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Abstract

Exploring and analyzing large volumes of data plays an increasingly important role in many
domains of scientific research. We have been developing the Active Data Repository (ADR),
an infrastructure that integrates storage, retrieval, and processing of large multi-dimensional
scientific datasets on distributed memory parallel machines with multiple disks attached to
each node. In earlier work, we proposed three strategies for processing range queries within
the ADR framework. Our experimental results show that the relative performance of the
strategies changes under varying application characteristics and machine configurations. In
this work we investigate approaches to guide and automate the selection of the best strategy for
a given application and machine configuration. We describe analytical models to predict the
relative performance of the strategies when input data elements are uniformly distributed in the
attribute space of the output dataset, restricting the output dataset to be a regular d-dimensional
array. We present an experimental evaluation of these models for various synthetic datasets
and for several driving applications on a 128-node IBM SP.

1 Introduction

The exploration and analysis of large datasets is playing an increasingly central role in many areas
of scientific research. Depending on the application area, datasets may include data produced
by scientific simulations, along with measurements obtained from satellites, microscopes, seismic
data or tomographic imaging techniques.�This research was supported by the National Science Foundation under Grant #ACI-9619020 (UC Subcontract #
10152408) and the Office of Naval Research under Grant #N6600197C8534.
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O  Output Dataset, I  Input Dataset
(* Initialization *)

1. foreach oe in O do
2. read oe
3. ae Initialize(oe)

(* Reduction *)
4. foreach ie in I do
5. read ie
6. SA  Map(ie)
7. foreach ae in SA do
8. ae  Aggregate(ie; ae)

(* Output *)
9. foreach ae do
10. oe  Output(ae)
11. write oe

Figure 1: The basic processing loop in the target applications.

Over the past several years we have been actively working on data intensive applications that
employ large-scale scientific datasets, including applications that explore, compare, and visualize
results generated by large scale simulations [15], visualize and generate data products from global
coverage satellite data [7], and visualize and analyze digitized microscopy images [1]. Such
applications often use only a subset of all the data available in both the input and output datasets.
References to data items are described by a range query, namely a multi-dimensional bounding
box in the underlying multi-dimensional attribute space of the dataset(s). Only the data items
whose associated coordinates fall within the multi-dimensional box are retrieved and processed.
The processing structures of these applications also share common characteristics. Figure 1 shows
high-level pseudo-code for the basic processing loop in these applications. The processing steps
consist of retrieving input and output data items that intersect the range query (steps 1–2 and 4–5),
mapping the coordinates of the retrieved input items to the corresponding output items (step 6),
and aggregating, in some way, all the retrieved input items mapped to the same output data items
(steps 7–8). Correctness of the output data values usually does not depend on the order input
data items are aggregated. The mapping function, Map(ie), maps an input item to a set of output
items. We extend the computational model to allow for an intermediate data structure, referred to
as an accumulator, that can be used to hold intermediate results during processing. For example,
an accumulator can be used to keep a running sum for an averaging operation. The aggregation
function,Aggregate(ie; ae), aggregates the value of an input item with the intermediate result stored
in the accumulator element (ae). The output dataset from a query is usually much smaller than
the input dataset, hence steps 4–8 are called the reduction phase of the processing. Accumulator
elements are allocated and initialized (step 3) before the reduction phase. The intermediate results
stored in the accumulator are post-processed to produce final results (steps 9–11).

We have been developing the Active Data Repository (ADR) [5], a software system that effi-
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ciently supports the processing loop shown in Figure 1, integrating storage, retrieval, and processing
of large multi-dimensional scientific datasets on distributed memory parallel machines with mul-
tiple disks attached to each node. ADR is designed as a set of modular services implemented in
C++. Through use of these services, ADR allows customization for application specific processing
(i.e. the Initialize, Map, Aggregate, and Output functions described above), while providing
support for common operations such as memory management, data retrieval, and scheduling of
processing across a parallel machine. The system architecture of ADR consists of a front-end and a
parallel back-end. The front-end interacts with clients, and forwards range queries with references
to user-defined processing functions to the parallel back-end. During query execution, back-end
nodes retrieve input data and perform user-defined operations over the data items retrieved to
generate the output products. Output products can be returned from the back-end nodes to the
requesting client, or stored in ADR.

