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With the advent of Semantic Web languages such as OWL (Web Ontology Lan-
guage), the expressive Description Logig{OZN is exposed to a wider audience of
ontology users and developers. As an increasingly large number of OWL ontologies be-
come available on the Semantic Web and the descriptions in the ontologies become more
complicated, finding the cause of errors becomes an extremely hard task even for ex-
perts. The problem is worse for newcomers to OWL who have little or no experience
with DL-based knowledge representation. Existing ontology development environments,
in conjunction with a reasoner, provide some limited debugging support, however this is
restricted to merely reporting errors in the ontology, whereas bug diagnosis and resolution
is usually left to the user.

In this thesis, | present a complete end-to-end framework for explaining, pinpoint-



ing and repairing semantic defects in OWL-DL ontologies (or in other wor8${&ZN
knowledge base). Semantic defects are logical contradictions that manifest as either
inconsistentontologies orunsatisfiableconcepts. Where possible, | show extensions

to handle related defects such as unsatisfiable roles, unintended entailments and non-
entailments, or defects in OWL ontologies that fall outside the DL scope (OWL-Full).

The main contributions of the thesis include:

¢ Definition of three novel OWL-DL debugging/repair servicésiom Pinpointing
Root Error PinpointingandOntology Repair This includes formalizing the notion
of precise justificationgor arbitrary OWL entailments (used to identify the cause
of the error) root/derivedunsatisfiable concepts (used to prune the error space) and

semantic/syntactirelevance of axioms (used to rank erroneous axioms).

e Design and Analysis of decision procedures (lgiiss-boyor reasoner dependent,
andblack-boxor reasoner independent) for implementing the services

e Performance and Usability evaluation of the services on realistic OWL-DL ontolo-
gies, which demonstrate it's practical use and significance for OWL ontology mod-

elers and users
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Chapter 1
Introduction and Overview

1.1 Introduction

1.1.1 Semantic Web and OWL

The Semantic Web [12], [19] is an extension of the current World Wide Web in
which information is given precise meaning, making it easy to exchange, integrate and
process data in a systematic, machine-automated manner. Using standardized languages,
published as World Wide Web Consortium (W3C) recommendations, semantic web data
can explicitly describe the knowledge content underlying HTML pages, specify the im-
plicit information contained in media like images and videos, or be a publicly accessible
and usable representation of an otherwise inaccessible database.

The standardized languages which are the basis of the Semantic Web form a layered
stack, at the bottom of which lies the Resource Description Framework (RDF) [66]. RDF
is a simple assertional language that is designed to represent information in the form of
triples, i.e., statements of the form: subject, predicate, object. RDF predicates may be
thought of as attributes of resources and in this sense correspond to traditional attribute-
value pairs. RDF however, contains no mechanisms for describing these predicates, nor
does it support description of relationships between predicates and other resources. This

is provided by the RDF vocabulary description language, RDF Schema (RDFS [17]).



RDFS allows the specification of classes (generalized categories or unary relations) and
properties (predicates or binary relations), which can typically be arranged in a simple
taxonomy (hierarchy). In addition, it allows simple typing of properties by imposing
constraints on its domain and range.

The Web Ontology Language (OWL) [27], released as a W3C recommendation in
February 2004, is an expressive ontology language that is layered on top of RDF and
RDFS. OWL can be used to define classes and properties as in RDFS, but in addition, it
provides a rich set of constructs to create new class descriptions as logical combinations
(intersections, unions, or complements) of other classes; define value and cardinality re-
strictions on properties (e.g., a restriction on a class to have only one value for a particular
property) and so on.

OWL is unique in that it is the first ontology language whose design is based on the
Web architecture, i.e., it is open (non-proprietary); it uses Universal Resource Identifiers
(URIs) to unambiguously identify resources on the Web (similar to RDF and RDFS); it
supports the linking of terms across ontologies making it possible to cross-reference and
reuse information; and it has an XML syntax (RDF/XML) for easy data exchange.

One of the main benefits of OWL is the support for automated reasoning, and to this
effect, it has a formal semantics based@escription LogicgDL). DLs are typically a
decidable subset of First Order Logic (FOLbeing restricted to the 2-variable fragment
of FOL (L2) and including counting quantifiers (thereby corresponding to the logic C2),

and are formalisms tailored towards Knowledge Representation (KR) [3], i.e., they are

1There have been DLs considered which are not strict subsets of FOL. For example, DLs have been
enriched with the epistemic operator (K) in order to provide for nonmonotonic reasoning and procedural
rules that cannot be characterized in a standard first-order framework.



suitable for representing structured information about concepts, concept hierarchies and
relationships between concepts. The decidability of the logic ensures that sound and com-
plete DL reasoners can be built to check the consistency of an OWL ontology, i.e., verify
whether there are any logical contradictions in the ontology axioms. Furthermore, rea-
soners can be used to derive inferences from the asserted information, e.g., infer whether
a particular concept in an ontology is a subconcept of another (adreept classifica-
tion), or whether a particular individual in an ontology belongs to a specific class (a.k.a.
realization). Popular existing DL reasoners in the OWL community include Pellet [97],
FaCT [50] and RACER [104].

In addition to reasoners, numerous OWL ontology browsers/editors such as Protege
[76], KAON [78] and Swoop [57] have been built to aid in the design and construction
of OWL ontology models. The latter - Swoop - has been developed as part of this disser-
tation. Most of these OWL tools have expanded their functionality beyond basic editing
to include features such as change management and query handling, and in a lot of cases
included a reasoner for consistency checking of the ontology. For example, Swoop has
integrated Pellet for reasoning and additionally provides the ability to automatically par-

tition, collaboratively annotate and version control OWL ontologies.

1.1.2 Motivation: Lack of OWL Debugging Support

While OWL tools have focused on various aspects of ontology engineering, the
support fordebuggingdefects in OWL ontologies has been fairly weak. Common de-

fects includenconsistenbntologies andinsatisfiableconcepts. An unsatisfiable concept



is one that cannot possibly have any instances, i.e., it represents the empty set (and is
equivalent to the bottom concept or in the OWL languaxyd;Nothing ). Both these
errors, inconsistent ontologies and unsatisfiable concepts, signify logical contradictions in
the ontology and can be detected automatically using a DL reasoner. However, reasoners
simply report the errors, without explainimghythe error occurs dnowit can be resolved
correctly.

For example, consider the case of the Tambis OWL ontology, a biological science
ontology developed by the TAMBFJroject. As shown in Figure 1.1, more than a third

of the classes in the ontology are unsatisfiable:
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Figure 1.1: OWL version of the Tambis ontology as viewed in the Swoop editor and tested
using the Pellet Reasoner

Here, the tool has exposed the errors in the ontology, though understanding their

cause and arriving at a repair solution is left to the user. Also, the fact that there are so

2http:/fimgproj.cs.man.ac.uk/tambis/



many errors makes the debugging task seem all the more overwhelming.

When modelers encounter cases such as this, they are often at a loss at what to do.
This also has a negative general consequence which inhibits the adoption and effective use
of OWL — namely, ontology authors (especially newcomers to OWL) tendderspecify
their models to “avoid” errors. Typically, this is done by getting rid of negation in the
ontology since contradictions mainly arise due to it. For example, in the Tambis OWL
ontology, the unsatisfiable conceptstal andnon-metal are defined to be disjoint from
one another (using thewl : disjointWith construct), implying that an individual cannot
be a member of both concepts at the same time. In this case, there is an inherent negation
in the concept definitions, i.emetal is a subclass of the negation @én-metal. Here,
removing the disjointness between the two concepts eliminates numerous unsatisfiable
concept errors in the ontology, though this is probably undesired.

Thus, it is evident that OWL ontology tools have to go much further in organizing
and presenting the information supplied by the reasoner and existing in the ontology. For
example, tools used to debug unsatisfiable classes in ontologies could pinpoint the prob-
lematic axioms in the ontology responsible for the errors. By highlighting the minimal
set of axioms responsible for the error, the modeler is aware of a possible solution — edit
or remove any one of the possibly erroneous axioms.

Similarly, when there are a large number of unsatisfiable concepts in an ontology
(as is the case of the Tambis ontology seen earlier), tools can detect and highlight interde-
pendencies between unsatisfiable classes to help differentiate the root bugs from the less
critical ones, e.g., when a class is asserted to be a subclass of another unsatisfiable class,

automatically rendering it unsatisfiable, we need to focus on the latter concept which is

5



the actual source of the error.

Having found defects in the ontology, resolution can be non-trivial as well, requir-
ing an exploration of remedies with a cost/benefit analysis. For example, one cost metric
could be the impact on the ontology, in terms of the information lost, when a particular
axiom is removed from it as part of the repair solution. In this case, one would like to gen-
erate repair solutions that impact the ontology minimally. Also, the non-local effects of
axioms in an OWL ontology means modifications done to eliminate one inconsistency (by
editing certain axioms) can cause additional inconsistencies to appear somewhere else in
the ontology. Thus, particular care and effort must be taken to ensure that ontology repair
is carried out efficiently.

The goal of this dissertation is to develop a set of services for OWL (DL) that cater

towards debugging and repair, on the lines of the solutions mentioned above.

1.1.3 Defects in OWL

In this section, we briefly look at the various types of defects in OWL ontologies
and discuss factors that make them susceptible to errors.

Broadly speaking, defects in OWL fall into three main categories:

e Syntactic DefectsSyntactic issues loom large in OWL for a number of reasons
including the barogue exchange syntax, RDF/XML and the use of URIs (and their
abbreviations). Hence, any non well-formed XML ontology document is syntacti-

cally incorrect.

Additionally, the OWL language comes in three increasingly expressive sub-languages



or “species” - OWL-Lite, OWL-DL and OWL-Full, and detecting which species an
OWL document falls in is done strictly syntacticly, i.e., there are a number of re-
strictions imposed on the RDF graph form for it to count as an instance of a partic-
ular species. Thus, building an ontology that falls outside the desired species level

can be considered as a syntactic defect.

e Semantic (or Logical) DefectsGiven a syntactically correct OWL ontology, se-
mantic defects are those which can be detected by an OWL reasoner. As noted
earlier, these include unsatisfiable classes and inconsistent ontologies. For exam-
ple, classA in an ontology is unsatisfiable if it is a subclass of both, cl@ssd the
complement of clas§' (defined in OWL using thewl:complementOf  opera-
tor), since itimplies a direct contradiction. On the other hand, if an ontology asserts

that an unsatisfiable class contains an instance, the ontology itself is inconsistent.

e Style Defects These are defects that are not necessarily invalid, syntactically or
semantically, yet are discrepancies in the ontology or unanticipated results of mod-
eling, which require the modelers’ attention before use in a specific domain or ap-
plication scenario. Examples includaintendednferences, andnusedclasses or

properties with no reference anywhere else in the ontology.

We now discuss factors specific to the nature and design rationale of OWL, which

makes it possible for errors to arise.

¢ Difficulty in understanding modelingNote that OWL is based on an expressive DL
and thus one of the main causes for errors, especially semantic errors, is the diffi-

culty that comes from modeling accurately in an expressive and complex ontology
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language. OWL users and developers are not likely to have a lot of experience
with description logic based KR, and without adequate tool support for training
and explanation, engineering ontologies can be a hard task for such users. As on-
tologies become larger and more complex, highly non-local interactions in the on-
tology (e.g., interaction between local class restrictions on properties and its global
domain/range restrictions) make modeling, and analyzing the effects of modeling

non-trivial even for domain experts.

Interlinking of OWL OntologiesThe idea behind Web ontology development is dif-
ferent from traditional and more controlled ontology engineering approaches which
rely on high investment, relatively large, heavily engineered, mostly monolithic on-
tologies. For OWL ontologies, which are based on the Web architecture (charac-
terized as being open, distributed and scalable), the emphasis is more on utilizing
this freeformnature of the Web to develop and share (preferably smaller) ontology
models in a relatively ad hoc manner, allowing ontological data to be reused eas-
ily, either by linking models (using the numerous mapping properties available in

OWL) or merging them (using thewl:imports ~ command).

However, when related domain ontologies created by separate parties are merged
usingowl:imports  , the combination can result in modeling errors. This could

be due to ontology authors either having different views of the world, following
alternate design paradigms, or simply, using a conflicting choice of modeling con-
structs. An example is when the two upper-level ontologies, CYC and SUMO are

merged leading to a large number of unsatisfiable concepts due to disjointness state-



ments presentin CYC [92].

e Migration to OWL Since OWL is a relatively new standard, one can expect that
existing schema/ontologies in languages pre-dating OWL such as XML, DAML,
KIF etc. will be migrated to OWL, either manually or using automated translation
scripts. A faulty migration process can lead to an incorrect specification of concepts
or individuals in the resultant OWL version. For example, the OWL version of the
Tambis ontology seen earlier contains 144 unsatisfiable classes (out of 395) due to

an error in the transformation script used in the conversion process.

1.1.4 Debugging OWL Defects

Depending on the type of defect as seen in the previous section, there are different
ways to debug and resolve it. Syntactic defects are the easiest to fix, since most XML
parsers (e.g. Xerceé} or RDF validator$ directly pinpoint the line in the document (and
the specific characters in it) which make the document syntactically invalid. Thus, by
inspecting the exception log or trace, the ontology designer can easily fix such syntax
errors.

For detecting which species an OWL document falls in, there exists specialized
OWL Species Validatiomools °, which report the species level and the OWL language
constructs used in the document, or the RDF graph constraints violated that force it to be-
long to a particular species. An interesting facility is provided by the Pellet [97] reasoner,

which in addition to species validation, incorporates a number of heuristics to detect “DL-

Shttp://xerces.apache.org/xerces-j/
“RDF Validator: http://www.w3.org/RDF/Validator/
SOWL Validator: http://phoebus.cs.man.ac.uk:9999/0OWL/Validator



izable” OWL-Full documents in order to repair them. The heuristics implemented in Pel-
let attempt to guess the correct type for an untyped resource, e.g., a resource used in the
predicate position is inferred to be a property. Using this feature, a user can automatically
add a set of triples to the document to bring it to the desired species level.

For style defects, effective debugging requires the expression of intent to the system
since defectiveness here is very dependent on the modeler’s intent.t@$tuggand test
cases form the right modality for dealing with some of these defects. There exist simple
lint-like debugging tools such as Chimaera [70], which are helpful for identifying some
style discrepancies in the KB (such as cycles in class definitions) but just as in the case of
syntactic defects, exposing the “bug” here is usually a direct pointer to the solution.

The hardest defects to debug and resolve correctly are semantic defects, just as
logical errors in programs are hard to understand and fix. The problem is compounded by
the fact that reasoners simply report them without providing any explanation. Thus, the
main focus of this dissertation is on debugging and resolving semantic defects in OWL
ontologies, and the goal is to formalize and build debugging services for them that are

useful and understandable to ontology modelers.

1.2 Contributions

In this thesis, | have developed a complete end-to-end framework for debugging
and repairing all types of semantic defects in OWL-DL ontologies. More specifically, |

have,

¢ Designed and evaluated a novel DL explanation serAsg&m Pinpointing
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— Formalized the notion oprecise justificationdor arbitrary entailments in

OWL ontologies

— Devised a set of algorithms, botilass-boyor reasoner dependent, apldck-
boxor reasoner independent, to find all the precise justifications (Axiom Pin-
pointing)

— Analyzed the computational complexity of Axiom Pinpointing algorithms

— Implemented the service in an OWL-DL reasoner (Pellet), performed a timing
evaluation of the service on a set of OWL Ontologies and demonstrated that

the service is practically feasible

— Provided a Ul for the service in the context of an OWL Ontology Engineering

environment (Swoop) and performed a user-evaluation to test its effectiveness
¢ Designed and evaluated a novel DL debugging senRoat Error Pinpointing

— Formalized the notion abot andderivedunsatisfiable classes
— Devised a set of glass and black box algorithms to separate root/derived errors

— Analyzed the computational complexity of the algorithms and performed a
timing evaluation of the service on ontologies containing a large number of

unsatisfiable classes to demonstrate its significance
e Designed and evaluated a novel DL repair servigetology Repair

— Formalized the notion ademanticand syntacticrelevance in the context of
axiom ranking

— Devised algorithms to compute axiom ranks and subsequently generate repair

11



solutions based on the ranks calculated. Modified the algorithm to incorporate

axiomrewritesin the final solution.

— Provided aninteractive Ul for the repair service and performed a user-evaluation

to test its effectiveness

1.2.1 Scope and Limitations

The scope of this thesis is the debugging and repair of semantic defects in OWL-
DL Ontologies. As noted earlier, semantic defects are mainly two types: unsatisfiable
classes and inconsistent ontologies, which result due to logical contradictions present in
the ontology.

Unsatisfiable roles, which are not as common as unsatisfiable classes, are easy to
detect as well using the techniques developed. This is because roles correspond to two-
place predicates in First Order Logic (FOL), while classes are one-place predicates. Thus,
given a roleR, the problem of checking the satisfiability &freduces to the problem of
checking the satisfiability of the class 1.R).

Also, while the techniques are applicable for OWL-DL which is the known de-
cidable sub-language of OWL, OWL-Full, which is the most expressive language of the
OWL family, is also decidable under contextual ¢grsemantics [73] with some addi-
tional constrainfs 7 semantics is essentially equivalent to the standard first-order se-
mantics, wherein the role of a symbol can be inferred from its position in a formula, so

the set of constant, function and predicate symbols need not be strictly disjoint. A DL

6Certain restrictions are required to yield a decidable logic, such as on simple roles in number restric-
tions [49]
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reasoner can reason over certain OWL-Full ontologies successfully by enfarsag
mantics. Thus, all the techniques described in this thesis for diagnosing and repairing
contradictions in an ontology are directly applicable in the OWL-Full case (given the
constraints) without any changes.

The techniques proposed in this thesis are of two typksss-boxor reasoner de-
pendent, andblack-boxor reasoner independent. The black-box approach only relies on
the availability of a sound and complete reasoner for a DL, and is thus not restricted to
any particular logic. The glass-box algorithms are based on the expressive description
logic SHOZIN (D), which is the basis of the language OWL-DL.

Note that the debugging of syntactic and style defects in OWL is beyond the scope
of the thesis. As mentioned earlier, there already exist tools providing support for such
defects, whose resolution is either straightforward or strongly depends on the modeler’s

intent.

1.3 Organization of Thesis

The thesis is organized as follows:

e In Chapter 2, we provide the formal background this work is grounded in. The
chapter discusses the the Web Ontology Language (OWL), the World Wide Web
Consortium (W3C) standard for creating ontologies on the Web; and briefly re-
views the field of Description Logics (DLs), with emphasis on the expressive logic
SHOZN (D) (which corresponds to the sub-language OWL-DL). Finally, it pro-

vides an overview of common reasoning services for description logics such as

13



consistency checking, classification etc., and describes tableau-based decision pro-

cedures used to implement these services.

e In Chapter 3, we review other related approaches in existing logic-based systems
such as logic programming systems, rule-based expert systems, deductive data-
bases, automated theorem provers and finally description logic-based knowledge
bases. We also look at two classical theories of diagnosis and revision, and de-
scribe the relation between these generic theories and the debugging/repair services

devised in this thesis.

e Chapters 4-6 constitute the main contribution of this thesis. In Chapter 4, we de-
scribe the Axiom Pinpointing Service that is used to find (precise) justifications for
arbitrary entailments in OWL-DL. Chapter 5 describes the Root Error Pinpointing
Service, which can be used to separate the root or critical errors in the KB from
the derived or dependent ones. Finally, Chapter 6 describes the Ontology Repair
Service which generates repair solutions based on various criteria for ranking erro-

neous axioms.

e Chapter 7 discusses implementation details of the debugging and repair services
formulated in Chapters 4-6, and presents results of performance and usability eval-
uations which demonstrate the practical significance of these services.

e Chapter 8 enumerates some of the open issues in our OWL debugging work and
outlines areas for future research. The latter includes some preliminary ideas to

deal with the problem of debugging non-subsumptions.

¢ Finally, the Appendix A discusses specific features in the OWL Ontology Editor,
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Swoop [57], that are tailored towards the understanding and analysis of OWL on-

tologies.
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Chapter 2
Foundations

2.1 Description Logics

Description Logics (DL) [4], [21] are a family of logic-based knowledge represen-
tation formalisms. They are typically used to represent terminological knowledge of an
application domain, where the data can be accessed and reasoned with in a principled
manner. DLs are usually a (decidable) subset of First Order Predicate Logic (FOL), and
thus have a well-defined, formal semantics.

The basic building blocks in DL are:

e atomic concepts which correspond to 1-place (unary) predicates in FOL and de-

note a set or a class of objects, eeyson(x), Male(x).
e atomic roles which correspond to 2-place (binary) predicates in FOL and denote
relations between objects, e.flasBrother(x,y).

e individuals: which correspond to constants in FOL, e.@uck, John and denote

objects in the domain

A DL provides a set of operators, callednstructorswhich allow to form complex
concepts and roles from atomic ones. For example, by applying the concept conjunction
constructor (1) on the atomic conceptBerson and Male, the set of all ‘Male People’

can be represented as followerson M Male.

16



The Boolean Concept Constructors are, apart from concept conjunctjpodn-
cept disjunctionl(l) and concept negation-J. A Description Logic that provides, either
implicitly or explicitly, all the boolean operators is callgaopositionally closed DLs
that are not propositionally closed are typically calk-boolean In this work, only
propositionally closed DLs will be considered.

In addition to the booleans, DLs typically provide concept constructors that use
roles to form complex concepts. The basic constructors of this kinéxas¢ential(3)
and universal (V) restrictions operators, which represent restricted (guarded) forms of
guantification. For example, we can describe a complex concept to denote fathers of only
male children: Father M YhasChild.Male; or mothers who have at least one female
child: Mother M JhasChild.Female.

Apart from concept and role constructors, which allow to define complex concepts
and roles, a DL also provides means for representing axioms (logical sentences) involving
concepts and roles. For example, we can specify a concept inclusion axiom of the form:
Father C Person, which states that a father is also a person.

Description Logic knowledge bases (KB) typically consist of:

e A TBox containing concept inclusion axioms of the forth = C,, where both

C1, Cs are concepts.
e A RBox containing role inclusion axioms of the forRy = R, with R;, R, roles.

e An ABox containing axioms of the form C(a), called concept assertions and R(a,

b), called role assertions, where a, b are object names, R is a role and C a concept.

In its simplest form, a TBox consists of a restricted form of concept inclusion ax-
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ioms called concept definitions: sentences of the fer C' or A = C (where A is
atomic), which describe necessary or necessary and sufficient conditions respectively for
objects to be members of A. Restricting a TBox to concept definitions, which are both
unique(each atomic concept appears only once on the left hand side of a concept inclu-
sion axiom) andacyclic (the right hand side of an axiom cannot refer, either directly or
indirectly, to the name on its left hand side) greatly simplifies reasoning [51].

However, TBox axioms can also be used to describe more complex sentences, i.e.,
general concept inclusioaxioms (GCIs). In a GCI of the formd;, = (5, the con-
ceptsCy, C, are not restricted to be atomic. GCls are typically used to represent gen-
eral constraints on the TBox, i.e. background knowledge. For example, the axiom:
Person M JhasChild. T T Father U Mother states that any person that has a child
is either a father or a mother. Herfeis used to denote the ‘“Top’ concept which represents
the universal set of all individuals in the domain (every concept in the KB is implicitly
contained inT).

Similar axioms can be used to represent assertions about roles in the RBox. For ex-
ample, the role inclusion axionfiasSon C hasChild states that the relation represented
by hasSon is contained in the relation represented by the faleChild.

Finally, the ABox formalism provides means for instantiating concepts and roles.
A concept assertio'(a) states that the objeatbelongs to the concept, e.g., the axiom
Father(Jack) states that Jack is a father; while a role asseritom, b) is used to state
that two objects:, b are related by a rol&, e.g., the axionhasBrother(Jack, John)
states that Jack and John are brothers.

The DL community has categorized various description logics by constructing mnemonic
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names that encode the precise expressivity of the particular logic. For a list of mnemonics

with DL’s they characterize, see Table 2.1.

Mnemonic DL Expressivity

AL Attribute Logic [4, —A (atomic),C' 1 D, 3dR. T, VR.C]

ALC Attribute Logic + Full Complement [allowing' LI D and3R.C]
Rt Transitive Roles
S ALCR*
H Role Hierarchy
A Inverse Roles
@) Nominals (individuals used in class expressions)
N Unqualified Cardinality Restriction{ nR, < nR, = nR]
Q Quialified Cardinality Restriction B nR).C, (< nR).C, (= nR).C]
D Datatypes
F Functional Roles

Table 2.1: Mnemonics for DLs

The basic description logic that provides the boolean concept constructors plus the
existential and universal restriction constructors is calléd’. Many applications require
an expressive power beyondtiCC and thus several DL extensions have been defined on
top of it. For example ALC allows GCls in the TBox and concept and role assertions in
the ABox, however, it provides no role constructors and disallows role inclusion axioms,
hence forcing the RBox to be empty. The first obvious way for extengidg is to
provide new concept and role constructors.

A prominent example of concept constructors that are available in all modern DL
systems are the so-called number restrictions [46] . In their most general form, number
restrictions are calledualified number restrictionswhich allow to build the complex
concepts> nR.C and< nR.C from a role R, a natural number n and a concept C.
Qualified number restrictions can be used to represent, for example, the women with less

than two daughterdd omani < 2hasChild. W oman.

19



Some DLs introduce a restricted form of number restrictions, callegualified
number restrictions that force the concept description C to be precisely the universal con-
ceptT. Using unqualified number restrictions it is possible to describe, for example, the
persons who have more than 10 frien@grson™ > 10.hasFriend.

Finally, it is possible to restrict the expressivity of unqualified number restric-
tions by constraining the natural numbers that can be used in the constructor. In log-
ics providing functional number restrictiongdenoted by the mnemoni&), the only
number restriction operators allowed ate QR) and K 1R). For example, a per-
son with (strictly) more than one brother would be described by the following concept:
Person > 2hasBrother. The logic obtained fromdLC by providing qualified num-
ber restrictions is calledl£CQ. On the other hand, adding unqualified and functional
number restrictions tel LC results in the logicsALCN and ALCF respectively.

The Nominalconstructor [48], [89] transforms the object name o into the complex
concept o, which is interpreted as a singleton with o as its single element. Nominals can
be used to enumerate all the elements of a class: for example,

Continents = {Africa, Antarctica, Asia, Australia, Europe, NorthAmerica, SouthAmerica}.

The logic obtained by extendindLC with nominals is calleddLCO.

More expressive DLs can also be obtained by allowing new kinds of axioms in the
RBox. For exampletransitivity allows role axioms to be interpreted as transitive binary
relations, e.g., if the rol&catedIn is transitive and the assertiohgatedIn(C P, Maryland)
andlocatedIn(Maryland, US A) are contained in the ABox, then the asserti@fatedIn(CP,USA)
would be inferred from the knowledge base. The extensiad6€ with transitive roles

is called ALCR™. This logic is also abbreviated asbecause of the correspondence
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betweendLCR* and the multimodal logi&4.

Another useful role axiom igversion which allows the use of relations in ‘both
directions’. For example, if the relatiorigisChild andisC'hildO f are defined as in-
verses of each other, then given the assettiosC hild(Jack, Mary) in the ABox, one
can inferisChildO f(Mary, Jack).

Finally, several extensions of DLs [65], [64] have been investigated for describing
concepts in terms oflatatypes such as numbers or strings, which is crucial for many
applications. The main approach has been to provide DLs with an interface to ‘concrete’
domains , which consist of a set (such as the natural numbers or strings), together with a
set of built-in predicates, which are associated with a fixed extension on that set, such as
> +, « for the natural numbers. The interface between the DL and the concrete domain is
achieved by defining a new kind of roles, called concrete roles, which relate objects from
the ‘DL-side” with data values from the concrete domain; and enriching the DL with
a new concept constructor associated to those concrete roles. Using these constructors,
it is possible, for example, to describe a set of all people whose weight is less than 50
kg: Jweight. <59. The mnemoni® is used to represent DLs that have been extended
with datatype support. Note that the Web Ontology Language OWL-DL, which we shall
see later, is a syntactic variant of the description lag§i¢OZN (D) and thus is a very

expressive language.

2.1.1 Syntax and Semantics8HOZ9(D)

In this section, we describe the syntax and semantics of the&¥di©Z O (D).
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We start with the definition of roles.

Definition 1 (SHOIQ(D)-roles)

Let Vg, V5 be the disjoint sets of abstract and concrete atomic roles respectively.
The set oSHOZ Q(D) abstract roles is the séty U {R™|R € Vxr}. The set of concrete
roles is justVs. A role inclusion axiom is an expression of the foRin C R,, where
Ry, Ry are abstract roles or an expression of the fotmC w5, whereu,, u, are concrete
roles. A transitivity axiom is an expression of the faffmuns(R), whereR € Vi. An

RBox is a finite set of role inclusion axioms and transitivity axioms.

Notation Remarks. In order to avoid considering roles of the forRr—, we
define the function/nv(R) that returns the inverse of an abstract role R. Let R be a
RBox; we introduce the symbal;, to denote the reflexive-transitive closurefofon R
U{Inv(Ry) C Inv(Ry)|Ry T Ry € R}. We useR; =r R, as an abbreviation for
R, T}, Ry and R, T3, Ry. Note that inverses cannot be defined on concrete roles.

We define the functiofd’r(S, R) that returngrue if S is a transitive abstract role
(atomic or not). FormallyT'r(S, R) = true if, for some P withP =5 S, Trans(P) € R
or Trans(Inv(P)) € R. The function returngalse otherwise. Note the difference be-
tween the function Tr(S,R), which maps roles to boolean values, and the axiom Trans(R),
which states that the atomic role R is transitive. A concrete role, on the other hand, cannot
be made transitive.

An abstract role R isimplew.r.t. the RBox R ifI'r(S, R) = false forall S C}, R.

Definition 2 (SHOZQ(D)-concepts and knowledge bases)
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Let Vo andV; be sets of atomic concepts and object names respectively, aRd let

be an RBox. The set SfHOZ Q(D)-concepts is the smallest set such that:

e Every atomic concepd € V. is a concept.

e If C, D are concepts and is a role, then (' 11 D) (Intersection), ' LI D) (Union),
(=C) (Negation), ¢ R.C") (Universal Restriction) andHR.C) (Existential Restric-

tion) are also concepts.

e If n is a natural number and is a simple role, thenX nS.C) (at-most Number
Restriction) and € n.S.C') (at-least Number Restriction) are also concepts.

o If @ is a datatype andh a concrete role, thendfu.®), (Vu.®) are also concepts.

e If a € V7, the nominaKa} is a concept.

For C,D concepts, a concept inclusion axiom is an expression of thed@ormbD.
A TBox T is a finite set of concept inclusion axioms. The use of nominals allows the
encoding of ABox assertions as TBox axioms. Henc&H&7Z QO knowledge basek,

simply consists of a TBox and an RBox, ik~ (7, R).

Definition 3 (SHOZQ(D) interpretations)
An interpretation | is a pair | = (¥, .7), where W is a non-empty set, called the
domain of the interpretation which is disjoint from the concrete domdi¥i,, and.! is

theinterpretation function The interpretation function maps:

e Each atomic concept to a subsetd’ of W/
e Each abstract atomic rol& to a subsefz’ of W x W

e Each concrete atomic rota to a subset:! of W x W,
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e Each object name to an element’ of W

The interpretation can be extended8§6{OZ Q(D)-abstract roles as follows. Let

R be an abstract atomic role, then:

(Inv(R))" = (a,b) € W x W|(b,a) € R!

The interpretation function is extended to concept descriptions as follows:

o (CND)Y=C'nD!

o (CUD)Y =CTuD!

o (-C) =W -1

e (AR.C) = {a € W|3b € W with (a,b) € Rf andb € C'}

o (VR.C) ={aeWVbe Wif (a,b) € R, thenb € C'}

e (>nR.C)' = {a € W such that|{b|(a,b) € R andb € C'}|| > n}
o (<nR.C) = {a € W such that|{b|(a,b) € R andb € CT}|| < n}
o {a} = {a'}

o (Fu.¢)! ={a € W|Fp € Wp with (a, ¢) € u! and¢ € &P}

o (Vu.¢)! ={aeWNp € Wpif (a,¢) € u’ theng € ®}

o (> nu.¢) ={a € W suchthat|{¢|(a,d) € u’ andp € ®}|| > n}

e (<nu.¢)! = {a € W such that|{¢|(a, ) € u’ and¢ € ®P}|| < n}

The interpretation function is applied to the axioms 7% OZ Q(D) KB according

to the following definition:
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Definition 4 (Semantics o6 HOZ Q(D) Knowledge Bases)
The SHOZQ(D) interpretation | satisfies the role inclusion axiofy T R; if
(Ry)! C (Ry)! and it satisfies the inclusion axiom C u, if u! C ul. The interpretation

satisfies a transitivity axiom Trans(R) if the following condition holds:

Va,b,c € W, if (a,b) € R and (b, c) € R!, then(a,c) € R!

The interpretation is a model of the RBox R, denoted by R, if it satisfies all its
axioms.

An interpretation | satisfies a concept inclusion axieh= D if C! C D!, The
interpretation is a model of the TBox T, denoted/bly- 7 , iff it satisfies every concept
inclusion axiom in7". Finally, the interpretation is a model of the knowledge b&se

(7,R), denoted by = K, iff | is a model of both the TBox T and the RBox R.

Thus aninconsistentKB K= (7, R) is one for whichthere exists no possible
model, i.e., there is no interpretatidh that satisfies the semantics of all the axioms in
TandR. Inconsistent KBs are one of the key semantic (logical) defects considered in the
thesis (the other being unsatisfiable concepts as we shall see below).

