
1

Abstract
SHOP (Simple Hierarchical Ordered Planner) and M-SHOP (Multi-task-list SHOP) are HTN planning algorithms with
the following characteristics.
• SHOP and M-SHOP plan for tasks in the same order that they will later be executed. This avoids some task-

interaction issues that arise in other HTN planners, making the planning algorithms relatively simple. This also
makes it easy to prove soundness and completeness results.

• Since SHOP and M-SHOP know the complete world-state at each step of the planning process, they can use highly
expressive domain representations. For example, they can do planning problems that require Horn-clause
inferencing, complex numeric computations, and calls to external programs.

• In our tests, SHOP and M-SHOP were several orders of magnitude faster than Blackbox, IPP, and UMCP, and were
several times as fast as TLplan.

• The approach is powerful enough to be used in complex real-world planning problems. For example, we are using a
Java implementation of SHOP as part of the HICAP plan-authoring system for Noncombatant Evacuation
Operations (NEOs).

In this paper we describe SHOP and M-SHOP, present soundness and completeness results for them, and compare
them experimentally to Blackbox, IPP, TLplan, and UMCP. The results suggest that planners that generate totally
ordered plans starting from the initial state can “scale up” to complex planning problems better than planners that use
partially ordered plans.

1 Introduction
For many years, a widespread assumptions among AI planning researchers has been that total-order
forward search is a bad idea because it causes excessive backtracking. Thus, AI planning systems have
incorporated a number of clever and sophisticated ways to manipulate sets of actions that are partially
ordered rather than totally ordered. Examples include causal-link planners such as UCPOP [Penberthy
and Weld, 1992], planning-graph planners such as IPP [Penberthy and Weld, 1992], satisfiability planners
such as SatPlan [Kautz and Selman, 1996] and Blackbox [Kautz and Selman, 1999], and HTN planners
such as SIPE [Wilkins, 1988], O-Plan [Tate, 1994], and UMCP [Erol et al., 1994a; Erol et al., 1996].
However, recently several groups of researchers have begun to argue that total-order forward search also
has a significant advantage: that it allows planners to use more expressive domain representations, which
can be used to encode domain knowledge to make the planners highly efficient. More specifically:
• Prodigy [Veloso and Blythe, 1994; Fink and Veloso, 1995] does a forward state-space search that is

guided by a means-end analysis made by backward chaining on the goals. Veloso and Blythe [Veloso
and Blythe, 1994] showed that causal link commitments can affect the performance of partial-order

SHOP and M-SHOP:
Planning with Ordered Task Decomposition

D a n a N a u Y u e C a o A m n o n L o t e m H é c t o r M u ñ o z - A v i l a

Department of Computer Science, and Institute for Systems Research
University of Maryland, College Park, MD 20742

U.S.A.

2

planners when the goals have a property called linkability. In their experiments, Prodigy ran many
times faster than SNLP [McAllester and Rosenblitt, 1991].

• TLplan [Bacchus and Kabanza, 1996; Bacchus and Kabanza, 2000] does a forward state-space
search. It uses axioms written in modal logic to prune unpromising search paths. In Bacchus and
Kabanza’s tests, TLplan ran several orders of magnitude faster than Blackbox [Kautz and Selman,
1998], IPP [Koehler et al., 1997], SatPlan [Kautz and Selman, 1996], Prodigy [Veloso and Blythe,
1994], and UCPOP [Penberthy and Weld, 1992].

• HSP [Bonet and Geffner, 1999] performs a heuristic-search to solve STRIPS-style planning
problems. The search is performed in the forward direction, starting from the initial state. In each
state, the value of the heuristic function is re-evaluated, to guide the search. HSP achieved very good
performance results in the AIPS-98 competition. The FF planner [Hoffmann, 2000], which uses a
similar approach to solve planning problems specified in ADL, was one of the best performers at the
AIPS-2000 planning competition.

• Smith et al. [Smith et al., 1997; Smith et al., 1998] developed an approach called ordered task
decomposition, which combines HTN-style problem reduction with left-to-right backtracking in a
manner somewhat similar to Prolog’s search strategy. They used ordered task decomposition
successfully in domain-specific planners for several practical applications, including manufacturing
planning [Smith et al., 1997] and the game of bridge [Smith et al., 1998]. They argued for the
advantages of their approach by analyzing the reasons for its success in real-world applications [Nau
et al., 1998]. However, they could not compare ordered task decomposition head-to-head against
domain-independent planning algorithms, because their implementations were domain-specific.
In order to test the performance of ordered task decomposition in a domain-independent setting, we

have created a domain-independent formalization of the approach, and have implemented two different
planners based on it: SHOP (Simple Hierarchical Ordered Planner) and M-SHOP (Multi-task-list SHOP).
These planners have the following characteristics:
1. As ordered-task-decomposition planners, SHOP and M-SHOP require each HTN method to specify a

linear ordering for the subtasks, and they take advantage of this restriction by decomposing tasks in
the same order that they will be executed.

2. M-SHOP generalizes the SHOP planning algorithm by allowing the initial task specification to be
unordered, and by automatically maintaining protection conditions and lists of subtasks for those
tasks. In some planning domains, this allows the domain representation to be formulated more easily.

3 . SHOP and M-SHOP avoid some of the task-interaction issues that occur in partial-order HTN
planning systems, which generally need to have several different types of protection conditions [Erol
et al., 1994a] in order to handle partial orderings among tasks and subtasks. As a result, SHOP and
M-SHOP are much simpler than HTN planners such as such as NONLIN [Tate, 1977], SIPE-2
[Wilkins, 1990], O-PLAN [Currie and Tate, 1991], and UMCP [Erol et al., 1994b].

4 . Since SHOP and M-SHOP always know the complete world-state at each step of the planning
process, they can use considerably more expressive power in their domain representations than is
available in most AI planners. For example, to evaluate the preconditions of HTN methods, SHOP
and M-SHOP can use Horn-clause inferencing, numeric computations, and calls to arbitrary external
programs.

5. SHOP and M-SHOP are sound and complete, provided that the precondition-evaluation algorithm is
also sound and complete. For example, since Horn-clause inferencing is sound and complete, SHOP
and M-SHOP are sound and complete if the preconditions are restricted to include only Horn clauses.
Soundness and completess results can also be developed in the presence of certain kinds of calls to
external programs, as described in [Dix et al., 2000].

3

6. The expressive power of SHOP and M-SHOP can be used to create domain representations that
encode highly efficient planning procedures. In our tests on blocks-world and logistics problems,
SHOP and M-SHOP were several orders of magnitude faster than Blackbox, IPP, and UMCP, and
generally about an order of magnitude faster than TLplan. This occurred even though SHOP and M-
SHOP is coded in a slower language than most of the other planners.1

7 . Lisp implementations of SHOP and M-SHOP are available as freeware at
<http://www.cs.umd.edu/projects/shop>, under the terms of the GNU General Public License.

8. The approach is powerful enough for use in complex real-world planning problems. For example, in
a joint effort with researchers at the US Naval Research Laboratory, we are developing a Java
implementation of SHOP, for use as part of HICAP [Munoz-Avila et al., 1999] plan-authoring system
for noncombatant evacuation operations (NEOs). We intend to make JSHOP (the Java
implementation of SHOP) available at the SHOP web site once it is complete.

In Sections 2 and 3, we describe the SHOP and M-SHOP algorithms, give some examples to illustrate
their expressive power, and present soundness and completeness results for them. In Section 4 we
describe experimental tests comparing them to four other planning systems: Blackbox, IPP, TLplan, and
UMCP. In Section 5 we analyze the results and present our conclusions.

Table 1. Examples of SHOP notation for various logical expressions.
Type of object An example in Prolog notation The same example in SHOP notation
An atom on(block2,X) (on block2 ?x)

A conjunct ontable(block1),clear(block1) ((ontable block1) (clear block1))

A substitution {block1/B, f(X)/Y} ((?b . block1) (?y . (f ?x)))

Horn clause p(f(X)) :-
 q(X,c), r(g(Y),d), s(d).

(:- (p (f ?x))
 ((q ?x c) (r (g ?y) d) (s d)))

Horn clause q(b,c). (:- (q b c) nil)

2 SHOP
2.1 Definitions
This section defines the syntax and semantics used in the SHOP planning algorithm. For brevity, the
definitions below are for a somewhat simplified version of SHOP’s syntax and semantics, omitting some
of the features available in the actual SHOP implementation. Section 2.3 gives an informal summary of
those additional features, and a formal description of them is available at
<http://www.cs.umd.edu/projects/shop/>.
Logical symbols. SHOP uses the usual first-order-logic definitions of the following entities, but with the
notation adapted for use in Lisp:
• Constant symbols, function symbols, and predicate symbols. For these, SHOP uses Lisp symbols that

do not begin with question marks, such as block1 , above , or make-clear .
• Variable symbols. For these, SHOP uses Lisp symbols that begin with question marks, such as ?x or

?foobar . As usual, an expression is ground if it contains no variable symbols.

1 SHOP, M-SHOP, and UMCP are in LISP; Blackbox, IPP, and TLplan are in C.

4

• Terms, atoms, ground atoms, conjuncts of atoms, Horn clauses, substitutions, and most-general
unifiers (mgu’s). SHOP uses the obvious Lisp notation for these, as illustrated in Table 1.

Logical inference. A state is a list of ground atoms, interpreted as a set (thus two states are equal if they
contain the same atoms, regardless of the order in which those atoms appear). An axiom set is a set of
Horn clauses. If S is a state, then S satisfies a conjunct C if there is a substitution u (called a satisfier)
such that S∪X entails Cu (where Cu is the result of applying the substitution u to C). The satisfier u is a
most general satisfier (mgs) if there is no other satisfier v for C that is more general than u. In contrast to
mgu’s (which are well known to be unique modulo lexical renaming), there may be several distinct mgs’s
for C.
Tasks. In addition to the logical symbols described earlier, SHOP has two other symbols: primitive task
symbols (which are represented as Lisp symbols beginning with exclamation points), and non-primitive
task symbols (which are represented as Lisp symbols that do not begin with exclamation points). A task
is a list of the form

(s t1 t2 … tn)

where s (the task's name) is a task symbol, and t1, t2, …, tn (the task's arguments) are terms. The task is
primitive or non-primitive depending on whether s is primitive or non-primitive, respectively. A task list
is a list of tasks. A task list is primitive if all of its tasks are primitive; otherwise it is non-primitive.
Operators. An operator is a expression o of the form

(:operator h D A c)

where h (the head of o) is a primitive task, D and A (o’s delete list and add list, respectively) are lists of
atoms containing no variable symbols other than those in h, and c (the cost of h) is a number. The
number c may be omitted from the expression, in which case c is taken to be 1.

