and 

accelerated halo formation [29]. In UMER, the mechanical skew errors of quadrupole 

mounts can be controlled to within 1 mrad. However, the errors from the assembly of 

the printed circuits on the aluminum mounts and the accumulated skew errors from 

multi-quadrupoles may be more problematic. Thus, we have developed a new type of 

magnet, called printed-circuit (PC) skew quadrupole [14] to compensate for the beam 

rotation errors. 

The skew corrector is very easy to implement using PC magnet, but also can 

be implemented with other magnets. We developed a general correction scheme and 

demonstrated that it can reduce beam rotations and improve beam quality in UMER. 

The way used to build the corrector and the method used in the correction can be 

applied to other applications having similar rotation problems. We organize this 

chapter as follows: the design of the new magnet, field measurements using a rotating 

coil magnetometer, beam test in the injector line and finally, an actual correction 

experiment in the ring lattice. 
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3.1 Skew Quadrupole Design 

As is well known, the cylindrical components of the magnetic field of an ideal 

quadrupole are given by 

θ2sin0rgBr = ,               (3.1a) 

θθ 2cos0rgB = ,               (3.1b) 

where g0 is the field gradient; Br and Bθ are the so-called normal components. The 

corresponding skew components are introduced by a quadrupole rotation in the θ 

direction. Below, we concentrate on Bθ, but similar expressions apply to Br.  If α is 

the quadrupole rotation angle, the rotated field Bθ is given by 

sn BBrgB +=−= )(2cos0 αθθ ,             (3.2a) 

)2cos()2cos( 0 θα rgBn = ,              (3.2b) 

)2sin()2sin( 0 θα rgBs = ,              (3.2c) 

where Bn and Bs are the normal and skew quadrupole components, respectively. 

Usually, the rotation angle α is small so that Bs is very small compared with Bn, 

which further simplifies the formulas to 

)2cos(0 θrgBn = ,               (3.3a) 

)2sin(2 0 θα rgBs = .               (3.3b) 

In designing a PC skew quadrupole, we use two pairs of printed circuits, one 

of which is the normal PC, and the other one is the skew PC. The latter is mounted 

over the main PC with a 45o rotation. As described, both PCs are regular magnets. 

The only difference is the way they are mounted. Figure 3.1(a) illustrates the relative 
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placement of the skew and normal quadrupoles, while Figure 3.1(b) shows a photo of 

a disassembled main PC quadrupole together with the added skew quadrupole. The 

two PCs are attached closely together and to an aluminum mandrel. 

 

 

Figure 3.1: Layout of a PC skew quadrupole and a normal (main) quadrupole. (a) 

schematic layout; (b) photo of main and skew quadrupole assembly. 

 

The main and skew quadrupoles are powered by different current supplies, so 

that the normal and skew components can be independently adjusted. The theoretical 

rotation angle is calculated according to 

)/(tan5.0 1
ns II−=α ,                 (3.4) 

where Is and In are the skew current and main current, respectively. For example, if 

we set Is = 1 mA and In = 2.00 A, the equivalent quadrupole rotation angle is 0.25 

mrad. It is a very convenient design, since we only need to set up a small current to 

the skew PC in order to compensate for a possible mechanical rotation error of the 
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main quadrupole. This avoids the need for direct mechanical corrections, which 

would be very difficult in practice. 

3.2 Skew Quadrupole Field Measurements 

In order to characterize the field quality of UMER PC magnets, especially the 

integrated multipole harmonic components, an accurate rotating coil [15, 16] with a 

special design has been built and used in the measurement. Compared to many other 

rotating coils [30] with larger sizes used widely in accelerators, this coil has very 

small dimensions of only 2.22 cm in width and 12.70 cm in length, as shown in 

Figure 3.2. 

 

 

Figure 3.2: Schematic of rotating coil magnetometer. 
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The rotating coil is arranged in such a way that one side of the coil is 

positioned along the magnet axis z and driven by an electric motor spinning at 6 ± 

0.001 Hz along the azimuthal direction θ. Thus, Bθ is the only relevant field 

component to be seen by the coil, which contributes to the induced electromotive 

force (e.m.f) according to Faraday’s Law. We use a digital oscilloscope to obtain the 

voltage waveform and its multipole spectrum. The waveform can also be saved and 

sent to a computer for more detailed analysis. The oscilloscope is triggered by a 

synchronous signal produced by a photo chopper. Put in another way, a light from an 

infrared photo-diode will emerge through a slot along the coil when the coil has a 

rotation angle of 90 degrees relative to the horizontal plane. The light will trigger a 

photo-circuit to generate the desired synchronous signal. The field phase or angle 

information can be determined by the synchronous signal. Figure 3.3 shows a typical 

quadrupole field signal from the rotating coil. 

 

 

Figure 3.3: Typical quadrupole field signal from the rotating coil. 
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We have accurately measured the field quality of the main PC quadrupoles 

with the rotating coil magnetometer.  Using the rotating coil apparatus and similar 

techniques, we have characterized the fields of the new (main + skew) quadrupole 

assembly. We usually supply a large current to the main PC, and very small current to 

the skew PC in the experiment. The skew quadrupole introduces a phase shift in the 

observed quasi-sinusoidal induced voltage, which can be measured with high 

accuracy. Figure 3.4 shows the phase-shift measurements of three skew quadrupole 

fields with the same normal current (In = 2A) but different skew components (Is = 0, 

40, 80 mA). The figure is a blow-up of the measured rotating coil signals around the 

trigger area. We can observe that the phase shifts increase linearly with the skew 

currents. It is reasonable for the relatively small skew currents. 

 

 

Figure 3.4: Phase-shift measurement of a PC skew quadrupole 
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Table 3.1 shows the rotation angle (phase-shift) introduced by the skew PCs 

with currents ranging from 20 mA to 100 mA, corresponding to 1% - 5% of the 

normal current (2A). The theoretical values for the phase angle are in good agreement 

with the measurement, except small errors about 0.08o for some of the measurements, 

which corresponds to a 5 mA skew current. We believe that this error results from the 

resolution (~10 mA) of the current supply used in the actual measurement. This also 

suggests that a current supply of high resolution is required for accurate skew 

correction. 

 

Table 3.1: Theoretical vs. measured rotation angle of a PC skew quadrupole 

Skew current (mA) 20 40 60 80 100 
Theoretical rotation angle (deg) 0.29 0.57 0.86 1.15 1.43 
Measured rotation angle (deg) 0.29 0.65 0.93 1.24 1.52 

 

 

Table 3.2 shows the measured multipole field amplitudes relative to the main 

quadrupole components. Measurements of the multipole contents show that the 

amplitudes of all higher order multipoles (sextupole, octupole, decapole, 

duodecapole) are smaller than one percent of the main quadrupole component. This is 

similar to our previous results reported in Ref. [15, 16] for the standard PC 

quadrupoles. It demonstrates that the new skew quadrupole has a similar field quality 

as the normal PC quad, and thus can be used in practice. 
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Table 3.2: Measured multipole field amplitudes (normalized to the main quadrupole 

component). 

Skew current (mA) 0 20 40 60 80 100 
Measured rotation 

angle (deg) 0 0.29 0.65 0.93 1.24 1.52 

Dipole 0.0083 0.0076 0.0079 0.0077 0.0078 0.0077 
Quadruple 1 1 1 1 1 1 
Sextupole 0.0049 0.0073 0.0069 0.0072 0.0071 0.0067 
Octupole 0.0042 0.0032 0.0035 0.0029 0.0029 0.0026 
Decapole 0.0017 0.0019 0.0022 0.0021 0.0022 0.0019 

Duodecapole 0.0018 0.0023 0.0022 0.0025 0.0026 0.0024 
 

 

3.3 Skew Quadrupole Testing in the Injector Line 

We performed preliminary tests [14] of the skew quadrupole in the UMER 

injector line. Figure 3.5 is a photo of the real injector line where the experiments were 

conducted. The straight part of the injector line has four quadrupoles that we label as 

“Q1” through “Q4”. The quadrupole halves are clamped to a common plate (flat to 

within 0.01 mm), so the rotation errors from mounting are minimized. In fact, the 

beam rotations that are observed in the matching experiments are small, and may be 

the result of residual errors from assembly of the printed circuits on the aluminum 

mounts. In UMER, however, the relative rotations of groups of quadrupoles, each 

group (2 FODO periods each) sharing a support plate, may be more problematic. 
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Figure 3.5: Injector line layout: Q1 to Q4 are quadrupoles; the long tube after location 

“8” contains a movable phosphor screen for taking beam pictures. 

 

 

Therefore, in order to gain a better understanding of the effects of rotated 

quadrupoles in UMER, and to explore general issues of beam transport dynamics 

with rotation errors, we designed a controlled experiment. The first quadrupole, Q1, is 

fitted with a skew quadrupole as in Fig. 3.1. The normal current of the main 

quadrupole is 1.545A. The skew quadrupole current is varied from 0.1A to 0.4A, 

corresponding to rotation errors from 1.86o to 7.50o. Simultaneously, the main 

currents are also reduced from 1.545A to 1.492A to keep the amplitude of the net 

quadrupole field constant. These experimental current setups are illustrated in table 

3.3. 
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Table 3.3: Equivalent quadrupole rotation angles. 

Skew Current Is (A) Normal Current In (A) Rotation Angle α 

0.1 1.542 1.86o 

0.2 1.532 3.72o 

0.3 1.516 5.60o 

0.4 1.492 7.50o 

 

The beam we used in this experiment was an electron beam of I = 100 mA, E 

= 10 keV and ε ≈ 60 mm⋅mrad. It is the most intense beam in UMER. Figure 3.6(a) 

shows fluorescent screen pictures taken along the injector line, corresponding to the 

locations from 1 to 8 in Fig. 3.5. The skew and main currents are 0.2A and 1.532A, 

respectively. This current setup yields a 3.72o rotation angle of the quadrupole field in 

Q1. In Fig. 3.6(a) some of the beams appear truncated because of a limited phosphor 

screen size. 

For comparison, simulated beam pictures, based on the particle-in-cell (PIC) 

code WARP [31], are shown in Fig. 3.6(b). We used 320k macro-particles and 

256×256 grids for the Poisson solver. The initial particle distribution is assumed to be 

Semi-Gaussian (S.G.), i.e. a distribution with uniform particle density in space but a 

Gaussian profile in the transverse velocity. As seen in the figure, the pictures show 

good agreement regarding beam rotations and shapes, despite some differences 

between the particle distributions. 
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Figure 3.6: Effects of rotated first quadrupole Q1 in UMER injector: (a) Phosphor 

screen pictures, and (b) WARP simulations. The quadrupole field of Q1 is rotated 

3.72o by using a skew current of 0.2A. 

 

The rotation angles of the beam cross sections along the injector line can be 

expressed in terms of second order moments of the electron distributions. For the 

simulation and experimental photos, we use the following formula [27]: 

22

22tan
yx

xy
∆−∆

∆
=α ,                 (3.5) 

where >><<−>=<∆ yxxyxy and <>  indicates average over particles. 

Figures 3.7 show results of experiments vs. simulations for the same locations 

as Fig 3.6. Good agreement between simulations and experiment is seen. At Q2, the 

beam has rotated by 3.8o (Fig. 3.6 and solid curve in Fig.3.7b), almost the same as the 

rotation error in Q1. At Q3, the beam rotation angle is about 9.7o relative to the 

horizontal (un-rotated) orientation, while at Q4 almost the same angle is measured 

relative to the vertical. Similar considerations apply for the other skew currents. We 

also notice a few discrepancies existing between the experiments and simulations 

(e.g. Fig. 3.7a, 0.1A), which mostly occur for small rotation angles. This may come 

from the difficulties in measuring small angles when the beam density pictures have 
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noises. Also, the discrepancies may actually result from the different density 

distributions between experiments and simulations, which would have a bigger 

impact on the calculations using Eq. 3.5 when the angles are small. This effect can be 

seen clearly from the beam density pictures in the location between Q2 and Q3 as 

shown in Fig. 3.6 (or location “4” in Fig. 3.5). 

