Client/Server Model for Distributed
Computing: An Implementation

by A. Sela

TECHNICAL
RESEARCH
REPORT

SYSTEMS
RESEARCH

Supported by the
National Science Foundation
Engineering Research Center

Program (NSFD CD 8803012),
the University of Maryland,
Harvard University,
and Industry

TR 89-7

Client/Server model for distributed computing:
An Implementation

Amir Sela
Electrical Engineering Department

Systems Research Center
University of Maryland

1 Introduction

At the Intelligent Servosystems Laboratory work has been proceeding for some
time on the development of a distributed processing environment to allow for
the implementation of complex dynamics simulations.! Initially, these simula-
_tions were written-on a Silicon Graphics JRIS 3130 workstation with integrated
numerical and graphics display code. While this approach is satisfactory for
computationally non-intensive applications, it became evident that more com-
puting power would become necessary in order to achieve simulation in real
time. The logical step. was to use more powerful computers for the number
- “crunching, and to retain the JRIS workstation, which is optimized for various
graphics tasks; such as rotating, filling, clipping, etc. for display purposes. This
necessitated the development of code to allow for interprocess communication
among various machines. Our computing environment consists of Sun and JRIS
workstations, connected via an Ethernet.

{This worlé was supported in part by the National Science Foundation’s Engineering Re-
search Centers Program: NFSD CDR 8803012, by the NSF-REU program of the Systems Re-
search Center, by AFOSR-URI grant AFOSR-87-0073, and by a NASA-USRA Design project
grant.

2 The Client/Server model

The simulation is first divided into two stages: the numerical and the graphics
dlsplay The numerical code is compiled on the SUN, while the gra.p}ucs code
is delegated to the JRIS. A ’client/server’ arrangement is used, in which two
communication sockets are openéd between the two cooperating machines. The
server runs on the SUN, listening for connection requests on a known, predeter-
mined port. When the user wishes to initiate a simulation, the client is invoked
on the IRIS. All user interaction is taken care of by the IRIS, complete with
pop-up menus and dialogue boxes. When rum, the client will rendezvous with
the server at the predetermined port, and a pair of sockets will be established.
Although it is possible to use one socket for two-way communication, it was
decided to utilize each socket as a one way communication device. This is con-
venient in that it facilitates the creation of a 'token ring’ arrangement, where
a data structure is passed around a ring between machines until it reaches its
destination. As the structure makes its way from machine to machine, each
computer examines the destination host field of the structure, compares it to
its own, and decides to accept the data if it is addressed to it, or pass it along
to the next machine.

2.1 The Server

Three different approaches to the server/numerical process where implemented.
They differ. substantially in terms of system architecture, but require little
change in computer code.. The first implementation requires one process, which
is vesponsible for the numerical simulations as well as for monitoring the commu-
nication link for client requests. We refer to this as the polling server approach.

This is perhaps the most intuitive approach, although the least efficient. The
~ second approach, although it requires two processes, frees the numerical process
from having to check if there is data from the client at each iteration. This ap-
proach implements an interrupt mechanism to inform the numerical process that
data is pending. Finally, the third and most efficient method is a server which
uses interrupt driven socket I/O to inform the process that data is present. This
has the advantage of not requiring two processes, and of using lower level con-
structs for efficiency. We will refer to two-process server as the pseudo-interrupt
driven server, while the third method will be referred to as the interrupt driven
server.

2.1.1 Polling Server

In this approach, the server opens a communication socket for writing when
it is first invoked. It then listens for connection requests. When a request is
detected, it opens a socket for reading, and is ready to begin the simulation. The
program is organized so that before beginning each iteration, the read socket is

polleq t9 see if data has been sent by the client. If data has indeed been sent,
then it is read and acted upon. Otherwise, the simulation continues with the
next iteration.

2.1.2 Pseudo Interrupt Driven Server

In the second approach, program flow is identical to the polling server for the
connection establishment phase. Once the connection is established, the process
issues a fork() call, spawning a new version of itself. This new version (the child)
becomes the numerical simulation, while the old (the parent) listens at the read
socket for incoming data. If data is detected, the parent sends the child an
" interrupt, informing t‘he numerical process that the user wishes it to perform
some action. These actions may be simple start or stop commands, or they may
set the simulation’s initial conditions. It is important to note that while the
- parent process is waiting for commards from the client, the numerical process
- continues with its calculations.