The intent of an operator is to specify that h can be accomplished by modifying the current state of
the world to remove every atom in D and add every atom in A. More specifically, if t is a primitive task
and there is an mgu u for t and h such that hu is ground, then the operator instance ou is applicable to t,
and its head hu is a simple plan for t. If S is a state, then the state produced by executing ou (or
equivalently, hu) in S is the state

result(S,hu) = result(S,ou) = (S - Du) U Au.
Plans. A plan is a list of heads of ground operator instances. If P = (p1 p2 … pn) is a plan and S is a
state, then the result of applying p to S is the state

result(S,p) = result(result(…(result(S,p1),p2),…),pn).
Note that this definition differs from the corresponding one that would occur in STRIPS-style planning,
because we don’t need to worry about whether each operator is executable in the state to which it is
applied.
Example 1. Suppose that the state S, the operators o and o’, the subsitutions u and u’, and the plan P are
as shown below:

S = ((on a b) (ontable b) (clear a) (handempty));

o = (:operator (!unstack ?x ?y)
 ((clear ?x) (on ?x ?y) (handempty))
 ((holding ?x) (clear ?y)))

o’ = (:operator (!putdown ?block)
 ((holding ?block))
 ((ontable ?block) (clear ?block) (handempty))) .

5

u = ((?x . a) (?y . b)) ;
u' = ((?block . b)) ;
P = ((!unstack a b) (!putdown b)).

Then
head(o)u = (!unstack a b) ;
head(o’)u’ = (!putdown b) ;
result(S,ou) = ((ontable b) (clear b) (holding a)) ;
result(S,P) = result(result(S,ou),(o’)u’)

 = ((ontable b) (clear b) (ontable a) (clear a) (handempty)) .
Methods. A method is an expression of the form

(:method h C ' T)

where h (the method's head) is a compound task, C (the method’s precondition) is a conjunct, and T (the
method’s tail) is a task list (the purpose of the quotation mark before T is explained in Section 2.2.1). The
intent of a method m = (:method h C ' T) is to specify that if the current state of the world satisfies C,
then the task h can be accomplished by performing the tasks in T in the order given. More specifically, let
t be a task atom and S be a state. Suppose that u is a unifier for h and t, and that v is a satisfier for Cu in S.
Then the method instance (mu)v is applicable to t in S, and the result of applying it to t is the task list r =
(Tu)v. The task list r is a simple reduction of t by m in S.
Example 2. Let m be the following method for moving a block from the top of a stack to the table:

m = (:method (move-block-to-table ?x)
 ((on ?x ?y) (clear ?x))
 '((!unstack ?x ?y) (!putdown ?x))

Let S be the state given in Example 1, and let t be the task atom
t = (move-block-to-table a).

Let u and v be the following substitutions:
u = ((?x a));

v = ((?y b)).

Then
(mu)v = (:method (move-block-to-table a)

 ((on a b) (clear a))
 '((!unstack a b) (!putdown a));

r = ((!unstack a b) (!putdown a));

so r is the same as the plan P of Example 1.
Domains and problems. A domain representation is a set of axioms, operators, and methods. A
planning problem is a triple (S,T,D), where S is a state, T = (t1 t2 … tk) is a task list, and D is a domain
representation. Suppose (S,T,D) is a planning problem and P = (p1 p2 … pn) is a plan. Then we say that P
solves (S,T,D), or equivalently, that P achieves T from S in D (we will omit the phrase “in D” if the
identity of D is obvious) if any of the following is true:
• Case 1. T and P are both empty, (i.e., k = 0 and n = 0);

6

• Case 2. t1 is a primitive task, p1 is a simple plan for t1, and (p2 … pn) achieves (t2 … tk) from
result(S,p1);

• Case 3. t1 is a compound task, and there is a simple reduction (r1 … rj) of t1 in S such that P achieves
(r1 … rj t2 … tk) from S.

The planning problem (S,T,D) is solvable if there is a plan that solves it.
Example 3. Let S, t, m, o, o’,P be as in Examples 1 and 2. Let T be the task list (t), and let D be the
domain representation {m,o,o’}. Then P solves (S,T,D).

2.2 Algorithm, Soundness, and Completeness
The SHOP planning algorithm is shown below:

procedure SHOP(S,T,D)
1. if T = nil then return nil endif
2. t = the first task in T
3. U = the remaining tasks in T
4. if t is primitive and there is a simple plan for t then
5. nondeterministically choose a simple plan p for t
6. P = SHOP(result(S,p),U,D)
7. if P = FAIL then return FAIL endif
8. return cons(p,P)
9. else if t is non-primitive and there is a simple reduction of t in S then
10. nondeterministically choose any simple reduction R of t in S
11. return SHOP(S,append(R,U),D)
12. else
13. return FAIL
14. endif
end SHOP

Since the algorithm is a straightforward implementation of the definition of the solution to a planning
problem, it is easy to prove that the algorithm is both sound and complete.
Theorem 1 (Soundness of SHOP). Suppose one of the nondeterminstic traces of SHOP(S,T,D) returns a
plan P. Then P solves the planning problem (S,T,D).
Proof. The proof is by induction on n, where n is the number of times SHOP is called.
Base case (n = 1). In this case SHOP does not call itself recursively, so it must return at step 1. Thus T =
nil and P = nil , so from Case 1 of the definition of “achieves,” P achieves T in S.
Induction step. Let n>1, and suppose that the theorem is true for every m<n. There are two cases:

Case 1. SHOP returns P at step 6. Let t, U, and p be as computed in steps 2–5 of SHOP. Then U = (t1
t2 … ti) for some i. Let (p1 p2 … pj) be the plan returned by the recursive call to
SHOP(result(S,p),U,D) in step 6. From the induction assumption it follows that (p1 p2 … pj) achieves
(t1 t2 … ti) in the state result(S,p). But t is a primitive task and p is a simple plan for t in S. Thus from
Case 2 of the definition of “achieves,” the plan (p p1 p2 … pj) achieves the task list T = (t t1 t2 … ti) in
S.
Case 2. SHOP returns P at step 11. Let t and U be as computed in steps 2 and 3 of SHOP. Then U =
(t1 t2 … ti) for some i. Let R be the simple reduction of t chosen in step 10 of SHOP. We know that R
= (r1 r2 … rj) for some j and P=(p1 p2 … pk) for some k. From the induction assumption we know that
(p1 p2 … pk) achieves (r1 r2 … rj t1 t2 … ti) in S. Thus from Case 3 of the definition of “achieves,” P
achieves T = (t t1 t2 … ti) in S. n

7

Theorem 2 (Completeness of SHOP) Suppose the planning problem (S,T,D) is solvable. Then at least
one of the nondeterministic traces of SHOP(S,T,D) returns a plan.
Proof. For every plan P that solves (S,T,D), let P’s solution depth be the length of P plus the total number
of simple reductions needed to produce P from T. Let the minimum solution depth of (S,T,D) be the
smallest solution depth of any plan that solves it. The proof is by induction on n, where n is the minimum
solution depth of T.
Base step (n = 0). In this case, T = nil and P = nil , so SHOP returns P at step 1.
Induction step. Let n>1, and suppose that the theorem is true for every m<n. There are two cases:

Case 1. T=(t1 t2 … tk) for some k, and t1 is primitive. Then there must be at least one simple plan p
for t1 for which the minimum solution depth of (result(S,p),(t2 … tk),D) is n–1, for otherwise the
minimum solution depth of (S,T,D) could not be n. At step 6, one of the nondeterministic traces of
SHOP recursively invokes SHOP(result(S,p),(t2 … tk),D). From the induction assumption, this
recursive invocation of SHOP returns a plan (p1 p2 … pk). Thus at step 6, SHOP returns (p p1 p2 …
pk).
Case 2. T=(t1 t2 … tk) for some k, and t1 is non-primitive. Then there must be at least one simple
reduction R = (r1 r2 … rj) for t1 such that the minimum solution depth of (S,(r1 r2 … rj t2 … tk),D) is
n–1, for otherwise the minimum solution depth for (S,T,D) could not be n. At step 11, one of the
nondeterministic traces of SHOP recursively invokes SHOP(S,(r1 r 2 … rj t2 … tk),D). From the
induction assumption, this recursive invocation of shop returns a plan (p1 p2 … pk). Thus at step 6,
SHOP returns (p1 p2 … pk). n

2.3 Extensions to SHOP
The implementation of SHOP includes several extensions to the syntax and semantics described in
Section 2.1. Formal definitions of the extensions are available at <http://www.cs.umd.edu/projects/shop>.
For brevity, we will not define the extensions formally here. However, we will illustrate each of them, in
the context of a simple transportation-planning domain.

The scenario for the domain is that we want to travel from one location to another in a city. There are
three possible modes of transportation: taxi, bus, and foot. Taxi travel involves hailing the taxi, riding to
the destination, and paying the driver $1.50 plus $1.00 for each mile traveled. Bus travel involves hailing
the bus, paying the driver $1.00, and riding to the destination. Foot travel just involves walking, but the
maximum feasible walking distance depends on the weather. Thus, different plans are possible depending
on what the layout of the city is, where we start, where we want to go, how much money we have, and
what the weather is like.

2.3.1 List of Extensions
Although the above domain is quite simple, most other AI planning systems do not have sufficient

expressive power to fully represent it, because of the numeric computations that need to be done as part of
the planning process. In contrast, the extended version of SHOP can represent it quite easily, as shown in
Table 2. Below we describe each of the extensions to SHOP, referring to Table 2 for examples.
1. The tail of an axiom or the precondition of a method may include atoms of the form (eval e) where

e is an expression to be evaluated by the Lisp evaluator. The atom is taken to be false or true
depending on whether the evaluator returns nil or a non-nil value, respectively. For example,
axiom A1 of Table 2 uses this to specify that the taxi fare is $1.50 plus $1 for each mile traveled, and
method M1 uses this to specify that a precondition for paying the driver is that we must have enough
money for the fare.

8

Table 2. A domain representation for SHOP for the transportation-planning domain.
Axiom Meaning

A1 = (:- (have-taxi-fare ?dist)
 ((have-cash ?m)
 (eval (>= ?m (+ 1.5 ?dist)))))

To have enough money for a taxi, we need at least
$1.50 + $1 for each mile to be traveled.

A2 = (:- (walking-distance ?u ?v)
 ((weather-is 'good)
 (distance ?u ?v ?w)
 (eval (<= ?w 3)))
 ((distance ?u ?v ?w)
 (eval (<= ?w 0.5))))

We are within walking distance of our destination if
the weather is good and the distance is ≤ 3 miles, or
if the weather is bad and the distance is ≤ 1/2 mile.

M1 = (:method (pay-driver ?fare)
 ((have-cash ?m)
 (eval (>= ?m ?fare)))
 `((!set-cash ?m ,(- ?m ?fare))))

If we have enough money to pay the taxi driver,
then we can pay the driver by subtracting the taxi
fare from our cash-on-hand.

M2 = (:method (travel-to ?q)
 ((at ?p)
 (walking-distance ?p ?q))
 '((!walk ?p ?q)))

If q is within walking distance, then one way to
travel there is to walk there directly.

