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Creep and creep-corrosion, which are the most important degradation mechanisms in 

structures such as piping used in the nuclear, chemical and petroleum industries, have been 

studied. Sixty two creep equations have been identified, and further classified into two simple 

groups of power law and exponential models.  Then, a probabilistic model has been developed 

and compared with the mostly used and acceptable models from phenomenological and 

statistical points of view. This model is based on a power law approach for the primary creep 

part and a combination of power law and exponential approach for the secondary and tertiary 

part of the creep curve. This model captures the whole creep curve appropriately, with only two 

major parameters, represented by probability density functions. Moreover, the stress and 

temperature dependencies of the model have been calculated. Based on the Bayesian inference, 

the uncertainties of its parameters have been estimated by WinBUGS program. Linear 

temperature and stress dependency of exponent parameters are presented for the first time.  

The probabilistic model has been validated by experimental data taken from Al-7075-T6 

and X-70 carbon steel samples. Experimental chambers for corrosion, creep-corrosion, 

corrosion-fatigue, stress-corrosion cracking (SCC) together with a high temperature (1200 
0
C) 

furnace for creep and creep-corrosion furnace have been designed, and fabricated. Practical 

applications of the empirical model used to estimate the activation energy of creep process, the 

remaining life of a super-heater tube, as well as the probability of exceedance of failures at 

0.04% strain level for X-70 carbon steel.  
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Motivation and Outline 

Thermal power plants and refineries around the world share many of the same problems, 

namely aging equipment, high costs of replacement, and the need to produce more efficiently 

while being increasingly concerned with issues of safety and reliability. For equipment operating 

at high temperature, there are many different mechanisms of degradation, some of which interact 

with each other, and the rate of accumulation of damage is not simple to predict. 

The principal deterioration mechanisms in high temperature plant are creep damage, 

micro-structural degradation, high temperature fatigue, creep-fatigue, hydrogen embrittlement, 

thermal shock, erosion, and high temperature corrosion of various types. Besides, although stress 

corrosion cracking and aqueous corrosion are not generally expected in high temperature 

components, they may cause problems during the components cooling while liquid is still present. 

Creep is one of the most serious high temperature damage mechanisms. It involves time-

dependent deformation. High temperature creep cracking generally develops in components that 

fail over an extended time such as boiler super-heater, petro-chemical furnace, reactor vessel 

components and gas turbine blades, and all other components operating at high temperature. In 

addition, local overheating at high temperatures may cause local deformation with large plastic 

strains and local wall thinning. In-service degradation with creep is one of the most critical 

factors determining the structural integrity of elevated temperature components in power plants, 

chemical plants, and oil refineries. Therefore study of creep, fatigue, corrosion and their effects 

on life time of materials subjected to high stress at high temperature is necessary. To investigate 

the pipeline health, risk and reliability, it is highly important to model creep and creep-corrosion 

phenomenon to characterize the observed deformation and fracture with respect to time.   
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In order to make such assessments on a sound basis, this thesis intends to address in detail 

the issues related creep relations and classifications to develop a probabilistic model derived from 

a physics of failure approach. 

In chapter one, the general definition of creep and creep mechanisms from 

phenomenological point of view is provided. Besides, a classification of creep relations 

describing the creep curves is given together with the classification of creep models according to 

strain-time-, stress-, and temperature dependency; another classification is provided with respect 

to three parts of the creep curve. 

In chapter two, a physically informed empirical model is developed and justified in its 

comparison with the mostly used and acceptable models from phenomenological and statistical 

points of view. This model that based on a power law approach for the primary creep part and a 

combination of power law and exponential approach for the secondary and tertiary part of the 

creep curve captures the whole creep curve appropriately. Besides, stress and temperature 

dependencies of our model are presented. 

In chapter three stress and temperature dependencies of parameters of creep model from 

published data are specified. 

In chapter four, the new probabilistic model is validated by experimental data taken from 

Al-7075-T6 and X-70 carbon steel samples. The details of experimental designs of chambers for 

corrosion, creep-corrosion, corrosion-fatigue, stress-corrosion cracking (SCC) (to do the 

experiments both on CT and dog-boned steel and Aluminum samples), and a high temperature 

(1200 
0
C) furnace for creep and creep-corrosion (gas pressure) furnace both for CT and dog-

boned samples are provided.  
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In chapter five, uncertainties of the mechanistic models as well as their parameters were 

estimated by WinBUGS program based on Bayesian Inference. 

In chapter six practical applications of the empirical model to estimate the activation 

energy of creep process were provided, and two case studies to estimate the remaining life of a 

super heater tube, and probability of exceedance of failures at 0.04% strain level for X-70 carbon 

steel were given. 
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Chapter 1: Creep and Classification of Creep Models 

 1.1. Introduction and Definition of Creep 

Creep is the occurrence of time dependent strain in material under constant stress, 

normally at elevated temperature. Creep occurs as a result of the competing processes of work 

hardening caused by the applied force (tensile or compressive stress) and of annealing due to 

high temperature. Creep usually attributed to vacancy migration in grains of bulk materials or 

along the grain boundaries in direction of applied stresses, (Nabarro-Herring, and Coble 

mechanisms), and causing grain boundary sliding and separation, and dislocation climb and 

cross-slip.  

Creep deformation also continues until the material fails because of creep rupture. Creep 

occurs usually at high temperatures typically at 40-50% of the melting point of the material (Tm) 

in Kelvin. In crystalline materials the activation energy Q is approximately equal to the 

activation energy of the self-diffusion of the material. Diffusion of atoms and vacancies at grain 

boundaries and in grains in direction of applied tensile stress result in an elongation and in a 

decrease in cross section of materials in a creep experiment.  Besides, since enthalpy of vacancy 

formation is correlated with the binding forces in the material and thus with the melting 

temperature, then the homologous temperature (T/Tm) is used as a parameter to characterize the 

creep properties [1]. 

High temperature materials have a large value of binding energy and so they need a large 

amount of energy to create and move vacancies. A rule-of-thumb is the maximum service 

temperature of mechanically highly stressed materials with T/Tm=0.5. Approximate maximum 

service temperature Tmax of several materials compared to their pure melting points Tm are given 
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in Table 1.1 [1]. Exceptions to the rule are Ni-based super-alloys with higher service 

temperatures used as aero engines. 

Table 1.1: Approximate maximum service temperature T(max) of several materials under 

high mechanical stresses compared to their pure melting points T(m) [1] 

Material Tm[K] Tmax[K] Tmax/Tm 

Al-alloys 933 450 0.48 

Mg-alloys 923 450 0.49 

Ferritic steels 1811 875 0.48 

Ti-alloys 1943 875 0.45 

Al2O3 2323 1200 0.52 

SiC 3110 1650 0.53 

Ni-based superalloys 1728 1728 0.75 

 

Creep tests are usually made by deformation of material as a function of time when 

material is under constant or variable stresses at a constant elevated temperature.  

The standard practice for creep experiments of metallic materials is specified in 

ASTME139 [2], and the test may proceed for a fixed time and to a specified strain. It is usually 

not practical to conduct full-life creep tests, because such a test takes a long time.  

1.2. Creep Curve 

The basic record of creep behavior is a plot of strain (ε) versus time (t). It is often useful 

to differentiate this data numerically to estimate the creep rate dε/dt vs. time. The shape of the 

creep curve is determined by several competing mechanisms, including: 
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1. Strain Hardening:  With increasing strain, creep rate gradually decreases. 

This hardening transient is called “primary creep”. Then the creep rate reaches a 

nearly constant value known as the steady state creep rate or minimum creep rate .mε&
 

This value is usually used to characterize the creep resistance of materials and to 

identify the controlling mechanisms of the creep. 

2. Softening process: While strain hardening decreases the creep rate the 

softening process increases the creep rate.  So the balance between these factors and 

the damaging process determines the shape of the creep curves and results in a 

constantly increasing creep rate known as “secondary creep”. This process includes 

processes like recovery, re-crystallization, strain softening and precipitate over-aging 

(in precipitation hardened materials). The extension of the steady state part 

(secondary creep) is material dependent. This part is longer for solid solution alloys 

and shorter in particle strengthening alloys [12]. 

3. Damaging Processes:  As strain continues, micro-structural damages 

continue to accumulate and the creep rate continues to increase. This final stage, or 

“tertiary creep”, results in final failure of the material (gradual or abrupt rupture of 

the specimen). This process includes cavitations (such as voids at grain boundaries), 

necking of the specimen and cracks in grains and grain boundaries. 

Therefore, every creep curve is comprised of three different parts. These three parts with 

their stress and temperature dependencies are given in the following figure. 
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Figure 1.1: Illustration of a typical creep curve showing three common regions of creep 

curve (left) and their stress and temperature dependencies (right) [1,2] 

Studying three parts of creep curve helps in understanding the whole process.  

As the creep deformation begins to proceed in time, by applying a constant stress, the 

number of dislocations in material increases and the material get harder (hardening process).  

The increase of the dislocation density has a limit; as the result of keeping the material at 

an elevated temperature, the dislocations can change their places (by climbing) and re-arrange 

themselves in an energetically more favorable configuration or condition, called recovery. In 

other words, there is a competition between additional generation of dislocations (as the result of 

plastic deformation), and cancellation in the recovery process. Therefore, the creep rate becomes 

nearly constant as a result of such equilibrium and so the secondary part is built. In this part of 

the curve, local stress concentrations at grain boundaries help the formation of cavitations and 

pores. 
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 In tertiary creep, the creep rate increases again as a result of massive structural damages. 

At high stresses, the material fails due to formation of micro-cracks and cavitations at grain 

boundaries or because of inter-crystalline fractures [1, 2].  

 The secondary and tertiary parts of the creep curve are accompanied by a morphological 

change in materials. This morphological change starts from voids formation in the secondary 

parts; the aggregation of voids results in micro-cracks formation, which leads to complete 

rupture and fracture. Figure 1.2 shows these morphological changes for a steam generator 

schematically [3].  

 

Figure 1.2: Creep life assessment based on classification of creep damage from 

metallurgical point of view [3], formation of cavities at grain boundaries up to 

final creep fracture 

1.3. Comparison of Creep Curve with Cumulative Failure  

A typical schematic plot of strain and strain-rate versus time for an ideal material is given 

in the left side of Figure 1.3. As it can be seen in Figure 1.3, the counterpart of creep strain 

versus time is the cumulative failures versus time in reliability. Besides, the counterpart of the 
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strain-rate versus time in creep is the failure rate percentage versus time (Bathtub curve) in 

reliability. Therefore, a cumulative degradation process can represent the creep experiment in 

time. 

 

 

 

Figure 1.3: Strain and strain-rate versus time of a typical creep experiment (left hand) 

compared with the cumulative failures and failure rate in percent versus time in reliability 

(right hand) [4] 

In the primary (transient) part of creep curve, strain (cumulative failure in reliability) increases, 

while the strain rate (failure rate) decreases continuously. In the secondary part, the strain increases nearly 

with a constant rate; this is also called the steady state creep, which can be compared with the constant 

failure rate part in reliability bathtub curve. In tertiary part, the creep rate strongly increases until the final 

fracture happens. This part is accompanied by a massive inter-structural damage of the material 

(comparable with the wear out of bathtub curve).  
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1.4. Creep Mechanisms in Metals 

The response of a metallic body to mechanical stress σ below the yield stress of the metal 

results in an instantaneous elastic strain εel. The yield stress cannot be defined as a sharp limit. 

However, it can be stated that applied stress above the yield stress causes immediate plastic 

deformation. Creep in metals, i.e. the time-dependent plastic deformation of metals may occur at 

mechanical stress well below the yield stress. The creep strain rate �� is described and calculated 

as a function of temperature T, stress σ, structural parameters Si (such as dislocation density and 

grain size) and material parameters Mj (such as diffusion constants or the atomic volume). 

       ��� � ��, �, 	, 
�, �
�                                                                                                            (1.1)    

There are three basic mechanisms that play significant role in both creep process and 

time-depending plastic deformation characterization; these three mechanisms are: 

• Dislocation creep –(climb + glides) 

• Diffusion creep: Nabarro Herring (volume diffusion- : interstitial and  

vacancy-diffusion) 

• Diffusion creep: Coble (grain boundary diffusion 

1.4.1. Dislocation Creep – (Climbs + Glides) 

High stress below the yield stress causes creep by motion of dislocations, i.e. glide of 

dislocations. This motion of dislocations is hindered by the crystal structure itself (i.e. the crystal 

resistance). Further, discrete obstacles like single solute atoms, segregated particles or other 

dislocations block the motion of gliding dislocations. At high temperatures obstacle blocked 

dislocations can be released by dislocation climb. The diffusion of vacancies through the lattice 

or along the dislocation core into or out of the dislocation core drives the dislocation to change 
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its slipping plane and to pass by the obstacle. Atoms diffuse into or out of dislocation core, lead 

to dislocation climb and dislocation climb-and-glide leads to creep [5, 6]. Dislocation mechanism, 

optical microscopic and TEM pictures are given in the Figure 1.4. 

Dislocation rate of such a mechanism is given by: 

         ��� � � ���
�� �����                                                                                                         (1.2) 

where A is a material parameters, D is the diffusion coefficient, G is shear modulus, b is 

Burgers vector, σ is the applied stress, n is a material dependent constant, k is the Boltzmann 

constant, and T is the temperature given in Kelvin.  

 

Figure 1.4: Dislocation creep mechanisms, by vacancy climb and climb and glide over 

obstacle, optical micrographs showing longitudinal section near the fracture surface, and 

TEM Picture from dislocations on the fracture surfaces [5, 6] 

1.4.2. Diffusion Creep 

Diffusion creep is significant at low stress and high temperature. Under the driving force 

of the applied stress, atoms diffuse from the sides of the grains to the tops and bottoms. The grain 

becomes longer as the applied stress is applied, and the process will be faster at high 

temperatures due to presence of more vacancies. Atomic diffusion in one direction is the same as 

vacancy diffusion in the opposite direction. This mechanism is called Nabarro-Herring creep [5]. 
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The jump frequency of atoms and vacancies are higher along the grain boundaries. This 

mechanism is called Coble creep [5, 6]. The rate controlling mechanisms in both cases are 

vacancy diffusion, or self-diffusion. These two mechanisms are shown in Figure 1.5. 

Strain rate of these mechanisms are given by:  

       ���� � ��� ��
��

��
��                ��� �  �� �� !�"

��
��                                                                        (1.3) 

where, d is the grain diameter, Ω is the volume of a vacancy; δ is the grain boundary 

thickness, σ is the external stress, DV is the diffusion coefficient for the self-diffusion through the 

bulk material, and Dgb is the diffusion coefficient for the self-diffusion along the grain boundary. 

So it is possible to use these relationships to determine which mechanism is dominant in a 

material; varying the grain size and measuring how affect the strain rate. 

 

Figure 1.5.: Different diffusional creep mechanisms (Nabarro-Herring and Coble), and 

grain growth, cavitation, inter-granular and trans-granular mode of rupture and rupture 

dynamic [5, 6] 
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1.5. Creep Deformation (Mechanisms) Map 

Deformation and fracture mechanism map, developed by Ashby and Mohamed and 

Langdon, is a useful tool to characterize the type of deformation and the relevant fracture 

mechanisms [7, 8]. The deformation map helps to find the mode of fractures (inter-granular or 

trans-granular) of that special material. The maps of pure Aluminum (for 7075-T6 Aluminum), 

and iron (for X-70 carbon steel), used for experiments of this thesis, are given in Figure 1.6. 

 

Figure 1.6.: Creep deformation map of pure Aluminium and Iron with given different 

fracture modes of Tran- and inter-granulare rupture mechanisms [7, 8, and 9] 

Creep experiments can be conducted according to the given temperatures and applied 

stresses given above for aluminum and steel alloys, and so it is possible to prove the inter-

granular or trans-granular mode of fracture of the samples accordingly. 

 1.6. Factors Affecting the Creep Resistance of Materials 

It is very important to note that factors such as heat treatments, grain orientation and 

solution treatment significantly affect the creep curve in its primary, secondary and tertiary parts. 
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The creep curve is not only dependent on the heat treatment but also on the grain orientation of 

the material under test because the fracture toughness of a material commonly varies with grain 

direction.   

Figure 1.7 shows the creep curves of Al7075 subjected to one stress (8.8 MPa) and one 

temperature (648K) in different orientations and previous heat treatments. As it can be seen, the 

creep curve forms are highly affected by the above-mentioned factors [10-12]. 

                           

 

Figure 1.7: Tri-planar optical micrographs showing micro-structural features observed in 

7075 Al. Top and typical creep curves showing their true tensile strain, as a function of 

time. samples tested under uniaxial and the same conditions [11,12] 
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1.7. Classification of Creep Relations Describing the Creep Curves 

1.7.1. Introduction 

More than sixty-two creep relations (Appendix) from Kelvin-Voigt creep model (1898) 

[13] to Holmström- Auerkari- Holdsworth (Logistic Creep Strain Prediction model (2007) [14], 

by searching the literature were identified. Thirty-three of these models describe the creep 

process according to power low and twenty-eight of them are based on the exponential approach 

(Appendix). Logarithmic approach was considered as power law and sine hyperbolic and cosine 

hyperbolic relations as exponential approach. 

It should be mentioned that nearly all of the exponential approaches are based on the idea 

of the Kelvin-Voigt of visco-plastic deformation of creep in materials. Recent investigation 

shows that this approach is unable to describe the primary part of the creep curve; in addition, 

recent Evan’s attempt to extend his 4-theta to 6-theta model [15] (by addition of more parameters) 

shows that exponential approach is not an adequate approximation for describing the creep 

process. 

First the idea behind the visco-plastic creep approach of Voigt model is described. 

Description of creep process as a visco-plastic process goes back to the Kelvin–Voigt model [13] 

around 1898, known as the Voigt model, which consists of a Newtonian viscous damper 

(dashpot = D) and Hookean elastic spring (S) connected in parallel. Since the two components of 

the model are arranged in parallel, the strains in each component are identical. 

  �� � �� � �#                                                                                    (1.4) 

The total stress is the sum of the stresses of each component. 

�� � �� $ �#                                                                                                                                           (1.5) 
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where   �� � % · �'�� , ()* σ+ � , · � -.	/ % � 0.1231.	4, , � materials Young′s Modulus  
Schematic representation of Kelvin-Voigt model is given in the Figure 1.8. 

 

Figure 1.8: Schematic representation of the Kelvin-Voigt creep model 

This model represents a solid that undergoes reversible, viscoelastic strain. By applying a 

constant stress, the material deforms at a decreasing rate, and approaches a steady-state strain. 

When the stress is released, the material relaxes to its un-deformed state. At constant stress 

(creep), the model predicts a strain that tends to σ/E.  

This model is described as a first order differential equation for stress to explain the creep 

behavior. 

��	� � , · ��	� $ % �'��                                                                                                               (1.6) 

Solving this differential equation leads to the following relation:                                                                                                    

  ��	� � �D
E · FG H IJKLMNO · PQR                                                                                                (1.7)                                                                 

This model is more applicable to materials such as polymers and wood for applying a 

small amount of stress [5]. 

Garofalo’s empirical equation [16] can be represented by: 
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� � �S $ TPFG H IJKLH P
PUQR $ ��V · 	                                                                                      (1.8)                                                                         

where ε0 corresponds to initial time independent strain that contains elastic and plastic parts, εt is 

the transient creep strain,  tr by Garofalo represent the transient time between the primary and 

secondary parts and �V�  is the strain rate of the secondary part.  