 

 

Figure 3.7: Beam rotation angle along injector: experiment vs. simulation. (a) Skew 

Currents = 0.1 and 0.3 A; (b) Skew Currents = 0.2 and 0.4 A. 

 

Table 3.4 shows fluorescent screen pictures taken at two locations (“6” and 

“7” in Fig. 3.5) of the injector line as a function of skew angle in Q1. The beam 

rotation can be seen clearly, which gives us an impression of how the beam quality 

deteriorates due to the quadrupole rotation. 
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Table 3.4: beam rotations caused by rotating Q1 

Q1Rotation angle 0o 0.93o 1.86o 2.79o 3.72o 4.66o 5.60o 
Beam pictures 
are taken at the 

location between 
Q3 & Q4 

 

      

Beam pictures 
are taken at the 
location of Q4 

       

 

3.4 Beam Rotation Correction in the Ring Lattice 

We have observed severe beam rotations in the beam transport experiment in 

the UMER ring lattice. Figure 3.8 plots the measured beam rotation angles for a 24 

mA, 10 keV electron beam in the first twelve ring chambers of UMER, without any 

skew correction. The beam density picture used for the calculation was taken at the 

phosphor screen location for each chamber, which is placed 2.7 cm away from the 

chamber center, so the cross-section of a matched beam would be elliptical, and 

suitable for the angle calculations. 
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Figure 3.8: Beam (24mA, 10 keV) rotation angles with no skew correction 
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Since there is no obvious beam rotation observed in the diagnostic chamber 

(IC2) in the middle of the injector, we believe that the initial beam rotation (at the 

first ring chamber RC1) must result from either quadrupole rotations or field 

distortions in the latter part of the injector. Therefore, we decided to add a skew 

corrector to the quadrupole upstream of the injection dipole. In order to determine the 

optimal current Is for the skew corrector, we measured the changes of beam rotation 

angles corresponding to small skew currents varying from 0 to 0.2A in all the 12 ring 

chambers. Figure 3.9 demonstrates two of such examples at chamber RC1 and RC2. 

For each measurement, a linear regression yielded the best estimates of both ∆α/∆Is 

and α0 by the fitted slope and the interception, where ∆α/∆Is is the change of rotation 

angle corresponding to the skew current change, and α0 the rotation angle at Is = 0A. 

Table 3.5 illustrates the measurement results from RC1 to RC12. αm is the beam 

rotation angle from the direct measurement (see Fig. 3.8), which is very close to α0 

from the linear regression. 
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Figure 3.9: Beam rotation angle changes corresponding to the skew currents for a 24 

mA, 10 keV electron beam in ring chambers RC1 and RC2. 
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Table 3.5: Beam rotation measurement at RC1 to RC12 

 αm (deg.) α0 (deg.) ∆α/∆Is (deg./A) R2 

RC1 11.18 11.62 -110.67 0.9981 
RC2 -23.58 -25.31 136.74 0.9822 
RC3 19.60 20.45 -181.28 0.9961 
RC4 -19.23 -20.08 118.28 0.9942 
RC5 15.07 15.57 -148.54 0.9981 
RC6 -16.79 -17.59 119.84 0.9951 
RC7 9.02 9.03 -119.76 0.9983 
RC8 -11.52 -11.60 92.06 0.9985 
RC9 7.57 7.58 -93.91 0.9998 
RC10 -11.50 -12.22 80.36 0.9885 
RC11 11.77 12.09 -68.91 0.9937 
RC12 -22.04 -24.06 127.28 0.9489 

 

From the above table, we found that the beam rotation angle α has a linear 

relation with the skew current Is in all the chambers i.e. ss II ⋅+= ∆∆ )/(0 ααα . We 

therefore can minimize α for all the chambers in the least square sense, which yields 

the optimal skew current Is ≈ 0.13A (normal current In = 1.88A). Figure 3.10(a) and 

3.10(b) show the fluorescent screen pictures before the skew correction and after the 

correction, respectively. A significant improvement can be seen in this case: the 

standard deviation of the rotation angles is reduced from 16.2o to 3.8o after the 

correction. The corresponding beam rotation angles before and after the correction are 

also plotted together in Figure 3.11. 
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Figure 3.10: Beam cross-section pictures for a 24 mA, 10 keV electron beam at ring 

chambers RC1 to RC12 before skew correction (a) and after correction (b). 
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Figure 3.11: Beam rotation angles for a 24 mA, 10 keV electron beam at ring 

chambers RC1 to RC12 before skew correction and after correction. 
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The mechanical skew errors of the UMER quadrupoles can be controlled 

within 0.06o (about 1 mrad). However, the induced quadrupole rotation angle α, for Is 

= 0.13A and In = 1.880A, is 1.98o from Eq. 3.4. Thus, the initial beam rotation at RC1 

must result from accumulated effects of several (up to seven) quadrupoles’ rotation 

errors, and from field distortions caused by slightly magnetized pipe sections around 

welds. The latter effect refers to the introduction of skewness to the main quadrupole 

field, especially at large radii near welds. This is made evident by the fact that the 

beam rotations of our lowest current beams, 0.6 mA and 7 mA (beam radii 5% and 

12% of the vacuum pipe radius, respectively) are not so severe when compared to the 

24 mA case (beam radius 20% of pipe radius). 
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Chapter 4 Beam Matching 

Maintaining a matched beam (e.g. keeping constant beam size through a 

uniform focusing channel) is a fundamental requirement for the transport of intense 

beams over long distances. Both theoretical and simulation studies [32, 33] have 

identified that beam mismatch is a major source for emittance growth and halo 

formation. A mismatched beam is one that lacks the average force balance between 

the external focusing force and the internal forces from the space charge and the 

emittance due, for example, to the injection of a beam with the “wrong” size. This 

situation results in periodic oscillations in beam size, the frequency of which has been 

derived [34]. Resonance between a particle’s betatron oscillation and these envelope 

oscillations will drive some particles to larger radii and finally lead to particle losses. 

This has been verified by computer simulation [33] and the “particle-core” model 

[35]. In UMER, the extreme high intensities and compact features require us to 

design the beam optics carefully. The major topic of this chapter is the important 

challenge of matching the intense electron beam from the electron gun through the 

injector into the ring lattice. Although in the past we have relied on calculations using 

the envelope equations to determine magnet settings for matching, this method has 

not been reliable and produced errors in beam size of about 10%. The problem is that 

lack of knowledge about accurate ring-lattice modeling and optimum matching-

section setting may result in a discrepancy between experiment and theory. In 

addition, on-line adjustment of magnet strengths around the design values is 

especially important from an experimental point of view, which is another topic in the 
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chapter. We organize our studies in the following order: beam physics background, 

ring lattice design, matching section design, and empirical beam matching. 

4.1 Beam Physics Background 

UMER consists of a series of magnetic quadrupoles, with strength 

cmqGyx γβκκ /=−= , where G = G(s) is the quadrupole field gradient; q, m and c 

are the particle charge, mass and light speed, respectively. In practice, it is common to 

model the quadrupole by a “hard-edge” element with an effective length defined by 

∫
+∞

∞−
=⋅= dzrzl peakeff )0,(/1 κκ . Typical smooth and “hard-edge” gradient profiles of 

a unit FODO cell are shown in Figure 4.1. We normally use “hard-edge” magnets in 

envelope and matrix codes to do first-order calculations. The advantage of “hard-

edge” magnets resides in their easier implementation in the codes and theoretical 

analysis. 

 

 

Figure 4.1: Real quadrupole profile vs. “hard-edge” 
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Based on the “hard-edge” quadrupole model and the standard transfer 

matrices for quadrupoles and drifts, the peak focusing strength of quadrupoles in a 

FODO cell for a given zero-current phase advance per period (σ0) can be calculated 

from [36] 

θθθθθθθθθθσ sinhsin)(
2
1)coshsinsinh(coscoshcoscos 22

0 l
L

l
L

−−+=  

                   (4.1) 

where l2/1κθ = ; l is the effective length of the quadrupole; L is the drift space 

between adjacent quadrupoles. In UMER, we normally have σ0 = 76o and l = 3.64 

cm; L is equal to the half FODO length minus l, i.e. 12.36 cm. Thus, the calculated 

quadrupole strength κ is 229.6 m-2, which corresponds to 7.78 G/cm or 1.88 A for the 

quadrupole current (4.14G/cm⋅A). 

In the ring lattice of UMER, we essentially apply κ = ±229.6 m-2 (σ0 = 76o) 

with alternating gradients for all the beam currents (see Table 1.2). With the presence 

of the space-charge forces, the depressed phase advances (σ) per period from the 

smooth approximation [8] are 12.3o, 23.8o, 35.4o, 62.5o for beam currents of 100mA, 

24mA, 7mA, 0.6mA, respectively, and hence the tune depressions (σ/σ0) are 0.162, 

0.313, 0.466, and 0.823. By varying the electron beam current (and emittance), 

UMER can operate in a very wide physics regime. 

In order to understand the physics characteristics of space-charge-dominated 

beams, the 2-D rms envelope equations [6] are important, which have identical form 

as the K-V envelope equations [7]. In UMER, the beam bunch (10keV, 100ns) has a 

radius in the range of 10 mm or less depending on the beam current and focusing 
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strength. Since the bunch length is about 6 m, the beam can be considered as a 2-D 

beam, except for the edge effects. Thus, the beam transport is governed by the 2-D 

rms envelope equations [6]: 
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Here X and Y are the 2×rms beam radii in the two planes perpendicular to the 

propagation direction, and X ′′  and Y ′′  represent the second derivatives of X and Y 

along the focusing channel. Further, )/2()/( 33
0 γβ⋅= IIK  is the generalized 

dimensionless perveance with the characteristic current kAqmcI 17/4 3
00 ≈= πε  for 

electrons, and κx(s) and κy(s) are the external focusing functions. The last terms in 

Eqs. (4.2a) and (4.2b) contain the effective (4×rms, unnormalized) emittances εx and 

εy. Correspondingly, the equations of motion including the linear space-charge forces 

for a single particle are 
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The 2D rms envelope equations are very important in the optics design and 

matching of intense space-charge-dominated beams. They describe the evolution of 

beam envelopes, and usually agree quite well with the experimental observations. The 

inaccuracy mostly comes from the uncertainties associated with the values of initial 
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beam sizes, slopes, perveance and emittances, which are the key parameters for the 

integration of Eqs. (4.2a) and (4.2b). The boundary conditions (or image charge 

effects) and the changes of emittances are not included here either. Regardless of 

these insufficiencies, the rms envelope equations generally yield a good starting 

point. 

A more realistic calculation can be done with accurate 3D fields for the 

magnets in a PIC code. To generate these fields along the beam line, we developed a 

new air-core magnetic field solver, MAGLI [37]. The code can model the printed-

circuit magnets by up to 18 million conductor segments in a one-gigabyte memory 

space. The typical PIC code that we are using is WARP [31]. It can track multi-

million particles self-consistently with realistic distributions in a reasonable amount 

of time. 