2.1.3 Interrupt Driven Server

This server model is the culmination of the experience gained with the two
models previously discussed. This approach is the fastest and most efficient. It
requires only one process, unlike the pseydo-interrupt driven server, and does
not need to poll the socket to see if data is present, like the polling server. This
makes is much faster and more elegant than either of the other alternatives.
The use of the Unix signal interrupt feature allows us to utilize interrupt driven
socket 1/0. [1].

2.2 The Client

When the client is invoked, it attempts to rendezvous with the server running
on a foreign host. If the server is found to be executing, then the client may
establish the communication link between the two machines. Once the connec-
_ tion has been established, the user is left with a read socket and a write socket.
_That is, whenever commands are to be sent to the simulation server, they are
simply written to the client’s *write’ socket, and whenever the client wishes to
read the data generated by the server, it simply polls its 'read’ socket to see if
data is available. It is up to the user to determine the cornmands that are to be
recognized by the client/server pair, and to implement the computer code that
handles them.

2.3 Data Representation

The simplest, and perhaps the most inefficient method of sending data between
machines is to convert to "char’ (ASCII) representation, send the string of char-
acters across the network, and then convert back to machine representation.

When programming in C this involves doing an sprintf into a string, writing
that string across the network, and using sscanf to recover the data at the other
end. Not only is one forced to send a larger number of characters, across the
network, but one must also spend the time parsing, formatting, and so forth.
The overhead associated with this method makes it prohibitive for all but the
gimplest applications. Rather than pursue this approach, we chose to exploit
the fact that both the IRISes and Suns have the same word length, and both
store data in an identical manner, with one exception, which we will discuss.
_Instead of writing an ASCII string, we write the data structure itself across the
network. This relieves us of the time consuming task of building a string with
all of the data on the sending end, and of parsing that data on the receiving
end. This yields a dramatic increase in data throughput. Clearly, one may not
include pointers in the structure that is to be written, as this would simply
transfer the address of the data on the other machine, and not the data itself.

2.4 External Data Representation

It is important to remember that not all machines store data in the same format.
The data transfer method we employ works reliably, if one is careful to make
_ sure that the data representation of the machines is compatible. This is the
case for the Suns and IRISes, with one minor exception, namely, whenever
one wishes to send a variable which is type ’double’ on the Sun, it must be
called a ’long float’ on the IRIS. In order to overcome these data compatibility
problems, a set of library routines called zdr [3] may be used. This Erternal
Data Representation allows one to transfer data across machines without regard
as to how they represent data. At this point in time we do not make use of
these procedures, although they will likely be utilized in the future.

2.5 Data Transfer

One very important aspect of implementing the simulation is the design of
the necessary data structures which must be passed between machines. One
may opt to have one large structure which contains all of the data necessary
to construct a frame at a given timestep, or one may wish to send several
smaller structures for each frame. Both methods have particular advantages
and drawbacks. Sending one large structure is convenient as it simplifies the
implementation of the simulation in some high-level language. When one reads
data, one has ¢ priori knowledge of the kind of structure which was sent. Its
major disadvantage is that nonessential data is often sent in the data structure
along with data which is essential for the display of the scene. Sending a variety
of smaller data structures is more efficient in terms of the amount of data which
is sent across the network, but involves considerably more programming effort.
The method of data transfer presented here has been seen to provide a peak
transfer rate of 20 kbytes/second. This was arrived at by removing the numerical

code from the simulations and writing a non-changing data structure across the
network.

2.6 Animation Considerations

Real-time animation demands the generation of natural appearing sequences of
images. To the human observer, a rate of thirty frames per second will meet
this goal; however, even rates as low as twenty frames per second will present
an acceptable sense of continuity to the observer. Taking thirty frames per
second as a specification for the animation allows 33.3 msec of processing time
to be apportioned to the tasks of performing calculations and displaying the
next frame. On the IRIS workstation, one buffer clear requires 12 msec. This
leaves us 21.3 msec in which to perform our calculations and draw the scene. For
complicated simulations on the IRIS, it is only through the use of distributed
processing that this can be achieved.