M3 = (:method (travel-to ?y)
 (:first
 (at ?x)
 (at-taxi-stand ?t ?x)
 (distance ?x ?y ?d)
 (have-taxi-fare ?d))
 `((!hail ?t ?x)
 (!ride ?t ?x ?y)
 (pay-driver ,(+ 1.50 ?d)))
 ((at ?x)
 (bus-route ?bus ?x ?y))
 '((!wait-for ?bus ?x)
 (pay-driver 1.00)
 (!ride ?bus ?x ?y)))

If we are at a taxi stand and we have enough money
to pay the taxi fare, then we can travel to y by
hailing the first taxi at the taxi stand, riding in it to
y , and paying the driver the required fare.
Otherwise, if we are on a bus route, then we can
travel to y by waiting for a bus, paying the driver
$1, and riding the bus to y.

O1 = (:operator (!hail ?vehicle ?location)
 ()
 ((at ?vehicle ?location)))

This is the operator for hailing a vehicle. It brings
the vehicle to our current location.

O2 = (:operator (!wait-for ?bus ?location)
 ()
 ((at ?bus ?location)))

This is the operator for waiting for a bus. It brings
the bus to our current location.

O3 = (:operator (!ride ?vehicle ?a ?b)
 ((at ?a) (at ?vehicle ?a))
 ((at ?b) (at ?vehicle ?b)))

This is the operator for riding a vehicle to a
location. It puts both us and the vehicle at that
location.

O4 = (:operator (!set-cash ?old ?new)
 ((have-cash ?old))
 ((have-cash ?new)))

This is the operator for changing how much cash
we have left.

O5 = (:operator (!walk ?here ?there)
 ((at ?here))
 ((at ?there)))

This is the operator for walking to a location. It
puts us at that location.

9

2. Axioms can have multiple tails, to be used in an “if-then-else” fashion. The axiom
(:- h t1 t2 t3 … tn)

says that
• h is true if t1 is true (in which case t2, …, tn will not be evaluated);
• otherwise, h is true if t1 is false but t2 is true (in which case t3, …, tn will not be evaluated);
• otherwise, h is true if t1 and t2 are false but t3 is true (in which case t4, …, tn will not be evaluated);
• …;
• otherwise, h is true if t1, t2, …, tn–1 are false but tn is true.
This gives expressivity similar to a restricted version of Prolog's “cut,” but in a way that is easier to
understand. For example, axiom A2 uses this along with the eval construct described above, to say
that walking distance is ≤ 3 miles in good weather, and ≤ 1 mile otherwise.

3. If a method’s precondition is satisfied, then the tail is passed to the Lisp evaluator to obtain the
reduction T described in Section 2.1. The syntax described in Section 2.1 uses Lisp’s “quote”
construct to prevent evaluation; for example, method M2 uses this to invoke the !walk operator.
However, Lisp’s “backquote” and “comma” constructs can be used instead, to do partial evaluation.
For example, Method M1 uses this to compute how much money we will have after paying the fare,
and pass this value as an argument to the !set-cash operator.

4. A method can have multiple pairs of preconditions and tails, to be used in an “if-then-else” fashion.
The method

(:method h p1 t1 p2 t2 p3 t3 … pn tn)

says that h reduces to t1 if p1 is true, or to t2 if p1 is false and p2 is true, or to t3 if p1 and p2 are false
and p3 is true, …, or to tn if p1,…,pn–1 are false and pn is true. For example, method M3 uses this to
specify that we won’t consider bus travel unless we don’t have enough money for taxi travel.

5. If the first element of a method’s precondition or an axiom’s tail is :first , SHOP's theorem prover
will not look for all satisfiers, but instead will return after finding the first satisfier (just as Prolog
would do). For example, method M3 uses this to tell SHOP that it should only consider hailing the
first taxi at the taxi stand, rather than hailing all of them.

6. Axioms’ tails and methods’ preconditions can include negated atoms, which are evaluated using the
closed-world assumption. The negation of an atom a is denoted by the expression (not a) . This
extension is not illustrated in Table 2, but axiom A2 could equivalently have been written as the
following pair of axioms:

(:- (walking-distance ?u ?v)
 ((weather-is 'good) (distance ?u ?v ?w) (eval (<= ?w 3))))

(:- (walking-distance ?u ?v)
 ((not (weather-is 'good)) (distance ?u ?v ?w) (eval (<= ?w 0.5))))

In the most general case, it would not be possible to prove soundness and completeness for all of the
extensions described above. However, with appropriate restrictions it is still possible to prove soundness
and completeness. Below are two examples.
• If we allow negations in the tails of Horn clauses as in Item 6 above, then it is unclear what it means

for the precondition of a method to be satisfied by a state, because there is more than one possible
semantics for what logical entailment might mean [Subrahmanian, 1999]. However, if we restrict the
set of Horn-clause axioms to be a stratified logic program, then the two major semantics for logical

10

entailment agree with each other [Baral and Subrahmanian, 1993], and in this case SHOP will still be
sound and complete.

• In Item 1 above, it is unclear what it would mean for a call to the Lisp evaluator to be sound and
complete. However, the main reasons for allowing calls to the Lisp evaluator are (i) to provide a way
to do numeric computations, and (ii) to allow queries to external information sources. If we do not
allow calls to the Lisp evaluator but instead define ways to perform numeric computations and query
external databases, it is possible to do this in a way that is both sound and complete. This is described
further in [Dix et al., 2000].

Table 3. Planning problems and their solutions.
Problem Solutions

Go to the park, good weather, no cash 1. ((!WALK DOWNTOWN PARK))

Go to the park, bad weather, no cash None (can’t afford a taxi or bus, and it’s too far to walk).
Go to the park, good weather, have $12 1. ((!WALK DOWNTOWN PARK))

2. ((!HAIL TAXI1 DOWNTOWN)
 (!RIDE TAXI1 DOWNTOWN PARK)
 (!SET-CASH 12 8.5))

Go to park, good weather, have $80 1. ((!WALK DOWNTOWN PARK))

2. ((!HAIL TAXI1 DOWNTOWN)
 (!RIDE TAXI1 DOWNTOWN PARK)
 (!SET-CASH 80 76.5))

Go uptown, good weather, no cash None (can’t afford a taxi or bus, and it’s too far to walk).
Go uptown, good weather, have $12 1. ((!HAIL TAXI1 DOWNTOWN)

 (!RIDE TAXI1 DOWNTOWN UPTOWN)
 (!SET-CASH 12 2.5))

Go uptown, good weather, have $80 1. ((!HAIL TAXI1 DOWNTOWN)
 (!RIDE TAXI1 DOWNTOWN UPTOWN)
 (!SET-CASH 80 70.5))

Go to the suburb, good weather, have $12 1. ((!WAIT-FOR BUS3 DOWNTOWN)
 (!SET-CASH 12 11.0)
 (!RIDE BUS3 DOWNTOWN SUBURB))

1.1.2 Planning Problems and Solutions
Recall that a planning problem consists of an initial state, an initial task list, and a domain representation.
Here is a planning problem in the transportation-planning domain:
• Initial state:
 ((at downtown)
 (weather-is 'good)
 (have-cash 12)
 (distance downtown park 2) nil)
 (distance downtown uptown 8)
 (distance downtown suburb 12)
 (at-taxi-stand taxi1 downtown)
 (at-taxi-stand taxi2 downtown)
 (bus-route bus1 downtown park)

11

 (bus-route bus2 downtown uptown)
 (bus-route bus3 downtown suburb))

• Task list: ((travel-to suburb))

• Domain representation: see Table 2.
There are two solutions for the above problem:
1. ((!walk downtown park)) ;
2. ((!hail taxi1 downtown) (!ride taxi1 downtown park) (!set-cash 12 8.5)) .
Table 3 gives several other planning problems in the transportation-planning domain, along with their
solutions. In each problem, the distances and bus routes are the same as above.

3 M-SHOP
3.1 Motivation
The SHOP planner assumes a total order between the tasks of the planning problem and between the
subtasks of each method. While a total order between the subtasks of each method is quite natural in
many domains, it often is undesirable to define a total order between the tasks of the planning problem.

As an example, consider a subset of the well known “logistics domain” [Veloso, 1992], simplified to
exclude the notions of cities, airplanes and airports. The result is a simple planning domain that we will
call the simplified logistics domain, in which packages have to be transported between locations (in the
same city) using trucks. For a STRIPS-style representation of a problem in this domain, one could use
atoms of the form

(obj-at pi lj)

to specify that object pi is at location lj. The initial state would then be a list of atoms {a1,a2,…,ai} giving
the initial locations of the packages, and the goal formula would be a similar set of atoms {b1,b2,…,bj}
giving the desired locations for the packages, as in the following example:

initial state: ((truck t1) (obj-at p1 L1) (obj-at p2 L2) (truck-at t1 L3)) ;
goal: ((obj-at p1 L4) (obj-at p2 L4)) .

There would be three STRIPS operators: one for loading a package onto the truck, one for moving the
truck to a different location, and one for unloading a package from the truck. Most STRIPS-style
planners would use these operators to develop a plan such as the one in Figure 1(a), which interleaves
operations for p1 with operations for p2.

To represent this problem in SHOP, a naïve approach would be to let the initial state and task list be
S = ((truck t1) (obj-at p1 L1) (obj-at p2 L2) (truck-at t1 L3)) ;
T = ((achieve (obj-at p1 L4)) (achieve (obj-at p2 L4))) ;

and to write methods and operators for the “achieve” task that correspond directly to the STRIPS
operators. However, if we do this, then we have changed the semantics of the problem. Since a task list is
an ordered sequence of tasks, what we are telling SHOP is that we want it to finish moving p1 before it
starts moving p2 , as illustrated in Figure 1a.

One solution to this problem would be to change T to something like
T = ((achieve (obj-at p1 L4) (obj-at p2 L4)))

to tell SHOP that we want it to achieve both of the conditions at the same time. In order to write methods,
operator, and axioms to accomplish this kind of goal, we need to address the following issues:

12

(!drive-truck t1 L3 L1)
(!load-truck p1 t1 L1)
(!drive-truck t1 L1 L2)
(!load-truck p2 t1 L2)
(!drive-truck t1 L2 L4)
(!do-nothing)
(!unload-truck p1 t1 L4)
(!unload-truck p2 t1 L4)

Problem Solution

(obj-at p2 L4)
(obj-at p1 L4)

(unordered goal tasks) (!drive-truck t1 L3 L1)
(!load-truck p1 t1 L1)
(!drive-truck t1 L1 L4)
(!unload-truck p1 t1 L4)
(!drive-truck t1 L4 L2)
(!load-truck p2 t1 L2)
(!drive-truck t1 L2 L4)
(!unload-truck p2 t1 L4)

(obj-at p2 L4)
(obj-at p1 L4)

Problem Solution
(ordered goal tasks)

(a) what we would like SHOP to do (b) what we have actually told SHOP to do
Figure 1. Example solutions for a planning problem in the simplified logistics domain.

• Multiple agendas. M-SHOP will need to keep track of multiple task lists. For example, there might
be a separate task list for each package p that needs to be moved somewhere, telling what operations
need to be done on p. For the package p1 discussed earlier, the task list might be something like

((achieve (truck-at t1 L1))
 (!load-truck p1 t1 L1)
 (achieve (truck-at t1 L4))
 (!unload-truck p1 t1 L4)) .