This paper addresses optimization of processing for range queries on distributed memory ma-
chines within the ADR framework. In earlier work [6, 14], we described three potential processing
strategies, and evaluated the relative performance of these strategies for several application sce-
narios and machine configurations. Our experimental results showed that the relative performance
of the strategies changes under varying application characteristics and machine configurations. In
this paper we investigate approaches to guide and automate the selection of the best strategy for
a given application and machine configuration. We describe analytical models to predict relative
performance of the strategies when input data elements are uniformly distributed in the attribute
space of the output dataset, restricting the output dataset to be a regular d-dimensional array. We
present an experimental evaluation of these models for synthetic datasets and for several driving
applications [1, 7, 15].

2 Query Execution Strategies

In this section we briefly describe three strategies for processing range queries in ADR. First we
briefly describe how datasets are stored in ADR, and outline the main phases of query execution in
ADR. More detailed descriptions of these strategies and of ADR in general can be found in [5, 6, 14].

2.1 Storing Datasets in ADR

A dataset is partitioned into a set of chunks to achieve high bandwidth data retrieval. A chunk
consists of one or more data items, and is the unit of I/O and communication in ADR. That is, a
chunk is always retrieved, communicated and computed on as a whole during query processing.
Every data item is associated with a point in a multi-dimensional attribute space, so every chunk
is associated with a minimum bounding rectangle (MBR) that encompasses the coordinates (in
the associated attribute space) of all the data items in the chunk. Since data is accessed through
range queries, it is desirable to have data items that are close to each other in the multi-dimensional
space placed in the same chunk. Chunks are distributed across the disks attached to ADR back-end
nodes using a declustering algorithm [10, 16] to achieve I/O parallelism during query processing.
Each chunk is assigned to a single disk, and is read and/or written during query processing only
by the local processor to which the disk is attached. If a chunk is required for processing by one
or more remote processors, it is sent to those processors by the local processor via interprocessor
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communication. After all data chunks are stored into the desired locations in the disk farm, an
index (e.g., an R-tree [11]) is constructed using the MBRs of the chunks. The index is used by the
back-end nodes to find the local chunks with MBRs that intersect the range query.

2.2 Query Processing in ADR

Processing of a query in ADR is accomplished in two steps; query planning and query execution.
A plan specifies how parts of the final output are computed and the order the input data chunks

are retrieved for processing. Planning is carried out in two steps; tiling and workload partitioning.
In the tiling step, if the output dataset is too large to fit entirely into the memory, it is partitioned into
tiles. Each tile contains a distinct subset of the output chunks, so that the total size of the chunks in
a tile is less than the amount of memory available for output data. Tiling of the output implicitly
results in a tiling of the input dataset. Each input tile contains the input chunks that map to the
output chunks in the tile. During query processing, each output tile is cached in main memory,
and input chunks from the required input tile are retrieved. Since a mapping function may map an
input element to multiple output elements, an input chunk may appear in more than one input tile
if the corresponding output chunks are assigned to different tiles. Hence, an input chunk may be
retrieved multiple times during execution of the processing loop. In the workload partitioning step,
the workload associated with each tile (i.e. aggregation of input items into accumulator chunks) is
partitioned across processors. This is accomplished by assigning each processor the responsibility
for processing a subset of the input and/or accumulator chunks.

The execution of a query on a back-end processor progresses through four phases for each tile:

1. Initialization. Accumulator chunks in the current tile are allocated space in memory and
initialized. If an existing output dataset is required to initialize accumulator elements, an
output chunk is retrieved by the processor that has the chunk on its local disk, and the chunk
is forwarded to the processors that require it.

2. Local Reduction. Input data chunks on the local disks of each back-end node are retrieved
and aggregated into the accumulator chunks allocated in each processor’s memory in phase 1.

3. Global Combine. If necessary, results computed in each processor in phase 2 are combined
across all processors to compute final results for the accumulator chunks.

4. Output Handling. The final output chunks for the current tile are computed from the
corresponding accumulator chunks computed in phase 3.

A query iterates through these phases repeatedly until all tiles have been processed and the entire
output dataset has been computed. To reduce query execution time, ADR overlaps disk opera-
tions, network operations and processing as much as possible during query processing. Overlap is
achieved by maintaining explicit queues for each kind of operation (data retrieval, message sends
and receives, data processing) and switching between queued operations as required. Pending
asynchronous I/O and communication operations in the queues are polled and, upon their comple-
tion, new asynchronous operations are initiated when there is more work to be done and memory
buffer space is available. Data chunks are therefore retrieved and processed in a pipelined fashion.
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2.3 Query Processing Strategies

In the following discussion, we refer to an input/output data chunk stored on one of the disks
attached to a processor as a local chunk on that processor. Otherwise, it is a remote chunk. A
processor owns an input or output chunk if it is a local input or output chunk. A ghost chunk is
a copy of an accumulator chunk allocated in the memory of a processor that does not own the
corresponding output chunk.