 Evans complicated 4-Theta model [17] could be written as: 

�W � XYF1 H exp�HX] · 	�R $ X^Fexp�X_ · 	� H 1RR                                                               (1.9)   

log�X�� � (� $ `� · � $ 2� · � $ *� · � · �                                                                            (1.10) 

�W � � $ a · � $ b · � $ c · � · �                                                                     (1.11) 

where θi, ai, bi, ci, di, and A, B, C, D are constants estimated by curve fitting and regression 

analysis. 

Garofalo’s empirical equation (1.8) and Evan’s model (Equation (1.9)) contain the 

following term for describing the primary creep 

F1 H exp�Hd · 	�R                                                                                                                   (1.12) 

which is exactly the same term in the Voigt’s (Equation (1.7)) for describing  the creep process.  

Sawada et al. [18] criticized the exponential relations describing the primary part of creep 

curve, and show that the power law is better representation of that part of curve (this is the 

reason that our empirical model uses a power law to account for the primary part of the creep 

process). 

 

 



15 

 

1.7.2. Classification of creep models according to: (Strain-time-, Stress-, and Temperature- 

dependency) 

At first almost all of sixty-two creep relations (62 creep relations) were investigated and 

according to their strain-time relations, their stress-and temperature- dependencies were 

categorized.  

In the first approach strain-time relations are divided in exponential, logarithmic, sinus-

hyperbolic, and power law approach.  Stress-dependency has exponential, power law and sine 

hyperbolic subdivisions and temperature-dependency is subdivided by power law, sine 

hyperbolic and linear forms. This classification is given below: 

I.  Strain-time- models 

1. Exponential-time Approach 

• Kelvin- Voigt (visco-plastic creep) model [1898],[1] 

��	� � �D
E F1 H exp�H �, %⁄ � · 	�R                                                                              (1.13) 

                    Where % is the viscosity, E is the elastic modulus, and �S is the applied initial   

                    stress 

• Evans and Wilshire-(Theta-Projection)-model [1985] 

�W � XYF1 H exp�HX] · 	�R $ X^Fexp�X_ · 	� H 1RR 
log�X�� � (� $ `� · � $ 2� · � $ *� · � · � 

�W � ( $ ` · � $ 2 · � $ * · � · �                                            (1.14) 

                              where θi are material constants dependent on stress and temperature like   

                         the final     
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                         strain �W.  Parameters a, b, c, d and ai, bi, ci, and di are constants. 

 

• Garofalo-model [1965]                                                                             

 

                                                                 �� � �SfF1 H exp�H` · 	R $ ��Wghi · 	                                          (1.15)    

       where   ��Wghi  is the minimum creep rate, b is a constant, and   �S′   is the primary  

       strain  

2. Logarithmic-time Approach 

• Phillips model [1905]    

                                                 � � �S $ � log�1 $ a · 	�                                                             (1.16)   

                                       Where A, B, ε0 are constants 

•  Mott and Nabarro [1948]      
                        � � � · Flog�1 $ a · 	�R]/^                                                            (1.17)                                  

3. Sinus-hyperbolic-time Approach 

• Parker model [1958] 

                               �k � � $ a · sinh Fb · L ��DQ
m
"R                                                           (1.18) 

                       where A, B, C, and t0 are constants 

4. Polynomial-time Approach 

• Norton-Bailey-model [1929-1935], Simple 

               Tn � o · pq · Pr                                                                                      (1.19)         

                                                        Where A, n, and p are constants  
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• Graham-Walles model [1953], Simple Polynomial    

                                                          �W � (Y · 	Y/^ $ (] · 	 $ (^ · 	^                                                        (1.20)       

                                                    where ai are constants   

• Rabotnov-Kackanov-model [1986] Complexe Polynomial,   

    Structure deformation oriented (Continuum Damage Model)  

                                                 �k � �s t1HL1 H �
�uQ

m
vw ,    x � 'u

'�D·�u                                                          (1.21)       

                                               where   �s  is the rupture strain,  	s is the rupture time, and λ is a constant.  

5. Anderade’s 1/3 model [1910], Combination of Power-exponential- 

            time-model, [3]   

                           �k � � · F1 $ a�	 	S�⁄ m
"R · exp �Hy · 	�                                                            (1.22)    

                           where A, B, and k are constants.           

II. Stress Dependencies of the Creep Models 

1. Power Law model 

• Norton-Bailey model [1929-1935, 2003] 

                                   �W � � · �� · 	z                                                                                                               (1.23)      

2. Exponential model 

• Bartsch-model [1986-1995], [56, 57]       

�W � � · � · exp �H{|m }��⁄ · exp�Ha · �� · 	z $ 

                                 b · � · exp �H{|� }��⁄ · exp�Hc · �� · 	                                                      (1.24)    

                                where A, B, C, D, and p are constants.  {|m, and  {|� are activation energies. 
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• BJF (Jones and Bagley)-model [1995-1996], [59] 

 ~W � �F1 H exp�H	�R� $ a	, ()* 	 � �� �Y⁄ �� · exp �H{ }��⁄                                                    

                                                                                                                                                   (1.25)     

                                               where A, A1, B, β, and n are constants.                                                              

3. Sine Hyperbolic model 

• Prandtl model [1928], [4]       

                                                        � � a · sinh ����                                                                                        (1.26)    

                                                       where B, and C are constants  

• Nadai model [1938], [11] 

                                         ��V � ��S · sinh L ��DQ · exp LH ∆�
s�Q                                                                        (1.27)   

                                    where  ��S  , �S are initial strain rate , and initial applied stress. ∆H is the  

                                   activation enthalpy. 

III. Temperature Dependencies of the Creep Models 

1. Exponential 

• Modified Norton model [1929-1935, 1974], [6]     

                                    ������ � � · ��exp �{| }�� $ a · ��exp �{� }��⁄⁄                         (1.28)      

                                where A, B, and n are constants.   {|, and {�are activation energies 

• Weertman model [1955], [24] 

                                                 �� � � · �� · exp LH ��
��Q                                                                                (1.29)           

2. Sine Hyperbolic 

• Modified Nadai (by Conway) model [1967], [36] 
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                                              ��V � � · sinh�a · �s���  · exp �H ∆�
s��                                                            (1.30)             

3. Linear (or Power Law) 

• Davis model [NASTRAN]-NASA-STRuctural-  

           ANalysis-finite element Program [1976], [40] 

                                     �)���
��� � � $ a · � $ b · �] $c · ln��� $ , · ln��� $ �                    (1.31)        

                             where A, B, C, D, and E are constants. ��
��, is the tensoriel strain in the complex  

                              program.      

• Evans and Wilshire-(Theta-Projection)-model [1985],   

            [44] 

                                          �W � � $ a · � $ b · � $ c · � · �                                                                   (1.32)                

• Larson-Miller Type  

                                        T � nF��o $ ����P�R  �U  T � o · FP · ��r LH �o
��QRq                     (1.33)     

1.7.3. A New and Simple Classification of Creep Relations  

According to the classification given in previous part, strain-time models are categorized 

as exponential, logarithmic, sine hyperbolic and polynomial. The only power law-exponential 

form belongs to Anderade [Appendix, number 3] that can describe only one part (or region) of 

the creep curve.  

In this part, a new kind of classification is given, that considers the logarithmic 

subdivision as power law and the sine hyperbolic as exponential; and then the strain-time models 

are reduced to only power law and exponential. 
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This classification helps us to develop a probabilistic model based on power law for the 

primary region and a combination of power law and exponential approach for the secondary and 

tertiary part. This relation has the following form: 

�k � ��$�#/� � �	� $ a	�exp ��	�                                                                                  (1.34) 

Where �� is the primary strain, �#/� is the secondary and tertiary strain. Parameters n, m, 

and p are material constants.  

The proposed probabilistic empirical model is able to estimate the uncertainties in 

material parameters A, n, B, m, and p. Parameters A, and B are lognormally distributed (also not 

deterministic), and they can be refined by updating with experimental field data. Parameters n, m, 

and p are temperature and stress dependent.  

1.7.4. Classification of the Creep Models According to Three Parts of the Creep Model 

Most of the sixty-two creep relations are not capable to describe the three parts of the 

creep curve. Some of them capture only the primary and most of them are developed to explain 

the creep behavior of the secondary region. Only a few are capable to describe the whole creep 

curve. 

The proposed probabilistic empirical model belongs to the last class of relation that can 

capture the whole creep curve. Then, the proposed empirical probabilistic model is compared 

with acceptable and important creep relations not only in its phenomenological form but from 

statistical point of view (chapter 4).  Table 1.2 summarizes the most important creep relations 

that capture the whole creep curves.  

 



21 

 

Table 1.2: Most important creep model that describe the whole creep curve from primary (P), 

to secondary (S) and tertiary part applied to [10 Cr Mo (9-10)] steel alloys [81] 

Model Equation Model             Creep Range References 

Graham-Walles             [1955] Power law                   P/S/T [23] 

Evans and Wilshire 

Theta model                  [1985] 

Exponential                 P/S/T [44] 

Modified Theta model  [1985] Exponential                 P/S/T [47] 

Kachanov-Robotnov     [1986] 

 Robotnov 

Power law                   P/S/T [48-51] 

Bolton                           [1994] Power law *                P/S/T [54,55] 

Dyson-McLean             [1998] Exponential                 P/S/T [60] 

Modified Garofalo        [2001] Exponential                 P/S/T [61] 

Holmström- Auerkari- 

Holdsworth  (LCSP)     [2007] 

Power law *                P/S/T [72] 

Probabilistic. Model      [2011] Power law                  P/S/T [    ] 

             (*) Power law is given in a complex form.  For references given in the table see Appendix. 
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Chapter 2: 

Development of an Empirical Model and Testing Its Workability in 

Comparing with Acceptable Creep Models in the Literature 

2.1. Introduction 

In this chapter brief review over the most well-known and acceptable creep models and 

describe their strengths and shortcomings will be discussed. Then, a probabilistic empirical 

model according to power law for the primary part of the creep curve, and power law and 

exponential for the secondary and tertiary parts will be proposed. Finally, the proposed models 

will be validated and their parameters estimated with the experimental data and show that not 

only it has all the advantages of the well-known creep models, but also it is more flexible and 

accurate in presenting the experimental data. 

2.2. A Review of Creep Models  

Although a number of significant theoretical descriptions of creep have been presented, 

current knowledge is based primarily on finding a correlation between experimental results and 

micromechanical models. In the simplest form, the creep of different materials can be described 

by a phenomenological rate relation such as [1]: 

�� � � · �� · exp �M��s� �                                                                                                   (2.1) 

where A and n are material constants and Qc is the activation energy of the creep process. 

The external variables are temperature, T, and stress, σ, while specific values for n and Qc are 

associated with specific creep mechanisms. 
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In 2009, Sawada et al [2] selected four constitutive creep equations that are widely accepted as 

basic equations [3, 4], and examined long term creep curve behavior up to the secondary stage (for 

time >105 hr) for carbon steels and other materials. Sawada et al. found these curves could be 

best described by the following widely accepted constitutive creep equations: 

Power Law: � � �� $ ( · 	� $ ��� · 	                                                                                       (2.2) 

Exponential Law: � � �� $ (F1 H exp�H` · 	�R $ ��� · 	                                                  (2.3)     

Logarithmic Law: � � �� $ ( · ln �1 $ `	� $ ��� · 	                                                                (2.4)       

Blackburn’sEquation:  
� � �� $ (F1 H exp�H` · 	�R $ 2F1 H exp�*	�R $ ��� · 	                                                          (2.5)       

In the above equations, a, b, and c are constants,  εi is the initial strain, and ���   is 

minimum strain rate , t is time and � is the creep strain  

Sawada et al.[2] determined that the power law equation best fitted the actual long term 

creep curves for all steel materials, whereas the exponential law, logarithmic law and 

Blackburn’s equation did not represent the beginning of primary creep during long term testing 

[2]. 

Recently Holdsworth et al. [4, 15] reviewed some of the strain equations of interest to the 

European Creep Collaborative Committee (ECCC) and gave four important relations for 

secondary and tertiary creep in Ni-based alloys (applicable to another alloys too). These relations 

are listed below: 

1) Norton secondary creep equation[1]:      

�V� � A · σ� · exp �H �
���                                                                          (2.6)  
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                         Where  A, and n are constants, Q is  the activation energy, R is the gas  

                        constant , T is the temperature   

2) The Garofalo transient –secondary creep equation[5]: 

           � � �S · F�1 H exp�H` · 	�R $ ��� · 	                                                       (2.7)      

                                   where ε0 , b, ��� are constants, t is time and ε is the strain. 

3)  The theta transient-tertiary creep equation (Evans-Wilshire)[6]: 

            �W � XYF1 H exp�HX] · 	�R $ X^Fexp�X_ · 	� H 1RR                               (2.8) 

                    where θ1-θ4 are constants, t is time and ε is the strain.  

4)  The Dyson and McLean constitutive model[7]: 

�� � ��S�1 $ c�� exp LM�s�Q sinhF��1 H �� �S�1 H c�⁄ � �1 H ��R           (2.9)           

                    where Dd , Dp, and ω are damage parameters whose values range from 0 to   

                    1, H is a hardening parameter.  

Holdsworth et al. [4] suggested that the damage model may be considered as a strong 

candidate for a unified creep model which would represent both the plasticity and the creep 

behavior of the material. 

Besides all of the models previously mentioned, there are some models that are used for 

design, inspection and life assessment of components in high temperature facilities like the 

Graham-Walles [8], or modified Graham-Walles model [9].  This model is composed of four 

terms of a polynomial series that can be used to accurately describe any creep behavior. These 

four terms are shown below in the following relation:  
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�k � ∑ b� · � h��¡Y · 	�h � bY · � m · 	Y/^ $ b] · � � · 	 $ �b^ · � " $ b_ · � ¢�   (2.10)      

where  εc = strain, Ci and αi are constants, σ is the stress and t is the time.  

Graham-Walles superposition of the three individual terms shown in the equation above 

is given in Figure 2.1. 

 

Figure 2.1:  Graham–Walles approach is the superposition 

of three individual terms, schematically [17] 

2.3. Development of  a Probabilistic Model Based on Previous Work  

Among all of the creep models, the Theta-projection model (from Evans and Wilshire), 

modified Theta model (Murayami and Oikawa by setting θ2= θ4) [10, 11], and Graham Walles 

model were selected because of their accuracy of fitting the three stages of the creep curve [4, 9-

15]. The theta model gives us a good physics based behavior of the creep process as a competing 

mechanism between hardening and softening of materials in the creep process. 

The theta projection model is based originally on the Kelvin-Voigt model (or hardening-

softening principle) and later by the Garofalo Model. This model is composed of two parts: 

primary and tertiary parts. The primary part is described by the relation shown below and 
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assumes that secondary creep remains constant after prolonged time. This model ignores the fact 

that a power law fit best describes primary creep. 

�z � XY�1 H exp�HX]��                                                                                            (2.11)
       

This model can not describe creep accurately; moreover, due to its wide range of 

parameters to describe creep process, the calculation is very complex. Besides, the tertiary part is 

described by the following relation ignores the abrupt breaking of the sample described by the 

Kachanov-Rabotnov–constitutional Damage model [12- 14]: 

�z � X^�exp�X_� H 1�                                                                                            (2.12)
         

  Current damage based models include both the plasticity and creep behavior of 

materials which make them more representative models, but these models contain too many 

parameters and require complex numerical integration.  

On the other hand, although Graham-Walles model [8], is purely polynomial and reflects 

the physical behavior well, it ignores the exponential behavior of the tertiary creep region.  

It has been shown previously that it is a power law expression that can describe primary 

creep very well. Therefore, if a power law expression for the primary part is combined with a 

power/exponential expression for the secondary and tertiary creep, the resulting expression is 

believed to provide a better picture of the Physics of Failure (PoF) based behavior of creep as 

well as a better curve fitting. The combined probabilistic empirical equation is a superposition of 

the primary and the secondary/tertiary parts that accurately describes the abrupt failure of a given 

material during creep. The combined model can be described by the following relation. 

~k � ~�£~#/� � �	� $ a	�exp �� · 	�                                                                      (2.13) 
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where the variables A and B contain stress and temperature dependencies like the Norton 

equations and n, m and p are material constants. 

   The creep rate function of the model is defined by the following relation: 

�¤�
�� � )�	�MY $ a · 	�MY¥z��¦ $ � · 	�                                                                   (2.14) 

2.4. The Effect of Model Parameters on the Form of the Creep Curve 

First, the effect of changing parameters A and n on the shape of the creep curves is 

studied. The primary part is given by εp = A t
n
  where the coefficient A represents the scaling (up 

and down) and n is responsible for the changes in curvature of the creep curves as shown in 

Figure 2.2, and 2.3. 

 

Figure 2.2: The effect of parameter A on creep curves 
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Figure 2.3: The effect of n on behavior of creep curves 

Next the effect of parameter B on the resulting creep curves is studied. Changing the 

parameter B scales the creep curves (up and down) from the deflection point as shown in Figure 

2.4. 

 

Figure 2.4: The effect of parameter B on creep curves 

Next the effect of changing the power exponent m and the exponential p in the combined 

equation on the resulting creep curves was studied. Changing the m and p parameter result in 
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changes in the curvature of the creep curves as shown in Figure 2.5. Changes in m values result 

in sharp curvature changes while changes in p values result in gradual changes in the curvature 

of the creep curves.  

 

Figure 2.5: Scaling effect of m and p on creep curves 

The proposed empirical probabilistic model gives the possibility of changing the scale as 

well as the curvature of the creep curves just like the Evans and Wilshire model. We are 

additionally able to change the curvature with sharper curvature changes like those observed by 

the Kachanov and Robotnov constitutional damage model. An additional advantage of this 

model is that the parameters A and B can be described probabilistic and therefore it is possible 

to capture the uncertainty in experimental data and updating it with new experimental data.  
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2.5. Phenomenological Comparison of proposed Empirical Probabilistic Model with the   

       Well-Known Creep Models  

2.5.1. Comparison with Theta-Projection Model 

Evans and Wilshire [6] applied the Theta-projection model to polycrystalline copper 

with the use of the following parameters: 

XY � 2.408 ¬ 10M^ , X] � 2.306 ¬ 10M¯, X^ � 1.08 ¬ 10M^, X_ � 1.706 ¬ 10M¯             (2.15) 

   By using these parameters, the resulting strain-time expression looks like:    

�k � 0.002408 · �1 H exp�H2.306 ¬ 10M¯ · 	�� $ 0.00108 · �exp�1.706 ¬ 10M¯	� H 1  (2.16) 

The resulting Strain Rate-Time expression has the following form: 

*� *	 � 5.6 ¬ 10M²⁄ exp�H0.0020408	� $ 1.8 ¬ 10M²exp �1.706 ¬ 10M¯                     (2.17) 

It is shown that the proposed empirical model yields similar expressions to the ones 

developed by Evans and Wilshire for strain-time and strain rate-time. The strain-time and strain 

rate-time expressions of our model are given as:  

�k � 5 ¬ 10M³	S.³_¯ $ 3.86 ¬ 10M´	S._´µexp �1.612 ¬ 10M¯	�                                 (2.18) 

�� � 3.725 ¬ 10M³	MS.]¯¯ $ 1.81034 ¬ 10M´	MS.¯^Y exp�1.612 ¬ 10M¯	� F1 $ 3.4371 ¬
10M¯	R                                                                                                                           (2.19)                         

Figure 2.6 and 2.7 compare the resulting expressions of both models by plotting the 

strain versus time and strain rate versus time respectively. 
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Figure 2.6:  Strain vs. time comparison of the theta and proposed models 

 

Figure 2.7:  Strain rate vs. time comparison of the theta and proposed models 

As it can be seen in Figure 2.6, the two models produce nearly identical strain vs. time 

curves. The difference of the corresponding values between the two curves is approximately 

2.5x10
-5

. The two models produce nearly identical strain rate vs. time curves, as well.  
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2.5.2. Comparison with Kachannov-Robotnov-Creep-Damage Model  

In this part, the proposed empirical model is with one of the outstanding damage model 

of materials, called Kachanov damage model compared.  