Similarly, the task list for p2 might be something like
((achieve (truck-at t1 L2))
 (!load-truck p2 t1 L2)
 (achieve (truck-at t1 L2))
 (!unload-truck p2 t1 L4)) .

In order for M-SHOP to interleave the operations on different task lists (as shown in Figure 1a), M-
SHOP needs to perform the following steps repeatedly (with some additional details as explained
later):

select the first task t at the beginning of one of the task lists, and remove it from the task list
if t is primitive, then append it to the plan being constructed
otherwise, compute a reduction (t1 … tk) of t, and insert it at the beginning of the task list

• Deleted-condition interactions. When SHOP interleaves items from multiple task lists, deleted-
condition interactions may occur. Continuing the above example, suppose that SHOP first selects the
task

(achieve (truck-at t1 L1))

Once SHOP has achieved this task, the next two tasks that are eligible to be selected are
(!load-truck p1 t1 L1) ;
(achieve (truck-at t1 L2)) .

If SHOP now selects the second one of these tasks, it will delete the condition (truck-at t1 L1)
needed to perform the first one. To prevent this from happening, M-SHOP will need to protect the
condition (truck-at t1 L1) until this condition is no longer needed. As explained later, we
accomplish this by allowing the add lists and delete lists of M-SHOP’s operators to include the
construct

(:protect a)

13

where a is any logical atom. For example, the construct
(:protect (truck-at t1 L1))

might occur in add list for the operator that moves the truck t1 to location L1 , and in the delete list
for the operator that loads p1 onto t1 .

• Specifying that some tasks cannot be interleaved. In some cases, we may want to prevent M-
SHOP to immediately perform the next task on the current task list, without even considering the
possibility of interleaving tasks from other task lists. To indicate this, we allow tasks in M-SHOP to
be flagged with the keyword :immediate . Continuing the above example, instead of attaching a
:protect flag to the location of the truck, we could instead tell M-SHOP to load and unload the
package p1 immediately after moving the truck, as follows:

((achieve (truck-at t1 L1))
 (:immediate !load-truck p1 t1 L1)
 (achieve (truck-at t1 L4))
 (:immediate !unload-truck p1 t1 L4)) .

Table 4 gives a domain representation for SHOP for the simplified logistics domain. To maintain
multiple agendas, the domain representation stores the agenda information as part of the current state of
the world. To handle protected conditions, the domain representation uses a predicate called wait-on-
location to implement a counter for each possible atom that might need to be protected. It increments
the atom’s counter whenever an atom needs to be protected, and decrements the counter when the
protection request is released. The domain representation considers the atom to be protected whenever
the counter is nonzero.

The details of these methods, operators, and axioms are rather specific to the simplified logistics
domain. However, several of the underlying ideas—e.g., how to maintain multiple agendas, and how to
implement protected conditions via counters—are general principles that can be useful on a variety of
planning problems. For example, in our domain representations for SHOP for the blocks world and the
(unsimplified) logistics problem (see Section 4.1), we again needed to implement agendas and protected
conditions. Because of the general need for such constructs, we have developed a modified version of
SHOP called M-SHOP that incorporates them directly into the planning algorithm, so that they do not
need to be implemented as part of the domain representation. This allows the domain representations for
M-SHOP to be much simpler than those for SHOP. As an example, Table 5 shows the domain
representation for M-SHOP for the simplified logistics domain.
The definition of M-SHOP and the proofs for its soundness and completeness are presented in the
following sections.

Table 4. A domain representation for SHOP for the simplified logistics domain.
Axioms, operators, and methods Descriptions of what they mean
(:- (different ?x ?y)
 ((not (same ?x ?y))))

(:- (same ?x ?x) nil)

Axioms to tell whether two objects are
the same or different.

(:operator (!load ?p ?t ?l)
 ((at ?p ?l))
 ((at ?p ?t)))

Operator to load package p onto truck t.

(:operator (!unload ?p ?t ?l)
 ((at ?p ?t))
 ((at ?p ?l)))

Operator to unload package p from truck
t.

14

(:operator (!move ?t ?o ?d)
 ((at-truck ?t ?o))
 ((at-truck ?t ?d)))

Operator to move truck t from location o
to location d.

(:operator (!assert ?g)
 ()
 ?g
 0)

Operator to insert a fact g into the current
state. Since this is just a bookkeeping
operator, its cost is 0.

(:operator (!remove ?g)
 (?g)
 ()
 0)

Operator to remove a fact g from the
current state. Since this is just a
bookkeeping operator, its cost is 0.

(:method (transport ?p ?o ?d)
 ((package ?p)
 (location ?o)
 (location ?d)
 (truck ?t))
 '((!assert ((tasks (at-truck ?t ?o)
 (load ?p ?t ?o)
 (at-truck ?t ?d)
 (unload ?p ?t ?d))))))

To transport package p from location o to
location d, create an agenda of subtasks to
be accomplished, and insert this agenda
into the current state.

(:method (do-plan)
 ()
 '((initialize) (do-plan1)))

This is the method that the user should
call to begin the planning process. It
initializes all the protection counters, then
starts generating the plan.

(:method (initialize)
 (:first (location ?d)
 (not (wait-on-location ?d ?x)))
 '((!assert ((wait-on-location ?d 0)))
 (initialize))
 ()
 '())

If there is a location predicate in the
current state, then initialize its predicate’s
protection counter to 0, and call the
initialize method recursively to look
for another location predicate.

(:method (do-plan1)
 ((tasks ?sometasks . ?moretasks))
 '(?sometasks (do-plan1))
 ()
 '())

Take the first task off of one of the
agendas and execute it, then call the do-
plan1 method recursively to do the next
task

(:method (at-truck ?t ?d)
 ((tasks (at-truck ?t ?d) . ?moretasks)
 (truck ?t)
 (location ?d)
 (at-truck ?t ?d)
 (wait-on-location ?d ?x))
 `((!remove (tasks (at-truck ?t ?d) . ?moretasks))
 (!assert ((tasks . ?moretasks)))
 (!remove (wait-on-location ?d ?x))
 (!assert ((wait-on-location ?d ,(+ ?x 1)))))
 ((tasks (at-truck ?t ?d) . ?moretasks)
 (truck ?t)
 (location ?d)
 (at-truck ?t ?o)
 (wait-on-location ?d ?x)
 (wait-on-location ?o 0))
 `((!remove (tasks (at-truck ?t ?d) . ?moretasks))
 (!assert ((tasks . ?moretasks)))
 (!move ?t ?o ?d)
 (!remove (wait-on-location ?d ?x))
 (!assert ((wait-on-location ?d ,(+ ?x 1))))))

If the first item of some agenda is to
move truck t to location d, then move t to
d, and remove that task from whichever
agenda it is in.

(:method (load ?p ?t ?o)
 ((tasks (load ?p ?t ?o) . ?moretasks)

If the first item of some agenda is a
“load” task, then do it, and remove that

15

 (wait-on-location ?o ?x))
 `((!remove (tasks (load ?p ?t ?o) . ?moretasks))
 (!assert ((tasks . ?moretasks)))
 (!load ?p ?t ?o)
 (!remove (wait-on-location ?o ?x))
 (!assert ((wait-on-location ?o ,(- ?x 1))))))

task from whichever agenda it is in.

(:method (unload ?p ?t ?o)
 ((tasks (unload ?p ?t ?o) . ?moretasks)
 (wait-on-location ?o ?x))
 `((!remove (tasks (unload ?p ?t ?o) . ?moretasks))
 (!assert ((tasks . ?moretasks)))
 (!unload ?p ?t ?o)
 (!remove (wait-on-location ?o ?x))
 (!assert ((wait-on-location ?o ,(- ?x 1))))))

If the first item of some agenda is an
“unload” task, then do it, and remove that
task from whichever agenda it is in.

16

Table 5. A domain representation for M-SHOP for the simplified logistics domain.
Axioms, operators, and methods Descriptions of what they mean
(:method (obj-at ?obj ?loc-goal)
 ((obj-at ?obj ?loc-now) (truck ?truck))
 '((delivery ?truck ?obj ?loc-now ?loc-goal))

To get obj to its goal location, use the
delivery task.

(:method (delivery ?truck ?obj ?loc-from ?loc-to)
 ((same ?loc-from ?loc-to))
 '((!do-nothing))
 ((in-city ?loc-from ?city)
 (truck ?truck ?city))
 '((truck-at ?truck ?loc-from)
 (!load-truck ?obj ?truck ?loc-from)
 (truck-at ?truck ?loc-to)
 (!unload-truck ?obj ?truck ?loc-to)))

If an object’s goal location is the same as its
source location, then don’t do anything (the
!do-nothing operator). Otherwise, create
subtasks of having a truck at the source
location, loading the package, having the
truck at the destination, and unloading the
truck.

(:method (truck-at ?truck ?loc-to)
 ((truck-at ?truck ?loc-from)
 (different ?loc-from ?loc-to))
 '((!drive-truck ?truck ?loc-from ?loc-to))
 ()
 '(!do-nothing))

If the truck is not yet at the desired location,
then drive the truck to that location from its
current location. If the truck is already in the
desired location, then don’t do anything (the
!do-nothing operator).

(:operator (!load-truck ?obj ?truck ?loc)
 ((obj-at ?obj ?loc)
 (:protection (truck-at ?truck ?loc)))
 ((in-truck ?obj ?truck))

Operator to load package p onto truck t.

(:operator (!unload-truck ?obj ?truck ?loc)
 ((in-truck ?obj ?truck)
 (:protection (truck-at ?truck ?loc)))
 ((obj-at ?obj ?loc))

Operator to unload package p form truck t.

(:operator (!drive-truck ?truck ?loc-from ?loc-to)
 ((truck-at ?truck ?loc-from))
 ((truck-at ?truck ?loc-to)
 (:protection (truck-at ?truck ?loc-to))))

Operator to move truck t from location o to
location d.

(:operator (!do-nothing)
 ()
 ()
 0)

The “no-op” operator used in methods m2
and m3. The cost of this operator is 0.

(:- (different ?x ?y)
 ((not (same ?x ?y))))

(:- (same ?x ?x) nil)

Axioms to tell whether two objects are the
same or different.

3.2 Definitions
To define M-SHOP, we will use the same definitions that we gave for SHOP in Section 2.1, but with the
modifications and additions described below.

A protection request and a protection cancellation both are expressions of the form:
(:protection l)

 where l is a logical atom.
For M-SHOP, the SHOP definition of an operator is modified as follows (all modifications are

underlined). An operator is a list having either of the following forms:
(:operator h D A c)

17

where
• h (the operator's head) is a primitive task atom;
• D (the operator's delete list) is a list of logical atoms and protection cancellations that contain no

variable symbols other than those in h;
• A (the operator's add list) is a list of logical atoms and protection requests that contain no variable

symbols other than those in h.
• c (the operator's cost) is a number. The number c may be omitted from the expression, in which case c

is taken to be 1.
In the above definition, let AP be the set of all protection requests in A, and DP be the set of all

protection cancellations in D. Then the “real” additions and deletions in A and D, respectively, are
AE = A–AP;
DE = D–DP.

