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Abstract

New Methods for the Detection and
Interception of Unknown,
Frequency-Hopped Waveforms

Title of Dissertation:

William Edward Snelling, Doctor of Philosophy, 1990

Dissertation directed by: Dr. Evaggelos Geraniotis, Associate Professor,
Department of Electrical Engineering, University of Maryland, College Park

Three new methods for the detection and interception of frequency-hopped

waveforms are presented. The first method extends the optimal, fixed-block

detection method based on the likelihood ratio to a sequential one based on the

Sequential Probability Ratio Test (SPRT). The second method is structured
around a compressive receiver and is highly efficient yet casily implemented.
The third method is based on the new concept of Amplitude Distribution

FFunction (ADF) and results in a detector that is an extension of the radiome-

ter.

The first method presents a detector structured to make a decision sequen-
tially, that is, as each data element is collected. Initially, a purely sequential
test is derived and shown to require fewer data for a decision. A truncated
sequential method is also derived and shown to reduce the data needed for a

decision while operating under poor signal-to-noise ratios (SNRs). A detailed
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performance analysis is presented along with numerical and Mon e Carl |
= arlo anal-

yses of the detectors.

The second method assumes stationary, colored Gaussian interference and
presents a detailed model of the compressive receiver. A locally optinal detec-
tor is developed via the likelihood ratio theory and yields a referece to which
previous ad hoc schemes are compared. A simplified, suboptimal sehiris s
developed that trades off duty cycle for performance, and a technique for es-

timating hop frequency is developed. The performance of the optinal i
2 g .

trade-off

suboptimal detectors is quantified. For the suboptimal scheme, (]

with duty cycle is studied. The reliability of the hop frequency estimator is

bounded and traded off against duty cycle.

In the third method, a precise definition of the ADI"is given, from whicl
follows a convolutional relationship between the ADI's of signal and additive
noise. A technique is given for deconvolving the ADI, with which signal and
noise components can be separated. A detection statistic based directly on this
deconvolution technique is defined and statistically characterized, yielding a
framework on which to synthesize a detector. The detector’s performance is

analyzed and compared with the radiometer.
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Chapter 1

Introduction and Background

1.1 Motivation

The goal of the intercept receiver is to detect, identify, and geolocate hostile
electromagnetic (IEM) sources and use this information to counter with Ilec-
tronic Counter Measures (KECM) and Electronic Counter Counter Measures
(ECCM). For military communications, the receiver is expected to intercept
any one of a set of target communications. The interception task is hindered
by a dense EM environment that consists of other communication signals,
both friendly and hostile, possibly jamming or masking signals in addition
to ever-present noise interference. With the advent of frequency-hopped and
other spread-spectrum communications, the scarch bandwidth that assures a
reasonable probability of intercept is greatly increased, thereby aggravating

the problem of interference, because greater numbers and types of interfer




ences obscure the target signal. The increased complexity of the interception
problem motivates the search for new methods of detection and interception

of frequency-hopped waveforms.

1.2  Target Signals

Military and other secure communications use spread-spectrum signaling
involving some variety of modulation whose purpose is to add ambiguity or
“randomness” to the waveform as a measure against unintended detection or
interception. The usual procedure for randomizing the waveform is pseudo-
random variation of transmission times (time hopping or TH), phases (direct
sequence or DS), or frequencies (frequency hopping or I'H). This work concen-
trates solely on the interception of I'Ill waveforms that have form

Np

.s‘(l,):Z;zv,-(l) (1.1)

=1

where

x(1) equals V25" sin(wg,t + 0;) for o), <t < (i 4 1)7T};
{wi i, isa family of known frequencies within the spread-spectrum bandwidth:

{k:} are integer-valued, independent, uniformly distributed, random vari

ables ranging inclusively between 1 and A
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: 1 iforr istributed, random vari-
{01-} are continuous, independent, uniformly distributed, re

r O T OO -'_~~'\~ ase:
ables ranging between 0 and 27 that represent carrier phase;

'/ 4 . : n o cir a ‘neregy:
S 1s a real constant denoting the average signal energy;
: ime durati ‘ach hop;
I is a real constant denoting the epoch, or time duration, of c: D3
: v of ' mg message
Ny, Is a positive integer denoting the number of hops during ag

transmission.

This general model of frequency-hopped waveforms includes a large number
of modulations such as frequency shift keying (FFSK) and minimum shift key-
ing (MSK). Some important modulations not included are those whose car-
rier phase is correlated from hop to hop, for example, continuous phase I'SK

' K se results . may not be optimal.
(CPFSI\). Even for these cases, these results apply but may

1.3 Intercept Receiver Functions

An intercept receiver extracts, for further processing, a small number of
candidate signals from the plethora of signals in a communication band of
interest. The initial processing steps that discard signals are called Pruning
Functions. After pruning, secondary processing, known as feature extraction,

S TR : : e s . ring ter fea
yields information aiding in emitter identification and countering. Af ‘




ture extraction, further processing could yield the actual information embed-
) |
ded in the communication signal, but this is peripheral to the primary function

of the intercept receiver, namely ECM and weapons support, and consequently
- S i J - ) ’.

will not be explored here.

1.3.1 Pruning

Given the frenetic activity in most communication bands, the interc Pt re
ini i I > out of all candidate signals within
ceiver must, early in its processing, choose out
2y .
ial target signals. Pruning Functions achieve
the band a small number of potential target sig
: 'omising prospects for processing. Prun-
i iminati the most promising p
this by eliminating all but
i ategories: Initial Detection, Direction Finding,
1 ? ions 1to four categories:
g Functions fall int
i T1Ve rasurement. As is evident, from
: imati Time of Arrival Meas
Frequency Estimation, and
i arates potential target signals from back-
1 niti sction separates pc
their names, Initial Detec
i ifies an ssibly eliminates signals by
i irecti i classifies and possibl; ;
i ection Finding
ground noise, Dir
-y Estimation censors signals based on a measure-
i i 1o requency Estimatio ;
direction of origin, Irequen
f ier frequency, while Time of Arrival Measurement differentiaes
ment of carrier frequency,
bet Ised signals based on their arrival times. It is useful conceptually (o
between pulsed s has
ider the Pruning Functions as independent processes applied separately,
consider the Prun
but i tical system these functions are usually highly coupled in that a
but 1n a practical sys s

: e Pruning Functions
i ing step may accomplish two or more Pruning Functions.
single processing step ma
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Initial Detection separates the candidate signal from the background noise,
usually in the form of a threshold operation applied on a test statistic derived
from the received waveform. It may be a dedicated operation, meaning that
the only information gleaned is the presence or nonpresence of a communi-
cation waveform, or may yield other information such as the time of arrival

(time domain) or the dominant frequency (frequency domain), or, for feature

detectors, the hop rate.

i i : ing a scanning narrowbeam antenna
The signal direction can be found by using a g ne : y
i A rrmines direction. Difference
ition ¢ e time of detection determine
whose scan position at the
nas can yield the angle from which
in sign: ] i o separate anteni
1n signal phase from tw
i i : however, this interferometry technique suffers
idate si smitted; however, this :
a candidate signal is emitted;
from a vulnerability to coherent interference. In a similar fashion, the ampli-
; ignal received from different antennas or
i sen the same signal receivec
tude difference between the
'mine emission angle but the technique is even more
é i ¢ termine emission a
antenna-patterns can det
m .
1oncoherent. The difference between
ir srences, coherent or noi
vulnerable to interferences,
i 1t receivers is an alternative way to determine
i "T1Ve srent recelvers 1s @ ]
the times of arrival of diffe
s more directed to pulse signals, such as radar, iy
This me seems more direct
angle. This method «
: i imple quantity to measure, but it could be
ich ival time is a relatively simple ¢ \
which arrival time is a 1 ;

ic -ommunication signals, by cross correlation for
i more ¢ slicated commu

applied to more comy

instance.

’ P ) a 'l“(“(]?]’,( -.ig”(\‘l, lléll‘l‘()Wl)(ll (l
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interferences such as other non-spread-spectrum communication signals can

be identified and rejected. Additionally, the current hop frequency of the

target signal can be determined and subsequently used to narrowband jam

the current hop band. The estimated hop frequency also can be used for

identification processing or information extraction.

Time of Arrival Measurement can not only determine emission angle, as

previously mentioned, but also can prune. This use is primarily useful for

pulse radar signals, 1n which times of arrival can determine pulse repetition

rates and hence associate the intercepted pulse with the emitting radar. For

ﬁ‘equency-hoppcd communications, the arrival times of individual hop intervals

determine the emitters’ hop rate and hence discriminate between target signal

and interferers.

1.3.2 Feature Extraction

Feature Extraction is the measurement of characterizing features of the

communication waveforms. Features such as hop rate, hop [requency, modu-

lation type, and bit periods serve as examples. Feature Extraction overlaps
», and |

: ~ctions 1 .t operations such as center [requency estimatio
the Pruning Functions 1n that operatl | 3 ation

and time-of-arrival measurements yield useful features. The loose distinction

is one of precision and purpose. Measurements made while pruning are coarse

6



Va7 7 T i AR e e

and serve only to decimate what otherwise would be an unmanageable number

of candidate signals, while extracted features are of sufficient accuracy to serve

the intercept purposes of jamming and identification.

1.4 Existing Methods

All aspects and functions of the intercept receiver were described. However,

this work concentrates solely on initial detection and feature extraction and

quency estimation will be explored.

on feature extraction; only hop fre

1.4.1 Wideband Energy Detector

tor ([40] and [45]) is the simplest to implement

The Wideband Energy Detec

Also called a radiometer, it is a device for

of all existing detection schemes:

measuring the energy of a signal over a prescribed time and bandwidth. A

typical radiometer (Figure 1.1) consists of a bandpass filter followed by a

The bandpass filter, of bandwidth W,

square law device and an integrator.

selects the frequency band over which the energy measurement is made. The

tor calculate the energy of this bandpassed signal

square law device and integra

ter is used to detect spread-spectrum

over the interval of length T'. The radiome

signals by setting the center frequency and bandwidth of the bandpass filter

the expcctcd spread-spectrum signal. A decision is

so that the filter will pass
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Threshold
Figure 1.1: Wideband Energy Detector

made by comparing the output of the radiometer to a threshold.

As can be guessed, the wideband radiometric detector is most efficient when

idth K/T), and the

the bandwidth exactly matches the spread-spectrum bandw

integration period matches the transmission time Ny Ty, of the spread-spectrum

signal. Under these conditions and for large time bandwidth (TW > 1000)

products, the performance of the wideband radiometer is described below for

rence with single-sided spectral density No as

5T | K
=di/— 2
NO ‘ Nh ( )

(l:Q'](/)/n)—Q—l(])/;) (1.3

the case of white-noise interfe

and

where Q7!(+) is the inverse of the complementary Gaussian probability dis-

tribution and ST}, /Np is the required signal-to-noise ratio for detection with

probability Pp and false-alarm probability Pp.

o
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In addition to being the easiest detector to implement, the wideband en-

ergy detector assumes the least known about the spread-spectrum signal. For

optimal detection of a given spread-spectrum waveform, only the bandwidth

and message duration need to be known. However, an approximate knowl-

edge of these parameters degrades performance only slightly. Because the

performance of the wideband energy detector is invariant to the details of the

spread-spectrum waveform, it is equally effective in the detection of either F'H|

s also useful as a lower bound on the performance

TH, or DS waveforms. It i

of other detectors designed around the particulars of a given spread-spectrum

waveform.

1.4.2 Optimal Channelized Detector

The Optimal Channelized Detector ([45] and [50]) uses a more precise

knowledge of a spread-spectrum waveform to achieve performance gains over

ctor and other detector configurations. In the con-

the Wideband Energy Dete

essage duration and the period and phase of the

text of FH waveforms, the m

pulse epochs are assumed to be known. Also assumed to be known are the

exact frequencies of the pulsed sinusoids that constitute the individual “hops”

of the spread-spectrum waveform. The signal amplitude relative to the back-

ground noise 18 also assumed to be known. Not known are the relative phase

between the individual hops and, of course, the pseudo-random code that
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Figure 1.2: Optimal Channelized Detector

produces the hops.

With these assumptions and that of white-noise interference, detection the-

3 N ¢ 2 8 IS Ao p e < v = ‘
ory yields the detector shown in Figure 1.2. I'his detector consists of individual

filters matched in time and frequency to each of the possible pulsed sinusoids

component to the FH waveform. The envelopes of the matched filter outputs

are “cn‘lpl'la.sizcd” l)y 11()1‘1’1‘la,lizillg b_y (‘,X])(\(-(,(‘,(] noise energy and ?lvl)l)l_\,'illg‘ the

zero-order modified Bessel function of the first kind 7. The emphasized filter

outputs are summed to yield a likelihood function over a single epoch. These

individual likelihood functions for each epoch of the message are multiplied to

yield the overall likelihood function, from which a decision can be made via a

threshold comparison.



The generalized performance expression for the optimal multichannel de-
tector cannot be obtained due to an inability to specify the output probability
distribution functions. When the number of hops N, is large (e.g., N > 100),
it is possible to closely approximate the true answer by using Gaussian statis-

tics. This analysis gives S"T}/Np needed for a given Ppy and P as

9T, 1 2
thil"—l 1 - K + Ke™ (1.4)
0

where d is given before.

Unfortunately, however, the Optimal Channelized Detector is only of aca-
demic interest because of its implementation complexity and its sensitivity to
the FH waveform parameters. It is useful primarily for establishing an upper

bound to the performance of other more implementable and robust detectors.
1.4.3 Suboptimal Channelized Detectors

Because of the implementation complexity of the Optimal Channelized
Detector, Suboptimal Channelized Detectors are considered. These are several

classes of detectors that are simplifications in various ways of the Optimal

Channelized Detector. These simplifications are listed below.

The combinations of a matched filter followed by an envelope detector are

replaced by narrowband radiometers of bandwidth 1/7}),. This simpli-

e
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fication degrades the resulting performance over that of the predicted
performance of the Optimal Channelized Detector. However, this per-
formance difference would be less in practice, because the Optimal Chan-
nelized Detector would not achieve the optimum performance due to {he
inevitable mismatch between the actual frequencies received and the fre-

quencies for which the filters are matched. Doppler shift and transmitier

waveform diversity are the likely culprits of this mismatch.

The emphasizing function is linearized. This is mainly an implementation
simplification. However, the optimality of the Optimal Channelized De.
tector depends on a priori knowledge of the amplitude of the FH wave-
form, which is a parameter of the emphasis. Thus the loss of optimality

in practice is lessened because of the uncertainty of the I'H waveform
amplitude.

Decisions are made at the channel level and are then combined to form

statistic upon which the final decision is based. This type of detector js

appealing if a frequency estimate of the detected is also desired.

Instead of having a filter for each FFH frequency, the entire spread-spectrum
bandwidth is subdivided into coarse subbands. The subbands most, likely

to contain the current hop are selected for application of any of the above

channelized detector schemes.

12
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- / () dt { Sampler
JT

Processor

Decision
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Figure 1.3: Autocorrelation Detector

1.4.4 Autocorrelation Detector

An Autocorrelation Detector ([29] and [31]) is composed of a bank of auto-

correlators, each operating on a subband of the total spread-spectrum bap-

width (Figure 1.3). The autocorrelators estimate the autocorrelation y(7) of

. . oo .
their bandlimited input over the time period 7'. The power of each correlation

is sampled yielding W), which are weighted with a; and summed to derjve the

decision statistic Y. This is summarized by the equation

o H,
Y = Y axWi & Threshold. (1.5)
k=1 Hy

There are three issues concerned with the design of the autocorrelation,
detector. The first is the coarseness of the individual subbands relative to the
total spread-spectrum bandwidth. It seems intuitively appealing to assume
that performance would improve by reducing the width of this subband up to

the limits of the FH frequency spacing; however, no analytical or numerica]

13
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results confirm this conjecture. The second design issue is the time interval

over which we estimate the autocorrelation function. The third issue involves

the weights used in the computation of the decision statistic.
1.5 Hop Frequency Estimators

As previously described, feature detectors focus on a particular time-domain
feature of the spread-spectrum waveform. In this work, we develop a detector
based on the feature hop frequency. These devices can do the job of initial
detection, but we focus on their estimation performance. Two noteworthy
estimators in the literature fit this billing. The first, described in [3], is a max-
imum likelihood estimator with a structure similar to the optimal detector of
Figure 1.2, except that, instead of summing the outputs of cach channel, it sc-
lects the channel with the output of maximum magnitude. The hop frequency
corresponding to that channel is declared the estimate (Figure 1.4). The sec-
ond estimator of note, described in [39], is based on the first one but has
reduced complexity. In this method, wideband radiometers cover the spread-
spectrum bandwidth in order to select a small number of subbands that most
likely contain the particular hop. These subbands are further processed into

fine bands, enabling the ultimate selection of the band with the current hop.
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1.6 New Methods for Detection and Hop

Estimation

1.6.1 Sequential Detector

In this work, a new detector is developed based on the ideas of sequential
detection. It is essentially like the optimal channelized detector but, instead of
basing its decision on accumulated energy on a predetermined large number of
hop dwells, it decides, after each hop dwell, on the presence or nonpresence of
a frequency-hopped waveform. Because the detector is based on the Sequential
Probability Ratio Test (SPRT), the test is optimal in the sense that no other
sequential test will make a decision in less time on average than the SPRT.
However, optimality occurs only if the signal is present at a predetermined
SNR. For smaller SNRs, the SPRT actually can perform worse than a test
based on a Fixed Sample Size (F'SS). This shortcoming is averted by mixing {he
SPRT with the FSS test to create the Truncated Sequential Test ('TST). Fron,
these results is designed an optimal test whose worst-case average decision
time is minimal. Netted are three new detectors that exploit the advantages

of sequential detection; the pure SPRT, the TST, and the optimal TS,

With each of these techniques, the number of samples needed for a relialle

decision is dramatically reduced. One way this detector performance gain

16
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can yield a performance gain in the interceptor itself is through decreased

duty cycle. A typical interceptor might scan a particular direction in order to

determine the presence or absence of communications. Because of the gains
due to the sequential detector, the scan time is significantly reduced. Another
way to take advantage of the performance gain is to add robustness to {he
signal parameters. It was already mentioned that the decision time of the
signal

sequential tests is dependent on the SNR. By hypothesizing that the

rests in a band of SNRs, a sequential test can be designed that still outperforms

tests based on a fixed sample time.