Typical inferences i HOZ Q(D) are concept subsumption and satisfiability w.r.t.

a knowledge base:

Definition 5 (Inferences)
Let C,D be concepts, a, b object names &nd knowledge base. We say that C

is satisfiablerelative to Kiff there is a modellof K, such thatC? # (). We say that C

25



subsumeD relative toKiff, for every model | ok, 1 C DI,

Thus, anunsatisfiableconcept is one for which there exists no model, i.e., its in-
terpretation is the empty set in every model of the KB. Obviously, if the KB itself is

inconsistent then all the atomic concepts in it are unsatisfiable.

2.2 Web Ontology Language (OWL)

The Web Ontology Language (OWL) [27], is an integral component of the Semantic
Web, as it can be used to write ontologies or formal vocabularies which form the basis for
semantic web data markup and exchange.

OWL is a fairly recent language, released as a W3C (World Wide Consortium)
recommendation in February 2004. As part of the Semantic Web stack of languages,
OWL is layered on top of RDF (basic assertional language) and RDFS (schema language
extension for RDF) which themselves are layered over XML [16]. From its relationship
with RDF comes the official OWL exchange syntax, namely RDF/XML [10]. In fact,
OWL shares many features in common with RDF such as the use of Universal Resource
Identifiers (URI) to unambiguously refer to web resources (as we shall see later).

From a modeling and semantic point of view, OWL shares a strong correspondence
with Description Logics borrowing many logical constructs as shown in Table 2.2. The ta-
ble lists the language constructs of OWL with the corresponding DL representation. Note
thatin OWL termspwl:class, owl:ObjectProperty, owl:DatatypeProperty,
owl:Individual andowl:Datatype  correspond to concept, role, concrete role,

object and concrete domain respectively in DLs.
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OWL Construct DL representation Example
owl:equivalentTo (CD) |C=D(CEDandD C ()| Person= Human
rdfs:subClassOf (C,D) CCD Parent C Person
owl:complementOf  (C,D) C = D (negation) Male = = Female
owl:disjointWith (C,D) CC-D Father © ~Mother
owl:intersectionOf (C,D) C' 1 D (conjunction) Parent M Male
owl:unionOf  (C,D) C' U D (disjunction) Father U Mother
owl:oneOf (I, I,) {L} u{l} {Jack} U {Jill}
owl:someValuesFrom (P,C) JP.C' (existential) JhasChild. Daughter
owl:allValuesFrom (P,C) VP.C' (universal) YhasChild.Son
owl:hasValue (P,[;) APA{1} JhasChild.{ Jill}
owl:cardinality (P,n) =n.P = 2.hasParent
owl:minCardinality (P,n) >n.P > 1.hasDaughter
owl:maxCardinality (P,n) <n.P < 2.hasChildren

Table 2.2: Correspondence between OWL and DL (N6teD refer to OWL Classes?
refers to an OWL Property;, I, refer to OWL Individuals; ana refers to a non-negative
integer.)

OWL comes in three increasingly expresssuéh-languagesor “species”, OWL-

Lite, OWL-DL and OWL-Full.

e OWL-Lite : The motivation for OWL Lite is to support users primarily needing

a classification hierarchy and simple constraints. These expressivity limitations

ensure that it provides a minimal useful subset of language features, which are

relatively straightforward for tool developers to support.

Interestingly, OWL-Lite corresponds to an expressive description BB F (D).
This is because while many of the constructs that are allowetiHE 7 (D) (for

example, concept disjunction) are explicitly disallowed in the syntax of OWL-Lite,

they can be ‘recovered’ by encoding them using General Concept Inclusion Axioms

(GCls).

e OWL-DL : OWL-DL supports those users who want the maximum expressiveness
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of the language without losing decidability. It includes all the OWL language con-
structs, but they can be used only under certain restrictions such as strict type sep-
aration (a class cannot be treated as an individual or a property, for example) and
the inability to use transitive roles on number restrictions. OWL-DL corresponds
to the description logiSHZON (D). Hence, the debugging and repair techniques

devised in this thesis have focused on this particular logic.

e OWL-Full : OWL-Full has the same vocabulary as OWL DL but it allows the free,
unrestricted use of RDF constructs (e.g., classes can be instances). OWL-Full is
thus a same syntax, extended semantics extension of RDF and is undecidable. Re-
cently, however, [73] showed that under certain conditions (assuming contextual

semantics), OWL-Full can be made decidable.

Finally, we discuss other key features of OWL that are important for its proper

understanding and use.

e OWL provides a special construawl:imports , which allows one to bring in
information from an external ontology. However, the only way that the construct
works is by bringing into the original ontologil the axioms of the imported one.
Therefore, the only difference between copying and pasting the imported ontology
into the importing one and using awl:imports  statement is the fact that with
imports both ontologies stay in different files. As of now, there is no mechanism in
OWL for partial imports and this remains an interesting research problem.

e As noted earlier, OWL entities, ontologies and even the primitives of the language,
are denoted using a URI. Interestingly, the meaning of the URI is relative to a
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particular RDF document [44]. In other words, the meaning of the same URI in
other documents is not considered at all unless the document is imported. This is
an important issue that OWL ontology modelers and users need to be aware of. For
example, if we were building an OWL ontology dealing with the medical domain
and wanted to reuse the concéfatncer defined in the OWL version of the National
Cancer Institute (NCI) Thesaurus, we cannot simply refer t@ttvecer URI in the

NCI ontology to capture the concept meaning, instead, we need to import the entire

NCI thesaurus into our ontology.

OWL does not make the Unique Name Assumption (UNA). Given two object
names a, b, it is generally assumed that they denote different things under DL se-
mantics, i.e.a’ # b’ for every interpretatiod. In OWL, however, different names
could refer to the same object, which can lead to some non-intuitive inferences, e.g,
suppose an OWL ontology contains the assertiens’’ather(Mary, Jack) and
hasFather(Mary, John), wherehasFather is a functional role, the resultant on-
tology is not inconsistent, but instead entails that.n and Jack are the same
object. To deal with the lack of UNA, OWL incorporates two additional primitives
owl:sameAs andowl:differentFrom which respectively state that two ob-
jects are the same or distinct. The implementation of the UNA in DL reasoners is

however quite straightforward.

Since OWL semantics is based on DLs (which are usually subsets of FOL), OWL
makes the open world assumption (OWA). Under OWA, any information not spec-

ified in the OWL KB is assumednknown(as opposed téalse under the closed
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world assumption). While this allows for partial or incomplete information to be
represented, it can also lead to a source of confusion, especially for users familiar
with closed world reasoning (e.g., users working with databases, logic program-
ming, constraint languages in frame systems etc.). Consider the following example
(taken from [87]): the clas&/argheritaPizza C PizzaN3hasT opping. Tomatol
JhasTopping.Mozzarella is not classified as & egPizza even though both its
specified toppings are vegetables. This is because, under OWA, we need to explic-
itly specify that theM argheritaPizza has those two toppingsnly and nothing

elsefor it to be classified correctly.

From a debugging standpoint, understanding the above features is key for ontology
authors as they represent crucial factors responsible for causing inconsistency errors and

unintended inferences in the ontology [87].

2.3 Reasoning Services for OWL

Reasoning services for OWL are typically the same as that for DLs, and include:

e Consistency Checking Check whether an OWL ontolod is logically consistent

¢ Class Subsumption Given a pair of classe&s, D in the ontology®, check whether
O = C C D. Also related is the notion aflass satisfiability C' = 1; andclass
equivalence C' = D, which impliesC C D andD C C

e Instantiation: Given an individuale and a class” in the ontology®, check
whethera is an instance of’, i.e., O = C(a). Also related is the notion ate-
trieval, i.e., obtain all individuals of class
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In propositionally closed DLs, subsumption can be reduced to satisfiability, since C
subsumes D relative tO iff the conceptC' 1 =D is unsatisfiable relative t6.

Similarly, the instance problem can be reduced to the consistency problem: the
objecta is an instance of’ relative toQ iff the ontology©®’ obtained from® by adding
to it the class assertionC'(a) is inconsistent.

Finally, the concept satisfiability problem can be reduced to the ontology consis-
tency problem: the concept C is consistent relative to the ontaldgy the knowledge
base?’ obtained from© by adding the concept assertion C(a) (with new object name)
is consistent.

To solve this key consistency checking problem for OWL-DL ontologies §HQZN (D)
knowledge bases), there exist sound and complete decision procedures based on tableaux

calculus [5].

2.4 Tableaux Algorithms

In this section, we briefly discuss the tableau algorithm for theIHOZN .For a
detailed description of the algorithm, we refer the reader to [52].

As noted earlier, the presence of nominalsSIHOZN allows us to exclude the
ABox from consideration, i.e., the KB consists of a general TBoXand a Role Hier-
archyR. Additionally, the presence of transitive roles and role hierarchies in the logic
allows reasoning with respect to genefaland R to be reduced to reasoning w.rk
alone. This is because the entire TBox canrtternalized[49] into a single concept de-

scription. Thus, the tableau decision procedure checks the consistency of an internalized
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conceptD w.rtR.

DL tableau-based algorithms decide the consistendy wfr.t R by trying to con-
struct (an abstraction of) a model for it, calleccampletion graph. Each noder in
the graph represents an individual, labeled with the set of conaHptsit has to sat-
isfy, i.e, if C € L(z),z € C!. Each edggz,y) in the graph is labeled with a set
of role names, and represents a pair occurring in the interpretation of the role, i.e., if
L(z,y) = R, (x,y) € R

The completion graph for &HOZN KB is initialized as aforestof root nodes,
each representing a nominal (individual) asserted in the ontology. Then, a seees of
pansion rulesare applied in succession to build the graph, each adding new nodes or edges
(and/or labels resp.), in keeping with the semantics of the concept and role descriptions.
For example, if a concegt M D is present in the label of a node then the individual
thatz represents must be an instance of bdtAnd D and thus”, D are separately added
to £(x) as well (this is handled by the-rule). Similarly, if the concepliR.E is present
in the label of a nodg, then there must exist at least one R-edge from the individual rep-
resented by to another (arbitrary) individual of typ®, and thus if no such edge already
exists, an edge is created from nadi® a new node and the conceplt’ is added to label
of z (this is handled by th&-rule).

Note that the expansion rules aren-deterministicFor example, if the disjunction
C' U D is present in the label of a node, the algorithm chooses gith@rD to be added
to the node label before proceeding. To account for this non-determinism, we consider
a tree of completion graph& instead of a single graph, i.e., the application of a non-
deterministic rule results in the creation of a new completion graph, add&dfty each
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possible non-deterministic choice (for this purpose, we also maintain’asie¢dges to
be added at the next level of the tree).
The expansion rules for tR&HOZ Q consistency checking algorithm are shown in

Table 2.3. A summary of the terminology used in the rules is as follows:

e If (z,y) is an edge in the completion graph, theis called asuccessoof x andx
is called apredecessoof y. Ancestoris the transitive closure of predecessor, and
descendanis the transitive closure of successor. A ngds called arR-successor
of a nodex if, for some R’ with R’ T35, R, R € L(z,y). A nodey is called a
neighbor (R-neighbor) of a nodeif y is a successor (R-successor)yadr if x is a
successor (Inv(R)-successor)of
For a role S and a node in G, we define the set of x’S-neighborswith C in
their label, S¢(x, C), as follows: Sz, C) := {y| v is an S-neighbor ofr and
Ce Ly}

e Anodez is anominalnode if£(x) contains a nominal. A node that is not a nominal
node is ablockablenode. An R-neighboy of a noder is safeif (i) x is blockable
or if (ii) « is a nominal node angis not blocked.

¢ In order to ensure termination when dealing with infinite models, the algorithm uses
a special condition known ddocking A nodez is label blocked if it has ancestors

xg, y andy, such that

1. z is a successor af, andy is a successor af,,

2. y,x and all nodes on the path fropto = are blockable,

INote: In Table 2.3Add(C, x) is an abbreviation fo£(z) « L(x) U {C}, Add(S, (x,y)) is an abbre-
viation for £L(z,y) <« L(z,y) U {S}
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3. L(x) = L(y) andL(xy) = L(yo), and

4. L(2',2) = LY, y).

In this case, we say thgtblocksz. A node is blocked if either it is label blocked
or it is blockable and its predecessor is blocked; if the predecessor of a safe node
is blocked, then we say thatis indirectly blocked.

¢ In some rules, e.gs-rule, wemergeone nodey, into another node. This involves
addingL(y) to L(x), ‘moving’ all the edges leading tp so that they lead te and
‘moving’ all the edges leading from to nhominal nodes so that they lead fram
to the same nominal nodes; we then remov@rney (and blockable sub-trees
belowy) from the completion graph. Details of the Merge and Prune operations are

in [52].

A completion graph im is said to contain a clash if:

e both the concept§’, ~C are present in the label of the same node

¢ A node that contains the conceptn.S (whereS is a role) has more thandistinct
S-neighbors

e A nominal nodeo which can only represent one distinct individual in a model is

said to belong to two distinct nodes in the graph, bes, £(z) M L(y) wherex # y

Each time a clash is detected, the algorithm jumps to the next graphanthe
same level. Once all the leaf graphsAnhave been explored (i.e., all non-deterministic
choices have been considered) and/or no more expansion rules can be applied, the algo-

rithm terminates.
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M-rule: if (C1 M Cy) € L(z), x not indirectly blocked, an§Cy,Cs} € L(x),
Add({Ch Cz},X)).

U-rule: if (C; U Cy) € L(z), x notind. blocked, andC;, Co} NL(z) = 0,
Generate graph&; := G for each; € {1,2}
A ::AU{Gl,GQ}; b)) :EU{G =< Gl,G < GQ}
Add(G;,x) in G, for eachi € {1, 2}

J-rule: if 35.C € L(x), = not blocked, and no S-neighbgmwith C' € L(y)
Createy, Add(S, (x,y)), Add(C,y)

V-rule:if VS.C € L(x), x notind. blockedy S-neighbor ofc andC' ¢ L(y):
Add(C,y)

Vt-rule:if VS.C € L(z), x notind. blockedy R-neighbor ofr with Trans(R) andR C S:
if VS.C ¢ L(y), Add(VvS.C,y)

>-rule: if (> nS) € L(z), « not blocked: and no safe S-neighbgss.., y,, of x with y; # y;
Createyi, .., y; Add(S, (x,vi)); #(vi, ;)

<-rule:if (< nS) € L(x), x not ind. blockedy, .., y., S-neighbors of xin > n:
For each possible paif, y;, 1 <i,j < m;i # j:
Generate agrap8’; A .= AU{G'}; 2 =X U{G < G’}
if y; a nominal nodelMerge(y;,y;) in G,
else ify; a nominal node or ancestor @f, Merge(y;, i),
elseMerge(yi, yj) in G’
if y; is merged intay;, for each concepf’; in L£(y;),

O-rule: if, {o} € L(z) N L(y) and notz#y, then Merge(x, y).

NN-rule:if (< nS) € L(z), x nominal nodey blockable S-predecessorofand there is non
s.t.1 <m < n,(<mS) € L(x) and there exist» nominal S-neighbors, ...z, of x
Stz # 25,1 <i < j<m,then
Generate nev&a,, foreachm, 1 <m < n,addA :=AU{Gn}; X=X U{G < Gn}
and do the following in eacty,:
Add(< mS, x)
createyy, ...ym; Add y; # y; forl <i < j <m.
Add(sv <X7 Yi>); Add({ol}a yi):

Table 2.3: Tableau Expansion Rules &HOZ O
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If all the leaf completion graphs i\ contain a clash or a contradiction, the al-
gorithm returnsanconsistentas no model can be found. Otherwise, any one clash-free
completion graph generated by the algorithm represents one possible model for the con-

cept and thus the algorithm returcsnsistent

2.4.1 Optimizations

Non-deterministic tableau algorithms for expressive DLs are intractable (e.g., the
worst case complexity of th& HOZQ algorithm is 2NExpTime [103]). As a conse-
guence, there exists a significant gap between the design of a decision procedure and the
achievement of a practical implementation. Naive implementations are doomed to fail-
ure. In order to achieve acceptable performance, modern DL reasoners, such as RACER
[104], FaCT++ [50] and Pellet [97], implement a suite of optimization techniques [51],
[40], [39], [96]. These optimizations lead to a significant improvement in the empirical
performance of the reasoner and have proved effective in wide variety of realistic appli-
cations.

We briefly summarize some of the key optimizations for DL tableau algorithms:

e Pre-processing Optimizations:

— Normalizationand Simplification Normalization is the syntactic transforma-
tion of a concept expression into a normal form. For example, in the negation
normal form (NNF), a negation appears only before an atomic concept. Any
concept can be converted to an equivalent one in NNF by pushing negations

inwards using a combination of DeMorgan’s Laws. Normalization helps dis-
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cover contradictions easily, by syntactically comparing expressions in their
normal form, e.g.C M —~(CU D) — (CT1=C) M =D.

Sometimes, normalization can also include a range of simplifications so that
obvious contradictions and tautologies are detected; for exarfple] 1)

could be simplified tal .

— Absorption Absorption is the process of eliminating certain kinds of General
Concept Inclusion axioms (GCI's) by embedding them in primitive concept
definitions. The basic idea is to manipulate the GCI so that it has the form
of a primitive definitionA C D,, whereA is an atomic concept name. This
axiom can then be merged into an existing primitive definition. Cj, to give

A C Cy I Dy which then replaces the GCI in the KB.

The significance of absorption is the following: From a reasoning standpoint,
the primitive definition axiomC' C D can be used asmacroto expand the

label of a node which containS — by directly addingD, while the same

does not hold for General Concept Inclusion Axioms (GCIs). Instead, a GCI
needs to be converted to the disjunctibn! —-C' that must be added &®very

node label in the completion graph, which leads to a non-deterministic search,
and is thus very expensive. Hence, the use of absorption can greatly reduce
reasoning times for KBs containing numerous (absorbable) GCls (e.g. the

Galen medical ontolody.

e Optimizations during Tableau Expansion:

2http://www.cs.man.ac.uRbrrocks/OWL/Ontologies/galen.owl
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— Lazy Unfolding Given an unfoldable KB (consisting of unique, acyclic
concept definitions), and a conceptwhose satisfiability is to be tested with
respect td/, it is possible to eliminate from C all concept names occurring in
7 using a recursive substitution procedure calleéblding The satisfiability
of the resulting concept is independent of the axiom3 iand can therefore
be tested using a decision procedure that is only capable of determining the

satisfiability of a single concept.

An optimization usually enforced in reasonerkasy unfoldingi.e., unfolding
on the fly, using pointers to refer to complex concepts, and detecting clashes
between lexically equivalent concepts as early as possible, e.g., detecting a
clash between the complex concefiis1 D) and—(C' 1 D) before unfolding

them.

— Dependency Directed Backjumpingependency directed backjumping is an
optimization technique that adds an extra label to the type and property as-
sertions so that the branch numbers that caused the tableau algorithm to add
those assertions are tracked. Obviously, assertions that exist in the original
ontology and the assertions that were added as a result of only deterministic
rule applications will not depend on any branch. This means these assertions
are direct consequence of the axioms in the ontology and affect every inter-
pretation. If a clash found during tableau expansion does not depend on any
non-deterministic branch, the reasoner will stop applying the rule as it is ob-

vious that there is no way to fix the problem by trying different branches.
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Chapter 3

Related Work

Diagnosis has been widely regarded as an integral component of (deductive) rea-
soning systems for many years. Logic programming systems, rule-based expert systems,
deductive databases and automated theorem provers (ATP) have all incorporated debug-
ging and explanation facilities of some sort.

In this chapter, we review other related approaches. In particular, in section 3.1, we
discuss the various types of debugging support found in existing logic-based systems; and
in section 3.2, we look at two classical theories of diagnosis and revision, and describe
the relation between these generic theories and the debugging/repair services devised in

this thesis.

3.1 Diagnosis in Reasoning Systems

We first discuss debugging support found in non-Description Logic (DL) based
deduction systems, and compare and contrast it to the DL case. We then enumerate recent

trends for explanation and debugging in DL systems.

3.1.1 Debugging of Logic Programs

Logic Programming (LP) is a well-known programming paradigm based on a sub-

set of First Order Logic—-named Horn Clause Logic. LP has been extended with ex-
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plicit negation (extended logic programming XLP [83]) and defaults giving rise to non-
monotonic reasoning. These programming languages have both, a proof-theoretic and a
model-theoretic semantics, with resolution-based algorithms for reasoning. Hence, the
debugging of LP and XLP programs is a related field we need to explore.

We discuss two different debugging paradigms for Ldperationalanddeclarative
debugging.

The naive approach to interactive debugging (a.koperationaldebugging) in-
volves instrumenting the program and exploring its execution trace [20], i.e., the user in-
serts appropriate break points in the program (e.g., between the expand and branch steps
of the algorithm, or after each step of the inference function) and is given control of how
many and what type of steps can be taken (¢cgce andspy commands in Prolog
work in this manner). Commands to these systems are typically broken into two cate-
gories,controlcommands that allow the computation to continue until a specified point is
reached or condition occurred, adidplaycommands that allow the user to query the sta-
tus of atoms and rules within the current context. Numerous debugging systems work on
this methodology. However, debugging of this kind can be painstakingly difficult placing
a huge cognitive load on the user.

The analog from a DL debugging point of view is interesting to consider. Explain-
ing the trace of the tableau reasoner amounts to iterating through the expansion process of
generating the completion graph, and displaying the sequence of expansion rules that are
fired. However, there are several complications that need to be dealt with here. Firstly,
the reasoner heavily modifies the original axioms of the KB internally (using techniques
such as normalization, absorption etc.) and the labels of the nodes and edges in the graph
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barely resemble the original terms. Though it is possible to extend the algorithm to keep
track of the axioms in the KB responsible for various tableau events (as done in Chapter
4), it places an additional burden on the user to correlate between the internal terms and
the asserted axioms. Secondly, the application of expansion rules modify the graph in
a variety of different ways, e.g., some rules cause a nhode merge, whereas others intro-
duce successors to anonymous nodes, and explaining such graph changes to the user can
be difficult, possibly requiring a flexible and scalable visual interface. Thirdly, even for
simple inferences, the number of steps in the reasoning process can be very large due to
many trivial steps, and thus isolating and identifyergical steps is important (besides
allowing the user to systematically skip steps). For example, the point where a non-
deterministic choice is introduced in the algorithm, or where the algorithm backtracks to

a previous choice point can be considered as key steps, besides the obvious critical step
when a contradiction is detected. Fourthly, it is not easy to retrace steps without caching a
large amount of data. Also, memory management is an important issue in general, given
that the size of the completion graph can blow up for complex inferences in large KBs.
Besides the above factors, it is assumed that the user is aware of the basics of tableau-
based reasoning. For all these reasons, to our knowledge, no effort has been made yet to
visualize the trace of the tableau reasoner in a meaningful and effective manner.

On the other handlgorithmicor declarativedebugging introduced by Shapiro [94]
introduces a theoretical framework for debugging. The process briefly works as follows:
the debugging system builds an abstract model representing the execution trace of the
program and elicits feedback from amnacle (could be the user) to navigate the model
in a top-down manner till the faulty or erroneous component is reached. The declarative
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notion comes from the fact that the semantics of the program are encoded in the oracle,
which needs to be able to differentiate between expected and unexpected behavior. The
underlying principle is that a correct and complete oracle will always find the error using
this algorithmic debugging procedure. The technique has been extended over the years.
For example, while the oracle in [94] could only give yes/no answers, later work [31]
allowed the oracle to provide assertions about the intended program behavior. Also, more
recently, techniques have been developed to improve the quality of the queries posed to
the oracle/user in debugging programs withswer Sesemantics [15] (also known as
query-basediebugging).

We now discuss the possibility of building an analogous system to deal with expres-
sive DLs. The basic procedure would be to have the user start with the root inconsistency
condition and investigate its dependencies in a top-down manner until the source of the
problem is reached. Taking a simple example, if the contradiction or clash in the tableau
reasoner was because a conegpind its negation were present in the label of some node
x, we would start by displaying this root clash information to the user in a sensible manner
(as done in Chapter 7). Suppose the user felt-tiiatvas mistakenly present, i.e., the in-
dividual represented by the nodeshould not have been of typ&’, the next step would
be to display to the user, the conditions that causédto occur in£(x). The process
would recursively continue until the user discovered a faulty premise (axiom). The main
challenge in this case lies in hiding the underlying details of the tableau reasoner and pre-
senting the conditions and its premises in a useful manner, while dealing with the fact that
a large number of inference steps may be present. In addition, there could be numerous

clashes in the completion graph generated by the reasoner and we need to focus on only
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those clashes responsible for the inconsistency.

Finally, we also discuss a technique to diagnose and remove contradictions in XLP
programs. The common theme, described initially in [84] (and later extended in [25] etc.),
is to revise a contradictory program by changing the values of one ordaeta@ltliterals,
which otherwise due to Closed World Assumption (CWA) is assumed tauledeading
to the contradiction. The revision changes the value of the defaults to fitbeor unde-
finedin order to regain consistency. The algorithm first determieeisablesi.e., literals
whose values can be changed. It then exhaustively computes all consequences of the pro-
gram containing contradictions and finds the sets of support (SOS) for each contradiction.
Finally, it uses Rieter’s Hitting Set [88] approach to arrive at minimal repair solutions in-
volving the revisable literals in the computed SOS. An advantage of this repair technique
is that it focuses on defaults, which provide an easy point for alteration. However, the
technique is not directly applicable to OWL-DL, since OWL is based on a monotonic
description logicSHOZIN and hence lacks support for defaults. An interesting notion to
take from here is the possibility of ontology modelers providing a list of revisable axioms
or terms beforehand, which would act as a useful pointer to the debugging tool while

generating repair solutions.

3.1.2 Expert System Debugging and Maintenance

Rule-base verification (or validation) has been an important area of research in the
expert-system community. Verification criteria range from semantic checks for consis-

tency and completeness, to structural checks for redundancy, relevance and reachability.
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Recent surveys can be found in [85], [2], [86].

Rule-based debuggers differ from programming language debuggers in that the for-
mer focus more on high-level details such as the interaction of rules with the underlying
facts in the knowledge base, the interaction among rules, and the rule-event interaction.
Early systems such as TEIRESIAS [26] (designed to work in conjunction with a com-
pleted MYCIN [95] rule base), and ONCOCIN [99] would generate a rule model showing
the conditions used to reach certain conclusions, and test the model for conflicts, redun-
dancy, subsumption, and missing rules or conditions. The significant problem with this
approach is the combinatorial explosion, in which an impossibly large number of com-
binations exist. To deal with this problem, heuristic approaches have been suggested in
Nyugen’s CHECK system [77] and Stachowitz's EVA system [18]. CHECK builds re-
lational tables to represent rule-dependencies (determined by matching clauses in rules)
and generates a DAG from the generated tables. It inspects the DAG to find errors such
as circular rules and unreachable conclusions. Similar techniques to detect structural (or
styledefects as defined in Chapter 1) in description logic KBs can be seen in tools such
as Chimaera [70]. From a semantic point of view in DLs, heuristic approaches to detect
simple conflicts in axioms based on structural dependency analysis can be seen in Chapter
5 (Structural Analysis) and [105]. More details on these follow in Section 3.1.5.

In some expert systems, the user can enter into an interactive dialogue with the sys-
tem, and choose to focus on a specific executed part of the expert system so as to better un-
derstand its working. The explanations are provided using natural language paraphrases
(e.g., MYCIN [95], XPLAIN [100], ESS [101]) or using an appropriate visualization
scheme (e.g., Vizar [23]). In some systems, where there are a large number of low-level
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rules, or complex problem-solving strategies, knowledge engineers are allowed to pro-
vide for higher-leveimeta-rules or abstract representations of the strategies, which are

then used by the system to generate more concise explanations. Similarly, to help the
user understand the rationale behind some of the rules, the implicit domain knowledge
underlying the rules such as preferences for certain rules, tradeoff conditions etc. can be
explicitly encoded by the system designer, which is then available in the debugging phase.

From a repair point of view for DL-based ontologies, the analog of annotating rules
in the expert system could be useful. This would mean annotating axioms in the ontology,
or explaining the modeling philosophy behind a particular set of concept/role definitions
(e.g., by following the OntoClean [38] philosophy).Besides being used to explain the
rationale for the presence of a certain set of axioms, the annotations can be used to rank
axioms in the repair phase (see Chapter 6) and/or suggest revisions to the ontology which
are in keeping with the modeling methodology.

Finally, we also discuss recent trends involving the use of machine learning to detect
and resolve errors in rule-based expert systems. This has been seen in systems such as
KR-FOCL [82] and more recently in [106]. The idea here is to investigate the execution
trace of the system when used to learn a set of training cases containing positive and
negative tests in order to expose faulty clauses in rules, e.g., clauses with extraneous or
missing literals (similar form of diagnosis has also been proposed for logic programming
systems [22]). Revisions are based on various heuristics that check which clauses are
operationalizedcome into effect) during the execution. If a clause is not operationalized
at all during the learning phase, it is treated as a redundant clause and is removed from
the system.
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The analog in the DL case would be to devise a test suite for the ontology contain-
ing desired and undesired entailment tests and running the reasoner to see which tests
pass/fail. Then, knowing the justification sets for the desired (positive) entailment tests
that pass (using the Axiom Pinpointing service seen in Chapter 4), we can determine the
unusedaxioms which are not responsible for any entailment and flag them to the user.
Also, for the undesired (negative) entailment tests that pass, we can look at the corre-
sponding justification sets and consider appropriate revisions to the ontology (on the lines
of the repair strategies seen in Chapter 6). However, a more difficult problem is dealing
with the desired entailment tests thatl. In this case, a trivial solution is teimplyadd
the entailment as an axiom to the ontology, but this is probably not what the user expects.
The problem is compounded by the fact that explaining the cause of the non-entailment
to the user is hard, since in terms of the tableau-based refutation technique, it implies that
the reasoner is able to constrasty onemodel representing the counter-example. Ex-
planations using counter-examples have been investigated in [67], where the author deals
with a much weaker description logic for which non-tableau based reasoning algorithms

are used. Extending this technique to tableaux calculus is, however, an open issue.

3.1.3 Repairing Integrity Constraint Violations in Deductive Databases

In this subsection, we briefly discuss automated repair strategies when dealing with
Integrity Constraint (IC) violations in deductive databases. ICs are certain rules (usu-
ally specified at database design time) that must be satisfied by the database under all

transactions to maintain integrity. In [75], an approach is presented where the designer
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of the consistency constraints specifies a set of repair actions to be taken for each con-
straint. Once a consistency violation is detected, the system automatically selects one of
the repair actions for one of the violated constraints (possibly prioritized), performs it,
and restarts the consistency check.

While there exists no analogous technique for logic-based KBs, a similar theme
has been discussed in [11], where inconsistency resolution is considered in the context of
stratified propositional KBs. In the DL case, the stratified KB, as carefully modeled by
the ontology designer, would contain alternate versions for each of axioms (each at a dif-
ferentstrataor layer), with the idea that when a particular erroneous axiom is found, it is
automatically replaced by the corresponding axiom in a lower strata until the consistency
of the KB is restored. Obviously, designing such a KB requires a lot of skill and effort on
the ontology modelers’ part.

An alternate approach to automated repair in deductive databases is presented in
[72], where the database consistency check is traced to obtain symptoms that violate the
constraints, and dependency analysis is done to identify potential and definite causes.
The causes are transformed into repair transactions and presented to the user. In order to
“clean up” repairs, various heuristics are used to eliminate unwanted solutions (e.g., facts
that derive an existing inference are not added) and sort dp&atsibility (e.g., more
importance is given to shorter transactions, or those that minimally change the database).
Similar heuristics can be seen in our Ontology Repair service (Chapter 6), where we

determine the importance of a repair solution based on its size and impact on the ontology.
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3.1.4 Proof Explanation in ATPs

We briefly review the proof-explanation literature to compare and contrast our ex-
planation support described in Chapter 4 (Axiom Pinpointing service implementation).

Most proof explanation facilities for ATPs are based on the following fundamental
principles described in [37]¢ (a) The exact way in which the knowledge is coded and
structured in the system is irrelevant to the us@r) All information accidental to the
proof process should be omitted from the explanat{gh;The user himself must be able
to achieve the deduction steps in a simple and direct inferential process as long as he
knows the premises, in their correct order, and the conclusidhThe amount of infor-
mation contained in any explanation step should be limited to the amount that can be
simultaneously visualized and processed by a human being without great effort.”

The above principles translate into a set of transformations that need to be applied
to the proof to convert it into a human-oriented form. One common example (as seen
in [32], [53], [33] etc.) is the use gbroof treesas a flexible structure for the argument,
where the root of the tree is the main theorem, and every inference rule that proves the
theorem becomes a child of the root. The tree is recursively expanded by considering
the premises of each child inference rule. The use of the tree structure allows the user
to direct his attention to a particular fragment of the proof, focus solely on the relevant
conditions necessary to derive that fragment, and use the chain of inferences to understand
the broader reasoning step.

In our case, the main explanation generation component closely resembles the ap-

proach in [79], which generates arguments in FOL-based KBs based on the above prin-
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ciples. Common ideas here include using an appropriate tree-style layout (indentation)
to construct an inference chain, suppressing irrelevant parts of the axioms that do not
contribute to the entailment, and the use of hypertext to support navigation across differ-
ent axioms (parts of the argument). In this manner, our system adheres to the principles
above, however, the main challenge for expressive DLs is due to the complex interaction
between the inference rules leading to the final conclusion, which makes it difficult to
order the steps of the deduction properly. We have explored workarounds as discussed in
Chapter 8 (e.g., by inserting intermediate inference steps in the proof), though generating

an easy-to-understand explanation chain for all cases remains an open issue.