As an example, see the !drive-truck and !load-truck operators in Table 5. The !drive-truck

operator adds a protection request for whatever location the truck drives to, and the !load-truck
operator cancels this request.

A protection list is a list L of ground atoms, intended to indicate how many protection requests have
been issued but not yet cancelled. Note that L is a list rather than a set: thus for each atom a, if there have
been n more protection requests than protection cancellations for a, then there will be n copies of a in L.

For M-SHOP, the SHOP definition of an applicable operator is modified as follows (all the
modifications are underlined). Let t be a primitive task atom, and o be a planning operator whose head,
delete list, add list, and cost are h, D, A, and c, respectively. Suppose there is an mgu u for t and h such
that hu is ground and no atom in L is also in DEu. Then ou is applicable to t under L, and its head h is a
simple plan for t under L. If S is a state, then the state and the protection list produced by executing ou (or
equivalently, hu) in S under L are

result(S,hu) = result(S,ou) = (S – DEu) U AEu;
protect(L,hu) = protect(L,ou) = append(APu,remove(DPu,L)),

where “append” is the Lisp append function, and “remove(DPu,L)” is the list produced by taking L and
removing one copy of each atom in DPu.

A task list is a list of tasks, just as in SHOP. An immediate task list is a list of the form
(:immediate t1 t2 … tk)

where each ti is a task. The purpose of the :immediate keyword will be explained shortly.
For M-SHOP, a method is the same as in SHOP, except that each tail may be either a task list or an

immediate task list. A simple reduction is the same as in SHOP. If t is a task and S is a state, then a
composite reduction of t in S is defined as recursively follows. First, every simple reduction of t in S is
also a composite reduction of t in S. Second, suppose that r = (r1 … rk) is a composite reduction of t in S,
and that q = (q1 … qj) is a simple reduction of r1 in S. Then (q1 … qj r2 … rk) is a composite reduction of t
in S.

A multi-task list is a list of task lists M = (T1 T2 … Tl) in which at most one of the task lists is an
immediate task list. For example, in the simplified logistics domain, the expression

(((obj-at p1 L4)) ((obj-at p2 L4)))

18

is a multi-task list comprised of the two task lists ((obj-at p1 L4)) and ((obj-at p2 L4)) .
Although each task list T i in M is an ordered sequence (just as in SHOP), M itself is unordered. For
example, if two of the task lists in M are

T = (t1 … ti–1 ti ti+1 … tm) ,
U = (u1 … uj–1 uj uj+1 … un) ,

then this means that the task ti should be performed after the task ti–1 and before the task ti+1, but no
particular ordering is required between the tasks ti and uj. Thus, for example, it would be permissible for
M-SHOP to interleave operators for subtasks of ti with operators for subtasks of uj. However, there is one
exception: if some task list T in M is an immediate task list, then contains an immediate task list, then M-
SHOP should perform the first task in the immediate task list before performing any other task. For
example, if two of the task lists in M are

T = (:immediate t1 t2 … tm) ,
U = (u1 u2 … un) ,

then this means that the task t1 should be performed before both t2 and u1. The following paragraph states
these things mathematically.

A multi-task-list planning problem (or, for short, a multi-planning problem) is a 4-tuple (S,M,L,D),
where S is a state, M is a multi-task list, L is a protection list, and D is a domain representation. Suppose
that (S,M,L,D) is a multi-planning problem, where M is the multi-task list (T1 T2 … Tm). If P = (p1 p2 …
pn) is a plan, then we say that P solves (S,M,L,D), or equivalently, that P achieves M from S in D (we will
omit the phrase “in D” if the identity of D is obvious) in any of the following cases:
• Case 1. P is empty (i.e., n = 0) and every task list in M is empty.
• Case 2. M contains an immediate task list Ti = (:immediate t1 t2 … tm) , and there is a composite

reduction R = (r1 … rj) for t1 in S such that r1 is a primitive task, p1 is a simple plan for r1 under L,
and (p2 … pn) solves the multi-planning problem (S’,M’,L’,D), where

S’ = result(S,p1);
M’ = (T1 … Ti–1 (r2 … rj t2 … tk) Ti+1 … Tm);
L’ = protect(L,p1).

• Case 2. M contains no immediate task list, and there is a task list Ti = (t1 t1 … tk) in M and a composite
reduction R = (r1 … rj) for t1 in S such that r1 is a primitive task, p1 is a simple plan for r1 under L,
and (p2 … pn) solves the multi-planning problem (S’,M’,L’,D), where

S’ = result(S,p1);
M’ = (T1 … Ti–1 (r2 … rj t2 … tk) Ti+1 … Tm);
L’ = protect(L,p1).

The biggest difference between this definition and the corresponding definition of Section 2.1 is our use
of the composite reduction R in cases 2 and 3. The reason for this is to ensure that all of the simple
reductions in R are applicable in the state S. If we had stated the definition using a simple reduction as we
did in Section 2.1, this would have made it possible to construct situations where some the reductions
were applicable in states prior to S, but not in S itself.

The multi-planning problem (S,M,D) is solvable if there is a plan that solves it.

19

3.3 Algorithm
The M-SHOP planning algorithm is as follows. The subroutine REDUCE(S,t,D) finds a composite
reduction of the task t.

procedure M-SHOP(S,M,L,D)
1. if every task list in M is empty then return nil endif
2. let T1,T2,…,Tn be the task lists in M
3. nondeterministically choose a nonempty task list Ti
4. t = the first task in Ti
5. T’ = the remaining tasks in Ti
6. R = REDUCE(S,t,D)
7. if R = FAIL then return FAIL endif
8. r1 = the first element of R (comment: note that r1 is a primitive task)
9. R’ = the remaining elements of R
10. nondeterministically choose a simple plan p for r1 under L
11. M’ = (T1, T2, …, Tj–1, append(R’,T’), Tj+1, …, Tn)
12. P = M-SHOP(result(S,p), M’, protect(L,p), D)
13. return cons(p,P)
end M-SHOP
procedure REDUCE(S,t,D)
1. if t is primitive then return (t)
2. else if there is no simple reduction of t in S then return FAIL
3. else
4. nondeterministically choose any simple reduction (r1 … rk) of t in S
5. R1 = REDUCE(S,r1,D)
6. if R1 = FAIL then return FAIL endif
7. return append(R1, (r2 … rk))
8. endif
end REDUCE

Since the algorithm is a straightforward implementation of the definition of the solution to a multi-
planning problem, it is easy to prove that the algorithm is both sound and complete.
Theorem 3 (Soundness of M-SHOP). Suppose one of the nondeterminstic traces of M-SHOP(S,M,D)
returns a plan P. Then P solves the multi-planning problem (S,M,D).
Proof. The proof is analogous to the proof of Theorem 1. The details are left to the reader. n
Theorem 4 (Completeness of SHOP) Suppose the multi-planning problem (S,M,D) is solvable. Then at
least one of the nondeterministic traces of M-SHOP(S,M,D) returns a plan.
Proof. The proof is analogous to the proof of Theorem 2. The details are left to the reader. n

Table 6 shows the first steps of a possible nondeterministic trace of the M-SHOP algorithm on a
problem in the simplified logistics domain, using the domain representation of Table 5. In this problem
two packages have to be transported from L1 and L2 to L4, using a single truck t1. The multiple task list
initially includes two task lists, one for each of the packages.

The selection of the second task list of M at step 10 leads to a failure in the next steps. This is because
the only first primitive task which can be generated from decomposing ‘(obj-at p2 L4)’ is ‘(!drive-
truck t1 L1 L2)’, and this action violates the protected predicate ‘(at-truck t1 L1)’. A plan is returned by
M-SHOP returns a plan for this planning problem only when at step 8, the first task list of M is selected.

20

Table 6. M-SHOP’s first steps in solving a problem in the simplified logistics domain.
Step Actions Result

0 The initial planning problem M = (((obj-at p1 L4))
 ((obj-at p2 L4)))

S = I = ((truck-at p1 L3)(obj-at p1 L1)(obj-at p2 L2)

1 In line 3 of M-SHOP,
nondeterministically choose a
task Ti to be the task list that will
generate the next action of the
plan. In line 6 of M-SHOP,
call REDUCE to recursively
decompose the first task t of Ti.

M =(((obj-at p1 L4))
 ((obj-at p2 L4)))

Ti = ((obj-at p1 L4))

t = (obj-at p1 L4)

2 In line 4 of the 1st call to
REDUCE, choose a reduction for
t, and call REDUCE recursively
to decompose r1 - the first task of
the reduction.

t = (obj-at p1 L4)

reduction = ((delivery t1 p1 L1 L4))

r 1 = (delivery t1 p1 L1 L4)

3 In line 4 of the 2nd call to
REDUCE, choose a reduction for
t, and call REDUCE recursively.

t = (delivery t1 p1 L1 L4)

reduction =((truck-at t1 L1)
 (!load-truck p1 t1 L1)
 (truck-at t1 L4)
 (!unload-truck p1 t1 L4))

r 1 = (truck-at t1 L1)

4 In line 4 of the 3rd call to
REDUCE, choose a reduction for
t, and call REDUCE recursively.

t = (truck-at t1 L1)

reduction = ((!drive-truck t1 L3 L1))

r 1 = (!drive-truck t1 L3 L1)

5 In line 1 of the 4th call to
REDUCE, t is primitive. Return
(t) as the reduction.

t = (!drive-truck t1 L3 L1)

6 In line 7 of the 3rd call to
REDUCE, append the returned
reduction R to (r2 … rk).

R = ((!drive-truck t1 L3 L1))

(r 2 … r k) = ()

append(R, (r 2 … r k)) = ((!drive-truck t1 L3 L1))

7 In line 7 of the 2nd call to
REDUCE, append the returned
reduction R to (r2 … rk).

R = ((!drive-truck t1 L3 L1))

append(R, (r 2 … r k)) = ((!drive-truck t1 L3 L1))
 (!load-truck p1 t1 L1)
 (truck-at t1 L4)
 (!unload-truck p1 t1 L4))

8 In line 7 of the 1st call to
REDUCE, append the returned
reduction R to (r2 … rk).

R = ((!drive-truck t1 L3 L1))
 (!load-truck p1 t1 L1)
 (truck-at t1 L4)
 (!unload-truck p1 t1 L4))
append(R, (r 2 … r k)) = ((!drive-truck t1 L3 L1))
 (!load-truck p1 t1 L1)
 (truck-at t1 L4)
 (!unload-truck p1 t1 L4))

21

9 In line 10 of M-SHOP, choose a
simple plan p for the first task of
the reduction. In Line 12 of M-
SHOP, call M-SHOP recursively,
with the arguments result(S,p),
M’, and protect(L,p).

p = (!drive-truck t1 L3 L1)

result(S, p) = ((truck-at p1 L1)(obj-at p1 L1)

 (obj-at p2 L2))

M’ = (((!load-truck p1 t1 L1)
 (truck-at t1 L4)
 (!unload-truck p1 t1 L4))
 ((obj-at p2 L4)))

protect(L, p) = ((truck-at p1 L1))

10 In line 3 of the 2nd call to M-
SHOP, nondeterministically
choose a task Ti to be the task list
that will generate the next action
of the plan. In line 14, call
REDUCE to recursively
decompose the first task t of Ti.