1.6.2 Compressive-Receiver-Based Detector and Hop

Estimator

The compressive receiver, which simultaneously estimates frequency com-
ponents over a wide, predetermined band, has promise as an interceptor with
both the simplicity of a wideband device and the performance of the channel-
ized device. The use of the compressive receiver for interception is a largely
unexplored area with all previous results being superficial and ad hoc. By
contrast, two different detectors and a hop frequency estimator are developed
using an optimal likelihood function approach. The first, the locally opti-
mal detector, is a detector with structure similar to the channelized detector

but operating on the output of the compressive receiver. It is locally opli-

17
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mal, meaning that for signals with low SNR it gives the greatest probability

of detection for a given probability of false alarm. Because the locally op-

timal detector has an unwieldy structure, it defeats the motivation to use a

compressive receiver: simplicity and high performance. Therefore, a time-

multiplexed detector is used that, at the expense of duty cycle, can achieve

performance as close t0 optimal as desired. Both the locally optimal and the

time-multiplexed detector have hop frequency estimator versions. By choosing

as the hop frequency estimate the hop frequency corresponding to the detec-

a hop frequency estimator is formed. In

tor channel with maximum output,

conclusion, two detectors and a hop frequency estimator are developed with

performance comparable to the channelized devices but with the simplicity of

the broadband devices.

1.6.3 Detector Based on the Amplitude Distribution

Function

developed based on the Amplitude Distribu-

A new idea for detection is

(ADF). The ADF is precisely defined as a function from which,

tion Function

through a sequence of lemmas and theorems, two results are established. One

average distribution of a stochastic pro-

result is that the ADF is roughly the

cess, and the second is that, for signal plus noise, the resulting ADI is the

convolution of the ADFs of signal and noise individually. The convolutional

18
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relationship for signal plus noise motivates the construction of statistical trans-

form, called the deconvolution statistic, that converges to something that is

arbitrarily close to the signal ADF and hence has potential for separating sig-

nal from noise even for low signal levels. How close the deconvolved ADF

matches the signal ADF depends on the proper choice of the kernel of the de-

convolution statistic. An optimal detector is presented that directly observes

samples of the deconvolution statistic, yielding a test statistic of quadratic

form. The ADF-based detector is a robust device that is a generalization of

the radiometer and is quite immune to the details of spread-spectrum modu-

lation.
1.7 Document Organization

This work is partit,ioned ‘nto five chapters. The first chapter presents

the problem precisely defines the type of frequency-hopped waveforms under
g 4

consideration, and describes the functions of the intercept receiver from a
2 e ;)

riefly describes existing interception methods in the

system viewpoint. [t also b

categories of initial detection and hop frequency estimation and then contrasts

them with the new methods developed.

ribes in detail the new sequential detection meth-

The second chapter desc

ods. Within this chapter, the likelihood function for a single epoch is developed
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and asymptotically analyzed for a large number of hop frequencies. Based on
this analysis, the synthesis of the F'SS test, SPRT, and TST are developed.
Performance equations are presented along with the results of numerical and
Monte Carlo analyses. The optimal TS'T is described and the asymptotic el-
ficiencies, which capture the low-SNR test behavior, are presented. Finally,

conclusions are drawn.

The third chapter gives a detailed description of the detector and hop
frequency estimator based on a compressive receiver. It does this first by
precisely defining the signal and compressive-receiver models and then using
them to develop equations for the output signal component and to characterize
statistically the noise at the compressive-receiver output. With the detection
problem translated to the output of the compressive receiver, likelihood ratio
theory is applied for the low-SNR case to create the locally optimal detector.
A simplified detector, the time-multiplexed detector, is also presented along
with a hop frequency estimator. All detectors are performance analyzed and

numerical results given. Finally, conclusions are drawn.

The fourth chapter introduces the ADI-based detector and proceeds with
an exposition of the mathematical tools developed for the ADIF, which consist
of a sequence of theorems and lemmas culminating in a convolutional rela-
tionship between the ADFs of signal and noise. The deconvolution statistic

1s introduced along with family of kernels to be used in the statistic. The

20




large-time statistical character of the deconvolution statistic is shown to be
the basis of the ADF-based detector. Synthesis and performance analyses of

the detector are presented and conclusions are drawn.

The fifth chapter summarizes the previous chapters and highlights the im-
portant points. It then suggests possible extensions to be investigated in the

future and finally concludes the document.




Chapter 2

Sequential Detection of Unknown,
Fast Frequency-Hopped Waveforms

2.1 Background and Introduction

The first task in the interception of spread-spectrum communications is
the detection of the waveform. This is a prelude to other interception pro
cesses, such as feature detection, channel tracking, and message extraction.
As a new development toward the detection problem, this chapter applies and
extends previously published results in sequential detection to the problem of
the optimal detection of noncoherent frequency-hopped (I'1) waveforms. By
using likelihood function methods, the problem was solved in [10] for an FII
waveform with a known signal-to-noise ratio (SNR) and epochs with known
starting times and durations. However, in that approach, the decision was
based on a data segment of fixed size. Ilere a sequential approach is taken,

meaning that whenever a new data element is collected, a decision about the

6o
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presence or nonpresence of an FH waveform is attempted. If no decision is

reached, another data element is collected.

The sequential approach to detection has a rich history. For the binary hy-

pothesis problem with discrete-time independent identically distributed (i.i.d.)

al sequential test. This test is optimal in

data, Wald [48] has derived the optim

the sense that no other test can reach a decision of the same Neyman-Pearson

reliability within a shorter average time. This result has been extended to con-

tinuous time data in references [38] and [6]. Others have suggested tests that

n within a prcs(:ribc(.] time. These are the “truncated”

must make a decisio

_ Truncation is desirable not only for imple-

tests given in [1], [43], and [44]

mentation reasons, but also for improving the performance of a sequential test

when the input statistics differ from those assumed in designing the test. In

particular, Tantaratana and Poor in [43] derive a truncated sequential test for

ii.d. Gaussian data with an unknown mean, which is the foundation of the

results in this chapter.

Development of the sequential test is begun by defining the observations

model for a composite hypothesis problem. Specifically, given the observation

y(t), the problem is one of choosing between I, which is the hypothesis that

nt, and H.,, which is the hypothesis that an F'I1

an FI waveform is not prese

23




waveform is present with an SNR 4’ where 0 < v'. Exactly, the model is

Ho: y(t) = n(t) A
versus p (2.1)
H,.: yt) = s(t)+ n(t) 0<~

|

where s(t) is given by (1.1) and n(t) is white Gaussian noise with two-sided

spectral density %‘1 The hypothesized SNR 7" is related to the other model

parameters by v/ = S’T},/Ny.

Because a reliable test cannot be devised for an FH waveform with an ar-
bitrarily small SNR, the preceding composite hypothesis problem is simplified
to a binary hypothesis problem: H, versus Il where 7 is specified as the
smallest SNR that is to be accurately detected. The quantity v = ST} /Ny
with S being the corresponding signal energy. The relative SNR » = \[y’y’; is

also used.

Using the above observations model, the design of a sequential test for the
detection of I'H signals is approached as follows. An asymptotically optimal
test is derived by applying the likelihood function theory to the simplified
binary hypothesis problem Hy versus [l,. The parameters of this test are
specified to ensure a maximum probability of detection for a given probability
of false alarm. This binary hypothesis test is then applied to the more general
composite hypothesis problem with a resulting degradation in detection time

that is shown to be controllable by properly truncating the test procedure.

The derivation of the asymptotically optimal test begins with the derivation
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of the likelihood function for a single-epoch observation, which is appropriately
called the Single-Epoch Likelihood Function (SELF). By invoking the central

limit theorem, Gaussian densities are found that are asymptotic to the actual

s the number of frequencies becomes large. In determining

SELF densities a

s means and variances will be explicitly computed

these densities, the SELF’

under each hypothesis. By next considering individual SELFs as the observa-

tions, the problem will be reduced to a binary hypothesis problem with Gaus-

sian i.i.d. observations. This simplification is justified, because each epoch of

FH waveform has independent statistics and because the SELI’s statistics do

not depend on the particular hop frequency. Using these equivalent observa-

tions and their asymptotic densities, the Asymptotic Log-Likelihood Function

LF is then used to synthesize tests for the binary

(ALLF) is derived. The AL

hypothesis problem. This procedure requires extending the previously pub-

ts to the cases of data with variances that depend on the

lished sequential tes

hypothesis. Applying these results, a Fixed-Sample Size (I'SS) test, a Sequen-

tial Probability Ratio Test (SPRT), and a Truncated Sequential Test ('TST)

are designed.

Each of the three tests is analyzed by approximating the test statistic by a

Wiener process and then employing the classical theory of diffusion, as outlined

in [6] and [1]. This analysis 15 more general because it yields the performance

of each test to the composite hypothesis problem rather than just the binary

o
ot




hypothesis problem on which the tests are based. This analysis yields the
average decision time of each test as a function of the input SNR, as wel] as
the operating characteristic of each test. From these results comes an optimal

test, whose worst-case average decision time is minimal. Finally, a computer
est, e —

simulation confirms these analytical results.

To further extend these results to the case of a test that was synthesized
under the expectation of detecting an FH waveform with extremely small SNR,
an asymptotic analysis of a different sort is undertaken. This analysis shows
6% Ehie above tests perform for the composite hypothesis problem as the min;-

e aveform becomes increasingly small.
mum reliably detectable SNR of the FH waveform
Numerical results for this case are given, but a corresponding computer simuy-

oo e ) ber of computations
ation i i g of increase of the num i ons
lation is not, possible due to the rate

required as the SNR diminishes.

2.2 Likelihood Function: One Epoch

The statistical test for the composite hypothesis problem is defined by
e statistic :
findi ymptotically optimal test for a binary hypothesis problem and
Inding an as ca,

site case and accepting the resulting degra-
. i ¢ 5 > composite case and
applying that test to the co
datic This simplified binary problem consists of the two hypotheses H,

on. S fie :

: re a signal is present with SNR 5.
SO I T and H.,, where ¢
where no signal is present,



For this binary hypothesis problem, Appendix 2.A contains a derivation of the

SELF, which is the likelihood function A; of the ith-epoch observation y(t) for

iTh, <t < (14 1)Th The SELF is expressed as
Ay) & Ex [Ai(y/k)] (2.2)

—y K-1 :
_ 1Y (vErval) (23)
k=0

where I, is the zeroth order modified Bessel function of the first kind and

l+l)1h
) cos wy, t di

2 —
Ik N \/N()]h_ /f,,

(2.4)
) sinwy, t dt.

1+1 1;,
& = ol
NOIh
it respective observations, the

Because of the statistical independence of then

the product

likelihood function of the n-epoch observation is then [Ti2; A, i.e.,

of these individual SELFs.

The SELF is nicely modeled as the configuration of well-known devices,
as indicated in Figure 2.1. That is, the SELF 1s channelized so that each
channel has a matched filter that is tuned to a particular hop frequency and

whose output is envelope detected and emphasized by a Bessel function non-

linearity. The output of each channel, after scaling by €7 7/K, is summed to

produce the SELF.

6o
N |
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Figure 2.1: Block Diagram of Single-Iopoch Likelihood Iunction

2.3 Asymptotic Log-Likelihood Function

The Asymptotic Log-Likelihood Function (ALLIY) is asymptotic to the
n-epoch likelihood function, [T, A, as the number of FH channels becomes
large. The critical idea behind the derivation of the ALLI' is the application

of the central limit theorem to yield asymptotic densities for the SELI from
which, using an n-epoch collection of SELFs as an equivalent observation set,

the ALLF will be determined.

M QI S ey 3 3 v
I'he SELF (2.3) was computed assuming a binary hypothesis problem,

re., M, is the hypothesis that no FH waveform is present, while /1, is the
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hypothesis that an FH waveform exists with a known SNR 7- The following

analysis will assume that an FH waveform, if present, will have a SNR " or
. 1 ! . -

equivalently an average signal energy S’ that is not necessarily equal to the

average signal energy S assumed known in the binary case. This generalization

is not necessary for deriving the ALLF but will be needed to analyze the

performance of the ALLF in the composite hypothesis problem.

Proceeding with the derivation of the ALLFE, the central limit theorem s
applied to the SELF to obtain an asymptotic density under all hypothvmxx,
0 < 4’. The central limit theorem is justified here because the SELIVg SR
is the sum of many channels whose statistics will be shown to be nearly inde-
pendent and nearly identical. It will be shown that the degree of dependence
between channels is determined by the amount of isolation between channels,
which is perfect for minimally spaced channels as is the case assumed here. [f
also will be shown that the channel means and variances, while different for

the signal-present and signal-absent cases, are of a commensurate magnitude.

2.3.1 Matched Filter Output Statistics

Because the central limit theorem requires only the mean and variance of
cach channel, only the statistics of the matched filter outputs need be deter-
, onl}

mined exactly since the SELF’s mean and variances can be determined from,
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these statistics alone. Assuming that the signal present is n the kth channel,

d filter output in the Ith channel can be found from (2.4) as

" /27'sinf + v for [=k (
il for | # k

14

then the matche

oo
T
ol

G = J2y cos 0+ & for L=k (2.6)
& for | # k

where (i+1) 1;.

|>

(1) cos wyt dt

14 = \//V()Th /lh (
1+l ll,

& = / (t)sinwt di.

‘ \/m T

The matched filter outputs for the no-signal-present hypothesis Hy are the

[
-3
~

>

. . . T . m 3 C WOTe . =
special case of the above expressions for 7" = 0. T'wo assumptions were made in

determining these approximate expressions for the matched filter outputs. The

first assumption is that wy T} is large and equivalent to requiring a large number

of carrier cycles over a single epoch. The second assumption of orthogonally

spaced channels [i.e. (wp —w;) Ty /27 is an integer] implies, in essence, that the
channels are isolated from one another. Another condition implying channel
isolation is wide spacing between the channels [i.e. (wg —wyi)Th is large]. In a
practical implementation, smooth window functions also could have been used

in the matched filter implementation to achieve the channel isolation assumed

here.

Simplified expressions for the matched filter outputs are represented by

(2.5) and (2.6). The statistical nature of their noise components, {r} and
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{&}, is determined next. From (2.7), it follows that the random variables

{w}, {&} are Gaussian with zero mean and unity variance. Under the isolated

channel assumption, it is easy to show that
E[vmrn] = 0 form#n 1<mn< K
Elvméa] = 0 forallmn 1<mn<K (2.8)

g[émén] =0 for m 76 n 1 <m,n < K.

# s = 8 - m -
Thus {y}, {&} are mutually independent, since they are Gaussian. These

relations also determine the joint density of v and & as

1 __L(y2+£2) '
pw,{z('/lagl) = 5;6 bt (.2())

The equations (2.5) and (2.6) and (2.8), along with the joint density of v
and £ (2.9), constitute a complete statistical description of the matched filter

outputs {F} and {Q1}-

2.3.2 SELF Moments

The statistics of { P} and {Q:} were found in order to determine the mean
- [e 10

The SELF moments are needed to apply the

and variance of the SELF (2.3)-

central limit theorem and thus ultimately produce the ALLE. A few conditions

for the application of the central Jimit theorem will be established now. Iirst,

since the random variables (P} and {Q:} are mutually independent, cach

channel output of the QELF is also independent. Furthermore, the channel
outputs are all identically distributed except for the output of the channel
with the signal present This pa.rti(:ulavr channel output will be shown to have

31
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a variance comparable to that of the other channel outputs and thus the central

limit theorem still applies and with it we get a density asymptotic to the actual

SELF density.

e, We ee 3 [§ dress 3 11 [ riance o ‘}](

10 C()Ilt:lnu 5 ) TXYEE (I ﬁxph(lt ,X[ 10ns 1()] th( mearn and va > l ‘

b}JIJl . ASS 1 S‘ .S ese t Wlt }I a: TE l l,‘ IVE: i Nl{ r — ”, 7 ,}](‘”
s “Inl“g a ]gnd,] 1f I)] *sent d ) (9] i / 5 ‘

the matched filter outputs of the channel containing the signal are by (2.5)

and (2.6)

P = 2v'sin0 + y (2.10)
Q1 = 27 cosl+ .