3.1.5 Description Logic (DL) Explanation and Debugging

We divide this discussion into two parts — first we enumerate generic explanation
support for DLs, and then we focus specifically on the debugging and repair facilities

developed for DL KBs in recent years.

Explanations for DL, 1995 - present

One of the earliest works in the field of explanations for description logic (DL) sys-
tems is [69], where a deductive framework based on natural deduction style proof rules
is used to explain inferences in the CLASSIC [13]. CLASSIC is a family of knowledge
representation languages based on DLs and it allows universal quantification, conjunction
and restricted number restrictions. In [69], the authors argue that the standard implemen-

tation for reasoning in CLASSIC based on structural subsumption algorithms involves
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steps such as normalization, graph construction and traversal etc., where the asserted in-
formation is modified to such an extent that explaining the inference by mirroring the
implementation and tracing the code directly is difficult for users to follow. Hence, they
propose a proof-theoretic form of explanation, whereby the reasoning procedures of the
system are encoded as natural deduction style inference rules (e.g. modus ponens). In
order to simplify explanations, they define the notion of atomic descriptions, atomic ex-
planations and explanation chains, and also decompose lengthy explanations into smaller
steps. However, there exist some drawbacks of this approach. Firstly, the authors ac-
knowledge that the definition of atomic descriptions is sufficient for CLASSIC, however,

it breaks for more expressive DLs (e.g. including role composition). Secondly, the rel-
ative simplicity of the inference rules results from the fact that the reasoning algorithms
are based on structural subsumption. However, structural subsumption is known to be in-
complete for expressive DLs, where tableaux algorithms are typically used. In such cases
(i.e., for more expressive DLs), explanation generation needs to be modified and natural-
semantics style inference rules corresponding to the tableaux expansion procedure need
to be derived, which adds a new level of complexity.

The authors take an alternate approach in [14] by introducing a sequent calculus to
explain ALC subsumption. The motivation here is to use modified sequent rules to im-
itate the behavior of tableau calculus and that of human reasoning, and additionally use
guasi-natural-language paraphrases to explain the rule application. An advantage of se-
guent rules is that the original structure of the concepts is preserved and the concepts are
not shifted between the subsumer and subsumee positions in the proof. This principle has

been extended to definitoril LEH Fr+ TBoxes (with global domain/range restrictions)
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in [62] and implemented in the ontology editor OntoTrack [61]. While this explanation
technique is tied to the tableau algorithm, its main disadvantage is that most of the com-
mon tableau optimizations (except lazy unfolding) cannot be applied as they modify the
structure of the asserted axioms, which the explanation component is very sensitive to.
Hence, the performance penalty on the explanation generation is huge. In addition, the
authors of [62] acknowledge that extending the technique to say, generalized cardinality,
could blow up the explanation because of the potentially huge set of cardinality enforced
combinatorial changes. Finally, another drawback we see with this approach is that the
quality of the quasi-NL explanations is severely hampered by complex concept descrip-
tions, and it is an open question of how effective the NL can baufaterstandinghe

cause of the entailment. The lack of a user study in [62] is a concern in this respect.

In contrast to the earlier works, [6] describes a technique to find minimal sets of ax-
ioms responsible for an entailment (in this case, minimal inconsistent ABoxes) by labeling
assertions, tracking labels through the tableau expansion process and using the labels of
the clashes to arrive at a solution. The technique is applicable to theddlfic-. Similar
ideas can be seen in [91], where the motivation is debugging unsatisfiable concepts in the
DICE terminology. The main contribution of the paper is a formalization of the problem
including the specification of terms such as MUPS and MIPS, which are essentially min-
imal fragments of a KB responsible for a particular set of error(s) in it. We have extended
this work in [58] to the more expressive logkd{ZF, which corresponds to OWLsite,
where we have presented a computationally more efficient algorithm to find the MUPS
by avoiding tableau saturation (which [91] proposes). Also, we show through a usability
evaluation that various Ul enhancements to the display of the MUPS, such as highlighting
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key entities, ordering/indenting axioms etc. (see Chapter 8) are useful for understanding
and debugging unsatisfiable concepts in OWL ontologies. We have further extended this
technique to explain arbitrary entailments in OWL-DL as discussed in Chapters 4, 7.

Finally, there has been recent work done on explaining DL reasonidg thusing
an FOL-resolution based approach [28]. The idea here is to translate the DL axioms into
FOL formulae or clauses, use a resolution-based theorem prover to derive the contradic-
tion (which is expected beforehand), and transform the resolution proof nefoit@tion
graph The refutation graph being a more abstract representation of the proof is more
useful for explanation purposes, and traversing the graph in an appropriate manner helps
understand the cause of the various intermediate resolution steps leading to the ultimate
goal. The work is still in its infancy, with the authors presenting two simple examples
to demonstrate their technique. It is interesting to see whether the technique scales to
more complex examples containing many steps of resolution in a large proof. Challenges
include dealing with the problem of skolemization due to existential restrictions (which
blurs the gap between the asserted axioms and the FOL clauses), deriving a traversal of
the graph that is easy to follow/understand (since there could be many traversal options),
and determining through a usability evaluation, whether users find this technique of ex-
planation helpful.

We also note that having generated an explanation|rifezence Wel{lW) In-
frastructure [68] can be used to exchange them across reasoning systems and users. IW
comprises of a web-based registry for information sources, reasoners, etc., a portable
proof specification language (PML [24]) for sharing explanations, and a browser to view

and interact with the proof explanation in different formats.
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In summary, though there exists various forms of explanation for inferences in DLs,
there is no generic solution. The success of the explanation depends on factors such as
skill, expertise and background knowledge of the user, and preference for a particular
kind of reasoning algorithm. For example, users exposed to resolution would prefer the
last approach as opposed to those more comfortable with tableaux-based reasoning. Also,
most of the explanation techniques have only been recently applied to DLs, which is not
surprising given that OWL became a W3C recommendation in 2004, and it is interesting
to see how the techniques evolve to cater to the needs to the OWL user community as it

gets more exposed to DL-based knowledge representation.

Recent Developments in Debugging/Repair of DL KBs

In this subsection, we review specialized techniques for debugging and repairing
errors in DL knowledge bases. We note that with OWL reaching recommendation status
only recently, the area of debugging OWL ontologies, in particular, is a largely unexplored
field.

In [70], the authors present a tool, Chimaera, which apart from supporting ontology
merging, allows users to run a diagnostic suite of tests across an ontology. The tests
include incompleteness tests, syntactic checks and taxonomic analysis, and the results are
displayed as an interactive log, which the users can study and explore. The focus here
is clearly on detecting style defects, whereas explanation support for semantic defects is
fairly weak.

Work has been done on a ‘Symptom Ontology’ [7] for representing errors and warn-
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ings resulting from defects in OWL ontologies, and an implementation is provided in the
tool, ConVisor. The authors here do a good job of categorizing commonly occurring
symptoms and motivate the significance of creating and exchanging standardized bug re-
ports using a symptom ontology. However, just as in the previous case, their work does
not deal with pinpointing the cause of logical inconsistency.

For dealing with inconsistency in DL KBs, broadly two different approaches have
been taken. The first is the solution in [6], [91], as seen in the previous section, which
involves identifying the source of the inconsistency (MUPS) in the ontology and correct-
ing it manually. This technique has been extended in [93], [35] where the authors use
Reiter’s Hitting Set algorithm [88] (and subsequently a faster algorithm in [92]) to find a
diagnosisset, i.e., minimal set of axioms in the ontology whose removal turns it consis-
tent. However, the main drawback here is that the solution focuses simply on turning the
ontology coherent without considering the quality of the solution. Also, as noted eatrlier,
the tableaux-based technique to find the MUPS is limited to unfoldd8léF TBoxes.

The second approach is based on phrasing the problem as a belief revision as done
in [74]. [71] uses this idea to propose revising the knowledge base to get rid of the in-
consistency by rewriting the axioms to preserve semantics, e.g., introducing disjunctions.
On a similar note, [54] proposes tolerating inconsistent theories and using a non-classical
form of inference to derive meaningful results from a consistent sub-theory.

We propose a hybrid of both approaches, by developing techniques to identify all
sources of inconsistency and using metrics based on belief revision suahiasal im-
pactto arrive at meaningful repair solutions.

Finally, [105] describes a black-box heuristic approach for debugging OWL, which
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is similar in principle to the structural analysis algorithms described in [58]. The idea
here is to use a pre-defined set of rules to detect commonly occurring error patterns in
ontologies based on extensive use-case data (for example, as enumerated in [87]). While

such a rule-based heuristic can be fast, it is clearly incomplete.

3.2 Key Theories of Diagnosis and Revision

In this section, we briefly look at two mature and widely accepted theories of di-
agnosis and revision that relate to the work described in this thesis — Reiter’s theory of

model-based diagnosis, and the AGM Belief Revision theory.

3.2.1 Reiter's Theory of Diagnosis based on First Principles

In [88], Reiter developed a general theory of diagnosis based on the “first princi-
ples” approach, i.e., using a representation language based on first-order logic. A system
to be diagnosed is defined by a setad M PONENTS, a system descriptiofD, and
a set of observation§) BS. A diagnosis for 6D, COMPONENTS,OBS) is defined

to be a minimal set\ C COM PON ENT'S such that
SDUOBS U{=AB(c)lc e COMPONENTS — A} U{AB(c)|c € A}.

is consistent, wherd B is a predicate indicating that a component is abnormal. Re-
iter proposes a characterization of a diagnosis which uses the concegpdmfliat set A
conflict set for §D, COMPONENTS,0BS)isaset{ci,..c.} CCOMPONENTS
such thatSD U OBS U {=AB(¢;) U .. U 7AB(c)} is inconsistent. A conflict set is
minimal iff no proper subset of it is a conflict set. Finally, Reiter uses the notion of hitting
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sets. A hitting set for a collection of sefsis a setd C (Jg. S s.t. HN S # () for each
S e C. Ahitting set forC' is minimal, iff no proper subset of it is a hitting set fOr.

Two of the main results of Reiter's work are: a theorem which states that the di-
agnosis for §D,COM PONENTS, OBS) is a minimal hitting set for the collection of
conflict sets for § D, COMPONENTS,OBS); and a technique to generate minimal
hitting sets using the notion oftditting Set TregHST) that does not require the conflict
sets to be minimal.

We have used Reiter’s theory of diagnosis in the context of the Axiom Pinpointing
Service (Chapter 4), where we employ the HST concept to obtain all the justifications
for an arbitrary entailment of a DL KB. The idea here is that the justifications for the
unsatisfiability entailment correspond to minimal conflict sets in the general case, and an
algorithm that generates minimal hitting sets can also be used to find all minimal conflict

sets (by duality, see proof in Chapter 4, Theorem 4).

3.2.2 AGM Belief Revision Postulates

There has been a body of work on belief revision with roots at least as far back as
[36] and subsequently formulated in [1].

The AGM belief revision theory is concerned with formulating postulates to char-
acterize three operations of belief revision: adding a new assertion to a knowledge base
(“expansion”); removing an assertion from a knowledge base (“contraction”); adding a
new assertion to knowledge base that makes it inconsistent, and adjusting the result to

restore consistency (“revision”). Revision can be viewed as a contraction followed by an
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expansion. The authors express these postulates in a very high-level way.

Two key revision postulates are (Gardenfors and Rott, 1995, p.38):

“(i) The amount of information lost in a belief change should be kept minimal.
(i) In so far as some beliefs are considered more important or entrenched than others,

one should retract the least important ones”.

These two postulates are satisfied by our Ontology Repair Service (Chapter 6), i.e.,
(i) translates in our case to removing axioms which drop the least number of entailments
from the KB (minimal change), and) translates to removing axioms that are of the least
rank (or importance), based on some manual or automated ranking criteria.

Note that an in-depth analysis of the applicability of the AGM theorem to DLs is

beyond the scope of this thesis. For more details, we refer the reader to [34], [60].
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Chapter 4
Core Debugging Service: Axiom Pinpointing

4.1 Introduction and Background

As noted in Chapter 1, OWL-DL is a World Wide Web Consortium standard for rep-
resenting ontologies on the Semantic Web [27]. It is a syntactic variant of the Description
Logic SHOZN (D) [52], with an OWL-DL ontology corresponding to&HOZIN (D)
knowledge base.

DL systems typically offer a set of basic inference services, such as concept clas-
sification, concept satisfiability and knowledge base (KB) consistency checking, among
others. However, in order to be useful for real-world applications, a DL-based Knowledge
Representation (KR) system must expose to the user additional more-sophisticated ser-
vices. A typical example is the generationexfplanationdor the inferences performed
by the reasoner, such as inconsistencies in the KB and entailed subsumption relations in
the concept hierarchy. These services are critical, especially with the advent of the Se-
mantic Web, which has exposed Ontology Engineering to a broader audience of users and
developers.

A natural question is whether these services can be formalizeassningservices
in a way that is both useful and understandable to modelers. In this chapter, we present
a novel DL inference servicé&xiom Pinpointingthat, given a KB and any of its logical

consequences, provides the set of alljtrstificationsfor the entailment to hold in the KB.
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In this context, we provide a formal notion of justification and propose a set of decision
procedures for the axiom pinpointing problem.

Roughly, given aSHOZN axiom (or assertion) entailed by a knowledge basg
a justification fora in £ is a minimal fragment’’ C K responsible forv to occur. The
justification ' is minimal in the sense that is a logical consequence &f, on the one
hand, and any proper subset/dfdoes not entaity, on the other hand. In general, there
may exist various justifications fer in /C.

We use a simple example to illustrate this notion. Consider akk&mposed of

the following axioms:

1. ACBncC

2. BC —-F

3. AC DN4R.E

4. DC CNVR.B

In the KB above,A, B, C, D, E represent atomic concepts, aRdrepresents an
atomic role. In what follows, we will use natural numbers to denote each of these axioms.

We find thatC = (A C C'). However, the minimal fragments & that entail the
same subsumption relationship &e = {1} andk, = {3,4}. We refer tok’; andk; as
the justifications for the subsumption entailment C.

Now, while the sample KB considered above is rather small, it is easy to see the
significance of the axiom pinpointing service when dealing with large KBs consisting
of hundreds or thousands of axioms. By specifying the minimal asserted axiom sets
responsible for an entailment, the service can be used to isolate, highlight and explain the
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cause or basis of the entailment. This is crucial from a debugging standpoint, e.g., given
an unsatisfiable concept, the service exposes all and only the axioms that are responsible
for the error. In this case, obtaining all the justifications becomes necessary for resolving
the error, since at least one erroneous axiom in each of the justification sets needs to be
fixedin order to make the concept satisfiable.

However, the axiom pinpointing service discussed so far has an inlggeantarity
limitation: it works at the axiom level and does not distinguish the spegpéits of the
axiomresponsible for the entailment. Taking our earlier example of the sampl& KB
the conceptB in the conjunctB 1 C' in axiom 1 is, in some sensetrelevant for the
subsumptioM C C, i.e., if the axiom was modified such that only the concgfin the
conjunct) was removed or replaced with another conceptEsalye subsumptiod C C'
would still hold. Similarly, the conceptR.E and the concept R.B in axioms3 and4
respectively, are both irrelevant for the entailment= C. It is important to consider
parts of axioms that contribute to an entailment since in a lot of cases, repairing an error
involves editing axioms instead of simply removing them.

For this purpose, we introduce the notion dfB splitting function The idea is to
rewrite the axioms in the KB in a convenient normal form and split across conjunctions
in the normalized version, e.g., rewritilgC C' 11D asA C C, A C D. We then extend
the axiom pinpointing service to capturgrécisg justifications in this split version of
the KB, which is equivalent to the original KB, though contains “smaller” axioms. In
the earlier case, the output of the extended service for the entaillhéntC' becomes
K, = {A C C'} andK, = {A C D3 D C (%}, where the superscripts denote the
asserted axiom that each of the split axioms has been derived from.
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We devise a set of algorithms for axiom pinpointing and provide proofs of correct-

ness and completeness. The algorithms are mainly of two types:

1. Reasoner dependent (or Glass-baigorithms are built on existing tableau-based
decision procedures for expressive Description Logics. Their implementation re-

guires a thorough and non-trivial modification of the internals of the reasoner.

2. Reasoner independent (or Black-b@gorithms use the DL reasoner solely as a
subroutineand the internals of the reasoner do not need to be modified. The rea-
soner behaves as a “Black-box” that accepts, as usual, a concept and a KB as input
and returns an affirmative or a negative answer, depending on whether the concept
is satisfiable or not w.r.t. the KB. In order to obtain the justifications, the axiom pin-
pointing algorithm selects the appropriate inputs to the DL reasoner and interprets

its output accordingly.

Glass-box algorithms typically affect many aspects of the internals of the reasoner
and strongly depend on the DL under consideration.

Black-box algorithms typically require many satisfiability tests, but they can be
easily and robustly implemented, since they only rely on the availability of a sound and
complete reasoner for such a DL. Consequently, using a Black-box approach, the service
can also be implemented on reasoners that are based on techniques other than tableaux,
such as resolution.

Finally, we also investigateybrid algorithms, which combine Glass-box and Black-
box approaches to obtain sound and complete solutions relatively easily, i.e., without

dealing with complicated implementation issues. The idea here is to use one of the ap-
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proaches to reduce the problem space significantly and the other as a post-processing step
to obtain the correct solution.

The remainder of this chapter is organized as follows: in Section 4.1.1, we for-
mally define justification of entailments and show how it is closely related to the notion
of MUPS as described in [91]. We then present two versions (Black-box / Hybrid) of an
algorithm to compute a single justification (Section 4.2) and extend it to find all justifica-
tions (Section 4.3). In Section 4.4, we formally define precise justifications based on the
notion of splitting KBs and show how the algorithms described in the earlier sections can

be modified to enhance the output granularity.

4.1.1 Justification of Entailments and MUPS

In this section, we provide a formal definition of justifications and introduce the
notion of a MUPS, as described in [91]. Finally, we show how justifications and MUPS
relate to each other for the description logie{OZN .

We start with the definition of justifications.

Definition 6 (JUSTIFICATION)
Let K = a wherea is a sentence. A fragmekl! C K is a justification fora in

if ' = a, andK” = o for everyK” C K.

We denote by/U ST («, K) the set of all the justifications far in K. Given« and
IC, the Axiom Pinpointingnferential service is the problem of computidg ST'(«, K)

MUPS are formally defined as follows:

Definition 7 (MUPS) LetC' be a concept, which is unsatisfiable w.r.t. a knowledge base
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K. AfragmeniC’ C KisaMUPS of” in K if C'is unsatisfiable irk’, andC' is satisfiable

in everyK” C K'.

We denote by\/ U PS(C, K) the set of all the MUPS fof’ in K. When the KB we
are referring to is clear from the context, we will relax the notation andWigeP S (C')
instead.

The relationship between MUPS and justifications is established by Theorem 1.
The simple theorem is based on the following result [47]: give&s#&OZN knowledge
baselC, for every sentence (axiom or assertiargntailed bykC, there is always a concept
C, that is unsatisfiable w.rkf. Conversely, given any conceftthat is unsatisfiable w.r.t.
KC, there is always a sentenage that is entailed byC. Consequently, given 8HOZN
KB, the problem of finding all the MUPS for an unsatisfiable concept and the problem of

finding all the justifications for a given entailment can be reduced to each other.
Theorem 1 Let K be a knowledge base,be a sentence and I€t, be a concept s.t.:
For every KBK' C K, K’ = a < C,, is unsatisfiable w.r.t’

Then,JUST (o, K) = MUPS(C,,K)

Let K’ € JUST (o, K), thenK' = a andK” (= « for everyK” c K'. From the relationship
betweenC, anda, we have that’,, is unsatisfiable w.r.t’C’ and it is satisfiable w.r.t. eve’” C K’ then,
by definition of MUPSKX’ € MUPS(C,, K).

Conversely, lefC’ €¢ MUPS(C,, K), thenC,, is unsatisfiable ik’ andC,, is satisfiable in every
K" c K'. From the relationship betweé?, anda, we have thakl’ = « andK” [~ o for everyK” C K’

and thus’ € JUST(K, &)
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In the remainder of this chapter, we shall restrict our attention, without loss of
generality, to the problem of finding all the MUPS for an unsatisfiable concept w.r.t to a
SHOZN KB.

Note: The notion of justifications can be easily extended to include justifications
for aninconsistenKB, i.e., minimal sets of axioms responsible for making a KB logically
inconsistent. Also, all the ensuing algorithms for finding justifications for unsatisfiability
entailments are directly applicable to finding justifications for inconsistency. This should
be no surprise as unsatisfiability detection is performed by attempting to generate an in-

consistent ontology.

4.2 Computing a Single Justification

4.2.1 Black Box: Simple Expand-Shrink Strategy

In this section, we describe a Black-box solution to the problem of finding a single
MUPS of an unsatisfiable concept. The algorithm we describe is reasoner-independent,
in the sense that the DL reasoner is solely used as an oracle to determine concept satisfi-
ability w.r.t. a knowledge base.

This algorithm, which we refer to as SINGLBUPSg,.1_ 5..(C, K), shown in
Table 4.1, is composed of two main parts: in the first loop, the algorithm generates an
empty KBK’ and inserts into it axioms frorit in each iteration, until the input concept

C becomes unsatisfiable w.K¥. In the second loop, the algorithm removes an axiom
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from K’ in each iteration and checks whether the con€épirns satisfiable w.r.t'C’, in
which case the axiom is reinserted irkl&. The process continues until all axiomskih

have been tested.

Algorithm : SINGLE.MUPSB,4ck— Box
Input: KB K, Unsatisfiable concet
Output: KB K’
K'—10
while (C is satisfiable w.r.cC") do
select a set of axiomsC /K’
K +— K Us
for eachaxiomk’ € K’, do
K'— K" —{k'}
if (C is satisfiable w.r.tK’), then
K'— K'U{k'}

Table 4.1: Singe MUPS (Black Box)

Obviously, a key component of the algorithm above is seleatihgch axioms to
add intoX’ in the first segment of the algorithm. In our implementation, we start by
inserting the concept definition axioms inkd and slowly expand it to include axioms
of structurally related concepts, roles and individtialsloreover, while expanding the
fragmentK’ by iteratively considering a set of axiors_ K, we establish a small initial
limit on the size ofs and slowly increase this limit with each iteration.

Also, we have implemented an additional optimization that has proved effective:
after the first stage, we perform a fast pruningkdfbefore proceeding to the second
stage. The goal is to reduce the size of the input to the second stage. For this purpose,
we use a window of, axioms, slide this window across the axiomsif) remove axioms
from K’ that lie within the window and determine if the concept is still unsatisfiable in the

newC'. If the concept turns satisfiable, we can conclude that at least one oitkiems

1In the case of an inconsistent ontology, we start by inserting individual assertions, especially consider-
ing axioms which assert distinctness of individuals. Note that in this case, there is no unsatisfiable concept
C input to the algorithm.
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removed fromK’ is responsible for the unsatisfiability and hence we insertitagioms
back intoX’’. However, if the concept still remains unsatisfiable, we can conclude that all

n axioms are irrelevant and we remove them frim

4.2.2 Hybrid: Tableau-based Decision Procedure (Tableau-Tracing)

As seen in the previous section, the Black-box approach to find a single element
of MUPS(C, K) works by expanding an empty KB using axioms from the original KB,
till the concept is unsatisfiable in it, and then shrinking or pruning this KB to arrive at
a minimal set of axioms responsible for the unsatisfiability. Note that the second stage
(pruning) can be directly applied to the original KB itself, except that the approach may
be practically unfeasible for large KBs with thousands of axioms.

In this section, we present a Glass-box algorithm for obtaining a much smaller set
of axioms than the original KB in which the concept is unsatisfiable. This algorithm can
be used in place of the first step in the Black-box technique seen earlier to obtain a single
justification relatively quickly, thus making the complete solution an hybrid one.

The algorithm is based on the tableau decision procedure for concept satisfiability in
SHOIN recently presented in [52]. DL tableau-based algorithms decide the satisfiabil-
ity of a (possibly complex) concept w.r.t a KB K by trying to construct (an abstraction
of) a common model fo€ andX, called acompletion graphwhich is constructed by re-
peatedly applying a set @xpansion rulesDL tableau algorithms are non-deterministic.
Whenever a contradiction is encountered, a DL reasoner will either backtrack and select a

different non-deterministic choice, or report the inconsistency and terminate, if no choice
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remains to be explored.

Obviously, in our problem, the goal is no longer constructing a model for the input,
but identifying which axioms in the input ontology are responsible for the contradictions
that prevent the model from being built.

Before we proceed to the formal description of the algorithm, we provide an exam-
ple to illustrate the main intuitions. We assume some familiarity of the reader with the
logic SHOZN as well as with tableaux-based reasoning algorithms for expressive DLs

as presented in Chapter 2.

An Example

Let us consider a KBC composed of the 10 axioms, denoted with natural numbers:

1. ACJRDNB 6.CC—-FE

2.BC>1.R 1.DCF
3.BCF 8.CCVR.-D
4. F C —-F 9.DC —-B

5 ACCUD 10. E C VR.F

The conceptA is unsatisfiable w.r.&C, andMUPS(A, ) = {{1,5,8,9}}. Our
strategy is to keep track of the axioms from the KB responsible for each change in the
completion graph, namely, the addition of a particular concept (or role) to the label of a
specific node (or edge), or the detection of a contradiction (clash) in the label of a node.
In the Figure, this is denoted by the superscript of each concept in the node labels. We
generically refer tdracing as the process of tagging concepts, roles and clashes in the
completion graph with sets of axioms in the KB.
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The algorithm works on a tré€ of completion graphs. Given the inpdt C, the
tree is initialized with a single completion gragk, containing a node: with A in its
label. This initial graph is incrementally built using the set of availa@xeansion rules’

The application of non-deterministic rules results in the addition of new completion
graphs as leaves @, one for each different non-deterministic choice. The algorithm
terminates when all the leaves of the tree contain a clash. Upon termination, the trace of
the detected clashes in the leavedloyield a smaller set of axioms that contain at least

one element oMUPS(A, K).

L(x) = { A’ 3R.DIM, BN, . —E134 L(x) = { A’ 3R.DI, B, —E0134
C#, —E68, ¥R (-D)E) D FG.7 ﬁB{s‘e}}A
t(Report(g,)) = {1,5,9}
L(xy) = {Rt1} L(xy) = {R{M}
L(y) = { D%, =D} L(y) = {D1"}
N

t(Report(g,)) = {1,5,8}

Figure 4.1: Tableau Tracing: Completion Graph$x,, G, created after applying non-
deterministic rules and added as leaveT of

In our example, the algorithm starts with gra@ly and applies thenfolding, M
rules to axioml which adds conceptsR.D, B to L(x); then, it applies thél rule which
generates an R-succesgarf x, and adds concep? to the label ofy.

The algorithm now applies thenfolding rule to axioms2, 3,4, 5, the last of which
adds the disjunctiod’ U D to L(z). Itis forced to make a non-deterministic choice due

to the application of the! rule. This creates two new completion graghs, G- (shown

2For a full specification of the expansion rules, we refer the reader to the next Section.
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in Figure 4.1) each containing a separate choice of the disjun€tionD in axiom 3.
Both graphs are then added as leave¥ ofince no more rules are applicableGy the
algorithm now starts expandirg; .

In G4, the presence of' € L(z) causes the application of theifolding rule to
axiomso, 8, the latter yields a clash since bathand its negation are present in the label
of nodey. The trace of this clash is computed by considering the axiom sets responsible
for adding bothD, =D € L(y), in this case the sdftl, 5, 8}.

Since a clash is found iz, the algorithm moves tG, and starts expanding it. It
finds a new clash ik after applying theunfolding rule to axiomsy, 9, as bothB and its
negation are present ifi(z), and the trace of this clash {4, 5,9}. The algorithm now
concludes that is unsatisfiable since all the leaves of the tree contain a clash. The output
is computed by taking the union of the traces of all clashes present in the ledbesef
{1,5,8,9}. In this case, the output corresponds to a MUPS directly.

In order to ensure a smaller yet correct output, we impose an ordering among the
deterministic rules, i.ewnfolding and CE rules are only applied whemo otherdeter-
ministic rule is applicable. The rationale for this strategy relies on the definition of justi-
fication that establishes minimality w.r.t. the number of axioms considered; the new rules
cause new axioms to be considered in the tracing process and additional axioms should
only be considered if strictly necessary.

Thus, we have introduced two main variations to the standard algorithm for concept
satisfiability: first, wekeep trackof axiom sets responsible for various changes on the
completion graphs and compute the output of the algorithm from the trace of each clash

found in the leaves of the tree; second, we establish additional conditions in the order of
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rule application for ensuring the output is as small as possible.

Definition of the Algorithm

In this section, we provide a formal description of the tableau algorithm for com-
puting a single MUPS. The algorithm runs on a tfee= (I, <) of completion graphs
and returns a sef € MUPS(C, K).

A completion graph for a concept with respect tolC is a directed grapliz =
(V,E,L,#). Each noder € V is labeled with a set of conceptyz) and each edge
e = (x,y) with a setL(e) of role names. The binary predicateis used for recording
inequalities between nodes. (f,y) € E, theny is called asuccessoof x andx a
predecessopf y. Ancestoris the transitive closure of predecessor aescendanthe

transitive closure of successor. A nogles an R-successor afas given in [52].

The setS is initially empty and the initial tree contains a single gr&ph- ({vo, ..., v; },0, £, 0),

whereL(v;) = {o;} for 1 <i < landoy, ..., o, the individual names occurring ik and
C. The graphG is then expanded by repeatedly applying the rules in Table 4.2.

We keep a sef\ of completion graphs and a setof edges to be added at the next
level of the tree. The application of a non-deterministic rule results in the creation of a
new completion graph, added £g for each possible non-deterministic choice. When all
the graphs in the current level @f have been expanded, the algorithm determines which
graphs inA need to be added as leaveslIafas follows: for eactG in the current level
of T that contains a clash and each edge< G’ € ¥, removeG’ from A andG < G’

from X; at the end of this process, 4 = (), then the algorithm terminates; otherwise, the
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algorithm adds the remaining graphsirand edges it to the tree, i.elV := WUA and
<:== UY and initializes agaii\ andX to the empty set before starting the expansion of
the next level ofT'. Since the input concept is unsatisfiable w.r.t. the input KB, thé\set
will become empty after exploring a finite number of leveldlimand, thus, the algorithm
will terminate.

We have introduced two additional rules with respect to the ones presented in Chap-
ter 2: Theunfoldingrule adds the definition of a conceptto the labell(z) of a nodex
whenevelC' is contained inC(x). The GCl rule C'E) adds the disjunctiorC' LI D to the
label of a noder if the GCIC C D is contained infC. These rules are required in order
to identify which axioms inC are influencing the expansion &f. The remaining rules
remain unaltered w.r.t{52], except for the additional conditions to compute the tracing
functions. For ensuring termination, we establish the same priorities for rule application
as in [52]; concerning the additional rules, we enforce thatttfelding and CE rules are
only applied whemo othernon-deterministic rule is applicable, as seen in the example
of the previous Section. Finally, we adopt the same mechanism for cycle detection in the
graph expansion as in [52], namedgir-wise blocking

The application of the expansion rules triggers a seveihtshat change the state
of the completion graph, or the flow of the algorithin:Add(C, x) is the action of adding
a concept’ to L(x); 2) Add(R, (x,y)) inserts a roleR into L((z,y)); 3) Merge(x,y) is
the action ofmergingthe nodest, i; 4) #(x,y) adds the inequality:+y; 5) Report(g)
represents the detection of a clagh We denote by the events recorded during the
execution of the algorithm.