  The phenomenological creep-damage equations were firstly proposed by Kachanov and 

(later by) Rabotnov [14]. Although, this model contains only one parameter, it can characterize a 

wide range of observed material. Besides, it is a relative robust model that can be quantified 

relatively easily. 

Kachanov represents continuum damage as an effective loss in material cross section due 

to internal voids. The internal stress increases with time as a function of damage. Kachanov 

represents this damage by the ratio of the remaining effective area A, to the original area A0.  

This area loss or damage is shown schematically in Figure 2.8. 

 

Figure 2.8:  Kachanov’s damage model (area loss ~ damage) [13] 

As damages accumulates, the internal stress increases from σ0 to σ value: 

              σ � σS AS/A                                                                                           (2.20) 

Rabotnov replaced this relation with a damage parameter ω like: 

� � �1 H � �S⁄ �                                                                                                         (2.21) 
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1 H � � � �S⁄                                                                                                             (2.22) 

Kachanov then assumes that the material obeys a secondary creep law similar to the 

Norton relation [1]: 

After some time t under the load (P= σ A), the original length L0 increased to L, and area 

A0 reduces to an area A. As a result the true stress at time t, for constant volume A0 L0 = A L is: 

         σ � σS ¶D¶ � σS ·
·D                                                                                                        (2.23)         

  Substituting this stress in the creep rate gives: 

       
 ¸¹�
¸D� � L ººDQ

» � L¶D¶ Q
» � Y

�YM¼�½                                                                                    (2.24) 

       ε¿� � ¸½�
�YM¼�À � ÁºD½

�YM¼�À                                                                                                   (2.25) 

where  m and p are constants. 

At time zero, ω =0 (no damage), but as damage increases, the creep rate increases. 

Finally, when ω reaches some critical value ωf , the strain rate tends to infinity and damage 

occurs (for ωf =1). 

Kachanov made a simple assumption that the damage rate should be a function of the σ0: 

Â¼
ÂÃ � ω� � ÁºDÅ

�YM¼�Æ                                                                                                        (2.26) 

 Solving the two rate equations together, one can estimate the continuity relation: 

�k � x�S� 	s Ç1H L1 H �
�uQ

Y/ÈÉ � x�Ê Ç1H L1 H �
�uQ

Y/ÈÉ                                              (2.27)   

ε

εË � Ç1HL1 H Ã
ÃËQ

Y/λÉ                                                                                                (2.28)   
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where tR is the rupture time and is given by: 

The rupture time is given by the following relation: 

t� � Y
Ì�Y£Í�ºDÅ                                                                                                                      (2.29)   

And the rupture strain  

�s � x · �Ê                                                                                                                               (2.30) 

where      

�Ê � ��S · 	s                                                                                                                              (2.31) 

And 

x � Y£�
Y£�£z                                                                                                                                (2.32) 

The shape of the strain-time curve is described by Equation (2.27) and is shown in Figure   

2.9. 

 

Figure 2.9:   Kachanov’s strain-time relation, mcr=minimum creep rate [13] 
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By applying Kachanov’s equation for different λ values, one can apply it to almost all 

classes of material. 

 Its shape is given by quantities which can be easily measured and within some limits it 

can approximate 0.90 percent of the life fractions of most of the materials [13]. Figure 2.10 gives 

the strain fraction versus life fraction for different λ values.  The damage character can be 

estimated using the λ values: λ=6, for ductile damage mode, λ=2, for brittle damage mode, and 

(2 ≤ λ≤ 6) describes the “mixed” damage mode of materials.       

 

 

Figure 2.10:  Strain fraction versus life fraction for different λ values describing different 

damage modes of materials from ductile (λ=6) to brittle (λ=2) [13] 

The creep strain assessments can be regarded as robust measurements of damage.   

Kachanov model uses a simple physical explanation to describe the tertiary part of creep curve. 

Although it gives almost good approximation for some materials, it is a model which considers 
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more characteristics of the third stage. As it is shown in the Figure 2.10, the primary part of 

creep curve is ignored.  

For damage evaluations, all three stages are important. Figure 2.11 gives a schematic 

creep curve that contains all three stages and we want to prove (check) our proposed empirical 

equation with it. 

 

Figure 2.11: Kachanov’s strain -time relation with and without 

primary strain [13] 

 Figure 2.12 represent comparison of our empirical model with the Kachnov damage  

model. 

 

Figures 2.12: Kachanov’s strain-time model (blue) compared with the proposed  

empirical model (red) 
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Kachanov’s creep equation with numerical values looks like [13]: 

ε¿ � 0.14 Ê F1 H L1 H Ã
²SSSQ

S.Y³R                                                                                (2.33) 

Then the numerical values of the proposed empirical model were evaluated and were 

compared with Kachanov creep-damage equations: 

ε¿ � 2.025 ¬ 10M´ tY.SµY $ 3.6638 ¬ 10M²_t]S.¯¯exp �0.000645t�                        (2.34)    

As it is seen in Figure 2.12, the proposed empirical model fits the Kachanov’s damage 

model very well, and thus it can be used as an abrupt damage model as well. 

 2.6. Statistical Consideration: Comparison of Our Empirical Model with Theta Model for   

        Derivation of Residual Errors 

Creep curves derived under the same test conditions usually exhibit a wide range of error 

and uncertainties. The error and uncertainties are not only arisen from the imperfection (and 

uncertainties) in the test methods, but also from the parameter estimations. To consider (and 

therefore control) the presence of errors in parameters estimations (which vitally affect the 

results of analyses); one should study the error propagation, the regression analyses and the 

parameter dependencies (autocorrelation). 

One of the established empirical relations for describing the creep process is the theta-

projection model. However, although it is a “good representation of the creep curves for 

materials of moderate and high ductility” (by using the exponential concepts in the primary and 

tertiary part of the creep curves), “it gives a poorer fit at low strains and times” [15]. One attempt 

to modify theta-projection model has been made by adding further parameters to achieve better 

agreement with given experimental data. 
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The modification has been performed by using nonlinear regression analysis to fit the 

data with theta (4)-projection and extended theta (6) models; then the residual is calculates as a 

measure of exactness for model comparison [15, 16]. 

Numbers (4) and (6) added to the titles of theta model indicates the number of parameters 

used in their relations. However, it should be mentioned that adding two extra parameters to 

theta (4) model makes the calculations and regression analysis more complicated.  

The proposed empirical model that considers the variation of residual with time as a 

measure of fitting, gives satisfactory results. Besides, it captures the primary part of the creep 

curve much better than the other two theta-models for the Aluminum alloy tested at 100 
0
C and 

340 MPa stress. Figure 2.13 shows the creep curves for an Aluminum alloy tested at 100
0
C 

and340 MPa with data of three models. 

 

Figure 2.13: Creep curves for an Aluminum alloy tested at 100
0
C and340 MPa with 

the data of three models [15] 

   Figure 2.14 compares the residual calculated for both theta (4) and theta (6) models. 
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Figure 2.14: Residual errors for theta (4) and theta (6) models 

Figure 2.15 shows the residual versus time for our empirical model; it also shows the 

superiority of our empirical power law model to capture the primary region of the creep curve. 

 

 

Figure 2.15: Residual errors versus time 

As it is shown in the Figure 2.15, residuals of the proposed model is in the range of  ± 

0.0005, also closer to zero level compared with 6-θ model.  
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2.7. Model Comparison with Akaike Relation  

Akaike, (1973-1974) [17] found a formal relationship for model comparison with the 

name of Akaike’s Information Criterion (AIC). AIC is described by:  

  �Îb � ) log��Ï� $ 2Ð,    -.	/ �Ï] � ∑ Ñ̂h�
� , ()*  ¥̂� � -��4�Ó�� H 4Ï�Ó���                            (2.35)                               

where   ¥̂�  is the estimated residual from the fitted model, and K is the number of model 

parameters. n: Number of independent measurements , and wi = Weight applied to residual of 

acquisition i,  y(xi)=f(xi) =for experimental data, and  4Ï�Ó�� =  for fitted values.         

It is easy to compute AIC from the results of least-square estimation or  a likelihood-

based analysis. Akaike’s approach allows identifying the best model in a group of models and 

allows ranking the rest of the models easily [see more in Appendix G]. The best model has the 

smallest AIC value. 

Long-term constant loading at elevated temperatures of materials leads to the 

development of creep behavior as a material damage process and to the failure of engineering 

structures or component [18]. Creep properties of materials form the basis to analyze the high-

temperature structure strength and life of materials under constant applied stresses. There exist 

some creep-damage equations, such as Kachanov–Rabotnov (K–R) creep-damage formula [19-

21], theta projection [22-28] model, and modified Theta-Omega model [21] that have been 

widely used to predict the creep damage and the residual strength of different materials. The 

proposed model is compared with these four models (using the Akaike information criterion). 

Four different models are: 

• Kachanov–Rabotnov (K–R) constitutive  



 

��Ñ � a ��Ô�i
�YMÕ�i           �� � c

Integration of  ��   and substitution in the relation for 

to the following simplified strain time equation:

          ε � ε� Ç1H L1 H Ã
ÃËQ

Y/λ

 where e and σe are, respectively equivalent creep strain and stress. 

principal stress, ω is the damage variable which can be ranges from 0

damage), and  ε� and t� are strain and time to rupture. 

material parameters which can be obtained from uniaxial tensile creep curves and the optimum 

method. 

• Theta-projection

                 �� � XYÖ1 H
where t is the time,

the equation to experimental data.

• Theta-Omega model

                  �� � ×�1�Ö1 H ¥Ó�

where X�1�, X�2�,
 curve shapes 

• Proposed empirical model

            �� � ( 	� $  2 	
where a, n, c, m and
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� c �È�m£�YMÈ��Ô�Ú
�YMÕ�Û                                                               

� and substitution in the relation for ��Ñ  and further integration results 

to the following simplified strain time equation: 

Q λÉ                                                                                          
are, respectively equivalent creep strain and stress. σ1 is the maximum 

is the damage variable which can be ranges from 0 (no damage) to 1 (full 

strain and time to rupture. The terms D, B, n, Φ

material parameters which can be obtained from uniaxial tensile creep curves and the optimum 

projection model  

Ö ¥Ó��HX]	�Ü $ X^Ö¥Ó��X_	� H 1Ü                      
where t is the time,θY, θ], θ^ and θ_ are parameter constants determined by fitting 

the equation to experimental data. 

Omega model 

Ö ¥Ó��H×�2�	�Ü $ L MYÝ�^�Q Þ)�1 H ×�4�	�                     

, X�3� and X�4� are parameter constants characterizing creep 

Proposed empirical model 

	�exp �� 	�                                                             
and p are parameter constants describing the creep curve.

                                         (2.36) 

and further integration results 

                                                                   (2.37) 

is the maximum 

(no damage) to 1 (full 

, Φ, χ, and λ are 

material parameters which can be obtained from uniaxial tensile creep curves and the optimum 

                                        (2.38) 

are parameter constants determined by fitting  

                               (2.39) 

are parameter constants characterizing creep  

                                            (2.40) 

are parameter constants describing the creep curve. 
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The data from experimental and damage simulation of creep damage for duralumin alloy 

2A12, given in the literature [29] was used and fitted to all above-mentioned models. Then 

Akaike Information Criterion (AIC) was calculated. The results are given in Figure 2.16.  

 

Figure 2.16: Comparison of different creep models with the given experimental data 

Besides, the corresponding AIC values for different are given in the Table 2.1.  

Table 2.1: AIC-values from comparison of different creep models for the given 

experimental data 

 Empirical-

model 

Theta-model Theta-Omega-

model 

K-R-model 

n 39 39 39 39 

k 5 4 4 6 

AIC -432.3   < -422     < -363     < -357 

 

where n is the number of observant (data), K is the number of parameters in the fitted model and 

AIC’s are values calculated for different models. 
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As it can be seen in Table 2.1, the AIC-values can be ranked in ascending order as 

follows: Empirical Model, Theta Model, Theta-Omega Model and the K-R Model respectively, 

which indicates that the proposed empirical model is a superior model for describing the creep-

damage process. It should be mentioned that K-R model which has the highest number of 

parameters (variables), has the worst ranking.  

2.8. Model Uncertainty (Bayesian) Approach for Model Comparison 

In order to compare the models from Bayesian inference [30] point of view, we use 

model uncertainty approach with the use of experimental strain data of duralumin alloy 2A12, 

extracted from literatures [29, 31]. For this comparison WinBUGS program (a Windows-based 

environment for Markov Chain Monte Carlo (MCMC) simulation) was used. 

We estimated 2.5% and 97.5% boundary confidence intervals for all four models. As it 

can be seen in Figure 2.17, the confidence intervals of our empirical probabilistic model are 

closer to the experimental data. This indicates that our model can fit the experimental data better 

than the other models.  
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Figure 2.17: Comparing different model data: predicted strain model data with the 

measured data   
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Chapter 3: 

Specifying Stress and Temperature Dependencies of Our Creep Curve 

Parameters 

3.1. Specifying Stress Dependencies 

According to American Standard for Testing Materials (ASTM), Creep deformation is 

defined as any strain that occurs when a material is subjected to a sustained stress [1-2]. During 

creep, tensile specimen under a constant load will continually deformed with time. This 

deformation depends on three major parameters: stress, time and temperature. Therefore, the 

most general form of creep equation is: 

�k � ß��, 	, ��                                                                                                                         (3.1) 

Although different forms of stress dependencies have been reported for the creep strains 

[1-5], there are two forms that are widely used: 

• Power law, given by Norton and Bailey (1929) [4], and , Johnson et.al.  

            (1963) [5]: 

 �k � � ·  �� · 	�                                                                                   (3.2) 

            where σ, is the stress, and A, n, and m are material dependent parameters. 

• Exponential forms, given by Dorn (1955) [6], Soderberg (1936) [7],  

McVetty (1963) [8], Garofalo (1965) [9], and Evans and Wilshire (1985) 

[10,11], which gives the dependencies in an exponential form: 

�k � � · exp �� �S⁄ )                                                                                (3.3) 

                   where σ, is the applied stress, and σ0 is the initial stress, (material constant)  
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                like the yield strength, σy. 

This research suggests the following form for the stress dependencies for the parameters 

of the proposed empirical model: 

�k � � · 	� $ a · 	�exp �� · 	�                                                                                                 (3.4) 

where   εc is the creep strain, t is the time and A, n, B, m, and p are material parameters (that 

depend on stress and temperature). 

In doing so, Levi de Oliveira Buneo’s [12] data used for 2-1/4Cr-1Mo high temperature 

pipeline steel (given for just one temperature (600°C), and one stress (138 MPa)) was extended 

to different stress conditions. Figure 3.1 shows Levi de Oliveira Bueno’s experimental data 

versus the theta projection model [12].  

 

Figure 3.1:  Stain versus Time relation for 2-1/4Cr-1Mo pipeline alloy under an 

applied stresses of σ=138 MPa, and T=600 
0
C in vacuum and air [12] 
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3.2. Results and Discussion 

Table 3.1 (a) and (b) show the extended-data for 2-1/4Cr-1Mo high temperature pipeline 

steel used for pressure vessels in power plants and oil refineries. We calculated the strain values 

versus time for different applied stress at 600
0
C. 

Table 3.1: Data calculated with our model at T=600°C, evaluated under different stress 

conditions (a), and (b) for (2-1/4)Cr-1 Mo pipeline steel material 

(a) 

σ [MPa] 34.5 51.75 69 86.25 94.875 103.5 107.8 112.125 

Time[hrs] ε [%] ε [%] ε [%] ε [%] ε [%] ε [%] ε [%] ε [%] 

0 0 0 0 0 0 0 0 0 

20 0.011 0.033 0.096 0.278 0.468 0.786 1.016 1.312 

40 0.222 0.064 0.184 0.514 0.852 1.400 1.789 2.281 

60 0.033 0.093 0.263 0.718 1.171 1.891 2.395 3.028 

80 0.042 0.121 0.335 0.894 1.439 2.293 2.888 3.635 

100 0.052 0.147 0.400 1.048 1.668 2.634 3.307 4.157 

120 0.062 0.171 0.460 1.183 1.867 2.932 3.678 4.631 

140 0.071 0.194 0.515 1.303 2.044 3.201 4.021 5.083 

160 0.079 0.216 0.565 1.412 2.204 3.452 4.350 5.532 

180 0.088 0.237 0.612 1.510 2.351 3.692 4.674 5.992 

200 0.096 0.256 0.655 1.601 2.489 3.928 5.002 6.471 

 

(b) 

 

σ [MPa] 120.75 125 129.375 133.6 138 142 146.625 

Time[hrs] ε [%] ε [%] ε [%] ε [%] ε [%] ε [%] ε [%] 

0 0 0 0 0 0 0 0 

20 2.176 2.795 3.585 4.591 5.874 7.514 9.618 

40 3.688 4.681 5.940 7.548 9.626 12.366 16.088 

60 4.831 6.111 7.762 9.935 12.888 17.082 23.418 

80 5.783 7.348 9.435 12.321 16.522 23.067 34.191 

100 6.657 8.551 11.188 15.051 21.115 31.486 51.233 

120 7.525 9.822 13.173 18.389 27.205 43.703 78.657 

140 8.434 11.230 15.511 22.580 35.416 61.578 122.947 

160 9.420 12.834 18.315 27.900 46.544 87.795 194.532 

180 10.510 14.686 21.704 34.680 61.654 126.269 310.252 

200 11.731 16.837 25.816 43.335 82.181 182.737 497.327 
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The stress dependencies of each parameter (A, n, B, m, and p) of our empirical model is 

given as follow:  

    � � d| · exp�à| · �� , ()* ) � d� · � $ à�                                                                      (3.5) 

a � d� · exp�à� · �� , ¦ � d� · � $ à�, ()* � � dz · exp�àz · ��                                 (3.6) 

where parameters αi, and βi with (i=A, n, B, m, and p) are material constants.  

The use of exponential stress dependencies for empirical parameters is justified by 

several literatures [10, 11, 13-17].  

The creep curves were estimated from the data given in Table 4.1 and are shown in 

Figure 3.2.  

 

Figure 3.2: Creep curves from data given in Table 4.1 to estimate stress  

dependency of the parameters of the empirical model; series 1 to 15 correspond to 15 

different stress conditions 
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3.3. Specifying Temperature Dependencies  

Creep is generally associated with time dependent plasticity of materials under a fixed 

stress at an elevated temperature, often greater than approximately 0.4-0.5Tm, where Tm is the 

absolute melting temperature. The process is also temperature-dependent since the creep or 

dimensional change that occurs under an applied stress increases considerably as temperature 

increases [18, 19]. 