; an ¢ ariance for this channel output
If 41, and o2 are defined to be the mean and variance for this ch: put,

then (2.9) implies

pe = &I, (VI /P +Q})] (2.11)

- [ n(vafrreaieseiidans. (212
27r —00 J—00

: 2 D __ — - i ; P
With the rectangular-to-polar conversion, I, = pcos ¢, Q1 = psing, and ap

plying the identity

l o tOS . ¢
o(a) = 5 | e dg (2.13)

the integral becomes

00 2
My = 6_7// rl, (,/27/)) Iy (\/2’)"/)) 67%(//) (2.14)
0

= e (zﬁ) . (2.15)
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. The variance is now evaluated

This integral was evaluated in [49], §13.31(1)

as follows:

24l = E[I (\/27\/PF+Q?)] (2.16)
- 51—/‘” /°° 12 (VPR + @) et Ddudg (217)
w J—oo J—00

which becomes with rectangular-to-polar conversion, and applying (2.13),

of 4yt = e /OO pl? (ﬂ;/’) Ts (\/‘27/)) 6'1;(1/). (2.18)
0

This integral is evaluated by applying a formula from [49], §11.41(16), which

L[ (mm) dé = Io(a)To(b). (2.19)

s

states

Application of this formula and an interchange of integrations reduces the

integral (2.18) to a simpler integral solved in [49], §13.31(1). The net result is

2 PS o]
ok e Ll / g-Femi (4\/77’ sin %) de. (2.20)
T T T 0

gnal in channel [ with a SNR 4/, the channel moments

Al - "
Summarizing, for a si

are
Hr = 67]0(27‘7)
) (2.21)
o2 = €e* [l /7r e~ eosé ] (47'7 sin %) do — 1 (27‘7)] .
' 7 Jo

where r = /7'/7.

The above calculations give expressions for the channel moments for a
ents for the case of a channel without

oA 3
channel with a signal present. ['he mom
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a signal present are special cases of the above with r = 0 and are thus denoted

by po and of. From (2.21) and the Bessel function identity (2.13), they are
mo = € 2.99
o = ex [Io(2y) — 1]. (2.22)

Likewise, moments for the Ith channel (whenever it contains a signal with

r = 1 and are thus denoted

strength ) correspond to the above moments with

by py and oF.
As previously mentioned, the application of the central limit theorem de-

pends on the various channel means and variances having commensurate am-

plitudes. The relative amplitudes between the moments are computed from

(2.21) and (2.22) and are

-l—tl = 10(27’)’)

Ho

2 P .

i‘_; _ 14ty 427+ 00 (2.24)
4]

Hence. for small assumed SNRs (y £ 1), the mean and variance of the channel
, for s : >

he mean and variance of the channels without a

with a signal present and t

signal present are within a factor of three of each other.

Expressions for the mean and variance of the SELI are now immediate,

: . - J1s scaled by €77/ K. The expressions
since the SELF is the sum of all K channels scal y / pressions

are

o
o
(7 §
—




g=

% = % [(1"—1)ag+03]. (2.26)

Here, M, is the mean of the SELF when a signal of strength 7" is present and

My and M, are written for the special cases of M,, when r = 0and r = 1,

i i o defined similarly.
respectively. The variances V., Vo, and V; are y

2.3.3 Derivation of the ALLF

With the first two moments of the SELF determined, the central limit

ag 8 i 8 R 1 ) " . ) o
theorem gives approximating densities to the SELF, Aj, under the compositc

hypothesis problem. These densities are

(/\I—MQ)2
_1_e ™ -
. Ai T 2 (221)
versus it
A - - S for 0 <" <7«
Hy s i ™~ 7nv;

which give a simplified statistical characterization of the SELF. That is, the

i SRS . e means and variances
SELF oubprts {Ai}, are Gaussian i.i.d. variables whose means and variances
puts,

depend on the hypothesis.

A the procedure in deriving the SELF, the Asymptotic Log-Likelihood

s was the proce .

Function (ALLF) is designed using the simpler binary hypothesis problem. For
nction JLle) 1s de

(2.27) imply a log-likelihood

2 i orv and
a single-epoch, likelihood function theory an

function of

Li(Ai) = A} + cAi + o
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where

- B il

27 2\% VW
_ <£”1 _ MB) (2.30)
& = ‘/1 ‘/0
1 (ME M Vo) ’
w o] e = = (2.31)
@ = 3 ( Voo W Vi

Independence between observations over different epochs implies that the ALLI

up to time n is

—_
o
oo
no

S

n
,11” = Z Li.
=1

Now that ALLF has been found, its mean and variance will be computed as a
hat A s be

prelude to investigating its performance in the composite hypothesis problem.

2.3.4 Moments of the ALLF

For tl lysis that follows, it is useful to derive the moments of L; from
or the analysis t )
which the ALLF moments follow trivially from (2.32), starting with the mean

M, 2 E[Li(A)]

= C2FJ(A?)+('11§(Ai)+F() (ZM)
= & (Mr2 v Vr) + ¢ M, + co (Z‘r—))

36




which expands in terms of the SELF moments to

LYo, oyt [(Ms — Mol Vi — (Mr = MY Yo+ (= Vo) V]

M,==1ln—
5 n 7 +
(2.36)
Now to compute the variance of L;.
Y, = Var[Li (A)] (2.37)
which upon substitution of (2.28) yields
(2.38)

V. = Ver [62/\? 4t Co]

Var [(csz + oM, + co) + (2¢,M, + e )v + Cz,,,‘z] (2.39)

Il

where v = A; — M,. Proceeding,

y, = Var [(2(:2Mr +a)vt 02‘1>2J (2.40)
= (22 M, + 01)2 V, +2¢; v} (2.41)
which simplifies to
2 My Mo\]%,
Y, = EZ_ L. _1_> + [(_1_ - —1-> M, + <——' — —V~U>] Ve (2.42)
! 2 \V, W Vo W Vi 0
The special cases, r = 1 and # = 0, of the moments of L; are respectively

and as Vi and Vo for the variances.

written as M, and Mo for the means
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2.3.5 Summary

A log-likelihood function for the binary hypothesis problem, designated the
ALLF, has been derived that is asymptotic to the true log-likelihood function
as the number of channels becomes large. The ALLE was found with the
help of the likelihood function theory by considering an n-cpoch collection of
SELFs as a set of i.i.d. observations assumed Gaussian by the central limit
theorem. The Gaussian assumption was justified by showing that each SELF
was the sum of nearly independent and nearly identical random variables.
Various means and variances were also derived that will prove useful in future

discussions. The ALLF now will be used to design an I'SS test, an SPRT, and

a TST.

2.4 Test Design

The results above reduced the problem of detecting an I'll waveform to that
of discriminating between two sets of Gaussian i.i.d. data with different means
and variances. A Fixed Sample Size (I'SS) test, a Sequential Probability Ratio
Test (SPRT), and a Truncated Sequential Test (TST) based on this simplified

model will be discussed.
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2.4.1 FSS Test Design

As the name suggests, an FSS test consists of comparing a test statistic

Ty, based on a fixed number of observations L, to a threshold 7. Then, if the

test statistic is greater than 7, hypothesis H; is chosen, while a test statistic

less than 7 indicates hypothesis Ho. Symbolically this is

>r = H AT
L{ <7’ ? ]IO (2‘1-;)

In our case, the test statistic is the L-epoch ALLI and the test parameters L

and 7 are specified to correspond to prescribed false alarm Pp and detection

Pp probabilities. To determine I, and 7, the density of the 77, is needed for

each hypothesis. Although this density equals the non-central y* density, an

approximate Glaussian density, derived via the central limit theorem, is used

. . o stara T QO et
instead to yield simplified expressions for the test parameters. These densitics

are (T, —LMg)?
i i D 2LV,
Ho: To ~ Tanive (241
versus (T —LM))? 2.44)
2LV,

m _—lr_:
Hy: Ty~ 7oy,
Pp and Pp can he compute

. 7—LM SRR =1 24 5 4 —
yield Pp =1 — & (T\—}Li‘:go) and Pp=1-=2 (W) where @71 is the inversc

. — d in terms of L and 7 t
From these densities, o ‘o

e 2 ‘: 5 v. R B -
of the distribution function of a gero-mean, unity-variance Gaussian random

variable. These are solved simultaneously to arrive al

2
[Véq)”l(l _pp)-Ve®T (- I)'")J (2.4
L — (MI _ M0)2

o
]
~
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W=

L
(M — Mo)

nglq)—l(l e PF) - V]EMO(D_l(l — 1)1))] s (24())

T =
2.4.2 SPRT Design

Wald’s sequential probability ratio test (SPRT) now can be defined as a

test with test statistic Ty, based on 7 observations and two thresholds a and

pon the nth observation, if T, is greater

b. The SPRT works as follows. U

than a, then hypothesis H, is chosen. If 7, is less than b, then hypothesis I

is chosen. If, instead, T, is between a and b, the test statistic is updated to

include n 4 1 observations and the process is iterated. Symbolically this test

1s described as

Z a = []1
S 1) = []0
€ (a,0) = take another sample.

(2.47)

for each n, Ty

s Ve ) are N an-Pearae
The threshold values a and b are assigned to give the desired Neyman-Pearson

probability of detection Fp and probability of false alarm Pp. Relationships

between the thresholds and these probabilities are given by Wald’s approxi-

mations [48]

Pp oo

a ~ In <—’])1«'> (2.48)
1 — PD) "

ad e i 2.49

b ~ In (1 ~ ( )

2.4.3 TST Design
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is a hybrid of the above two tests. Specif-

Truncated Sequential Test (18T

ically, TST follows the rules of a sequential test with test statistic 7, and with

thresholds a and b, but has the added feature of forcing a decision at time L

(if no decision has been made) by comparing the test statistic to a threshold

7. Symbolically,

Z a = ]]1
for eachn < L, Tn <b = Ho
€ (a,b) = take another sample
(2.50)

3 >T = H,
but for n =L, TL <7 = H,.

) . (2 ATl RN ) .
Two relations secure the specification of the TST parameters a, b, L, and

7. If P5 and P are the actual Neyman-Pearson probabilities for the TST,
. ! G ]

then from [43]

P;* & 1)}{?55 o ]’)ﬁl’R'I' (Zr)[)
=0y & H= PESS) 4 (1 - P3™™) (2.52)

ST, if L = oo, and

where PS5 is the probability of false alarm for the TST,

oy 5 maoermy ¥ o N — )I",q},’ .
PEPRT ig the false-alarm probability for the TST, if a = —b=o00. Pp>" and
DEFRT o Jqmilar ‘hus the errors of the TST can be viewed as a
P are defined similarly.

mixture of the errors of an FSS test with parameters L and 7 and an SPRT
with parameters a and b. These inequalities can be verified by viewing the

process with time index n and enumerating

ALLF T, as a discrete stochastic
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its sample paths. For instance, a sample path leading to a false alarm must

either cross threshold a before threshold b and before time L or be greater

than threshold 7 at time L. Since these events also correspond to false alarms

in either the I'SS test part or the SPRT part of the TST, the inequality (2.51)
must follow.

The above inequalities can be used to specify a T'ST, whose actual error

ege hQQ 3 1 i OI'TOr B ,..,“‘ D
probabilities Pp and 1 — Py, are less than any specified error probabilities P}

and 1 — Pp. Thus, the TST can be designed by partitioning the bounding

errors (1 — Pp) and Pp among the SPRT and FSS test parts of the T'ST and

then using the appropriate equation to compute the parameters L, 7, a, and b

for TST [43]. Specifically, this partitioning is quantified with the introduction

of two constants, 0 < C; < 1 and 0 < Cy < 1, which are defined as TST

mixture constants, then

PS8 = C\Fr
P[.?PRT = (1-C)Pr (2.54)
(1-P5") = Cy(1 = Ip) (2.55)
-8} = (1 - Cy)(1 = Fp) (2.56)

for the error probabilities of the FSS test and SPRT parts of the TST. From the

(2.45) (2.46), (2.48), and (2.49), the TST parameters

above inequalities and
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are determined as follows:
2

[VI%(P_I(I — Pgss) R vé_q)-—l(l o P};SS)
T (M — Mo)’ (2.57)
L? , 1
T = (Ml — Mo) [V(?Mld)”l(] = ])I{TSS) _ V12MU(I)-[(1 B [)Ilj"gs)
(2.58)
pSPRT
T (ﬁéﬁi) (2.59)
= PSPRT
b = In (_—’Q_— ' o)
i — p}.?PRT
Note that (2.51) and (2.52) guarantee that the actual detection errors
8w (2.61)
1 — [)l*) S ] = 1)1). (2.62)

The mixture constants Ci and C, reflect proportions of the FSS test and

— (, = 1, a pure 'S5 test is defined, and

SPRT parts of the TST since, if Ci

Criteria for choosing the mixture

if C, = C, =0, a pure GPRT is defined.

constants will be discussed in Gection 2.6.

2.5 Performance of Tests

(the F'SS test, the SPRT,

The problem addressed by the preceding tests

43




L 7

-
s EHIBIPIAIUTS T MV | T2 T TLED
P g oo e A e S e

and the TST) is the detection of an FH waveform. The detection of the FII

waveform is a prelude to other interception processes, such as feature detection,

channel tracking, and message extraction. Here the performance of the tests

in detecting an FH waveform with variable amplitude and in the presence of

white Gaussian noise is quantified.

The three tests were designed under the assumption of binary hypotheses.

These hypotheses are Ho (FH waveform is not present) and I, (FH waveform

is present and has SNR 7). Of concern here is the performance of the three

tests when the actual SNR 7' of the FH waveform is more generally 0 <" <.
Two parameters characterize a test’s performance for a particular 7. The first,
denoted by E(N/r,7), is the Average Sample Number (ASN) defined as the

average of the number of samples needed to reach a decision. The second
parameter, denoted by Py(ry77), 18 the Operating (Characteristic (OC) defined
as the probability of declaring the absence of an FII waveform. Both the ASN

and OC are defined as functions of relative SNR 7 and the assumed SNR. ~.

2.5.1 Analysis of FSS Test

For the FSS test, the ASN is obviously L, while the OC can be determined
taussian random variable with

by approximating the ALLF at time L by a (
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the same moments. This central-limit-theorem argument produces

7 = LM, o
Py(r,7) =2 (T) (2.63)

for the OC.

2.5.2 Analysis of SPRT

For the SPRT, the analysis is more difficult but can be approached as a

diffusion problem. Here we approximate the test statistic by a Wiener process.

Specifically, if 7'(t) is a Wiener process with variance function V.t and mean
s db i

T, converges weakly to T'(1) at integer times
b ()

function M, ¢, then the ALLF,

t = n, provided n is sufficiently large. This last restriction is needed to ensure
=, ;

that 7, has an approximate Gaussian density as implied by the central limit
n

theorem. In terms of the approximating Wiener process T'(t), the problem of

finding the OC function is NOW the problem of finding the probability that 7'(¢)

will “touch” the lower threshold b before the upper threshold a. Likewise, the

problem of finding the ASN is now the problem of finding the average time

that 7(¢) first “touches” either threshold (a or b). This time is also called the

i i ecions for these quantities are given in [6] and [1]
average stopping time. Expressions fc q

as
—opMr
e 2 Vp — = MT # 0
—niE _ g (2.64)
PO(T'/’)I) = € . -
: M, =0

a—0b
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aPo(r,7) + bl - Po(r,7)] M, 40
E(N/r,y) = G . (2.65)
’ .- M, =0
Ve

2.5.3 Analysis of TST

The diffusion analysis technique also applies to the TST but is more in-

volved. The ASN is by [6]

E(N/rv) = Ag:]( 1)”~B (gt 1) (2.66)
where
4 = (avj)g (2.67)
B, = e%f“b sin nia _ eV sin anjbb (2.68)
M: VT (2.69)

ko = 2, T 2(a —b)?
The OC function is defined by [1] as

T I/Mr
Pofr,y) = @ (j’/’rr
M, —2[na —(n — l)b])

= na—(n—1)b S
3y e l”“’( v
n=1

Mt nfa-t) :LM;ﬂ":ﬂ>
+e* e VIV,

2nb—(n — 1)a] — 7+ LMT)

periem-biila ( JIV:
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2n(b—a)—T1+ LM7V> . (2.70)

M
—_e? =g
LV,

Equations (2.63) through (2.70) represent a complete characterization of the

performance of the FSS test, the SPRT, and the TST.

The fact that the diffusion technique yields accurate expressions for the

ASN and OC functions will not be proved here but will be verified below by

computer simulation.

2.5.4 Numerical Results

ST were simulated by the computer

The FSS test, the SPRT, and the T

to verify the assumptions of the analysis and as an independent measure of

the relative performance of the three tests. The simulated detector consisted

of 512 channels and each test was synthesized to ensure a probability of false

alarm Pp of no more than 1% and a probability of detection Pp of at least 99%.

Here the fairly relaxed probability of false alarm of 1% was chosen in order

to limit the number of data needed for a decision. Under these specifications,

the simulation was run until 1,000 decisions were reached for each of 11 SNRs

r s Tel . at A “velor o
evenly spaced between 0 and 7. The decisions that no FII waveform was

present were averaged o estimate the OC, while the number of observations

ASN. Additionally,

taken to reach a decision was avera.gcd to estimate the

the standard deviation of ASN average was measured to indicate the ASN
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estimation error.

2.3 are, respectively, the ASNs by simulation and

Figure 2.2 and Figure

by theory when the assumed SNR v = 1, while Figure 2.4 and Figure 2.5

are the corresponding curves for (y = 0.3). As predicted, the ASN is greatly

reduced, by about 57%, for the SPRT in the regions around 7" = 0 and 4" = 7.