The graphG contains eclashif either {C, -C'} C L(z) for some concepf' and
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unfold-rule: if A € L(x), A atomic, A C D) € K:
if D¢ L(x), Add(D, L(x))
7(D,z) = (1(A,z) U{A C D})
CE-rule:if (C C D) € K, C not atomic,z not blocked,
if (-C'UD)¢ L(x), Add(-C U D,z)), 7((-C U D),z):={CC D}
M-rule: if (C1 M Cy) € L(z), x not indirectly blocked,
if {C1,Ca} Z L(x), Add({C1, Ca}, %)
T(Ci7x) = T((Cl M CQ),.’E)
U-rule:if (C1 U Cs) € L(x), x notind. blocked,
if {C1,C2} NL(z) = 0, generate graph&; := G for eachi € {1, 2}
A= AU{Gl,G’Q}, Y= EU{G =< Gl,G =< GQ}
Add(G;, x) in G for eachi € {1, 2}
T(Ci,il') = T((Cl (] CQ),LE)
F-rule: if 3S.C' € L(z), « not blocked,
if no S-neighbowy with C € L(y), createy, Add(S, (x,y)), Add(C, y)
7(S, (z,y)) := 7((35.0), x)
7(C,y) = 7((35.0),x)
V-rule:if VS.C € L(x), x notind. blockedy S-neighbor of::
if C ¢ L(y), Add(C,y)
7(Cyy) = (7((vS.C),z) U7 (S, (z,1)))
V*-rule:if VS.C € L(x), x not ind. blockedy R-neighbor ofr with Trans(R) andR C S
if VS.C ¢ L(y), Add(vS.C,y)
T((VS.C),y) :=7((VS.C),z) U (T(R, (z,y)) U{Trans(R)} U{R C S})
>-rule: if (> nS) € L(z),  not blocked:
if no safe S-neighborg, .., y,, of x with y; # y;, createys, .., yn; Add(S, (X, yi)); (i, ;)
(S, (@, 9i)) := 7((= nS), x)
(£ 1) = 7((= nS),%)
<-rule:if (< nS) € L(z), x not ind. blockedys, .., y,, S-neighbors of xin > n:
For each possible paif, y;, 1 <i,j < m;i # j:
Generate agrap’; A .= AU{G'}; X=X U{G < G’}
7(Merge(yi,y;)) := (7((< nS),x) UT(S, (x,y1)).. UT(S, (X, Ym)))
if y; @ nominal nodeMerge(y;, y;) in G,
else ify; a nominal node or ancestor @f, Merge(y;, yi),
elseMerge(y;, y;) in G/
if y; is merged intay;, for each concept; in L(y;),
7(Add(C;, L(yj)) := 7(Add(C;, L(yi)) U 7(Merge(yi, y;))
(similarly for roles merged, and correspondingly for conceptg;iifi merged intoy;)
O-rule: if, {o} € L(z) N L(y) and notx%éy, then Merge(x, y).
7(Merge(x,y)) := 7({o},x) UT({o},y)
For each concept; in £(x), 7(Add(C;, L(y)) := 7(Add(C;, L(x)) U 7(Merge(x,y))
(similarly for roles merged, and correspondingly for concepts(in))
NN-rule:if (< nS) € L(z), x nominal nodey blockable S-predecessorofand there is non
s.t.1 <m <n,(<mS) € L(z) and there exist» nominal S-neighbors,, ...z, of x s.t.2; # 2;, 1 <i < j <m,
then generate ne@k,, for eachm, 1 < m <n,addA := AU {Gn}; ¥ =X U{G < Gn}
and do the following in eactx,:
Add(< mS,x), 7((< mS),x) := 7((< nS),z) UT(S, (y, z))
createy, ...ym; Addy; # y; for 1 < i < j < m. 7(#(yi,y5)) i= 7((< nS),x) UT(S, {y,x))
Add(S, {(x,yi)); Add({or}, y:):
7(S, (2, i) = 7((< n8),x) U (S, (y.2)) 7({0i},9:) = 7((< nS), 2) U (S, (y. z)

Table 4.2: Modified Tableau Expansion Rules with Tracing
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nodez, or the eventdlerge(x,y) and+#(x,y) belong to€.

We introduce dracing function which keeps track of the axioms responsible for
the changes in the graph to occur. Tingcing functionT maps each event € £ to
a fragment of/C. The functionr is initialized as empty and defined by construction
using the expansion rutésFor a clashy of the form{C, -C} C L(x), 7(Report(g)) =
7(Add(C, x)) UT(Add(—C, x)). The trace for a clash of the forMerge(x, y), #(x,y) € €
is defined identically.

The algorithm terminates when all the leaves of the tree contain a clash and there
is no way to apply the non-deterministic rules to generate new leaves, ., are the
clashes in each of the leaves of the tree afiReport(gi)) = {sg}, the output of the

algorithm isS” = (J _n} Sgi» Which is then pruned to give a final sétusing the

1e{1,..
Black-box approach seen in Table 4.1.
The output of the complete hybrid algorithm is guaranteed to be a MURS( as

established by the following theorem:

Theorem 2 Let C' be an unsatisfiable concept w.r..C and let S be the output of the

hybrid algorithm with inpuC, I, thenS € MUPS(C, K)
(Sketch) We need to prove that the output of the tableau algoithfimefore it is pruned)

includes at least one MUPS(E), i.e.,C is unsatisfiable w.r.6’.
Let £ be the sequence of events generated by the tableau algorithm with @patsNow suppose
(C,S’) are inputs to the tableau algorithm and, £’ be the corresponding sets of completion graph and

events generated. For each event &, it is possible to performa; in the same sequence as befor&in

3In the rules shown in Table 4.2, we have abbreviatétidd(C, x) and(Add(R, (x,y))) by 7(C, z)
andr (R, (x,y)) respectively.
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This is because for each eventthe set of axioms itC responsible foe; have been included in the output

S’ by construction of the tracing functianin Table 4.2. (Note that there are cases where additional axioms
are also included i, e.g., during the< n.R rule, where axioms responsible each of tRhesuccessor
edges are considered). Thus, givEn= &, a clash occurs in each of the completion graphA‘irand the

algorithm findsC' unsatisfiable w.r.5".

O

The complexity of concept satisfiability checkingS{ OZN is 2NExpTime [103].
The changes we have introduced for axiom tracing occur in either constant or linear time.
Thus, the complexity of the tableau tracing algorithm minus the final pruning stage re-

mains the same.

4.3 Computing All Justifications

In this section, we describe a technique based on Reiter’'s Hitting Set Tree Algo-
rithm that is used to compute all the MUPS of an unsatisfiable concept, assuming we
have a procedure to compute any one arbitrary MUPS.

In what follows, we briefly introduce Hitting Sets and Reiter’s algorithm and show

their applicability to our problem.

4.3.1 The Hitting Set Problem and Reiter’s Algorithm

Let us consider a séf, theuniversal setand a sef C PU of conflict setswhere
‘P denotes the powerset operator. The’BeC U is ahitting setfor S if eachs; € S

contains at least one element®fi.e. if s, N T # () forall1 < i < n. We say that
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T is aminimal hitting seffor S if 7" is a hitting set forS no7” C T is a hitting set for
S. TheHitting Set Problenwith input .S, U is to compute all the minimal hitting sets for
S. The problem is of interest to many kindsdaifgnosistasks and has found numerous
applications.

Given a collectionS of conflict sets, Reiter’s algorithm constructs a labeled tree
calledHitting Set TregHST). Nodes in an HST are labeled with a set S. If H(v) is
the set of edge labels on the path from the root of the HST to the naithen the label
for v is anys € S such thats N H(v) = (), if such a set exists. i is the label ofv, then
for each element € s, v has a successar connected t@ by an edge with in its label.

If the label ofv is the empty set, theH (v) is a hitting set forS.

4.3.2 Hitting Sets and Axiom Pinpointing

In this section, we establish the relationship between the Hitting Set and the Axiom
Pinpointing problems.

Our approach is based on the following result:

Theorem 3 LetC be unsatisfiable w.rX and letXC’ C K, with ' = K — H, then:
1. C'is satisfiable w.r.tXC’" if and only if H is a Hitting Set forA/ U PS(C, K) w.r.t.

2. 'H is a minimal Hitting Set fo/U PS(C, K) w.r.t. I, if and only if there is no

‘H' C H such thatC' is satisfiable w.r.t/C — H'.
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1. Suppose thaf' is satisfiable w.r.t’ but H is not a hitting set fod/UPS(K, C) w.r.t. K. Then,
by definition of hitting set, there is a s8te MUPS(C,K) s.t. SN'H = (). Thus,S C K’ and,
by definition of MUPSC' is unsatisfiable w.r.t.S. By monotonicity,C is also unsatisfiable w.r.t.
K’, which yields a contradiction. Assume now tfttis a hitting set forM U PS(K, C), butC is
unsatisfiable w.r.tk’. By definition of Hitting Set, for everny € MUPS(C,K), SNH # 0. Thus,

there isnoS € MUPS(C,K) s.t. S C K’ which implies that” is indeed satisfiable w.r.cC'.

2. SupposéH is a minimal Hitting Set fotM U PS(C, K) w.r.t. . Then, by definition of minimal
hitting set, na{’ C ‘H is a Hitting Set. By 1) is satisfiable w.r.tkC — 1’ for everyH’ C H. The

converse is also straightforward.

The intuition behind the theorem relies on the fact that, in order to make a concept
C satisfiable w.r.t. a knowledge bake one needs to remove froid at leastone axiom
from each of the elements af U PS(C, K).

Our aim is to use Theorem 3 and Reiter’s Hitting Set Trees to obtdiiPS(C, K)

out of a single set € MUPS(C,K).

4.3.3 A Simple Example

In order to describe the main intuitions, let us consider aBwith ten axioms
and some unsatisfiable conce&pt For the purpose of this example, we denote the ax-
ioms in Ky with natural numbers. Suppose that we are provided an algorithm SIN-
GLE_MUPS(CK) that retrieves an arbitrary element U PS(C, K); an example of
such a procedure could be the tableau algorithm presented in Section 4.2. We now show

how to combine the use of Hitting Set Trees ahdVGLE — MU PS(C, K) to compute
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MUPS(C,K). Figure 6.2 illustrates the whole process for our example. We anticipate

that the expected outcome is the following:

MUPS(C,Ks) = {{1,2,3},{1,5},{2,3,4}, {4, 7}, {3,5,6}, {2, 7} }.

(1,5)
4/\7 47 1N
\// \/ 7
4 7
(1,

3/50\6 35 \6 X

X S XS

Figure 4.2:Finding all MUPS using HST: Each distinct node is outlined in a box and
represents a set iU PS(C, K,). Total number of satisfiability tests is 31.

The algorithm starts by executing SINGLMUPS(C, ;) and let us assume that
we obtain the ses = {2,3,4} as an output. The next step is to initialize a Hitting Set
TreeT = (V, E, £) with S in the label of its root, i.eV = {v}, E = 0,L(vy) = S.
Then, it selects an arbitrary axiom By say2, generates a new node with an empty
label in the tree and a new edge, w) with axiom?2 in its label. Finally, the algorithm
tests the satisfiability of' w.r.t. o — {2}. If it is unsatisfiable, as in our case, we obtain
a MUPS forC w.r.t. Ky — {2}, say{1,5}. We add this set t& and also insert it in the

label of the new node.
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The algorithm repeats this process, namely removing an axiom, adding a node,
checking satisfiability and executing the SINGIMEJPS algorithm until the satisfiability
test turns positive, in which case we mark the new node with a checkrrark

The algorithm also eliminates extraneous satisfiability tests based on previous re-
sults, e.g., once a hitting set path is found, any superset of that path is guaranteed to be
a hitting set as well, and thus no additional satisfiability tests are needed for that path, as
indicated by a X’ in the label of the node. For example, in Figure 6.2, the first path in the
right-most branch of the root node is 4,3 and is terminated early since the algorithm has
already considered all possible paths (hitting sets) containing axi8ms in an earlier
branch. Both,/ and‘X’ labeled nodes constitute leaf nodesIof

When the HST is fully built, the distinct nodes of the tree collectively represent the
complete set of MUPS of the unsatisfiable concept.

The correctness of this approach relies on the following key observations:

1. Ifanode is not a leaf dI', then its label is an element 81 U PS(C, K)

2. If one takes the union of the labels of the edges in any path from the rdbt of
to a leaf node marked with &, then a Hitting Set fod/UPS(C, K) w.r.t. K is
obtained. In fact, all the the minimal Hitting Sets fdfU PS(C, K) w.r.t. K are

obtained when all the paths from the root to a leaTiare considered.

In what follows, we provide a formal specification of the algorithm and show that

the above observations do hold in general.
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Algorithm : MUPS HST(C,K)
Input: C, K, S, HS, w, «, p (default: all empty)
Output: S
if there exists asét € HS s.t. (L(p) U{a}) C h, then
L(w) ‘X'
return
else ifC' is unsatisfiable w.r.tiC, then
m — SINGLE.MUPS(C, K)
S—SuUum
create a new node’ and setC(w’) «— m
if w # null, then
create an edge = (w, w’) with L(e) — «
p—pUe
for eachaxiomj € £(w') do
MUPSHST(A, (K — {8}), S, HS, v, 8, p)
else
L(w) — '
HS — HSUL(p)

Table 4.3: Finding all MUPS using Reiter's HST

4.3.4 Definition of the Algorithm

The MUPSHST algorithm is a recursive procedure that accepts as inputadafet
conflict sets (initially containing a single MUPS), a $&b' of Hitting Sets, the last node
w added to the Hitting Set Tree, the last axiamemoved fromiC and the current edge
pathp. Initially, the Hitting Set Tree is empty.

The procedure incrementally builds a Hitting Set Tree while the input cord¢épt
unsatisfiable w.r..C. The procedure works intuitively as sketched in the example of Sec-
tion 4.3.3; the interested reader should find little difficulty in going through the algorithm
using the examplé

The correctness and completeness of this approach can be derived as a consequence

of the above results and of Theorem 3 in Section 4.3.

Theorem 4 (Correctness and Completeness)

4As a notation remark, we denote Byp), for p a path in the tree, the union of the labels in all the edges
in p.

79



LetC be unsatisfiable w.r.tC, then:

MUPSHST(CK) = MUPS(CK)

Let.S € MUPSHST(C,K), thensS belongs to the label of some non-leaf nadén the Hitting Set
TreeT generated by the algorithm. In this cagdw) € MUPS(C,K'), for somek’ C K. Therefore,
S € MUPS(C, K).

(2)

We prove by contradiction. Suppose there exists a6et MU PS(C, K), butM ¢ MUPSHST(C,
K). In this case, M does not coincide with the label of any nodeIh Let v, be the root ofT', with
L(v,) = {au,...,a,}. As a direct consequence of the completeness of Reiter’'s search strategy, the algo-
rithm generates all the minimal Hitting Sets containimgfor each: € {1,..,n}. By Theorem 3, every
minimal hitting set/ is s.t.U N M # ). This implies thaty; € M for 1 < i < n. Therefore M C L(vy),

which implies thatM ¢ MUPS(C,K), sinceL(vg) € MUPS(C,K) andM C L(vy).

d

The worst case of the algorithm arises when all the setginPS(C, ) are mutu-
ally disjoint. In this case, if there aredisjoint MU P.S(C, K) each of size:, the number

of calls to SINGLEMUPS (i.e., satisfiability tests involved) is'.

4.3.5 HST Optimization

In addition to the optimizations that Reiter's HST algorithm provides such as early
path termination, there is one definite area of improvement, namely, storing the comple-

tion graph generated by the tableau algorithm at every node of the treecaechentally
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modifyingthe graph for every change made (axiom removed). This saves the time re-
quired in building the graphs from scratch for each new node of the HST.

In order to incrementally modify the graph, we make use of the tableau tracing idea
seen in Section 4.2.2 as follows: we first extend the set of tableau events to include oper-
ations for the removal of nodes/edges and their labels in the completion graph. Secondly,
we extend the tracing function to capture a set of axiom sets instead of a single axiom
set responsible for the event. Finally, when removing an axiom from the ontology, we
remove only those portions of the graph that have been necessarily ‘introduced’ by the
axiom, i.e., whose trace includes the concerned axiom (in every set in the trace). We then
re-apply the tableau expansion rules to the current graph. The work is still in progress

[42], [43].

4.4 Beyond Axioms: Finer-Grained Justifications

As noted earlier, a main drawback of the justifications is that they work at the as-
serted axiom level, and hence fail to determine wipelts of the asserted axioms are
irrelevant for the particular entailment under consideration to hold. For instance, given
an axiomA C BM—-BM3dR.EMN D whereA is unsatisfiable, the conjuncis:. F and D
are irrelevant for the unsatisfiability af. Moreover, additional parts of axioms that could
contribute to the entailment ameaskede.q., if we were to add the axioh C VR.—F to
the earlier one, there exists an additional condition which makessatisfiable, namely,
the finer-grained axiomd C JR.F andA C VR.—F, and this cannot be captured by the

current definition of MUPS or justifications.
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In this section, we discuss an extension to the Axiom Pinpointing service that cap-
turesprecisejustifications, which are at a finer granularity level than the original asserted
axioms. In this context, we provide a formal notion of precise justification and propose a

decision procedure for the problem.

4.4.1 Splitting a KB

Since we aim at identifying relevant parts of axioms, we define a functiorsphigt
the axioms in a KBC into “smaller” axioms to obtain an equivalent KiB, that contains
as many axioms as possible.

The idea of the transformation is to rewrite the axiom&im a convenient normal
form and split across conjunctions in the normalized version, e.g., rewrtingC r D
asA C C,A C D. Insome cases, we are forced to introduce new concept names,
only for the purpose of splitting axioms into smaller sizes (which prevents any arbitrary
introduction of new concepts); for example, since the axiéni. 3R.(C 1 D) is not
equivalent toA C JR.C, A C JR.D, we introduce a new concept name, dayand
transform the original axiom into the following set of “smaller” axiom4: C JR.E,
FCC,FCD,CNDCE.

We now provide a definition of splitting.

Definition 8 Given a concepC' in negation normal form (NNF), the sgilit(C) is in-

ductively defined as follows:

e If C' € Sig(K) (the signature ofC, i.e. the set of names usedfi), C' is of the form
—Afor A € Sig(K) or C of the form> nR or < nR, thensplit(C) = {C}.
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If C'is of the formC; M Cy, thensplit(C) = split(Cy) U split(Cy).

If C'is of the formC', L Cs, thensplit(C) = Uc, copiir(cy),cpespiitica) €1 H €2

If C of the formVR.D, thensplit(C) = Up cgpiirp) YR-D"-

If C of the form3R.D, then:

— if D of the formD; M D,, thensplit(C) = {3R.E,E} U split(—E LI D;) U

split(—E L D,) U split(—=D; LU =D, U E) }, with £ a new name.
— otherwisesplit(C) = Up/eqpiir(n) IR-D".
For a set of GCISC = |, o; with «; a of the formC; C D;, we have:
split(KC) = U, T C M(split(—C; L Dy))
The splitting transformation isonservativei.e., if ' = split(K) every model ofl’ is

also a model ofC, and every model ok can be extended to a model /6f by appropri-

ately choosing the interpretation of the additional concept nhames.

Proposition 1 Given ontologiesC, X', with X' = split(K), we have that(’ is a conserv-

ative extension of.

The fact that every moddl of K can be extended to a model kf is trivial. We show the other

direction, namely that if |= K’, thenZ |= K. This is a direct consequence of the following claim:
C € sub(K) implies CF = (Msplit(C))* (4.2)

We prove this claim by induction on the structureaf The base of the induction is given by the first bullet

in Definition 8 and is straightforward to verify. We proceed with the induction step:
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e If Cis of the formC; MOy, thensplit(C) = split(C;) Usplit(C,) andC? = CZ NCZ. By induction,
CE = (Msplit(C;))? and thusC? = (Msplit(Cy))% 1 (Nsplit(Cz))%, and the hypothesis holds.

o If Cis of the formC; L Cy, thensplit(C) = Uc, cqpiiv(c, ) cpespiiv(c) C1UC2 andC* = Cf UCT. By
induction,CZ = (Msplit(C;))% and thusCZ = (Msplit(Cy))Z U (Msplit(C2))Z, and the hypothesis
holds.

o If Cis of the formVR.D thensplit(C) = Up cqpipy YR-D’ @andC* = {a € A[YD € A, if
(a,b) € RZ, thenb € DT} (where A is the domain of interpretation). By inductio}’ =
(Msplit(D))* and thusC? = {a € A|Vb € A, if (a,b) € RZ, thenb € NMsplit(D)Z}, which implies
C? = Upzegpivmyzia € AV € A, if (a,b) € R, thenb € D' }.

o If Cis of the form3R.D, thenC? = {a € A|Fb € A with (a,b) € RT andb € D*} (whereA is

the domain of interpretation).

— if D is not of the form(D; M D), thensplit(C) = Upcqiirpy IR-D’- By induction,D* =
(Msplit(D))% and thusCZ = {a € A|Fb € A, s.t. (a,b) € RT andb € Msplit(D)%}, which

impliesC? = oyzia € AlFb € Awith (a,b) € R* andb € D"},

D'Tcsplit
— if D is of the form(D; M D3) thensplit(C) = {3R.E, E} Usplit(-=ELID1) Usplit(-ELID,) U
split(—=D; U Dy), whereE is a new concept. Now3R.(D; M Dy))f = (3R.EN (-E U

(D1 1M Dy)))* and thus the hypothesis holds.

This ensures that every entailmentkinholds in its splittingkC’, and every entail-
ment inK’ concerning only symbols in the signaturefoholds ink as well.

Table 4.4 shows an algorithm to split a KB based on the above definition. In this
algorithm, we also keep track of the correspondence between the new axioms and the

axioms inkKC by using a functior.

Proposition 2 Given/C, the algorithm in Table 4.4 computggit(X) in linear time.
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Algorithm: Split KB
Input: KB K
Output: TBox K’, Axiom Correspondence Functien
K —0
initialize axiom correspondence functien
initialize substitutiorcache
for each subclass axiom: € K
froma :=C C D generate’, :=-C U D
normalizeC,, to NNF (pushing negation inwards)
K'— K'u{TCC,}
o({TEC}) —a
while there existd T C C, } € K’ with A B occurring at positionr in C,,
K'— K —{TLCC,}
if AN B is not qualified by an existential restrictichen
Cyp — CulA]r; 0(Ca) — 0(Ca)Uc(Cy); K — K'U{T ECa}
Cp « Cu[Blr; 0(Cp) — o(Cp) Uo(Ca); K' — K/ U{T C Cp}
else
if cache(AT B) = 0, then
let E be a new concept not definedAit
K — K'U{ECAECB,ANBLC E}
cache(ANB) — E
elseE « cache(AN B)
Cg «— Cy|Elx; 0(Cg) «— o(Cy); K' — K'U{T C Cg}

Table 4.4: Splitting a KB

Proof | For each subclass axiome KC, the algorithm generates the concépt corresponding

to «, normalizes the concept into NNF, and generates new axiospit(C), ', based on the occurrence

of a conjunction in the concept,,. For each conjunction that is not qualified by some existential role
restrictiondR, the algorithm generates two new axioms (obtained by substituting the conjunction by each
of its conjuncts), whereas for a conjunction qualified by s@Rethe algorithm generates four new axioms
(obtained by introducing a new concept as seen in Definition 8). Thus, for each axiom, the algorithm
adds new axioms based on some constant times the number of conjunctions. Since the total number of
conjunctions is fixed and each conjunction is split only once, the algorithm takes linear time to compute the

result. Also, the size of”’ increases linearly in the size &f. O

Finer-grained justifications can be defined as follows:
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Definition 9 (Precise Justification)

LetKC = «. AKBK is aprecise justificatiorfor ain K if K" € JUST («v, split_-KB(K)).

We denote byUST ,(a, K) the set of all precise justifications farin K.

4.4.2 Finding Precise Justifications

The problem of finding all precise justifications for an entailmendf a KB
now reduces to the problem of finding all justifications doin the split_K B(K). Thus,
we can use the algorithm listed in Table 4.4 to split a KB, and then apply any decision
procedure to find all justifications for the entailment in the split version of the KB, such

as the one described earlier in the chapter.

4.4.3 Optional Post-Processing

Sometimes, from a user perspective, it may be more desirable to provide an ex-
planation for the entailment only in terms of (parts of) the original asserted axioms, and
suppress any new concept names introduced during the splitting process. In such cases,
we can use the axiom correspondence functiagenerated in Table 4.4 to replace the
newly introduced terms by their original counterparts using the algorithm shown in Table

4.5.

4.4.4 Example

We now present a detailed example to demonstrate how the algorithm finds precise

justifications.
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Algorithm: Remove New Terms
Input: Collection of Axiom Sets7, Original KB IC
Output: 7
for eachaxiom setj € J do,
while there exists a terr” € Sig(j) s.t. C’ ¢ Sig(K), do
S—10
for eachaxiomC’ C C; € j,do
S—SucC;
if S 0, then
C—CincCyn..C, (forall C; € S)
else
C—T
substituteC” with C'in j

Table 4.5: Post-Processing to Remove New Concept Names

Consider a KBC composed of the following axioms:

1. AUBC3JR(CN=C)NDNE
2. AC-DNBNFMNDMOVR.L

3. ECYR.(-CNG)

Note, the signature of the KBig(K) = {A, B,C, D, E, F, R}, and the concept
is unsatisfiable w.riC.

Given A, K as input, the algorithm proceeds as follows:

Step 1: First, we obtain an equivalent KB, that is split as much as possible using
the procedure explained earlier:

T,={AC3RHYBLC 3RH AL D'*BC D4AC E4YBLC ELHC
CLHC -CYHAC -D*»AC B3, AC F3 ACVR. 1% FCVR~C3 ECVRG?}.

The superscript of each axiom i, denotes the corresponding axiom/finthat
it is obtained from. This correspondence is captured by the funetionthe Split-KB

algorithm (see Table 4.4). Notice that the superscript of the axidm D in K, is the set
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{1, 2} since it can be obtained from two separate axioniS.illso, we have introduced a

new concept{ in the split KB, which is used to split the concefl®.(C1—C') in axiom1.

Step 2: Now, we obtain the justifications for the unsatisfiabilitydfv.r.t IC,. This
gives us the following axiom set&

J={{AC3RH' HCC HC-C'};{AC D" ALC -D*;{AC
JRH'HCC' AC E'\, ECVR-C3};{AC3R.H' ACVR.1%}}

J is the complete set of precise justifications foe= | in K.

Step 3: Optionally, we can remove the concdptintroduced inkC, from the justi-
fication sets inJ to get:
K'={{AC3IR(CN-C)'};{AC DL AC -D?};{AC D? AC-D?*};{AC

JR.C\,AC F',ECVYR~C3};{AC 3R T!, ACVR.1?}}

4.4.5 Optimizations

The additional overhead incurred for capturing precise justifications is due to the
splitting of the entire KB beforehand. The main concern, from a reasoning point of view,
is the introduction of GCls during the splitting process, e4.= B M C' is replaced
by (among other thingsp 1 C' © A. Even though these GCls are absorbed, they still
manifest as disjunctions and hence adversely affect the tableau reasoning process.

Alternately, a more optimal version of the algorithm is the following: instead of

splitting the entire KB beforehand, we can perfornfaay splittingof certain specific
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axioms (on the fly) in order to improve its performance. The modified algorithm with

lazy splitting becomes:

Given A unsatisfiable w.r.C, find a single justification sef} € JUST(A = 1, K)

Splitaxioms inJ to give J,. PruneJ; using the Black-box algorithm seen in Section

4.2.1 to arrive at a minimal precise justification spt

Replace/ by J, in K.

Form Reiter’'s HST using/, as a node, with each outgoing edge being an axiom

a € J, that is removed froniC

The advantage of this approach is that it only splits axioms in the intermediate
justification sets in order to arrive at precise justifications, and re-inserts split axioms
back into the KB dynamically.

Finally, we mention one other optimization (heuristic) that can be used to easily
identify and remove irrelevant parts of axioms in the justification set, even before we
perform any splitting operation. The idea is the following: given any one justification
for a particular entailment, let J, be the set of axioms in the justification plus the axiom
denoting the entailment itself. Now, if we consider the set of symbols appearing in the
signature of7,, then symbols that appear only once in any of the axioms,ican be
considered irrelevant for the entailment.

For example, suppose the following three axioms constitute the justificatfon
the entailmenty : C' C D in some ontology (wherd — G are atomic concepts arfélis

an atomic role):

1. CC ANJR.ENVR.F
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2. AL BNG

3.GCD

In the above casel, = {1,2,3} U {C C D}. Now, the concept®, F, F' appear
only once inJ, and hence can be considered irrelevant for the entailment. Similarly, given
that F' is irrelevant, the expressionR. /' can be considered irrelevant as well. Thus, we

onlyneedtosplifC C AN3R.TALC G,GC D}.

4.5 Applications of Axiom Pinpointing

Obviously, the main use of the Axiom Pinpointing service is for explaining the out-
put of the description logic reasoner to the user — it can be used to extract and display
the minimal set of axioms in the KB responsible for a particular entailment. This also
implies that removing (or possibly rewriting) any one of the axioms in each of the justifi-
cation sets will drop the entailment from the KB. This is especially useful in the context
of debugging, where the goal is to get rid of the unsatisfiability entailment or the KB
inconsistency itself.

In the case of precise justifications, the service displays minimal set of axioms
in a more fine-grained, but equivalent version of the KB, which helps in focusing on
only the relevant parts of the original axioms responsible for the entailment. Even in this
case, removing axioms in the precise justification sets will drop the concerned entailment.
Though, the advantage in the latter case (precise justifications) is that less additional en-
tailments are lost compared to the former case (justifications), where entire axioms are

removed.
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Chapter 5
Auxillary Debugging Service: Root Error Pinpointing

5.1 Introduction

The core debugging service developed so far, Axiom Pinpointing, can be used to
understand and resolve a particular semantic defect, e.g., an unsatisfiable class, since it
provides the precise set of axioms responsible for it. However, consider what happens
when dealing with an ontology that has a large number of unsatisfiable classes, e.g., the
original OWL version of the Tambis ontology in which 144 out of 395 classes are un-
satisfiable. In this case, the user can adopt a brute force approach and iterate through the
list of unsatisfiable classes, fixing each one in turn by invoking the axiom pinpointing
service separately for every defect. Besides being pointlessly exhausting, there are two
serious problems here. Firstly, many of the unsatisfiable classes depend in simple ways
on other unsatisfiable classes, e.g., the glastein is defined as a subclass of the unsatis-
fiable classnacromolecular_compound, and the clasgrotein_part is related tgorotein by
forcing an existential restriction on the propeptyt_of. In such cases, a brute approach
may not necessarily produce correct results, e.g., the user could remove the subsump-
tion protein C macromolecular_compound instead of resolving the source of the problem
which lies in the unsatisfiable classcromolecular_compound. Secondly, there are large,

far-reaching effects of assertions in a logic like OWL, e.g., in one case, three changes in

Ihttp://www.cs.man.ac.uRbrrocks/OWL/Ontologies/tambis-full.ow
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Tambis repair over seventy other unsatisfiable classes. Thus, it is not sufficient to take on
defects in isolation.

In this chapter, we design a service that given an ontology with numerous defects,
detects dependencies between them and identifiesotireeof the problems.

We first consider each of the semantic defects, i.e., unsatisfiable classes and in-
consistent ontologies, separately. For the former, we categorize unsatisfiable classes into
two types,root (or critical) andderived(or dependent), and propose a set of algorithms
to separate them. For the latter problem of inconsistent ontologies, we show techniques
to reduce the problem to unsatisfiable classes where possible, or present alternate solu-
tions to highlight the core inconsistency causing axioms. In both cases, we discuss the
significance and drawbacks of the algorithms developed using appropriate examples.

Finally, in the last section, we pull together the algorithms described earlier in the

chapter into a single coherent debugging servicd&imot Error Pinpointing

5.2 Dealing with Numerous Unsatisfiable Classes

In this section, we consider the problem of debugging a consistent ontology that
has a large number of unsatisfiable classes. Typically, ontology users or modelers are
concerned about the unsatisfiability of tt®micor named classes in the ontology, since

they represent key classes in the domain of the ontology.

5.2.1 Root and Derived

We start by broadly categorizing unsatisfiable classes into two main types:
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1. Root Class- this is an unsatisfiable atomic class in which a clash or contradic-
tion found in the class definition (axioms) does wefpend on the unsatisfiabil-
ity of another atomic class in the ontology. More specifically, the unsatisfiability
bug for a root class cannot be fixed bynply correcting the unsatisfiability bug
in some other class, instead, it requires fixing some contradiction stemming from
its own definition. Example of a root class isonmetal C> 2.atomic_number 1

< l.atomic_number, given that this is the only definition @bnmetal.

2. Derived Class- this is an unsatisfiable atomic class in which a clash or contradic-
tion found in a class definition either directly (via explicit assertions) or indirectly
(via inferencesylepends on the unsatisfiability another atomic class (we refer to
it as theParentdependency). Hence, this is a less critical bug in that resolving it
involves fixing the unsatisfiability of the parent dependency. Example of a derived
class is:carbon C nonmetal, wherenonmetal is an unsatisfiable class itself, in this

case, its parent.

We give formal definitions for root and derived unsatisfiable classes in terms of
the justification for their unsatisfiability, and also formalize the related notiqracént

dependency for a derived class:

Definition 10 (Root, Derived and Parent) Lét;, (s, ...C',, be a set of unsatisfiable atomic
classes in a consistent ontolo@y Let.J; be the justification for the unsatisfiability of the
classC;, i.e.,J; =JUSTIFY(; = L, O). C; is aderivedunsatisfiable class iff there exists
an axiom set; € J; such thats; O s;, wheres; € J;, (5 # 4). In this case, the class;

is aparentdependency df; if there exists no axiom set € Ji, (k # j, k # i) such that
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sk O sj. An unsatisfiable class that is not derived isoat unsatisfiable class.

Intuitively, a derived unsatisfiable claSsdepends on parem? if the unsatisfiability
of D in the ontology causes to be unsatisfiable. A derived class can have more than one

parent dependency, e.g., given the following axioms:

ACB ACJRC BCDn-D CCEM-E

the unsatisfiable clas$ has two parents? andC'.

Furthermore, if resolving the error in each of its parents turns a derived class satis-
fiable, we refer to it apurelyderived, otherwise we refer to it aartially derived. In the
case aboved is purely derived.

We capture this notion formally by extending the definition above to include the

two types of derived classes:

Definition 11 (Pure and Partially Derived) Let; be a derived unsatisfiable class; is
purely derived if for every axiom sef € J; there exists a set;, s; € J;,(j # i) such

thats; O s;, otherwise it is partially derived.

Note that a partially derived unsatisfiable class has at least one standalone contra-
diction. This implies that if one were to adopt an iterative process to debugging, i.e., fix
all the root unsatisfiable concepts in each iteration (as discussed in the next subsection),
then the partially derived unsatisfiable classes would be exposed as roots in later itera-
tions, and thus would need specific attention at that point. This is unlike purely derived

unsatisfiable classes where one needs to focus on it’s parent bugs alone.
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5.2.2 Significance and Drawbacks of Root/Derived

The process of debugging an ontology that has numerous unsatisfiable classes can
be performed from two different points of view — ariom-drivenview or aclass-driven
view. In the former approach, the user focuses on a set of erroneous axioms in the ontol-
ogy that entail the unsatisfiability @t least one atomic clasand resolve the modeling
error in the axioms to get rid of the unsatisfiability. This process can be repeated until all
the unsatisfiable classes are fixed. In the latter approach, the user can focus on a particular
unsatisfiable class, resolve the contradiction in its definition before proceeding to the next
class, and repeat the process till all the classes are fixed. The difference is subtle since
there is an obvious and strong correlation between classes and axioms in the ontology,
i.e., the meaning of the class is specified by the axioms that define it. However, the choice
of view is influenced by whether the ontology modeler cares more ayouteous ax-
iomsor erroneous classeger se. Another factor which dictates the view is the support
provided by the debugging/editing tool or environment — typical ontology editors such as
Protege [76], OntoEdit [98], Swoop [57] etc. provide a class-based view of the ontology
instead of an axiom-centered view.