In the tiling phase of all the strategies described in this section, we use a Hilbert space-filling
curve [10] to create the tiles. The goal is to minimize the total length of the boundaries of the
tiles, by assigning chunks that are spatially close in the multi-dimensional attribute space to the
same tile, to reduce the number of input chunks crossing tile boundaries. The advantage of using
Hilbert curves is that they have good clustering properties [16], since they preserve locality. In
our implementation, the mid-point of the bounding box of each output chunk is used to generate a
Hilbert curve index. The chunks are sorted with respect to this index, and selected in this order for
tiling.

Fully Replicated Accumulator (FRA) Strategy. In this scheme each processor performs pro-
cessing associated with its local input chunks. The output chunks are partitioned into tiles, each of
which fits into the available local memory of a single back-end processor. When an output chunk
is assigned to a tile, the corresponding accumulator chunk is put into the set of local accumulator
chunks in the processor that owns the output chunk, and is assigned as a ghost chunk on all other
processors. This scheme effectively replicates all of the accumulator chunks in a tile on each
processor, and during the local reduction phase, each processor generates partial results for the
accumulator chunks using only its local input chunks. Ghost chunks with partial results are then
forwarded to the processors that own the corresponding output (accumulator) chunks during the
global combine phase to produce the complete intermediate result, and eventually the final output
product.

Sparsely Replicated Accumulator (SRA) Strategy. The FRA strategy replicates each accumu-
lator chunk in every processor, even if no input chunks will be aggregated into the accumulator
chunks in some processors. This results in unnecessary initialization overhead in the initialization
phase of query execution, and extra communication and computation in the global combine phase.
The available memory in the system also is not efficiently employed, because of unnecessary
replication. Such replication may result in more tiles being created than necessary, which may
cause a large number of input chunks to be retrieved from disk more than once. In SRA strategy,
a ghost chunk is allocated only on processors owning at least one input chunk that maps to the
corresponding accumulator chunk.

Distributed Accumulator (DA) Strategy. In this scheme, every processor is responsible for all
processing associated with its local output chunks. Tiling is done by selecting, for each processor,
local output chunks from that processor until the memory space allocated for the corresponding
accumulator chunks in the processor is filled. As in the other schemes, output chunks are selected
in Hilbert curve order.

Since no accumulator chunks are replicated by the DA strategy, no ghost chunks are allocated.
This allows DA to make more effective use of memory and produce fewer tiles than the other two

5



P1 P1
P1P1

P2 P2
P2P2

P3

P3 P3
P3P4P4

P4 P4

Output Data

P1 P2 P3 P4 Processors

Input Data

Reduction Result

P1 P2 P3 P4

Inititalization

Local Reduction Phase

Communication for Replicated Output Blocks

P1 P2 P3 P4

P1 P2 P3 P4

Global Combine Phase

Communication for Replicated Output Blocks

P1 P2 P3 P4

Inititalization

P1 P2 P3 P4

Local Reduction Phase

Triangles received from other processors

(Black regions represent the clipped out regions of triangles)
Communication for Input Elements

Figure 2: FRA strategy (left) and DA strategy (right).

schemes. As a result, fewer input chunks are likely to be retrieved for multiple tiles. Furthermore,
DA avoids interprocessor communication for accumulator chunks during the initialization phase
and for ghost chunks during the global combine phase, and also requires no computation in the
global combine phase. On the other hand, it introduces communication in the local reduction phase
for input chunks; all the remote input chunks that map to the same output chunk must be forwarded
to the processor that owns the output chunk. Since a projection function may map an input chunk
to multiple output chunks, an input chunk may be forwarded to multiple processors.

Figure 2 illustrates the FRA and DA strategies for an example application. One possible
distribution of input and output chunks to the processors is illustrated at the top. Input chunks are
denoted by triangles while output chunks are denoted by rectangles. The final result to be computed
by reduction (aggregation) operations is also shown.