These curves exemplify a general property of the SPRT: to perform very well

when the observation statistics are close to those assumed, but to exhibit a

degraded performance, often to the point of being worse than the FSS test,

when the observation statistics are different. In our context, this degradation

is evidenced by a large ASN for the SPRT, when the actual SNR +" is midway
The TST reduces the ASN in this

between the two assumed values 0 and 7.

mid-SNR region, as shown by the figures, but it does so at the expense of per-
/4 et eo i e . -
formance in the regions around 7/ = 0 and 7' = 7- Despite this performance
. > & .mentation reasons. It also will be s
loss, truncation is necessary for implementat e shown

that the TST has the desirable property of having a higher detection prob-

ability than the SPRT at small GNRs and that, through optimization of the

mixture constants, the TST can regain much of what it lost in ASN around
7y

o =0 and ¥ =+

Focusing on the OCs (Figures 2.6 and 2.7 for v = 1, Figures 2.8 and 2.9

for 4 = 0.3),it is obvious that the F'SS test has slightly higher probability of
& )

detection for small SNRs while the SPRT has degraded performance in this
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Figure 2.2: ASN from Simulation versus SNR, v=1
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Figure 2.4: ASN from Simulation versus SNR, v =0.3
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Figure 2.5 ASN from Theory versus SNR, ¥ =0.3
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Figure 2.6: OC from Simulation, 7 = l
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Figure 2.8: OC from Simulation, 7 = 0.3
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lable 2.1: Comparison Between Theory and Simulation for =]

I'SS test SPRT TST
Y |AASNTAOC|AASNJAOC[AASN]JAOC
0.00 [ 0.00 084 [—1.19 [—0.03 [—1.47 [ 0.03
0.10 | 0.00 1.11 |—0.48 29T |—0.76 | 208
1020 0.00 0.45 |—1.05 .92 |—1.84 | 1.02
0.30 | 0.00 0.18 .16 |—0.09 119 [—0.18
0.40 | 0.00 [-0.25 1.09 0.89 0.20 |—0.40

0.50 | 0.00 | 0.73 | 0.60 | 0.83 |—0.64 | 1.53 |
0.60 | 0.00 0.22 0.23 0.02 [-0.14 [-0.15
0.70 | 0.00 0.37 |—147 1.64 [—2.35 3.20

0.80 || 0.00 |-216 |—094 | 225 | 076 | 1.17
0.90 | 000 |-1.33 [-1.38 | 0.83 | —1.88 | 1.02 |
1.00 | 0.00 |—0.84 [—1.16 | 3.50 |—1.38 | 1.29

region. Notice that these test performances are reversed for SNRs close to 5.
The OCs also show that the TST’s actual detection errors, Pp and 1 — P,

o= i . . P, =
are within 79% of their specified bounds, Pi and 1 — P,

'l‘ln'oughout the analysis, various simplifying approximations were made
whose accuracies were hard to quantify, especially the Wiener process approx
imations to the ALLF. Thus the computer simulation was compared quanti
tatively to results predicted by theory as a validation of assumptions made.
Table 2.1 for v = 1 and Table 2.2 for vy = 0.3 show how well the simulation of
the three tests corresponds to the analysis. The quantity AASN is the normal

ized difference between the theoretical ASN and the simulation ASN. where

the normalizing factor is the estimated standard deviation of the average used
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Table 2.2: Comparison Between Theory and Simulation for y=0.3

F'SS test SPRT YT
4" || A ASN AOC|AASN[AOC|A ASN I A OC
=

=00 000 |-0.71 [-192 | 002 [-1.04 | 2.09
0.03 0.00 |-0.73 0.32 |—-1.7 1.38 |-2.18
0.06 0.00 0.34 1.59 |—0.82 |—0.71 |-1.03
0.09 0.00 0.68 |—0.65 [—0.49 0.07 0.28
0.12 0.00 |—0.24 =172 0.33 ;0.14 0.08
0.15 0.00 |-2.17 |—1.09 0.17 | —0.48 0.69
0.18 0.00 091 |—-0.96 [-0.19 —2.32 0.16
0.21 0.00 088 |—1.04 |[-1.83 —249 [-1.93
0.24 0.00 0.56 0.98 0.09 0.78 0.43
0.27 0.00 |[—0.18 1.79 2.02 1.70 2.68
0.30 0.00 [—0.30 —0.70 1.67 0.63 0.20

to estimate the ASN. The AASN values show a good correspondence between

hey are within two standard deviations 86% of

theory and simulation, since t

the time. The quantity AOC is the normalized difference between the theo

normalizing factor is the standard

retical OC and the simulation OC. Here the

3 ) soreti1cs MRS s Pl e
deviation of the OC average, assuming that the theoretical OC valueis correct.

In other words, the normalizing factor for a theoretical OC of Fo(y") and 1,000
s, the
simulation runs is 6oc = Po(y)[L — Py(~")]/1000. Here again, in Tables 2.1

> heory and simulation is apparent.
and 2.2, a good correspondence between theory ¢ app:

The purpose of the computer simulation was to validate the assumptions
. i o . Qe - .
made in the specification and analysis of the three tests: the I'SS test. the

the analysis predicts quanti-

which

SPRT, and the TST. The accuracy with
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ties measured by simulation, as shown above, substantiates the assumptions

made.

2.6 Test Extensions

The analytical expressions for the ASN and the OC of the TST, (2.66 and

: TST wi n optimum mixture of FSS a
2.70), can be used to determine a I'ST with an opt1 5 and

SPRT parts. Specifically, the maximum ASN with respect to the SNR v/ varies

: ; . sl kg Y,. This function is graphed i
as a function of the mixture constants Cy and Cs. Ehe -

Figure 2.10. The figure indicates that the optimal TST should have a greater

mix of SPRT than the value one-half used in Section 2.9, smce the maximum

maller values of the mixture constants C, and

ASN of smallest value occurs for s

Cy. The optimal mixture constants were found numerically to be '} = 0.286

of the optimal TST are shown in Figures

and (, = 0.284. The ASN and 0C

2.11 and 2.12. It is interesting that, by minimizing the maximum ASN, the

ASN in the extreme regions about ' =0 and 4" = 7 is also reduced. This
is believed to be a consequence of the optimal TST having a greater SPRT
mix than the half-and-half arbitrarily picked for the Section 2.5 simulation
and, therefore, exhibiting pmpcrties closer to a pure SPRT. Of course, if the

3 i 1\ N ] S 7
" - wwe 5 lareer SPRT mix then optimization would
first TST was specified to have a larger . A
m » s AT&la Al -
['he optimal TST offers a

d the ASN in the extreme regions.

have increase
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Figure 2.11: ASN of Optimal TST
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good compromise between the need to maximize the ASN performance in the

extreme regions and the need to minimize the maximum ASN.

Another extension to the previously described tests is the robustification
of the tests with respect to the assumed SNR 5. This can be accomplished
by specifying the assumed SNR ~ as the worst case, and then choosing a
corresponding minimum probability of detection P}, that is somewhat relaxed.
This procedure produces a test that adequately detects over a broader range
of SNRs, and it is a way to effectively use the smaller detection times of the
SPRT and TST. In this way, either a TST or an SPRT can be designed to
adequately detect over a broader range of SNRs than an I'SS test with the

same or greater detection time.

The described tests also can be extended to the slow I'll case. The detector
structure itself is optimal under the fast FII assumption but is also a reason-
able suboptimal structure for slow I'H signals. This is especially true when
there are a large number of hops over a given detection time. ISven though
the detector itself is suboptimal for slow I'H, all the performance and design
analysis developed for fast I'H applies directly. This is because all design and
performance analysis depended only on the chip duration being known and

the interference being additive white Gaussian noise.
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2.7 Asymptotic Efficiencies

Al . . - .
The previous analysis did not include the performance of the tests when

the assumed SNR 7 is small. This case will be examined here. Since the

ASN and OC are functions of both 7 and the actual SNR 4/, the ASN and

OC can be recast as functions of 4 and the relative SNR. r = \H’/’y l'est,

performance in the dwindling SNR case is captured by the limit of the ASN

and OC, as v diminishes while r is held constant. For the OC, this is a finitc

limit, but the ASN increases without bound. Thus, rather than comparing the

ASNs directly, the limit of the ASN times 7% is computed. In other words, a

quantity, identified as the asymptotic ASN Iz'(N/r), is defined as

NS
|

E(Nfr) = llm E(N/r,v

Al
The asymptotic ASN is useful because it preserves the relative efliciencies

between the ASNs as 4 diminishes. For instance, consider the I'SS test ASN,

5FSS(N/7‘,7), and the SPRT ASN, ESPRT(N/r,v) and write

llm ﬂ——f—gl"ss (N/ry - N/7 (2.72)
b £SPRT (N /1, 4 gsl =SPRT, (N/7) 2.0z

where EFSS(N/r) and ESPRT(N/r) are the asymptotic ASNs of the I'55 test

and SPRT, respectively. The asymptotic OC is simply defined as

o
~J
o5

Po(r) = lim Po(r, 7).
y—0
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As an aid in evaluating these limits, asymptotic expressions for moments

of the single-epoch ALLF derived in Appendix 2.B are defined as follows:

M, = M;7*+0(7") (2.71)
Vr = 1}772+0(73) (275)
where
" K+2 |
) (2.76)

Throughout this discussion, the quantity O(4") represents any function, say

f(7), such that

7”"5351’(7) < oo. (2.78)

The particular function reprcscnted by O(y") is determined from the context

of the equation in which it appears.

) of the asymptotic ASN and asymptotic OC, the

To ease the expressiol
variables L. 7, @, and b are defined. They will be labeled the asymptotic test
' g e N

parameters. Depending on the test type, they have expressions that corre-

spond to that test type’s parameter equations, where M, is replaced with M,
D For instance, the 'S5 asymptotic test

Vi

and, likewise, V, is replaced with
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parameters from (2.45) and (2.46) are

_ 1 2
) [Vf’@ (1 = Pp) — Vo' (1~ Py )]
L = - - - 2.79
(MI—MO)2 (2.79)
& [:% ) TirE e
T = [VO M (I) (1 S [P) = Vl M()q) (] = P]))J 5 (28())

(M -

By using the asymptotic expressions (2.74) and (2.75), we have proved that

the asymptotic ASN and OC of a particular test are exactly those of a test

with the corresponding a.symptot.i(: test parameters. IFor example, this fact

and (2.63) suggest that for the FSS test the asymptotic ASN is

PSS
(N/r) = (2.81)

while the FSS test’s asymptotic OC is
’ F— LM,
Po(r) =@ = : (2.82)

rent tests are plotted and compared in

The ASN and OC for the three differe

clationship among the tests’ asymptotic

Figures 2.13 and 2.14. The relative re

ASNs is almost exactly like that between the ASNs for vy = 1 and v = 0.3,

shown in Figures 2.2 through 2.5. This indicates that the three tests have
m 12 . » . ¥ . 3

reached their asymptotes, even for v = 1. This commc nt also applies to the

OCs. The usefulness of this asymptotic analysis, beyond verifying that the

relationship among tests remains the same for diminishing SNR, is that it

simplifies the test parameter relationships with respect to the parameters ~
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and r. Thus for each test, we could choose parameters [ = Ly7% 7 = 7

a = a, and b = b and have comparable performance for any small 5. This
feature simplifies any adaptation with respect to v that might be added to

this detection scheme.
2.8 Conclusions

Methods for the sequential detection of noncoherent fast 'l waveforms

have been developed. In the process, the I'H waveform is modeled to have

an information component that consisted of a series of chips with a known

constant epoch, where each chip frequency 1s one of a known ensemble of

frequencies. In the model, a particular chip frequency is independently de-
termined by a uniform random variable on the frequency ensemble. The 1]
waveform is assumed to have an additive white-noise component. By assuming

the modeled FIH waveform to be a known SNR, the optimal detector based on
a single-epoch observation (SELF) is developed using likelihood-function the-
ory. SELF is the sum of many nearly identical and nearly independent random
variables and thus has nearly Gaussian statistics. This central-limit argument
allows & n‘mll,i—cpocll collection of SELFs to be considered an equivalent set of
Gaussian i.i.d. variables. From these simplified observations, a log-likelihood
function (ALLF) is computed that is asymptotic to the exact log-likelihood
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function as the number of possible hop frequencies becomes large. The ALLF
becomes the test statistic on which three detection tests are based. The tests
are the FSS test, SPRT, and TST. These are defined to ensure that detection
errors are below desired levels. By modeling the ALLE as a Wiener process,
diffusion theory yields the performance of the three tests not only for an I'[]
waveform of the assumed SNR but also for all SNRs below the one assumed.
This analysis compares favorably with a computer simulation of the detector
that walidetes the analysis. The analysis also becomes a tool used to numer-
ically optimize performance of the TST, when the actual FH SNR deviates
from that assumed. In order to study the performance of tests synthesjzod
by assuming an extremely small FH SNR, expressions for the asymptotic tes

efficdenciey are computed. This asymptotic analysis also yields simplified test

parameter expressions applicable to the small SNR case.

A significant feature of the SPRT exposed by the analysis is that, with {he
same error probabilities, an FFH waveform with a given SNR can be detected
in less than half the time of the corresponding I'SS test. This reduction iy
detection time is especially significant for Low Probability of Intercept (LPI)
applications in which the transmissions are purposely short. Ior the pure

SPRT. detection time increases whenever the observed SNR differs from tlha
’ )

_ wsis. For SNRs midway between zero and (e
assumed in the test’s synthesis. For SNR o ‘ a2

assumed value, it is even comparable to the corresponding FSS test. The
» 2,
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TS significantly improves this anomaly while sacrificing little performance
over that of the purely sequential test, and what little performance is lost is
largely regained by the optimal TST. The decrease in the detection time of
the sequential tests can be used to robustify the test with respect to the input
SNR, while maintaining better performance than that of the non-robust IS5
test. The simplified test parameter expressions derived by asymptotic methods
may be useful for any schemes to adapt these tests for varying FII SNRs. The
three tests and their corresponding design and performance analysis also apply
to the slow I case. The detector structure is suboptimal for slow I but
it is believed that the performance loss is small, especially for detection times

that include a large number of hops.

It is apparent that other simplifications and extensions to these results are
possible. For instance, it is assumed that the starting time and duration of the
chip epoch are known. This first restriction might be relaxed by redefining the
SELF to perform sliding window integration instead of the integrate-and-dumyp
operation now performed. This, of course, would degrade the detector’s per-
formance for some values of epoch starting time, but probably would exhibit
a better average performance. There are also possible simplifications to the
SELF to improve its implementability; for example, removal of the emphasiz-
ing function, would make the detector structure suboptimal but probably still

asymptotically optimal for small assumed SNRs. Another simplification could
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be coarse subband preselection, where the total spread-spectrum bandwidth
is subdivided into subbands, each containing a large number of chip frequen-
cies. An algorithm then could be used to select a subset of the subbands
that most, likely would contain the intercepted signal. Detailed processing on
these preselected bands then could be done with the methods described in this

chapter.

2.A Derivation of SELF

Proceeding from Appendix B of [50], the likelihood function, given the
carrier phase 0 and the channel k, the conditional likelihood function for the
tth epoch is

;2 GADTh
A'(T//k 0) = e—,f,—’ne,%n]j,,,:' y(t)a(t)dt (2.83)

where I is the single-epoch energy of the FH signal, i.c.,

(i+1)Th , o
7 = / ’ ‘ZSsinz(wkll + 0)dl. (2.84)
1Ty
But
B S8T, for wy, 1), > 1 (2.85)

which, upon substitution into the conditional likelihood function (2.83) and

expanding (1), yields

A; (y/k,0) = e eV (Pisin0+Qy cos0) (2.86)
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where
) cos wi,t di

1+1
= ol
\/N NoTh
SN (2.87)

) sinwg, t dt.