Obviously, a service that identifies root/derived unsatisfiable classes comes into
play when the modeler adopts a class-driven view to debugging. The significance of
the service is clear: the modeler needs to fix the root unsatisfiable classes first, which
automatically reduces the problem causing conditions in the derived classes, possibly
turning some of them satisfiable immediately. This gives rise to an iterative debugging

process — in each iteration, the modeler focuses on the current roots, the resolution of
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which uncovers a new set of unsatisfiable classes containing new roots, that lead to the
next iteration.

There is one other interesting aspect of root/derived classes that needs to be ad-
dressed, i.e., the possibility of a pair of unsatisfiable classes Ipeirigally dependent
making them both derived.

For example, consider an ontology; with the following axioms:{A C C M
-C,BC DMN-D,A = B}. In Oy, the atomic classed, B are unsatisfiable. Moreover,
according to Definition 10, bothl, B are classified as derived classes, with the parent
dependency of one being the other, due to the equivalence relation between them. Thus,
in this case, the ontology has only derived unsatisfiable classes with no roots. Here,
emphasizing the error dependence between unsatisfiable classes can help understand the

reason for this result and point the modeler to the appropriate classes to be fixed.

5.2.3 Detecting Root/Derived: Using the Axiom Pinpointing Service

We now present a straightforward approach to finding the root/derived unsatisfi-
able classes in an ontology. The idea behind this approach is to make use of the Axiom
Pinpointing service (seen in Chapter 4) to determine the justification set for each unsat-
isfiable class and then use the property of justification containment, as seen in Definition
10, in order to determine error dependence and thereby separate the root from the derived
unsatisfiable classes.

Given an ontology with unsatisfiable classgs ..C,,, the algorithm generates an

error-dependency graphiDG = (V, E) where the vertice$” = {vy, ..v, } denote unsat-
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isfiable classes, i.ef(v;) = C;, and a directed edgg; ;) from vertexv; to v; denotes that
C; is the parent dependency of the clags A vertex of the graph without any outgoing
edges represents a root unsatisfiable class, whereas a vertex with least one outgoing edge

represents a derived unsatisfiable class.

Algorithm: GenerateDependencyGraph
Input OntologyO, Classeqd (1, ..C,,}
Output Error Dependency Grapf DG
EDG — (V,E)
for each unsatisfiable class; € {C;..C,,}
V—VuU (o
£(Ui) — Cz
for each j; € JUSTIFY(C; = L, O)
parent «— ()
for eachunsatisfiable clas§, € {C;..C,.}, k # i
for each j, € JUSTIFY(C, = L, O)
if 7; 2 jr and (parent = 0 Or Ypeparent jx Z Jp), then
parent «— parent U k
for eachp € parent
EFE—FU €(i—p)

Table 5.1: Algorithm to Generate EDG

Algorithm Analysis and Discussion

The algorithmGenerateDependencyGraptreates an error-dependency-graphG
given a consistent ontology that has a set of unsatisfiable classgs...C,,. In the first
stage of the algorithm, it cycles through the unsatisfiable class@saading each class
to the label of a distinct node in tfeD(, and obtaining the justification for the unsatisfi-
ability entailment of the class. In the second stage of the algorithm, it adds directed edges
in the graph by looping through the unsatisfiable classes, determining parent dependen-
cies, if any, using the precomputed justification sets (based on Definition

Figure 5.1 shows a sample error-dependency-graph generated by the algorithm for
an ontologyO, consisting of five axioms as shown. The clasde®, C, D in the ontol-
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ogy are unsatisfiable. In this cade,is the only root unsatisfiable class, wheréaand

C and mutually dependent.

ACBRAYRC (D)
BC(EMN-E)UD /" \.
B=C e
CCIRD \./

DEVYRFM IR -F

=

h

Figure 5.1: Sample Error Dependency Graph

To verify this result, consider the justifications for each unsatisfiability entailment:

(Note: we use numbers to denote axioms)

o J4=JUSTIFY@ = 1, 0,) = {{1,2,5},{1,3,4,5}}
e J5=JUSTIFY(B = L, 0,) = {{2,5},{3,4,5}}
o Jo=JUSTIFY(C = L, O,) = {{4,5},{2,3,5}}

e Jp =JUSTIFY(D = 1, 0,) = {{5}}

Based on Definition 104 has parent dependenciBsaandC' because the sét, 2,5} €
J4 is asuperset of2,5} € Jp and the sef1,3,4,5} € J4 is a superset of4,5} € Jo.

Thus, there exist directed edges from the nad® the nodesB, C' in the EDG. The
remaining dependency relations are computed in a similar manner.

As shown above, the advantage of this algorithm is that it clearly distinguishes
between the root, derived and mutually-dependent unsatisfiable classes by highlighting
the dependencies between the various errors. Also, the correctness of the algorithm is
evident given that it enforces the semantics of Definition 10.

The output of the algorithm can be enhanced in several ways in order to help the
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ontology debugger understand the relationships between the errors better. For example,

we could

e label edges with the number of dependencies between unsatisfiable classes
if a derived unsatisfiable concepthasn of its justification sets subsumed by the

justifications of its pareng, we could sei(x — y) = n.

o differentiate between purely and partially derived unsatisfiable classgs, we
could add a self-loop to nodes representing unsatisfiable concepts that have atleast
one stand-alone justification set. This would include both, root and partially derived

unsatisfiable classes.

However, the algorithm has some drawbacks. The main problem is that it requires
computing the justification for every (atomic) unsatisfiability entailment, which as seenin
Chapter 4, is an expensive process given its compleXiNyzxp Time [103]). A secondary
problem is that the algorithm does not highlight tthependency axioms.e., axioms
which relate a derived unsatisfiable class to its parent. In the next subsection, we look at
an alternate solution to determine the root/derived unsatisfiable classes that addresses both
of these problems. The solution is sound, though incomplete, and hence is appropriate
as a pre-processing optimization step before invokingGkeerateDependencyGraph

algorithm.

5.2.4 Alternate Detection of Root/Derived: Structural Analysis

In this subsection, we present a dependency-detection algorithm that does not rely

on the computation of justification for each unsatisfiability entailment, instead it analyzes
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the structure of the axioms in the ontology in order to ascertain the root and derived
unsatisfiable classes. The structural analysis also helps identify the corresponding axioms
that link a derived class to its parent dependency.

Given a consistent ontolod9 with a known set of unsatisfiable clasg4€s, ...C,, },
the algorithm returns an error dependency-graph, similar to the type discussed in the
previous section, with the difference being that an edge from a derived unsatisfiable class
Cq 1o it's parent dependendy, is labeled with a set of dependency axioms linkifigto
Cp.

The algorithm consists of two phasesserteddependency detection antferred

dependency detection and we describe each in detail.

Detecting Asserted Dependencies: Structural Tracing

This phase is used to detect dependencies between unsatisfiable classes by analyz-
ing the asserted axioms in the ontology. Before we proceed to the description of the
algorithm, we provide an example to illustrate the main intuitions.

Consider an ontologg; with the following axioms:

1.ACVRCNBN3PD 2. AC>1R 3.BLC(DN-D)N(CUVR.E)
4.CC EN-E 5.DC Fr-F

Table 5.2: Structural Tracing Example

In O3, the atomic classed, B, C, D are unsatisfiable. Note th& C, D are roots,
whereasA has three different parentd3, D due to axiom{1}, andC due to axioms
{1,2}. Determining thatB, D are parents ofl is rather straightforward because of the

direct relation in axiomi, i.e., B is a superclass ofl, and D is related toA by an exis-
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tential role P. On the other hand, realizing thatis a parent ofA requires correlating
between the universal restriction on rdkein axiom 1 and the cardinality restriction on
the same role in axior®, which forces the existence of the role to the unsatisfiable con-
ceptC. Non-local effects such as these need to be taken into account when designing this
algorithm.

We now present the basic cases of the tracing approach.

Given an ontology?© in which classA is unsatisfiable. The claséis derived if it

satisfies any of the conditions shown in Table 5.3.

.ALC B e O andclassB is unsatisfiable

LACC N Cy...NC, € OandanyclassC; (1 < i < n)is unsatisfiable
.AC DyUD,...uU D, € Oandall D; (1 << n)are unsatisfiable

4. AC JR.B € O andB is unsatisfiable

.ACVR.B,AC>n.R(orA C 3R.C)) € O andB is unsatisfiable
.AC>n.R(orA C 3R.C),domain(R) = B € O andB is unsatisfiable
.AC>n.R(orAC 3R.C),range(R~) = B € O andB is unsatisfiable

WN -

~N O o1

Table 5.3: Base Cases of Structural Tracing

These basic cases can be extended to identify more non-local dependencies. For
example, in cases (4), (5), instead of a single role restriction leading to an unsatisfiable
class, we can consider a role-chain, i.e., a chain of role successors that lead to an unsatis-
fiable class. Also, in cases (6), (7), we can make an additional check to see whether the
domain (/range) of angncestorrole of R(/R~) is unsatisfiable.

The pseudo code for this algorithm is shown in Table 5.4. It uses a recursive subrou-
tine Trace_C'oncept to determine unsatisfiable parent dependencies in the RHS of each

class definition axiom, based on the basic cases and the two extensions listed above.
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Algorithm: Structural Tracing
Input OntologyO, Classeqd (1, ..C,,}
Output Error Dependency Grapi DG

EDG < (V,E)
for each unsatisfiable class;; € {C;..C,,}
Sp < set of concept definition axioms 6f; in O
for eachaxiomax € Sp, (ax : C; C D or C; = D)
role chainre «— 0
S, «— TraceConceptD, {az})
for eachtuple (D, S,.) € S,
V—Vu {’Ul,vg}; E—FEU {6(1,1_,1,2)}
L(v1) — {Ci}; L(v2) «— {D}; L(€) < Sax

subroutine TraceConcept(Clasg’, Axiom SetS)
Sy —10
if C'is atomicand C' is unsatisfiablehen
Sy — S;u{(C,9}
else ifC is of the forme; Mcy.. Me,, then
for each conjuncte; € C,
S, <« S;U TraceConcept¢;, S)
else ifC is of the formd; U ds.. U d,,, then
Sait — 0
for eachdisjunctd; € C,
Saisj < Trace_Concept(d;, S)
if Sgis; =0, return 0
elseSu; «— Sau U Saisj
S‘r — ST U Sall
else ifC' is of the form3R.D or > n.R or 3R.{I}, then
rc — rc|R
if C =3R.D, S, «— S;U TraceConceptD, S)
for eachrole R’ that is equivalent tdz, or an ancestor-role a®
S, «— S, UTraceConceptfomain(R’), S)
S, < S, U TraceConceptftange(R'~), S)
else ifC is of the formVR.D, then
rc — rc|R
if there exists an axiom € O of the formC; C 3Jrc.FE, then
S < S;U TraceConceptD, S U {a})
return S,

Table 5.4: Structural Tracing Algorithm
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Algorithm Analysis and Discussion

By making calls to the subroutiriérace_Concept recursively, the algorithm is able
to detechesteddependencies, e.g., given the axignic 3R.(BLIC) M D in an ontology
Oy, whereA, B, C are unsatisfiable concepts, ahdis satisfiable in0O,, the algorithm
correctly determines thag, C' areboththe parents ofd, since their being unsatisfiable
makesA unsatisfiable as well.

Also note that there is a point in the algorithm where it checks for a correlation
between an existential and a universal restriction on the same role leading to an unsatis-
fiable concept (as mentioned in the example in Table 5.2). In this case, it is possible to
use a pre-processing step as seen in [58], where we trace the concept definition using the
same procedurdl{race_Concept), and collect all the necessary information to check for
beforehand.

One of the main advantages of the structural tracing algorithm is its complexity:
given that all the definition axioms for an unsatisfiable concept can be laid out into a
single concept description (by taking the conjunction), the complexity of the structural
tracing is linear in the size of the description created, as each conjunct is examined only
once sequentially in a deterministic manner. This is a definite improvement over the
previous approach. For realistic KBs, we have found it's performance to be reasonably
fast as shown in Chapter 7, e.g., in the case of the Tambis OWL onfpladpch has
144 out of 395 unsatisfiable concepts, the algorithm identifies the 3 roots in under five
seconds.

We now list a straightforward, yet important theorem related to structural tracing:

2http://protege.stanford.edu/plugins/owl/owl-library/tambis-full.owl
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Theorem 5 (Soundness)

Let O be an ontology with unsatisfiable classés ...C,,. Let EDG = (V, E) be
the error dependency graph output by the Structdnalcing algorithm when given inputs
0,{Cy,...C,,}. Letwv, C be a vertex (in/), unsatisfiable class (i®) respectively such
that £(v) = C, and suppose there exists at least one outgoing edge € FE with

L(e) = S, andL(v') = D. ThenC'is a derived unsatisfiable class.
We are given(e) = S,., wheree is an edge from concegt to D in the EDG. Thus,

based on the procedure followed by the tracing algorithm, we can concludg thsta set of axioms that

satisfies the following two properties:
1. Sux ECC L(sincee.g.S.. FCCD,orS,, =C C 3R;..R,D whereD is unsatisfiable)
2. any proper subse&X,, C S, does not satisfy property (1) above

Now, given thatD is unsatisfiable, leffp = JUSTIFY(D = L, ©O) and consider any arbitrary set

Sp € Jp. LetS «— Sp U S,,. Obviously,S C O.
Since S, satisfies property (1), it follows th&t = (C' = L). Moreover, asS5,, satisfies property
(2), andSp satisfies the notion of minimality (see Chapter 4), there exists no proper stibsefS such

thatS’ = (C = 1). Hence,S € JUSTIFY(C = L, O). Therefore( is a derived unsatisfiable class.

However, the main drawback of the algorithm is that it is incomplete, i.e., it does
not discover all dependency relations between unsatisfiable classes.

For example, it does not detaaferred equivalence or subsumption between two
unsatisfiable classes. Consider two atomic unsatisfiable clasaad B in an ontology
that do not have an explicit (asserted) subsumption relation between them but the reasoner

can infer one, e.g4 = (> 1p) andB = (> 2p). Even though there is no subclass axiom
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relating the two classes, a reasoner can infer that A. However, the tracing algorithm
shown above cannot find theddendependence o8 on A. In this case, even using a
reasoner to infer the subsumption relation will not work as both classes are unsatisfiable
and hence effectively equivalent to the bottom clasg;Nothing As a result, we need

an alternate way to discover hidden dependencies between unsatisfiable classes.

Detecting Inferred Dependencies: Subsumption-Revealing Transformations

The problem with detecting hidden dependencies between unsatisfiable classes in
an ontology is the masking of useful subsumption relationships, since all unsatisfiable
classes are implicitly subsumed by every other class in the ontology.

To resolve this problem, we consider the notiorsobsumption-revealingansfor-
mations to an ontology, i.e., transformations that weaken an ontology by getting rid of
the unsatisfiability-causing errors, while preserving ititendedsubsumption hierarchy
as much as possible. The weakened ontology can help expose subsumption relationships
between the previously unsatisfiable classes.

We use a simple example to illustrate this point. Consider an ontaigyith the

following four axioms:

A=DnN3iRD AC-D B=CnN3RC CCD

In Os, the classes!, B are unsatisfiable. Now, we could argue that the unsatisfia-
bility masks thantendedsubsumption of3 by A. This is because the ontology fragment
{1,3,4} = (B C A) whereas the addition of axiotto the fragment cause$to be un-

satisfiable, which in turn makds unsatisfiable as well (making both classes equivalent to
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each other and ta). Here, detecting that the clagsdepends ol for its unsatisfiability
can help the ontology modeler focus on the root of the problem.

One possible modification that we could make to the above ontology in order to get
rid of the unsatisfiability error, while preserving as much information as possible, is to
replace the classD in the RHS of axion2 by a new clas®)’ that is previously undefined
in the ontology. After applying the above transformation, we can use the reasoner to
classify the new ontology in order to detect the hidden subsumption betiseed A.

Thus, we have the following algorithm to detect hidden dependencies:

Algorithm: Subsumption-Revealinfransformation
Input OntologyO
Output Ontology®’
initialize substitution cacheachegy,
for eachaxiomz € O,
xnnNF < hormalized version aof in Negation Normal Form (NNF
if the formula—C'is present incy r, then
if C' € cachegyy, then
D — cachegyu,(C)
else
D < new atomic class undefined
substitute~-C' by D in xynF
O/ — 0/ U INNF
for each pair of classeg’;, Cy € cachesyp,
Dy — cachegyy(Ch)
Dy — cachesuy(Cs)
if C1 C Cyand(Cy 75 Cy 7’5 1, then
O/ — O/ ] (Dl E Dg)

Table 5.5: Inferred Dependency Detection Algorithm

Algorithm Analysis and Discussion

The motivation for the above approach is to remove the main cause of class unsatis-
fiability — negation. Also, given the monotonicity of the logic (OWL-DL), underspecify-

ing the axioms by replacing the negated classes with new classes in the ontology ensures
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that no new subsumptions are introduced. In order to recover some of the subsumptions
that are lost upon substitution, the last 5 lines of the algorithm check the substitution
cache for subsumptions between the satisfiable classes (that are replaced) and insert sub-
sumption relations between the corresponding new classes in the ontology.

Suppos&), O’ are the respective input/output of the algorithm above, and after the
classification of0’ by a reasoner, a subsumption relationship is discovered between two
previously unsatisfiable classes, sayC D, then it follows thatC' must be a derived
unsatisfiable class i@ and D must be its parent. This is a consequence of Theorem 5 if
we consider any set in JUSTIFY(C D, O’) to reduce toS,,.

Note that the algorithm (heuristic) to detect inferred dependencies is clearly incom-
plete. However, it provides a cheap and easy solution to detecting more dependencies

between unsatisfiable classes, over and above those found by structural tracing.

5.3 Dealing with Inconsistent OWL Ontologies

Many of the techniques discussed in the prior section are, in fact, applicable to the
diagnosis of inconsistent ontologies, with a few slight twists. This should be no surprise as
unsatisfiability detection is performed by attempting to generate an inconsistent ontology.

First, consider the different kind of reasons for inconsistent ontologies:

1. Individuals Related to Unsatisfiable Classes or by Unsatisfiable Rolesre is an

unsatisfiable class description and an individual is asserted to belong to that class.

Similarly, an ontology is inconsistent if there is an unsatisfiable role and there exists

a pair of individuals that is an instance of the role. For example, consider a role
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hasParent whose range is accidentally set to the intersection of cldssésr and
Mother instead of their union, wherEather, Mother are disjoint classes. Here,
hasParent is an unsatisfiable role. Thus, defining a relation between individuals

using this role, e.ghasParent(Bob, Mary) results in an inconsistent ontology.

2. Inconsistency of Assertions about Individualfere are no unsatisfiable classes in
the ontology but there are conflicting assertions about one individual, e.g., an indi-
vidual is asserted to belong to two disjoint classes or an individual has a cardinality

restriction but is related to more distinct individuals.

3. Defects in Class Axioms Involving Nomindlsmight be the case that inconsistency
is not directly caused by type or property assertions, i.e., ABox assertions, but
caused by class axioms that involve nominals, i.e., TBox axioms. Nominals are
simply individuals mentioned in owl:oneOf and owl:hasValue constructs. As an
example consider the following set of axioms:
MyFavoriteColor = {Blue}
PrimaryColors = {Red, Blue, Yellow}
MyFavoriteColor = —PrimaryColors
These axioms obviously cause an inconsistency because the enumerated classes
MyFavoriteColor andPrimaryColors share one element, i.e., individual nanidde,

but they are still defined to be disjoint.

Now, irrespective of the type of inconsistency, a generic debugging solution is to

use the Axiom Pinpointing service developed in Chapter 4 to obtain all the minimal jus-

3Note that debugging an unsatisfiable r&lés equivalent to debugging the unsatisfiable conceptR
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tification sets (axioms) responsible for the inconsistent ontology.

For example, consider the ontolo@y shown in Table 5.6:

1LACCN-C 2.BC3dR.DMNA 3.CCENMA
4.DC —E 5. A(a) 6. B(b)
7.C(c) 8. D(d) 9. E(e)

10. R(b, e)

Table 5.6: Example to Capture Core Inconsistency Causing Axioms

Og Is inconsistent and the justification for this inconsistency is the following axiom
sets{{1,5},{1,2,6},{1,3,7},{2,4,6,9,10} }.

The contradiction in each justification set needs to be resolved in order to make the
ontology consistent, and no justification set is subsumed by any other as all are minimal by
definition. Here, the only analogue to root unsatisfiable classasaiedaxioms across
justification sets, which we can consider@se inconsistency causing axioms. In this
case, axiom appears in three justification sets and can be seen as a major source of the
problems.

The following simple algorithm can be used to return an axiom dependency map
that associates each axiom with the justification sets it appears in. The output of the
algorithm is a dependency map which can be used to sort and rank axioms based on their

arity, i.e., the number of justification sets that they jointly appear in.

5.3.1 Special Case: Reduction to Unsatisfiable Classes/Roles

For the first type of inconsistency, instead of using the Axiom Pinpointing service
to determine all the justifications, which may be time consuming if the ontology has

numerous inconsistency-causing conditions, we can perform some simple ontology mod-
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Algorithm: Core Axiom
Input: Set of axiom sets)
Output: Axiom Dependency Map
initialize axiom dependency map
total < ()
for eachsets € 5,

total «— total U s
for eachaxiomz € total,

Sy — 0

for eachsets € 5,

if x € s,thenS, «+— S, Us
store(z — S,) inn

Table 5.7: Detecting Core Inconsistency Axioms

ifications to directly expose the main problems.

We can get rid of all the ABox assertions, i.e., assertions of the fO(m) or
R(a,b), whereC'is a class,R is a role and:, b are individuals. Removing these asser-
tions would immediately reveal all the unsatisfiable classes or unsatisfiable roles, which
can then be debugged using structural analysis (described in Section 5.2.4) by focusing
directly on the root unsatisfiable classes/roles. This approach is likely to give better per-
formance results than using the Axiom Pinpointing service to compute all the minimal
justifications (even though the service output would directly point to the root classes)

because of the cheap cost of structural analysis.

5.4 Putting It All Together: Service Description

In the previous sections, we have a described a set of algorithms for identifying
the main source of the semantic errors in an ontology, both, from a concept and an ax-
iom point of view. We now describe one possible coherent version oRti Error
Pinpointingservice that invokes the previous algorithms as and when necessary.

The service outline is shown below:
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Service:Root Error Pinpointing
Input Ontology©O
if O isinconsistentthen
O’ «+— O minus all ABox assertion§'(a), R(a,b) € O
if @' isinconsistentthen
Sy «— JUSTIFY (O is inconsistent)
invoke algorithmCore_Aziom(Sy)
else
DebugUnsatisfiable’)

else
DebugUnsatisfiable()

subroutine : DebugUnsatisfiableQ)
S — {C4,...C,} (set of unsatisfiable classes@
if n > threshold, then
invoke algorithmStructural_Analysis(O, S)
S < S minus derived classes found BYyructural_Analysis
invoke algorithmGenerate_DependencyGraph(O, S)
Sr < set of root unsatisfiable classes;,, < set of justifications for each roote Sg
invoke algorithmCore_Axiom(Sy,,)

Table 5.8: Root Error Pinpointing

The service receives an ontology that has semantic defects, i.e., either it is incon-
sistent, or it is consistent with some unsatisfiable classes. In the former case, the service
attempts to remove the inconsistency if it is due to unsatisfiable classes by getting rid of
all the ABox assertions. The reason for this step is that, if applicable, it highlights the
cause of the inconsistency immediately, and moreover, if there are a large number of un-
satisfiable classes, it allows us to Useuctural_Analysis (as seen below) to eliminate
the less critical unsatisfiable classes quickly.

If the ontology still remains inconsistent after the modification, the service obtains
the justification for the inconsistency using the Axiom Pinpointing service and invokes
the algorithmCore_Axiom to generate an axiom dependency map from the justification
sets. This map can then be used to highlight the core-erroneous axioms by displaying the
corresponding justification sets they fall in.

On the other hand, if the ontology turns consistent as a result of the modification,
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the service calls the sub-routidigebug_Unsatis fiable which is used to separate the root
from the derived unsatisfiable classes. In this case, depending on whether the number
of unsatisfiable classes exceeds some user-spettifieshold the service either directly
invokes theGenerate_DependencyGraph algorithm, or usesStructural_Analysis to
prune the problematic space quickly by reducing the number of derived unsatisfiable
classes before generating the graph for the remaining erroneous ones.

Finally, once the user has narrowed down the root unsatisfiable classes to focus on,
the Axiom Pinpointing Service can be used to obtain the justifications for each of the
roots, and th&ore_Axiom algorithm can be used (as seen above) to generate an axiom

dependency map from the justification sets.
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Chapter 6
Ontology Repair Service

6.1 Introduction

In Chapters 4, 5, we have devised a set of ontology debugging services that can be
used to highlight the core erroneous axioms and concepts in a defected ontology. After
identifying and understanding the cause of the error, the next step is to act upon it, i.e.,
resolve the error by modifying the ontology in an appropriate manner. Though in most
cases, repairing errors is left to the ontology modelers’ discretion, and understanding the
cause of the error certainly helps make resolving it much easier, bug resolution can still be
a non-trivial task, requiring an exploration of remedies with a cost/benefit analysis. For
this reason, we present a service specifically catered towards ontology repair.

Given an OWL ontology with one or more unsatisfiable classes (or alternately, an
inconsistent OWL ontology), the ontology repair service automatically generates repair
solutions, i.e., a set of ontology changes, which if applied to the ontology eliminate all
the concerned errors.

In designing this service, we consider various strategigarik erroneous axioms
in order to arrive at sensible solutions. For example, one of the metrics used for axiom
ranking is the impact of removing the axiom on the remaining entailments of the ontology.
Roughly, the idea here is to assign a high rank to an erroneous axiom if removing it

from the ontology has a very small impact on the semantics of the ontology. In order
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to generate repair solutions based on the axiom ranks, we use a standard uniform cost
search algorithm. We modify the algorithm to allow for easy customization of the repair
solutions based on the modelers’ preferences.

We also note that the repair service considers axiom additions or rewrites as well,
and not just the removal of axioms. Axiom rewrites are desirable because they attempt to
preserve the meaning of the axioms as much as possible, while eliminating the problem-
atic parts. In quite a few cases that we have observed, the quality of the repair solutions
is greatly enhanced when rewrites are considered.

In the remainder of this chapter, we describe the key components of the repair ser-
vice when used to debug unsatisfiable classes in a consistent ontology. Since the under-
lying problem involves dealing with and rectifying a set of erroneous axioms, the same
principles for generating repair solutions are applicable when debugging an inconsistent

ontology.

6.2 Repair Overview: Scope and Limitations

In this section, we provide a brief overview of how the repair service works, and
discuss it’'s scope and limitations.
We consider a simple example to illustrate the main points.Clyelbe an ontology

composed of the following axioms:
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1. Person C (= 1).hasGender

2. Gender(male)

3. Gender(female)

4. Person T —Animal

5. {male} C —{female}

6. domain(hasGender) = Animal

7. range(hasGender) = {male} M {female}

8. Student C Person
The classe®erson, Student are unsatisfiable i©,. The objective of the repair

service is to generate a solution (set of ontology changes) to fix the two unsatisfiable
classes.

Now, the Axiom Pinpointing service devised in Chapter 4 can be used to obtain
the justification for the unsatisfiability of each of these classes, i.e., the minimal set of
axioms from the ontology which is responsible for their unsatisfiability. For example,
the justification for the entailmerfterson = L is the two axiom sets{1,4,6}, {1,5,7}.

This justification is also referred to as tMUPS of the unsatisfiable concept, as seen in
Chapter 4.

From a repair point of view, the significance of tki&JPS(Person) is clear —in order
to make the clasBerson satisfiable in0,, we need to remove froif?; at least one axiom
in each set present in tidUPS(Person). Thus, the repair service uses this information to
automatically generate a minimal repair solution to fix this bug, e.g., assuming we do not
want to remove axionh since it is the concept definition axiom, one solution is to remove

axioms{4, 7} from O;.
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Key Erroneous

Aioms obtained oy Axiom Ranking Solution Generation Axiom Rewrite

using previous
Debugaing Services Module Module Module

User Feedback [ Control

= Repair Soln.

Figure 6.1:0ntology Repair Service

Moreover, if the ontology has numerous unsatisfiable classes, as is the case above,
the Root-Error Pinpointing Service devised in Chapter 5 can be used to identify the core
errors, by separating threot from thederivedunsatisfiable classes, e.g.,dh, the class
Student is purely derivedwhile Parent is a root, because of the subclass dependency re-
lation in axiom8. This implies that any repair solution to fBarent is guaranteed to make
the classSStudent satisfiable as well. Thus, the repair service makes use of this knowledge
to arrive at a solution that removes tlsast number of axiomsom the ontology while
repairingall the unsatisfiable bugs.

However, the main drawback of automatically generating a solution is that it is im-
possible to determine whatarrector appropriaterepair solution is for every case, since
assessing the quality of a solution is left to the ontology authors’ discretion. [A;tles-
ample, an alternate solution that contains a minimal axiom set (not including the concept
definition axioml1) is the set{5,6}, though this solution is probably undesired. Obvi-
ously, there is no way a tool can automatically distinguish between desired and undesired
solutions. In the absence of any domain knowledge or modeler intent, the only option
is to take into account suitable heuristics to ensure that the service arrives at reasonable
solutions, present alternatives to the user and facilitate feedback to improve their quality.

Thus, the naive, straightforward design of the repair service that uses the previous
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debugging services to come up with axiom-removal solutions is modified as shown in
Figure 6.1. Itincludes the following modules: ArRiom Rankingnodule that uses various
strategies to prioritize erroneous axiom§aution Generatiomodule that automatically
generates repair plans which can be customized easily, afixiam Rewritanodule that
enhances the solutions by suggesting appropriate axiom edits where possible to the user.
The purpose of these modules is to create a service that aids the user in understanding and

evaluating the options available for repair.

6.3 Axiom Ranking Module

Given a set of erroneous axioms in an ontology, the key task for repair is selecting
which of the axioms need to be modified or removed. For this purpose, we consider
whether axioms can beankedin order of importance. Repair is then reduced to an
optimization problem whose primary goal is to get rid of all the inconsistency errors in
the ontology, while ensuring that the highest rank axioms are preserved and the lowest
rank axioms removed from the ontology.

In this section, we describe the Axiom Ranking module of our Ontology Repair

service. This module uses the following strategies to rank erroneous axioms:

e Frequency the number of times the axiom appears in the MUPS of the various
unsatisfiable concepts in an ontology. If an axiom appears different MUPS
(in each set of the MUPS), removing the axiom from the ontology ensures that
concepts turn satisfiable. Thus, higher the frequency, lower the rank assigned to the

axiom
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e Semantiaelevance to the ontology, in terms of the impact (i.e., entailments lost
or added) when the axiom is removed or altered. Greater the impact caused by

removing the axiom, higher it's assigned rank and vice versa.

e Test casespecified manually by the user to rank axioms. Axioms are ranked in
direct (or inverse) proportion to desired (or undesired) entailments specified by the

user.

e Syntacticrelevance to the ontology, in terms of the usage of the elements in the
axiom signature. Axioms related to elements that are strongly connected in the

ontology graph are ranked higher and vice versa.

Among the above strategies, determining fileguencyof the axiom is straightfor-
ward once the MUPS of the unsatisfiable concepts has been determined (using the Axiom
Pinpointing service). We now describe each of the remaining strategies in detail in the

following subsections.

6.3.1 Semantic Relevance: Impact Analysis

The basic notion of revising a knowledge base while preserving as much informa-
tion as possible has been discussed extensively in belief revision literature [1]. We now
apply the same principle to repairing unsatisfiable concepts in an OWL ontology, i.e.,
we determine the impact of the changes made to the ontology in order to get rid of un-
satisfiable concepts, and identify minimal-impact causing changes. Since repairing an
unsatisfiable concept involves removing axioms in it's MUPS, we consider the impact of

axiom removal on the OWL ontology.
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A fundamental property of axiom removal based on the monotonicity of OWL-DL
is the following: removing an axiom from the ontology cannot add a new entailment.
Hence, we only need to consider entailments (subsumption, instantiation etc.) that are
lost upon axiom removal, and need not consider whether other concepts in the ontology
turn unsatisfiable.

For the purpose of impact analysis, we present a simple definitisaroantic rel-

evance

Definition 1 (Semantic Relevance)
Given an ontology) with axiomq, the semantic relevance of given bySR,,, is
a set of entailment$g,, ..5,} such that for each entailmem € SR, (1 < i < n), it

holds thatO = 3; but(O — «) £ 5.

The above definition is quite broad as it allows an arbitrarily infinite set of entail-
ments to be considered as semantically relevant (e.g., if an ontology eritailsD, it
also entails”’ C D LI D" whereD' is any arbitrary concept), hence we shall only consider
subsumption/disjointness betweatomicconcepts and instantiation afomicconcepts
as the key entailments to check for when an axiom is removed. In the next subsection, we
discuss how the user can provide a set of test cases as additional interesting entailments
to check for.