4.2 Ring Lattice Design 

There are two key issues important to the ring lattice design in UMER. The 

first one is how to calculate the peak focusing strengths of quadrupoles in a unit 

FODO cell for the required operation point at σ0x = σ0y = 76o. We have illustrated a 

simple model of two “hard-edge” quadrupoles in a straight line (see Fig. 4.1) in the 

previous discussion. In this case, a simple matrix calculation yields κx1 = −κx2 = 

−229.6 m-2 (7.78 G/cm) for the two quadrupoles. If smooth gradient profiles in a 

straight section are employed, the matrix approach is still possible if the profiles are 

modeled by the superposition of many “hard-edge” sub-elements. The second issue is 

how to achieve periodic envelope matching in a FODO cell for the quadrupole 
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strengths as stated above. Figure 4.2 shows periodic matched solutions for two typical 

UMER beams (100mA, 60mm⋅mrad and 24mA, 30mm⋅mrad) with “hard-edge” 

quadrupoles (κx1 = −κx2 = −229.6 m-2) in a straight section. We obtain the solutions by 

iteratively integrating the rms envelope equations from z = 0 to z = 32cm in a FODO 

cell. The convergence is achieved once the beam radii and slopes at the two 

boundaries are equal. 

 

 

Figure 4.2: Matched beam envelopes in a FODO cell from rms envelope equations. 

 

In obtaining the solutions of Fig. 4.2, we have made two assumptions: (1) 

quadrupoles are “hard-edged”; (2) The FODO period is in a straight section and the 

effect of a bending dipole is ignored. However, it is instructive to compare the results 

of using a PIC code with the full 3D fields for both quadrupoles and dipoles with the 

quadrupole peak strengths at κx1 = −κx2 = −229.6 m-2. Figures 4.3 shows the matched 
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results of such a simulation. It was done by the WARP-PIC slice code with an initial 

KV distribution, 20k macro particles, and 1mm×1mm grid-size for the pre-calculated 

3D magnetic fields along the path. The figure illustrates two periodic solutions for 

two UMER beams (100mA and 24mA), but also reveals a 6% difference between X 

and Y envelope peaks. This is clearly due to the unequal σ0x and σ0y in the two 

transverse directions. This asymmetry must result from the effect of dipoles, which 

has been taken into account by the above PIC simulation, but not by the envelope 

equations. 

 

 

Figure 4.3: Matched beam envelopes in a FODO cell from WARP-PIC code 

 

In order to calculate the actual σ0x and σ0y for the above ring lattice, we 

employ the WARP code to track the centroid of thousands of particles (without space 
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charge) for several turns through the 3D fields. During the process of particle 

tracking, we need to either turn off the Poisson solver to exclude the space-charge 

fields or reduce the beam current to near zero, since we aim to calculate the particle 

oscillation frequencies for the zero-current. The phase advance σ0 is identified as the 

main peak frequency of the Fourier spectrum of the centroid data. The main 

frequency can be accurately determined with an interpolated-FFT technique [38] by 

interpolating the shape of the Fourier spectrum around the main peak. This avoids 

tracking particles for a large number of turns to achieve a high resolution of the main 

frequency. 

For the ring lattice (including the dipoles) with the peak focusing strengths κx1 

= −κx2 = −229.6 m-2, the zero-current phase advances per cell are σ0x ≈ 76.4o and σ0y ≈ 

79.3o from the above simulation. Since the focusing and defocusing strengths of 

quadrupoles are equal for this case, the slight asymmetry must result from the small 

focusing effect of the bending dipoles. Although the UMER dipole has a non-uniform 

distribution along the bending path (z) and the radial direction (x), it can be treated as 

a “hard-edged” sector dipole with a field index n ≈ 0.72 [39] and an effective length ld 

≈ 3.85 cm. The field index n is calculated by [40] 
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Here By-int is the integrated dipole field By along the orbit z defined by the actual 

bending pipe; α/0 sr =  ≈ 25.24 cm is the equilibrium radius; s ≈ 4.406 cm is the 

length of the mechanical bend; α = 10o is the bending angle. The dipole focusing 

functions can be expressed in terms of n and r0 as [40] 
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2
0/)1( rndx −=κ ,               (4.5a) 

and 

2
0/ rndy =κ .                (4.5b) 

Since 0<n<1, the dipole induces focusing in both the horizontal and the vertical 

planes, i.e. κdx ≈ 4.4 m-2 for x and κdy ≈ 11.3 m-2 for y over an effective distance of 

3.85 cm. These strengths are asymmetric in the two directions. That is why the peaks 

in the X, Y envelope in Fig. 4.3 are different. 

With this dipole model, the FODO cell can be represented by two “hard-edge” 

quadrupoles plus a small “hard-edge” element with focusing functions κdx and κdy in 

the middle. Figure 4.4 illustrates this model in detail. In order to test its accuracy, we 

first use the transfer matrices to calculate the zero-current phase advances per cell. 

For κx1 = −κx2 = −229.6 m-2, it yields σ0x ≈ 77.3o and σ0y ≈ 79.4o, which is very close 

to the previous results (σ0x ≈ 76.4o and σ0y ≈ 79.3o) obtained from the interpolated 

FFT of the particle centroid tracking. Second, we can calculate the periodic matched 

solutions via rms envelope equations including the dipole model. The results are 

plotted in Figure 4.5, where the solid and dashed curves are the X and Y envelopes, 

respectively, for a 100mA beam from the rms envelope equations with the dipole 

focusing; the dots are the previous results (see Fig. 4.3) from the WARP-PIC 

simulations with realistic 3D magnetic fields. The new FODO model agrees very well 

with the PIC simulations. 
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Figure 4.4: FODO model including a dipole: κdx and κdy are the focusing strengths of 

the dipole in the x and y directions, respectively. 

 
Figure 4.5: X, Y envelopes from the envelope equation (new FODO model with 

dipoles) compared to the WARP PIC simulation (full 3-D fields) for a 100 mA beam. 

The peak focusing strengths for both cases are κx1 = −κx2 = −229.6 m-2. 
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To have a symmetric focusing channel, we need to make κx1 and κx2 slightly 

different to compensate for the dipole’s focusing. Using the new model, we can very 

easily obtain them via the transfer matrices of a FODO cell. We found that κx1 = 

−221.8 m-2 and κx2 = 225.0 m-2 gave us the desired phase advances at σ0x = σ0y = 76o. 

With these κx1 and κx2, we can solve the periodic matched solutions either by the rms 

envelope equations or the PIC code. The results from the two methods are plotted in 

Figure 4.6. A direct observation from the figure is that the X and Y envelope peak are 

about the same in contrast with Fig. 4.5 where σ0x and σ0y are unequal. Besides, the 

good agreement between the two methods demonstrates that the envelope code with 

the dipole model can be used in practice. In fact, for matching purposes, we always 

prefer the envelope equations to the PIC method, because the latter would take 

several magnitudes of computing power over the former. The PIC code, e.g. WARP, 

is usually used to confirm or refine the results after the initial matching is done by the 

envelope code. 
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Figure 4.6: X, Y envelopes from the envelope equation (new FODO model with 

dipoles) compared to the WARP PIC simulation (full 3-D fields) for a 100 mA beam. 

The peak focusing strengths for both cases are κx1 = −221.8 m-2, κx2 = 225.0 m-2. 

 

4.3 Matching Section Design 

Figure 4.7(a) shows the present geometric layout of the UMER matching 

section/injector and the first ring section, where Sol is a solenoid; Q1 to Q6, PQ, are 

quadrupoles; QR1 to QR5 are ring quadrupoles; D0, D1 and D2 are ring dipoles. This 

layout reflects a simple implementation of the UMER injection for the first turn 

operation before the ring is physically closed. For multi-turn operation, however, PQ 

and QR1 must be replaced with specially designed quadrupoles due to the geometric 

requirements (see Chap. 5). Although the matching section design we describe here is 

intended for the first turn, it does not lose generality for multi-turn operation. 
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Figure 4.7: Injector layout and a matched solution: (a) Injector layout for the first turn 

operation; (b) a matched solution. 

 

The UMER matching section consists of a solenoid and six quadrupoles (Sol, 

Q1 to Q6) distributed over a distance of 1.3 m, approximately. We aim to inject the 

beam into the ring with the desired beam radii and slopes (XR, YR, XR
′, YR

′), as dictated 

by the results of periodic FODO matching (previous section). Figure 4.7(b) shows 

such a matched solution for the 100 mA beam (10 keV and 60 mm⋅mrad). The dashed 

line in the figure divides the beam line into two regions: the aperiodic matching 
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section and the periodic FODO cells. The position of the dashed line is called the 

matching point. It is the end of the matching section (z = 129.82 cm) and also the start 

of the first FODO cell (PQ, D0, QR1) in the ring. If we employ the FODO model 

including the bend shown in Fig. 4.4, the beam radii and slopes ),,,( mmmm YXYX ′′  for 

the 100 mA beam at the matching point have the values, 9.85mm, 9.82mm, −0.0418, 

and 0.0416, respectively, as required by σ0x = σ0y = 76o or κx1 = -221.8 m-2 and κx2 = 

225.0 m-2. Mathematically, the matching section has seven adjustable parameters 

),,,,,,( 6543210 κκκκκκκκ =  (the strengths of Sol, and Q1 to Q6). While the 

magnets locations are fixed, their strengths can be individually adjusted.  

The initial beam conditions ),,,( 0000 YXYX ′′  at z = 0 are specified at the plane 

of an aperture plate near the electron gun output. From experiments, we know that 

this plane is very close to the beam waist, so the initial slopes ),( 00 YX ′′  are close to 

zeros. The initial beam size for the full beam (100 mA) is determined from the 

experiment, which is mmYX 2.300 == ; the others are identified from their aperture 

sizes (see Table 1.2). If we integrate the rms envelope equations with magnets 

strengths ),,,,,,( 6543210 κκκκκκκκ = , the beam radii and slopes ),,,( 1111 YXYX ′′  at 

the matching point are functions of κ . The matching error can be expressed as 

),,,()( 1111 mmmm YYXXYYXXf ′−′′−′−−=κ . The matching problem is equivalent to 

finding a solution set *}{κ  such that 0*)( =κf . Since there are an infinite number 

of solutions in *}{κ , we may choose the optimal one according to some specific 

criteria. A local optimization can be done using, for example, an envelope code, 
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SPOT [41]. SPOT minimizes the “distance” from the envelopes to a properly chosen 

reference trajectory (normally defined by the average beam radius in the periodic 

lattice) as well as minimizing )(κf  to zero. However, its optimization criterion 

using the reference trajectory, as stated above, is not always suitable for our current 

applications.  

In practice, avoiding large envelope excursions is the natural consideration in 

order to reduce the effects of lens nonlinearities and possible image forces associated 

with beam offsets. The optimization problem that minimizes large excursions can be 

stated as ))*,(&)*,((max
*}{

zYzXMini κκ
κ

. SPOT does not solve this problem. Though 

the optimization toolbox of MATLAB [42] might do the work, it would take a very 

significant computing power, which is impractical. To our knowledge, no program 

exists that can guarantee a global minimum for this problem in a reasonable amount 

of time. 

Alternatively, a sub-optimization can be done in two steps by first finding a 

subset of discrete solutions }{ sκ  from the complete solution set *}{κ , i.e. 

*}{}{ κκ ⊂s , and then looking for the optimal one from }{ sκ  according to some 

criteria. We call this a brute-force method. Here, let us denote a single solution sκ  by 

the horizontal (x) focusing strengths of the magnets (except for the solenoid strength 

0κ , since it has symmetric focusing for both the x and y planes), i.e. 