3 Inverted Pendulum Simulation

The inverted pendulum on a cart is the classic ’broom balancing’ control prob-
lem. The idea is for the user to sit at the JRIS graphics workstation, enter some
feedback gains which define the control law, and watch in living color as the
cart moves back and forth, trying to stabilize the pendulum. Although the sim-
ulation is not so nurnerically intensive that it could not be implemented entirely
on the IRIS, it was decided to use this as a simple case study for testing the
client/server model with a real simulation.

3.1 Client: Sending commands to the numerical process

Generally, the user will wish to set certain initial conditions, gains, and so forth
before starting the simulation. In our simple example, we only need to be able
to send floating point data, while in more complicated examples, we require
flexible data structures to handle varying data types and structures. A simple
procedure call is used to send commands to the remote processor. This is done
as follows:

send.sim.command(command,value);

where command is an integer constant, consistent on both machines, and value
is the new value to be passed to the simulation process.

The procedure send.sim_command looks like this:

send_sim_command (type,val)
int type;
float val;
{
struct send_cmd
{
int type;
float val;
};

struct send_cmd data_rec;

data_rec.type=type; /% Load ’type’ into data structure */
data_rec.val=val; © /% Load ’val’ into data structure */

it ((vrite(wsock,&data_rec,sizeof(data_rec))) < 0 {
perror("Writing on stream socket");
exit(1);

3.2 Client: Receiving data from the numerical process

In order to receive data from the numerical process, one must first poll the 'read’
socket to see if data is available to be read. Attempting to read data from a
socket on which there is no data pending must be avoided, as it may cause the
program to hang. Therefore, one must first issue a select call to determine if
data is present. The following code fragment is recommended for reading data
from a socket.

read_next_data()

{

fd_set read_template;
struct timeval wait;

wait.tvsec = 0;
wait.tvusec = 0;
FD_Z2ERO(&read_template);
-FD_SET(rsock,&read_template);
‘select (FD_SETSIZE, &read_template, (fd_set *) O, (fd_set *) 0, &wait);
if (FD_ISSET(rsock,&kread_template)) {
it (read(rsock,&data_back,sizeof(data_back)) <= 0) {
perror(“reading from stream socket");
exit(1);
}
}
}

Here ’data_back’ is the structure in which the results of the calculations are
returned.

3.3 Server: Receiving Commands from the Client

As described earlier, three different versions of the server were written. These
are the polling server, the pseudo-interrupt driven server, and the real interrupt
driven server. We now describe the various server implementations.

3.3.1 Polling Server

In this approach, the server polls it’s ’read’ socket before each iteration of
the numerical algorithm. This is accomplished by using a variation of the
‘read_next_data’ routine discussed above. It may be preferable to place the
code inline to avoid the extra procedure call, as it is in a critical loop. If data
is present, it is read, acted upon, and the simulation continues. Some sample
code follows:

while (CONTINUE) {
/* Check for data from client */
FD_ZERO(&read_template);
FD_SET(rsock,tread_template);
. 8elect(FD_SETSIZE, &read_template, (fd_set *) 0, (fd_set *) 0, &wait);
" if (FD_ISSET(rsock,&read_template)) {
"~ if (read(rsock,kdata_back,sizeof(data_back)) <= 0) {
perror("reading from stream socket");
exit(1);
}

/* Perform some action based on the contents of ’data_back’ */

}

/* Perform next iteration of numerical algorithm */

3

3.3.2 Pseudo-Interrupt driven server

This approach offers a significant improvement over the polling server. As dis-
cussed earlier, once the client and server rendezvous, the server spawns a pro-
cessing using fork(). The parent process monitors the ’read’ socket for data from
the client, while the numerical process is free to compute the next iteration and
to send them to the client. When the server parent detects that data has become
available from the client, it sends an interrupt to the child. On receipt of the
interrupt, the numerical process will execute an interrupt handler, which will
‘set a flag INTERRUPTED’ to TRUE. Program execution will resume so that
the calculation of the turrent iteration will be completed. Before beginning the
next iteration, the numerical program will check if there is data pending (by
examining the flag INTERRUPTED’) and will read and process it if this is the
case,