Note that axiom ranks are assigned in direct proportion to their semantic relevance,
i.e., higher the semantic relevance, more the entailments that are lost upon it's removal,

and hence higher the axiom rank.
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Computing Semantic Relevance

In order to compute the semantic relevance of an axiom w.r.t. some key entail-
ments, a brute-force technique involves processing the ontology using a DL reasoner by
removing the concerned axiom and noting the entailments lost. Obviously, performance
issues are the main concern here, especially when dealing with large ontologies contain-
ing thousands of axioms. Though we are exploring techniques for incremental reasoning
for dynamic (changing) ontologies [80], this is still largely an unexplored field.

A more optimal solution is employed by our Ontology Repair service and the algo-

rithm is shown in Table 6.1.

Algorithm: Compute Semantic Relevance
Input Ontology©, Set of erroneous axiomts weighting factonut
Output Entailment MapM, Rank functiornvank
while classifyingO using a reasoner,
for each subsumptiorC C D,
if C'is unsatisfiable,
handleUnsat(C C D)
else
computeJUSTIFY (C C D) using Axiom Pinpointing (tableau tracing, ref. Ch4)
for eachaxioma € S s.t.a € JUSTIFY (C C D),
M(a) = M(a)U{C C D}
while realizingO using a reasoner,
for eachinstantiationC'(a),
computeJUSTIFY (C(a)) using Axiom Pinpointing (tableau tracing, ref. Ch4)
for eachaxioma € S s.t.a € JUSTIFY (C(a)),
M(a) - M(a) U{C(a)}
for each axiom entrya in M and entailmenf € M («)
if (O—a)EE
M(a) — M(a) - &
for eachaxioma € S,
rank(a) «— sizeof (M (a)) * wt

subroutine: handleUnsat(C C D)
useStructural Analysigref. Ch5) to obtai’ C 0 s.t.T = C C D and( is satisfiable iril"
for eachaxioma € Sst.aeT,
M(a) - M(a)U{C C D}
return

Table 6.1: Computing Semantic Relevance

The algorithm accepts as input the OWL ontol@@ya set of erroneous axionts
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responsible for the various logical errors in it, and a weighting factarsed for comput-

ing ranks. It returns a map (bijectiofY that associates each erroneous axiom with the
entailments that are lost from the ontology when the axiom is removed, and a function
rank that assigns an axiom rank based on the entailments associated with the axiom in
M and the value ofvt specified.

The idea behind the algorithm is the following: we use the Axiom Pinpointing
service (seen in Chapter 4) to obtain the justification sets (axioms) responsible for the sig-
nificant subsumption and/or instantiation relationships in the ontology, and then directly
determine the justification sets the axiom falls in. Since the tableau tracing (Glass-box)
version of the Axiom Pinpointing service does notimpose much overhead over the regular
reasoning procedure, we can easily compute a single justification set for each entailment
during reasoning. However, since we only find one justification set for the entailment,
we need to check whether the entailment would actually be lost when the axiom in the
set is removed. The second to last loop in the main algorithm verifies this. Note that the
number of entailments tested as a result of this algorithm is a fraction of the total set of
entailments that would have been tested if one were to use the brute force method.

In addition, the algorithm makes use of a subroufinedleUnsat(..) to deal with
entailments related to unsatisfiable classes, which represent a special case. This is because
when a concept is unsatisfiable, it is equivalent to the bottom concept (or in the OWL
language,owl:Nothing ), and hence is trivially equivalent to all other unsatisfiable
concepts, and is a subclass of all satisfiable concepts in the ontology. In this case, we need
to differentiate between the stated or explicit entailments related to unsatisfiable concepts
and the trivial ones. Thus, we apply the following strategy: if a given entailment related
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to an unsatisfiable concept holds ifragmentof the ontology in which the concept is
satisfiable we consider the entailment to be explicit. While this is a hard problem, the
subroutine uses th8tructural Analysigechniques seen in Chapter 5 to detect explicit
relationships involving unsatisfiable concepts without performing large scale ontology
changes!
We consider a few examples that highlight the significance of semantic relevance.
Example 1: In the Tambis OWL ontology the following set of axioms cause 77

unsatisfiable classes:

1. metal = chemical M (= 1).atomic-number M Jatomic-number.integer

2. non-metal = chemical N (= 1).atomic-number M Jatomic-number.integer
3. metalloid = chemical M (= 1).atomic-number M Jatomic-number.integer
4. metal T —non-metal

5. metalloid © —non-metal

6. metalloid C —metal

In this case, though the disjoint axioms appear in the MUPS of each of the three
unsatisfiable conceptsyetal, non-metal, metalloid, removing them is not the correct so-
lution, since eliminating them removes the disjointness relations between numerous other
classes in the ontology and also makes all three concepts above equivalent which is prob-

ably undesired.

1For example, we use theferred Dependency Detectitveuristic to get rid of the contradictions in the
ontology while revealing the hidden subsumption entailments. Our evaluation in Chapter 7 demonstrates
that heuristics based on this technique work quite well in practice.

’Note: All  ontologies mentioned in this paper are available online at
http://www.mindswap.org/ontologies/debugging/
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In fact, a better solution is to weaken the equivalence to a subclass relationship in
each concept definition, thereby getting rid of the subclasgesnical 1 (= 1)atomic-
number M Jatomic-number.integer C metal /non-metal /metalloid; and we find that re-
moving these relationships has no impact on other entailments in the ontology.

Example 2: Consider the following//U P.S of an unsatisfiable concePteanCrustLayer

w.r.t. the Sweet-JPL ontologs:

1. OceanCrustLayer C CrustLayer

2. CrustlLayer C Layer

3. Layer C Geometric_3D_Object

4. Geometric_3D_Object C JhasDimension.{ “3D” }
5. OceanCrustLayer C OceanRegion

6. OceanRegion C Region

7. Region C Geometric_2D _Object

8. Geometric_2D_Object = JhasDimension.{ “2D” }

9. hasDimension is Functional

Note that inO,, each of the concepiSrustLayer, OceanRegion, Layer, Region,
Geometric_3D_Object, Geometric_2D_Object, has numerous individual subclasses.

In this case, removing the functional property assertiohaDimension from O,
eliminates the disjoint relation between concépismetric 2D_Object andGeometric_3D_Object,
and between all it's respective subclasses. Also, removing any of the following axioms
2,3,4,6,7,8 eliminates numerous subsumptions from the original ontology. Thus, using

the minimal impact strategy, the only option for repair is removing either 5, which
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turns out to be the correct solution, based on the feedback given by the original ontology

authors.

6.3.2 User Test Cases

In addition to the standard entailments considered in the previous subsection, the
user can specify a set of test cases describing desired entailments (similar to the idea
proposed in [35]). Axioms to be removed are then directly ranked based on the desired
entailments they break.

Also, in some cases, the user can speaifigesiredentailments to aid the repair
process. For example, a common modeling mistake is when an atomic cohaegud-
vertently becomes equivalent to the top concepil:Thing . Now, any atomic con-
cept disjoint fromC' becomes unsatisfiable. This phenomenon occurred in the CHEM-A
ontology, where the following two axioms caused concépganonymized) to become
equivalent toT: {A = VR.C, domain(R, A) }.

To incorporate test cases such as these into the algorithm shown in Table 6.1, we
modify it to allow two more input arguments — a set of user-specified entailments and
a function which annotates entailments as desired or undesired. Then, during the main
routine, we obtain the justifications of the manually specified entailments (in addition to
the standard ones) and verify if the axiom removal breaks such entailments or not (by
checking the justifications). Finally, while computing the functiamk based on the
entailment map//, we use the information about whether the entailment is desired or not

to assign a positive or negative valued weight respectively.
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6.3.3 Syntactic Relevance

There has been research done in the area of ontology ranking [81], [29], where for
example, terms in ontologies are ranked based on their structural connectedness in the
graph model of the ontology, or their popularity in other ontologies, and the total rank
for the ontology is assigned in terms of the individual entity ranks. Since an ontology is
a collection of axioms, we can, in theory, explore similar techniques to rank individual
axioms. The main difference, of course, lies in the fact that ontologies as a whole can
be seen as documents which link to (or import) other ontology documents, whereas the
notion of linkage is less strong for individual axioms.

Here, we present a simple strategy that ranks an axiom based asafeof ele-

ments in it's signature. For this, we define the notion of syntactic relevance.

Definition 2 (Syntactic Relevance)

Given an ontology® with axioma, let sign(a) = {&1,..€,} be the signature of
a, whereé; is either an atomic concept, role or individual in the vocabularyf The
usage of an entity;, given byusage(E&;), is the set of axiomS§ = {ay, ...a,. }, (S C O),
s.t. for eachy; € S, &; € sign(a;). Then, the syntactic-relevance rank of the axiois

given by:size(usage(&1)).. U usage(&y)).

The significance of this strategy is based on the following intuition: if the entities
in the axiom are used (or are referred to) often in the remaining axioms or assertions
of the ontology, then the entities are in some sense, core or central to the overall theme
of the ontology, and hence changing or removing axioms related to these entities may be
undesired. For example, if a certain concept is heavily instantiated, or if a certain property
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is heavily used in the instance data, then altering the axiom definitions of that concept or
property is a change that the user needs to be aware of. Similarly, in large ontologies
where certain entities are accidentally underspecified or unused, axioms related to these
entities may be given less importance.

An algorithm to determine the syntactic relevance is shown below. Similar to the
algorithm depicted in Table 6.1, it accepts as input the OWL ontology, a set of erroneous
axioms and a weighting factor used to compute axiom ranks. It enforces the semantics
of Definition 2 and assigns ranks based on the usage of entities in the signature of the

erroneous axiom.

Algorithm: Compute Syntactic Relevance
Input Ontology®, Set of erroneous axiomts, weighting factonuvt, axiom type weight function
Output Rank functionrank
initialize entity usage map/,
for eachaxioma € O,
sign(a)) < signature of axiona
for eachentity (class, property, individual) € sign(«),
My(&) — M,(§)Ua
for eachaxioma € S, s.t.rank(a) =0
for eachentity £ € sign(a),
rank(a) — rank(a) U My (a) * 7(a)
rank(a) «— rank(a) * wt

Table 6.2: Computing Syntactic Relevance

In order to make the ranking approach more flexible, an additional input to the al-
gorithm is a functionr that assigns weights based on various axiom types, e.g., it allows
weighing property attribute assertions sucloas: InverseFunctional higher. This func-
tion specified by the user would be motivated by the ontology modeling philosophy and
purpose (e.g., as is done in OntoClean [38], where certain concept / property definition

types are given higher importance).
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6.4 Solution Generation Module

So far, we have devised a procedure to find ranks for various erroneous axioms
(MUPS) in the ontology. The next step is to generate a repair plan (i.e., a set of ontol-
ogy changes) to resolve the unsatisfiable or inconsistency errors taking into account their
respective MUPS and axiom ranks. This is handled by the solution generation module,
which uses a standatchiform cost searchlgorithm taking the computed axiom ranks as
the cost.

Figure 6.2 shows an example of a search tree generated by the algorithm for a
collection of erroneous axiom sets= {{2,5},{3,4, 7}, {1,6},{4,5,7},{1,2,3}} with
the axiomsl — 7 ranked as follows»r(1) = 0.1, r(2) = 0.2, r(3) = 0.3, r(4) = 0.4,

r(5) = 0.3, r(6) = 0.3, 7(7) = 0.5, wherer(zx) is the rank of axiomz. The ranks are
computed based on the factors mentioned earlier, such as frequency, impact analysis etc.
each weighed separately if needed using appropriate weight constants. The superscript
for each axiom-number denotes the rank of the axiom,”and the path rank computed

as the sum of the ranks of axioms in the path from the root to the node. For example, for
the leftmost path showrn?, = 0.2 + 0.3+ 0.1 + 0.3 = 0.9.

As shown in the figure, the repair solution found with the minimal cost is either
{2,4,1} or {5,3,1}.

However, there is a drawback of using the above procedure to generate repair plans,
i.e., impact analysis is only done at a single axiom level, whereas the cumulative impact of
the axioms in the repair solution is not considered. This can lead to non-optimal solutions.

For example, in the Tambis OWL ontology seen earlier, where the three root classes are
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Figure 6.2:Uniform Cost Search: Generating a repair plan based on ranks of axioms in
the MUPS of unsatisfiable concepts.

asserted to be mutually disjoint, removing any one of the disjoint axioms does not cause
as large an impact as removing all the disjoints together.

In order to resolve this issue, we propose a slight modification to the algorithm:
each time a solution is found, we compute a new cost based on the cumulative impact
of the axioms in the solution. The algorithm now finds repair plans that minimize these

updated costs.

6.4.1 Improving and Customizing Repair

The algorithm described above can be used in general to fix any arbitrary set of
unsatisfiable concepts, once the MUPS of the concepts and the ranks for axioms in the
MUPS is known. Thus, a brute force solution for resolvallgthe errors in an ontology

involves determining the MUPS (and ranking axioms in the MUPSg#mhof the un-
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satisfiable concepts. This is computationally expensive and moreover, unnecessary, given
that strong dependencies between unsatisfiable concepts may exist. Thus, we need to
focus on the MUPS of the critical or root contradictions in the ontology.

To achieve this, we make use of the Root-Error Pinpointing service described in
Chapter 5 that identifies theot unsatisfiable concepts in an ontology, which propagate
and cause errors elsewhere in the ontology, leadindetoved unsatisfiable concepts.
Recall that a root unsatisfiable concept is one in which a clash or contradiction found
in the concept definition does ndepend on the unsatisfiabilityf another concept in
the ontology; whereas, a derived unsatisfiable concept acquires a contradiction due to
it's dependence on another unsatisfiable concept. For exampleisian unsatisfiable
concept, then a concept (B C A) or C (C C JR.A) also becomes unsatisfiable due
to it's dependence oA, and is thus considered as derived. From a repair point of view,
the key advantage here is that one needs to focus on the MUPS of the root unsatisfiable
concepts alone since fixing the roots effectively fixes a large set of directly derived concept
bugs.

Also, the service guides the repair process which can be carried out by the user at

three different granularity levels:

e Level 1: Reparing a single unsatisfiable concept at a tifnethis case, it makes
sense to deal with the root unsatisfiable concepts first, before resolving errors in
any of the derived concepts. This technique allows the user to monitor the entire
debugging process closely, exploring different repair alternatives for each concept

before fully fixing the ontology. However, since at every step in the repair process,
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the user is working in a localized context (looking at a single concept only), the
debugging of the entire ontology could be prolonged due to new bugs introduced

later based on changes made earlier. Thus, the repair process may not be optimal.

e Level 2. Repairing all root unsatisfiable concepts togethEne user could batch
repair all the root unsatisfiable concepts in a single debugging iteration before pro-
ceeding to uncover a new set of root/derived unsatisfiable concepts. This technique
provides a cross between the tool-automation (done in level 3) and finer manual

inspection (allowed in level 1) with respect to bug correction.

e Level 3: Repairing all unsatisfiable concepthe user could directly focus on
removing all the unsatisfiable concepts in the ontology in one go. This technique
imposes an overhead on the debugging tool which needs to present a plan that
accounts for the removal of all the bugs in an optimal manner. The strategy works
in a global context, considering bugs and bug-dependencies in the ontology as a
whole, and thus may take time for the tool to compute, especially if there are a
large number of unsatisfiable concepts in the ontology (e.g. Tambis). However, the

repair process is likely to be more efficient compared to level 1 repair.

The number of steps in the repair process depends on the granularity level chosen
by the user: for example, using Level 1 above, the no. of steps is atleast the no. of
unsatisfiable concepts the user begins with; whereas using Level 3 granularity, the repair
reduces to a single big step. To make the process more flexible, the user is allowed to
change the granularity level, as and when desired, during a particular repair session (see
section 6.6: Putting It All Together).
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6.5 Axiom Rewrite Module

To make our repair solution more flexible, the Axiom Rewrite module considers
strategies to edit erroneous axioms instead of strictly removing them from the ontology.
An important point to note here is that if the rewrite is nattact weakeningwe need
to determine the new entailments that arteoducedbecause of the rewrite. At the very
least, no new unsatisfiable concepts should arise because of the rewrite, and currently we
test this using the reasoner directly. As future work, we plan to perform a more elaborate
analysis of the added entailments by making use of techniques we are developing for

incremental reasoning [42], [80].

Using Erroneous Axiom Parts

As shown in Chapter 4, the Axiom Pinpointing service can be used to output precise
justifications (in addition to asserted justifications) which identify parts of axioms in the
MUPS responsible for making a concept unsatisfiable. Having determined the erroneous
part(s) of axioms, the module suggests a suitable rewrite of the axiom that preserves as

much as information as possible while eliminating unsatisfiability.

Identifying Common Pitfalls

Common pitfalls in OWL ontology modeling have been enumerated in literature
[87]. We have summarized some commonly occurring errors that we have observed (in
addition to those mentioned in [87]), highlighting tireantaxiom and the reason for the

mistake in each case.
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Asserted Meant Reason for Misunderstanding
A=C ACC Difference between
Defined and Primitive concepts
ACC ACCUD Multiple subclass
ACD has intersection semantics
domain(P,A) ACVPB Global vs. Local
range(P,B) property restrictions
domain(P,A) domain(P,A U B) | Unclear about multiple domain
domain(P,B) semantics

Table 6.3: Common Errors in OWL

The library of error patterns is used in the axiom rewrite module as follows: once
an axiom responsible for an unsatisfiable concept is identified, we check if the axiom has
a pattern corresponding to one in the library, and if so, suggesh#éantaxiom to the
user as a replacement. As future work, we plan to make this library easily extensible and

shareable among ontology authors and users.

6.6 Putting It All Together: Service Description

In the previous sections, we have described the various modules of the Ontology
Repair Service. We now describe a single coherent version of the service that ties the
modules together (see Table 6.4).

During the execution of the repair service, the user is asked for his/her preferences
regarding the granularity level) of the solution, and additional information used to
compute ranks for erroneous axioms (weight-function for the various axiom typasd
ranking metrics weights). Based on these preferences, the service computes an appropri-
ate repair solution by using a uniform cost search algorithm as described earlier (it uses
the subroutin& enerateSolution for this task).

Note that, where necessary, the service makes use of the Axiom Pinpointing service
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to find the precise justifications of the unsatisfiable concept, and the Root Error Pinpoint-
ing service to find root unsatisfiable concepts. Also note that when generating a solution
to repair all the unsatisfiable concepts, the service works iteratively — considering only
the root unsatisfiable concepts in each iteration.

Finally, the Axiom Rewrite module (denoted by AXIOM-REWRITE(..) in Table
6.4 but not explicated), replacesibaxiomsin the solution set by appropriate axiom
rewrites, e.g., removing newly introduced terms in the subaxioms; and also performs a

lookup in the error pattern library for possible rewrite suggestions.

6.7 Conclusion / Outlook

In this chapter, we have discussed the key design factors of our Ontology Repair
service, namely, metrics for ranking axioms that contribute to the inconsistency, genera-
tion of repair plans based on axiom ranks, and techniques to suggest axiom rewrites when
possible. A nice outcome has been the use of services devised in the earlier chapters in
the various stages of repair, e.g., ranking axioms based on entailments they justify, gener-
ating plans faster using root/derived unsatisfiable classes, and suggesting rewrites based
on precise justifications.

However, the repair service is different in spirit from the services seen in Chapters
4, 5. The latter services are not dependent on human factors such as modeler’s intent,
background domain knowledge etc., making them more concrete or well-defined, whereas
the repair process is more interactive, heuristic-based and user-driven. This also implies

that User Interface (Ul) issues play a larger role in determining the effectiveness of the
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repair service, as compared to the earlier two services. We discuss the Ul details of our

repair tool in the implementation and evaluation chapter (Chapter 7).
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Algorithm: Ontology Repair Service
Input: OWL OntologyO

while O contains some unsatisfiable concepts,
ask user for: repair granularity levg! axiom-type weight fnz, ranking metric weightsv ¢, w;, w,
GenerateSolution(O, g, T, wy, w;, wy,)
soln — AXIOM-REWRITE((soln)

subroutine: GenerateSolution(O, g, T, ws, w;, wy,)
S — 0, soln — 0
if g =1 (repair one unsatisfiable concept at a time, say some arbitrary carcept
S «— JUSTIFYprecise(C T L) (0btained using Axiom Pinpointing)
soln «— repair AziomSets(O, S, T,wy, w;, wy,)
else ifg = 2 (repair all roots)
R — set of root unsatisfiable concepts (obtained using Root Error Pinpointing)
for eachroot concept € R,
S «— SUJUSTIFYprecise(r C L) (obtained using Axiom Pinpointing)
soln «— repair AziomSets(O, S, T,wy, w;, wy,)
elseg = 3 (repair all unsatisfiable concepts)
while there exists at least one unsatisfiable concefit,in
R « set of root unsatisfiable concepts (obtained using Root Error Pinpointing)
for eachroot concept € R,
S «— SUJUSTIFYprecise(r C L) (obtained using Axiom Pinpointing)
solny, < repair AziomSets(O, S, T, wr, w;, wy,)
remove axioms izoln;, from O
soln < soln U soln;iy,
return soln

subroutine: computeRanks(O, S, T,wy, w;, w,)
for eachsetm € 5,
for eachaxioma € m
freq < number of sets ir$ thata falls in
rankys(a) «— —wys * freq
rank; «— compute_Semantic_Relevance(O, m,w;)
rank, «— compute_Syntactic_Relevance(O, m,wy, T)
for eachaxioma € m wherem € S,
rank(o) «— ranks(c) + rank; (o) + rank,(a)
return rank

subroutine: repair AriomSets(O, S, T, wy, w;, wy,)
rank «— computeRanks(O, S, T, ws, w;, w,,)
soln <« uniform-cost-searcts{, rank)
return soln

Table 6.4: Ontology Repair Service
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Chapter 7

Implementation and Evaluation

In this chapter, we discuss the key issues involved in deploying the debugging and
repair services seen in Chapters 4-6, and present results demonstrating the practical sig-
nificance of these services.

The chapter is divided into two main sections — in Section 7.1, we describe im-
plementation details of each service, discuss human factors involved, and present per-
formance evaluations of the service. In section 7.2, we describe the results of two pilot
studies that were conducted to judge the overall use and benefit of the services.

We note that all the debugging and repair services have been implemented in the
OWL-DL reasoner Pelléf and as part of the OWL Ontology Editor toolkit, Sw3opor
a detailed background of Swoop and Pellet, we refer the reader to [57], [97], and the
Appendix.

Before proceeding, we mention the main sample data used in our experiments — we
selected existing OWL ontologies that varied greatly in size, complexity and expressiv-
ity3. The details of the ontologies are given in Table 7.1.

The table displays the DL expressivity of each ontology, followed by the number
of axioms, classes/properties/individuals and unsatisfiable classes in the ontology, and

a small background description. With the exception of the University OWL ontology

Pellet: http://www.mindswap.org/2003/pellet
2Swoop: http://www.mindswap.org/2004/SWOOP
3Note: The ontologies are available at http://www.mindswap.org/ontologies/debugging.
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that we built for training purposes, all the remaining ontologies have been built by third

parties.

Ontology | DL Expressivity | Axioms C/P/l/Unsat. Comments

Chemical ALCH(D) 254 48/ 20/ -1 37 Ontology dealing with chemical elements

containing real modeling errors

DOLCE SHOIN (D) 1417 200/ 299/ 39/ - | Foundational ontology for linguistic and

cognitive engineering

Economy ALH(D) 1704 338/ 53/ 481/ 51| Mid-level ontology by Teknowledge
Galen SHF 6580 2749/ 413/ -/ - | An adaptation of an early prototype of the

GALEN Clinical Terminology

Sweet-JPL| ALCHO(D) 3833 | 1537/ 121/ 150/ 1) NASA ontology dealing with Earthscience

Tambis SHIN 800 395/ 100/ -/ 144 | A biological science ontology developed
by the TAMBIS project
Transport ALH(D) 2051 444/ 93/ 183/ 55| Mid-level ontology by Teknowledge
University STIOF (D) 169 30/ 12/ 4/8 Training ontology hand-crafted to demonstrate
non-trivial errors
Wine SHIF (D) 856 77/18/206/ - | Expressive Ontology used in the OWL Guide

(modified to remove nominals)

Table 7.1: Sample OWL Data used in our Debugging/Repair Experiments

7.1 Deploying the Debugging & Repair Services

In this section, we focus on the three ontology debugging/repair servidggom
Pinpointing Root Error Pinpointingand Ontology Repairseparately and discuss their
implementation and presentation issues in Swoop. The first two services also include a
performance (timing) evaluation. For the third service, i.e., Ontology Repair, timings are

included as part of the user study described in section 7.2.

7.1.1 Implementing Axiom Pinpointing

Recall that the Axiom Pinpointing service is used to obtain the justification set
for any entailment of an ontology, i.e., the minimal set of axioms from the ontology

responsible for the entailment. For debugging purposes, we can use it to either obtain the
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minimal set of axioms responsible for an unsatisfiable class in a consistent ontology, or

responsible for an inconsistent ontology itself.

_oncise Formak I abstrack S';.r'ntaxl I I RDF,I'KMLI

OWL-Class: .OceanCrustLaver
Unsatisfiable concept

Axioms causing the problem:

1) (.OceanCrustLayer £ DceanReqgion)

2) (GeornetricalObject 20 © (JhasDirmension . {"2"~<xsdiinteger=1])
3) (CrustLaver £ LithospheralLaver)

4) (EarthRegion © Reqion)

5) (Lithospherelaver & SolidEarthl aver

6) (Region £ GeometricalObject 200

7) (SolidEarthlLaver £ Laver)

8) (.OceanCrustLauer £ CrustLaver)

9) Functional Property (hasDirmension

10) (TopographicalRegion & EarthRegion)

11) (Geormetricalobject 230 £ (JhazDimension . {"3"~"<xsdiinteger=1])
12) [Laver £ GeometricalObject 20

13) (OceanRegion £ TopographicslRegion

Figure 7.1: Displaying the Justification Axioms as a Single Unordered List

Figure 7.1 shows an example of this feature when invoked from within Swoop.
The figure displays the thirteen axioms (of the only justification set) responsible for the
unsatisfiability of the clas®ceanCrustLayer in the Sweet-JPL OWL Ontology.

From a debugging point of view, the advantage of this presentation is clear — among
the (roughly) three thousand axioms present in the Sweet-JPL ontology, only the thirteen
axioms that make the class unsatisfiable are displayed, and moreover, if any one of these
axioms is removed from the ontology, the cl&sanCrustLayer is guaranteed to turn
satisfiable (since this is the only justification). However, on the downside, displaying
the axioms as a single unordered list makes it difficult to see the interaction between the
axioms and understand the real cause of the unsatisfiability.

To address this issue, we have made several enhancements in the presentation of the

axioms in order to facilitate the understanding of the problem. These include:
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¢ Displaying Clash Informatiotfwhen using the tableau-based version of the Axiom

Pinpointing service)
e Improving Axiom Layout, i.e., ordering and indenting axioms

¢ Striking out Irrelevant Partéwhen using the service to obtgirecise justifications

Figure 7.2 shows an enhanced version of the earlier example.

Concise Format | abstract Synta | | | ROFML | |

OWL-Class: 'OceanCrustLayer

Unsatisfiable concept

Reason: Any member of OceanCrustlayer has more than
one value for the functional property hasDimension
Axioms causing the problem:

1) (.OceanCrustLauer £ QceanReqion]

2) |_(Dceankeqion € TopographicalRegion

3) |_[Tepographicalkegion £ EarthRegion

4) |_(EarthRegion & Reqgion)

5] |_[Region & SeornetricalObjec 200

6] |_{Geormetricalobject 20 £ (dhasbimension o {"2"~"<usdiintager=11)
sl |_Furctional Property (hasbDimension]

8) (.OceanCrustLager £ Crustlaver
9) |_(cCrustlaver & LithosphersLayer)

10) |_[Lithospherelaver = SaolidEarthlLaver)

11) |_(SolidEarthlLaver = Laver

12) |_[Laver £ Geometricalobject 30

13) |_(GeometricalObject 20 £ (JhasDimension . {"3"~"<xsdiinteger=1}]

Figure 7.2: Improved Presentation of the Justification

We now describe each of these enhancements in detail.

Displaying Clash Information

As noted in Chapter 2, there are many different ways for the axioms in an ontology
to cause an inconsistency. But these different combinations boil down to some basic con-
tradictions in the description of an individual. Tableaux algorithms apply transformation
rules to individuals in the ontology until no more rules are applicable or an individual has

a clash. The basic set of clashes in a tableaux algorithm are:
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e Atomic An individual belongs to a class and its complement.
e Cardinality: Anindividual has a cardinality restriction on a property that is violated.
e Datatype A literal value violates the (global or local) range restrictions on a datatype

property.

When using the tableau-based (hybrid) version of the Axiom Pinpointing service,
it is easy to modify the internals of the tableau algorithm to expose and display the clash
causing the inconsistency (as seen in Chapter 4).

One of the main challenges is tisefullypresent this clash information to the user
since the normalization and decomposition of expressions (done by the reasoning algo-
rithms) can obscure the error by getting away from the concepts actually used by the
modeler. Thus, we maintain the correspondence between the original asserted terms and
their normalized versions, and display only the asserted information to the user.

Also, the clash may involve some individuals that were not explicitly present in the
ontology, but generated by the reasoner in order to try to adhere to some constraint. Those
generated individuals may not even exist (or be relevant) in all models. For example, if
an individual has awl : someValuesFrom restriction on a property, the reasoner would
generate a new anonymous individual that is the value of that property. In this case,
since these individuals do not have a name (URI) associated with them, we use paths of

properties for identification (see Figure 7.3 for an example).
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Concise Format I Abstract Syntaxl TMatural Language' RDF,I’XML' Turtle|

OWL-Class: mad+cow
Unsatisfiable concept
Reason: Any member of mad+cow, ¥, is related to some ¥, identified by

this path (¥ gats [ part+of ¥ 113, which is forced to belong to class
animal

and its complement

Intersection of:
COuw

(3eats . (brain N (Ipart+of . sheepi))

Equivalent to:
owl:Nothing (¥Why?)

Figure 7.3: Displaying clash information using a property-path and variables to denote
anonymous individuals. This example has been taken from the Mad-Cow ontology used
in the OIlEd [8] Tutorials.

Improving Axiom Layout

In order to improve the axiom layout, we use a recursive ordering strategy that starts
with the unsatisfiable class definition axioms, and arranges axioms such that atleast one
element (i.e., class, property or individual) in the signature of the right hand side (RHS)
of the current axiom matches with the left hand side (LHS) of the next. The motivation
here is to present a chain of reasoning by suitably aligning related axioms, i.e., axioms
sharing elements in their signature. We discuss the pros and cons of this strategy with
some sample cases.

Figure 7.4 shows three cases based on our axiom layout strategy. In each case,
the ordering and indentation of the axioms helps leads the user down several reasoning
chains, with the end-points of each chain being a direct pointer to the contradiction.

For example, in case (A), by following axionis— 2,1 — 3 the user can see
that an instance of clagdStudent is related to an instance of claBgofessorlnHClorAl
by propertyhasAdvisor, whoseinverse propertyadvisorOf adds the typéiCIStudent

back to the first instance. Finally, the sole axiom 4 highlights the disjointness between the
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AlStudent = owl:MNothing: (A) oxidation = owl:Nothing: (B)

A 1) (ozidation € oxidation-and-reduction)
1) (plStudent £ (Jhasadvisor . ProfessorlnHCIorAL) — " ,
2} |_(hasidvisor inverse advisorof) 2) |_(oxidation-and-reduction £ (= 1 involves))

3) | (ProfessorlnHCIoral £ (vadvisorof . HCIStudent)) 3) |_(ozidation-and-reduction £ (¥involves . isomerisation))

4) |_(isomerisation = (process M ligation N (Jcontains |, isomers)))
A4) (Alstudent £ - HCIStudent) —e= - X ; -
) HEBML = HEEn 5) |_(ligation = (¥involves . racemation))
6) |_(racemation £ - regulation)

7) |_(isomerisation £ (Jinvolves . requlation))

gene-part = owl:Mothing: (C)
1) {gene-part = ((Apart-of . gene) N (¥part-of . gene) N dna-part))

2) |_(dna-part = ({{¥part-of . dna) N (Jpart-of . dna}) N macromolecule-part))

3) |_(dna = ((dstrandedness . strandedness-selector) M macromolecular-compound N (¥polymer-of . deosxsy-

nucleotide) N (3polymer-of . deoxsy-nucleotide)))

4} |_(strandedness daomain nucleic-acid)

5) |_fnucleic-acid = ({(¥oolymer-of . nudectide) N macromolecular-compound N (Goolymer-of . nuclectide))
6] |_{huclectide € small-arganic-molecular-compound)

7l |_(=mall-organic-molecular-compound £ (organic-molecular-compound N small-molecular-compoundi)
8) |_forganic-molecular-compound £ (Jcontains . carbon))

9) |_{carbon = ({= 1 atomic-number) N chemical N (Jatomic-number . #sd:integqer)))

10) (metalloid = ({= 1 atomic-nurmber) N chemical N (Fatomic-number . @sd:integer)))
11) {metal = ((= 1 atomic-number) N chemical N (Jatomic-number , xsd:integer)))
12) (metal = - metalloid)

Figure 7.4:0Ordering and Indenting Justification Axioms. Example (A) has been taken
from the University OWL Ontology, whereas examples (B),(C) are from the Tambis On-
tology.

classed\IStudent, HCIStudent thus making the contradiction clear. Similarly, in case (B),
the reasoning chain consisting of axioms indicates that an instance of classdation

is related to an instance of claseegulation (via propertyinvolves), whereas the reasoning
chain[l1..4,4 — 7] points to the contrary. Finally, in case (C), the axioms: 9 indicate
that an instance gfene — part is related to an instance ofrbon, whereas the last three
unordered axiom$0..12 point to the source of contradiction @arbon.