M = (((!load-truck p1 t1 L1)
 (truck-at t1 L4)
 (!unload-truck p1 t1 L4))
 ((obj-at p2 L4)))
Ti = ((obj-at p2 L4))
S = ((truck-at p1 L1)(obj-at p1 L1)(obj-at p2 L2)

L = ((truck-at p1 L1))

4 Experiments
We have tested SHOP and M-SHOP against four other planners: Blackbox, IPP, TLplan, and UMCP:
• Blackbox [Kautz and Selman, 1998] and IPP [Koehler et al., 1997]. These were the two fastest

planners in the AIPS-98 planning competition [McDermott, 1998]. Both of them are action-based
planners that make use of Graphplan-style planning graphs.

• TLplan [Bacchus and Kabanza, 2000]. This is an action-based planner that does a forward state-
space search guided by statements written in modal logic. It outperformed Blackbox by several
orders of magnitude in Bacchus and Kabanza’s tests.

• UMCP [Erol et al., 1994b; Erol et al., 1996]. This planner is an HTN planning system. However,
unlike SHOP, it searches a space whose nodes are partially ordered plans rather than totally ordered
plans.

For our tests, we used three different domains: logistics, UM Translog, and the blocks world.

4.1 Logistics Problems
The logistics domain [Veloso, 1992] is a popular test domain for action-based planners. In this domain,
there are a number of cities, and within each city there may be a number of different locations. Various
objects need to be transported from their initial locations to various goal locations. Trucks can be used to
transport objects within the same city. Each city has an airport, and airplanes can be used to transport the
objects from one airport to another. Since most action-based planners cannot do numeric computations,
the problem explicitly ignores all numeric considerations (such as the geometric coordinates of each
location or each city, the distance from one location or city to another, fuel consumption, and cost).

4.1.1 Domain Representation for SHOP
In action-based representations of logistics problems, there usually is a “goal formula” that is a list of
atoms (g1 g2 … gk) , where each gi is one of the goals. To represent a logistics problem in SHOP, we
need to use a task list instead of a goal formula. A task list is a sequence of tasks to accomplish
sequentially, but the goals in the goal formula need to be true simultaneously, so to represent them in a
task list, we use a task list that contains a single task atom of the form (goals g1 g2 … gk) .

22

In order to get SHOP to solve logistics problems, we need to give it a way to keep track of its
progress toward accomplishing each goal gi. To do this, we use a set of axioms, methods, and operators
that maintain an “agenda” for each goal gi that tells what tasks need to be done to accomplish gi. The
logistics domain-description for SHOP is a set of axioms, methods, and operators that basically
implement the following algorithm.

First, the algorithm modifies the current state by removing any "useless objects" that will not
contribute to the plan. These include packages not mentioned in the goals, and empty trucks and
airplanes in the same city with other trucks and airplanes. Then for each goal gi, the algorithm creates an
initial “agenda” that consists solely of gi and inserts this agenda into the current state. Once this has been
done, the actual planning algorithm works as follows:
• If there are no more tasks to perform, end the planning.
• Otherwise, if we need to load or unload a truck, then perform that task, update the agendas for

whatever packages have been loaded or unloaded, and apply the algorithm recursively.
• Otherwise, if we need to drive a truck to some location that the truck is already at, then remove that

task from its agenda, and apply the algorithm recursively.
• Otherwise, if there is a city that has package needs to be delivered to another city and no airplane in

that city, then fly an airplane to that city, update the package’s agenda, and apply the algorithm
recursively.

• Otherwise, if there is a city that has an airplane, and at least one package in that city needs to be
delivered to another city, then fly the airplane to the destination city of the package, update the
package’s agenda, and apply the algorithm recursively.

• Otherwise, if there is any package on an airplane, then fly the airplane to the destination of that
package and unload the package, update the package’s agenda, and apply the algorithm recursively.

• Otherwise, if there is any location that has package(s) that need to be picked up, then drive truck to
that location pick up the package(s), update their agendas, and apply the algorithm recursively.

• Otherwise, if there is any package in a truck that need to be delivered to some location in the same
city, then drive the truck to that location, unload the package, update the package’s agenda, and apply
the algorithm recursively.

The domain representation also specifies that before flying any airplane, the planner should always collect
all the packages in that city that need to be delivered to another city and load them onto the airplane.

4.1.2 Domain Representation for M-SHOP
The logistics domain representation for M-SHOP is much simpler than the one for SHOP. It does not
need to maintain agendas inside the current state of the world, because M-SHOP automatically maintains
agendas and protection intervals. Thus, instead of specifying an algorithm for transporting all of the
packages, we just need to describe how a single package should be transported to its destination.

The logistics domain representation for M-SHOP distinguishes between two cases, one in which the
package is transported within the same city, and one in which the package is transported between two
different cities. For the task of transporting a package within the same city, it creates a task called the in-
city-delivery task, which is handled using a method identical to the one for the delivery task in the
simplified transportation domain (see Table 5). For the task of transporting a package between two cities,
there is a method that decomposes this task into the following sequence of subtasks:
1) in-city-delivery, which is the task of transporting the package from its source location to an airport in

the source city;

23

2) air-delivery, which is the task of transporting the package from the selected airport in the source city
to an airport in the goal city;

3) in-city-delivery, which is the task of transporting the package from the selected airport in the goal-city
to the goal location.

The method for the air-delivery task is similar to the method for the in-city-delivery task, but uses an
airplane instead of a truck.
4.1.3 Experimental Results
We performed tests for the logistics transportation domain on a set of 110 randomly generated problems.
The problems involved N packages to be delivered, for N = 10, 15, …, 60. For each value of N we
generated 10 problems, for a total of 110 problems. In each problem, the number of cities was no larger
than N/2; and each city contained three locations, one truck and N/5 or fewer airports. For each package,
the original location and the destination location were randomly chosen and were guaranteed to be
different from each other. We ran M-SHOP, SHOP, IPP, and TLplan on these problems, using a 167-
MHz Sun Ultra with 64 MB of RAM. The results are shown in Figures 1 and 2. No results are shown for
Blackbox and IPP, because Blackbox’s memory requirements were too high for it to solve logistics
problems successfully on our Sun, and IPP was unable to solve any of the problems within a one-hour
time limit.

Published results are available data for Blackbox on a set of 30 logistics problems, on a machine that
is faster than ours and has 8 GB of RAM.2 Figures 3 and 4 compare the published results for Blackbox on
these problems with the results that we got by running TLplan, M-SHOP, and SHOP on that set of
problems using our Sun. No results are shown for IPP, because it was able to solve only four of the
problems within a one-hour time limit.

Overall, the best CPU times were obtained with M-SHOP, followed by SHOP and then by TLplan.
SHOP was generally about an order of magnitude faster than TLplan, and M-SHOP was about half an
order of magnitude faster than SHOP. M-SHOP, SHOP and TLplan found plans of comparable size for
both sets of problems.

2 We got the Blackbox performance data from [Bacchus and Kabanza, 2000] F. Bacchus and F. Kabanza. "Using
Temporal Logics to Express Search Control Knowledge for Planning,." Artificial Intelligence, 116(1-2):123-191,
January, 2000. . According to Fahiem Bacchus, the data came originally from the Blackbox distribution, and the
machine was a Silicon Graphics with 8 GB of RAM, running at around 200 MHz.

24

0.1

1

10

100

1000

10000
1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 10
3

10
9

SHOP
TLPlan
M-SHOP

Figure 1. CPU times for each planner on the randomly generated logistics problems. The x-axis gives
the problem number, and the y-axis displays the CPU time on a logarithmic scale. Results are not
shown for Blackbox and IPP, because Blackbox needed too much memory to run on our computer, and
IPP was unable to solve the problems within a one-hour time limit.

0

100

200

300

400

500

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 10
3

10
9

SHOP
TLPlan
M-SHOP

Figure 2. Number of actions in the plans found in Figure 1. The x-axis gives the problem number,
and the y-axis gives the number of actions.

25

0.01

0.1

1

10

100

1000

10000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Blackbox
TLPlan
SHOP
M-SHOP

Figure 3. CPU times for each planner on the 30 logistics transportation problems in the TLplan
distribution. The x-axis gives the problem number, and the y-axis displays the CPU time on a logarithmic
scale. Results are not shown for IPP because it was unable to solve any of the problems within a one-
hour time limit. The results for Blackbox are taken from [Bacchus and Kabanza, 2000].

0
10
20
30
40
50
60
70
80
90

100

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
Blackbox
TLPlan
SHOP
M-SHOP

Figure 4. Number of actions in the plans found in Figure 3. The x-axis gives the problem number, and the
y-axis gives the number of actions.

26

4.2 UM-Translog
UM Translog [Andrews et al., 1995; Group, 1995] is a large HTN planning domain that was inspired by
the well known CMU logistics domain [Veloso, 1992]. However, the UM Translog domain is about an
order of magnitude larger than the logistics domain, as it deals with various types of packages, vehicles,
and procedures for handling the packages.

4.2.1 Domain Representations for SHOP and M-SHOP
The UM-Translog domain representation for SHOP consists of 43 operators and 66 methods. Just as with
the logistics domain, one of the basic ideas we used in the domain representation was to tell SHOP to
maintain (as part of the current state) an “agenda” for each package that represents what tasks need to be
done to that package. This agenda-manipulation is done as follows. Initially, SHOP starts with an empty
plan. Then it checks to see if all of the agendas are empty. If they are, then the planning process finishes
and the solution plan is returned. Otherwise, SHOP selects one of the agendas and remove the first task
from it. If this task is an operator, then SHOP performs this operator, removes it from the agenda, and
appends it to the solution plan. Otherwise, the task is replaced by its decomposition and the process
continues recursively.

Below is a high-level description of the methods used for SHOP and M-SHOP for the UM Translog
domain. SHOP also needs some additional methods to maintain the agendas as described above, but those
methods are not needed in M-SHOP because the M-SHOP algorithm keeps track of this information
automatically.
• Each top-level task is always of the form (transport ?p ?o ?d) , indicating that the package ?p

needs to be to transported from location ?o to location ?d . If ?o and ?d are the same location, then
the method for this task simply removes it. Otherwise, there is a method that decomposes it into three
subtasks:
9. (pickup ?p) : pick up the package.
10. (carry ?p ?o ?d) : carry the package from ?o to ?d .
11. (deliver ?p) : deliver the package.

• There is a method that decomposes the task (pickup ?p) into two subtasks:
12. (handle-insurance ?p) : check whether the package needs insurance, and if it does, then

collect the insurance for the package.
13. (handle-hazardous ?p) : check whether the package is hazardous, and if so, get a permit for

the package.
• There are methods that produce ten different possible decompositions for the task (carry ?p ?o

?d) , depending on the values of ?o and ?d .
• There is a method for the task (deliver ?p) , that simply executes an operator to deliver the

package.