~ Set_Signal_handler
while (DONT_STOP) {
while (INTERRUPTED || 'INITIALIZED) {
Check for incoming data
If data present, read and act in it.
set INTERRUPTED to FALSE
}
while (!INTERRUPTED &k INITIALIZED) {
Compute next iteration

}

The following lines of code are necessary to set the signal handler to trap
interrupts. Whenever data is sent from the client to the server, the numerical
process (the child) will receive an interrupt from its parent.

int onintr(), (*istat)();
istat=signal (SIGINT,SIG_IGN); /# save original status */
if (istat!=SIG_IGN) {

8ignal (SIGINT,onintr);

-

i

onintr()

{
8ignal(SIGINT,onintr); /+ Reset for next interrupt */
INTERRUPTED=TRUE;

}

3.3.3 Interrupt driven server

This approach is only slightly different from the pseudo-interrupt driven server,
although it is much more elegant. Here we require only the numerical process,
and do not-need to concern outselves with checking for incoming data. The
receipt of incoming data is made known to the child process via a SIGIO signal.
The server must set up an interrupt handler and trap this signal. The code that
does this follows:

signal (SIGIO, onintr);

/* Set the process receiving SIGIO/SIGURG signals to us */

it (fcntl(rmsgsock, F_SETOWN, getpid()) < 0) {
perror("fcntl F_SETOWN");
exit(1);

}

/* Allow receipt of asynchronous I/0 signals */

if (fcntl(rmsgsock, F_SETFL, FASYNC) < 0) {
perror(“fentl F_SETFL, FASYNC");
exit(1);

3.3.4 Why the Pseudo-Interrupt Driven Server Architecture?

After developing the architecture and implementation of the interrupt driven
_ server, one could ask ”Why bother with this implementation? The real inter-
rupt driven server is so much more elegant.” Although for applications which
involve a graphics client and a single numerical server this is indeed the case,
there remain applications where the pseudo-interrupt driven server is more ap-
propriate. One may wish, for instance, to have a number of processes running
on the same machine. The ’client’ in this case would send commands to the
various processes running on the foreign host. Rather than interrupt each pro-
cess when data becomes. is available, the pseudo interrupt server would read
the data, and selectively send an interrupt to the correct process. Thus for
process management, a supervisory pseudo-interrupt driven server may be most
appropriate.

10

3.4 Server: Sending Data to the Client

When the simulation process wishes to send data to the client, the following
code fragment is used. The structure ’send.rec’ contains the data to be sent.
Further, more robust error handling provisions will be developed in the future.

it ((write(wsock,&send_rec, sizeof(send_rec))) < 0) {
perror("writing on stream socket");
exit(0);

}

In our pendulum example, the send_rec data structure consists of:

struct data_rec

{

float time;

float ki;

float k2;

float x1;

float x2;

float 21;

float 2z2;

float deltat; /* timestep */
float M1; /* mass of bob */
float M2; /* mass of cart */
float L; /* Length of pendulum */
float force;

};

Note that the data structure consists of all of the data required to charac-
terize the state of the system at any one time. For the case of the inverted
pendulum, we choose to pass all of the data at one time to simplify program
structure. At the end of each iteration, the results are stored in send_rec and
written to the client. This enables the graphics display program to alternately
_ change the quantities to be plotted (at the request of the user) without having
to request that the numerical process (server) send different data structures.
Although it would be slightly faster to have only the necessary data sent across
the network, it has been found that this is of no consequence for this simula-
tion, as the ’bottléneck’ appears to be in the area of graphics display, where
data generated by the Sun workstation afrives at the IRIS graphics workstation
more quickly than the JRIS can display the results.