The reason this strategy works well in practice is because, typically, most of the
axioms in an OWL ontology are subclass or equivalent axioms, which correspond to
implications in FOL, i.e.C C D — ¥(z)C(xz) — D(z). Hence, a chain of sub-class
relations forms a chain of implications, which is easy for the user to understand. Thus,
this strategy relies on leading the user systematically from the base set of facts to the

inferred ones until the source of the contradiction is reached.
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However, there are cases when the interaction between the axioms is difficult to

grasp even when the axioms are laid out as shown above. Figure 8.2 illustrates this point.

Person = owl:MNothing:

1) (Ferson £ = Published'Work)

2) (WR RelatedPublishedWaork £ NervedgentRelatedPublishedwork)
3) |_(HervesgentRelatedPublishedWork £ PublishedWork)

4) (refersToPrecursor domain PublishedWork)

5) (WR RelatedPublishedWaork = (¥refersToPrecursor . %R Precursor))

Figure 7.5: Justification example where ordering/indenting of axioms fails

In the figure, the cause of the unsatisfiabilityRafson is highly non-trivial. This
is due to the interaction between axioms- 5 which makes the clasBublishedWork
equivalent toT (Top concept or in the OWL languagew! : Thing). Thus, axioml
which asserts the disjointnessRdrson andPublishedWork causes the former to become
unsatisfiable. However, notice that it is difficult to get an indentation of the axioms that
illustrates this form of interaction.

One way to alleviate the problem is to display critical intermediate inferences (e.qg.,
the equivalence betwedtublishedWork and T) to help understand the error better, as

discussed in the future work section in Chapter 8.

Striking out Irrelevant Parts

When the Axiom Pinpointing Service is used to obtphecise justificationswe
can directly strike out the parts of axioms that do not contribute to the unsatisfiability
entailment. Figure 7.6 shows some examples that highlight this feature.

Notice that keeping the original asserted axioms in view, with the irrelevant parts

struck out, is done in order to maintain context. An alternative would be to hide the irrele-
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KoalawithPhD = owl:Nothing: racemation = owl:Nothing:
1) (KoalawithPhD = ((3hasDegree . {RRD}) N Koala)) | 1) (racemation £ - requlation)
2) |_(hasDegree domain Person) 2) (racemation £ peroxidation)
3) | _(Person £ - Marsupials) 3) |_i{peroxidation £ oxidation-and-reduction)
4) |_(Eoala = Marsupials) 4) |_f{oxidation-and-reduction = (¥involves . jsomerisation))
5) | _(isomerisation = (prasess N ligation N (3esrtains . isarmars)])
B6) |_(ligation £ (¥involves . racemation))
7) |_(isorerisation £ (Jinvolves . requlation))
B8) | _(oxidation-and-reduction € {= 1 involves))

Figure 7.6: Striking out parts of axioms that are irrelevant to the entailment

vant information and display the smaller axiorsal§-axiomgdirectly, but this would re-
quire a correlation between the sub-axioms and the corresponding asserted axioms, which

is an additional burden for the user.

7.1.2 Axiom Pinpointing: Performance Analysis

For the performance evaluation, we randomly selected 10 inferred entailments (in-
cluding unsatisfiable class entailments if any) in each ontology present in Table 7.1. For
each entailment, we first compared the performance of the base consistency checking
algorithm versus the pure Black-box and Hybrid solutions for computismg@le justi-
fication We then evaluated the performance of the algorithm based on Reiter’s Hitting
Set Trees which computedl the justifications. The experiments have been performed
on a Pentium Centrino 1.6GHz computer with 1.5GB memory, with 256MB (maximum)

memory allotted to Java.

Computing a Single Justification

The second column of Table 7.2 shows the average runtime of the consistency test
used to verify an entailment; the third and fourth columns depict the average times to

find asinglejustification using the pure Black-box and the Hybrid solutions respectively.
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Timings for individual entailment tests in the ontologies are shown in Figure 7.7. Also

shown are the average and maximum size of the justifications (in terms of axioms) in the

last two columns.

100

OWL Ontology | Base Time | Single Just. | Single Just. Avg. Max.
(Black Box) (Hybrid) Just. size| Just. size

Chemical 0.285 0.68 0.295 6.9 9
Dolce 0.863 0.213 0.888 2 2
Economy 0.179 0.054 0.199 3.5 4
Galen 1.232 0.341 1.291 3.6 7
Sweet-JPL 0.29 0.187 0.301 4.2 13
Tambis 0.434 9.421 0.455 8.3 17
Transport 0.59 0.274 0.609 5.2 8
University 0.045 0.074 0.05 4.2 9
Wine 0.034 0.39 0.036 5.1 7

Table 7.2: Performance of Algorithms that findangleJustification.

Computing A Single Justification
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Figure 7.7:Evaluating Algorithms to Compute a Single Justification

Economy

Galen

There are two key points to note here:

Sweet-JPL

Tambis

Transport University Wine

1. The performance of the tableau-based hybrid algorithm to find a single justification
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is only marginally worse than the base consistency checking performance. This is
not surprising, given that the ‘axiom tracing’ is tightly integrated into the standard

tableau expansion process and the final stage of the algorithm which reduces the




non-minimal axiom set (output by the tracing) to a minimal one by pruning out
extraneous axioms includes very few such axioms — in all the tested cases, we
found that the tracing output included atmost 5-10 irrelevant axioms. Thus, the final
pruning, which involves reasoning over a very small fraction of the axioms (i.e.,
justification set + irrelevant axioms, which totals around 20-25 in all), introduces

very little timing overhead.

. The performance of the pure black-box solution to finding a single justification

depends entirely on the locality of the problem, i.e., in a lot of cases, where the
axioms responsible for the entailment are small in number (less than 10) and are
closely related to the concerned entity definitions, the black-box algorithm performs
well. However, for entailments in ontologies such as Chemical or Tambis, which

are mainly caused by highly non-local conditions, the performance is degraded, as
the algorithm needs to span out to find relevant axioms sometimes including many

irrelevant axioms which need to be pruned out subsequently.

One surprising result based on the timings shown in Figure 7.7 is that the black-box
solution beats the hybrid solution (even surpassing the base consistency checking
times) for entailments in an equal number of ontologies. The reason is that the input
to the black-box algorithm is a small fragment, €8y of the original ontology©®

(O << 0) and thus the time taken by the reasoner to pro¢¥ss much smaller
thanO (e.g., since many General Concept Inclusion axiont3 are not considered
initially). Thus, if the entailment is satisfied (i’ and the algorithm does not need

to expand®’ any further, the algorithm terminates in lesser time as it never has to
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deal with the entire ontology.

However, the significance of the black-box timings must be taken into proper con-
text — in order to determine whether a particular entailment holds in an ontology,
we need to perform a consistency test over the entire ontology in the first place,
and the timings do not reflect this. The advantage of the hybrid solution is that the
justification finding can be done simultaneously (inline) during this consistency test

used to verify the entailment.

Computing All Justifications

Table 7.3 depicts the average runtimes obtained when executing the Axiom Pin-
pointing service to compute all the Justifications for the unsatisfiable concepts in the

above ontologies. Timings for individual entailment tests in the ontologies are shown

in Figure 7.8.

Ontology | Base Time(s) | All Justifications (s) | Avg. #Just. | Max. #Just.

Chemical 0.285 1.431 2.8 6
Dolce 0.863 1.034 1 1

Economy 0.179 1.318 1.1 2
Galen 1.232 10.177 1.3 2

Sweet-JPL 0.29 2.541 1.2 2
Tambis 0.434 34.727 34 6

Transport 0.59 17.987 2.2 3

University 0.045 0.062 1 1
Wine 0.034 1.137 2.3 5

Table 7.3: Performance of Algorithm to find All Justifications.

We found that our algorithm performs well in practice, for two main reasons. First,
the tableau-based hybrid algorithm for finding a single justification does not introduce
a significant overhead w.r.t. th&HOZN satisfiability algorithm as seen in Table 7.2.
Second, although the complexity of generating the Hitting Set Tree (HST) is exponential
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Figure 7.8: Evaluating Algorithms to Compute All Justifications. Time scale is logarith-
mic.

with the number of justifications, most of the tested entailments exhibited at most three
or four justifications, with five to ten axioms each. For example, in the case of the Tambis
OWL ontology, where each of the entailments in Figure 7.8 have at least 3 justifications,

the algorithm terminated in less than a minute for most entailments.

Computing Justifications using other DL reasoners

We have also tested the Black-box Axiom Pinpointing algorithms with two other
DL reasoners besides Pellet - RACER Pro v1.9 [104] (the commercialized version of the
RACER system) and KAONZ2 [78] (the ontology management infrastructure built at the
University of Karlsruhe). Both, RACER Pro and KAON2, support the full OWL standard
with the exception of nominals, but in addition, allow for qualified cardinality restrictions
(hence supporting the logisHZ Q(D)). While reasoning in RACER Pro is based on

state-of-the-art tableaux algorithms (like Pellet), reasoning in KAONZ2 is implemented by
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reducing a SHIQ(D) knowledge base to a disjunctive datalog program [55].

For comparing the performance of the Axiom Pinpointing algorithms based on the
three reasoners, we had to select OWL ontologies that could successfully be handled by
all of them (e.g., excluding ontologies that made use of nominals). Figure 7.9 shows the
results of the smaller evaluation on a few selected ontologies — Chemical, Economy, mini-
Tambis, Transport, and University (minus nominals). As noted earlier, these ontologies
have numerous unsatisfiable classes with many containing non-local errors (i.e., where all

the erroneous axioms are not local to the concept definition).

Time
in
SeL.

0.65

Finding a Single Justification {Black Box)

0s
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B kaonz
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0.24

0154
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Transport

1 1
Chemical Economy miniTambis University

Figure 7.9: Comparison of DL reasoners to find Justifications

Figure 7.9 depicts the time taken by the Black-box Axiom Pinpointing algorithm
to find a single justification using RACER (Pro), KAON2 and Pellet respectively. The
X-axis denotes individual entailments tests (randomly chosen) for each of the ontologies
while the Y-axis denotes time in seconds.

The results show that RACER and Pellet both perform equally well and consis-

tently outperform KAONZ2, which is expected, given that the former (besides having been
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around for a longer time) are based on highly optimized tableau algorithms making it bet-

ter suited to handle class-based reasoning for expressive DLs that underlie the ontologies.

7.1.3 Implementing Root Error Pinpointing

The Root Error Pinpointing service described in Chapter 5 contains a set of algo-
rithms for separating the root or critical errors in an ontology from the derived or depen-
dent ones. Figure 7.10 shows an example of this service whei@tthetural Analysis
algorithm is used to obtain a dependency table that highlights the parent dependencies of

any partially derived unsatisfiable classes and emphasizes the roots at the top.

=10/

File Wiew Bookmarks Resource Holder Advanced About

[ 4 | 3 | edress: et wirvmindswep ara/antolagies tambis-iull ow! |

| a Ontology List ] I~ Show Inherited [~ ChangesiAnnotations [ Editable

Onilogy Info | Species Validation |
DL Expressivity: SHIN ;I

5 ==ALCR+

AL - Attribute Logic: Conjunction, Universal WValue Restriction, Limited Existential Quantification
C - Complement (together with AL allows Disjunction, Full Existential Quantification)

R+ - Role Transitivity

H - Role Hierarchy

1 -Role Inverse
J £ | Add [F] | it B | Remexe |Raname | N - Ungualified Number Restrictions

[ Show Imports [~ Qlames IPellet =]
Class Tree | rraparty Tres | Lt | Total Number of Classes: 295 (Defined: 395, Imported: 0}
party Total Number of Datatype Properties: 0 (Defined: 0, Imported: 0)
2@ owiiothing =l||[Total Number of Object Properties: 100 (Defined: 100, Imparted: 0)
- 4@ methylation-site Total Number of Annotation Properties: O (Defined: 0, Imported: 0)
- 3 complement-dna Total Number of Individuals: 0 {Defined: 0, Imported: 0)
phosphorylation-site . .
® geranyl-geranyl-attachment 144 unsatisfiable classes:
dna-hinding-site | | root classes (3)
® alkali-metal
gene-part metal
-4 ribosome-hinding-site non-metal
® small-organic-molecular-con
. protein-structure metalloid
@ caldium-binding-site
phosphopantetheine-subst derived unsat. classes (141) parent dependencies
. cofactor
@ metalloid acetylation-site modification-site, protein-part
® ;T:c active-site macromolecule-part, protein, site, protein-part,
. rma-part alkali-metal metal, metalloid
- @@ macromalecule-part
d protein-structure, protein-secondary-structure, macromolecular-compo
nai alpha-heliz 4
@ francium ung,
small-nuclear-rna amidation-site modification-site, protein-part
-4 expressed-sequence-tag
@ oxidoreductase amino-acid organic-molecular-compound, small-organic-maolecular-compound _I
P Y ¥ W Pyl =
4] _l_l
Lok T Al Orkologies? Apply Changes. | | Undo Ghanges |

Figure 7.10: Root/Derived Debugging in Tambis using Structural Analysis

In addition to using the service output, we have made simple modifications in the
Ul to highlight error dependency. For example, all unsatisfiable named classes, and even

class expressions, are marked with red icons whenever rendered — a useful pointer for
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identifying dependencies between inconsistencies. In Figure 7.11 (the Tambis ontology),
note how simply looking at the class definition gdghe — part makes the reason for the
inconsistency apparent: it is a subclass of the inconsistent d¢hass part and the in-
consistent class expressidpartof.gene. The hypertextual navigation feature of Swoop
allows the user to follow these dependencies easily, and reach the root cause of the incon-
sistency, e.g., the class which is independently inconsistent in its definition (i.e., no red
icons in its definition). In this manner, the Ul guides the user in locating and understand-

ing bugs in the ontology by narrowing them down to their exact source.

OWL-Class: .gene—gart
Unsatisfiable concept

Intersection of:

E(Elgart—uf L.gml
dna-part

(‘v’gart—u:nf ;.QM

Equivalent to:
.owa'.'Noth.fna (Why?)

Figure 7.11: The clasgene-part is unsatisfiable on two counts: its defined as an
intersection of an unsatisfiable clasté-part ) and an unsatisfiable class expression
(dpartof.gene ), both highlighted using red tinted icons.

7.1.4 Root/Derived Performance Analysis

We have tested this service on various OWL ontologies that have a large number of
unsatisfiable concepts and found it to be very useful in narrowing down the error space
substantially, with its performance being reasonably fast.

Table 7.4 shows the summary of our evaluation of this service. The ontologies Tam-
bis, DICE-A (Anonymized version of the DICE terminology), Chemical and Terrorism
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OWL Ontology | Unsat. Concepts| Root/ Derived | Stepl-time / Step2-time
Tambis 144 3/141 0.033s/1.893s
DICE-A 76 5/71 0.01s/7s

Transportation 62 5/57 0.02s/2.8s
Economy 51 34/17 0.01s/2.5s
Chemical 37 2/35 0.01s/0.14s
Terrorism 14 5/9 0s/0.951s

Table 7.4: Evaluation of the Root/Derived Debugging Service

contain real modeling errors, while Transportation and Economy ontologies have unsat-
isfiable concepts introduced in them using the Strong Disjointness Assumption (SDA) as
noted in [92], i.e., by adding disjoint statements between siblings.

As can be seen, the number of root concepts found in each case is a fraction of
the total number of unsatisfiable concepts (with the exception of the Economy ontology
where it is still a reasonable reduction). The last column displays separate timings (in
seconds) for the two steps in the service algorithm, i.e., structural tracing and inferred
dependency detection as described in Chapter 5.The results clearly show that the service

plays a key role in pruning errors quickly.

7.1.5 Ontology Repair

The Ontology Repair service described in Chapter 6 is used to generate repair plans
to fix errors in an ontology based on various metrics for ranking erroneous axioms.

The key design goal for its Ul in Swoop is to provide a flexible, interactive frame-
work for repairing the ontology by allowing the user to analyze erroneous axioms, weigh
axiom ranks as desired, explore different repair solutions by generating plans on the fly,
preview change effects before executing the plan and compare different repair alterna-

tives. Moreover, the tool also suggests axiom edits where possible.
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Figure 7.12 is a screenshot of the Swoop repair plugin when used to debug the Uni-
versity OWL ontology. As can be seen, the top segment of the repair frame displays a
list of unsatisfiable concepts in the ontology, with thet classes marked. The adjacent
pane renders the axioms responsible for making the concepts selected in the list unsatis-
fiable. There are two view modes for this pane — the one shown in Figure 7.12 displays
the erroneous axioms for each unsatisfiable class in separate tables with axioms indented
(as described earlier), and common axioms responsible for causing multiple errors high-

lighted as shown. The other view displays all erroneous axioms globally, i.e., in a single

list as shown in Figure 7.13.

£ Repairing Ontology university.owl -0 LI
AI_Dept J Weights For parameters {used in computing ranks): Arity: lElSi Impact: lEl?i Usage: IU.1 Recompute Ranks | [~ View Awxioms Glabaly
&
E t Axioms causing the problem: AlStudent I
C
g ( Erroneous Axioms Arity (Impact | Usage | Total Rank | Status
G 15 1) {alStudent £ - HCIStudent) 2 o 2 075 [R] [Undo
© 2) (AlStudent £ {3hasAdvisor . ProfessorInHCIorALN 1 1 o 181 [R][K]
2) |_{ProfessorlnHCIorAl © (WadvisorDf . HCIStudent)) |1 1 o 181 [R] (K]
4) | _fadvisorOf inverse hasAdvisor) 2 1 o 1.25 [R] (K]
Axioms causing the problem: HCIStudent
Erroneous Axioms Arity | Impact | Usage | Total Rank | Status
1) (AlStudent = - HCIStudent) 2 a 2 0.75 [E] [Undo]
2) (HCIStudent € (3hasadvisor . ProfessorinHCIorAl)) (L1 1 o 1.81 [R][K]
3) |_iProfessorlnHCIoral € (FadvisorDf , AlStudent)) (1 1 o 1.81 [R][K]
4} |_fadvisorOf inverse hasadvisor) 2 1 o 1.25 [R][K]
d B =
Kept Axioms (2) | Removed foioms (0) | Extended Inpact
Generate Plan IREpalr Al Roots LI [¥ Include Rewrites ¥ Auto Recompute Plan
(5] Main Plan |
[2] [Remaove] [Keep] (AlStudent € {3hasadvisor . ProfessarlnHCIorAD)) (Arity:1 Impact: 1 Usage: 0)
[%] [Remove] [Keep] (Lecturer = (TeachingFaculty N (3hasTenure . {"false"~"<usd:boolean= 1)) (arity:2 Impact: 4 Usage: 0)
|_[Rewrite?] (Lectursr & (TeachingFaculty M (3hasTenurs . {"false"~~<xsdiboclean>})))
[2] [Remove] [Keep] (advisorOf inverse hasAdvisor) (Arity:2 Impackt: 1 Usage: O)
[¥] [Remove] [Keep] (EE Department = (JaffiliatedwWith . EE Library)) (Arity:1 Impact: 1 Usage: 00
|_[Rewrite?] (EE Departrnent © (3affilistadwith . EE Librars))
J Clear | Save | Preview | Execute

Figure 7.12:Interactive Repair in Swoop: Generating a repair plan to remove all unsat-
isfiable concepts in the University OWL Ontology

The tables in both views display for each axiom, its arity, impact and usage, com-
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Erroneous Axioms Arity | Impact |Usage TR—';?I: Status
(AlStudent £ - HCIStudent 2 ) 2 0.75 20 [l
(Lecturer € - AssistantProfessor) 2 0 0.85 [EEL L
{advisorof inverse hasadvisor) 2 1 o 1.25 [R] K]
(HCIstudent £ (Fhasadvisor . ProfessorlnHCIorsl) 1 1 o 1.81 [R][K]
(CS Departrment = (3affiliatedwith . £S5 Libraryd) 1 1 o 1.81 [R] (K]
(ProfessorlnHCIorAl = (wadvisorof , AlStudent)) 1 1 o 1281 [R] [K]
Transitive(affiliated\With) 1 1 o 1.81 [R] (K]
(CS Library £ (3affilistedwwith . EE Library)) 1 1 o 1281 [R] K]
(ProfessorlnHCIorAl = (¥advisorof . HCIStudent)) 1 1 o 1.81 [R][K]
(EE_Department = (Jaffiliatedith . EE Library)) 1 1 o 181 [R] (K]
(alstudent = (3hasadvisor , ProfessorlnHCIorAl)) 1 1 o 181 [R] [K]
(Lecturer = (TeachingFaculty N (JhasTenure , {"false"~"<xwsd:booleans= 1 2 4 o 3.35 [R] (K]
{AssistantProfessor = (TeachingFaculty N {(3hasTenure . { "false"~~<xsd:

boolean> 1) = a 3.33 [R] (k]
(EE_Department € - C5 Department) 1 i0 4 8.51 [R] (K]

Figure 7.13: Analyzing Erroneous Axioms in a Single (Global) View

puted as described in Chapter 6. The values for these parameters are hyperlinked, clicking
on which pops up a pane which displays more details about the parameter (not shown in
the figure). For example, clicking on a value for the arity displays the concepts whose jus-
tification the axiom falls in, while clicking on a value for the impact displays entailments

that are dependent on this axiom.

1. (AssistantProfessor £ Person) (WWhy?)
2, (AssistantProfessor £ TeachingFacultyy (WWhyed
3, (pssistantProfessor £ Faculty) (Why?)
4, (Lecturer = AssistantProfessor) (Why?)

=101 |

Explanation for {Lecturer = AssistantProfessor)

Axioms causing the entailment:
1) (Lecturer = ((IhasTenure , {"false"~"«<wsd:booleans}) N TeachingFaculty))
2) (AssistantProfessar = ((3hasTenure | {"false"~~<xsd:boolean=}) N TeachingFaculty))

Figure 7.14: Displaying the Impact of Erroneous Axiom Removal

To see how the impact analysis is useful, see Figure 7.14. The figure displays the en-
tailments that are dependent on the axigstturer = hasTenure.false " TeachingFaculty.

In this case, the tool has displayesefulentailments related to unsatisfiable classes (high-
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lighted in red), as described in Chapter 6. The user can see the reason for each of these
entailments by clicking on th&/hy? link, e.g., the two axioms which cause the entail-
mentLecturer = AssistantProfessor, and use this information to reach a suitable plan as
discussed below.

Also, clicking on the table headers re-sorts the results based on the parameter se-
lected. The total rank for each axiom, displayed in the last column of the table, is the
weighted sum of the parameter values, with the weights (and thus ranks) being easily
reconfigurable by the user. For example, users interested in generating minimal impact
plans can assign a higher weight to the impact parameter, while users interested in smaller
sized plans can weigh arity higher. The range of the weights is from -1.0 to 1.0.

As discussed in Chapter 6, we provide three different granularities for the repair
process, i.e., the ability to fix a particular set of unsatisfiable concepts; atidksonly;
or all the unsatisfiable classes directly in one go. For example, in Figure 7.12, the user
has asked the tool to generate a plan to repair all the roots.

For a repair tool to be effective, it should support the easy customization of the plan
to suit the user’s needs. In the simple case, the user can either chdespagparticular
axiom in the ontology, or forciblyemovea particular one. These user-enforced changes
are automatically reflected in the plans. In Figure 7.12, the user has choseeptbe
disjoint axiomsAIStudent C —HCIStudent, andLecturer C —AssistantProfessor in the
ontology (highlighted in green in the Table). In the advanced case, the user can choose to
keep or remove a particular entailment of the ontology, e.g., a particular subclass relation.
The tool then takes these desired and undesired entailments into account when generating

a plan.
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Finally, axiom rewrites suggested by the tool (based on the techniques described
in Chapter 6) can be (optionally) included in the plan as well. In the figure, the tool has
suggested weakening the two equivalence axioms to subclass relations, which removes
the contradictions in the unsatisfiable classes, but preserves the semantics as much as
possible. Obviously, the user can directly edit erroneous axioms if desired.

The repair plan can be saved, compared with other plans and executed, after which
the ontology changes (which are part of the plan) are logged in Swoop. These changes

can be serialized and shared among ontology users (as shown in Chapter 8).

7.2 Usability Studies

In order to determine the practical use and efficiency of the debugging and repair

features implemented in Swoop/Pellet, we conducted a small usability-study as follows:

1. We selected twelve subjects in all having at least 9 months of experience with
OWL and with an understanding of description-logic reasoning that varied greatly
(novices to experts). Most of the subjects were undergraduate and graduate students

at the University of Maryland in the Computer Science dept.

2. Each subject received a 20-30 minute orientation that covered:

e an overview of the semantic errors found in OWL ontologies (using examples
of unsatisfiable classes)

e a brief tutorial of Swoop, demonstrating its key browsing, editing and search
features

¢ a detailed walkthrough of the debugging and repair support in Swoop using a
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set of toy ontologies

We then performed two separate studies, the first testing the debugging services, i.e.
Axiom Pinpointing and Root Error Pinpointing; and the second evaluating the Ontology

Repair service.

7.2.1 Evaluating Debugging

In this case, the twelve subjects weamdomlydivided into 4 groups of three sub-
jects each as follows:
Group 1: Subjects in this group receiveth debugging suppost all, i.e., only a list of
unsatisfiable classes in the ontology was displayed by the reasoner
Group 2: Subjects in this group could only use tAgiom Pinpointingservice
Group 3: Subjects in this group could only use tReot Error Pinpointingservice
Group 4: Subjects in this group could ugmth the Axiom Pinpointing and the Root
Error Pinpointing services

Having formed the groups, each subject was given three erroneous ontologies —
University.owl, SweetJPL.owl and miniTambis.ow! (in random order), any of which the
subject had not seen before. The subject was asked to debug the ontologies in Swoop
(independentlyusing only the features assigned to the group the subject belonged to.

The following guidelines were observed during the debugging process:

e The subject was given a maximum of 30 minutes to debug an ontology. He/she was

free to stop the debugging process at any time.

e While debugging any unsatisfiable class, the subject was asked to write down a
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brief explanation of the contradiction for that class (in his/her own words) based on
the understanding of the problem. In addition, the subject was asked to suggest a

likely fix for the problem where possible

e The tool automatically counted the number of entity definitions viewed, and the
changes made to the ontology during the entire debugging process, both of which

we considered as key sub-tasks

Having obtained the times taken by a subject for debugging each of the three on-
tologies, we took the average of the times (for the group) in order to nullify the expertise
and skill factor of the subject (note that the subjects were randomly assigned to the groups
as mentioned earlier).

Finally, after working on all three ontologies, the subject was handed a question-

naire to elicit feedback on the entire debugging experience using Swoop

Key properties of the ontologies used in the study were:

Ontology Total Classes| Unsat. Classes Root/Derived
1. University.owl 28 8 5/3
2. SweetJPL.owl 1537 1 1/-
3. miniTambis.owl 183 30 5/25

Our hypothesis was as follows:

1. The information provided by the Axiom Pinpointing service is better than no sup-
port for all the erroneous ontologies, i.e., the subject will take significantly less time
to understand and fix the errors correctly using the servitlee reason for this is
that the information would help pinpoint and illustrate the source of the contradic-
tion for the unsatisfiable class.
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2. For a relatively small no. of unsatisfiable classes (i.e., ontologies 1 and 2), the
Axiom Pinpointing service information will outperform both, the Root Error Pin-
pointing service and the no support, and perform not too worse than the full-debug
support.The reason for this is that the subject could potentially distinguish the root
from the derived classes by manually inspecting the justification axioms for each

class, thus reducing the impact of automatically identifying them.

3. For a large no. of unsatisfiable classes with different roots (i.e., ontology 3) the
Root Error Pinpointing service support will match the performance of the Axiom
Pinpointing information, and additionally, the full-debug support will be clearly
better than either of the twolhe reason for this is that manually discovering the
root/derived classes would often be hard and time-consuming in such cases, and
the dependency detection technique would help narrow down the problem space

tremendously.

The results of the usability study are summarized in the graph in Figure 7.15. The
graph displays the average time taken (in mins) per group to debug all the errors for each
of the three ontologies given (Note: ‘F’ represents a Failure to debug the error).

As seen from the graph, the statistical results obtained are in agreement with hy-
pothesis (1), i.e., a 2-tailed T-test shows that debugging with clash/SOS is significantly
better than debugging without it fpr~ 0.01. While the timings for the ontologies are in
agreement with hypothesis (2) and (3), given the small size of the study, a measure of the
statistical results was not significant for verifying those hypothesis. We plan to conduct a

more extensive evaluation to fully justify them.
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Debugqging using Swoop
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Figure 7.15: Results of the Debugging Usability Study

For University.owl, all subjects were able to identify the erroneous axiom(s) for
each of the unsatisfiable classes within the time period given, however, only 1 subject in
normal/root-derived (black box) mode was able to understand the cause of the problem,
whereas, 2/3 using the Axiom Pinpointing and 3/3 using the full-debug mode were able
to understand and explain the problem correctly. Also, the time taken to fix all the errors
using the full-debug mode was approx. half of that taken using the normal-mode.

In the case obweetJPL.owl, without justification axioms no subject was able to
understand the cause of the error due to the highly non-local interactions in the large
ontology, whereas, using the axioms, each subject took under 5 minutes to understand
and fix the problem correctly.

Interestingly, the results given only the Root Error Pinpointing service performed

nearly as well as the Axiom Pinpointing in the casenghiTambis.owl since subjects
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found it easier to debug the roots identified by the former service than to manually dis-
cover them using the latter, due to the large number of unsatisfiable classes. Also, for this
ontology, the subjects in the normal mode fixed only 2/3 roots in the time period given,
i.e, they could not fully complete the debugging.

We learnt some useful lessons based on our observations of the debugging process

and the feedback given by the subjects:

e For Group 1 — no-debug mode:

— 3/3 subjects rated the hypertextual navigation (with back/next history) as the
most useful feature for understanding relationships and causes of errors in the
ontology

— 2/3 subjects found ontology changes immensely useful to identify erroneous
axioms by using a trial-and-error strategy

— TheShow Referencesearch feature was never used by any of the subjects.
Based on their comments, it seemed that they were unclear about its use and
significance. Interestingly, a subject in Group 3 found this feature very help-
ful, implying that the feature either supports a different debugging style (to

that of the authors in this mode) or requires better presentation.

e For Group 2 — Axiom Pinpointing:

— 3/3 subjects rated the justification axioms as the most useful feature

— 2/3 subjects felt that a proof-style layout of the justification axioms with in-

termediate inferences shown as well would help explain the problem better.
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— Overall, 6 subjects were exposed to the Axiom Pinpointing service (3 from
this group and 3 using the full-debug mode), and they were divided on the
significance of the clash information. While half the subjects used the clash
information to pinpoint relevant components of the justification axioms, the
other half found the information poorly presented and redundant given the

justification axioms, pointing us to a definite area of improvement.
e For Group 3 — Root Error Pinpointing:

— 1/3 subject used th8how-Referencdgature extensively to aid debugging,
especially for mini-Tambis.owl, where discovering a commonly-used prop-
erty restriction helped understand the source of the contradiction for a set of
unsatisfiable classes

— 1/3 subject felt that the Class-Expression (CE) support needed to be made
more effective by allowing arbitrary queries on CEs

— 2/3 subjects suggested displaying the number of derived dependencies that

arise from each root to highlight the more significant roots
e For Group 4 — full-debug mode:

— 3/3 subjects felt that it was tltwmbinatiorof the clash/SOS presentation and
the root/derived identification and not one specific feature that was useful to

debug all errors in the ontology

Overall, the response of the subjects in the study was very encouraging. Many

relative newcomers to OWL and description-logic were impressed by the fact that they
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were able to correctly fix all the errors in ontologies which they had not seen before within
the specified time period. Experts in the field who had experience in OWL ontology
modeling and manual debugging were surprised at how easy the task of debugging was

made for them.

7.2.2 Evaluating Repair

For this study, we selected two OWL Ontologielgriversity.owl andminiTambis.owl
and asked each subject to debug all the unsatisfiable classes in a particular ontology using
the Axiom/Root Error Pinpointing services, and in the other ontology using the Ontology
Repair service. We had introduced new errors in these ontologies to make them different
from the earlier study, however, the errors were realistic based on commonly observed
patterns and misconceptions (e.g., errors enumerated in [87]).

The subjects were randomly assigned to the two cases, but the overall distribution
was equally proportional in that given a particular ontology, an equal number of subjects
(six) debugged it with and without using the Ontology Repair service. At the end of
the study, our goal was to compare the performance improvement, if any, of using the
Ontology Repair service over the other two debugging services, which were shown to be
useful in the previous study.

The subjects were given a maximum of 45 minutes to debug the entire ontology, and
as in the previous case, the tool recorded the use of the various repair features, e.g., gran-
ularity of the repair plan selected, ranking metrics viewed, number of rewrites included

etc.
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Before we proceed to our hypothesis, we discuss important points related to this
study that were factored into its design. The firstis that the subjects did not build the ontol-
ogy themselves and hence did not have prior knowledge of the modeling intent. Secondly,
the subjects did not possess domain knowledge related to the mini-Tambis (medical) on-
tology. Thirdly, in cases where there is more than one reasonable solution, determining
a ‘correct’ solution is subjective, and we took this fact into account when evaluating the
results.