3 Analytical Cost Models

In earlier work [6, 14], we have shown that the relative performance of the query processing
strategies changes under varying application characteristics and machine configurations. For
example, Figure 3 shows an example mapping between input and output chunks using two different
mapping functions. Circles denote the input chunks, whereas squares denote the output chunks.
The arrows from input chunks to output chunks indicate the mapping between input and output
datasets. Consider the volume of communication in both cases. For the sake of simplicity, assume
that the size of an input chunk equals the size of an output chunk, Osize . In Figure 3(a), an
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Figure 3: Mapping of input chunks to output chunks under two different mapping functions.
Arrows from input chunks (circles) to output chunks (squares) denote the mapping between input
and output.

input chunk maps to two output chunks, and each processor has to send 2 input chunks in the
local reduction phase for the DA strategy. Therefore, the volume of communication per processor
in DA is 2Osize in this case. At least one input chunk from each processor maps to an output
chunk. As a result, each output chunk has to be replicated on all processors for the SRA and FRA
strategies. The volume of communication per processor for the example, for FRA and SRA, is
4Osize for the initialization phase and 4Osize for the global combine phase. Therefore, DA requires
less communication than SRA and FRA, potentially performing better than these strategies. In
Figure 3(b), however, an input chunk maps to all of the output chunks, so each input chunk must
be sent to two other processors. The volume of communication per processor for DA under this
mapping is 5�2�Osize (five input chunks to two other processors). The volume of communication
for SRA and FRA, on the other hand, remains the same as for the first mapping, since each output
chunk is replicated on each processor. Thus, in this case, SRA and FRA require less communication
than DA.

In this section we present analytical models to predict the relative performance of the query
processing strategies. Our goal is to predict the relative performance of the three strategies
without running the query planning phase, i.e., without performing tiling and workload partitioning.
Predicting the relative performance of the query processing strategies can be accomplished in two
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Query Strategy
Execution FRA SRA DA

Phase I/O Comm. Comp. I/O Comm. Comp. I/O Comm. Comp.

Initialization OfraP OfraP (P � 1) Ofra OsraP G OsraP +G OdaP 0 OdaP
Local

Reduction
IfraP 0 OfraP � IsraP 0 OsraP � IdaP Imsg OdaP �

Global
Combine

0 OfraP (P � 1) OfraP (P � 1) 0 G G 0 0 0

Output
Handling

OfraP 0 OfraP OsraP 0 OsraP OdaP 0 OdaP
Table 1: The expected average number of I/O, communication, and computation operations per
processor for a tile in each phase. Ofra, Osra, and Oda denote the expected average number of
output chunks per tile for the FRA, SRA, and DA strategies, respectively. Similarly, Ifra, Isra,
and Ida are the expected average number of input chunks retrieved per tile for the FRA, SRA, and
DA strategies. G is the expected average number of ghost chunks per processor for a tile in SRA,
and Imsg is the expected average number of messages per processor for input chunks in a tile for
DA. The average number of output chunks that an input chunk maps to is denoted by �, and �
represents the average number of input chunks that map to an output chunk. P is the number of
processors executing the query.

steps. First, we must estimate the number of I/O, communication, and computation operations that
must be performed for an output tile in each phase. Second, the counts must be used to produce an
estimated execution time for each strategy.

Table 1 shows the expected average number of operations per processor for a tile in each
phase. In the following sections we describe the methods used to compute the expected number
of operations. The main assumption of the analytical models described in this paper is that the
distribution of the input chunks in the output attribute space must be uniform, and the output dataset
must be a regular d-dimensional dense array.

3.1 Computing Operation Counts for FRA

The number of tiles and the average number of output chunks in a tile depend on the aggregate
system memory that can be effectively utilized by a query processing strategy. Since an output
chunk is replicated in all processors for FRA, the effective system memory for FRA is the size of
memory, M , on a single processor. Hence, the average number of output chunks per tile, Ofra, isMOsize , and the number of tiles, Tfra, is OOfra , whereO is the total number of output chunks, and Osize
is the size of an output chunk. With � input chunks mapping to an output chunk, �Ofra computation
operations are performed in the local reduction phase for each tile, and the declustering algorithm
that ADR uses (see Section 2) is expected to assign an even share to each processor.