),,,,,,( 6543210 xxxxxx
s κκκκκκκκ = . Physically, the values of 0κ  and 1xκ  to 6xκ  

must be bounded within a reasonable range. In the matching of a 100mA beam, we 

define 0κ , 1xκ  and 2xκ  by a bounded 3D grid with units m-2, i.e. 310170 0 ≤≤ κ  
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(grid-size=1m-2, 140 steps), 104366 1 −≤≤− xκ  (grid-size=2m-2, 131 steps), and 

366104 2 ≤≤ xκ  (grid-size=2m-2, 131 steps), which correspond to 4.9A to 6.7 A for 

the solenoid, and 0.85A to 3.00A for the quadrupoles. For each grid point 

),,( 210 xx κκκ , the other four quadrupole strengths ),,,( 6543 xxxx κκκκ  can be specified 

from the four nonlinear equations 01 =− mXX , 01 =− mYY , 01 =′−′ mXX , and 

01 =′−′ mYY . For example, if ),,( 210 xx κκκ  = (240, -200, 270), we can calculate and 

obtain ),,,( 6543 xxxx κκκκ  = (-248.14, 225.49, -233.59, 226.32) by minimizing 

)( sf κ  to zero. Thus traversing through the complete 3D grids area as defined 

above, we may get a total of 2.46 million (141×132×132) solutions. Solving for 

),,,( 6543 xxxx κκκκ  numerically, e.g. via Newton’s method, requires that the initial 

guesses do not deviate much from the true solutions. In order to obtain a better initial 

guess for each grid point, we travel through the grids in a well-organized sequence, so 

a calculation for a grid can inherit a good initial guess from the solution of its nearest 

neighbor. We wrote an efficient C program to incorporate all the considerations as 

stated above. The calculations first start from a point near the center of the 3D grids, 

and then spread out to the neighbors, and gradually to the whole space. During the 

process, we also impose a constraint to eliminate the solutions having very large 

envelope excursions, i.e. above 2 cm, thus reducing the computing complexity 

significantly.  

As a result, the calculated }{ sκ  for the 100mA beam consists of about 0.23 

million solutions, while the other 2.2 million grids are eliminated mostly because the 
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envelope excursions are too large. With the knowledge of }{ sκ , it becomes very 

straightforward to pick up the “optimal” one according to some specific criteria. 

Since }{ sκ  is comprised of discrete samples from the complete solution set *}{κ , 

the “optimal” one among the subset is not a true global optimum. However, it will be 

good enough for practical use. 

Let us now examine how to minimize large envelope excursions for }{ sκ . We 

can integrate rms envelope equations over the matching section and find the largest 

envelope for every solution from }{ sκ . The minimal achievable envelope 

corresponding to the solenoid strength 0xκ  is plotted in Figure 4.8. It indicates the 

minimum occurring at 0κ ≈ 259 m-2. Increasing the solenoid strength above this value 

does not help reducing the envelope excursions. The next interesting observation is to 

look at the “average” quadrupole (Q1 to Q6) strength with respect to 0κ  in obtaining 

the minimal envelopes. The relation is plotted in Figure 4.9, where 61−κ  is defined by 

the square root of the average power consumed by the quadrupoles, i.e. 

6/)( 2
6

2
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2
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2
3

2
2

2
161 xxxxxx κκκκκκκ +++++=− . We see that in order to minimize 

envelope excursions, the average quadrupole strength needs to be increased with the 

solenoid as well. This reflects the matching between the magnets. The smallest peak 

envelope we obtain here equals 14.87 mm (when 0κ ≈ 259 m-2). The corresponding 

quadrupoles strengths are -232, 286, -251.62, 226.19, -228.45 and 224.45 m-2 for 1xκ , 

2xκ , 3xκ , 4xκ , 5xκ  and 6xκ , respectively. Figure 4.10 shows such a matched 

solution. Compared to Fig. 4.7, this solution remarkably reduces the envelope 
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excursion in the matching section. However, it also creates a small beam at Q1 and, 

correspondingly, a large envelope split at Q2. For practical use, we may avoid this 

happening by adding some extra constraints here, e.g. 0κ < 220 m-2, then the minimal 

achievable envelope size is about 16.5 mm from Fig. 4.8. 

 

 

Figure 4.8: The minimal envelope with respect to the solenoid strength for the 100 

mA beam. 
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Figure 4.9: Average quadrupole strength with respect to the solenoid strength in 

obtaining the minimal envelope sizes for the 100 mA beam. 

 

 

Figure 4.10: A matched solution for the 100 mA with minimal envelope excursion. 
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4.4 Empirical Beam Matching 

From the experimental point of view, the accuracy of the matching calculation 

is always limited by the uncertainties associated with the exact initial beam 

conditions, beam current, emittances, magnet modeling, magnet locations, etc.  

Therefore, it is expected that the implementation of the calculated magnet strengths in 

a real experiment does not yield true matching conditions. Under these circumstances, 

on-line adjustment of strengths around the calculated values becomes a necessity, an 

operation that must be guided by the available diagnostics and judicious processing of 

beam data.  

Currently, the UMER ring lattice has 12 diagnostics chambers installed, which 

cover 24 FODO periods (2/3 of the ring). The periodic feature requires that the 

matched beam have the same (rms) beam sizes at the plane of phosphor screen in 

each of the chambers. For example, the evolution of the 24 mA beam, after 

implementation of the skew correction, was shown in Fig. 3.10(b). Although the 

beam is not badly mismatched, improvements are possible with the empirical 

technique that we now describe.  

We have seven knobs (Solenoid and Q1 to Q6) in the injector. To obtain a 

satisfying periodic matching in the ring, we need to adjust at least four of them due to 

four constraints ),,,( mmmm YXYX ′′  dictating the matching. We normally do not change 

the solenoid after it is set in order to avoid hysteresis. In the experiment, we prefer 

using the last four quadrupoles (Q3 to Q6) for the on-line adjustments, because they 

are closer to the ring. At the i-th diagnostics chamber, empirical matching can be 
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represented in a matrix form (linear approximation assuming the mismatch is small) 

as follows: 
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where Xi, Yi are the 2×rms beam sizes in the two transverse directions at the i-th 

chamber and they are measured when four injector quadrupole currents are set with 

I1, I2, I3 and I4; Xm, Ym are the matched 2×rms beam sizes at the chamber’s location; 

∆I1, ∆I2, ∆I3 and ∆I4 are the desired current changes to minimize the mismatches for 

the four quadrupoles; jixij IXR ∂∂= , jiyij IYR ∂∂=  are the changes in Xi, Yi with 

respect to the current change of quadrupole j, which can be measured by perturbing 

the injector quadrupole currents and observing the beam size changes downstream. 

For all 12 chambers, the matrix representations can be extended and rewritten as 
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According to our experiment setup, the left hand side vector has 24 elements, 

i.e. n = 12. The right hand side vector contains six unknown parameters: ∆I1, ∆I2, ∆I3, 

∆I4, Xm, and Ym. Notice that although Xm, Ym can be calculated (using the rms 

envelope equations or the PIC code) from the beam current, energy, emittance and the 
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periodic FODO optics setup, their realistic values will in general deviate from the 

predictions. Thus treating Xm and Ym as unknowns is safe in avoiding erroneous 

results.  

If we denote the left hand side of Eq. 4.7 by a column vector E, the right hand 

side matrix by R, the solution of the six unknowns can be given in a least square 

sense, i.e. ERRR TT 1)( − . It is physically equivalent to finding an optimal (∆I1, ∆I2, 

∆I3, ∆I4) that minimizes the variance of X, Y beam sizes among all the chambers. 

After solving Eq. 4.7, the optimal currents of the four quadrupoles are I1−∆I1, I2−∆I2, 

I3−∆I3, and I4−∆I4, respectively. 

Let us now look at an empirical matching experiment for the 24 mA beam. 

The beam cross-section pictures before the empirical matching using the scheme just 

described were shown in Fig. 3.10(b), from which the 2×rms beam sizes are 

calculated and plotted in Figure 4.11. The standard deviations of X, Y beam sizes are 

0.45 mm, 0.43 mm, respectively. After empirical matching is implemented, the 

deviations are reduced to 0.28 mm and 0.21 mm for X, Y, respectively. The improved 

beam sizes for all 12 chambers are plotted in Figure 4.12. The beam pictures 

corresponding to the latter situation are shown in Figure 4.13. They display a 

significant improvement in the beam quality after implementation of empirical 

matching as well as steering and skew correction as described earlier. 

For future experiments, we can try another successive iteration to reduce the 

residual mismatch errors, since the linear approximation as expressed in Eqs.  4.6 and 

4.7 should be even closer to the true matching condition after the present 

improvement. 
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Figure 4.11: Beam at twelve ring chambers (RC1 to RC12) before the empirical 

matching for the 24 mA beam. 

 

 

Figure 4.12: Beam sizes at twelve ring chambers (RC1 to RC12) after the empirical 

matching for the 24 mA beam. 
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Figure 4.13: Beam cross-section pictures at twelve ring chambers (RC1 to RC12) 

after the empirical matching for the 24 mA beam. 

 

We also performed similar implementation of this technique to the 7 mA 

beam. It improved beam matching and beam quality as expected. We have not tested 

this scheme for the 100 mA beam due to the tight construction schedule and all the 

difficulties associated with the highest current beams. We believe that this technique 

is indispensable for the commissioning of UMER. 
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Chapter 5 Beam Injection for Multi-turn Operations 

The biggest challenge for the completion of UMER is the beam optics design 

for the injector region. The principal problem here is caused by the fact that the 

transport of highly space-charge-dominated beams requires short separation between 

focusing magnets, thus forcing several quadrupoles and dipoles into a very stringent 

space. The present “DC” injector design, as shown in Fig. 4.7(a), is only a temporary 

solution before the ring is physically closed. Here, “DC” means that all the magnets 

around the injection region are powered with DC currents. To close the ring, some of 

the magnets need to be pulsed. For instance (see Fig. 5.1), the normal beam pulse 

length and the circulation time in UMER are 100 ns and 200 ns, respectively. It 

implies that the dipole (D0) at the injection point must stay in one polarity at least 100 

ns for the injected beam, and switch to another polarity before the beam returns. Since 

the switching requires high power and a transition time less than 100 ns, the dipole 

must be specially designed. Not only that several other quadrupoles close by may also 

need to be pulsed due to the spatial requirement. In this chapter, a new optics design 

is proposed for solving this problem. We review the previous method where two 

pulsed and physically overlapping quadrupoles are employed. The new design with 

only one DC quadrupole reduces both the mechanical and electrical complexities. The 

single particle motion as well as the space-charge-dominated beam matching is 

studied to evaluate the new design. Some relevant issues such as stability and 

experimental considerations (e.g. beam steering) are also discussed for multi-turn 

operations. 
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Figure 5.1: UMER multi-turn injection demonstration 

5.1Beam Optics Background 

We had planned initially to use two pulsed quadrupoles as well as a pulsed 

dipole. As illustrated in Figure 5.2, the pulsed quad 1 (PQ1) is centered on the 

injector to provide focusing for the injected beam, while pulsed quad 2 (PQ2), 

replacing one of the regular ring quadrupoles, is centered on the ring for multi-turn 

operations. The reason we need PQ1 is that the distance between Q6 and QR1 is too 

large for good matching. Ideally, we want all distances the same between quadrupoles 

for this region, hence need PQ1 to fill in. Panofsky quadrupoles [43] with rectangular 

aperture (as opposed by the regular quadrupoles with circular aperture) are most 

suitable for this geometry. Figure 5.3 shows a prototype of the Panofsky quad built 
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for this application. However, by using this method, complex mechanical and 

electrical issues arise despite the simplicity in the beam optics. 

 

 

Figure 5.2: UMER injection design scheme 1: PQ1 and PQ2 are two pulsed Panofsky 

quadrupoles; D0 is the pulsed dipole at the injection point. 

 

 

Figure 5.3: Panofsky quadrupole prototype. 