(i+1)T
Q= r——NoTh [

Taking Expectations with respect to 0 defines

Aiy/k) £ Eo [Ai(y/k,O)] (2.88)

which is the likelihood function conditional only on the channel. This expec-

tation can be evaluated as

e 2 V27(P sin 0+Q cos0) 2.8
. [A,-(y/k,())] - : d0 (2.89)
) %:Z 2 e\/ﬂmsinww)d() (2.90)
ox Jo

where ¢ = Arg(Pr + JQk)- Now by the periodicity of the integrand

e"’Y 2m m P24+Q?2 cos & ¢
g0 [Aw/k0] = [T (291)
e Io (\/27 P+ }f-) (2.92)
by the identity
2T
o _L/ 6““’*‘0(10 (2.93)
0

where I, is the zeroth-order modified Bessel function of the first kind. Taking

expectations with respect to the channel k yields the single-epoch likelihood

function (SELF)

1>

Ai(y) Er [A,-(y/k)]

_~ K-1
_ 672100/2’ 1)+(k>. (2.95)
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=B Asymptotic Expressions of the ALLF
Oments

We

h «nts when SNR 4
Want, o ¢Xamine the behavior of the ALLF moments

iminj Vs A& otic expres-
(hmm'sheﬂ while the relative SNR r is held constant. The asymptc I

Siong i . e 1C expressions
S10ns deriveq here encapsulate this behavior. To derive asymptotic exj

. ; : » mean and variance M,
Or the Mean and varjance of the ALLF, consider the mean and ve

' it wi s useful to derive
Ad V. of (he single-cpoch ALLF only. To this end, it will be useful to de

and
‘ i : . oo 7 ents: i, /oy an
SYmptotic eXpression of two functions of the channel mom fir/

: > ituting (2.21) and (2.22)
o /a2 bta.rting with the first expression and substituting (2.21) and (

formg

pr_ 13(2ry) (2.96)

o2~ [o(2y) — 1]’

We wil need a partial power series expansion of [y(x), i.e.,

z° 2O (2.97)

. stv (™) represents any func-
Here anq throughout this discussion, the quantity O(z") repres

tion, say f(x), such that

2.98
27" lim f(z) < oo. ( )

r—0
i . ™) is determined from the context
The particular function represented by O(z") is determine

‘des for 2.96)
STy A e ] " er series for Iy, (2.4
of the equation in which it appears. With the above power set
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becomes

4\12
w4+ 000 (2.99)
o8 P+ 00
2l 4
_ 1+ 2+ O0(Y) (2.100)

v2 + 1yt + O(7%)

= v+ (22 - 1) + 07 (2.101)
T (L Pt o)’ (2.102)

thus
R (r - ;;) v+ O(H?). (2.103)

00
Now let us evaluate the second channel moment function. Using (2.21) and

(2.97) plus the power series for €, after carrying out the multiplications we

get
0’3 ~ =1 1 g —2~v¢c 4(!) . (/S 2
— = [{o(27) — 1] ——/ e 4782 [h(4ry sin = )d¢ — I;(2ry) (2.101)
90 m Jo 2
2
Iy 2t ool L[
S=pr o) L

[ 1 —2vycos ¢ + ‘2’72 cos? ¢ — %'y cos® ¢ + % cos? gy + O(7%) ] X
. . ; 2.105
[l + 4r%4? sin? —3—’ + 4rtytsin® £ 4 O(—y")] d¢ (‘ )

)

[t et o)



02_ 2 1.4 1 O 6)]—1 l/?r 1 —2cos¢
;%—[7 +37 + 00y =4

+ (47‘2 sin? % + 2 cos? qﬁ) y? — (87'2 cos ¢ sin? % + § cos® (/)) 3

(2.106)
+ (% cos* ¢ + 8r2 cos? ¢sin? *;1 + 4r* sin* -‘g) v+ O(4,7°) | do

Let f(#,7°) be the particular function represented by the symbol O(¢,~")

under the integral, then

limy™ /Oﬁ f(8,7°) = /O limy™*[($,7") < o0 (2.107)
implying that fo f(&, ) € 0(75). The interchange of the limit and integra-
tion is justified as follows. The function f(¢,~") inherits continuity on the
compact set {¢,7 : ¢ € [0,7] and v € [0,1]} from the integrand. Therefore,
Y73 f(#,7°), which has a finite limit at the origin, is also continuous on this
compact set and hence is bounded, say by B, on this set. The function 3 is
integrable on ¢ € [0, 7], from which the interchange follows by the Lebesgue
Dominated Convergence theorem. The interchange implies that (2.106) can

be integrated term wise to yield
2

o? : ; -1
S =+ 000 x
0
{[T+ @2+ D)2 +20292 + 3+ 202+ 3)y' + O(v") (2.108)

[t e o0n)

which simplifies to

Q.
o

— = 1424 2r'* + O(y%). (2.109)
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With these asymptotic expressions for pr /0o and o} [og, we proceed with the
. 3 L l‘ »

derivation of asymptotic expressions for the ALLI" moments. The ALLF mean

is expressed in terms of the SELF moments as

M, = %m % + [2ViVel " {[M, — Mo]P Vi — [M, — Mi* Vo + [Vi = Vo] V. |
1

(2.110)

The last three terms can be evaluated as follows:

2Vi Vol {[M, — Mo? Vi — [M, — Mi]* Vo + [Vi — Vol Vi }
271 2 2
| | o} fr /‘t)] { ; "1]
- w= | 4 —5 — - — R =14~
2K [A + (7(2,] { oo 0o ag
2 2 2
_K[/‘_r_/‘_'] +[1\'_1+0—;] [U—L—l]} (2.111)
(o) ap o] Ty

= ks oyt 00 { [y + O [ + O()]

2K

—K [( =1)y+0(*)]

+[K + 2%y + O(4?)] 27 + 29 + O(+°)] } (2.112)
K+2 K -4y . Y el 9 11¢
o % < T )')2 +0(v7). (2 1153)

Now for the final term. We will need the following power series expansion for

In(x)

In(1+2) =z — = + O(«*) (2.114)
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Now to proceed with the variance

’ 2
(L - l)2+ [(l . i) M, + (ﬁ‘;‘ - M)J V. (2.119)
0

Vr2
i Vo Wi Vo W

r ‘)

r4

The first term can be evaluated as
2 a?] 3%
[%-1} [1\’—1+—;J
V2 < I L)Q _o L e JL 0] (2.120)
2 \Vo W 2K? [/"—H%J
T9

1 [27+0(7")H/\'WLO(V)]}2 (2.121)
= 552 [K +O(7)]

2’)’2 g
K? (

The second term of (2.119)

[ M,_A_@)sz
KVO ‘VI)M"Jr(\/, Vo
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g fo | Hr i
[ %0 {[——JI — l] [([\ — l)'(‘) + J + K [JU 00 03

BT A
[1\'—14-7

0

G

_ L [K+00)] { [2y +27" + o) [Kv + o)
K? (K + O(y))"

LK Rt 0(+*)]

2
= Jf [7“1 _ i'y.{_ ()(73)} [l + 27+ 2,72 4 C)(’)’:‘)J }

2.125)

() +K[-2-7+ O(v*)] }2 (

_ LK+ O f g 427+ 0

2 G T
o (2.126)
N TV
= +0(r")
Combining (2.122) and (2.126) yields
v, = EE2p 1 0 (2127
i K2
Summarizing these results
K+2/(, LI\ 2, o4 (2.128)
M. = ( 2)7 + O0(r”)
(2.129)




= KT AT EEE

Chapter 3

The Optimal Interception of
Frequency-Hopped Waveforms via a
Compressive Receiver

3.1 Introduction

The goal of the intercept receiver is to detect deceptive electromagnetic
sources and follow up by extracting waveform features for use in the jam-
ming or exploitation of that source. With the advent of frequency-hopped and
other spread-spectrum signals, the search bandwidth that assures a reasonable
probability of intercept is increased greatly with a corresponding increase in
the complexity of the intercept problem. For these cases, wideband intercep
tors prove unacceptable, while high-performing channelized interceptors prove
virtually unimplementable. The compressive receiver, which simultancously
estimates frequency components over a wide, set band, has promise as an in-

terceptor with both the simplicity of a wideband device and the performance
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of the channelized device.

The literature is rich with intercept methods for frequency-hopped wave-

forms (see [40], [45], [32], [41], and [39]). There are also some analyses of the

detection performance of the compressive receiver (see [4] and [14]). However,

very little has been written on the application of the compressive receiver to the

Interception of spread-spectrum signals ([20] is an exception) and even less on

the interception of frequency—hopped waveforms. To fill the void, this chapter

fully develops an optimal and a simplified suboptimal method for the detection

of frequency-hopped waveforms. The chapter further exhibits a structure for

hop frequency estimation.

The chapter models the compressivc-rcccivcr input as consisting of either
stationary Gaussian noise of known autocorrelation or of noise plus a hopped

signal of known hop epoch, unknown phase, and energy above a minimum
detectable level. Approximate transfer relationships for signal and noise are

developed separately and used to translate the detection problem to an equiv-

alent one on the compressive—reccivcr output. Likelihood function theory is
Ids a locally optimal (i.e. optimal

applied to the equivalent problem and yie

for small signal-to-noise ratio) detector. The locally optimal detector has an
unwieldy structure that defeats the motivation of using a compressive receiver:

that of simplicity plus high performance. Therefore, a time-multiplexed detec-
tor is developed that, at the expense of duty cycle, can achieve performance
)
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s of the detector’s output

as close to optimal as desired. Asymptotic statistic

are derived and used to quantify performance. A hop frequency estimator is

presented and its probability of track estimated.

3.2 Preliminaries

Several areas need elucidation before a useful interceptor can be developed,
in particular, a precise statistical model of the compressive-receiver input and a
precise model of the compressiV(‘-I‘C('CiW‘l‘ itsell. In order to statistically model
the compressive receiver output, transfer relationships are needed for both the

noise and signal.
3.2.1 Input Signal Model

The signal model is for a composite h_ypoi,hosis problem. Sp(‘ciﬁ("n.lly, given
the observation y(t), the problem is one of choosing between 1,, which is

the hypothesis that an FH waveform is not present, and ., which is the

hypothesis that an FFH waveform is present with an SNR ~" greater than some
minimum SNR 7. Exactly, the model is
Hy: y(t) = nlt
versus o: y(t) (t) (3.1)
Ho: y(t) = s@+n) 1<

where the frequency-hopped signal s(t) is given by (1.1) and n(t) is stationary,

colored Gaussian noise with variance o and with autocorrelation function
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Yol(t)

- | A

aft)

gram of Compressive Receiver Model

Figure 3.1: Block Dia

ated to the other model parameters

o2R;(t). The hypothesized SNR A" is rel

by v = S'Ty,/o?, while similarly the minimum SNR 7 = STy/o?.

Significantly, the signal model allows for colored noise and is, therefore,
quite general. Note that the model assumes that all signal parameters except

amplitude and hop frequency are known.
3.2.2 Receiver Model

Figure 3.1 blocks out the comprcssivc-rcccivcr model. The compressive

receiver mixes the input signal yi(t) with a linearly frequency-modulated signal

a(t) = cos(wol — ptYy 0<ts T (3.2)

to wo — 20T5- Here 7 is the scan

that scans downward in frequency from wo

s input to a pulse compression filter, hence, the

time. The scanned waveform I
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name compressive receiver. The filter has impulse response

h(t) = cos(wot + Bt?) w(t) pt<T; (3.3)

where w(t) is a weighting function used to minimize energy spillover between

signals of different frequencies. The output of the compressive receiver now

follows as
W) = [Fat-nue-Die)dr LSS @4
= z,(t) + (1) (3.5)
where
z(t) 2 /OTCa(t—T):I:i(t——T)h(T)dT T.<t< T (3.6)
wll) & /OTCa(t—T)ni(i—T)/L(T)(lT T.<t<T,.  (37)

3.2.3 Output due to Signal

Using (3.2), (3.3), and the commuted version of (3.7), the output of the
ng L)y J )y

i i ssed as
compressive receiver can be expressed

: 2] . - . o
To(t) = /t x(7) cos(wof——ﬂrz)cos [wo(i —7)+ Bt - 7) } w(t—7) dr (3.8)

1T,
whenever T, <t < T. Trigonomctric manipulation leads to

t
928t w(t — 1) dr
B (l) = %cos(wot + pt?) /t_Tc a(t) cos(2/
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t

i
-+ Esin(wot 2 ﬂtZ)/

N z(7)sin(26tr)w(t — 7) dr + «. (3.9)

Application of Lemma 2 shows that error term

lel < (3.10)

where P, is the positive variation of the window w(t) on t € [0,7.] and where
P

z 18 the positive variation of the input z(¢) on t € [0,7,]. The definition of

Positive variation appears as Definition 1 in Appendix 3.B.

! = £ Ve . .
The error bound has special meaning when X () is a sine wave of angular
fl‘equency w. In this case, P, ~ wl./m < 28T,1./7 and hence

PuPTT,
s == (3.11)
TTWo

Wwhich is very small for typical values of wo, T¢, T, and /3.

3.2.4 Output due to Noise

As shown in Appendix 3.A (3.95 and 3.99), the normalized autocorrelation

(divided by 0?) of the compressive-receiver output is
1 /T
Ro(t,d) :—/ R;‘(U] o d) {
8 .J-T,

Te—|u1 )
/2 I 'Cos [(wo — 2Bt + Puz)(wr — d)] cos [(wo + Puy)u,]
I

ui |

Lo = U
w (UZ;‘U])U) (1_272——'> (l’lln}}(/’lll + €. (.‘12)
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The error term ¢ is bounded as
1, _—
le| < ngBTC (3.13)

where

1 1 v 2 + 2
= 53T, + 2wg — 28T, | wo— 28T, © wo— BT

(3.14)

with P, being the positive variation of w(t) defined by Definition 1 in Appendix

3.B.

Under typical operating constraints, the error bound can be simplified fur-
ther. The term 28(1, — T.) represents the total frequency spanned by the
compressive filter, which is very large (typically on the order of megahertz).
Additionally, the frequency wp is usually in the tens to hundreds of megahertz
range, hence wy > 10°. These two facts, along with the fact that the scan time
is typically twice the compression time (i.e. Ty = 27T.), imply that B < 1/57T..

Under these assumptions, the error is bounded as

1 )2
-, SAG
| < 8 3 ( )

Of interest are special cases of the autocorrelation. When the input noise is

white, meaning' that o? R;(t) = (1) No/2, then the output noise is stationary

'Since the variance of a white noise process is undefined, arbitrarily let o? = Ny where
Ny is the single-sided spectral density of the white noise process. This choice make the
signal-to-noise ratio, v, consistent with other definitions in the literature.
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L — |d]
) 1| uz — | du,
, 27— |q| us + |dJ'\ (‘—‘)
Ro(d) = % /Il cos [|d|(wo + Bus)] w <—2—_ N .
5 Jla

(3.16)

(o] l i . I[ ll]( WINAOW 1 [ b clartl-
”l(tl()” W 1S T¢€ l

gular, thep

7 T 317
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optimal detector of frequency-hopped waveforms integrates coherently over a
single hop period [41], we conjecture that an optimally configured compressive
receiver should integrate over a period commensurate with the hop epoch 7).
But because we are also interested in the detector’s performance in estimating
the hop frequency, we want to eliminate interference from adjacent hops. We
thus choose T, = T), and assume that the compressive receiver is synchronized
to frequency hops. This is not a realistic assumption in the pure detection
problem but it will lead to an optimal detector whose performance degrades

gracefully upon relaxing this assumption.

Because the interfering noise is typically of much larger bandwidth than
the hop rate, the correlation between hops is negligible and so the optimal mul-
tihop detection statistic is simply the sum of the optimal single-hop detection
statistics. We thus confine ourselves to the problem of using the compressive
receiver to optimally detect, given an observation period of Ty, a sine wave of
unknown amplitude and phase and whose frequency is one of the known hop

frequencies.

Based on the above assumptions, the detection problem is now

Hy: zi(t) = nt)

(3.20)
Hy: zi(t) = V2Ssin(wil + 0) + n;(t)

versus

for y < 4" and T, < t < T,. The parameters 0, v, ¥', wy, and n;(t) are as

defined in Section 3.2.1.
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By using the results in Sections 3.2.3 and 3.2.4, the detection problem
based on the output of the compressive receiver is

Hgy a,(ty = un(t)
versus
H,: zo(t) = V2S5 cosl y.(t,wi)+ V25 sin0 y,(t,wi) + n,(t)
(3.21)
for v < 4 and T. <t < T, and where n,(t) is stationary, colored Gaussian

s

noise with autocorrelation function R,(t) as defined by (3.12) and

1 [t
Ye(t,wy) 2 — cos(wot + /)’tz)/ cos(wgT) cos(2pLT)w(t — 7) dT
2 i~
1 t
+ 5 sin(wot + [ﬁ,z)/ cos(wyT)sin(26t7 )w(t — 7) dr
2 i,
(3.22)
1 oy [
Ys(tywr) = = cos(wol + /ﬂz)/ sin(wi7) cos(24t7)w(t — 1) dr
2 A
1 . 5 %
+ = sin(wot + ﬂtz)/ sin(wy7) sin(26tT)w(t — 1) dr.
2 {—T.

(3.23)
From [47], the conditional log-likelihood function for this problem becomes

In Alzo(t)/wy, 0,4] =

2y . 0 T 2y . Y
T, cos - 2o T)galT, 00 ) dr 4+ 7T, sm()/” Lol T, (T 00 BT —
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leal
h Tc

T
™ feos  ye(ryuoe) + sin 0 yu(ry0n)] [c0s0 ge(rseon) +sin 0 gx(r.)] dr

(3.24)

where the functions qc([,,wk) and gs(t,wk) are r(‘,S])(\(-t,iV(\ly defined l)y the inte-

gral equations

5 o
/ R, [Tjt,T— t} ge(rywi) dr = ye(l,wi) (3.25)

T, e
/ R, [T;t,f —t] gs(rywi) dr = ys(l,wr) (3.26)
Te

for 7. < t < T,. Since we are interested in a locally optimal test (i.e. small

7), we neglect the last term of (3.24) and say

InA[z,(t)/wi,0,v] =

L " 2 o [ 2 wy) d
ﬁcos(l o To(T)ge(T,wi) dT + 2T, sin /l zo(7)gs(7T,wi) dT.

(3.27)

Averaging this approximate likelihood ratio over # and wy yields

T
/')’] Z]() l:” /; ;1"_,(T)(:';\4(T)

where [ is the modified Bessel function of the first kind and zero order and

} (3.28)

where the complex-valued function G/i(t) is defined as

Gi(t) £ ge(t,wr) + 1 ga(t,wi). (3.29)
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Iigure 3.2: Locally Optimal Single-Ipoch Detector
Consider again the small v case and note that Iy(x) =~ 1 + 22/4 for small .

Conjure (3.28) into a locally optimal statistic

1 K 2
r= 23

k=1

T,
/1‘ zo(T)Gi(T) dT (3.30)

where the scale factor 1/o?T} is added for convenience in future analyses.