Dorn [19] and Evans [20, 21] suggest that temperature dependency has the exponential 

form like:  

�� � �'
�� � � · �� · exp �H{ }��⁄                                                                                        (8.1) 

where 
⋅

ε  is the strain rate of the creep and Q is the activation energy of the corresponding creep 

process and A  is a material constant. 

To study the temperature dependencies of creep parameters, we suggest the following 

empirical model:  

�k � � · 	� $ a · 	�exp �� · 	�                                                                                         (8.2) 

where, εc is the creep strain, t is the time and A, n, B, m, and p are stress and temperature 

dependent material parameters.  

To explain the temperature dependency of the parameters of our generic empirical model, 

we used the temperature dependency diagram given by R.W.Bailey [22]. Bailey’s temperature 

dependency diagram is given in Figure 3.3.
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Figure 3.3: Creep test results for Mo-V steel for a given stress [22] 

In this research the high temperature pipeline steel’s data were used to evaluate the 

general temperature dependency of parameters a, n, c, m and p of the above mentioned empirical 

relation. Figure 3.4 shows the corresponding simulated data, evaluated by Digitalizer, and Excel 

and WinBUGS program.      

 

Figure 3.4: Simulated creep test result for Mo-V steel by Excel (EX), and WinBUGS (W) 



51 

 

To do the regression analysis with WinBUGS, one needs to guess prior values for the 

parameters; In fact, one of the major challenges in WinBUGS is to choose the most appropriate 

values for the prior distribution of the parameters.   

3.4. Results and Discussion 

Table 3.2 (a and b) shows the estimated parameters data for high temperature pipeline 

Mo-V steel used for pressure vessels in power plants and oil refineries. The values of strains 

versus times are calculated for different temperatures by a given applied stress, using Excel and 

WinBUGS Bayesian regression analysis. The uncertainty between experimental values (Excel) 

and values estimated by WinBUGS program is approximately 6.5x10
-4

. 

Table 3.2: Data calculated by Regression Analysis in Excel (a) and by WinBUGS (b) to 

develop the proposed model, evaluated under seven different temperature conditions for 

Mo-V pipeline steel at a given definite applied stress of 3 tons/ square inch 

(a) 

T[K] A n B m p 

903K 2.33E-05 0.531649 8.60E-09 0.06101 0.00852 

923K 5.78E-05 0.4665 5.32E-06 0.2462 0.00288 

937K 1.33E-04 0.421 5.40E-06 0.324 0.0055 

943K 9.25E-05 0.48406 8.90E-08 1.019 0.00692 

953K 8.20E-05 0.563 2.18E-09 1.68 0.0087 

963K 1.44E-04 0.5398 3.08E-08 1.501 0.0116 

973K 2.10E-04 0.503 1.54E-07 1.67 0.0098 
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(b) 

 

T[K] A n B m p 

903 2.37E-05 0.5282 2.95E-08 0.03948 0.007653 

923 5.55E-05 0.4779 3.70E-06 0.2812 0.003444 

937 1.38E-04 0.3997 8.93E-06 0.324 0.004569 

943 8.63E-05 0.4875 9.26E-06 0.2234 0.007852 

953 8.68E-05 0.5496 1.86E-08 1.412 0.008295 

963 1.50E-04 0.5174 1.41E-07 1.342 0.009736 

973 2.11E-04 0.502 7.77E-08 1.875 0.007409 

 

According to our calculations, parameters n, B and p are temperature independent.  

The temperature dependency of A and m parameters are given as: 

��	� � � · 	� $ a · 	�exp �� · 	�                                                                                     (8.3) 

� � d|á · exp�H,| }�⁄ � , ()* ) � d�á · � $ à�á                                                                     (8.4) 

 ¦ � d�á · � $ à�á , 3â  ¦ � d�á · exp �à�á · �� , ()*   � � dzá · exp�àzá · ��                        (8.5) 

where EA is the creep’s activation energy 

The use of exponential Arrhenius and linear temperature dependencies for empirical 

parameters is justified by several literatures [23-25].  

It should be mentioned that the temperature and stress dependencies of similar parameters 

were justified by corrosion experiments on X-70 carbon steel in the physics of failure laboratory 

of the reliability department of the University of Maryland. 
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Chapter 4: 

Experimental Efforts for Al-7075-T6 and X-70 Carbon Steel 

4.1. Experimental Efforts for creep tests 

4.2. Introduction 

Creep experiments take time, usually from days to months. To perform an accurate creep 

experiment it is necessary to have an especial creep machine, equipped with a high temperature 

furnace and high temperature extensometers for estimation the amount of strain. This thesis 

began its work by a fundamental research in creep literature and we tried to gather all different 

possibilities to make our homemade equipments. To perform creep experiments on Al-7075 and 

X-70 carbon steel a MTS machine available at the University of Maryland is used. K-type 

thermometer is used to adjust the sample temperature in the redesigned furnace during the creep 

experiment.  

 In this chapter, we described the equipments that we made for performing the creep 

experiments. We also explain how we prepared our samples and the problems we faced in this 

regard. Finally, we give the results of our preliminary and final experiments together with data 

evaluation for the final experiments. 

4.3. Experimental Equipments Developed 

To perform corrosion, corrosion fatigue, stress corrosion cracking (SCC), and corrosion 

creep (at low temperature), different chambers were designed and their workability in a MTS 

machine were checked. These chambers are capable to perform the experiments in different 

liquid environments from tap water to crude oils. 
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Also designed was a high temperature furnace (up to 1200°C) especially for creep 

experiments. This furnace has accuracy for setting temperature of ±5°C.  

Special grips for holding different types of specimens from CT to dog boned samples 

were designed. These grips can be cooled with especially designed copper coils to prevent the 

heat transfer to the MTS grips.  

Figure 4.1 shows the small and large scaled corrosion-fatigue chamber designed and 

tested for dog-bone specimens; its workability is checked in a corrosion-fatigue experiment for 

an Aluminum prototype sample. Figure 4.1 also shows the chamber with the prototype Dog-bone 

specimen in MTS machine. 

 

Figure 4.1: The corrosion-fatigue chamber with the prototype dog-bone, and CT specimens 

in MTS machine. 

Figure 4.2 shows a complicated test chamber for CT-specimens (installed in the MTS 

equipment), which we designed, made and tested. The chamber is used for stress corrosion 

cracking tests of Aluminium and X-70carbon steel CT-samples.  
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Figure 4.2: The corrosion fatigue and SCC chamber installed in the MTS equipment. The 

top left and right bottom pipes are the inlet and outlet of corrosive liquid. 

Due to high price of the heating chamber (for creep experiment) in the market, a 

laboratory chamber has been designed, made and tested. Figure 4.3 shows this furnace during the 

temperature test. The grips that are holding the sample inside the chamber are connected to the 

MTS machine for applying (variable or constant) stress. The two ends of the holding grips (at the 

top and bottom of the chamber) are cooled to prevent heat transfer to the MTS grips. This 

chamber provides the facility to do the creep experiment for almost all the metallic samples up to 

800 Co .  
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Figure 4.3: The heating chamber for creep experiment during the temperature test before 

installing in the MTS machine. 

4.4. Sample Preparations and Accompanied Problems  

Two types of samples for performing the experiments on: Aluminum 7075-T6 and X-70 

carbon steel were prepared as follow:  

              4.4.1. Al-7075-T6-Samples 

In order to do the creep experiment, Aluminum 7075 dog-bone (ASTM-

standardized) samples were prepared. Figure 4.4 shows these specimens with their 

appropriate stainless holders for fixing them in the furnace; the holders are installed in the 

grips of the MTS machine. 
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Figure 4.4: Al-sample fixed in the threaded holders (left) and into the grips of MTS 

machine (right) 

Figure 4.5 shows the Al sample with the top and bottom holders. 

 

Figure 4.5: Al-sample with two threaded holders (left), in top or bottom view (right) 

4.4.2. X-70 Carbon Steel Samples 

X70 carbon steel specimens need special long stainless steel holders that are 

specially threaded at the top and can be fixed to the CT specimens. Figure 4.6 shows 

these special grips, CT specimen and the form that they are fixed in MTS machine. 
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Figure 4.6: X70 carbon steel  with top and bottom threaded grips 

 

Figure 4.7: X70 carbon steel fixed in the furnace (left)  and connected to the MTS 

macine (right) 

Preparation of long Al-7075-T6 samples was easier than the ones for X-70 CT samples. 

First of all they are cheaper but they need appropriate cooling with tap water because of their 

length and heat conduction to the MTS grips. It was not so easy to keep the temperature of the 

samples constant during the whole creep experiments. 

To conduct creep experiments on X-70 carbon steel, the top and bottom threaded CT 

samples were made. To apply constant force, two long pin threaded grips were made and 
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connected to the samples. All the creep experiments were performed in a house made high 

temperature furnace. Figure 4.8 shows the installed sample in MTS equipment. 

 

 

Figure 4.8: X-70 samples with two long grips (top left), sample connected to the grips, real 

dimensions (top right), sample connected to grips in furnace (bottom left), and in MTS 

machine (bottom right) 

Since CT samples are very hard (with Vickers hardness of 295 HV at 10 kg [5]) while the 

grips are made from soft steel material, the following problems arise: 

a) Grips could not apply the right stresses to the CT samples and therefore 

were deformed at the threaded top part and slide out from the threaded CT sample part; 

b) Filling the threaded part of  CT samples with hardened materials, using 

horizontal pins, and changing the grips didn’t work due to hardness of CT samples; 
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c) Although, extension of the groove part of CT samples with some 

additional crack (similar to pre-crack) seems to work at first, it fails finally because of the 

soft grips connected to hard samples.  

Figure 4.9 shows the deformed CT samples after the experiment together with the pin 

before and after the experiments.  

 

Figure 4.9:  deformed CT samples and the threaded grip part before and after 

deformation 

After the unsatisfactory experiments on CT samples, the morphology of the samples were 

changed and new threaded dog bone samples with appropriate grips were made. To estimate the 

applied stresses during the creep experiments, stress-strain curve for the X-70 carbon steel was 

performed.  

The prepared dog bone X-70 carbon steel samples and threaded grips together with its 

installation in the furnace are shown in figure 4.10. 



 

Figure 4.10: X-70 threaded dog bone samples, 4mm cross section diameter, and gauge 

length of 45mm with grips for installation in the creep furnace

4.5. Preliminary Creep Experiments with Al

Creep of materials is generally associated with time dependent plasticity of materials 

under a constant stress (below the yield stress of t

greater than approximately (0.4 to 0.5) T

perform the creep experiments two different materials were considered: Al 7075

carbon steel (both are used in oil refinery industry). 

First creep experiments were performed on Al

temperature requirement. Equipment reliability properties were checked under different load and 

displacement conditions at different temper

applied to the sample (for remaining in the elastic regime below the yield strength of the 

material), stress strain curve of these materials was used. 

The stress-strain curve for Al 7075 and its counterpart from the literature are given in 

Figure 4.11.  In order to determine the appropriate displacement required for testing, stress vs. 

displacement curve was created as shown in Figures 4.12.    
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70 threaded dog bone samples, 4mm cross section diameter, and gauge 

of 45mm with grips for installation in the creep furnace

Preliminary Creep Experiments with Al-7075-T6 Alloys  

Creep of materials is generally associated with time dependent plasticity of materials 

under a constant stress (below the yield stress of the material) at an elevated temperature, often 

greater than approximately (0.4 to 0.5) Tm, where Tm is the absolute melting temperature.  To 

perform the creep experiments two different materials were considered: Al 7075

sed in oil refinery industry).  

First creep experiments were performed on Al-7075 samples because of its lower creep 

temperature requirement. Equipment reliability properties were checked under different load and 

displacement conditions at different temperatures. To estimate the amount of constant stress 

applied to the sample (for remaining in the elastic regime below the yield strength of the 

material), stress strain curve of these materials was used.  

train curve for Al 7075 and its counterpart from the literature are given in 

Figure 4.11.  In order to determine the appropriate displacement required for testing, stress vs. 

displacement curve was created as shown in Figures 4.12.     

 

70 threaded dog bone samples, 4mm cross section diameter, and gauge 

of 45mm with grips for installation in the creep furnace 

Creep of materials is generally associated with time dependent plasticity of materials 

he material) at an elevated temperature, often 

is the absolute melting temperature.  To 

perform the creep experiments two different materials were considered: Al 7075-T6 and X-70 

7075 samples because of its lower creep 

temperature requirement. Equipment reliability properties were checked under different load and 

atures. To estimate the amount of constant stress 

applied to the sample (for remaining in the elastic regime below the yield strength of the 

train curve for Al 7075 and its counterpart from the literature are given in 

Figure 4.11.  In order to determine the appropriate displacement required for testing, stress vs. 



62 

 

    

Figure 4.11: Stress-strain curve of Al-7075-T6 alloy left , and stress-strain curve of the same alloy 

from the literature  with elongated grains (etched with 10% phosphoric acid)[1] 

 

 

Figure 4.12:  Stress-displacement curve for Al 7075-T6 (left), and stress-displacement curve for Al 

7075-T6 (elastic region) (right) 

Three different Al-7075-T6 samples were tested at different applied stresses of 100, 250, 

and 400 MPa, at 573 °K. The resulting displacement versus time of these samples is given in 

Figure 4.13.      
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Figure 4.13:  MTS Displacement vs. Time for Different Al-7075-T5 Alloys at Different 

Stresses 

The stress, σ, dependency of the coefficient A, and exponent n, of the empirical equation 

for the primary part found, are given by the following relations:  

� � d ��      ()*     ) � à � $ ã                                                                                         (4.1) 

with: 

  � � 4 ¬ 10M³�].¯Y]^()* ) � H0.0004 ¬ � $ 0.1811                                                    (4.2) 

where α, m, β, and γ are material parameters that might depends on temperature and other 

material parameters. 

The final stress dependent creep equation looks now like: 

� � 4 ¬ 10M³ · �].¯Y]^  · 	MS.SSS_¬�£S.Y²YY $ Fa	� exp��	�R                                              (4.3) 
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Additional experiment was done on an Aluminum sample. This experiment allows the 

study of secondary and tertiary creep.  The results of this creep experiment are shown in Figure 

4.14.  

 

Figure 4.14: Displacement-Time (creep curve) of Al-7075-T6 at 400°C 

The following relation was obtained for the creep behavior by an applied force of 19000 

N, at 673K: 

� � 0.000685 	S.µ^µ $ �1.695 ¬ 10M²� 	Y.µ´¯exp �0.000795 	�                                      (4.4) 

Further experiments should be done to estimate the temperature and stress dependencies 

of the given parameters. 

Since creep experiment takes a long time, and MTS machine was not always available, 

accelerated life tests (under high stress and high temperature conditions) have been performed to 

reduce the time of the creep test.   

The broken Aluminum dog bone samples with the ductile transgranular mode and heat 

affected re-crytallisation (grain growth) form is shown in Figure 4.15.        



 

  

Figure 4.15: Ductile transgranular mode of rupture form of 

with recrystallized grain growth form and compared picture given in the literature

 After our unsatisfactory experiments on CT samples, new threaded dog bone samples 

with appropriate grips were prepared

experiments we made our own stress

test we choose the 60-80% of the yield point of the material and will prepare the experiment with 

our home made furnace at 500-700°C.

The prepared dog bone X

installation in the furnace are shown in 

Figure 4.16: X-70 threaded dog bone samples, 4mm cross section diameter, and gauge 

length of 45mm with grips for 
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Figure 4.15: Ductile transgranular mode of rupture form of Al-creep sample at 400°C, 

with recrystallized grain growth form and compared picture given in the literature

After our unsatisfactory experiments on CT samples, new threaded dog bone samples 

were prepared. For estimation the applied stresses during the creep 

experiments we made our own stress-strain curve for the X-70 carbon steel. For doing our creep 

80% of the yield point of the material and will prepare the experiment with 

700°C. 

The prepared dog bone X-70 carbon steel samples and threaded grips together with its 

installation in the furnace are shown in Figure 4.16. 

 

70 threaded dog bone samples, 4mm cross section diameter, and gauge 

length of 45mm with grips for installation in the creep furnace] 

 

creep sample at 400°C, 

with recrystallized grain growth form and compared picture given in the literature 

After our unsatisfactory experiments on CT samples, new threaded dog bone samples 

stresses during the creep 

70 carbon steel. For doing our creep 

80% of the yield point of the material and will prepare the experiment with 

70 carbon steel samples and threaded grips together with its 

70 threaded dog bone samples, 4mm cross section diameter, and gauge 

installation in the creep furnace]  
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4.6. Preliminary Creep Experiments with X-70 Carbon Steel Samples 

Stress–strain curve of X-70 carbon steel sample was estimated with an extension rate of 

1mm/hr. X-70 carbon steel sample shows ductile cup and cone form after breakage with 

elongated grains toward the rupture cross section. Figure 4.17 shows the stress-strain curve of X-

70 carbon steel and Figure 4.18 shows the same sample in its necking and broken forms. The cup 

and cone mode of the broken parts shows a trans-granular mode of rupture form. 

 

Figure 4.17: Stress-strain curve of X-70 carbon steel 
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Figure 4.18:  Ductile cup and cone form of rupture cross section of X-70 carbon steel, 

broken sample parts, and grain elongation toward the necking region  

It should be mentioned that exact estimation of temperature and stress dependencies of 

parameters need more time and samples and is costly. Besides creep experiment needs its own 

creep equipment and specific high temperature extensometers, instead of a MTS machine that is 

more specified for estimation of stress-strain behaviors of metallic materials.  

4.7. Final Experiments on Al-7075-T6 Alloys 

Creep experiments of Al-7075T6 samples were performed in a MTS tensile (810)-

machine and in a homemade furnace extra prepared and equipped with a tap water circulation 

(for cooling the grips connected to the samples). Grips were cooled additionally with two small 

fans to prevent the heat extension to MTS gripes and to provide a constant temperature for the 

samples during the creep experiments. MTS-machine equipped with furnace and computer 

connected for data acquisition is given in Figure 4.19. 

 



 

Figure 4.19: MTS-810 Material Test System equipped with creep furnace and data 

It should be mentioned that cooling with ice cooled water causes a negative creep rate in 

the samples during the creep experiment. 

Al-samples used in the creep experiment

cone fracture cross section after the creep experiments are clearly visible in the figure.

Figure 4.20: Al-7075-T6 used in creep experiments with hardened grip holders
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810 Material Test System equipped with creep furnace and data 

acquisition. 

It should be mentioned that cooling with ice cooled water causes a negative creep rate in 

the samples during the creep experiment.  

samples used in the creep experiment are shown in the Figure 4.20. Ductile cup and 

cone fracture cross section after the creep experiments are clearly visible in the figure.

T6 used in creep experiments with hardened grip holders

 

810 Material Test System equipped with creep furnace and data 

It should be mentioned that cooling with ice cooled water causes a negative creep rate in 

igure 4.20. Ductile cup and 

cone fracture cross section after the creep experiments are clearly visible in the figure. 

 

T6 used in creep experiments with hardened grip holders 
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Stress strain diagram is an important part of a creep experiment. The amount of stress 

applied during a creep experiment can be taken from the stress strain diagram. Applied stress is 

chosen usually 60 to 80 percent of the yield point (or of the ultimate strength) of materials. 

Estimated stress strain curve of Al-7075 material at different temperatures and its counterpart at 

room temperature [9] are given in Figure 4.21. 

 

Figure 4.21: Stress strain curve of Al-7075 at different temperature compared with the 

given stress strain curve at room temperature from the literature [1] 

A complete creep experiments takes usually months or years and because of 

unavailability of the MTS machine to perform a long time experiment we tried to accelerate our 

creep experiments. To get some acceptable data, we reduced the breaking times to hours or days. 