 

First of all, the two quadrupoles must physically overlap. Furthermore, PQ2 

has to be squeezed between PQ1 and the pulsed dipole. Thus, we have two quads of 
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slightly different sizes over a very stringent space. Secondly, one of the PQs must be 

switched on (off) while the other is off (on) to avoid field overlap. Since we are 

planning to use wire magnetic quadrupoles, the number of conductors has to be 

reduced to achieve the desired fast switching, which means that we must make a 

compromise between field quality and circuit inductance. Also, the mutual inductance 

between PQ1 and PQ2 must be taken into account in designing the two Panofsky 

quads. Moreover, a “Y” shape glass pipe is required under those pulsed magnets. It is 

difficult to manufacture and install. 

In order to overcome the disadvantages stated above, we have chosen a 

simpler scheme [44], which reduces both the mechanical and electrical complexities, 

but also makes the beam optics more complicated than in the original design. As 

shown in Figure 5.4, one large DC quadrupole is centered on the bisector of the 

injector legs and the ring, making ±100 angles with the pipe axes. The large DC 

quadrupole is called “YQ” because it sits on a region similar to a “Y” shape. When 

the injected and return beams pass through the large YQ with an angle and an axis-

offset, the beams see a dipole field as well as a quadrupole field. The extra dipole 

term from the offset will be beneficial to assist the bending. In order to adjust the 

beam centroid exactly into the injection point, two extra short dipoles (SD1 and SD2) 

are required to steer the beam towards the quadrupole axis. Further, the large YQ 

must be a defocusing one in the horizontal (x) direction so that the beam is bent 

outward of the injection point. 
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Figure 5.4: UMER injection design, scheme 2: YQ is a big DC quadrupole sitting on 

a “Y” shape; D0 is the pulsed dipole at the injection point. 

 

The advantage of this new injection scheme resides in its simplicity both 

mechanically and electrically. (1) Only one pulsed element (D0) is required, hence no 

mutual influence between pulsed magnets as the former scheme. (2) One large 

quadrupole is needed instead of two physically overlapping ones. This quadrupole 

may be either a Panofsky quad with rectangular geometry or a regular one with 

circular aperture. In practice, we prefer using a circular PC quadrupole because it has 

been well developed and tested in UMER. (3) The glass cylinder pipe is only under 

the pulsed dipole instead of a complicated “Y” shape. The mechanical manufacture is 

much easier. Therefore, we are planning to employ this new injection scheme for the 

future multi-turn operation. In the following sections, we will describe the relevant 

optics of beam centroid motion and envelope matching for the injection of space-

charge-dominated beams. 
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5.2 Beam Centroid Control 

The deflection angle by the short dipole (SD1) must be precisely calculated so 

the beam centroid can move along the pipe axis after passing through the injection 

dipole. We have derived a first order solution for the simplified model that is shown 

in Figure 5.5. 

 

 

Figure 5.5: Simple injection model: s and d are the lengths of drift region; l is the 

effective length of the big DC quad. 

 

If we assume that the short dipole (SD1) and the pulsed dipole (D0) are both 

thin lenses, and the big quad (YQ) is modeled with a “hard-edge” gradient profile and 

an effective length l, the overall transfer matrix can be represented by sld MMM ⋅⋅ , 

where Ms, Md and Ml are the matrices for the drift regions s, d and the quadrupole, 

respectively. They have the forms: 









=

10
1 s

M s ,                (5.1a) 
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

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sinh1cosh ,              (5.1b) 









=

10
1 d

M d ,               (5.1c) 

where )/(2 cmeGk γβ= , and G is the quad field gradient. Hence the transfer matrix of 

the system after multiplications is: 









+

++++
=

klksklklk
klksdkkldsklkdkl

M
sinhcoshsinh

sinh)/1(cosh)(sinhcosh
.           (5.2) 

The beam position x and the angle x′  at the injection point (D0) can be 

written in terms of the beam initial conditions 0x  and 0x′  at SD1, i.e. 
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
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
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0

θα
αlds

x
x

. Let kla cosh= , klb sinh= , then 

the final injection error x and injection angle x′  can be represented as follows: 

)tan())/1()((tan))(( θαα ++++−+++= ksdkbdsaldskdbax ,         (5.3a) 

)tan()(tan)( θαα ++−++=′ ksbaldskbx .           (5.3b) 

The exact deflection angle θ at SD1 required for the zero injection error can 

be calculated using 0=x . It yields 

ααθ −
+++
+++

= − )tan
)/1()(

))(((tan 1

ksdkbdsa
ldskdba .           (5.4a) 

Substituting θ into equation (5.3b) and using the fact 122 =− ba , we obtain the 

injection angle β at D0: 

)tan
)/1()(

)((tan 1 αβ
ksdkbdsa

lds
+++

++
= − .            (5.4b) 
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For the UMER injector, given α = 100, s = 6.66 cm, d = 4.69 cm, l = 6.37 cm 

and k = 11.63 m-1, we get the required deflection angle θ ≈ 2.43o and β ≈ 7.26o from 

Eqs. (5.4a) and (5.4b). 

In reality, there are several factors that may lead to deviations from the above 

results for θ and β. First, the big YQ has a wide fringe field; second, SD1, and 

especially, D0 are not thin lenses either; third, UMER is often operated in the strong 

space-charge-dominated regime. In order to reflect all these effects, we performed a 

more realistic simulation with accurate 3D magnetic fields in the WARP PIC code 

[31]. In this stage, we chose a typical UMER beam: I = 24 mA, E = 10 keV, ε = 30 

mm⋅mrad. The simulation yielded the exact solution θ ≈ 2.58o and β ≈ 7.23o, which 

agrees very well with the approximate solutions from Eqs. (5.4a) and (5.4b). 

Another important issue besides the correct θ and β settings is the stability of 

the scheme. If an initial error ∆θ is introduced by SD1, an error at the injection point 

will occur. The matrix analysis gives the injection errors caused by errors in θ: 

θ∆⋅+++−≈∆ )]/1()([ ksdkbdsax ,            (5.5a) 

θβ ∆⋅+−≈∆ )( ksba ,               (5.5b) 

where  ∆x is the position error and ∆β is the angle error at the injection point. For 

example, if the short dipole SD1 introduces an error of 1% (0.026o), the induced 

injection errors are about 0.1 mm and 0.05o. If the error in θ is 5% (0.13o), the 

resultant injection errors are about 0.5 mm and 0.23o. The big quad therefore 

amplifies the errors. These injection errors seem small for beam transport over short 

distances, but it is important to understand the effect for multi-turn operation. Clearly, 
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the largest potential errors may occur at SD2 and the big YQ (see Fig. 5.4) on the 

beam return. 

Figure 5.6(a) and 5.6(b) show the beam (x) centroid motion in 4 turns with 1% 

and 5% errors (∆θ/θ) in SD1, respectively. The results were obtained from the WARP 

PIC simulation. The beam parameters we chose for the simulation were still I = 24 

mA, E = 10 keV, ε = 30 mm⋅mrad. The bending angles by the pulsed dipole and the 

deflection angle by SD2 are set correctly. The beam (x) centroid is measured relative 

to the reference orbit of the ring lattice. In both Figs. 5.5(a) and 5.5(b), the first 

negative spike reflects the beam centroid deviation from the injector’s pipe center 

when passing though SD1 and the big YQ. The positive spikes downstream happen 

exactly when the beam travels back to SD2 and the big YQ in the following turns. 

From Fig. 5.5(a), the centroid oscillation (ripple) due to the 1% initial error is quite 

small. From Fig. 5.5(b), the centroid oscillations due to the 5% initial error do not 

grow in the following turns. The centroid ripples are within 1 mm, which may be 

corrected with additional steering. 

The mechanical design of the new injection scheme has been completed [45]. 

For the future injector experiments, Eqs. (5.4a) and (5.4b) will be our starting point 

and guideline for beam steering. Refinements should be possible by changing the 

strengths of SD1 and D0 iteratively to reduce the injection errors. One may refer to 

Chap. 2 for a more systematic method about beam steering. It can be summarized as: 

(1) treat SD1 and D0 as two steering elements; (2) scan two quadrupoles downstream, 

i.e. QR1 and QR2; (3) measure the relative beam movements in the first diagnostic 

ring chamber (RC1) either by the BPM or the phosphor screen. 
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Figure 5.6: (a) Beam centroid motion in 4 turns with an initial angle error 1% by SD1. 

(b) Beam centroid motion in 4 turns with an initial angle error 5% by SD1. 

 

5.3 Quadrupole Field Gradient along the Orbit 

For the new injection scheme, the beam centroid travels through the big YQ 

along a curved trajectory. From the matrix analysis in the previous section, the beam 
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enters the quad with an angle θα +  ≈ 10o+2.58o = 12.58o in the horizontal (x) plane 

and leave the quad with an angle β ≈ 7.23o. If we use )(zG  to represent the 

quadrupole field gradient in the x-z plane, the gradient )(sG  along the centroid orbit 

“s” can be represented as ϕϕ cos)(sin)()( zGzGxsG +′⋅= , where )(tan zx′=ϕ . The 

integrated gradient along the orbit can be expressed by 

[ ]
ϕ

ϕϕ
cos

cos)(sin)()( dzzGzGxdssG∫ ∫ +′= ,           (5.6a) 

which can be rewritten as 

∫∫∫ +⋅′⋅⋅′= dzzGdzzxxzGdssG )()()()( .            (5.6b) 

Equation (5.6b) indicates that the integrated quad gradient along the orbit is 

different from the on-axis gradient by an extra nonlinear term, i.e. 

∫ ⋅′⋅⋅′ dzzxxzG )()( . It is zero for the normal cases ( 0)( =′ zx ). However here, )(zx′  

is not constant. It changes gradually inside the quadrupole, i.e. 

)23.7tan()()58.12tan( oo −≤′≤− zx . The average )(zx′  is about )tan( α− , where α is 

10o and approximately the middle value of the entry angle and exit angle. Using the 

relation )tan()( α−≈′ zx  and integral by part, we achieve 

∫∫ −≈ dzzGdssG )()tan1()( 2α .               (5.7) 

Equation (5.7) indicates that the integrated x-focusing is slightly different 

from the y-focusing by a small amount, i.e. %2.3tan 2 ≈α . It will introduce a small 

asymmetry between the transverse directions when the beam passes through the big 

YQ. We believe that it would not be a detrimental effect on the beam quality and 

beam matching. In order to be used in the envelope equations for the matching 
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calculations, this quadrupole may be modeled as an asymmetric “hard-edge” quad 

with different focusing strengths yx κακ ⋅−−= )tan1( 2  but the same effective length. 

In the next section, we will explore the matching problem in details. 

5.4 Beam Matching 

Beam matching is an important topic besides the centroid control. The new 

injection scheme makes the optics design of the matching section more difficult than 

before. The reasons can be summarized as follows: (1) the beam will experience a 

changing quadrupole gradient (though the changes are small) through the big YQ 

because of the curved trajectory. (2) As discussed in the last section, the integrated 

field gradients along the beam trajectory for the x and y directions will be slightly 

different. This introduces a small asymmetry in the focusing. (3) The big YQ has a 

much larger effective length and longer fringe field than the regular ring quadrupoles, 

which alters the periodic FODO structure around the injection region. Despite these 

drawbacks, we can still work on a solution for rms envelope matching. The KV 

envelope equations combined with the asymmetric “hard-edge” quad model will give 

us an approximate solution, which can then serve as a starting point for the following 

PIC simulations. The beam parameters we chose for the PIC code are the same as in 

section 5.2 about the centroid control. 

Figure 5.7 shows a matching solution from the PIC code over a distance of 16 

meters. We split the figure into two parts (a and b) in order to display the envelopes’ 

detail. The beam exhibits a slight mismatch (~0.5mm) that does not grow for the 

following turns (only the second turn is shown here). The mismatch may result from 
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the long fringe field of the large YQ. It is an acceptable result considering the other 

effects stated above. In the bottom part of Fig. 5.7 (a) and (b), we also plotted the 

corresponding beam centroid motion. The negative spike occurs when the injected 

beam passes through the large YQ, while the positive spike occurs when the beam 

returns to YQ after a turn. The small centroid ripples downstream correspond to 

effects from the ring bending dipoles. Figure 5.8 shows the evolution of a matched 

beam cross-section through the injection region, starting from the short dipole SD1. 