Figure 3.2 blocks out (3.30). To complete the detector, 1M is compared against a

threshold v, whose value determines the probability of false alarm Pp. (Section

3.5 shows the exact relationship between v and Pp.) The statistic v being

locally optimal will, for small signal-to-noise ratios, yield the greatest possible
) ] g I

probability of detection, hence it is locally the most powerful test in terms of

g1
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signal-to-noise ratio.

3.4 Time-Multiplexed Detector

The locally optimal detector of the previous section efficiently detects
fr(!quency-hopping waveforms. As will be shown, it rivals the optimal detector
that directly observes the original time waveform. Unfortunately, it also rivals
the optimal detector in implementation complexity and thus undermines the
attractive simplicity of the compressive receiver. In this section, we construct
a detector based on the locally optimal detector that maintains simplicity of

implementation for a small performance cost.

The time-multiplexed detector depicted in Figure 3.3 is both efficient and
simple. The detector consists of a complex filter whose impulse response (/y (1)

1s constructed from the pseudo-signals (/(t) by the equation
K
Gg(t):Z(Ij['l's—l+(]—l)A'I']. (3.31)
j=1
The envelope of the filter’s squared output is then sampled at times,
t=T,+4+ (k- 1)AT for k=1, (3.32)

then summed and scaled by 1/a2T), to produce the test statistic I'. It is casily
shown that

2

1 K P,
/‘ 27} [T, + (= 1JAT ~ #] o (3.33)

"o, 2

k=1

et
P
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Figure 3.3 Time-Multiplexed Detector

which by defining

Gl) £ Gyl =t + (k- 1)AT)]  for <t <T,

yields the alternate expression

l K *

U= 2

h k—1

¥ 8 =
[ 2lr)Gu(r) dr
Te

Note that (3.31) transforms (3.34) to

(7k Z(r] j_/\ r[v+/]

which, for AT > 71 — T, implies Gy () = G (1)

4

(3.34)

(3.36)

since the (i;s are zero outside

the range 7. < ¢ < Ts. Hence the time-multiplexed detector is equivalent to

locally optimal detector for this choice of AT. We aim to show that AT can be

made significantly smaller for a small performance cost, thus concluding that

the time-multiplexed detector captures most of the detectability of the locally
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optimal detector but maintains the simplicity of the compressive-receiver con-

figuration.
3.5 Detector Performance Analysis

In both the locally optimal detector and the time-multiplexed detector,

the test statistic is the sum of squares of a large number of weakly correlated

random variables. Namely, for the locally ()pl,ima,l detector,

2K
(3.37)

r=3y.¢
J=1

where
(3.38)

L
2 .1:0(7)/1,]-(7) dr
Ly /

and where h;(t) is defined as below with 1 <m < K,

h?m—l(t) = gc(t’wm) (339)
h?m(t) = gs(tywm)- (‘}40)
Similarily for the time-multiplexed detector, the test is
2K {
F=Y¢ (3.41)
j=1
where
(3.42)
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and for 1 < m < K,

EZm—)(t) é .ac(tawm) (‘4(;)
Ram(t) 2 Golt:wm)- (3.44)

Here, g.(t,w,,) A [ém(l)] and g,(t,wy) A g [G,,L(t)]. In the analysis to fol-
low, the hat notation will be dropped since the results apply to each detector
in the same way. In other words, to get the result for the time-multiplexed

detector, add hats to the appropriate variables.

Because the test statistic is the sum of a large number of weakly corre-
lated random variables, there is reason to believe, despite the correlation, that
the statistic has approximately Gaussian distribution. We proceed under this
assumption with justification to follow later. To specify the asymptotic dis-
tribution of I, we need its mean and variance under the signal-present and

signal-absent hypotheses. For this purpose, define z;(¢), 1 <j < 2K, as

:’Zm—l([') = yc({'awm) (;/15)

sz(t) = ys("awm) (v‘l())

with m ranging between 1 and K, while z;(1), for 1 < j < 2K, is defined as

T £ o5
3'27”'—1([‘) = / R, [._7[ - T] .(/("(twwvrt) dr (;]7)
T 2
, T t+ 7
Bamil) = /’I‘C R, [T,t — T] gs(t,w,,) dr (3.48)
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with m also ranging between 1 and K. For the same reason as above, we defline

the time cross correlations

e |

£ = FL/ g (Y (3.49)
' h JTe

L

bnn = 7 | Emlr)halr) dr (3.50)
h JTe

for1 <m,n < K. (For the locally optimal detector case, note that & x = &x)

Assume now that the signal is at frequency w;. Then
Ce = /29 cos O Ey_r ke + /27" sin 0 Lo g + M (3.51)

where the random variable @ is uniformly distributed on [0,27] and the ;s
are zero-mean Gaussian with covariances E(n;ne) = &k Irom (3.132) in

Appendix 3.C

A o
e = E(GEJw) = 7' (€1 p + i) +Eik. (3.52)
When averaged over [ and summed over k, the mean of 1" is
/ 2K 2K 2K
My = —ZZ€A1+qu (3.53)
k=1 (=1

Use (3.51) and (3.136) to construct the covariance between the jth and Ath

terms of I' when the signal is at frequency w;. The result is

e (7’)2 2 (')’ )
Vikit = ( ) le 1,7 le,] le 1,k lek e o] 521 1,7 S21—1,k + - 511 J fzu
()* .. , Y o ’
— 9 ,2 1,7 fél,k _ _‘) £§l,j f’zz[—l,k e /1’) 521~l,,1£21—l.k‘£,1,k
+ 4y € jburbin + 2 ffk (3.54)
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which upon averaging over [ and summing over j and k, becomes

e
v')? 2K 2K K ) ) i
[ Z Z Z (2 521 14 £2I,J 521 1,k fmk 521-1,;’ le,k - 5 621,]’ fgl—”c)
Jj=1k=1 =1
¥ A 2K 2K
T K 3% ( &l 46y bk Gk ) +2) 3 & (3.55)
J=1k=1l1=1 j=1k=1

Of course, for the signal-not-present case, the mean and variance are simply

(3'53) and (3.55) with the signal-to-noise ratio " = 0.

Since the test statistic I' has an approximately Gaussian distribution, the
threshold v and probability of detection Pp, for a given probability of false
alarm, follow as

v =1/Vo® (1 - Pp)+ Mo (3.56)

and

Pp=1-0

(\/‘—/E(D (1 _\;}1—' M, + Mu) (3.57)
V.

L . ~ ‘l N w‘l
Where ®(z) is the distribution function of the standard Gaussian.

We now justify the above use of the central limit theorem. First let,

Ea = €12k
S (3.58)
bakg &2k 2K
Which is the covariance matrix of the ¢;s, and
£a1-1,1 COS 0+ &y 8100
(3.59)

A
E0,1 = :
&g1-1,2K €COS 0 + Ea12K SN 0
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which are 1/,/27" times the means of the ¢;s under the condition that the signal

has phase 0 and frequency w;. We note that, since X' is nonnegative definite
. 1 S|
and symmetric, there exists a square-root matrix X2 such that 3z2¥2 =3,

Consider also the diagonalization of 2‘%2—12'% =TT AT where

[\, 0 - 0 1
0 A -+ 0
A= (3.60)
| 0 0 -+ Ak |

is the matrix of eigenvalues of 2 and T is an orthogonal matrix of eigenvectors.

. o 1 . T
Use the above diagonalization and X2 to rewrite the test statistic as

-
[ = <G+ wM(,,,) A (G+ 27’M()J> (3.61)
where
g1
G = (3.62)
92

with {¢;} independent, zero mean, unity variance, and Gaussian and where

ey,6,
A . T -3 Q0
M:?,l = : = TIE 2E()‘1. (3.().{)
mMp.6l

m 5 i . - b ‘
Ihe test statistic I' is now the sum of squares of independent Gaussian vari-

ables. Through application of the Berry-Esseén Theorem (see [25]), I'; con-

ditioned on 0 and [, is approximately Gaussian distributed with an error no

more than 4¢/o where

487'711;‘{0', + 7 o
€ = MEXAIT T3 15 (3.64)
1,0, 8y'm?,, + 2

2K
¥ = ¥ A2(8y'mig, + 2). (3.65)

1=1
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If this error bound is small, a fact that must be established numerically, then
the CLT applies uniformly to the conditional distribution of I'. If, in addition,
the overall mean M., and variance V., remain essentially constant with respect
to L and 0, then the CLT applies to the unconditional distribution of I as well.

. . .
['his fact must also be established numerically.

The above analysis using the asymptotic distribution of I' is supplemented

with upper- and lower-bounding distributions. Specifically,

1_Q1\' \V 27,€n1ax7 ” /\L S Pr [I\ S a] S 1 _(21\' \V/ 27/('minv

a

/\min

(3.66)

max
where A ax, Amin are respectively the maximum and minimum eigenvalues ol
the covariance X and where €max, Cmin are respectively the maximum and

minimum over all eigenvalues of the matrices

B 2AT¥YA, 1<I<K (3.67)
with
Eamrn a
A2 : : (3.68)
Cor—125 Catzi
and finally where @, is the generalized Marcum )-function defined as
00 m—1 g ’
Qm(a, ) 2 / i (1) 6”%(1'2*’"1)/,”_,((»';17) dx. (3.69)
3 o

Of interest is that the upper bound equals the lower bound only when

the channel outputs are i.i.d. and the sum of the square magnitude of the
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Figure 3.4: Hop Frequency Estimator
signal component across the channels is independent of signal phase. In a
sense, the bounds give an indication of how well the detector fits the i.i.d.
assumption, since the upper bound corresponds to the detector distribution
under the i.i.d. and phase independence assumptions, but with an increased
noise level, while the lower bound has the same interpretation, but with a
decreased noise level. These bounds, when averaged, approximate the detector
distribution, the usefulness of which will be studied and compared with the

asymptotic distribution in Section 3.7.
3.6 Hop Frequency Estimator

m . . . . ~
I'he time-multiplexed detector can be modified to estimate hop frequency

as depicted in Figure 3.4. Here, instead of accumulating samples of the square
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envelope, the maximum sample is found as

G2 = max |2
(Gil” = max |GyJ*. (3.70)

Then wy, is declared the hop frequency estimate.

sed the performance is maximum likel :
We neec I 1ce of this maximum likelihood estimator. For this

purpose, the probability of track Pr is defined as the probability that, given
the presence of a signal, the hop estimate matches the actual hop frequency.
Because of the lack of symmetry and independence between the squared enve-
lope samples, an exact expression of Py that is also computable is very difficult,
to find, although it can be expressed as a K-dimensional integral. We will be

satisfied to tightly bound Pr when it is large. The results will be accurate

under the useful operating conditions of the estimator.

Proceeding in this fashion, we will need to define the distribution function

of each sample
Fi(x) 2 Pr (|Gy|* < ) (3.71)
and note that its density fi(x) exists and will be computed exactly later. Now
suppose the signal is at hop [; then the probability that |(/j]* is between
and z + Az is approximately fi(z)Az and, given that it is between these two

numbers, the probability that it is the maximum, hence correctly chosen, is
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approximately

-
Ti(z) 2 Pr| () (IG:* <) (3.72)
=)

k#1
Therefore, upon letting Az — 0 and averaging over [,

1 & % - .
&:Ezlﬁmm@m (3.73)

=1

In order to produce the promised bounds on Pr, we will need to produce

bounds on 7j(x). Using De Morgan’s law,

I

T(z) = 1-Pr|

k
k

=

-waﬁ (3.74)
=11
<¢[

= 1- Z ])l(.'l,‘) -+ Z ]’2(;1-) 4+ .- ($7,—))

singles pairs
| ol
where Py(z) is the probability that a single sample exceeds @ and, similarly,
) P . r ] ~ . . ~ nm
Py(x) is the probability that both of a given pair of samples exceed x. The
g I |

above expression is useful, because, for the case of large x, the events that
samples other than the lth exceed x are approximately disjoint. In this case,
the first two terms of the series accurately approximate 7Tj(x). With enough
terms, this series can determine 7)(x) to any desired degree of accuracy and,
being alternating, implies bounds on 7j(x) since the series out to positive terms
is above the actual probability and, similarly, the series out to negative terms
is below. We will use the first three terms of the series in just this way along
with (3.71) to write

bi(z) < Ti(z) < b(x) + () (3.76)
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Where

K
b(z) = Z [1 — Fi(z (3.77)
oy
K K
61(:(,‘) = Z Z max Fk( )F](’L‘)]} (378)
k= =
k;e} 1)
Equations (3.73) and (3.76) now determine
I & e
P> =Y / fi(x) max [b(x),0) da (3.79)
1570
(3.80)

Pr < Z/ fi(z) min [b(z (z) + ¢( ), 1] d=
I=1

w
hich, along with explicit expressions for fi(z) and Fi(z) below, complete the

performance analysis of the hop estimator:

g L L

Y (Z-M) dpdOdr (3.81)

Where
_ fzf—l,zk—l 52—1-1,21»‘ } (3.82)
Earor—1 G2tk
and
7 COS
7 = ¢ (3.83)
rsin ¢
and
e ~‘0+A 1 sin0
M = /27 521:1,zk | COS é:zl,zk 1. J (3_8/1)
Eat_ran cos O+ G2t 2k sin 0

follow;
Owing upon differentiation is

fl(’E): 1 ]/27r/27r e—%(Y_M)TE"](Y—M) (/¢([() (;85)
2| X7 Jo Jo
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where

VT cos ¢ . (3.86)

* = VT sin ¢

3.7 Performance Comparisons

This section graphically compares the performance of the locally optimal
detector, based on the compressive-receiver output, to that of the optimal
detector, based on receiver input. Also evaluated is the performance of the

tln‘lc—n'lult,ip]excd detector as a function of the sampling A7

2 Al . ) ] s Al
['he parameters chosen to make comparisons are: I, = 50 us, T, = 1000

Ms, wop = 27 x 40 Mhz, the minimum hop frequency equals 2 Mhz and the
maximum hop frequency equals 4 Mhz, 100 hop frequencies, and a hop rate of

20 Khops/sec.

Figure 3.5 shows how the locally optimal detector compares with the op-
timal detector based on the original observations. As expected, for low SNRs
the locally optimal and the optimal compare favorably. On the other hand,
there is about a 3 db difference between the performances in the high region.
Two factors are responsible. One is that the analysis of the optimal receiver
used the CLT, a poor model when one channel dominates as in the high SNR

case. It is, in fact, optimistic. Another, as explained later, is a modeling
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phe i odicted :
Phienomengy, that can account for up to 3-db error between predicted and

actus ’ e
tual pe; formanccs. Also note how the distribution bounds are pessimistic

ative tq the C1T analysis. This also may be due to the inappropriateness

Of Lhc 1 m o s .
LT when one channel dominates.

Y s @ & . Y i a A COImes
Figure 3.6 shows how performance degrades immediately as A7T' becom

less than the compression time 7,. This indicates that any tradeofl between

performance and duty cycle would not be worth the degradation.

Figure 3.7 differs from the previous case in that the noise is bandpass
instead of white. It has the same general character as far as the degradation
with respect to AT Tut is approximately 3 db better. This is not an actual
performance difference but a modeling phenomenon. As far as noise analysis is
concerned,

the compressive receiver is a mixer followed by a narrow bandpass
filter. If the Input noise is white, there will be uncorrelated noise contributions
from the sum and difference frequencies produced by the mixer, hence the
3 db. A more realistic scenario has noise of uniform spectral density across the
analysis band of the compressive receiver. In this case, the sum contribution

. 3 " o . LBt g e N rOC ) > ,. 'll
is filtered out. This reasoning also explains the difference between the optin

and the locally optimal detectors.
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3.8 Conclusions

I)resent,c'd were two detectors of frequency-hopped waveforms based on the
Compresgjye receiver. The first was developed by applying the likelihood-ratio
theory the observed compressive-receiver output and yielded a locally op-
timal (]()W"SNR) detector. The second, motivated by the simplicity of imple-
Mmentation, wag 5 time-multiplexed version of the first that, through the choice
of a Parameter, either could, at the expense of a low duty cycle, achieve the
detecr’a‘b”it'y of the first or, at the expense of degraded performance, achieve
higher duty cycles. The second detector was modified into a maximum likeli-
hood estimator of hop frequency. Performance of both detectors and the hop

freql 1
lency es . . o
Yy "(,Hlld(.OI were a,na,lyzod and (‘0”]])%1.[‘(‘(].