4.2.2 Experimental Results
We compared M-SHOP, SHOP and UMCP on UM Translog domain. It was not feasible for us to run

Blackbox, IPP, and TLplan on the UM Translog domain, because UM Translog contains a number of
HTN constructs that are difficult to translate into the action-based representations used by those planners
(for a description of some of the difficulties involved, see [Lotem and Nau, 2000]).

27

Figure 5. CPU times for each planner on the UM Translog problems. The x-axis gives the problem
number, and the y-axis displays the CPU time on a logarithmic scale. Results are not shown for Blackbox,
IPP, and TLplan because of the difficulty of translating the UM Translog domain into an action-based
domain representation. The nodes labeled “UMCP fails” are cases where UMCP failed to find an answer
(either it ran out of memory or time before finding an answer, or else it simply returned failure).

Figure 6. Number of actions in the plans found in Figure 5. The x-axis gives the problem number, and the
y-axis gives the number of actions.

0.01

0.1

1

10

100

1000

10000
1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97

SHOP
M-SHOP
UMCP
UMCP fails

0

20

40

60

80

100

120

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

SHOP
M-SHOP
UMCP

28

For this comparison, we randomly generated 100 problems in the UM Translog domain. The
problems consisted of 10 one-goal problems, 10 two-goal problems and so forth. Each goal was to
relocate a package. The original location and destination location of each package was randomly chosen
and could possibly be the same as the final destination. Also, the type of the package was randomly
chosen from bulky, liquid, granular, and mail. In addition, each problem involved five connected cities,
fifteen locations, and eleven trucks in one location in the initial state.

We ran M-SHOP, SHOP and UMCP on these problems, using a 167-MHz Sun Ultra with 64 MB of
RAM. The results are shown in Figures 5 and 6. SHOP and M-SHOP have comparable CPU times and
number of actions, and the CPU time for UMCP is several orders of magnitude larger than SHOP and M-
SHOP. UMCP failed on 17 of the first 41 problems (either it ran out memory, it failed to find an answer
within our time limit, or it simply returned with failure), and for these problems, the CPU time shown in
Figure 5 was the time when UMCP was stopped. By the time we reached problem 41, UMCP was taking
excessive amounts of real time (often several days) on each problem due to swapping, so we did not
attempt to run UMCP on the last 69 problems.

4.3 Blocks-World Planning
The blocks-world planning problem is widely known in the AI planning literature [Nilsson, 1980; Gupta
and Nau, 1992], primarily because they appear to capture several of the relevant difficulties posed to
planning systems.

4.3.1 Domain Representation for SHOP
To run SHOP in the blocks world, we created a domain description that encoded the blocks-world
planning algorithm of [Gupta and Nau, 1992]. A copy of the encoding is available as part of the SHOP
software distribution at <http://www.cs.umd.edu/projects/shop>. The algorithm is guaranteed to find
near-optimal blocks-world plans in low-order polynomial time.

The algorithm requires the planner to be able to reason about a block’s position, which is the entire
stack of blocks underneath the block. If the logical atoms describing a block’s position are not consistent
with the atoms in the goal state, then the block will need to be moved at some point during the planning
process. Otherwise, the block will not need to be moved at all. The algorithm is roughly as follows:

loop
Current state ← initial state
if the current state satisfies the goal conditions then exit
else if there is a clear block b whose position is inconsistent with the goal conditions, such

that b can be moved immediately to a position consistent with the goal conditions
then

move it
else

choose a clear block whose position whose position is inconsistent with the goal
conditions (this is a nondeterministic choice)

move the block to the table
endif

repeat
To encode this algorithm as a SHOP domain representation, we again told SHOP to assert atoms into

the current state of the world to represent what goals still need to be achieved. It was somewhat simpler to
do this for the blocks world than it was for the logistics and UM Translog domains, because in the blocks
world, each “agenda” consists just of a single goal (rather than a complex task that needs to be
decomposed into subtasks).

29

4.3.2 Domain Representation for M-SHOP
For M-SHOP, we used two domain representations:
• The first one was the exactly the same domain representation that we used for SHOP; we did this as a

check to see how much overhead would be introduced by the M-SHOP algorithm. This domain
representation is labeled M-SHOP (S) in Figures 7 and 8.

• The second domain representation, which is labeled M-SHOP (M) in Figures 7 and 8, made use of M-
SHOP’s ability to maintain multiple agendas automatically. In this domain representation, there are
three kinds of goals, each of which is handled separately as follows:
1. (on ?x ?y) , i.e., the block ?x needs to be on the block ?y . If ?x is on ?y and ?y doesn't need

to be moved, then this condition is protected as the goal has been achieved. Otherwise, if ?x is
clear and ?y is clear, and ?y doesn't need to be moved, ?x is moved onto ?y and this condition is
then protected as the goal has been achieved. Otherwise, a random selection is made for a block
?z that needs to be moved, it is moved onto the table and the process is continued recursively

2. (on-table ?x) , i.e., the block ?x needs to be on the table. If ?x is already on the table, this
condition is protected. Otherwise, if ?x is clear, it is moved onto the table and this condition is
then protected. Otherwise, a random selection is made for a block ?z that needs to be moved, it is
moved onto the table and the process is continued recursively.

3. (clear ?x) , i.e., the block ?x needs to be clear. If ?x is clear, this condition is protected.
Otherwise, a random selection is made for a block ?z that needs to be moved, it is moved onto the
table and the process is continued recursively.

4.3.3 Exper imental Results
100 problems in the blocks world were randomly generated in groups of 5 problems, each consisting of
N= 5, 10, …, 100 blocks to be relocated. To build the initial and final states, we generated configurations
of blocks as follows:
• First, put a block onto the table (thereby creating a new tower).
• For each block after the first one, if t is the number of existing towers, then there are t+1 different

possible places to put the new block: on top of any of the existing towers, or on the table (thereby
creating a new tower). Choose one of those locations at random, with an equal probability for each
choice.
We ran M-SHOP (S), M-SHOP (M), SHOP, TLplan, and IPP on these problems. We did not run

Blackbox on these problems because it needed more memory than we had available. As shown in Figure
7, SHOP and M-SHOP (S) did best (with virtually identical performance), TLplan was next, M-SHOP
(M) was next after TLplan, and IPP was unable to solve any of the problems within a one-hour time limit.
As shown in Figure 8, all of the planners (except for Blackbox and IPP) generated plans having similar
numbers of actions, but the number of actions was slightly better for M-SHOP (S) and SHOP than for
TLplan and M-SHOP (M).

The reason why M-SHOP (M) didn’t do as well as SHOP and M-SHOP (S) is because at each point
in the planning process, it was important to make a good choice of which goal to perform next. In SHOP
and M-SHOP (S), our domain representation included a good way to select the next goal. However, in
M-SHOP (M), the job of selecting the next goal was left up to M-SHOP’s agenda-selection mechanism,
and there was no way to tell it which choices were the better ones.

30

0.01

0.1

1

10

100

1000
1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

M-SHOP (M)
TLPlan
SHOP
M-SHOP (S)

Figure 7. CPU times for each planner on the blocks-world problems. The x-axis gives the problem
number, and the y-axis displays the CPU time on a logarithmic scale. Results are not shown for Blackbox
because it required more memory than was available on our computer. Results are not shown for IPP
because it was unable to solve any of the problems on our computer within a one-hour time limit. The
values for SHOP and M-SHOP (S) are nearly identical.

0
50

100
150

200
250

300
350

400

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

M-SHOP (M)
TLPlan
SHOP
M-SHOP (S)

Figure 8. Number of actions in the plans found in Figure 7. The x-axis gives the problem number, and the
y-axis gives the number of actions. The values for SHOP and M-SHOP (S) are identical, and the values
for TLPlan and M-SHOP (M) are nearly identical.

31

5 Discussion and Conclusions
In this paper, we have described the idea of ordered task decomposition, and its implementation in the
SHOP and M-SHOP planning systems. Since SHOP and M-SHOP plan for tasks in the same order in
which those tasks will be executed, they always know the complete world-state at each step of the
planning process. Thus, SHOP and M-SHOP can incorporate a high degree of expressivity in their
domain representations, including Horn-clause inferencing, numeric computations, and calls to arbitrary
external programs. Lisp implementations of SHOP and M-SHOP are available as freeware at
<http://www.cs.umd.edu/projects/shop>, under the terms of the GNU General Public License. A Java
implementation of SHOP is also being developed.

The expressive power of SHOP and M-SHOP can be used to create domain representations that
encode highly efficient planning procedures. In our tests on blocks-world and logistics problems, SHOP
and M-SHOP were several orders of magnitude faster than Blackbox, IPP, and UMCP, and were several
times faster than TLplan, even though SHOP and M-SHOP are coded in Lisp and the other planners
(except for UMCP) are in C.

Furthermore, the expressive power of the approach makes it powerful enough to be used in complex
real-world planning problems. For example, in a joint effort with researchers at the US Naval Research
Laboratory [Munoz-Avila et al., 1999], we are using JSHOP (the Java implementation of SHOP) as part
of HICAP, a plan-authoring system for noncombatant evacuation operations (NEOs). NEOs are military
evacuation operations that require performing hundreds of subtasks and whose primary goal is to
minimize loss of life. Formulating a NEO plan is a complex task because it involves considering a wide
range of factors (e.g., military resources, political issues, meteorological predictions) and uncertainties
(e.g., hostility levels and locations), and because flawed NEO plans could yield dire consequences.

M-SHOP generalizes the SHOP planning algorithm by allowing the initial task specification to be
unordered, and by automatically maintaining protection conditions and lists of subtasks for those tasks.
This gives M-SHOP an advantage over SHOP in domains where it is natural to specify how to carry out
individual tasks without reference to other tasks that might need to be achieved. For example, in the
logistics and UM-Translog domains, the M-SHOP methods describe how to transfer individual packages
from one location to another, and when several packages need to be transferred, it is M-SHOP’s
responsibility to combine the plans for those packages into a single plan. The same problem domains can
also be represented in SHOP, but at the price of introducing special-purpose methods, operators, and
predicates that emulate the operation of M-SHOP. The trade-offs involved in using such special-purpose
domain elements are as follows:
• In cases where it is natural to represent the subtasks for one task without reference to the subtasks for

another task, it is better to let M-SHOP use its own automatic agenda-manipulation abilities. In the
logistics domain and the UM Translog domain, this made the domain representations much simpler
(and thus easier to debug), and it also resulted in more efficient planning: M-SHOP outperformed
SHOP on the logistics domain, and performed similarly to SHOP on the UM Translog domain.

• In some problem domains, it may be necessary to reason about dependencies among the subtasks for
different tasks. In such cases, we can get greater efficiency if we hand-code the agenda
manipulations rather than depending on M-SHOP to do them for us, because this gives us the ability
to reason about the agendas in a global manner. One example of this occurs in the blocks-world
domain, in which the domain algorithm [Gupta and Nau, 1992] needs to be capable of giving higher
priority to tasks involving blocks that can be moved directly to their final positions, and lower priority
to tasks involving blocks that cannot be moved directly to their final positions. Here, the domain

32

representation that hand-coded the agenda manipulations performed significantly better than the one
that depended on M-SHOP to do them.