A key point to note is that we have basically divided the subjects into two groups
— G1: Axiom and Root/Error Pinpointing services, aft2: Ontology Repair service,
and subjects inG2 have access to all the features availabl&ih (since the Ontology
Repair Ul displays the justification axioms responsible for an unsatisfiable class, and dif-
ferentiates between the root/derived unsatisfiable classes), with the addition of the ranking
metrics and the plan generation/customization options preséa®inThus, from a de-
bugging and repair point of view, subjects in both groups were in a position to understand
the error and determine the critical unsatisfiable classes, however, the difference was that
in G1, they had to manually repair one unsatisfiable class at a time, select appropriate
axioms to remove and determine the impact of their solution, where@jrthey had
the necessary tool support to automate these tasks.

Based on these factors, our hypothesis was as folldws:Ontology Repair service
is more “effective” than a combination of both, the Axiom Pinpointing and the Root Error
Pinpointing service, for repairing all the unsatisfiable concepts in an ontology, in that the
quality of the repair solutions in both cases is comparable, but the time taken to arrive at

a solution in the former case is significantly smaller than in the latter case.
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The results of the timings are displayed below. All times in the table are in minutes.
As can be seen, the time taken to arrive at a solution in the repair G&)eMas between
3-8 times less than in debugging cas&l(. A standard 2-tailed T-test on the data col-
lected for the University / miniTambis ontologies indicated G& is significantly faster

thanG1 with p < 0.05 andp < 0.001 respectively.

University miniTambis
Debug G1) — Repair (G2) | Debug G1) — Repair (2)
8—2 11—2
9—2 12—2
9—3 15—2
12—4 16—4
14 —5 17—5
33—6 22—6

We found that in both groups, the quality of the repair solution was quite similar,
with the subjects inG2 performing marginally better. For example, in the University
ontology, all the subjects in both groups were able to correctly ensure that the concepts
Lecturer, AssistantProfessor did not become equivalent. The rewrites suggested by the
repair serviceG2) were useful in this regard as subjects always opted for the weakening
of the concept definitions. However, for the slightly more difficult problem related to
the concept\IStudent, HCIStudent, subjects inG2 were able to arrive at the correct
solution that avoided these two concepts from becoming equivalent by using the impact
analysis.

The miniTambis ontology posed a different challenge. Since subjects found this do-

main (medical) more foreign to that of the University ontology, the quality of the solutions
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in both groups were below par.

In addition, we learnt some valuable lessons based on our observations of the repair

tool usage and the feedback provided by the subjects:

All the subjects reached the desired repair solution within 0-3 changes from the
initial plan suggested by the tool. This implies that the quality of the solutions

based on the default ranking metrics/weights was reasonable.

All the subjects appreciated the quality of the axiom rewrites suggested by the tool,
and in every case that a rewrite was suggested, it was incorporated in the final

solution.

All the subjects preferred the ‘local’ axiom table view to the ‘global’ view, in order

to understand the interaction among the axioms and identify common erroneous
axioms.

Only 3/12 subjects opted to repair all the unsatisfiable classes in one go, while the
remaining chose to repair the unsatisfiable classes iteratively by focusing on the
current roots.

Only 3/12 subjects changed the default weights for the (axiom) ranking metrics

suggested by the tool. The only change was weighing ‘arity’ less and/or ‘usage’

more. ‘Impact’ was consistently weighted high by all the subjects.

Only 2/12 subjects found ‘usage’ as a significant metric and took it into account

when arriving at a repair solution. This points to an area of improvement.
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Chapter 8

Open Issues and Future Work
In this chapter, we enumerate the limitations and open issues of our OWL debug-

ging services and outlines areas for future work.

8.1 Enhancing Debugging and Repair Services

8.1.1 Improving Algorithmic Performance

In Chapter 4, we have described a Black-box (reasoner independent) algorithm to
find a justification for an arbitrary entailment of an OWL-DL ontology, and then devel-
oped a pre-processing Glass-box optimization procedure (tableau-tracing), which reduces
the size of the input to the Black-box algorithm thereby providing a big performance im-
provement. However, ideally, we would like to have a purely Glass-box solution to finding
a justification (minimal axiom set) since it would eliminate the additional step of pruning
axioms, which may be time consuming in some cases (when there are a large number of
role successors due to cardinality or existential restrictions) .

The challenge here is obtainimginimality of the axiom sets when building the
tableau (completion graph) for expressive DL KBs. One of the main problems arises due
to the presence of cardinality restrictions, and in particulargheR rule — when a node
in the completion graph built by the tableau reasoner contains a codcepk and if
there exists more tham™ R-successors of that node, then the:. R rule gets fired which

167



arbitrarily merges any two successor nodes recursively till it is no longer applicable.

For example, consider an ontology with the following axioms:

1:AC3IRB 2 AC3R(CN-B) 3:AC3IR(-CM-B)

4: ACJR.C 5:AC<2.R

In the ontology above, the concegdtis unsatisfiable and it's justification set is
{1,2,3,5}.

Consider the completion graph for the concdghown in Figure 8.1, in which the
reasoner has processed axioms 4 and generated fouR-successor nodes of the root

nodex (that represents concef).

L(x)={A, 3RB, IR (C M -B), IR.(~C M -B), IR.C }

%/.:R.

Ly)={B}  Liy)={~C.~B}

L(y,) ={C., -B} L(y,) =1{C}

Figure 8.1: Finding minimal justification hard due to node merges

Now, when the algorithm unfolds axioh the concep¥ 2.R is added toZ(z) and
the presence of more than two R-successors causes the< n.R rule to be applied
recursively. We find that a clash occurs in the completion graph eventually irrespective of
the choice of nodes to merge. This clash occurs because eitheBboth or C, —C are
present in the label of the same successor node of

In this case, the key questionwghichsuccessors should be considered responsible

for the merge operation since there are greater than two successors of,remtt the
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restriction demands at most two. We certainly cannot consider all the successors since
that would cause axiomto be included in the trace of the clash, which is incorrect. On
the other hand, if we consider any three successors arbitrarily (which is wheh2he
rule is applicable), we need to ensure that all combinations of merges involving those
three successors results in a closure.

The matter is further complicated if the existential restriction in axkasreplaced
by a universal:A C VR(C 1 —B). In this case, the justification for the unsatisfiability of
A reduces to the axiom sét, 2} — the clash occurs in nodg irrespective of the merge
operation. Hence, an additional issue is identifying whether a degand®n the merge
or not. This can be done by introducing choice points in the trace of an event, and using
this choice record to determine if an event could have occurred independent of the choice.

We are currently working on an algorithm that takes into account issues such as this.

8.1.2 Improving Output Explanation

We are exploring the possibility of inserting intermediate steps (inferences) in the
output of the Axiom Pinpointing service to help make the explanation easier to follow.
Consider an example taken from the Chemical ontology shown in Figure 8.2 (the example
was seen previously in Chapter 7):

In this case, the axiom® — 5 cause the clasBublishedWork to be equivalent to
T (owl : Thing), which in turn renders the cla®erson unsatisfiable as it is disjoint with
PublishedWork. Here, displaying the inferendeublishedWork = T that arises from

axioms2 — 5 would help make the cause of the error clearer.
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Person = owl:Nothing:

1) (Person £ - Published'Waork)

2) (VR _RelatedPublishedWwaork = NervesgentRelatedPublishedWork)
3) | _(MervedagentRelatedPublishedWork = PublishedWaork)

4) (refersToPrecursor domain PublishedWork)

5) (WE_RelatedPublishedWaork = (¥refersToPrecursor . YR Precursor])

Figure 8.2: Axiom Pinpointing example where cause of unsatisfiability is hard to under-
stand by looking at the asserted axioms

In general, determining which intermediate inference is critical to understanding
the error is not easy. There are two problems here: Firstly, the inference may be rather
non-trivial as is the case above, i.e., simply looking at the axioms, it is difficult to tell
that PublishedWork = T. At best, one could flag suspicious entailments such as this
(atomic concept being equivalent 10, however, good heuristics need to be developed
to expose ‘key’ problematic inferences. Secondly, numerous trivial inferences can follow
from the output axioms and one needs to be careful about cluttering the output with too
much additional information, e.g., in the above case, axi¢8} entail

VR_RelatedPublishedWork C PublishedWork

though this simple subsumption may be avoided in the output.

8.1.3 Testing and Evaluating Repair

One of the known limitations of the conducted user study described in Chapter 7
was that the subjects did not author the ontologies themselves, and lacked domain knowl-
edge, which adversely affected the quality of the repair solutions. A more thorough
case study — that would involve placing the service in a real world ontology engineer-

ing/application context and having domain and ontology modeling experts use it over a
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period of time — would help us gauge the efficiency of this service better. Also, the no-
tion of maintaining a library of error patterns as discussed in Chapter 6 would be more
applicable in the context of this longer study.

We also discuss an interesting extension to the axiom rewrite module in the repair
service. Currently, axiom rewrites are determined by inspecting the erroneous parts of
axioms (obtained using the Axiom Pinpointing service), and using heuristics based on
commonly occurring error patterns. We can also suggest rewrites that are in keeping with
the update semantics proposed in [63].

We describe the idea using an example from the Koala ontology in which the con-

ceptKoala is unsatisfiable due to the following axioms:

Koala C JisHardWorking. false
domain(isHardWorking, Person)

Koala C Marsupials

Marsupials © —Person

An instance oKoala is inferred to belong to the claBerson andMarsupials, which
is disjoint with Person, hence the contradiction. In this case, one likely update that pre-
serves the semantics as much as possible while getting rid of the unsatisfialildylof
involves introducing a disjunction in axiotnas follows:

domain(isHardWorking, Person LI Marsupials).

This notion of introducing disjunctions in axioms to allow for additional models and
get rid of the contradiction is discussed in [63]. Identifying meaningful updates on these

lines in expressive DLs such &+HOZN (OWL-DL) is a hard and unresolved problem.
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8.1.4 Debugging Non-Subsumptions

So far, we have presented techniques for diagnosing semantic defects, which are
also directly applicable for any unintended entailments (not just logical inconsistencies).
As future work, we are looking at the problem of debugginggnded non-entailments
such as non-subsumptions, which is of interest to the OWL community. We present some
initial thoughts on this problem, discussing the key challenges and outlining a possible
solution.

Explaining why a particular entailmefdils to hold in an ontology is much harder
than explaining why it holds. This is because from a model theoretic point of view, a
failed entailment implies that there exists at least one model of the ontology in which the
entailment is false. From a tableau reasoning standpoint, this translates to the fact that a
completion graph representing the ontology with the entailment refutednddesntain
a clash. This makes explanation tricky since there is no one particular reason for the lack
of a clash (i.e., there are potentially infinite ways to generate a clash) and presenting the
entire graph as a counter-example is obviously not a sensible solution.

Also, in this case, there is no notion of justification for the failed entailment, since
all the axioms in the ontology are responsible for the lack of the entailment. Finally,
an additional issue that needs to be noted is that fixing the problem can be done rather
trivially, by directly adding the entailment as an axiom to the ontology.

Based on these factors, we explore the problendedfuggingnon-subsumptions
with a slightly different philosophy. The idea is to devise a service that displags

trivial but sensible axiom changes which would result in the subsumption. Note that the
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main focus is not explanation, though displaying thissingcomponents (axioms) may
help the user understand the non-subsumption in the first place better.

Consider an ontologg), with the following axioms:

TexasWine = Wine M JlocatedIn. TexasRegion

TexasRegion C dlocatedIn.USRegion

AmericanWine = Wine M JdlocatedIn.USRegion

In this case, the desired subsumptioésasWine C AmericanWine. Hence, we
generate a completion graph for the concéptasWine M —AmericanWine as shown in

Figure 8.3.

L(x) = {TexasWine, Wine, JlocatedIn. TexasRegion,
—AmericanWine. YlocatedIn.—USRegion }
L(x.y) = {locatedIn}

L(v) = {TexasRegion, ~USRegion,
JlocatedIn. USRegion}

L(v.z) = {locatedIn}

L(z) = {USRegion}

Figure 8.3: Open completion graph reflecting non-subsumptionfessWine by
AmericanWine

As can be seen, the completion graph is not closed and fiera€/Nine [Z AmericanWine.
In order to determine which axioms can be addediadn order to get the desired sub-
sumption, we consider clash-causing changes to the completion graph that would result
in it’s closure.

Since a clash can be introduced in arbitrarily many ways, we need a heuristic ap-
proach to select sensible or likely changes. One heuristic is to consider possible clash
interactions between concepts introduced by the subsumer and the subsumee separately
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in the graph, since this would prevent either the subsumer or the subsumee from becoming
independently unsatisfiable. For example, in the above case, the comeepiRegion
and—USRegion are introduced separately frohaxasWine andAmericanWine, yet appear
in the label of the same node, and hence we can consider an axiom such as

TexasRegion C USRegion

which would result in a clash. Note that it is not hard to translate a tableau event
to the corresponding axiom which would cause it (on the lines of our tableau tracing
algorithm seen in Chapter 4). Based on this heuristic, we identify the following clash-
inducing axiom changes:

1. TexasWine C AmericanWine (trivial)
2. TexasRegion C USRegion
3. TexasWine C dlocatedIn.USRegion

4. transitive(locatedIn)

Note that adding any one of the above axiom&towould enable the desired sub-
sumption, and yet prevent any of the concéfatsas\Wine or AmericanWine from becom-
ing unsatisfiable, i.e., the clashes induced by the axioms only render the graph represent-
ing the conceplexasWine M —AmericanWine closed.

An additional heuristic to consider is tis&zeof the justification set of the desired
subsumption, after the axiom has been introduced in the ontology. The idea here is that
larger the size of the justification set, the more non-trivial the entailment. Above, the
axiom which results in the largest justification set snd interestingly, it is the only case
where the justification includes all the original axioms from the ontology. This notion
is useful in situations where the user has pinpointed specific axioms (a fragment of the
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ontology) that he feels should cause the entailment — typically the justification set would

need to include the specified axioms. Finally, also note that the justification set can be
displayed using the ordering and indenting techniques described in Chapter 7, with the
missing axiom highlighted separately. This might help the user understand the cause of

the non-subsumption better.

8.2 Exploring Extensions to other Logics

The debugging and repair techniques in this thesis have been developed in the con-
text of DLs. However, DLs are usually a subset of FOL and thus many of the techniques
seen here can be directly applied for inconsistent FOL knowledge bases without much
modification. For example, tableaux-based algoriths@mm@antic tableayxare a well
known proof procedure for automated reasoning in FOL, and thus the glass-box tableau
tracing techniques for Axiom Pinpointing seen in Chapter 4 can be directly translated to
the FOL tableau-reasoning case. The basic principle remains the same — trace the clauses
in the FOL KB responsible for the introduction of a particular formulae in a branch of the
tableau, and identify the justification for the inconsistency of the KB by using the traces
of the contradiction (th&alseclause) in each branch. In some sense, the tableau expan-
sion rules in the FOL case are simpler than in the DL case (e.g., there is no merging of
nodes due to cardinality restrictions as in DL) and thus the problems ensuring minimality
of the final output (as seen in section 8.1.1) do not arise.

For the more popular FOL proof procedure typically used in Automated Theorem

Provers (ATP) —resolution— we need to modify the tracing algorithm in accordance
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with the procedure. The main challenge lies in tracing through the steps of obtaining
the CNF (first step of the resolution), which involves normalizing terms (e.g. pushing
negation inwards), standardizing variables, splitting across conjunctions and eliminating
existentials usingskolemfunctions. This is not impossible, as similar pre-processing
steps are also carried out by the tableaux procedures for DLs (using techniques such as
normalization, absorption etc.), but it introduces an additional level of complexity that
needs to be dealt with.

Irrespective of the type of proof procedure used for FOL reasoning (whether tableaux-
based or resolution), it is important to note that the black-box version of the Axiom Pin-
pointing service can be directly used for FOL debugging, though its performance needs
to be tested on realistic FOL KBs to determine the practical use.

Finally, the relationship between description logics and modal logics has been ex-
tensively studied over the last decade. [90] pointed that the descriptiondalficcan be
seen as a variant of the multi-modal lodiG,. Later, the relationship was investigated
between more expressive DLs and modal logics, e.g., qualified cardinality restrictions
correspond to graded modalities, and nominals in DL which are similarly present in hy-
brid modal logics. Thus, it is not surprising, that the tableaux algorithms in DLs are
similar to the satisfiability checking algorithms in modal logics. This again means, just
as in the previous case for FOL, that the diagnosis techniques for DLs can be translated

in the modal case, and we leave this as future work.
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8.3 Beyond Debugging

The core debugging service developed, Axiom Pinpointing, is used to explain the
output of the description logic reasoner since it extracts the minimal set of axioms in the
ontology (justifications) responsible for a particular entailment. This service can be uti-
lized in ontology engineering applications outside of ontology debugging and we discuss

one such area in detail.

8.3.1 Reasoning over Dynamic Ontologies

Justifications act as a form of truth-maintenance that can be used to optimize rea-
soning tasks for dynamic or changing ontologies. This is especially useful in the context
of ontology editing (when coupled with a reasoner), where interactivity is essential from
the user point of view.

To elaborate, once a reasoner has processed an ontology and derived its key entail-
ments (e.g., subsumption between atomic concepts), the justifications for the individual
entailments can be stored separately. Then, when the ontology is modified by say re-
moving an axiom, we can inspect the justification sets to determine which entailments
are lost directly, i.e., the reasoner can skip entailment tests based on previously cached
justifications. These justification sets can be updated on the fly as and when new axioms
are introduced.

Recently, we have also explored the use of the glass-box version of Axiom Pin-
pointing (tableau tracing) to incrementally update the completion graph built internally

by the reasoner, which speeds up the reasoning significantly when dealing with dynamic
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ontologies [42]. The basic idea is the following: the tracing algorithm computes the rela-
tion between axioms in the ontology and the various parts of the completion graph, and
thus when the ontology is modified, instead of discarding the previous completion graph
and starting from scratch (as is normally done by the reasoner), we update the graph in
accordance with the added/removed axioms only. Obviously, this process saves a lot of
time which was previously wasted in redoing the graph expansion each time the ontology
is changed.

The current solution works for updating assertions related to individuals (ABox
updates), which itself has many real-world use cases. Two popular examples include
dynamic web services frameworks where devices register or deregister their logical de-
scriptions (and supporting ontologies) quite rapidly; and Semantic Web portals, which
often allow content authors to modify or extend the ontologies leading to a reorganiza-
tion of the site structure/content. In both scenarios, optimizing reasoning helps reduce

maintenance time and effort.
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Appendix A

Appendix: Swoop — Web Ontology Browser/Editor
In this section, we discuss specific features in the OWL Ontology Editor, Swoop
[57] that are tailored towards the understanding and analysis of OWL ontologies.

In particular, we focus on four different aspects:

Explanation of concept definition (useful for understanding error cause)

Browsing, comparing and querying ontological information (useful for understand-

ing dependencies between entities)

Change management (useful for experimenting / repair)

Collaborative discussion and annotation of ontological data (useful for sharing ex-

planations and repair solutions)

A.0.2 Explaining Concept Definition: Natural Language Paraphrases

In order to help users understand the meaning behind complex concept definitions,
we have developed a plugin for Swoop that generates natural language (NL) paraphrases
for OWL Concepts based on a variety of NLP techniques [45]. The goal is to ensure
both fluency (readability) and accuracy of the output, in terms of preserving the meaning
conveyed by it's description logic formalism (see Figure A.1 for an example). The NL
generation approach is a generic domain-independent one, and is completely automated.

The algorithm works by building a parse tree from the concept definition axioms,
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and generating sentences by traversing the tree and inserting textual phrases denoting
DL operators between ontological terms and relationships. Various heuristics - syntactic,
using a part of speech (POS) tagger, and semantic, using a reasoner, are used to improve
the quality of the NL sentences.

While there exist some obvious limitations of the work, such as it’s reliance on
standard naming conventions and it’s inability to cope with deeply-nested logical opera-
tors, we have found that in a lot of tested ontologies, the algorithm generates readable NL
paraphrases, which are useful for getting a quick overview of the concept meaning (see
[41] for a related pilot study).

Figure A.1 shows an example of the NL generation when applied to a concept in

the Wine OWL ontology.

Concise Format I Abstract Syntaxl Matural Languagel RDF,I'XML' Turtlel

OWL-Class: SemillonOrSauvignonBlanc

Intersection of:
Wine
(¥madeFromGrape , {SemillonGrape, SauvignonBlancGrape )

Subclass of:

(¥hasBody . {Full, Medium})
(FhasColor . {\White})

Concise Fnrmatl abstract Syntax  Matural Language I RDF,I'XMLI Turtlel

Definition: (MNecessary and Sufficient Conditions)

If a SemillonOrSauvighonBlanc is a made from grape, then that made from grape:
- 15 SemillonGrape or SauvignonBlancGrape

a SemillonOrSauvignonBlanc is a Wine

Details: (Necessary Conditions)
If a SemillonOrSauvignonBlanc has a body, then that body:
-is Full or Medium

a SemillonOrSauvignonBlanc is a Wine that has White color

Figure A.1: Natural Language: paraphrase describing the concept in the Wine OWL
Ontology.
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A.0.3 Browsing, Comparing and Querying data

Swoop has @ebugmode wherein the basic rendering of entities is augmented with
information obtained from a reasoner. Different rendering styles, formats, and icons are
used to highlight key entities and relationships that that are likely to be helpful to de-
bugging process. For example, aiferred relationships (axioms) in a specific entity
definition are italicized and are obviously not editable directly. On a similar note, in the
case of multiple ontologies, i.e., when one ontology imports anothemalbrted ax-
ioms in a particular entity definition are italicized as well. Highlighting them helps the
modeler differentiate between explicit assertions in a single context and the net assertions

(explicit plus implied) in a larger context (using imports), and can also reveal unintended

semantics.

Concise Format | pbstract Syntas | ROF/XML | Turtle |

OWL-Class: ClassExpression32140521

_Eguivalent to:
(E\sHarderking . {"false"~~axsdibooleans})

Subclass of:
Persen

£ Resource Holder x|

AL : 2004-11-07 18:06:18
owL-class: @yozls me
Unsatisfiable concept Ontology: koala,owl

Reason i An individual belongs to 2 OWL-Class: Marsupials

Disjoint with:
Petson

Superclass of:
Tasmanian Devil

Equivalent to:

0wl Wothing

Subclass of:

(JisHardworking . {*false"
ds

Marsupials

141

Remove this Entity Reemave this Entity

Figure A.2: The clas¥oala is unsatisfiable because (Koala is a subclass of
dJisHardWorking.false and Marsupials; (2) disHardWorking.false is a subclass dPerson;
and (3)Marsupials is a subclass of:Person (disjoint). Note that the regions outlined in
red are not automatically generated by the tool but are presented here for clarity.
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In addition to displaying information about named classes, Swoop renders infor-
mation such as sub/super classes of complex class expressions as shown in Figure A.2
(Region 2). This sort of ad hoc “on-demand” querying helps reveal otherwise hidden
dependencies.

Consider the case of the unsatisfiable cléssla depicted in Figure A.2, which
contains three labeled regions. The figure also emphasizeSdhmparatorfeature in
Swoop, which allows users to compare and contrast any arbitrary set of entities. Region
1 shows the definition of th&oala class in terms of it's subclass-of axioms: note the
presence of the class expressitisHardWorking.false and the named clagdarsupials
mentioned here. Now, clicking on the class expression reveals that it is an inferred sub-
class ofPerson (Region 2%, and clicking orMarsupials shows that it is defined aBsjoint
with classPerson (Region 3). Thus, the contradiction is found — an instancéaaia is
forced to be an instance Btrson and—Person at the same time, and the bug can be fixed
accordingly.

Finally, Swoop has an interesting non-standard search feature which can be use-
ful during ontology debugging. This feature known $isow Referencdsghlights the
usage of an OWL entity (concept/property/individual) by listing all references of that en-
tity in local or external ontological definitions. THaweet-JPLontology set presents
an excellent use case for debugging using this feature. The OlaasCrustLayer is

found to be unsatisfiable and a reason displayed for the cladinysmember of Ocean-

1A simple heuristic to manually debug an unsatisfiable class is to inspect it is asserted and inferred
subclass relationships that could potentially cause a contradiction, as is what motivates clicking the class
expression link here.

2Sweet-JPL Ontologies are located at http://sweet.jpl.nasa.gov/ontology/. The bug in the ontology was
fixed on May 24, 2005 after we e-mailed the ontology authors at NASA informing them about it. The pre-
vious faulty version can be found at http://www.mindswap.org/ontologies/debugging/buggy-sweet-jpl.owl
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CrustLayer has more than one value for the functional property hasDimen@imté:

Clash detection is explained later). Now, runningh@wReferences search on the prop-

erty hasDimension, returns four classeGeometricObject(0..3)D, each of which has a
different value restriction on the functional propelitigDimension. This suggests that the
unsatisfiable class is somehow related to more than one of these four classes causing the
cardinality violation. This is indeed the case since by looking at the class hierarchy, one
can note thaOceanCrustLayer is a subclass of both the classéspmetricObject2D and

GeometricObject3D, and thus the reason for the contradiction becomes apparent.

i
File Wiew Bookmarks Resource Holder  Advance d  About
| 4 [ » | )Addrass‘ Fttpiliswect.pl. s govfontology earthreakn. ol GemanrustLayer |
| _a Ontolagy List ] [~ Show Inherited [~ Changesfénnotations [ Editable
Concise Format | atiztract 2oy | ROFpML | T0rtle |
owL-Class: @oceancrustiaver =
Unsatisfiable concept
Reason: Any member of Oceancrustl ayer has more than one value for the functional property hashimension
ol
q to: (add File:
J Add | Add [F] | Add <D | Remave | Renamel @ ut:riothing = hasmmenmnl
|7 Show Imports [~ Qlames IPEIIEt LI
Subclass of: (2dd Refi f hasDil ion: “
Class Tree | property Tree | List eferences of hasDimension: =
- I o rE.EI | Crustlaver (Delete) in process.owl
. 0 (2 ighttime ;I OceanRegion (Delets
| (D Evenng Classes found..
i BB Season GeometricalOhject 10
: +(E) [Autumn, Fall] e GeometricalObject 2D
+(C) Spring aupotatinn (e GeometricalObiect 0D e
- (C) Summer GeametricalObject 3D
() winter =
1=-(©) Instant Intersection of: (Add
L) CurrentTime
5(©) TemporaRelation Union of: {add £ Resource Holder X,
+(T) [Beginning, Start] —
(T End One of: (Add) [[[ Source: Wain SWOOP ]]] 21|[1[ Source: Main SWOOP 1]] =
E-(T) Period
) Prefist Time: 2005-06-15 00:31:36 Time: 2005-06-15 00:31:42
% ?"SID':)'N‘HI 5 Ontology: process owl Ontology: process.owl
©T2§ﬂ:§:i Complement of: (Add) OWL-Class: GeometricalObiect 20 OWL-Class: GeometricalObiect 30
(8 Type Disjoint with: (A0d)
() UndegroundWakerObject
() Upper Superclass of: (add) Subclass of: {add || Subclass of: (add) |
©th|(a\ GeometricalObject (Delete GeometricalObject (Delete
= =]
% :‘ZE (EhESDHTIEﬂSIUH;{”2”""(%5\11 (Ehalemgnsmn;{"3"""<><sd:
o Domain of: (&dd) integer>}) (Delete) integer=1) (Delete)
j Superclass of: (add Superclass of: (Add
Lookup W all Ontologies? Surface (Delete) Polyhedron (Delete)
Reninn (Nelare Smhera (Delere

Figure A.3: TheShow Referencegature (used along with the clash information and
the resource holder) is used to hint at the source of the highly non-local problem for the

unsatisfiable clas®ceanCrustLayer.
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A.0.4 Change Management

Part of good debugging support for OWL ontologies is making experimentation
involving ontology changes safe, easy, and effective. Swoop has an ontology evolution
framework that supports the ad hoc undo/redo of changes (with logging).

Swoop uses the OWL API [9] to model ontologies and their associated entities,
benefiting from it's extensive and clean support for changes. The OWL API separates
the representation of changes from the application of changes. Each possible change type
has a corresponding Java class in the API, which is subsequently applied to the ontology
(essentially, the Command design pattern). These classes allow for the rich representation
of changes, including metadata about the changes. The change sets can be serialized in
RDF/XML and exchanged among ontology users, making it possible to apply patches of
changes to ontologies as and when desired.

Swoop also provides the ability to checkpoint and archive different ontology ver-
sions. Each change set or checkpoint can be saved at three different granularity levels -
entity, ontology, workspace, which basically specify gsope While the change logs
can be used to explicitly track the evolution of an ontology, checkpoints allows the user

to switch between versions directly exploring different modeling alternatives.

A.0.5 Collaborative Discussion Using Annotea

For collaborative discussion of ontologies using Swoop, we use the Annotea frame-
work [56], which takes the idea of separating annotations about ontologies from the core

ontologies themselves and provides both a specific RDF based, extensible annotation vo-
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cabulary, and a protocol for publishing and finding out-of-band annotations (annotations
that do not live inside the document being annotated).

Annotea support in Swoop is provided via a simple plug in whose implementation
is based on the standard W3C Annotea protocols [102] and uses the default Annotea RDF
schema to specify annotations (see Figure A.4). Any public Annotea Server can then
be used to publish and distribute the annotations created in Swoop. The default annota-
tion types (comment, advice, example, etc) seem an adequate base for human oriented
ontology annotations.

We have extended the Annotea Schema with the addition of an OWL ontology for a
new class of annotations — ontology changes (similar to [59]). The “Change” annotation
defined by the Annotea projected was designed to indicate a proposed change to the an-
notated document, with the proposal described in HTML-marked-up natural language. In
our extended ontology, change individuals correspond to specific changes made in Swoop
during editing.

The Swoop change annotations can be published and retrieved by Annotea servers,
or any other annotation distribution mechanism. The retrieved annotations can then be
browsed, filtered, endorsed, recommended, and selectively accepted. A similar collab-
orative framework based on an interactive dialogue was implemented in a more local
(tool-specific) context in the WebOnto system [30]. However, we decided to exchange
annotations using the Annotea protocol to make the collaboration less tool-specific (any
Annotea client can be used to discuss ontology annotations), and to allow users to arbitrar-
ily extend the Annotea schema the way we have for ontology-change sets. These change

sets also make it possible to define “virtual versions” of an ontology, by specifying a base
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4 SWOOP v2.2.1 (=3}
Fie view Bockmarks ResourceHolder Advanced Abaut
[ 4 | » | )Address: e iprotege stanford.edupluginsfouloutibraryjkosla.aulekosls =]
% ] I Show Inherited ¥ Changesfnnotations | Editable
Conciss Format | | RoFjL | | Change Tracking #Annetea Annotatians |
OWL-Class: koala:koala = I | Uﬂdatel Newl De‘étel Reph | i |
¥ Display Al
Subclass of: (add
Auth Subect Dat Enii
(Ikoala:isHardWarking , {“false"~~<xrsd: =up e 2e 0L
boolean> Delete
kuala'Marﬁl (ia\s (Delete Bifan Parsia [EX] Test changes 0311 kKeala
: o )
| aad | Add [E] | Add T | Remove | renane ||| (3oala hasHabitat . koala: o o e e
DryEucalvptForest) (Delete tra s - 03 ender
¥ shon Inparts |7 Qlemas [ostke ] ¢ ity [E4] Removing the b, 0312 KoslaWithPRD
Class Tree | Property Tres | List | Superclass of: (add tw? [EX] What's a Quokka. .. 03-09 Quolda
I owirTrin omin KoalsWithEhD iJm Hendler [GU] what? 0308 Graduatest...
= @'km,j Animal —_ Aditya [CO] Our Favorte ex... 0226 koala.owl

(=) koals: Marsupisls
=]

i D koalaoalawithPhD®
(T kndmQuakka™
i (T} kodla:TasmarianDevil
- () koala:Parent
=1(C) kosla:Per:
(T koala:Student
(B} koalarGraduatestudent™
"~} koala:MaleStudentiith3Daught
(T knala:Degres
(C) koala:Female
() koslaiGendsr®
=1 koala:Habitat
1T} koala:Farest
: koala:DryEucalyptForest
“(C) knalaiRainforest
LT} koala:University
(E) knala:Mae

[ 4l Orkalagies?

Loskp_ |

Annotations: (add

Intersection of: (2dd
Union of: {add

one of: (&dd

Equivalent to: (add

Complement of: (Add

Disjoint with: (2dd

Domain of: (Add

|

Annotation on: koala:Koals

See Original Definition {in Resource Holdar) when
Annotation was made

Author: Aditya
Anmotation Type: EX-Explanation
Date Created: 2005-03-12 004726

Suhject:Unsatisfiable class

Koala is an unsatisfiable class because

L. Tt has an existential property restriction on
isHardWorking whose domain is the class Person and
sa an instance of Koala is also an instancenf Person.

2. Koala is also defined as a subclassof Marsupials

I~ Lock B Chianges
Jstatus: Need to Update for koala Koala

Aoy Chences |

Unds Chengzs. |

Figure A.4: Using Annotea Client to Collaboratively Discuss and Debug Ontology

ontology and a set of changes to apply tdit.

Once a series of changes has proven effective in removing the defect and seems
sensible, the modeler can use Swoop’s integrated Annotea client to publish the set of
changes plus a commentary as shown in Figure A.4. Other subscribers to the Annotea
store can see these changes and commentary in context they were made, apply the changes
to see their effect, and publish responses. These exchanges persist, providing a repository
of real cases for subsequent modelers to study.

As future work, we plan on using the collaborative annotea-based framework in
Swoop to maintain a robust and extensible library of error patterns. As seen in Chapter 6,
the Ontology Repair service can make use of such a library to suggest axiom rewrites in

the repair solutions.

3Note that in certain cases, changes may not be applicable to the ontology, if the change operation refers
to an entity that is not present (defined) in the ontology. In such cases, a warning message is reported to the
user describing the reason for the change conflict.
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