The compressive receiver fulfills its promise as a simple, yet high-performing
interceptor. The performance of the locally optimal detector shows that rela
tively little detectability is lost in the compressive receiver processing. Most
of the discr(,‘pa,ncy is due to the difference in coherent integration time (one
half for the parameters used). Furthermore, for a small performance cost, the
simplicity of the compressive-receiver approach can be retained by the time-
multiplexed detector. The hop frequency estimator again compares favorably
with the corresponding device that used raw input instead of compressive-

receiver output.
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3.A  Derivation of Compressive-Receiver
Autocorrelation

r - . ~ . . .
I'he normalized autocorrelation of the compressive receiver output is de-

d l
R.(t.d) = %E [no <t + ;) n, (l — %)J (3.87)

1

fined to be

under the restrictions that

(3.88)

~
IN
IN

3

and

1
u min(t — T, Ts — t). (3.89)

5 =
Substitute the expression for the output noise, (3.7), interchange expectations
and integration, and use the definition of the normalized imput correlation:;

Ri(7) = Eny(t)n(t + 7)]/o?, to get

]{()(l’ (l) =

g
s T,) J Ccos [w(m + /frfJ w(7y)

&
&
—
£
o~
i
N
|
)

L S
|
=
o~
=
N |,

2
‘/ == T2) J COS [W()T'z + /fT;J '117( TQ) (IT'Z (/T[ .

o
o]
195}
=
E
(=)
~
|
B
|
"y
N
|
T==
D
o~
|
N

(3.90)
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T s a e integral
To eXploit the Stationarity of the input noise, first transform the abov g

Wwith

(3.91)

U1 = T3 — T2

(3.92)

Uy = T+ T

i iple applications of the iden-
and then reduce the cosine components with multiple applici

(:()‘~‘(A)C()S 1 /)(()‘\ /1+ I} ‘ l/)(() ‘ If) (

to form
R(t,d) =L [* oS {
o(t, d) ~1—6/_T:1z,-(u1— NS

e | uz + o ’“I) duy } du,y
/ cos(0; + wjuy + Bju )IU < 5 e 9
|

u1| =

(3.91)

and appl
where 0, w.. and B; are given by Table 3.1. Use more trigonometry and apply
218 € J

rrelation as
Lemma 2 to terms 3-8 to rewrite the autoco

R, b/ ul—(l{

/{“C—lull cos [(wo — 28t + Bug)(uy — d)] cos [(wo + Pua)u]
l

wy |

s — L (3.95)
w (ug 7: ul) _ ( ) . 1) duuy }(lu,l b«
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Table 3.1: Coefficients of (3. 94)

i1 by = 5]

p

1 ol — 2042 — 2(12 + Bdu, 23t 0
9 T 2[”2 K g(p — fBduy + [i"u,']z 2wy — 2/t B
: ¢ d @ 2 g /ﬁ
3 —(wo — 26t)(uy — d) + 2“1 wo + Bd — Pu, 5
, j ;
4 || —wot + 28t + §d2 — (wo + Bd)u; + %uf wo — 28t — Bu, B
2
T ..
5 (wot = 2pt)(ur — d) + {j“f wo — fd + pu, g
- 3 3 .
6 —Ldot + 2/3t2 - % [2 -+‘ (wg - /'}d)'l/,] + /T)“'ll,f wy — 2/')’/ -+ /)’ul g
T wod + 23t(u; — d) Bd 0
8 (wo — 28t)d + (—2wp + 28t)u,y Bd — 2pu, 0
with error term
g | R (uy — (1)| ( =
€] < )p Z/ s C2R 0T du, (3.96)

where P2 is the positive variation of w(t) defined by Definition 1 of Appendix

3.B. Simplify the error bound by minimizing cach term, w; + 203, uy|, with
respect to uq, d, and ¢, while noting the restrictions (3.88) and (3.89). The
result is

le] < - 1w3/ |Riuy — d)| du, (3.97)

where

1 I 2 2
B = : + . 3.98
28T, " 200 — 28T, " wo — 28T, T wn = AT 38

c




The relation [R(t)] <1 to further simplifies the bound as

e] < élﬂb’?L. (3.99)

w

3.B  Bounds on Integrals of Linearly
Frequency-Modulated Sinusoids

The first, bound, Lemma 1, is a tool used only to prove the second bound.
Lemma 2, which is used for derivations concerning the output of the com
pressive receiver: namely, the derivation of the noise autocorrelation and the

derivation of a simplified expression for the output signal component.

Lemma 1 Under the restrictions that b > a, w > 0, A >0, and w+ 23a > 0,

b )
22 < :’
’/ cos(0 4wl + %) dt| < =, (3.100)
Proof
Define the function
tn i , ‘
T(0,w, ) = / sin(0 + wt + [t°) dt (3.101)
0
where
~1 1+48(r — 0
* _+ Al = 0) B3>0
te = 28 (3.102)
=)
= =0
w
0 = 0mod r. (3.103)
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This is simply the integral of sin(f + wt + pt?) from ¢ = 0 to its first zero
crossing.

I’rcliminari]y, three facts need to be proven: first, that T(0,w, ) decreases
with respect to B3; second, that it decreases with respect to w; and third, that

with 8 = 0 it decreases with respect, to 0.
Beginning with the first fact we will show that T(0,w, ) decreases with
respect to 3 by proving its partial derivative to be negative. IXmploy the chain

rule to get,

6T(0,w, ) _ /l” 12 cos(0 + wt + A1?) dt. (3.104)
op 0

Let @ = t/1, and observe that Bt2 = 1 — 0 — wi,; then

w = ¢3 /] -Tz(:osw + witrz + (7 — g - w‘n)-’"’zl dx. (3.105)
(IIH ™ Jo

To tightly bound the above integral, find its supremum by observing that from

wtr > 0 follows 0 + wt,x + (7 — 0 — wty)x? > 72 on x € [0, 1], from which

1 ) . ' ‘ ‘ ‘ .
/ z2 cos [0 +wtrz + (v — 0 — wt,r);zrzj dr < / z? cos(wa?) dx (3.106)
0 0

upon noting that the cosine argument is always within the region [0,7], a

s . Y . . 9 % 2 .
region where the cosine decreases. Substitution w = 1 yields

1 S L
/.‘1:2(',05(7r:1:2) dz: = 2_'/ uz cos(mu) du (3.107)
0 Jo
5
< .2_5/ cos(ru) du = () (3.108)
0
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-

aft o 1
er observing that u? cos(mu) < 9=% cos(mu) on u € [0,1]. The function

b i : . .
(0,w,3) is decreasing with respect to A > 0, since (3.105), (3.106), and

(3.108) imply that the partial derivative of T(0,w,f) with respect to B is

negative,

The second preliminary fact, that T(0,w, ) decreases with respect to w,

will be proven similarly by applying the chain rule to compute

tr w
6’1‘((:;,(;1,5) :/ 1 cos(0 +wt + Bt*) dt. (3.109)
w 0

r — 0 — wty, and apply the same

Again let z = t/t,, observe that Bt2

reasoning leading to (3.106); then

1
§1(0,w, ) <tﬁ/ 2 cos(rz?) dz = 0. (3.110)

dw 0

implies the promised result.

The partial derivative 5T(0,w,ﬂ)/&" <0

The third preliminary fact, that T(w, 9, () decreases with respect to (),
f. ~ .
ollows because 0 = 7 — wix implies

b » cosf + 1
T(O,w,O):/ sin(0 4wt di=—— (3.111)

0

the cosine decreases, clearly demon-

The fact that 0 € [0, 7), a region on which

strates that T (0,w, ) also decreases.

. . b :
Now with the preliminary facts established, consider [, cos(0 +wt + Bt2)dt

integrand on (a,b). In other words,

a
nd let, {n;}1, be, in order, the zeros of the




a<nig<ni<b and, whenever ¢ € (a,b), cos(0 +wt + Bt?) =0, if and only
e are no zeros then set M = b). Decompose the

if ¢ = 7; for some 1 (if ther

integral into subintegrals between the zeros and get

b n :
/ cos(0 +wt + BLP) dt| = S (~1e (3.112)
& 1=0
where
=L 77;7“’ + 2[3(1,/3) fori="0
(3.113)

€ = T(()’w + Zﬂyli,ﬂ) for 0 < 1< n

<Y (0,w+ 280, ) for ¢ = 1.
rence of elements whose nmgnil,ml(‘. alter

Sinc g .
Since the e;s are an alternating seqt

the first element, decreases,
b “
[ o0+t © pi?) di| < max(co, 1) (3.114)

3 to maximize €o, €1

decreases with respect to

Use the fact that T(U,w,ﬂ)

respect 1o the other a.rgum(‘nl.s to

by putting g = 0. Next, maximize with

A"}]OW
: (‘i 1 I )
s QD

max(eo, €1) S T(0,w + 28a,0) = ”;u/)/r
w + 2fa

The conclusion of the lemma now follows from (3.1 15) and (3.1 11).

Definition 1 Given the partition P=la=t < { - lntsln = b], the post-

tive variation of x(t) on [a,b] is
P, = sup Z[J:([,-) — 2t + x(a)t + x(b)? (3.116)

P i=1
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where v+ has the value r, if v > 0, and the value zero, otherwise.

Definition 2 Given the partition P = [a =1t <t vootny,tn = b], the nega-

twe variation of z(t) on [a,b] is

N, = i%fzn:[x(t,-) _ati)] + (@) +2(6) (3.117)

=1

where v~ has the value v, if 7 <0, and the value zero, otherwise.

A function is said to be of bounded variation if both its positive and neg-

a < . . .
tive variations are finite.

Lemma 2 Under the restrictions thal b> @, & >0, w+2Pa >0, and that
2(t) and y(t) are piccewise contintous and of bounded variation on [a, b],

b ? g Ly (3.118)
/ cos(0 -+ wt + A1) 4 < 00, 3,

a

(1) and y(l).

here P, and £, are the posilive vartalions of x

Since the function x(t), is of bounded variation, it is integrable implying
that, for arbitrary ¢ > 0, there exists a step function z,(t) = Ty a(tio) )
With corresponding partition [a = to < By #+ Bt = b], such that

/b Ia:(i)——:v,(t)l dt < ¢ (3.119)

k i o - s PSS e 3 A
The step function represented above is the sum of nonoverlapping steps. We
Want to reconstruct it as the sum of Ovcr]a.pping steps with the property that
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th(} ac 2 o @ 19 1
Cumulated absolute amplitudes of the steps are minimal. We do this in
. ‘])J—l ———

an iterated facp: :
€rated fashjop by ordering the step amplitudes po = @(t;,) <

Wom) by =0,y = #(tiy,) < pa = a(t;,) with the zero amplitude

includeq and defining the increments {; = [p;_;,p;]. Starting with the kth
Step, an Increment l; is considered “open” if I; € [0, Sk g (t;)] and “closed”
otherwise, Whenever a increment, /; transitions from open to closed, define
* iep af amplitude Tr; = L(I;) and of duration di ; ranging from #; to the
time whep the Increment was last opened. Proceeding in this manner, the step

function now has the form
non 3.120
;I:S(t) = Z Z T'k.j [[t,‘_,tk—rlk,_;] ( )

J=0k=0

upon setting . ; . :
pon setting Tk; = 0 for previously undefined values.

At cach Stage in the iteration, notice that the sum of the lengths of incre-

ments either opened or closed is equal to the variation of the step function
at that point, implying that Y ork; = a(l;) — (;_1). Notice also that an

merement opened by an increase/decrease in the step function can be closed

. . A ' — e va 1 v
only by a future opposite decrease/increase, meaning every step is uniquely

associated with a point of increase. These facts mean that

n

n
2>,

J=0 k=0 1=1

I
9
X
—~
~
R
l
~
~
<
s
=
_+_
—_—
3
—
S
5
—

< P

where the last relation follows




er] X . -
Y define ¢ and 7 in terms of Tk.jy Lk, and dyj to writc

L 3.123
1) = chl[ﬁ_lyn] ( )
=1

with Lhia < P, and [’ |z(t) — z,(t)|dt < e. A similar step function exists

for y(t), namely,

n .
ys(t‘) = Zbll[ul_l,u,] (vil._A)
=1

with T, b < P, and 2 ly(t) — ya(0)]dt < c.

With the

se two step functions in hand, compute

b Q19K
/a Sin(0+wt+Be2)z (¢)y(t) di = /b sin(0-+wt+Bt7)as(t)ys(t) dite(t) (3.125)

where le(t)] < (M + M) + &, My, = sup, [z(t)] < oo, and My, =
sup, [y(1)] < oo. Putting (3.123) and (3.124) into (3.125) yields

m n

b . ‘ DY
5 S b / sin(0 + wt + Bt jr,_y minfus 1) dL- (3.126)

k=1 1=1
. i R » starting time
Applymg Lemma 1 and maximizing the bound by replacing the starting
for each step with the worst case a forms

b o 2F,F; ‘ 5 Ao
L cos(0 + wt + Bt*)a(t)y(t) dt < m —e(t) (3.127)

after noting that Y7, ¢; < P, and 37, b < P,. Let ¢ — 0, then le(t)] — 0

and the lemma is proved.
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3.C  Moments between Squares of
Correlated Gaussian Random Variables

with Random Phase Component

We have in this section two random variables

P = a«acosl+ fsin + v (3.128)

Q = vcosO+dsinh+1 (3:129)

where the random variable 0 is uniformly distributed on the on [0,27] and the
Gaussian random variables v and n are zero-mean with covariances rrf,, (775

\ : - p2 P
and ‘757,- We want to compute the mean and variance of P?, the mean and

variance of P? and the covariance between P? and Q2

Our calculations will be assisted by a formula of the general fourth moment,
between the Gaussian random variables Tg, Ty, Ty, and xy with means m; =
E(x;) and covariances o2 = E[(z; — m;)(x; — m.)]. The formula is

¥ 1 i J J
s 2 .3 2 2 2 2 2 2
5(.1,0.1,1.’122:173) = 001033 t 055013 + 00307, + 05, mymy + Tl 1y

2 2 { 2
+ Oozmamy + ofymems + o langm, + Ty

(3.130)

+  momymoms.
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We will now compute the mean of P? and Q*. Equation (3.128) implies
E[P?/0) = a®cos? 0 + 3?sin®0 + 2a3 cos Osin 0 + o (3.131)

which, upon averaging over 0, becomes

n_a P (3.132)
E[PE] = g T3 to
Similarly,
2 5 -
Q=5 +5+a; (8135

Onward to the covariances. Squations (3.128), (3.129), and (3.130) imply

that
E[P*Q* g = olol + 207, + ol(ycos O + ésin0)*
+ 4ol (acos + Fsin0)(y cos O + §sin ) + o (v cos O + Fsin 0)°

+ (acosO+ Bsin0)*(y cosl + sind)* (3.131)

which, upon averaging over #, becomes

2 2
EIPPQY = olo7+ 208, + Z(y* + 8% + T(a® + B7) + 20, (7 + 0)
+ ;;(cyz'y‘e + B%6%) + g('yz/fz + dafyd + a*8®). (3.135)

With (3.132), (3.133), and (3.135), we conclude that

v

g I B o i _ P I
cov[P? Q% = 204 + 207, (ay + B6) + g((yzyl + A%% — 4287 — a*8?) + Safy

(3.136)



which specializes to

; 1 1 .
9254 + 20%(a” + ) + g((y4 + 4+ 102/32 (3.137)

var[]’z] =

1 |
var[Q? = 20,4+ 202(7* +8°) + 5(74 +6%) + 1’7252- (3.138)

3.D Derivation of Upper and Lower
Bounding Distributions for the Sum of
f Correlated Gaussian

Squares o
es with Random Phase

Random Variabl
Component

(>

T " ‘ T
heorem 1 Define the n-dimensional vector P T ,pn] to have com-

ponents

i a a; cos 0 + b, sin 0 + wi, 1<15n (3.139)
here each a; and b; is a constant, 0 is a uniformly distributed random variable

cence of zero-mean (laussian random variables

B
n (0,27, and {w;}r, is a seqt
P defined as,

wit . ; . " 3 .
h an invertible covariance matrix 3. Then, with

/ [ k
1%Q§ l:\/e_l:l;': Ak J S ])7' [PTP _<_ A] S ]—‘(2'5' l:\/ €min» ;\_’J (;I‘“))

max

here Anax, Amin @€ respectively the mazximuin and minimum etgen values of X
! minimum eigenvalues

an . A
d where ey, €min @T€ respectively the mazximum anc

of the matriz
B2 AT¥XA (3.141)



wilh
a; bl

(3.142)

1>

A

a, by

and, finally, where Q,, is the generalized Marcum Q-function defined as

«

00 m—1 5 2 ) )
(2771(0’3 /-}) é / iy (T> e—%(f e )Im—l(()"r) ([;I.‘ (;11;)

B
Proof

The proof consists of three parts. In the first part, the conditional probabil-
ity Pr[PTP < k/0] is expressed as an integral of a multidimensional Gaussian
density over a spheroid centered at the origin. Upon transformation with
a dccorrcla.t.ing matrix, the region of integration becomes ellipsoidal and the
Gaussian density becomes independent with each of its marginal densitics hav-
ing unity variance. Then through eigenvalue analysis, the ellipsoidal region ol
integration is inscribed and circumscribed with spheroids yielding correspond-
ing bounds on the integral. The second part of the proof shows that the
integral of an independent Gaussian distribution over an arbitrary spheroid
depends only on the magnitude of the mean vector and decreases with respect
to it. This fact will enable further bounding in the third part after computing
the minimum and maximum of the mean as a function of 0. An aftereffect will
be the removal of 0 dependence in the bounds allowing their direct application
to the unconditional probability Pr[P"P < k]. Next the bounds, which are

still expressed as integrals, are evaluated in closed form via the generalized



Marcum Q-function.