Figure 4.22 shows the creep curves experimentally taken and theoretically modeled and fitted 

with our proposed empirical model. 
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Figure 4.22: Creep curves of Al-7075 from experiment and fitted with the 

 proposed empirical model by Excel 

Proposed empirical model had the following form and the corresponding parameter 

values are given in the table 1. 

� � � · 	� $  b ·  	� · exp �� · 	�                                                                                              (4.5)         

where A, n, B, m, and p are material parameters and depend on temperature and applied stresses. 
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Table 4.1: Numerical values for corresponding parameters of the proposed empirical 

model 

T 

[°C] 

T 

[°K] 

σ 

[MPa] A n B m p 

405 678 460 0.000157 0.601998 1.78698E-12 1.2309739 0.00073 

415 688 480 0.000196 0.634809 1.67424E-10 1.3563949 0.001474 

418 691 493 0.000198 0.649756 3.20199E-09 1.4138459 0.002327 

430 703 520 0.00248 0.691316 1.46964E-06 1.5728474 0.006008 

 

 So it was possible to estimate the temperature and stress dependency of parameters.  

Parameters A, B, and p have exponential dependencies on Temperature and stress.  

Parameters n, and m have a linear dependency on temperature and stress. 

Exponential dependency on temperature for parameter A is known in the creep literature 

but important linear dependencies of n, and m parameters on temperature and stress are shown 

for the first time.  

Parameter values were estimated by Excel and the distributions for A and C parameters 

by MATLAB program. Following figures show the creep curves by MATLAB program. General 

empirical creep relation and parameters have the following forms: 

T � o · Pq $  å ·  Pæ · IJK �r · P�                                                                            (4.6) 

With: 

o � �ç. èéêêNë� · ��r�Hì. ììíç · pî� · ��r�HGïéììì ��î�⁄                            (4.7)     

oá � ç. èéêêNë                                                                                                         (4.8)                 
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q � ì. ììGëééë�î $ ì. ìììíéèGçpî H ì. èêèéê�                                               (4.9)       

å � �ë. ìN H ðë� · ��r�ì. ééí · pî�                                                                       (4.10) 

åá � ë. ìN H ðë                                                                                                        (4.11)                         

æ � ì. ììêëííè�î $ ì. ììéëçéGpî H ï. íçðììëç                                             (4.12) 

r � F�í. ììGëéN H GG� · ��r�ì. ìçðGç · pî�                                                                 (4.13) 

   The final equation for the empirical model changes to the following complex form. 

� � �′ · Fexp �d · p� · exp �{| }��R ·⁄ P��£ñp£� $  a′ · ��r�à · pî� ·  P�′�£ñ′p£�′ · exp �� · P� 
                                                                                                                                                 (4.14) 

where α, β, β’, γ, γ’, δ, and δ’ are now material parameters and their dependency on other 

material structural properties like (grain diameters, hardness etc.) is possible.  

or, 

T�Pî�
� �ç. èéêêNë� · ��r�Hì. ììíç · pî�
· ��r�HGïéììì ��î� · Pî�ì.ììGëééë�î£ì.ìììíéèGçpîMì.èêèéê� $ �ë. ìN H ðë� ·⁄ ��r�ì. ééí · pî�
· Pî�ì.ììêëííè�î£ì.ììéëçéGpîMï.íçðììëç� · ��rF�í. ììGëéN H GG� · ��r�ì. ìçðGç · pî� · PîR 

                                                                                                                                                 (4.15) 

Creep curves evaluated for Al-7075-T6, together with PDF and cumulative distributions 

for parameters A and C by MATLAB program are given in Figure 4.23.                                    
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Figure 4.23:  Creep curves of Al-7075-T6 at different temperature and stresses from data 

given in the above table (bulk) and additional predicted creep curves at proposed 

temperature and stresses (thin lines) 

Parameters A, and B are lognormally distributed. Their PDF and cumulative are given in 

the following Figures 4.24, and 4.25. 

 

Figure 4.24:  PDF and CDF of parameter    A = LN LN LN LN (μ=19.79, σ=0.11) 
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Figure 4.25:  PDF and CDF of parameter    B= LN LN LN LN (μ=-131-47, σ=0.12) 

4.8. Final Experiments on X-70 Carbon Steel Alloys 

As shown in Figure 4.26, three dog bone X-70 carbon steel samples with threaded parts 

at two ends were made from a part of X-70 carbon steel pipe.  Threaded dog bone samples have 

4mm cross-section diameter, and a gauge length of 45mm. 

 

Figure 4.26: Three dog bone X-70 carbon steel samples with threaded parts at two ends 

made from a part of X-70 carbon steel pipe 



 

Two threaded long grips fo

Because of softness of the grip materials (compared with the X70 carbon steel samples) 

two threaded long grips were tempered at 900°C for approximately 3 hours and quenched in oil 

(Surface hardening).  

Threaded samples and the corresponding hardened grips are given in 

Figure 4.27: Dog boned X70 carbon steel samples used for the creep experiment

Broken sample for estimation the stress strain curve at room temperature has a cup and 

cone ductile form while the broken samples after the creep experiments show brittle fracture. 

These characteristics are shown in 

Figure 4.28: Broken sample at room temperature with cup and cone ductile breakage (left) 

and two X70 carbon steel samples after creep experiment with brittle fracture types (right)

75 

Two threaded long grips for installation the samples in furnace were made. 

Because of softness of the grip materials (compared with the X70 carbon steel samples) 

two threaded long grips were tempered at 900°C for approximately 3 hours and quenched in oil 

aded samples and the corresponding hardened grips are given in Figure 4.27.

 

Figure 4.27: Dog boned X70 carbon steel samples used for the creep experiment

Broken sample for estimation the stress strain curve at room temperature has a cup and 

cone ductile form while the broken samples after the creep experiments show brittle fracture. 

These characteristics are shown in Figure 4.28. 

 

e at room temperature with cup and cone ductile breakage (left) 

and two X70 carbon steel samples after creep experiment with brittle fracture types (right)

r installation the samples in furnace were made.  

Because of softness of the grip materials (compared with the X70 carbon steel samples) 

two threaded long grips were tempered at 900°C for approximately 3 hours and quenched in oil 

igure 4.27. 

 

Figure 4.27: Dog boned X70 carbon steel samples used for the creep experiment 

Broken sample for estimation the stress strain curve at room temperature has a cup and 

cone ductile form while the broken samples after the creep experiments show brittle fracture. 

e at room temperature with cup and cone ductile breakage (left) 

and two X70 carbon steel samples after creep experiment with brittle fracture types (right) 
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 Creep curve estimated from one of the sample is shown in Figure 4.29. The first part of 

the curve shows some fluctuation (because of temperature variation from 418ºC to stabilized 

temperature of 450C). 

Creep curve with completed secondary and tertiary parts is completely coverable with the 

proposed model.  

The primary part up to 5000 second is then fitted with the proposed empirical equation 

after readjustment with a fracture life times estimated from the Monkman and Grant relation. 

Both experimentally find creep curves and two fitted parts with our proposed model are given in 

Figure 4.29. 

 

 

Figure4.29: creep curve of X70 carbon steel at T=450°C and σ= 348MPa,(top) and  

predicted creep curve at 418°C both fitted with proposed empirical equation (bottom) 
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Empirical equations for both of the creep curves are given below: 

 �_¯S � �0.000488� · PS._´µ¯ $ �1.383 ¬ 10MYS� ·  PY.]^´] · exp �0.0005198 · P�            (4.16) 

�_Y² � �0.000056� · PS.´¯^ $ �9.983 ¬ 10MYS� ·  PY.]^´] · exp �0.000265 · P�                 (4.17)   

It should be mentioned that exact estimation of temperature and stress dependencies of 

parameters need more time and samples (and therefore additional cost). Besides creep 

experiments need their own creep equipment and specific high temperature extensometers  

Figure 4.30 shows the creep curves experimentally taken and theoretically modeled and 

fitted with the proposed empirical model. 

 

Figure 4.30: Creep curves of X-70 carbon steel from experiment and fitted with the 

proposed empirical model by Excel 

Proposed empirical model had the following form and the corresponding parameter 

values are given in the Table 4.2. 
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� � � · 	� $  b ·  	� · exp �� · 	�                                                                                 (4.18) 

where A, n, B, m, and p are material parameters and depend on temperature and applied stresses. 

Table 4.2: Numerical values for corresponding parameters of the proposed model 

 

T [ C ] T[K] σ  [MPa] A n B m p 

418 691 133 8.1E-5 6.04E-01 2.87E-9 1.0488 0.000182 

425 698 185 8.8E-5 0.6087 1.46E-9 1.03975 0.000239 

450 723 346 1.2E-4 0.6255   1.7999E-10 1.0099 0.000639 

470 743 445 1.5E-5 0.63745   4.9695E-11 0.989 0.001401 

500 773 620 2.12E-4 0.6567   5.1085E-12 0.955 0.004551 

 

Parameter values were estimated by Excel and the distributions for A and C parameters 

by MATLAB and Bayesian regression by WinBUGS program. Following figures show the creep 

curves by MATLAB program. General empirical creep relation and parameters have the 

following forms: 

T � o · Pq $  å ·  Pæ · IJK �r · · P�                                                                       (4.19) 

with 

o � �ð. GNGê� · ��r�Hì. ììë · pî� · ��r�Héêèììì ��î�⁄                                        (4.20) 

oá � ð. GNGê                                                                                                         (4.21) 

q � ì. ìììç�î $ ì. ììììïðpî $ ì. çèçìç�                                            (4.22) 

å � �G. êGí. ìN H ë� · ��r�Hì. ìGç · pî�                                                 (4.23) 

åá � G. êGí. ìN H ë                                                                         (4.24) 

æ � Hì. ìììê�î $ ì. ìììGpî $ G. ïíëï                                          (4.25) 
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r � F�ì. ììììëìGð� · ��r�ì. ììê · pî�                                                  (4.26) 

The final equation for the empirical model changes to the following complex form. 

� � �á · Fexp �d · p� · exp �H{| }��R ·⁄ P��£ñp£� $  aò · ��r�à · pî� P�á�£ñáp£�á · exp �� · P�                            
                                                                                                                                                 (4.27) 

where α, β, β’, γ, γ’, δ, and δ’ are now material parameters and their dependency on other 

material structural properties like (grain diameters, hardness etc.) is possible.  

T�Pî�
� �ð. GNGê� · ��r�Hì. ììë · pî�
· ��r�Héêèììì ��î� · Pî�ì.ìììç�î£ì.ììììïðpî£ì.çèçìç� $ �G. êGíN H ë� ·⁄ ��r�Hì. ìGç · pî�
· Pî�Mì.ìììê�î£ì.ìììGpî£G.ïíëï� · ��rF�ì. ììììëìGð� · ��r�ì. ììê · pî� · PîR 

                                                                                                                                                 (4.28) 

Creep curves evaluated for X-70carbon steel, together with PDF and cumulative 

distributions for parameters A and C by MATLAB program are given in the following Figures 

4.31 to 4.33.    
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Figure 4.31:  Creep curves of X-70 carbon steel at different T and σ from data in the 

above table (bulk) and predicted creep curves at proposed temperature and stresses (thin 

lines) 

A, and B parameters are lognormal distributed. Their PDF and cumulative are given in 

the following figures. 

   

Figure 4.32:  PDF and CDF of parameter    A = LN LN LN LN (μ=38.47, σ=0.11) 
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Figure 4.33:  PDF and CDF of parameter    B= LN LN LN LN (μ= -17.94, σ=0.12) 
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Chapter 5: 

Estimation of the Proposed Empirical Model Parameters  

Using Bayesian Inference 

5.1. Introduction 

   Initially, we estimated parameters A and B of our empirical model, using the generic 

data from the creep literature as benchmark model. This estimation may be used as prior 

estimates of the empirical model parameters in a Bayesian updating frame-work. In this section, 

the Bayesian inference of the model parameters represented as joint distribution of A and B. 

Assuming a lognormal distribution to represent the variability of creep strain, the likelihood 

function of the creep strain [%] and the corresponding different percentiles of this distribution is 

expressed as: 

ß���� � �ó�ô�, 1��                                                                                                                  (5.1) 

ô� � �óFo · Pq $  å ·  Pæ · IJK�r · · P�R                                                                                 (5.2) 

with corresponding parameter dependencies on T and σ. 

where μi and si are the log-mean and log-standard deviation of the strain distribution. 

By using Equation  
        T � o · Pq $  å ·  Pæ · IJK �r · · P�                                                                                                                                                                                                                                                                                                                                                                                                                                        (5.3) 

one may replace the log-mean of the strain[%] distribution with Equation    

ô� � �)Fß���, ��, 	�R                                                                                                               (5.4) 

This equation is the proposed empirical Equation.   
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Substitution of equation  
 ô� � �óFo · Pq $  å ·  Pæ · IJ K�r · · P�R                                                                                                                                                                                                                                                                                                                                                                                                (5.5) 

in the following relation, 
            n�Tî� � õö�÷î, øî�

yields the conditional distribution function of the strain “ε” given stress conditions (temperature 

and applied stress and creep time): 

ß���|�, �, 	� � Y
V·'h·√]û · exp ÖMY]V� F�)���� H �)�o · Pq $  å ·  Pæ · IJK�r · · P��R]Ü                (5.7) 

Accordingly the likelihood function is given by:  

����� � ∏ ß���|�� , ��, 	���¡Y                                                                                                        (5.8) 

Having the likelihood of the test data, one can derive the posterior distribution of 

parameters A and B and s utilizing Bayes’ estimation according to: 

ß��, a, 1|��� � WD�|,�,V�·ý�|,�,V|'h�
þ WD�|,�,V�·ý�|,�,V|'h��|���V                                                                       (5.9) 

where ß���, a, 1�  is the subjective prior distribution (e.g. non-informative uniform 

distribution). This prior distribution was later updated using the experimental data from 

experiments. The likelihood ���, a, 1|��� is representing each data point i.    

In the general form, there is no analytical solution available for posteriors like the 

equation (5.9), and Bayesian posteriors are usually estimated using sophisticated sampling 

approach, such as the Markov Chain Monte Carlo (MCMC) [1]. In this method the posterior 

function is recreated by generating enough samples rather than by direct integration. Then, a 

sample drawn from a generating distribution is modified through a series of conditional 

probability calculations until becomes a sample of the target posterior.  
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5.2. Estimation of Our Empirical Model Parameters for Al-7075-T6 Using Bayesian 

Inference 

The WinBUGS program [2] is a windows-based environment for MCMC simulation. 

This program has been previously used in uncertainty management [3] as well as accelerated life 

testing data analysis [4] and has proved to be a reliable tool for such calculations. In this research 

the WinBUGs platform was used for solving posterior Equation. The general steps in the coded 

routine program in WinBUGS resembled that in Figure 5.1, which displays the calculated joint 

posteriors of A, B, and s with lognormal distributions for A and B as prior for up-dating the 

completed creep data from our experiments on Al-7075-T6 samples. 

It should be mentioned that according to the WinBUGs program, parameter A and 

exponent n and parameter B and exponent m are strongly correlated. By considering this 

correlations in WinBUGs program the evaluated creep relation looks like: 

÷�î� � o · ��r�Hì. ììíç · pî� · ��r�HGïéììì ��î⁄ � · Pì.ðèïð·��r�ì.ìììG·pî� $ 

å · ��r�Hì. ééí · pî� · PG.ìííë·��r�Mì.ìììé·pî� · ��rFF�í. N H GG� · ��r�ì. ìçð · pî� · PîR  (5.10) 

where exponents n and m are both exponential functions dependent on  stress: 

q � ì. ììGëééë�î $ ì. ìììíéèGçpî H ì. èêèéê � nG�pî�                                            (5.11) 

æ � ì. ììêëííè�î $ ì. ììéëçéGpî H ï. íçðììëç � né�pî�                                         (5.12)  

Where 

                 nG�pî� � �ì. ðèïð�. ��r�ì. ìììG · pî�                                                               (5.13) 

,and 

                  né�pî� � �G. ìííë�. ��r�Hì. ìììé · pî�                                                           (5.14) 
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In these equations, parameters n and m are given as the mere functions of applied stress. 

Only by considering these correlations, it was possible to get the uncertainties from the 

WinBUGS program. 
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Figure 5.1 shows the algorithm for the Bayesian approach and the corresponding 

posterior distributions of A, B parameters. 

 

   

Figure 5.1: Algorithm for the Bayesian approach (top) and the corresponding posterior 

distributions of A, B and s (bottom) for Al-7075-T6 
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The posterior distributions for parameters A, and B for Al-7075-T6 samples are 

explained by the following probability density functions: 

� � �)�ô � 16.34, � � 0.012 

a � �)�ô � H120.5, � � 1.088� 
1 � �)�ô � 0.07352, � � 0.003214� 

The general node statistics of the parameters from WinBUGS program is given in Figure 

5.2. 

 

Figure 5.2: Values of node statistics for Al-7075-T6 model parameters taken from 

WinBUGS program 

Usually, to simplify the calculation for estimation the residual life of materials in service, 

the rupture time is given as a function of applied stresses.  

In our case, rupture time of Al-7075-T6 material as a function of applied stress is given 

according to the following relation  

����PU� � íïìíé H ëçéìï · ����p� $ çGGêð · �����p��é H çëèé. éçêë · �����p��ç  (5.14) 

This relation allows us to estimate the residual lifetime of materials in service. 
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5.3. Estimation of Our Empirical Model Parameters for X-70 Carbon Steel Using Bayesian 

Inference 

We apply the same updating procedure to estimate A and B distributions and other 

parameter uncertainties for X-70 carbon steel. Parameter A and n, and B and m correlated 

strongly together and we applied the same transformations in WinBUGS program (like Al-7075-

T6 alloys- model parameter). So it is possible to estimate the posterior distributions for the strain 

by the WinBUGS program with an equation similar to (5.13). 
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Algorithms of the Bayesian inference and the corresponding posterior distributions of 

parameters A and B are shown in Figure 5.3.  

 

 

Figure 5.3: Algorithm for the Bayesian approach (top) and the corresponding posterior 

distributions of A, B and s (bottom) for X-70 carbon steel 
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The posterior distributions for parameters A, and B for X-70 carbon steel samples are 

explained by the following probability density functions: 

� � �)�ô � 38.05, � � 0.012 

a � �)�ô � H17.999, � � 0.11� 
1 � �)�ô � 2.68, � � 0.1381� 

The general node statistics of the parameters from WinBUGS program is given in Figure 

5.4. 

 

Figure 5.4: Values of node statistics for X-70 carbon steel model parameters taken from 

WinBUGS program 

Usually, to simplify the calculation for estimation the residual life of materials in service, 

the rupture time is given as a function of applied stresses. 

In this case, rupture time of X-70 carbon steel material as a function of applied stress and 

temperature is given according to the following relation: 

����PU� � ë. ðïGïð H é. íïëè · ����p� $ G. éèèë · �����p��é H ì. éðGëï · �����p��ç $
�è. GèðéN H ï� · � · ����p�                                                                                                    (5.15) 

This relation allows us to estimate the residual lifetime of materials in service. 
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Chapter 6: 

Calculation of Rupture Analysis, Creep Activation Energy, and Two Case 

Studies 

6.1. Introduction 

In this chapter, Monkman and Grant constant for Al-7075-T6 and X-70 carbon steel with 

the use of creep curves are calculated. Besides, Larson–Miller equation is derived and activation 

energies of Al-7075-T6 and X-70 carbon steel are estimated. Finally, two case studies are given. 