11

4 Server Performance Comparisons

We compare the data transfer rate of the three server architectures discussed.
This is done using the inverted pendulum simulation as a test case. In order to
benchmark the server, and not the client graphics program running on the IRIS
workstation, we chose to eliminate the graphics code and instead see how much
data becomes available at the IRIS end. By eliminating the graphics, we insure
a more reliable evaluation of the server architecture. The benchmark program
has the following structure:

For (i=0;i<NUM_TRIALS;i++) {
record start time
send ’START’
for (j=0;j<NUM_ITERATIONS;j++) { check._for_data }
send ’PAUSE’
record end time
flush ipc buffer
display time interval, compute kbytes/sec, etc.

12

Running the pendulum simulation with the same initial conditions under
the same system load, we arrive at the following results:

Polling Server

time (sec) | iterations | Bytes | Kbytes/sec { flushed
11.733 179 8592 | 0.732 3
11.767 177 8496 | 0.722 0
11.783 182 8736 | 0.741 0
11.783 180 8640 | 0.733 0
11.783 180 8640 | 0.733 0
11.717 180 8640 | 0.737 1
11.700 176 8448 | 0.722 0
11.767 184 8832 | 0.751 0
11.750 177 8496 | 0.723 3

Pseudo-Interrupt Driven Server

time (sec) | iterations | Bytes | Kbytes/sec | flushed
14.217 3232 155136 | 10.912 13
14.450 3267 156816 | 10.852 14
15.333 3606 173088 | 11.288 0
14.217 3153 151344 | 10.646 9
14.233 3224 154752 | 10.873 11
14.050 3005 144240 | 10.266 6
13.950 2914 139872 | 10.027 1
14.150 3113 149424 | 10.560 11
13.950 2900 139200 | 9.978 11

Interrupt Driven Server

time (sec) | iterations | Bytes | Kbytes/sec | flushed
15.250 4396 211008 | 13.837 11
15.300 4459 214032 | 13.989 11
15.150 4277 205296 | 13.551 2
16.600 4847 232656 | 14.015 12
17.367 5055 242640 | 13.972 0
16.750 4678 224544 | 13.406 0
17.450 4830 231840 | 13.286 0
17.133 5014 240672 | 14.047 4
17.033 4897 235056 | 13.800 11

13

S Future Work

There remains much work to be done in t_he. deyelopmel'xt of the client/server
model for distributed processing. The g'enerallzatlon 'of th}s approach to create a
parallel Procéssing environment, in whlch many engineering workstations Wf)rk
in paralle] is our yltimate goal. This paper has presented both an overview
of the client /server model, as well as a detailed example of its 1mplementat}on
in a simple distributed simulation. In the fut.u.re, more rqbust error-.handlmg
routines must be written, and more ambitious simulations, incorporating many

workstations, should be attempted.

Acknowledgments

I would like to thank Dr. P.S. Krishnaprasad for his inspiration and many
discussions on the subject of distributed processing. I would also like to thank
Russ Byrne, with whom I worked closely. Many thanks are due to all of the
faculty and students of the Intelligent Servosystems Laboratory, for their con-

tinuing support and encouragment.

14

References .

(1} Joy, W.; Fabry, R.; Leffler, S. A 4.3BSD Interprocess Communication
Primer, Computer Systems Research Group, University of California,
Berkeley. Berkeley, CA, 94720.

[2] Sun Microsystems. SUN IPC Tutorial, Mountain View, CA, 1987.

[3] Sun Microsystems Inc. SUN Ezternal Data Representation, Mountain View,
CA, 1987.

15

IRIS

Polling Server

Client

.

SUN

>

<4

At each iteration,

read socket for data,

Server

the server polls the

acts on it if data

exists, and performs one iteration of the
numerical algorithm

Pseudo-Interrubt Driven Server

Client

g

[

esscecscecscpocsnsee

Server
(Parent)

Interrupt

asssessshoessene

The parent process waits for data, and
sends an interrupt to the numerical process
when data arrives.

Interrupt D

Client

riven Server

4

>

Server

An interrupt handler is set up so that

incoming data from the client is indicated

by a SIGIO signal.

cessesee

Server
{Numerical)