The beam centroid shift is clearly observed. 

 

Figure 5.7: Matched envelope solution and x centroid over 16 meters for the 24 mA 

beam: (a) from aperture plate to 8 meter; (b) from 8 to 16 meter. 



 

 91 
 

 

Figure 5.8: Simulated (24 mA) beam cross-section pictures through the injection 

region: starting form the short dipole SD1 to the first ring quadrupole QR1. 
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In obtaining the above matching solution for the new injection scheme, an 

important step is to determine the strengths of the four quadrupoles (YQ, QR1, and 

two other adjacent quads) around the injection area. This problem can be understood 

by looking at the ring lattice only. The periodic FODO structure is impaired by the 

two large quadrupoles (YQ and QR1), not only because they have longer effective 

length than the regular quads, but also YQ is placed with a 10o angle relative to the 

beam line. Under this circumstance, YQ, QR1, and two other adjacent quads, e.g. 

QR2, QR3, must be properly adjusted in order to maintain a matched envelope for the 

other part of the lattice. Two more quadrupoles are needed here because matching to 

the periodic beam radii and slopes (as dictated by the normal FODO cells) requires 

four adjustable elements. Figure 5.9 shows such an example where YQ, QR1, QR2, 

QR3 are tuned with different strengths such that the periodic envelopes (from QR4 to 

QR71) are recovered after the aperiodic region. We can obtain this matching via 

either PIC code or envelope code running from a position before YQ (e.g. 8 cm 

before YQ) with initial beam conditions required from the periodic lattice. The tuning 

can therefore be done by iteratively adjusting the strengths of the four quadrupoles 

(e.g. by the Newton method) so as to lead the beam radii and slopes in a position after 

QR3 (e.g. 8 cm after QR3) equaling the desired values (which are the same as the 

initial conditions). 

From the above analysis, we found three possible ways in choosing the other 

two quadrupoles besides YQ and QR1: (1) QR2, QR3; (2) QR70, QR71; (3) QR71, 

QR2. We believe that the combination of QR71, YQ, QR1 and QR2 may bring in a 

better result in the beam matching, simply because it is a symmetric arrangement: two 
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large quads (YQ, QR1) in the middle are squeezed between two normal quads (QR71, 

QR2). This topic will be left for a future simulation or experiments. 

 

 

Figure 5.9: Beam matching around the injection area. The beam current for this case 

is 24 mA. 

 

5.5 Summary 

The great advantage of the new scheme lies in its simplicity both 

mechanically and electrically: one large DC quadrupole is used instead of two pulsed 

quadrupoles of the original design. In studying the beam optics, we have developed a 

simple model to calculate the deflection angles of the involved magnets, which can be 
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used as the starting point for the experiments. We have also tested the stability of the 

system and developed the matching procedure, and found the results to be acceptable. 
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Chapter 6 Beam Phase Space Tomography 

We have demonstrated various beam manipulation and control techniques in 

the previous chapters. These studies include the corrections for the first order and the 

second order moments of the particle spatial distributions, e.g. the beam centroid 

>< x , >< y , and the rms sizes 22 ><−>< xx , 22 ><−>< yy . However, in 

order to understand the particle dynamics, we must have the knowledge of the 

velocity distributions as well. For example, the (unnormalized) rms emittance, i.e. 

222~ >′<−>′><<= xxxxxε , is a widely used measure of the beam quality that 

includes velocity space information on the beam. In theory, it remains constant if all 

the forces acting on the particles are linear and there is no acceleration or 

deceleration, as in UMER. However, any nonlinearities in the focusing channel or 

from the space-charge self-fields can degrade the beam quality and increase the 

emittance [46]. This effect is not included in the rms envelope equations, since they 

were derived under the assumption of constant emittance [6]. Although we could see 

emittance changes in the self-consistent PIC simulation, the changes depend on the 

detailed phase space information used to generate an initial particle distribution. A 

common approach is to assume either a K-V, or a more realistic Semi-Gaussian 

distribution, which is generally good enough for the lattice design as described in the 

previous chapters. However, a detailed look into the particle dynamics, e.g. the halo-

formation, emittance growth, x-y energy transfer and coupling, requires actual phase 

space knowledge in certain locations. In this chapter, I will describe the phase space 
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mapping and its applications in UMER using a tomographic technique. Computerized 

tomography (CT) [47] has been well known in the medical community and was 

originally developed to process x-ray images. Accelerator scientists have successfully 

applied this idea for achieving phase space distributions for at least a decade [48, 49]. 

While the mathematics is relatively straightforward, we describe here its 

implementation in UMER, including improvements and a simple method for 

estimating the influence of beam space-charge. 

The advantages of tomography techniques reside in the wealth of information 

about the phase space distributions compared to the standard methods. First, let us 

examine a conventional quadrupole-scan technique [50]. It measures the phase space 

Twiss parameters by curve-fitting rms beam sizes as a function of quadrupole 

strengths. In order to use this method, we must make an a priori assumption of a 

Gaussian phase space distribution. Tomographic imaging not only avoids this 

assumption but also yields two-dimensional (x, x′) or (y, y′) distributions. For low 

energy electron beams, although another common method, pepper-pot [51], provides 

a way for two-dimensional phase space mapping, the information obtained is only at 

discrete points. The accuracy is dominated by its spatial sampling frequency, i.e. the 

distance between the pepper-pot holes. For beams with larger sizes, this technique can 

yield acceptable results. For example, the emittance of the 100 mA beam in UMER 

from the pepper-pot measurement is about 60±20 mm⋅mrad, which is close to the 

theoretical predictions based on the gun characteristics [52], but the details of the 

phase space are not resolved due to the spacing between the beamlets. For beams with 

smaller sizes, the pepper-pot would intercept fewer beamlets thus limiting its 
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resolution to a very low level. In practice, we cannot use a pepper-pot method to 

measure the phase space of the low current beams (0.6 mA, the 7 mA) in UMER 

because the beam sizes are too small. 

In this chapter, we organize the studies in the following order. First, we 

introduce the tomography algorithms and its relations to the phase space 

measurement. Then, we describe its implementation in UMER and report the 

experimental results for the 0.6 mA (pencil) and the 7 mA beam. For the latter beam, 

a linear space-charge correction is included. 

6.1 Algorithms 

The objective of tomographic imaging is to reconstruct a two-dimensional 

image of an object from information taken at different angles. The mathematical 

model can be traced to the Radon transform [53]. The Radon transform of a function 

),( vug  is defined as the line integrals for all the directions. That is 

∫=⋅=
L

dsvugvugRpr ),(),(),( φ ,             (6.1a) 

where the line integral is along the line φφ sincos vup +=  ( πφ ≤≤0 ). It also has 

an alternative form using the Dirac delta function: 

dudvpvuvugvugRpr )sincos(),(),(),( −+=⋅= ∫∫ φφδφ .          (6.1b) 

It is a linear transform from the spatial space (u, v) to the projection domain 

(p, φ). Correspondingly, there are several methods to recover the original ),( vug , 

such as the Algebraic Reconstruction Technique (ART) [54] and the one we discuss 
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below using the Fourier method [48]. The inverse Radon transforms using the Fourier 

method can be represented in two equations: 

dkekFkqr kqi πφφ 2),(),(~ ⋅= ∫
∞

∞−
,             (6.2a) 

and 

∫ +=⋅= − π
φφφφφ

0

1 ),sincos(~),(),( dvurprRvug .           (6.2b) 

Here ),(~ φqr  is a modified projection function and is calculated from the one-

dimensional inverse Fourier transform of ),( φkFk ⋅ , where 

∫
∞

∞−

−= dpeprkF kpi πφφ 2),(),(  is the one-dimensional Fourier transform of the 

projection function ),( φpr . Therefore, the tomographic image reconstruction can be 

done in two steps if a number of projections corresponding to angles from 0 to π are 

known. First, calculate the modified projections according to Eq. (6.2a), then back-

project the modified function by integrating Eq. (6.2b) over all the angles. The 

accuracy of the reconstruction will depend on the number of projections and the 

corresponding angular spans. 

Next, we are going to relate the Radon transform to the phase space mapping. 

In the experiments, we can easily observe the spatial density distribution ),( yxf . The 

integration of ),( yxf  over the y-plane yields the x beam profile, which is equivalent 

to the integration of the phase space distribution function ),( xx ′µ  along 'x , i.e. 

∫∫ ′′== xdxxdyyxfxC ),(),()( µ .     (6.3a) 

Here )(xC  is the beam profile in the x direction. Using the Dirac delta function, it can 

be written in the form: 
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∫ ′−′= xdxdlxxxlC )(),()( δµ .             (6.3b) 

We can easily measure )(lC  from the experiments in certain positions (z) of the beam 

line, e.g. the locations of the phosphor screen at the diagnostics chambers. Explicitly, 

we can write it in terms of z: 

∫ ′−′= xdxdlxxxlC zz )(),()( δµ .             (6.3c) 

Now, it is time to relate this expression to another position z0 in the beam line, 

where the phase space distribution is 000 ),( zxx ′µ . If we assume that it is a linear 

system, the particle motion at the two positions obeys 
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MM
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.                (6.4) 

Also notice two facts: (1) the particle density remains constant in a linear system, i.e. 

000 ),(),( zz xxxx ′=′ µµ , according to Liouville’s theorem [55]; (2) the determinant of 

the Jacobian matrix ),(/),( 00 xxxx ′∂′∂  equals unity. Hence, Equation 6.3(c) can be 

rewritten in terms of x0, 0x′  at z0: 

∫ ′−′+′= 00012011000 )(),()( xddxlxMxMxxlC zz δµ .             (6.5) 

In order to relate Equation 6.5 to the Radon transform represented in Eq. 

6.1(b), we define the scaling factor s [48] by 

2
12

2
11 MMs += ,               (6.6a) 

and the phase space rotation angle φ [48] by 

1112 /tan MM=φ ,               (6.6b) 

and slp /= . Now we get the relation: 
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∫ ′−′+′= 0000000 )cos(),(1),( xddxpxxxx
s

lC zz φφδµφ .            (6.7) 

Simply, it reads 

zz lCsprxxR ),(),(),( 000 φφµ ⋅==′⋅ ,              (6.8) 

where ),( φpr  is the Radon transform of the phase space function 000 ),( zxx ′µ at z0; 

Figure 6.1 demonstrates several scaling examples from a tomography measurement in 

UMER. The left column shows directly measured cross-section pictures for the pencil 

beam (0.6 mA). The corresponding x beam profiles zlC ),( φ  integrated over y are in 

the middle, and the scaled profiles ),( φpr  (the Radon transforms) on the right. 

In Fig. 6.1, each Radon transform on the right is corresponding to a rotation 

angle φ and a scaling factor s, which are calculated from the linear transfer matrix 

from z0 to z. A successful phase space reconstruction requires the rotation covering a 

full π range. Scientists normally change the quadrupole strengths (between z0 and z) 

to reach this goal. A previous tomography experiment [48] in Duke achieved 0.96 π 

rotations using one quadrupole. They had to extrapolate the data for the last 0.04 π. In 

UMER, we have a flexible experimental setup. It allows us to scan more than one 

quadrupole, thus making a full π rotation possible. 
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Figure 6.1: Examples of using scaling factor (s) to achieve the Radon transform of the 

reconstructed phase space for a pencil beam at the ring chamber RC1: (a) φ = 163.4o, 

s = 1.79; (b) φ = 92.7o, s = 0.22; (c) φ = -4.7o, s = 1.63. The left column shows the real 

spatial (x, y) beam pictures; the middle shows the integrated x profiles; the right one 

shows the scaled profiles. 
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6.2 Tomography Experiments For Low Intensity Beams 

We have assumed linear beam optics in the phase space reconstruction (see 

Eq. 6.4). It is normally true for many present beam systems, where the space-charge 

effects are relatively low. In UMER, the lowest intensity beam (the pencil beam), 

with I ≈ 0.6 mA, and χ ≈ 0.3, is created by using the pencil mask on the aperture 

plate. This is an ideal test beam for benchmark tomography in UMER. 