In the first case study the remaining life of a super-heater tube in service, knowing its creep 

rupture time, is calculated. In the second case study probability of excidance (PE) on 0.04% 

strain level of X-70 carbon steel sample is estimated. 

6.2. Rupture Analysis for Al-7075-T6 and X-70 Carbon Steel 

To estimate the lifetime in service, and residual life of heat exchanger tubes and turbine 

blade in oil refineries and power plants, the strain rate and time to rupture of the materials are 

used. 

Rupture point of material represent the end point on the creep curve, and it is usually 

taken to characterize the other parameters of the curve.  

 Monkman and Grant [1] relation gives the proportionality between the rupture time and 

the minimum creep rate.  Figure 6.1 is helpful to drive this relation which is given by Equation 

6.1. 
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Figure 6.1: Creep curve, prepared for estimation of Monkman-Grant relation 

 

T�� � TçMTP�
PU � T�MTr

PéMPG ,    �U T�� · PU � ��qøP�qP                                                                  (6.1) 

This relation is applied to our experimental data given in Figure 6.2, for Al-7075-T6 

samples at 400°C and applied stress of 100Mpa (estimated after 44.3 hrs = 1.84 days). 
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Figure 6.2: Creep curve of Al-7075-T6 samples at T= 400°C and σ = 100Mpa, after 

44.3 hrs = 1.84 days 

T�� � TçMTP�
PU � ì.ìéëMì.ììêð

ÃÆF¡YY.³ ��VR � ì. ììGëï  �U T�� · PU � ì. ìéGð                                                (6.2) 

Calculated value for Monkman and Grant constant is 0.0215 for Al-7075-T6, which is in 

good agreement with the published data [3, 4]. 

Monkman and Grant constant and (with C~20 for steels) were estimated for X70 carbon 

steel according to the creep experiments data given in Figure 6.3: 
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Figure 6.3: Creep curve of X70carbon steel at T=450°C and predicted at T= 418°C and 

σ=348.8 MPa, fitted by our proposed model 

Then Monkman and Grant constant for X70 carbon steel at T=450°C and predicted at T= 

418°C and σ=348.8 MPa is given by:  

T�� � TçMTP�
PU � ì.ìïMì.ìGéð

ÃÆF¡^.²] ��VR � ì. ììíé   �U T�� · PU � ì. ìéíð                                                   (6.3) 

6.3. Creep Activation Energies for Al-7075-T6 and X-70 Carbon Steel 

Larson–Miller parameter [6] is a useful parameter to estimate the creep activation energy 

of materials, Al-7075-T6 and X-70 carbon steel. Larson–Miller parameter can be derived from 

Dorn relation [Appendix number 22]: 

Tø� � � · �� · IJK �H ∆	
��                                                                               (6.4) 
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where A, n, are constants, R is the gas constant, T is the absolute temperature in Kelvin, σ is the 

external applied stress, ∆H is the activation enthalpy of creep process, and �V�  is the secondary 

strain rate. 

Then,  

PU � ��qøP�qP · pMq · IJK �
����                                                      (6.5) 

taking logarithms from both sides, results in: 

log�	�� � log�23)1	()	� H ) · log��� $ ��
].^s · Y�                                                      (6.6) 

or 

T · log�	�� � T · Flog�23)1	()	� H ) · log���R $ ��
].^s � � · FÞ3�bÊR $ ��

].^s                            (6.7) 

Then by a given stress σ (constant value): 

T · Flog�	�� H Þ3�bÊR � ��
].^s                                                                                                      (6.8) 

The Larson–Miller parameter is given by: 

��� � 
�
é.ç� � � · F����PU� $ �R,�îP�    Gì � � � 20            (6.10) 

 Parameter C for Al alloys in the 7xxx series (like 7075) is C=10 for cyclic and C=14 for 

static creep [3, 4]. Activation energy of Al-7075-T6 alloy is calculated by taking C=12 and tr = 

11.7 hrs at T = 673K= (400°C): 

∆� � {| � 168 kJ mol⁄                                                                                                           (6.9) 

which is in good agreement with the published (142 - 145 kJ/mol) data [3]. 

Activation energy of X-70 carbon steel is calculated by considering C=20 as: 

∆� � {| � 284.57 kJ mol⁄ , for T � 450°C an tÍ � 3.82 hrs                                              (6.10)  
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∆� � {| � 271.97 kJ mol⁄ , for T � 418°C an tÍ � 3.82 hrs                                              (6.11) 

These values are in good agreement with the published values given for steel materials 

(245-300 kJ/mol) [8]. 

6.4. Practical Examples:  

In this part, two case studies are represented. In the first case, the residual life of 

superheater (or reheater) tube after some operation time is calculated, assuming the final rupture 

time as a lognormal distributed. This example is a proof for the workability of our probabilistic 

approach with the final rupture time as a distribution. 

In the second case study the probability of excidance for X-70 carbon steel pipe is 

calculated. The excidance is calculated based on a creep experiment at 450°C for a 0.04% strain 

level where the tertiary region begins. 

6.4.1. Case Study I: Estimation of Remaining Life of Super-heater/Re-heater Tubes 

In this case study the remaining life of a superheater tube is calculated.  Corrosion of the 

material due to fire-side, results in a decrease in wall thickness, and a consequent increase in 

stress. As a result of applied stress at high temperature creep rupture time of material decreases. 

Moles and Westwood [9, 10] derived a relation for estimation of remaining life under wall 

thinning condition by assuming a linear corrosion rate and under the application of a linear 

damage model:  
	�� � Y f · !1 H F1 $ Ðá · �) H 1� · 	�RY �YM��⁄ "                                                                         (6.12)  

where tnr is rupture life in service under wall-thinning conditions, 

 Ðá is wall-thinning rate [hr
-1

], and equal to:    
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 Ðá � ��#hM#$#h � 	�z�%                                                                                                                (6.13)       

•  wi, wf and top as initial, final wall thickness  and operational time [hr]. 

•  n~4-8 for ferritic  steel tube, is the stress sensitivity  (Norton law exponent) and, 

•  tr is the time to rupture of a tube without wall thinning. tr can be estimated by Larson 

Miller Parameters or other related creep equations after creep experiments   

The remaining lifetime is given by:   

  	�ÑV � 	�� H 	�z                                                                                                                   (6.14) 

Assuming uncertainty in estimation of wall thickness and consequent wall thinning under 

corrosion, the remaining life of the tube can be calculated.  

If the mean value for wall thickness is taken as 3.81 mm, which is thinned by corrosion to 

the mean value of 2.49 mm, and if the time to rupture of the tube is given by tr=1300000 hrs 

(with the stress sensitivity parameter n=4), then the calculated residual life after an operation 

time of 57000 hrs can be estimated. 

The initial wall thickness and final wall thinned are assumed to be lognormal distributed 

with: 

-�.� � �)�ô � 1.3376, � � 0.07�                                                                              (6.18) 

and, 

-�ß� � �)�ô � 0.9123, � � 0.031�                                                                              (6.19) 

And,  

According to the proposed model, it is assumed that tr (the time to rupture of a tube 

without wall thinning) is lognormal distributed with: 
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	��.� � �)�ô � 14.0778, � � 0.07�                                                                                    (6.20) 

then the remaining life calculated by MATLAB programs has a distribution given in Figure 6.4.  

 

 

Figure 6.4: The remaining life is lognormal distributed with a mean of 49600 hrs. 

calculated by MATLAB program 

Corresponding cumulative distribution of the residual life time calculated by Weibull++ 

program is shown in Figure 6.5. 
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Figure 6.5: The remaining life is lognormal distributed with a mean of 49600 hrs. 

calculated by Weibull++ program 

The result of this case study shows that remaining life is 49,600 hrs, which is in 

agreement with the published data [10, 11], and calculation by Omega creep relation for 2¼Cr-

1Mo tube alloy at 450ºC [12]. 

6.4.2. Case Study II: Estimation of Probability of Exceedance (PE) on 0.04% Strain Level 

The end point of the secondary region or the beginning point of the tertiary part of the creep curve 

is used to estimate the service and residual life of material. Severe structural deformation of material 

begins at this point, where most of the cavities begin to agglomerate and leads to a big crack. Figure 6.6 

shows the creep curves of X-70 carbon steel samples at different temperatures and stresses. If 0.04 % 

strain line on the creep curve (for 723 °K and 346 MPa) is taken as the critical level of inspection, then it 

is possible to estimate the probability of exceedance above 0.04% strain level at different times. The 
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brown areas above 0.04 % strain (at t= 6000, 8000, 10000, and t=12500 sec) in Figure 6.6 show the 

amounts of failure accumulated (exceedance) on the creep curve at 450°C.  

 

Figure 6.6: Lognormal distributions estimated on 0.04 % strain with their corresponding  

 probability of exceedance (filled brown areas) 

A MATLAB code is written to calculate the probability of exceedance (PE) at different times 

based on the proposed empirical equation applied to the experimental data. The distributions in Figure 6.7 

are the probability of exceedance above 0.04% strain level at different times for X-70 carbon steel, 

calculated by MATLAB code. 
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Figure 6.7:   Lognormal pdfs calculated with MATLAB code for 0.04 % strain level (practical 

strain limit in service) for X-70 carbon steel 

Figure 6.8 shows the cumulative distribution of the exceedance at different times above 0.04% 

strain level for X-70 carbon steel, calculated by MATLAB code. 

 

Figure 6.8:   Lognormal cumulative distributions calculated by Weibull++ for 0.04 % strain level 

(practical strain limit in service) for X-70 carbon steel between 450°C and 500°C 
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EXCEL and Weibull++ program were used to calculate the probability of excidance (PE) at 

different times. Again, the proposed empirical model was used to evaluate the corresponding 

experimental data. Figure 6.9 shows the related graph.  

 

 

 

Figure 6.9:   Lognormal pdfs calculated by EXCEL, and drawn by Weibull++ for 0.04 % strain 

level for X-70 carbon steel 

Table 6.1 shows the probability of exceedance (PE) calculated according to: 

 &E � 1 H &�� ' 0.04� � 1 H þ ß���*�'¡S.S_
S                                                                                     (6.21) 

at 0.04 strain level for different times. 
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Table 6.1: Probability and probability of exceedance on the 0.04 Strain level at different times 

Time [hrs] P PE 

13500 o.5434 0.4566 

12900 0.9571 0.0429 

11700 ~1 4.5x10
-8 

9000 1 0 

 

According to the values given in Table 6.1, more than 40% degradation of X-70 carbon steel 

occurs before 13500 hrs. Therefore, the inspection time should be chosen between operation times 

t=11700 and t=12900 hrs.  

 

 

 

 

 

 

 

 

 

 

 

 

 



104 

 

7. Conclusion 

The most important degradation mechanisms in structures such as piping used in the 

nuclear, chemical and petroleum industries are attributed to creep and creep-corrosion. Creep is 

one of the most serious high temperature damage mechanisms. To investigate the pipeline health, 

risk and reliability, it is highly important to model creep and creep-corrosion phenomenon to 

characterize the observed deformation and fracture with respect to time.   

After classification of sixty-two creep equations in two simple groups of power law and 

exponential models, this thesis developed a simple probabilistic PoF model to describe the 

degradation of X-70 carbon steel and Al-7075-T6 structures. The physical parameters in this 

probabilistic model are applied stress, and temperature. Experimental studies and model updating 

support this study. 

A proposed empirical model was developed and it was compared with the mostly used 

and acceptable models from phenomenological and statistical points of view. This model that 

based on a power law approach for the primary creep part and a combination of power law and 

exponential approach for the secondary and tertiary part of the creep curve captures the whole 

creep curve appropriately. Besides, we found the stress and temperature dependencies of our 

model. 

In the next step, the proposed probabilistic empirical model was validated by 

experimental data taken from Al-7075-T6 and X-70 carbon steel samples. The details of 

experimental designs of chambers for corrosion, creep-corrosion, corrosion-fatigue, stress-

corrosion cracking (SCC) (both on CT and dog-boned steel and Aluminum samples), and a high 
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temperature (1200 
0
C) furnace for creep and creep-corrosion (gas pressure) furnace both for CT 

and dog-boned samples have been provided.  

Furthermore, the uncertainties of the probabilistic models as well as their parameters 

were estimated by WinBUGS program based on Bayesian inference. 

Finally, practical applications of the probabilistic model to estimate the activation 

energy of creep process were provided, and two case studies to estimate the remaining life of a 

super heater tube, and probability of exceedance of failures at 0.04% strain level for X-70 carbon 

steel were given. 

The proposed probabilistic model is simple consisting of only two parameters 

(represented by probability density functions). Linear temperature and stress dependency of 

exponent parameters n, and m are presented here for the first time. In the case study, the 

empirical model offered proper assessment and reasonably predicted the expected remaining life 

of the pipeline. 
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Appendix A. Creep Models Summarized from 1898 to 2007 According to         

the Year of their Publishing. 

1- Kelvin- Voigt  ( visco-plastic creep) model [1898].[1]      

��	� � , · ��	� $ % · *�*	 

T�P� � pìN FG H IJK�H �N O⁄ � · P�R, -.	/ %, � 	� � }¥	(â*(	.3) 	.¦¥ 

where  �  is strain, t is time, η is the viscosity, σ is the stress, and E is the elastic modulus 

2- Phillips model [1905], [2]    

� � d · log�	� $ b, 3â    � � �S $ log�1 $ 	�,  3â  � � �S $ � log�1 $ a · 	� 
    where d, B and C are constants. 

3- Anderade 1/3 model [1910-1914], [3]       

� � �F1 $ a�	 	S�⁄ ŶR · exp �Hy · 	� 
    where k, A, and B are a constants. 

4- Prandtl model [1928], [4]  

� � a · sinh ��2� 
   where B, and C care constants. 

5- Norton model [1929], [5]    

������ � � · �� · exp �{| }��⁄  

 

   where ������is the minimum strain rate, {| is the activation energy of the creep process,  

   R is   the gas constant, and T is the temperature in Kelvin. 
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6- Modified Norton model [1929-1935], [6]       

������ � � · ��exp �{| }�� $ a · ��exp �{� }��⁄⁄  

     where A, B, and n are constants, R is the gas constant,  {| , and {� are activation energies,  

������ is the minimum strain rate, and T is the absolute temperature in Kelvin.   

7-Bailey-model [1935], [7] 

� � � · 	� ,   13 ( ) ( 12 

    where A, and n are constants 

8- Norton-Bailey model [1929-1935, 2003] 

�W � � · �� · 	z 

   where �W  is the final strain, and n and p are constants. 

9- Weaver model [1936], [8] 

�W � � · log�	� $ a · 	 $ b 

   where A, B, and C are constants. 

10- Soderberg model [1936], [9] 

� � � $ a · 	 H b · exp�Hc · 	� 
   where A, B, C, and D are constants. 

11- Freudenthal model [1936], [10]                                             

� � � · 	
1 $ a · 	 

  where A, and B are constants. 

 12- Nadai model [1938], [11] 

��V � ��S · sinh ) ��S* · exp )H∆�}�* 
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  where ∆� is the activation enthalpy of the creep 

13- Lacombe-model [1947], [12]   

� � � $ a · �	 	S⁄ �� $ b · �	 	S⁄ �� 

   where A, B, C, m, and n are constants. 

14- Nadai - McVetty model [1943], [13-15] 

� � �S · sinh ) ��S* $ �0S · sinh )��Y*� · 	 
  where 0S and ��  with i= 0, and 1, are constants. 

15- McHenry model [1943], [16] 
� � �F1 H exp�Ha · 	�R $ bF1 H exp�Hc · 	�RR 

   where A, B, C, and D are constants. 

16- Cottrell-Ayetkin model [1947], [17] 

� � � $ a · 	Y/^ $ b · 	 
  where A, B, and C are constants. 

17- Mott and Nabarro model [1948], [18] 

T � o · F����G $ å · P�Ré/ç 

  where A, and B are constants. 

18- Wyatt model [1953], [19] 

�W � � · log�	� $ a · 	� $ b · 	  ,   ) � 1/3 

  where A, B, C, and n are constants. 

19-Manson-Haferd-Grounes (MHG) model [1953], [20, 21]                             
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	k � exp�� · +��, �� $ b� 
+��, �� � (S $ (Y · log��]� $ (] · log��^� 

   where ai, and C are constants. 

20- Orr- Sherby -Dorn-models [1953], [22] 

�� � ß�1� · �� · exp LH ��
s�Q , 1 � 1	â,2	,â¥ �(â(¦¥	¥â1     

   where n is a constant, R is the gas constant, {|  is the activation energy, T is the absolute    

  temperature in Kelvin                     

21- Graham-Walles model [1955], [23]         

�W � (Y · 	Y/^ $ (] · 	 $ (^ · 	^ 

��W �-�� · exp �HÐ�
^

Y
/�� · ��h · ��h 

  where Ð�  and ai , Ai, and ni are material parameter 

22- Bailey-Norton model [1954] 

�k � bS · ���m� · 	���� · exp )Hb�� * , bY ' 1 ()*  0 � b] ( 1 

�k � � $ a · sinh Fb · ) 		S*
Ŷ
R 

   where A, B, C and b�  with i=0, 1, and 2 are constants, and CT is a material constant   

dependent on temperature 

23-Weertman model [1955], [24] 

T� � o · p. · IJK )H�o/�* 
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  where A, α are constants, k= Boltzmann constant, QA=activation energy, T=Temperature 

24- Classical Strain Hardening model [1953????], [25] 

��W � � · exp )HÐ�* · �MV · ) ��S*�    ,     � � �S · exp �� · �� 
1 � (Y $ `Y · � $ 2Y · � $ *Y · � · � 

â � (] $ `] · � $ 2] · � $ *] · � · � 

� � (^ $ `^ · � $ 2^ · � $ *^ · � · � 

  where �, (�, `�, 2�, ()* *�(â¥ 23)1	()	1 

25-Dorn to Laks to Hollomon model [1946-54], [26,27] 

��V � � · � ��D����� · exp �H ∆�
s��  

  where A is a constant, ∆H is the activation enthalpy, and n(T) is a material parameter    

 dependent on temperature.     

26- Pao-Martin model [1957], [28]        

�k � ��1 H exp�Ha	�� $ b · 	 
  where A, B, and C are constants. 

27- Parker model [1958], [29] 

T � o $ å · 01�2 �� · PGç� 
   where A, B, and C are material parameters 

28- Jenkins-model [1962], [30] 

� � � · � $ a · �] 
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  where A, and B are constants. 

29- Conway-Mullikin model, Polynomial form [1962], [31] 

                      � � � $ a · 	Y/^ $ b · 	]/^ $ c · 	,   3â � � � $ a · 	� $ b · 	� $ c · 	 z  
  where A, B, C, D, m, n, and p are constants. 

30- Li model [1963], [32] 

� � �S $ ��V� · ln F1 $
��� H ��V��V · �1 H exp�H� · 	�R $ ��V · 	 

  where A is a constant, and ��- are initial and secondary strain rates. 

  31- Li-Akulov-model [1963-1964], [32, 33, 34]       

�W � �Wg3i�� ln41 $ �5� H ��Wghi��Wghi �1 H exp�H�	��6$ �V� · 	 $ ���exp�	 	�⁄ � H 1� 

where A is a constant, and ���, ��W���, ��V, ()* ��� are different strain rates. 