• Even if we do not want to make use of M-SHOP’s additional capabilities, there appears to be no
performance penalty for using the M-SHOP algorithm rather than the SHOP algorithm. For example,
our blocks-world domain representation for SHOP ran equally efficiently in both SHOP and M-
SHOP.
It did not particularly surprise us that SHOP and M-SHOP did so much better than Blackbox, IPP,

and UMCP, because SHOP and M-SHOP have so much more expressive power than those planners.
However, it did surprise that SHOP and M-SHOP did so much better than TLplan. Like SHOP and M-
SHOP, TLplan knows the current state of the world at each point in its planning process, and TLplan’s
modal-logic representation makes it possible to write some very sophisticated pruning axioms.
Furthermore, TLplan is written in C, which is a faster language than Lisp. Thus, when we first began to
test SHOP, we had not expected it to do as well against TLplan as it actually did.

In this regard, it is interesting to note that subsequent to the experiments reported in this paper, a
planner called TALplanner [Doherty and Kvarnström, 1999] outperformed SHOP in the AIPS-2000
planning competition. TALplanner is a planning system that is based on TLplan, but it uses a different
temporal-logic representation that incorporates substantial optimizations to the data structures. We
suspect that these data-structure optimizations are the primary reason why TALplanner outperformed
SHOP. For example, while the planning competition was in progress, we discovered that a simple change
to the data structure SHOP uses to represent its world-states would speed SHOP up by about an order of
magnitude on large problems.

Since SHOP, M-SHOP, TLplan, and TALplanner all are total-order forward-search planners, the
results suggest that total-order forward search can “scale up” to complex planning problems better than
partial-order planning. Our results also illustrate the impact that planning applications can have on
planning theory, since the SHOP and M-SHOP algorithms evolved from our previous domain-specific
work on manufacturing planning and computer bridge.

Our ongoing and future work is as follows:
• We are starting to make optimizations to SHOP’s data structures, as described above. We believe that

this will speed up SHOP by several orders of magnitude.
• For use in the evacuation-planning project mentioned above [Munoz-Avila et al., 1999; Munoz-Avila

et al., 2000], we intend to extend SHOP to incorporate ways to reason about time, and reason about
uncertainty, generate and evaluate contingency plans, and react to new information that comes in
from external programs.

• We have begun integrating SHOP with the IMPACT [Eiter and Subrahmanian, 1999; Eiter et al.,
1999] multi-agent architecture, to provide planning in a multi-agent environment. We have
developed the theoretical foundations for this integration [Dix et al., 2000], and are beginning to
develop an implementation.

Acknowledgements
This work was supported in part by the following grants and contracts: Army Research Laboratory
DAAL01-97-K0135, Naval Research Laboratory N00173981G007, Air Force Research Laboratory
F306029910013 and F30602-00-2-0505, and NSF DMI-9713718.

33

References
[Andrews et al., 1995] S. Andrews, B. Kettler, K. Erol and J. Hendler. "UM Translog: A Planning
Domain for the Development and Benchmarking of Planning Systems." Tech. Report CS-TR-3487, Dept.
of Computer Science, University of Maryland, College Park, MD, 1995.
[Bacchus and Kabanza, 2000] F. Bacchus and F. Kabanza. "Using Temporal Logics to Express Search
Control Knowledge for Planning,." Artificial Intelligence, 116(1-2):123-191, January, 2000.
[Bacchus and Kabanza, 1996] F. Bacchus and K. Kabanza. "Using temporal logic to control search in a
forward chaining planner." In M. G. a. A. Milani, Ed., New Directions in Planning. IOS Press, 1996, pp.
141–153.
[Baral and Subrahmanian, 1993] C. Baral and V. S. Subrahmanian. "Dualities Between Alternative
Semantics for Logic Programming and Non-Monotonic Reasoning." Journal of Automated Reasoning,
10:399-420, 1993.
[Bonet and Geffner, 1999] B. Bonet and H. Geffner. Planning as Heuristic Search: New Results. In
Proc. European Conference on Planning (ECP-99), 1999. Durham, UK: Springer-Verlag.
[Currie and Tate, 1991] K. Currie and A. Tate. "O-Plan: The Open Planning Architecture." Artificial
Intelligence, 52(1):49-86, 1991.
[Dix et al., 2000] J. Dix, H. Munoz and D. Nau. IMPACTing SHOP: Planning in a Multi-Agent
Environment. In CL-2000 Workshop on Computational Logic in Multi-Agent Systems (CLIMA-00), 2000.
London.
[Doherty and Kvarnström, 1999] P. Doherty and J. Kvarnström. TALplanner: An Empirical
Investigation of a Temporal Logic-based Forward Chaining Planner. In Proceedings of the 6th Int'l
Workshop on the Temporal Representation and Reasoning (TIME'99)., 1999. Orlando, FL.
[Eiter and Subrahmanian, 1999] T. Eiter and V. S. Subrahmanian. "Heterogeneous Active Agents, II:
Algorithms and Complexity." Artificial Intelligence, 108(1-2):257-307, 1999.
[Eiter et al., 1999] T. Eiter, V. S. Subrahmanian and G. Pick. "Heterogeneous Active Agents, I:
Semantics." Artificial Intelligence, 108(1-2):179-255, 1999.
[Erol et al., 1996] K. Erol, J. Hendler and D. Nau. "Complexity Results for Hierarchical Task-Network
Planning." Annals of Mathematics and Artificial Intelligence, 18:69-93, 1996.
[Erol et al., 1994a] K. Erol, J. Hendler and D. S. Nau. "Semantics for Hierarchical Task-Network
Planning." Tech. Report CS TR-3239, UMIACS TR-94-31, ISR-TR-95-9, University of Maryland,
March, 1994a.
[Erol et al., 1994b] K. Erol, J. Hendler and D. S. Nau. UMCP: A Sound and Complete Procedure for
Hierarchical Task-Network Planning. In Proc. Second International Conf. on AI Planning Systems (AIPS-
94), June, 1994b, pages 249-254.
[Fink and Veloso, 1995] E. Fink and M. Veloso. Formalizing the Prodigy planning algorithm. In Proc.
European Workshop in AI Planning (EWSP-95), 1995.
[Group, 1995] Parallel Understanding Systems Group. The UM Translog Planning Domain.
<http://www.cs.umd.edu/projects/plus/UMT>, 1995.
[Gupta and Nau, 1992] N. Gupta and D. S. Nau. "On the Complexity of Blocks-World Planning."
Artificial Intelligence, 56(2-3):223-254, August, 1992.

34

[Hoffmann, 2000] J. Hoffmann. A Heuristic for Domain Independent Planning and its Use in an
Enforced Hill-climbing Algorithm. In Proceedings of the 12th International Symposium on
Methodologies for Intelligent Systems, October, 2000. Charlotte, North Carolina.
[Kautz and Selman, 1996] H. Kautz and B. Selman. Pushing the envelope: Planning, propositional
logic, and stochastic search. In Proceedings of the 13th National Conference of the American Association
for Artificial Intelligence, 1996, pages 1194-1201.
[Kautz and Selman, 1998] H. Kautz and B. Selman. Blackbox: A SAT-technology planning system.
<http://www.research.att.com/~kautz/blackbox>, 1998.
[Kautz and Selman, 1999] H. Kautz and B. Selman. Unifying SAT-based and graph-based planning. In
Proceedings of the 17th National Conference of the American Association for Artificial Intelligence
(IJCAI-99), 1999, pages 318-325.
[Koehler et al., 1997] J. Koehler, B. Nebel, J. Hoffman and Y. Dimopoulus. Extending planning graphs
to an ADL subset. In Proc. ECP-97, 1997. Toulouse, France.
[Lotem and Nau, 2000] A. Lotem and D. Nau. New Advances in GraphHTN: Identifying Independent
Subproblems in Large HTN Domains. In AIPS-2000, 2000. To appear
[McAllester and Rosenblitt, 1991] D. McAllester and D. Rosenblitt. Systematic nonlinear planning. In
Proc. 9th Nat. Conf. AI, July, 1991, pages 634-639.
[McDermott, 1998] D . M c D e r m o t t . A I P S - 9 8 P l a n n i n g C o m p e t i t i o n R e s u l t s .
<http://ftp.cs.yale.edu/pub/mcdermott/aipscomp-results.html>, 1998.
[Munoz-Avila et al., 1999] H. Munoz-Avila, D. Aha, L. Breslow and D. Nau. HICAP: an interactive
case-based planning architecture and its application to noncombatant evacuation operations. In IAAI-99,
1999, pages 870-875.
[Munoz-Avila et al., 2000] H. Munoz-Avila, D. W. Aha, L. A. Breslow, D. S. Nau and R. Weber.
Integrating Conversational Case Retrieval with Generative Planning. In EWCBR-2000, 2000. Trento,
Italy: Springer-Verlag.
[Nau et al., 1998] D. S. Nau, S. J. J. Smith and K. Erol. Control Strategies in HTN Planning: Theory
versus Practice. In AAAI-98/IAAI-98 Proceedings, 1998, pages 1127-1133.
[Nilsson, 1980] N. Nilsson. Principles of Artificial Intelligence. Morgan Kaufmann, 1980.
[Penberthy and Weld, 1992] J. S. Penberthy and D. Weld. UCPOP: A Sound, Complete, Partial Order
Planner for ADL. In Proc. KR-92, 1992.
[Smith et al., 1997] S. J. Smith, K. Hebbar, D. Nau and I. Minis. "Integrating Electrical and Mechanical
Design and Process Planning." In M. Mantyla, S. Finger and T. Tomiyama, Eds., Knowledge Intensive
CAD, Volume 2. Chapman and Hall, 1997, pp. 269-288.
[Smith et al., 1998] S. J. J. Smith, D. S. Nau and T. Throop. "Computer Bridge: A Big Win for AI
Planning." AI Magazine, 19(2):93-105, June, 1998.
[Subrahmanian, 1999] V. S. Subrahmanian. "Nonmonotonic Logic Programming." IEEE Transactions
on Knowledge and Data Engineering, 11(1):143-152, Jan/Feb, 1999.
[Tate, 1977] A. Tate. Generating Project Networks. In Proc. IJCAI-77, 1977, pages 888-893.
[Tate, 1994] A. Tate. Mixed Initiative Planning in O-Plan2. In Proceedings of the ARPA/Rome
Laboratory Knowledge-Based Planing and Scheduling Initiative, 1994, pages 512-516. Tuscon, AR:
Morgan Kaufmann.

35

[Veloso, 1992] M. Veloso. "Learning by Analogical Reasoning in General Problem Solving." Tech.
Report CMU-CS-92-174, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA,
1992.
[Veloso and Blythe, 1994] M. Veloso and J. Blythe. Linkability: Examining causal link commitments in
partial-order planning. In AIPS-94, 1994.
[Wilkins, 1990] D. Wilkins. "Can AI Planners Solve Practical Problems?" Computational Intelligence,
6(4):232-246, 1990.
[Wilkins, 1988] D. E. Wilkins. Practical Planning: Extending the Classical AI Planning Paradigm.
Morgan Kaufmann, San Mateo, CA, 1988.