The experimental setup for tomography in the first ring diagnostics chamber 

(RC1) is shown in Figure 6.2(a). We employ three quadrupoles, QR1, QR2, and QR3, 

to achieve a full π phase space rotation. The beam profiles are measured downstream 

of QR3, i.e. at the phosphor screen’s location. We also choose the same position for 

the phase space to be reconstructed, which implies zz =0  (see the notations in Sec. 

6.1). Therefore, we are able to compare the reconstructed phase space distribution 

000 ),( zxx ′µ  with the directly measured spatial picture 0),( zyxf  in the same plane. In 

our case, the phase space to be reconstructed is the one when QR1 is operated on the 

normal current, while QR2, QR3 are turned off. Explicitly, 000 ),( zxx ′µ  is taken at 

zz =0 , AI 88.11 = , 032 == II , where I1, I2, I3 are the currents to QR1, QR2, QR3, 

respectively. 
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Figure 6.2: Tomography experiment setup and corresponding transfer matrices: (a) 

Experimental setup for the ring chamber RC1; (b) Transfer matrices from z0 to z. 

 

Along with the experimental setup, the relevant matrix representations are 

illustrated in Figure 6.2(b), where IQR1, MQR1, MQR2, MQR3 are the transfer matrices of 

quadrupoles; D0, D1, D2, D3 are the drift space matrices. Particularly, IQR1 and D0 are 

inverse matrices compared to others, because the electrons need to run backward 

through them in order to follow a path from z0 to z. For example, 








 −
=








=

−

10
1

10
1 0

1
0

0

ll
D , 



 

 104 
 









−−−
−⋅−

=







−

⋅
=

−

)cos()sin(
)sin(/1)cos(

)cos()sin(
)sin(/1)cos( 1

1
qq

qq

qq

qq
QR klklk

klkkl
klklk

klkkl
I , 

where l0 is the drift space length from QR1 to z0; lq is the effective length of QR1; k is 

the square root of the quadrupole strength kappa corresponding to the normal 

operation current AI 88.11 =  or 2301 =κ m-2. Hence, the overall transfer matrix, R, 

from z0 to z can be represented as 

01112233 DIMDMDMDM QRQRQRQR ⋅⋅⋅⋅⋅⋅⋅= .             (6.9) 

In order to achieve a full π phase space rotation, we vary the strengths of 

QR1, QR2, QR3 such that MQR1, MQR2, MQR3 are changed. However, there are certain 

restrictions imposed on the changes. First, the maximum allowed current for each 

quadrupole is ±3.5 A (±427 m-2 for kappa). Second, the beam size at the measurement 

point must be controlled to remain within the phosphor screen. Third, the beam size 

must be kept within a reasonable range when it travels through the pipes, in order to 

avoid the beam hitting the pipe or possible image-charge effects. Considering all 

these factors, we found some interesting observations. For example, the three 

quadrupoles play different roles in the phase space reconstruction. 

QR3 has little effect on rotating the phase space because it is too close to the 

phosphor screen. However, it can serve as a focusing element, or in other words, a 

remedy method, to control the beam to remain within the screen if the beam size 

grows too much. 

QR2 is the one that dominates the phase space rotations. By changing the 

current of QR2 from −3.5A to +3.5A, keeping QR1 at the normal current and turning 
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QR3 off, we can achieve a 0.955 π rotation. The rotation angle φ and the scaling 

factor s with respect to the current I2 are plotted in Figure 6.3 (a) and (b). 

 

Figure 6.3: Rotation angle (φ) and scaling factor (s) v.s. I2 when I1 = 1.88 A and I3 = 

0A. (a) rotation angle and scaling factor for µ(x,x′) reconstruction; (b) rotation angle 

and scaling factor for µ(y,y′) reconstruction. 
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The last 0.04 π rotation angle can be obtained by changing QR1 around its 

normal strength and properly adjusting QR3 to limit the beam size. It is possible that 

the beam could hit the pipe before QR3, but it will be observed if it happens, so this 

sets a limit to the current ranges of QR2 and QR3. In our case, we achieved a full π 

rotation of the reconstructed phase space by properly changing the currents of the 

three quadrupoles without losing beams. 

As a result, we generate a table containing the quad currents, the resulting 

rotation angles and scaling factors, i.e. (I1, I2, I3, φ, s). In the experiment, the 

tomography program reads the table, then performs the reconstruction as follows:  (1) 

change I1, I2, I3 via a computer controlled interface; (2) capture the spatial (x, y) beam 

pictures via a CCD camera; (3) calculate the beam profile by integration; (4) generate 

the Radon transform using the scaling factor s and Eq. 6.8; (5) calculate the modified 

projection function using Eq. 6.2(a); (6) integrate the modified projections over φ 

using Eq. 6.2(b). 

The promising part of our tomography program is that it realizes the control, 

measurement and reconstruction simultaneously. A complete reconstruction only 

takes about 10 minutes for the pencil beam. It is very useful for an on-site 

determination of the experimental results. 

We have performed tomography experiments for the pencil beam at the ring 

chamber RC1 and RC6. The reconstructed phase space distributions and the 

corresponding spatial pictures are illustrated in Figure 6.4 and 6.5. Carefully 

analyzing the results, we found several points worth noting: 
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(1) The phase space distributions in Figs. 6.4 and 6.5 display very high image 

qualities. The background noises are about 5% of the peak intensity for all the 

pictures. This is because the reconstructions covered a full π rotation and a large 

number of projections. 

(2) We calculated the 4×rms emittances (effective emittances) using the 

definition 2224 >′<−>′><<×= xxxxxε  from the reconstructed phase space 

distributions. The results are xε ≈ yε ≈ 5.4±0.2 mm⋅mrad at the ring chamber RC1, 

and xε ≈ yε ≈ 5.8±0.2 mm⋅mrad at RC6. We believe that the results are accurate. 

Besides the excellent image qualities as stated above, there are other reasons to 

support these results. First, assuming a uniform phase space distribution in the 

aperture plate, we estimate the emittance of the pencil beam to be 4.7±1.6 mm⋅mrad, 

approximately, by scaling it with the full beam (the radius and the emittance are 3.2 

mm, 60±20 mm⋅mrad for the full beam; the radius is 0.25 mm for the pencil beam). 

Also, we had measured the emittance of the pencil beam using a quadrupole scan 

technique by measuring the beam sizes and fitting the Twiss parameters. It yielded 

xε ≈ yε ≈ 6.5±0.5 mm⋅mrad, but that method made an a priori assumption of a 

Gaussian profile. Compared to the results from the prediction (scaling with the full 

beam) and the quad scans, the emittance calculated from the tomography 

reconstruction is about the average of the two. 

(3) Fig 6.4(a) and 6.5(a) are the real spatial (x, y) beam pictures. They were 

taken by the CCD camera when AI 88.11 = , 032 == II , which is required according 

to the previous discussions. As a verification of the reconstructed phase space 



 

 108 
 

distribution, we calculated the 2×rms x beam size from the (x, x′) phase space image, 

and y beam size from the (y, y′) phase space image, and compared them with the 

results from the spatial (x, y) picture. Table 6.1 shows the comparisons. 

Table 6.1: Calculated beam sizes from spatial and phase space images 

Ring Chamber RC1 RC6 
Source Pictures (x, y) (x, x′) (y, y′) (x, y) (x, x′) (y, y′) 
x (2×rms) mm 1.57 1.52  1.11 1.09  
y (2×rms) mm 4.05  4.01 3.43  3.26 

 

(4) From the (x, x′) phase space picture in RC1 (Fig. 6.4b), we can see a 

hollow velocity distribution. The spatial x profile also displays a hollow structure 

(Fig. 6.4a). These phenomena are clearly due to the effects from the cathode grid 

according to the earlier studies [56, 57]. Examining in RC6 (3.2 meter apart from 

RC1), though the spatial x profile is blurred (Fig. 6.5a), we can still recognize some 

hollowness from the (x, x′) phase space distribution (Fig. 6.5b). This observation is an 

example of the wealth of information that can be obtained from the phase space 

tomography. 
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Figure 6.4: Pencil beam (0.6 mA) phase space tomography in the ring chamber RC1: 

(a) spatial (x, y) beam pictures; (b) (x, x′) phase space distribution; (c) (y, y′) phase 

space distribution. 
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Figure 6.5: Pencil beam (0.6 mA) phase space tomography in the ring chamber RC6: 

(a) spatial (x, y) beam pictures; (b) (x, x′) phase space distribution; (c) (y, y′) phase 

space distribution. 



 

 111 
 

6.3 Tomography Experiments for Beams with Space-charge 

In this section, we will study the phase space reconstruction using the 

tomography technique for a space-charge-dominated beam of I ≈ 7.0 mA, and an 

intensity parameter χ ≈ 0.78. Since this is an intense electron beam, space-charge 

effects must be taken into consideration. The simple method we employ here is a 

linear space-charge correction estimated from the beam envelopes. 

From the particle motion equations including the linear space-charge forces 

(see Eqs. 4.3a and 4.3b), the net focusing strengths acting on a particle are 

)(
2

0 YXX
K

xx +
−= κκ ,              (6.9a) 

)(
2

0 YXY
K

yy +
−= κκ ,              (6.9b) 

where 0xκ , 0yκ  are the external focusing functions; X, Y are the beam envelopes for 

the x and y directions, respectively. For low intensity beams (e.g. the pencil beam), 

we only use 0xκ , 0yκ  in generating the transfer matrices and calculating the rotation 

angles and scaling factors. However, for the 7 mA beam, the space-charge terms, i.e. 

)(2 YXXK +−  and )(2 YXYK +− , must be included into the matrices. 

The calculations including the space-charge terms are very complicated. The 

main difficulties reside in the determination of the envelope X, Y. Mathematically, 

they are not only functions of z, but also functional of 0xκ  and 0yκ . This implies that 

X(z), Y(z) change with the external focusing functions )(0 zxκ  and )(0 zyκ . Examining 

the experimental setup in Fig. 6.2 (a), we do not have any diagnostics over a distance 
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crossing three quadrupoles (QR1, QR2, QR3). The envelope evolutions are unknown 

in this area. Fortunately, we can estimate the beam sizes and slopes (X, Y, X′, Y′) with 

a reasonable accuracy before the first quadrupole (QR1). Using these estimates as the 

initial conditions, we can calculate the envelopes via the rms envelope equations with 

respect to all the external focusing functions ( 0xκ , 0yκ ). We can also verify the 

calculations by comparing the calculated and measured beam sizes at the phosphor 

screen location. If they do not agree well, we adjust the initial guesses (X, Y, X′, Y′), 

and redo the calculation until an acceptable agreement is reached. Figure 6.6 shows 

such an example for the verification of the envelope evolutions of the 7 mA beam. 

The beam sizes were measured in RC1 with respect to different quadrupole (QR1, 

QR2, QR3) settings. In the calculation, we used the same ( 0xκ , 0yκ ) as in the 

experiments. The calculations and the measurements agree very well according to the 

figure. In practice, we should not expect a perfect match because the measurement of 

beam sizes is also subject to errors. 