32- Garofalo-model [1965], [35]            

T � TìFG H IJK�Ho · P�R $ T� næîq · P 
  where A is a constant, ε=strain, �S=initial strain, ��Wghiis the minimum strain rate  

33- Modified Nadai (by Conway) model [1967], [36] 

T� ø � o · 01�2�. · p���q  · IJK �H∆���� 
  where A, and α are constants 

34- Harmathy (H-model) [1967], [37] 

�� � `Y · 23	/]�`] · �� 
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`Y � 2Y · exp L2] · ln��� H 2¯� Q , � � �� -.	/  �� � 	â()1.	.3)1	â¥11 
`Y � 2´ · exp L2Y · ln��� H 2¯� Q , � ' �� -.	/  �� � 	â()1.	.3)1	â¥11 

`] � 1/�2^ · �k¢� 
   where `�, 2� (â¥ 23)1	()	1. 
35- Fairbairn-model, Polynomial, [1967], [38] 

� � � · �� · �	] $ 2	�z      

  where A, n, and p are constants                

36- RCC_MR- model [1970], [39]                  

�W � bY · ��m · 	k�         ß3â   	 ( 	W7 

�W � bY · ��m · 	Wzk� $ 100 · b · �� · �	 H 	Wz �      ß3â   	 ' 	W7 

  where C, C1, C2, n, n1=f(T) and tfp=f(σ, T) 

37- Davis model [NASTRAN]-NAsa-STRuctural-ANalysis-Finite element Program [1976],    

                                                                                                                                                    [40] 

�)���
��� � � $ a · � $ b · �] $ c · ln��� $ , · ln�	� $ � 

  where A, B, C, D, and E are constants 

38-Leckie and Hayhurst model (ABAQUS-Finite Element-Modeling) [1977], [41, 42] 

T� k � 32 ·
��S�S t1 $ )�8��S *�MYw · p,   

 -.	/ T� k ()* p  (1 �¥)13â1, �8� � 93) �.1¥1 ¥:,.0(Þ¥)	 1	â¥11 
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39- Sandström, Kondyr model [1979], [43] 

��W � ��S · exp �; · �� 
  where ; is a material parameter. 

40- Moles-Westwood- Residual Life Time model [1982]. [44, 45] 

	�� � 1
Ðá · !1 H F1 $ Ðá · �) H 1� · 	�RY �YM��⁄ " 

  where tnr is rupture life in service under wall-thinning conditions Ðá is wall-thinning rate  

[hr
-1

], and equal to Ðá � ��#hM#$#h � 	�z�%    with wi, wf and top as initial, final wall thickness  

and operational time [hr], and n=4-8, for ferritic  steel tube, is the stress sensitivity  

(Norton law exponent) and tr is the time to rupture of a tube without wall thinning. 

tr can be estimated by Larson Miller Parameters or other related parameters.  

Remaining life time tres= tnr-top 

  41- Evans and Wilshire-(Theta-Projection)-model [1985], [46] 

Tn � <GFG H IJK�H<é · P�R $ <çFIJK�<ï · P� H GRR 
����<î� � �î $ =î · � $ �î · p $ >î · p · � 

Tn � o $ å · � $ � · p $ ? · p · � 

     where X�, (� … . (â¥ ¦(	¥â.(Þ �(â(¦¥	¥â1. 
42- Johnson-Cook-model [1985], [47-48] 

�W � F� $ a · exp �b · �áR · F1 $ c · ln ���á�R · F1 $ , · �áR 
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  �á, ��á ()* �á (1  .)2â¥¦¥)	(Þ �(â(¦¥	¥â1 
43- The Johnson–Cook (JC) model relation for the flow stress (σy) [1983-1985], [47-48] 

�A��� , ��� , �� � F� $ a�����RÖ1 $ b · Þ)����Ê�RF1 H ��Ê��R 
   where �� is the equivalent plastic strain, ���  is the plastic strain-rate, 

 and A, B, C, n, mare  material constants. 

The normalized strain-rate and temperature in the above equation are defined as 

���Ê B ���  ���D      ()*  �
Ê � �� H �S���� H �S� 

   where ���Dis the effective plastic strain-rate of the quasi-static test used 

 to determine the yield and hardening parameters A,B and n. 

44- Modified Theta-model [1985], [49] 

�W � XYF1 H exp�HX] · 	�R $ X� · 	$X^Fexp�X_ · 	� H 1RR 
X� � � · �� · exp �H{| }��⁄  

where θi are material parameters dependent on stress, temperature and yield of materials. 

  45- Rabotnov-Kackanov-model [1986], [50-52]               

�W� � /Y · ���1 H ��         �� �
yY · �C�1 H ��D
�

 

�k � �s E1H )1 H 	
	s*

YÈF , x � �s��S	s  

  where h1, k1, and ω are material parameters and n, ν, ζ, and λ are constants. 
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46- Maruyama-model (simplified Theta-model) [1990], [54] 

� � �S $ � · F1 H exp�Hd · 	�R $ a · Fexp�d · 	� H 1RR 
where α is a material parameter dependent on stress, temperature and yield of materials 

47-Brinkman, Booker and Ding-model [1991], [55] 

�Ê � expFà · �	Ê H 1�R · �	Ê� , �Ê()* 	Ê (â¥  )3â¦(Þ.G¥* 1	â(.) ()* 	.¦¥ 

  where d ()* à (â¥ 23)1	()	1. 
48- Bolton model and Mech.E (CSWP) model [1994], [56, 57] 

}H/�/� � �� $ a �⁄ H b · �]� · }'/�/� $ c $ , �⁄ $ + �]⁄ H I · �] 

   where }H/�/� is the strength ratio of tensile to compressive strength (σt/σc). 

�W��� � � · �}H/�/�}'/�/� H 1�/�
}H/�/�
� H 1� 

49- Bartsch-model [1986-1995], [58, 59]       

�W � � · � · exp �H{|m }��⁄ · exp�Ha · �� · 	z $ b · � · exp �H{|� }��⁄ · exp�Hc · �� · 	 
where A, B, C, D and p are constants, R is the gas constant,  {|m  , and  {|�  are activation 

energies, and T is the absolute temperature in Kelvin. 

  50- Omega-model (Prager model) [1995], [60]          

� � H 1;z · ln�	� H 	� $ 1;z · ln t 1
��S;zw , 3â  � � ��S · exp�;z ·  � � , 3â 

�W� � ~�Wghi1 H ~�Wghi · ; · 	 , ()*  ; � �� · �M�J · exp � {}�� 
where AΩ, nΩ,  and Ωp are constants, ε=strain, ��W=final strain rate, ��Wghiis the minimum strain    
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rate , Ω= ∂lnε/∂ε. Omega defines the rate at which strain rate accelerates as a result of creep 

strain.  

51- BJF (Jones and Bagley)-model [1995-1996], [61] 

~W � �F1 H exp�H	�R� $ a	 
	 � �� �Y⁄ �� · exp �H{ }��⁄  

or   	 � þ��ÑWW �Y⁄ �� · exp �H{ }��⁄ *	 

�ÑWW � �
1 H �   ()*    �� � a · �

�
1 H ��� 

where A,B,  A1, β, n, and m are constants, ω is a damage parameter between 0, and 1, and �ÑWW 

is the effective stress. 

52- Dyson and McLean-model [1998-2000], [62] 

�W � ~Sá · �1 $ c�� · exp �H{ }�� · sinh L ��1 H ��
�S�1 H cz��1 H ��M%  

            where �W  and  ~S′   are the equivalent minimum creep strain rate and the reference creep  

           strain rate; σ and  �S  are the equivalent stress and the reference stress, respectively; T is   

           the temperature; Q is the creep activation energy.   H is the hardening parameter, Dd is the  

           damage parameter caused by multiplication of mobile dislocations, Dp is the damage   

           parameter caused by particle coarsening and ω is the damage parameter caused by the   

           cavity nucleation and growth.  

53- Robotnov- Hayhorst- Dunne- Hyde: Creep in structural members,   

      Continuum Damage Mechanics, Constitutive Equations [CDMCE], [1969-1998,…],   
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                                                                                                                                        [63-67] 

�� � � · L �
1 H �Q

� · 	� , ()*  �� � a · �N
�1 H ��O · 	� 

             The uniaxial parameters A, n,ϕ , B, χ and m shown in above equations can be 

determined by fitting a group of creep test strain curves for different stress levels 

       at fixed temperature to the following theoretical strain equation. 

� � � · ���MN�
a · �Q $ 1 H )� · R1 H t1 H a · �1 H Q��N · 	�Y£��1 $ ¦ w

��YM�� �O£Y��⁄ S 
3â � � � · �� · 	W�Y£���1 $ ¦� · F�1 H ) �Q $ 1�R⁄ · R1 H t1 H ) 		�*�Y£��w

��YM�� �O£Y��⁄ S 
-.	/ 	� (1 	/¥ 	.¦¥ 	3 â,�	,â¥, ()* �W � � · �� · 	W�Y£���1 $ ¦� · F�1 H ) �Q $ 1�R⁄  

54- Modified Garofalo-model (Granacher et.al.) [2001], [68] 

~W � ��W · F1 H exp�H� · �	 	Y]�⁄ H� $ ���ghi · 	 $ a · �	 	]^⁄ �WR 
where A, B, u, and f are constants, ���ghi  minimum creep rate,  	�
 are transition times between 

different creep stages. 

  55- Modified Omega-model (Merckling) [2002], [69] 

~W � )1; H 1
2b��* · �H ln�	H H 	� $ ln�	H�� $ b���1 H exp�¦�� · 	�� 

 where tu is the observed time to rupture, b��and ¦�� and ; are material constants. 

  56- Altstadt-model, ANSYS-Finite element code [2003], [70, 71] 
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�� � � · �  · �� · exp �Ha�� 

  where A, B, α, and β are constants. 

  57- Baker-cane-model (Baker and O’Donnell) [2003], [72] 

~W � � · 	� $ ~z $ Q · �V $ �V�TH Q� · UÎ H 		H H Q1 H Q V
YMOTMO

 

Î � �H �V  ,   �V � ⁄ ��� · 	H  ()*  Q � 	z 	H⁄  

     where ϕ, λ are material parameters, tu is the observed rupture time. 

58- MHG-model [2004], [73] 

	' � exp��+��, �� $ b� 
where F(ε, σ)-function is freely selected from multi-linear combinations of σ and ε with an 

optimized value of C 

59- Extended Omega model-Clech [2004], [74, 75] 

�� � ( · exp�H� · �� $ ` · exp�; · �� 
  where a, b, A, and Ω are material parameters. 

 

60-Modified Sandstroem Φ model for primary and Ω model for tertiary creep  

    [2004], [76]  

� � QY · �MO� $ ;^ · exp �� · ;_� 
  Φ1, Φ2, Ω3 and Ω4 are constants that are fitted to the creep curve. 
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61- Continuum Damage Mechanics (CDM)-based constitutive equation-model [2005],   

      [77, 78] 

�� � � · 1.)/ Ç a��1 H ��
�1 H X��1 H ��É 

�� � /��� �1 H
�
�Ê� 

X� � Ðk3 �1 H X�_ 

�� � b · �� 
   where A, B, C, h, H

*
 and Kc are material constants to be determined after the data fitting. 

62- Holmström- Auerkari- Holdsworth (Logistic Creep Strain Prediction model),  

     (LCSP), [2006-2007], [79, 80] 

����PT� � ����.PU� $ Y
G $ )����T�U�ì *r H Y 

�ì�p, �� � o $ å · ����p� $ � �� $ éíç⁄ � 
r�p, �� � ? $ N · ����p� $ Z �� $ éíç⁄ � 

 

where 	�  is the time to rupture from a creep rupture model to a given strain, and x0, p, and β are 

fitting factors defining the curve shape and α ~1. 

Figure A.1 helps to understand the parameters used in the above sixty-two different creep 

models [81]. 
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Figure A.1: Schematic presentation of three parts of the creep curve (a), and strains 

generated during the loading in a creep test [81] 

As it is seen in the Figure A.1, the total strain εt is the sum of elastic strain εe, and plastic 

strain εp (or permanent strain εper). The plastic strain itself is the sum of instantaneous plastic 

strain εi and final plastic strain εf. 

 

 

 

 

 

 

 

 



121 

 

Appendix B. References to Creep Models 

1- Kelvin- Voigt creep model, cube.case.edu/EMAC403/EAMC403_Mechanical%20Models.pdf 

2- Phillips,F,; The Slow stretch in India rubber, Glass and metal wire when subjected to a 

constant pull, Phil. Mag.9,513,1905 

3- Anderade, E.N. da C.; TheViscous flow in metals and allied phenomena, Proc. Roy. Soc., 

A84,1, 1910; A90, 329, 1914 

4- Prandtl, L. ; Proceedings of the first international conference on applied mechanics, Delft, 

The Netherlands, p.43, 1924 

5- Norton, F.H. ; Creep of steel  at high temperatures, McGraw-Hill Book Co. Inc. 1929 

6- Modified Norton model: 

7- Bailey,R.W. The utilization of creep test data in engineering de sign, Proc. I. Mech.  E.131, 

1935,…. Norton bailey, in Robinson, D. N., Binienda, W. K., and Ruggles, M. B. ~2003 

‘‘Creep of polymer matrix composites. I: Norton/Bailey creep law for transverse isotropy.’’ J. 

Eng. Mech., 129, 3,  310–317,[2003] 

8- Weaver,S.H.; The creep curve and stability of steels at constant stress and temperature, 

Transe. ASME,58, 745, 1936 

9- Soderberg, C.R. ; The interpretation of creep tests for machine design, Trans. ASME,58, 735, 

1936 

10- Freudenthal,A. M., ; Theory of wide-span arches in concrete and reinforced concrete, 

International Association Bridge and Structural Engineers 4, 249, 1936 

11- Nadai, A.; The influence of time upon creep. The Hyperbolic Sine creep law, Stephan 

Timoshenko Anniversary Volume, Macmillan Company, New York, 1938 

12- De Lacombe, J.; A method of representing creep curves, Rev. Metal. 36, 178, 1939 



122 

 

13- McVetty, P.G. ; Creep of metals at elevated temperatures- The hyperbolic Sine relation 

between stress and creep rate, Trans. ASME, 65, 761, 1943 

14- Nadai, A. and McVetty, P.G. ; Hyperbolic Sine chart for estimating working stresses of 

alloys at elevated temperatures, Proc. ASTM, 43, 735, 1943 

15- Davis, D.S. ; Empirical equations and nomography, McGraw-Hill, 1943 

16- McHenry, D. ;A new aspect of creep in concrete and its application to design, Proc. ASTM 

43, 1069, 1943 

17- Cottrell, A. H. and Aytekin, V. ; Andrade’s creep law and the flow of Zinc crystals, Nature, 

160,328, 1947 

18- Mott,N.F. and Nabarro.F. R. N.; Dislocation theory qnd transient creep, Report of the 

conference on the strength of solids, 46, The Physical society (London) 1948 

19- Wyatt,O. H. ; Transient creep in pure metals, Proc. Phys. Soc. London, B, 66, 459, 1953 

20- Grounes, M.; A Reaction rate treatment of the extrapolation methods in creep testing. J. 

Basic Eng.,Series D, Trans. ASME 1969 

21- Manson, s. S. and Haferd, A.M.; A linear time-Temperature relation for extrapolation of 

creep and stress-rupture data, NACA TN 2890, March [1953] 

22- Orr, R.L., Sherby, O.D. and Dorn, J.E. ; Correlations of rupture data for metals at 

elevated temperatures, Trans. ASM, 46, 113, 1954 

23- Graham, A. and Walles, K.F.A. ; NGTE Reports Nos.R.100(1952), R.137 (1953), R.189 

and R.190 (1956); J. Iron and steel Inst.179,105, [1955] 

24- Weertman, J. ; Theory of steady-state creep based on dislocation climb, Journal of Applied 

Physics, Vol. 26, 1213,1955 

25- Classical work hardening model in : ECCC, Recommendation and guidance for  the assessment of  

creep strain and creep strength data,www.ommi.co.uk/etd/eccc/advancedcreep/V5PIbi2x.pdf 



123 

 

26- Laks,H.,Wiseman,C. D., Sherby, O.D. and Dorn, J. E. ; Effect of stress on creep at high 

temperatures, J. App. Mech. 24, 207, 1957 

27- Hollomon, J. H. ; The problem of fracture, Welding Journal, Am. Welding Soc., Vol. 25, 

534s,1946 

28- Pao, Y. H. and Marin, J., “Analytical theory of creep deformation of materials”, ASME  

 Trans., Journal of Applied Mechanics, Vol. 20, No. 2, pp. 245-252, 1957  

29- Parker, E.R.; Modern concepts of flow and fracture, Trans. ASM, 50, 52, 1958 

30- Jenkins, G. M. and Williamson, G. K., ; Irradiation Creep in Graphite, 

        www.osti.gov/bridge/servlets/purl/4639694-tdr3Oa/4639694.pdf 

31- Conway, j. B. and Mullikin, M.J. ; An evaluation of various first stage creep equations, 

presented at October 1962 meeting of AIME, Detroit Michigan, 1962 

32- Li, J.C.M. ; A dislocation mechanism of transient creep, Acta Met 11,1269, 1963 

33- AKULOV, N. S. ‘On dislocation kinetics’, Acta metall. 12, 1195, 1964 

34- AKULOV, N. S. ‘The statistical theory of dislocations’, Phil. Mag. 9, 767,1964 

35- GAROFALO, F. Fundamental of creep and creep-rupture in metals. 16 (Macmillan),1965. 

36- Modified Nadai (by Conway) model in: Conway, J.B. Numerical methods for creep and 

rupture analysis, Grodon and Breach, New York, 1967 

37- Harmathy, T. Z.; "Deflection and Failure of Steel-Supported Floors and Beams in Fire," 

ASTM Special Technical Publication, No. 422, 1967. 

38- Fairbairn, J. ; Journal mechanical engineering science, Vol.9, 2, 1967 

39- RCC-MR-model in: Norbeto, N. & Merckling, G.;  'Use of Omega and ISO methods for 

the analysis of creep strain data', ISB, WG/31, 12/9/02, 2002 and [17-] 



124 

 

40- Devis, J. W. Cramer, B. A. ; Prediction and verification of creep behavior I metallic 

materials and componentsfor space shuttle thermal protection system, NASA, CR- 2685, 

1976 

41- F.A. Leckie, F. A. and D.R. Hayhurst, D. R.; Constitutive equations for creep rupture. 

Acta Metall. vol.25 (1977), p. 1059 

42- ABAQUS Finite Element Code, Hibbett, Karlsson and Sorensen Inc., Providence, RI, USA. 

43- Sandström R, Kondyr A.; A model for tertiary creep in Mo- and CrMo-steels. In: 

Proceedings of third international conference on mechanical behaviour of materials, 

Cambridge, 1979 

44- Moles, M. D. C. and Westwood, H. J.; “ Residual life estimation of high temperature 

superheater  and reheater tubing,” CER RP, 78-66,Final report of OntarioHydor Research 

Dev., Toronto, for the Canadian Electrical Assn., Montreal, Mar. 1982, p 67-82 

45- Viswanathan, R.; “Damage mechanisms and life assessment of high temperature 

components, ASM International, Metal Park, Ohio 44073, 1989 

46- R.W. Evans and B. Wilshire, Creep of metals and alloys, Institute of Metals (1985). 