Part 1

— N, ol snsity, the condi-
By applying the expression for a multivariate Gaussian density

tional probabili ty

1

/ e-HP-AC]' 27 [P-AC] yp
or | )3 /[P P

Pr[PTP < /9] =
(3.141)

cos (3.145)
&= sint |’

= oy !"“ 1 Pl ALS "l Lo (‘XI'SL
l1 . 1 2 Y- s pual ”It/(( C ]
1 hC l“H,LI'IX 2 2 W“}h L])C I)I'O[)(:’I'Ly 2 2 Z 2 = 15 {:l alc

where

- i : ) e - the salne reasoll,
e i" all i”VCl’“‘bI(.‘. (/O\/a'l'l‘d' nce matrix. I'Ul'(,h( rmore, f()l ’h d
. i }t E == T/ v/17-,7 I)(?I'(‘ A I a
S R all Ol‘“IOgO“"” matrix T, S”(‘h that W S
- e €s W fine > ".l]h'[‘()l'lll(']"‘l.()ll
: ‘gvol I J])(]rill‘ix Of (‘fl'g'CIlV'lJU 2S ()f E ‘/‘/(3 can no (I( h”( t,h( tra

X = TZ'-%P, from which follows

‘ 1 X -My]'[X-Mo] yx  (3.146)
P'[PYPSA/O]: %_/[X'AXQ(] € 2[ ”] [ G (

where
M, =TX ?AC. (3.117)

: . . . . Sk each eatev of l.e. eigen-
Now, since X is an invertible covariance matrix, cach entry of A ( &

values of X) is positive. Hence

Paoax X7X < k] € [XTAX < k] C [Min X7X < ] (3.148)



from which

Pr[PTP < /0] > “l‘/ e-HX-M]'[X-Mo] yx  (3.14¢
< k/0)> o X" X ] (3.149)

and

i T
27T [X Xsk//\minJ

Part 11

We aim to show that, for a given r,

RA L/ e-sX-M]'[X-M] 4 x (3.151)
2 [XTX ng
depends only on the magnitude of M and decreases as | M| gets larger.

There exists an orthogonal matrix U, such that UM = [|M],0,--- O,
hat includes

The matrix U is simply a change of orthonormal basis to one t
M/'Ml as its first member. Now ¥ = UX transforms (3.151) to

1 (n-IM1)' -3 % 4y (3.152)

e /[YTYST] e

As promised for a given r, (3.152) depends only on the magnitude of M, hence

the hotation R(|M|).

t to the magnitude of

We now show that R(|M|) decreases with respec

M by showing that, for any positive increment Al M|, the corresponding

differen e AR(|M]|) 2 R(M]|+ A|M|) - R(|M]) is negative.



Make the respective substitutions z1 = ¥1 — |M|, zi = ¥i, for 2 <1< n,to

R(|M|) and z, = y, —|M|—A|M]|, zi = ¥i> for 2 < i < n, to R(|M|+A|M]).

Then
, 1 - o
AR(IM]) = L/ oAEE g5 - | g3 % gz (3.153)
2nr Ja 27 JH
where the sets G and H are
G = |Z:(z+ |M|+AM)+D 2 <r (3.151)
L $=2
H = |Z:(z+|M])?+> <] (3.155)
L $=2

B .
Cancel out the common points of G and H then

3 1 T
AR(|M|) = 1—/ e32'Z 4z _ L e3% Z 7.  (3.156)
G~H

27 21 JH~G
Let vy = —z; — 2|M| — A|M|, v; = %, for 2 £ i < n, in the second integral
above; then H ~ (' is mapped to G ~ I and the integrals can be combined
to yield

AR(M|) = L [ e 3T [1 — e-tCIMpaM|Y @M ralMD)] 4z

2w JesH
(3.157)

I'he coordinate z; is in G' ~ H, if and only if

n

(z1 + |M|)? + 2A|M|(z1 + [M]) 4+ (AIM])* + Y= < v (3.158)
and
(21 + M)+ )z > (3.159)
1=2



Upon subtracting both relations, z3 must satisfy

A|M -
o < —|M| - —’,)/| (3.160)

Using this relationship in (3.157) implies that AR(IM]) <0, meaning that
ude of M.

R o sp1, & : .
(|M ) decreases with increasing magnit

Part III

m,>

Further bound (3.149) and (3.150) by respectively maximizing and mini-

mizi . . 2147
1izing magnitude of the mean over the random phase 0. From (3.147), the

magnitude of the mean is

|M;|* = My My = cTATY'AC (3.161)

following from the fact that T, being orthogonal, satisfies 7T = I. The

¢, ensures that it can be diagonalized making

M 2 _ [cos = T Cmax 0 COS (} ) .
| M| [cos 0, sin 0\Uu [ i } U [ - (3.162)

madtri T y—1 y .
natrix A X7 A, being symmetri

the eigenvalues of

where U is an orthogonal matrix and Cmax and Cpin are
T g1—1 s . 5
AT -1 A. Since U is orthogonal, it rotates the plane by some angle ¢. This
means that
cos cos(0 —
a Bt P (0—9) (3.163)
sin 0 sin(0 — ¢)
and hence that
(3.164)

|M0|2 = €max COSZ(() b= C/)) -+ €min .\'illz(() = (f))



) . T -1 I T
T N e — as a square
Ihe eigenvalues eax and €pin are nonne gative since A" Y ' A has a squi

root, namely, 33 A. This fact, along with (3.164), implies

v/ €min S |M0| S \/ €max- (‘;l()vr))

Use (3.165) and (3.152) to deduce from (3.150) and (3.149) the bounds

1

— [ oot S M gy
o [Y7Y5k/,\.,.u]

Pr[PTP <k] >

(3.166)

1

— [r - Ty - b —vEm Y gy
27r [Y7YSk/'\lllill]

Pr[PTP <k] <

(3.167)

The integrals in the above bounds are simplified by showing that they

(

are the distribution functions, evaluated respectively at k/Amax and k) X, ©

the sum of n non-central y? random variables with noncentrality €max, €min-
An explicit expression for this distribution is given in [45] and leads to the

conclusion of the theorem:

[k . k
1 - Q% [\/Cmax, /\k ] < iPr [PIP < /\] % l= (")yz_l l:\/('mim :\.j| .

(3.168)



Chapter 4

The Detection of Frequency-Hopped
Waveforms via the Amplitude
Distribution Function

4.1 Background and Motivation

The unfriendly detection and interception of secure communications is a
topic of much current research. Secure communications usually involve some
variety of spread-spectrum modulation, whose purpose is to add ambiguity
or “randomness” to the communication waveform as a measure against un
intended detection or interception. The usual procedure for randomizing the
waveform is pseudo-random variation of transmission times (time hopping),
phases (direct sequence), or frequencies (frequency hopping). The develop-
ment of a method to detect frequency-hopped waveforms is the subject of this

chapter.
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: ¢ - detecti 1
The use of the Amplitude Distribution Function (ADF) for detection is

a new idea with potentially many diverse applications. However, although
this work focuses solely on the detection of frequency-hopped waveforms, the
general ADF technique can be applied to related areas such as radar or sonar
detection. The central idea of the technique is that the ADI of an observed
signal in additive noise is the convolution between the individual ADI's of

: ) ' Jjon techniques
signal and noise. We have shown through the use of deconvolut i

; ; detected even for small
that the signal component can be separated and thus detect

signal levels.

There are previous works that, in essence, use the ADI (see [26], [15], [34],
and [36]) but none has given a precise definition and mathematical develop-
ment like those offered here. Moreover, to our knowledge there is no reference
that directly uses the ADF idea for detection.

The ADF indicates the time fraction that a waveform is below a given am-
plitudc, much like a probability distribution function measures the probability
that & randinm weiahle is below a given value. Previous researchers have used
this concept but failed to give a precise definition of the ADI as it applies
to both deterministic and stochastic signals. Our definition is given, for any

signal X (1), as

T -
Fy(a) = 7!22’ ,[—,t?{L[t (X[ Re 14 T))
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X(1)

Figure 4.1: Definition of ADF

where £ is set function giving length. Figure 4.1 illustrates that the ADIis
simply the time fraction that X () is below a given threshold a. With this
dcﬁnition, we have proved that, under very general conditions, the ADF of
signal plus noise is the convolution of the signal ADI" and the noise ADI
individually. This result would not have been possible without a definition

that applied to both deterministic and stochastic signals.

The adf or amplitude density function is the density, if it exists, implied
by the ADF. There is, of course, a corresponding convolutional relationship
between the adf of signal and noise and the individual adf’s of signal and
noise. Some examples exemplify this convolutional relationship and hint at

the potential of the ADF in signal detection. Figure (4.2) shows the ADI
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of a modulated sine wave (the signal), the ADF of noise, and the ADF of
signal plus noise. The main point here is that the ADF of a sine wave is
invaria.nt, under most phase and frequency modulations, but these are exactly
the modulations used to thwart a potential interceptor. Therefore, the most
typical spreading modulations will not degrade the performance of an ADI
detector. Also of interest is the complex ADF, that is, the two-dimensional
distribution in amplitude of the signal’s in-phase (I) and quadrature phase (Q))

components (Figure 4.3).

Both of the last two examples illustrate the convolutional spreading of the
ADF due to additive noise. Like a photograph taken while the camera is out
of focus, noise smears the signal part of the ADF. By a technique borrowed
from image processing, the picture (i.e., ADI') can be refocused to reveal the
underlying picture detail (i.e., signal). Deconvolution, as this process is called,
(see [2]) involves convolving the picture with a kernel function k(x) that has
been specially constructed from noise details. IFigure 4.4 shows the result of

the process, an out-of-focus picture before and after deconvolution.

Our original idea allows the direct application of the deconvolution tech
niques to signal detection. Suppose a noisy signal X (¢), observed over the

interval 7', is transformed into the function I'x(z) by

A .
Fx(w) = [ kle— X(0)di (4.2)
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Before
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Figure 4.4: Deconvolution Applied to Out-o



where k(x) is the deconvolution kernel. We have shown that, for large 7',
]:1\’(1?) converges directly to the deconvolved ADF. For this reason, we call
this the “Deconvolution Statistic”. Furthermore, we have shown that samples
of the Deconvolution Statistic are approximately jointly Gaussian, to which

well-known optimal detection techniques apply.

In summary, our approach consisted of precisely defining the ADF and

Proving the existence of an intuitive relationship between signal and noisc,
that of convolution. Borrowing techniques from image processing, we showed
that the effects of the noise could be separated from the signal by a process
called deconvolution. By transforming the observed waveform, we generated
a random process that converges directly to the deconvolved ADF and upon

which standard detection techniques apply.

4.2  Mathematical Tools for the ADF

The ADF, as defined here, is an original concept and thus needs a firm
mathematical foundation. This section precisely defines the ADI' in a way
that applies equally well to deterministic and stochastic signals. T'his basic
definition is extended to include the concepts of a joint ADI and the notion of

amplitude independence, a notion analogous to independence in probability.

By way of a sequence of lemmas and theorems, two significant results are
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established. The first is the already promised result that the ADI of signal

Al i3 . I ‘} 1@ 1@
i > DF. This is
Plus noise is the convolution of the signal ADF with the noise A
i seC rrivative of the noisc
proved under the very general constraint that the second derivative of
8 1 ifference zero. The remaining result
autocorrelation exists and is finite at time difference zero. The remainir g

of significance is a linkage between the ADF and the instantaneous probability

distributions of the signal plus noise. We begin with a precise definition of the

ADF.

Definition 3 The Amplitude Distribution Function (ADI), written Fy(a) for

a -31()(.11(1,8116 ])7()(:(/’55) .\ (l), LS
/\(() 7' {L L & 4\(1) <(1.y A <

where £ is q set Junction giving length. Additionally, the limil must exis Jor

all a.

If the signal is deterministic, then the definition of the ADF reduces to

1
Fx(a) = Jim =

{L[t:X(t)<a,0<t<T]}. (1.4)

The ADF is not a distribution function in the strict sense because its ex-

treme values are not necessarily one or zero and it may not be right-continuous.

For example, the function

t for0 < tmodl < 1/2
S(t) = o 1.5)
i) = { —t for other ¢ (



has ADF identically equal to 1/2. Consider also the function

—1 for other t.

( < :
S(t):{ 1 for0 < tmod1 < 1/2 (4.6)

Its ADF is
0 for oo < a < —1
Fs(a)={ 1/2 for -1 <a < (4.7)
1 for 1 <a

which is right-continuous at —1 and left-continuous at 1. The ADF, not neces-
sarily being a true distribution, creates problems in situations which require an
ADF-induced measure, for instance, the Lebesgue-Stieltjes integral. In these
cases, we use the right-continuous extension of the ADI, defined as

F(a) = lim F(x). (1.8)

r—a+

Analogous to the joint probability function of random variables, there exists

Ao L o _ ‘
Jomnt ADI of two different stochastic processes, defined as follows:

Definition 4 7The joint ADF, written Fy y (a,b) for stochastic processes X (1)

and Y (t), is

;‘ . 1
Fxy(a,b) = ]]1_11;0 TS {Ct: X(t)<aandY(t)<b, 0<t<T]}. (1.9)

ml.
lr ll]S . ., - N .
definition will be used to define the following concept of amplitude inde-

»endence, analogous at of i
I >nce, analogous to that of independence between random variables.

Definition 5 Two stochastic processes X(t) and Y (t) are amplitude indepen-

dent, if their joint ADF is the product of the ADF for each process. In other



words,

Fxy(a,b) = Fx(a)Fy (b)- (4.10)

We n : ;
ow will show a relationship between the ADF of stationary Glaussian
noise and its i
1d its instantaneous probability distribution, {hus enabling the estab-

llShm
ent of more directly applicable results.

Le
mma 3 7 i .
Let Y (t) be a stationary, ~er0-MEAn, Glaussian process with auto-

le set A,

CO'pml .
ation R(t), such that —R"(0) <05 then, for any measurab

E{L[t: Y{E) S f,eA]}:d><5—>L‘A (4.11)

whc»,‘ .
e O gy . . ’ ;
is the distribution function of a standard Gaussian random variable

and oq = /R(0).

fI‘he
proof for Lemma 3 is included in Appendix 4.A.

In wor ; .
words, the above lemma means that the average time that the noise
is equal to the percent of time

Process j
ss is below the threshold a on the set A

{ times the length of the set

that t}
1€ noi ; : ;
€ noise process 18 below a at any single poin

ussian noise 18 identical

A. Thi .
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to it ;
1ts instant "
nstantaneous distribution.

Wit ; .
h the help of the previous results, we now can prove amplitude inde-

jary (Jaussian noise, whose

pende
n bt o .
ce between a deterministic signal and stat1o1
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autocorrelation has finite second derivative at time difference zero. This result

will be necessary to prove the convolutional relationship between signal and

additive noise.

Theorem 2 Let S(t) be a deterministic signal and let N(t) be a stationary,

zero-mean Gaussian process with autocorrelation R(t) such that —R"(0) < o0,

tien S(t) and N(t) are amplitude independent. Stated symbolically,

Fsn(a,b) = Fs(a)Fn(b)- (4.12)
PI‘OOf
13y Lemma 3,
E{L[t: S(t) < aand N(t) <b 0<t<Tl}
= £{€ [t:N(1) < b t€SN 0,7)] } (4.13)
Fy(b)L [S2'0 [0,7)] (4.14)
where O T Jh 2 51} % a). Hence the joint ADT of S(1) and N() is
. Lafe-tnfo,T (4.15)
Fsn(a,b) = Fn(b) i, = (57 N[O, )
(/1.1('5)

Fs(a) Fn(b)

"Mplying the amplitude independence of S(t) and N(t).

140




We Now car
an pr i i i
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wher

e F* -
s and I . . 3 y -
s and I} are the right-conlinuous extensions of I's and Fyn.

The
proof for T g : : ;
of for Theorem 3 is given 11 Appendix 4.B.
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deterministic signals.
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d let Fs be right-conlinuous; then, tf

Th
€orem 4 Let Y(t) = S(t) + N(t) an
the ADF of Y(t) s

Czthe?" ]?N or ]‘1 s
r I's 15 conlinuous,

%
Fy(a) = rh—I»];c %5 {A Fyla— Q(I)]} dt.

(4.19)

The
DT m . 1
proof for Theorem 4 is included in Appendix 4.C.
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4.3 Deconvolution Statistic

As shown in the previous section, the ADF of signal plus noise is the ADE
of the signal convolved with the ADF of the noise. What was exactly shown

is that

for X'(t) = S(t)+ N(t) where N(t) is a stationary Gaussian process
with autocorrelation R(t) satisfying —R"(0) < oo and where S(t)
is a deterministic signal with defined ADF; then Fy = Fg * I'n
where I'y, Fg, and Fy are the respective ADIEs of X(t), S(t), and

N(t).

To apply this result in the construction of a detector, we will assume from
herein that the above restrictions are met and that the noise, signal, and
observations have densities defined as fx 2 dFy(z)/dzx, fs 2 dfs/da, and
In a dFy/da. These densities will be called the amplitude density functions
(adf). We will, for reasons explained later, make the restriction that the noise
autocorrelation is zero after some duration (i.c. R(t) = 0, for ¢ greater than
some TY). This is a sufficient but probably not necessary condition for the

asymptotic statistical characterization of the detection statistic.

If the adf of the observed signal could somehow be measured or estimated,

then by deconvolution the signal component could be separated from the noise
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te to understanding of how the deconvolution statistic effects this separa-
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detection scheme, the adf could be

r
To tics ike i _
use the idea of deconvolution in a
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asured using standard density estimation techniques and then convolved

wit : . : N, -
h a kernel function to separate signal from noise. But there is a mor¢

di . b
rect approach, that of the deconvolution statistic

.
fxl(2) = % fo — X (O]
4 0

where k . .
e k(z) is the deconvolution kernel.

The usefulness of this statistic 18 that, as T gets large it, converges uni-
formly in probability to the desired convolution of the kernel function with the
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