With the knowledge of the envelope evolution with respect to ( 0xκ , 0yκ ), we 

can calculate the net focusing strengths including the space-charge forces as functions 

of z, i.e. )(20 YXXKxx +−= κκ  and )(20 YXYKyy +−= κκ . The new transfer 

matrices for ( xκ , yκ ) can be modeled by the superposition of many “hard-edge” sub-

elements. Hence, the rotation angles (φ) and the scaling factors (s) including the 

space-charge corrections are obtained. Figure 6.7 shows the calculated φ, s for the 7 

mA beam when AI 88.11 = , AIA 5.35.3 2 ≤≤− , and I3 is changed with I2 from –2A 
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to 0A (limiting the beam size within the screen). Both results with the space-charge 

and without the space-charge are illustrated. 

 

 

Figure 6.6: Beam size measurements v.s. the calculations at the phosphor screen in 

RC1 for the 7 mA beam. 

 

Figure 6.7: Phase space rotation angles and scaling factors for the 7 mA beam in RC1 

with respect to I2. 
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Let us examine the reconstructed phase space including the space charge for 

the 7 mA beam. The experimental setup and procedures are the same as the case for 

the pencil beam. Figure 6.8 and 6.9 illustrate the results. 

In order to verify the reconstructed distributions, we calculated the 4×rms 

emittances from the phase space images in Fig. 6.8 and 6.9. The results are xε ≈ 

15.2±1.0 mm⋅mrad, yε ≈ 14.7±1.0 mm⋅mrad in the ring chamber RC1; and xε ≈ 

16.5±1.0 mm⋅mrad, yε ≈ 15.0±1.0 mm⋅mrad in the ring chamber RC6. Because the 

initial aperture size of this beam is 0.875 mm, the estimated emittance is about 

16.4±5.0 mm⋅mrad by scaling with the full beam (3.2 mm in size, 60±20 mm⋅mrad in 

emittance). Therefore, the results from the reconstructed phase space distributions are 

reasonable. Besides, we notice that the emittance has increased by about 1.3 

mm⋅mrad for xε , but only 0.3 mm⋅mrad for yε , over a distance of 3.2 meter (from 

RC1 to RC6). This asymmetric increase is possible because ten bending dipoles from 

RC1 and RC6 may result in larger emittance growth in the horizontal (x) plane due to 

the dispersion effect [58]. 

Based on the above analysis, we believe that the linear space-charge 

correction is a practical technique for intense beam tomography. An even more 

realistic phase space distribution can be resolved using current results as an initial 

guess, and running the PIC code iteratively in order to fit to the measured (x, y) 

density profiles, thus incorporating the nonlinear space-charge forces self-

consistently. The numerical convergence will depend on a good initial particle 

distribution, e.g. the distribution from the current tomographic method including the 
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linear space-charge correction. Combining both the tomographic imaging and the 

self-consistent PIC code results will be a challenging study in the future. 
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Figure 6.8: Phase space tomography for the 7 mA beam in the ring chamber RC1: (a) 

spatial (x, y) beam pictures; (b) (x, x′) phase space distribution; (c) (y, y′) phase space 

distribution. 
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Figure 6.9: Phase space tomography for the 7 mA beam in the ring chamber RC6: (a) 

spatial (x, y) beam pictures; (b) (x, x′) phase space distribution; (c) (y, y′) phase space 

distribution. 
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Chapter 7 Summary and Conclusion 

We reported in this dissertation a number of beam control techniques 

developed for the intense beam transport experiments in UMER. 

The design of UMER demands rigorous control of beam characteristics over 

long distances. For example, the beam centroid error, beam rotation, and beam 

mismatch are required within 0.5 mm, 10 deg., and 0.5 mm, respectively. After 

realizing the beam steering, skew correction, and matching, we are able to achieve the 

uncertainty in dipole currents corresponding to beam position changes on the screen 

of only 0.1 mm, and reduce the beam rotation to 4 deg. and mismatch to 0.3 mm, 

approximately, for a 24 mA beam (χ = 0.90). 

In Chap. 2, we presented a technique for optimal beam steering. The 

optimization criterion consists in finding the right deflection angles for two magnet 

steerers so as to steer beams through the axes of two quadrupoles, which defines the 

ideal orbit for the beam transport. The algorithm only depends on the relative beam 

position motions on the detector (phosphor screen/BPM), thus avoiding the 

calibration of the detector’s centers with respect to adjacent quadrupoles. The steering 

procedure can be summarized in two steps: (1) determine the dipole current relation 

between the two steerers corresponding to beams going through the center of the first 

quadrupole, which can be done by scanning the first quadrupole and observing the 

relative beam position change on the detector; (2) scan the second quadrupole to 

determine optimal dipole currents for the two steerers. Mathematically, the steering 

process only involves two linear regressions, and is therefore very reliable and 
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suitable for computer automation. For the single-turn beam transport experiment in 

UMER, we have successfully employed this steering algorithm to find the optimal 

setting for each ring dipole, which reflects a local optimum based on the local Earth’s 

field and other mechanical inaccuracies. This will establish a baseline for multi-turn 

operation. In the future, the global optimization of the multi-turn steering must lie in 

the vicinity of the dipole setting found here. 

In Chap. 3, we reported the development of a new quadrupole rotation (skew) 

corrector. The skew corrector is implemented using a regular PC magnet and 

mounted over the main PC quadrupole with a 45o rotation. By powering the main and 

skew quads with different current supplies, we can independently adjust the normal 

and skew quadrupole components, so that the quadrupole field is rotated 

electronically. By using the rotating coil magnetometer, we have characterized the 

field quality of the new (main + skew) quadrupole assembly. Not only does the 

measured quadrupole field rotation agree very well with the prediction, but also the 

measured higher order harmonics (sextupole, octupole, decapole, duodecapole) are 

very small. This result demonstrates that the new skew quadrupole can be used in 

practice. In order to gain a better understanding of the effects of rotated quadrupoles 

in UMER, we designed a controlled experiment using the skew quad fitted with the 

first main quadrupole in the injector line. By varying the skew quad current, we 

measured skewed beam cross-section densities downstream using a movable 

fluorescent screen along the beam-line. For comparison, we simulated beam evolution 

using the WARP PIC code under the same skew condition. Both measurements and 

simulations show good agreement regarding beam rotations and shapes. To 
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demonstrate the application of the new design, we developed a general correction 

scheme to correct severe beam rotations in the UMER ring lattice. For the transport of 

the 24 mA beam, we see a significant improvement by using only one skew corrector, 

i.e., the standard deviation of the rotation angles is reduced from 16.2o to 3.8o after 

the correction. A future improvement can be realized by adding a second corrector, 

which may finally eliminate the residual beam rotations. 

In Chap. 4, we presented beam matching studies for space-charge-dominated 

beams in the UMER facility. We employed both simple rms envelope codes and 

complex PIC simulations to facilitate the beam optics design. For the ring lattice 

design, a dipole model with field index 0.72 has been developed to include focusing 

from the bending dipoles in the envelope codes. The field index is obtained from a 

dipole field calculation by a new magnetic field solver, MAGLI. The accuracy of this 

model has been demonstrated by comparing it to the PIC simulations including 

realistic three-dimensional magnetic fields and bends. In designing the matching 

section, we intend to inject the beam into the ring with the desired beam radii and 

slopes (four constraints) as dictated by the results from the ring lattice design. Since 

the UMER injector has seven adjustable parameters, there are an infinite number of 

matching solutions. With the use of envelope codes, we found a large number of 

solutions in a discrete space using a brute-force method. We further chose the optimal 

one among these solutions according to some specific criteria, e.g., minimizing the 

largest envelope excursion. Next, we reported an experimental study on empirical 

beam matching. It is motivated by the fact that the implementation of the calculated 

magnet strengths in a real experiment normally does not yield true matching 
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conditions. We developed a systematic method for on-line adjustment of quadrupole 

strength in the matching section. For the 24 mA beam, the standard deviations of 

mismatched X, Y beam dimensions before the empirical matching are 0.45 mm, 0.43 

mm, respectively. After empirical matching is implemented, the deviations are 

reduced to 0.28 mm and 0.21 mm for X, Y, respectively. A possible improvement for 

further reducing these residual errors can be accomplished by another successive 

iteration using the same method. Future work should involve a similar procedure for 

matching the 100 mA beam. The results we obtained in the matching section design 

will set up a baseline for that work. Even more interestingly, we can develop a similar 

program for empirical halo reduction. In order to more accurately determine the 

number of halo particles, a high-resolution camera is necessary. 

In Chap. 5, we proposed a new injection scheme for multi-turn operation in 

UMER. Instead of using two pulsed and physically overlapping quadrupoles, the new 

scheme requires only one large DC quadrupole centered symmetrically on the 

bisector of the injector legs and the ring, which serves as both the focusing magnet 

and the bending magnet for the injected as well as the circulated beams. This new 

scheme reduces the mechanical and electrical complexities of the original design, but 

also makes the beam optics more complicated. In order to verify that this is a viable 

scheme for multi-turn operation, we first studied single particle motion by matrix 

analysis. It yields the required deflection angles for all the involved dipole magnets. 

The analytical results agree very well with the WARP-PIC simulation. The WARP 

simulation also shows that the optics is stable when there are injection errors. After 

understanding the beam centroid motion, we simulated beam matching for multi-turn 



 

 122 
 

operation. Since the large DC quadrupole has longer fringe fields and induces 

asymmetric (x, y) focusing when particles are injected with an angle, the periodic 

FODO structure is altered around the injection region. Despite these drawbacks, we 

can still work on a solution for rms envelope matching. The solution for the 24 mA 

beam exhibits a slight mismatch (~0.5mm) that does not grow for the following turns. 

It is an acceptable result considering the effects stated above. From an experimental 

point of view, though, the true matching condition must be achieved with on-line 

adjustment of magnet strengths as stated in chapter 4. Another key issue for the future 

experiments (after closing the ring) is beam steering. The matrix analysis will be a 

guideline for initial dipole setting. Refinements should be possible by using the 

optimal steering method we presented in chapter 2. 

In Chap. 6, we reported the implementation of phase space tomography for 

UMER beams. We first used the pencil beam (0.6 mA) as a test beam for 

benchmarking tomography in UMER. By scanning three quadrupoles, we have 

achieved full π phase space rotation. We performed the tomography experiments at 

the ring chamber RC1 and RC6, and found the following results worth noting: (1) 

The reconstructed phase space images exhibit very high picture qualities; (2) The 

calculated 4×rms emittances (5.4 µm in RC1, 5.8 µm in RC6) from the reconstructed 

distributions are close to predicted values; (3) The reconstructed phase space 

distributions are consistent with the directly measured spatial density distributions, in 

other words, the X, Y rms beam sizes calculated from both distributions agree very 

well; (4) A hollow velocity distribution can be seen from the reconstructed phase 

space in RC1. This result also agrees with the earlier studies about the effects from 
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the cathode grid. After testing the pencil beam, we also employed this technique for 

the 7 mA beam, which has a much higher intensity (χ ≈ 0.78). For an accurate 

reconstruction, we estimated linear space-charge force from the beam envelopes, and 

included the linear space-charge force in the reconstructions. The results show slight 

asymmetry between the x, y emittances and a small emittance growth from chamber 

RC1 to RC6, which is reasonable considering the effects from the bending dipoles. 

For a future study, it should be possible to combine both the tomographic imaging 

and the self-consistent PIC code including the nonlinear space-charge forces. 

We have demonstrated several new beam control techniques developed for 

UMER facilities. Most of the methods are very general and can be easily applied to 

other machines. Combining various control techniques will be particularly interesting 

and challenging. For example, the combination of both skew quadrupole and 

tomography may bring up a breakthrough in four-dimensional ),,,( yyxx ′′  phase 

space reconstruction. 
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