47- Johnson, G.R.; Cook, W.H. (1983), "A constitutive model and data for metals subjected to large 

strains, high strain rates and high", 1983 

48- Johnson,G. R.,Cook, W.H.  ; Fracture characteristics of three metals subjected to various 

strain rates, temperatures and pressures, Eng. Fracture Mechanics, 21(1), p 31-48, 1985 

49- Modified  Theta model in: R.W. Evans and B. Wilshire, Creep of metals and alloys, 

Institute of Metals (1985). 

50- Rabotnov, Y.N. ; Some problems of the theory of creep, NACA., TM, 1353, 1953 



125 

 

51- Rabotnov, Y. N. ; On the equation of state of creep, ASME/ASTM/IMechE  Proceedings 

Conference on creep, Inst. Mech. E., New York/London, 1963 

52- Kachanov, L. M. ; The theory of creep (ed. A. J. Kennedy), National Lending Library, 

Boston Spa, UK, 1967 

53- Kachanov, L. M., ; Introduction to Continuum Damage Mechanics, Nijhoff, 

Dordrecht.1987 

54- Maruyama, K. et al. ; Long-term creep curve prediction based on the modified θ projection 

concept. J. Pressure Vessel Technol., 112, 1990 

55- Brinkman, C.R.; Booker, M.K.; and Ding, J.L.: Creep and Creep-Rupture Behavior of 

Alloy 718. Proceedings of the International Symposium on the Metallurgy and Applications 

of Superalloys 718, 625, and Various Derivatives, Minerals, Metals & Materials Society, 

Warrendale, PA, 1991. 

56- (CSWP)-model in: Townley, C. H. A., et al., ;  ‘‘High Temperature Design Data for Ferritic 

Pressure Vessel Steels,’’ Creep of Steels Working Party (CSWP), Inst. Mech. Eng., J. Mech. 

Eng., London. 1991 

57- Bolton JL. Design considerations for high temperature bolting. In: Strang A, editor. 

Proceedings of conference on performance of bolting materials in high temperature plant 

applications, York, 16–17/6/94, p. 1–14, 1994 

58- Bartsch, H., ; 'A new creep equation for ferritic and martensitic steels' SteelResearch, 66(9), 

384-388, 1995 

59- Bartsch-model in: Holdsworth, S.R., 2002, 'Creep strain assessment using Bartsch and 

Bolton model equations', Alstom Power, WG1/32, 12/9/02,[2002] 



126 

 

60- Prager, M. 'Development of the MPC Omega method for life assessment in the creep 

range', ASME J. Pressure Vessel Technology, 1995, 117, May, 95-103. 

61- BJF-model: Jones, D.I.G, French, R.M. and Bagley, R.L.; “A Renewal Theory of Inelastic Thermo-

Mechanical Behavior of Metal Alloys”; ASME AD-Vol. 50, Fatigue and Fracture at Elevated 

Temperatures, A. Nagar and S. Mall, ed.; Book No. H01013-1995 

62-  McLean, M. and B. F. Dyson, B. J. ; Modeling the Effects of Damage and Microstructural 

Evolution on the Creep Behavior of Engineering Alloys, J. Eng. Mater. 

Technol.Vol.122,  Issue 3, 273, July (2000) 

63- Rabotnov, Y. N., “Creep problems in structural members”, English translation by F. A. 

Leckie,North Holland,  Amsterdam, (1969). 

64- Hayhurst, D. R., “Creep continuum damage mechanics: A unifying theme in high 

temperature design ”, High Temperature Structure Design, ESIS 12, Edited by L. H. Larsson, 

Mechanical Engineering Publications, London, (1992), 3 17-334. 

65- Dunne, F. P. E., Othman, A. M., Hall, F. R. and Hayhurst, D. R., “Representation of 

uniaxial creep curves using continuum damage mechanics”, Int. J. of Mech. Sci., 32, 11, 

(1990), 945-957. 

66- Hyde, T. H., ; “Constitutive equations for creep of metals”, Proc. XXV AIAS International 

Conference of Materials Engineering, Gallipoli, Leece, (1996). 

67- Hyde,T. H. Sun, W. and Tang, A.; Determination of material constants in creep continuum 

damage constitutive equations, UDC: 539.376, 620.1, 'Strain ', August I998 

68- Modified Garofalo model in: Granacher J, Möhlig H, Schwienheer M, Berger C. Creep 

equation for high temperature material. In: Proceedings of seventh international conference 

on creep and fatigue at elevated temperatures (Creep 7), 3–8 June, NRIM, Tsukuba, p. 609–

16, 2001 



127 

 

69- Modified Omega model in: Merckling G. Metodi di calcolo a confronto per la previsione 

dellulteriore esercibilità in regime di scorrimento viscoso. In: Proceedings of conference on 

fitness for service, Giornata di Studio CESI-CONCERT, Milan, 28 November, 2002. 

70- Altstadt, E. ; Extension of ANSYS –creep plasticity and damage simulation 

capabilities,Forschungscentrum Rossendorf Dresden, 2003 

71- ANSYS Finite Element Code, Swanson Analysis Systems Inc., Houston, PA, USA. 

72- Baker and Cane model: Baker AJ, O’Donnell MP. R5 high temperature structural integrity 

assessment of a cracked dissimilar metal weld vessel test. In: Proceedings of second 

international conference on integrity of high temperature welds, 10–12 November 2003, 

London. 

73- MHG model: Holmström S, Auerkari P. Prediction of creep strain and creep strength of 

ferritic steels for power plant applications. In: Proceedings of Baltica conference on life 

management and maintenance for power plants, VTT Symposium 234, 8–10 June, Espoo, 

[2004] 

74- Clech, J.-P., “An obstacle-controlled creep model for Sn-Pb and Sn-based lead-free 

solders”, Proceedings (CD-ROM), SMTA International Conference (SMTAI’04), Chicago, 

IL., September 26-30, 2004 (available for download at: http://www.jpclech.com). 

75- J.-P. Clech: Proc. Conf. on ‘Electronic components and technology’,Orlando, FL, USA, 

May–June 2005, 1261–1271. 

76- Wu, R. Sandström, R. Seitisleam, F. J. Eng. Mater. Technol., Vol. 126, pp. 87-94, 2004 

77- (CSWP)-model in: Townley, C. H. A., et al., ;  ‘‘High Temperature Design Data for Ferritic 

Pressure Vessel Steels,’’ Creep of Steels Working Party (CSWP), Inst. Mech. Eng., J. Mech. 

Eng., London. 1991, and 2005 



128 

 

78-  Continuum Damage Mechanics (CDM)-based constitutive equation-model, [from 

1985-2011], in: Zhang ,W. ; “Review of damage mechanic”, Continuum damage mechanics 

(CDM) Levy A., A physically based constitutive equation for creep-damaging solids ... 

www.springerlink.com/index/P582140L5H666658.pdf (2011) 

79- Holmström, S., and Auerkari, P.; “Robust Prediction of Full Creep Curves From Minimal 

Data and Time to Rupture,” Energy Mater: Mater. Sci.Eng. Energy Syst., 1, pp. 249–255, 

2006 

80- Holmström, S., Auerkari, P., Holdsworth S. Predicting creep strain response from rupture 

data and robust creep curve model. International Conference on Life Management and 

Maintenance for Power Plants. Helsinki-Stockholm-Helsinki, 12-14 June 2007. Vol 1.2007 

81- Holdsworth S.R., Merckling G.;  ECCC developments in the assessment of creep-rupture 

data. In: Proceedings of sixth international Charles Parsons Conference on engineering 

issues in turbine machinery, power plant and renewables, Trinity College, Dublin, 16–18 

September, 2003. 

 

 

 

 

 

 

 

 



129 

 

Appendix C. MATLAB-Program for 7075-T6 Creep (Stress Dependency)  

clear all; 

 number = 20; 

%T=648; 

%n=0.426; 

%m=2.473; 

m=1.055; 

p=0.0000034; 

Ef=0.3; 

 mesh=100; 

 t=[0:10000/number:500000]; 

 hold on; 

 for i = 1: length(t) 

%A(i)=lognrnd(-9.48, 0.06); 

%B(i)=lognrnd(-35.647, 0.11); 

A(i)=lognrnd(-12.02375, 0.06); 

B(i)=lognrnd(-39.367, 0.11); 

s6=6.88;   %added 

s1=7.88; 
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s2=8.86; 

s5=10.535;   %added 

s3=12.21; 

s4=13.7; 

E6(i)=A(i)*exp(0.3299*s6)* t(i)^(0.0085*s6+0.454) +  B(i)*(s6^9.5531)* t(i)^m* exp(2e-

6*exp(0.1898*s6)*t(i)); 

E1(i)=A(i)*exp(0.3299*s1)* t(i)^(0.0085*s1+0.454) +  B(i)*(s1^9.5531)* t(i)^m* exp(2e-

6*exp(0.1898*s1)*t(i)) ; 

E2(i)=A(i)*exp(0.3299*s2)* t(i)^(0.0085*s2+0.454) +  B(i)*(s2^9.5531)* t(i)^m* exp(2e-

6*exp(0.1898*s2)*t(i)) ; 

E5(i)=A(i)*exp(0.3299*s5)* t(i)^(0.0085*s5+0.454) +  B(i)*(s5^9.5531)* t(i)^m* exp(2e-

6*exp(0.1898*s5)*t(i)); 

E3(i)=A(i)*exp(0.3299*s3)* t(i)^(0.0085*s3+0.454) + B(i)*(s3^9.5531)* t(i)^m* exp(2e-

6*exp(0.1898*s3)*t(i)) ; 

E4(i)=A(i)*exp(0.3299*s4)* t(i)^(0.0085*s4+0.454) + B(i)*(s4^9.5531)* t(i)^m* exp(2e-

6*exp(0.1898*s4)*t(i)) ; 

end 

axis([0  500000 0  0.7]); 

xlabel('time[sec]'); 

ylabel('Creep strain E[%]'); 
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title('Creep strain vs. time'); 

grid(gca,'minor') 

plot(t, E1, 'b',t, E2, 'g', t, E3, 'r', t, E4, 'm', t, E5, 'c', t, E6, 'y');  

Figure below shows a schematic result of this program. 

 

Figure C1: MATLAB-picture from the above program for stress  

dependency of Al-7075-T6 
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Appendix D. MATLAB-Program for Creep of X-70 Carbon Steel (Stress and           

Temperature dependency) 

clear all; 

number =500; 

ns1= (-0.008); 

Ea= (-269000); 

R=8.31446;  

a1= 0.0003; 

b1= 0.000045; 

c1= 0.39303; 

d1= -0.013; 

a2= 0.0006; 

b2= 0.0001; 

c2= 1.4784; 

p1=8.015E-5; 

p2= 0.006; 

T (7)= 683; 

T (1)= 691; 

T (2)= 710;  

T (3)= 723; 
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T (4)= 736; 

T (5)= 743; 

T (6)= 753;  

 S (7)= 123; 

 S (1)= 133; 

 S (2)= 258; 

 S (3)= 346; 

 S (4)= 426; 

 S (5)= 465; 

 S (6)= 495; 

 mesh =100; 

t= [0:10000/number:15000]; 

for  i2=1:1 

hold on; 

for i=1:length(t)  

     A(i)=lognrnd(38.4706, 0.11); 

   %A(i)=lognstat(38.4706, 0.11); 

     B(i)=lognrnd(-17.94011, 0.12);  

   %B(i)=lognstat(-17.94011, 0.12); 
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   Beta17= (a1*T(7)) + (b1*S(7))+c1; 

   Beta11= (a1*T(1)) + (b1*S(1))+c1; 

   Beta12= (a1*T(2)) + (b1*S(2))+c1; 

   Beta13= (a1*T(3)) + (b1*S(3))+c1; 

   Beta14= (a1*T(4)) + (b1*S(4))+c1; 

   Beta15= (a1*T(5)) + (b1*S(5))+c1; 

   Beta16= (a1*T(6)) + (b1*S(6))+c1; 

   Beta27= (-a2*T(7))+ (-b2*S(7))+c2; 

   Beta21= (-a2*T(1))+ (-b2*S(1))+c2; 

   Beta22= (-a2*T(2))+ (-b2*S(2))+c2;    

   Beta23= (-a2*T(3))+ (-b2*S(3))+c2; 

   Beta24= (-a2*T(4))+ (-b2*S(4))+c2;    

   Beta25= (-a2*T(5))+ (-b2*S(5))+c2;    

   Beta26= (-a2*T(6))+ (-b2*S(6))+c2;    

  E7(i)=A(i)*exp(ns1*S(7))*exp(Ea/(R*T(7)))*t(i)^(Beta17) + B(i)*exp(d1*S(7))*t(i)^(Beta27) 

*exp(p1*exp(p2*S(7))*t(i)); 

  E1(i)=A(i)*exp(ns1*S(1))*exp(Ea/(R*T(1)))*t(i)^(Beta11) + B(i)*exp(d1*S(1))*t(i)^(Beta21) 

*exp(p1*exp(p2*S(1))*t(i)); 

  E2(i)=A(i)*exp(ns1*S(2))*exp(Ea/(R*T(2)))*t(i)^(Beta12) + B(i)*exp(d1*S(2))*t(i)^(Beta22) 

*exp(p1*exp(p2*S(2))*t(i)); 
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  E3(i)=A(i)*exp(ns1*S(3))*exp(Ea/(R*T(3)))*t(i)^(Beta13) + B(i)*exp(d1*S(3))*t(i)^(Beta23) 

*exp(p1*exp(p2*S(3))*t(i)); 

  E4(i)=A(i)*exp(ns1*S(4))*exp(Ea/(R*T(4)))*t(i)^(Beta14) + B(i)*exp(d1*S(4))*t(i)^(Beta24) 

*exp(p1*exp(p2*S(4))*t(i)); 

  E5(i)=A(i)*exp(ns1*S(5))*exp(Ea/(R*T(5)))*t(i)^(Beta15) + B(i)*exp(d1*S(5))*t(i)^(Beta25) 

*exp(p1*exp(p2*S(5))*t(i)); 

  E6(i)=A(i)*exp(ns1*S(6))*exp(Ea/(R*T(6)))*t(i)^(Beta16) + B(i)*exp(d1*S(6))*t(i)^(Beta21) 

*exp(p1*exp(p2*S(6))*t(i));  

  end 

end 

axis([0 15000 0 0.07]);  

xlabel('time'); 

ylabel('Creep strain, E(mm)'); 

title('Creep strain "E" vs. Time "t"'); 

 %plot(t, E1,'b', t, E2, 'r',t, E3, 'g',t, E4,'k',t, E5,'k',t, E6,'k',t, E7,'r',t, E8,'g',t, E9,'g',t, E10,'r'); 

 plot(t, E7,'k',t, E1,'b', t, E2, 'g',t, E3, 'r',t, E4,'k',t, E5,'b',t, E6,'k'); 

%plot(t, E1,'b'); 

% hold off 
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Figure below shows the result for the temperature and stress dependency of X-70 carbon 

steel from MATLAB program. 

 

Figure D1: MATLAB-picture from the above program for Temperature and stress 

dependency of X-70 carbon steel 
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Appendix E. Example of a WinBUGS- Program for Creep of materials 

Model { 

A~dunif(0, 30) 

B~dunif(-150,0) 

s2~dunif (0, 100) 

ns1~dlnorm (-4.92, 1.60637E6) 

nt1<-17078.6798 

d1~dlnorm (-1.489, 10000) 

p1~dlnorm (-30, 10000) 

p2~dlnorm (-3.34, 5.6689E6) 

         C <- 1000000  

   for(i in 1:267){        

         zeros[i] <- 0             

m[i]<- (exp(A)*pow(x[i,3],-ns1)*exp(-nt1/x[i,4])*pow(x[i,2], 

(0.2119*exp(0.0023*x[i,3])))+exp(B)*exp(d1*x[i,3])*pow(x[i,2], 

(0.1943*exp(0.004*x[i,3])))*exp(p1*exp(p2*x[i,3])*x[i,2]))  

L[i]<-exp(-0.5*pow((log(x[i,1]) -log( 

m[i]))/s2,2))/(s2*2.50663*(x[i,1])) 

         phi[i]<- -log(L[i])+C 

         zeros[i] ~ dpois(phi[i])       

             } 

   } 
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Appendix F. Example of a WinBUGS Program for Non-Linear Regression            

Model of Creep of Materials 

Model { 

 

n~dunif(0,0.7) 

m~dlnorm(0.4567, 100) 

c~dlnorm(-26.04, 100) 

p~dlnorm(-5.918,100) 

#a<-0.0013 

 

s~dunif(0,100) 

 

         C <- 1000  

   for (i in 1:N){     

         zeros [i] <- 0 

    

 L[i]<-exp(-0.5*pow((x[i,2]-(0.00003*exp(7.0744*n))*pow(x[i,1],n)-

c*pow(x[i,1],m)*exp(p*x[i,1]))/s,2))/(pow((2*3.141592654),0.5)*s) 

    

         ghr[i]<-(-1)*log(L[i])+C 

         zeros[i]~dpois(ghr[i]) 

   }  

      tau<-1/pow(s,2) 

      e~dnorm(0,tau) 

      for (j in 1:10){ 

      y0[j]<-

(0.00003*exp(7.0744*n))*pow(x0[j],n)+c*pow(x0[j],m)*exp(p*x0[j])+e 

   }        

           

   }  
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Appendix G. Akaike Information Criterion 
 

Akaike [ch.2, 17] found a formal relationship between information theory that was based 

on the relative entropy and the maximum likelihood (ML) of the statistical theory. Akaike 

combined ML, least square and model selection under a unified theoretical framework under the 

name of Akaike’s information criterion (AIC). 

                                                   �Îb � H2 ln �L�θ]^data�� $ 2Ð                                             (G1) 

where ln �L�θ]^data�� is the value of the maximum loglikelihood over the unknown parameters 

(X]), given the data and the model, and K is the number of model parameters.  

In the special case of least-square estimation with normally distributed errors, AIC is 

described by:  

                                          �Îb � ) log��Ï� $ 2Ð,    -.	/ �Ï] � ∑ Ñ̂h�
�                                         (G2) 

where   ¥̂�   are the estimated residuals from the fitted model.                

   AG1. Classification or Ranking the models 

 

Akaike’s approach allows identifying the best model in a group of models and allows 

ranking the rest of the models easily. It is possible to rescale AIC values with a parameter like ∆i 

such that the model with the minimum information criterion has a value of 0 (zero), i.e. 

                                       ∆�� �Îb H min ��Îb�                                                                          (G3) 

The ∆i, values are easy to interpret and allow a quick comparison and ranking of models. 

The smaller the ∆i, the better is the fitted model. It is generally important to know which model is 

the second best (the ranking) with respect to the best model. According to this description a 
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ranking procedure was created. 

            Models having  

• ∆�( 2            Substantial Support 

• 4 ( ∆�( 7    Limited Support 

• ∆�' 10         No support by the data 

Akaike [ch.2, 17], derived later (1981) the expression  exp �H ∆h
]  � which gives the 

likelihood of the model given the data: ����|*(	(�.   
                                                   ����|*(	( � 4� � exp �H ∆h

]  �                                                 (G4) 

It is often useful to normalize these likelihoods. Akaike gave the following weight 

parameters for comparing models with one another:  

                                                                -� � _`a �M∆h� �
∑ _`a �M∆b� �cbdm                                                         (G5) 

wi,   is the Akaike weight and provides a relative weight of evidence for each model [ch.2, 17].  
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