As was discussed in Section 2, an input chunk may intersect more than one output tile. To
estimate the number of input chunks per output tile accurately, the number of output tiles an input
chunk is expected to intersect has to be computed. Assume that the d-dimensional output grid
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is partitioned regularly into rectangular tiles and there are Ofra output chunks per output tile.
Let each output chunk have a minimum bounding rectangle (MBR) of size zi along dimensioni = 0; 1; : : : ; d � 1. Then, the extent of the MBR for an output tile in each dimension can be
computed as xi = zini for i = 0; 1; : : : ; d � 1, where ni is the number of output chunks along
dimension i of the tile (ni = dqOfra for square tiles.) Also assume that after mapping to the output
attribute space, the extent of the MBR of each input chunk is yi along dimensions i = 0; 1; : : : ; d�1.
In this paper d is assumed to be two, i.e., the output grid is two-dimensional, and yi < xi. The
extension of the method to d > 2 dimensions and for yi � xi can be found in [4].

A tile can be implicitly partitioned into subregions R1, R2, and R4 as shown in Figure 4. If
the mid-point of the MBR of an input chunk (with extents y0 and y1) falls into region Rk , then the
input chunk intersects k adjacent output tiles. Let area(Rk) be the area of region Rk. Since we
assume that the distribution of input chunks in the output space is uniform, the ratio of the area of
region Rk to the total area of the tile can be used to estimate the number of input chunks that fall
into that region. Thus, the expected number of output tiles that an input chunk intersects, �, can be
computed as � = (area(R1)x0x1

) + 2(area(R2)x0x1
) + 4(area(R4)x0x1

)
The expected number of input chunks that map to an output tile is then Ifra = �ITfra , where I is

the total number of input chunks.

3.2 Computing Operation Counts for SRA

Let e be the average percent of system memory used for local output chunks in an output tile. That is,
ifG is the average number of ghost chunks per processor per output tile, we have e = OlocOloc+G . Here,Oloc is the number of local (non-ghost) output chunks in the tile. Note that we have 1P � e � 1,
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and when e = 1P , SRA is equivalent to FRA. Given the value of e, the number of output chunks in
a tile is Osra = ePMOsize , the number of local output chunks per processor in the tile is Oloc = OsraP ,
and the number of tiles is Tsra = OOsra .

We compute G and e as follows. The goal of the declustering algorithms used in ADR [10, 16]
is to achieve good I/O parallelism when retrieving input and output chunks from disks. To achieve
this goal, the algorithms distribute spatially close chunks evenly across as many processors as
possible. Therefore, � input chunks that map to an output chunk v on processor p can be expected
to be distributed across as many processors as possible. Let G0 be the average number of ghost
chunks that are created for one output chunk. Then, on average a processor creates a total ofG = G0Oloc ghost chunks per output tile, and P processors createG0OlocP ghost chunks per output
tile.

Under the assumption that input chunks that map to the same output chunk are distributed
across as many processors as possible, SRA becomes FRA if � � P . When � < P , we haveG0 = (Probabilityfp is one of � processorsg(� - 1) + Probabilityfp is not one of � processorsg�)= � P�1P , and hence, e = OlocOloc +G0Oloc = 1

1 +G0 = PP + �(P � 1)G = G0Oloc = �(P � 1)P PMOsize[P + �(P � 1)] = �M(P � 1)Osize[P + �(P � 1)]
The number of input chunks that map to a tile, Isra, and the number of computation operations

are calculated the same way as for FRA, as shown at the end of Section 3.1.

3.3 Computing Operation Counts for DA

For DA, output chunks are not replicated, so the effective overall system memory is P �M , whereM is the size of the memory on each processor. Therefore, the average number of output chunks
per tile can be computed as Oda = PMOsize , and the number of tiles is Tda = OOda . The estimated
number of input chunks that map to a tile, Ida, is again computed as for FRA in Section 3.1.

In the local reduction phase for the DA strategy, local input chunks that map to output chunks
on other processors must be sent to those processors. As a result, DA requires interprocessor
communication for input chunks. We estimate the number of messages for input chunks in each
processor, Imsg, as follows. We partition a tile into regions R1, R2, and R4 as is described in
Section 3.1 (see Figure 4). Let C(�;P ) be defined asC(�;P ) = ( P � 1 if � � P�P�1P otherwise

If the mid-point of the MBR of an input chunk falls inside region R1, the input chunk is entirely
contained by that output tile. Remember that the � output chunks that the input chunk maps to
are declustered across as many processors as possible, as are the input chunks. That is, if � � P ,
then the output chunks are stored on P � 1 processors; otherwise, they are stored on � processors.
Therefore,

expected number of messages for an input chunk in region R1 = C(�;P )
10



If the mid-point of the MBR for an input chunk falls inside one of the four R2 regions, it maps to
two output tiles, say T1 and T2 (see Figure 4). Since we assume a uniform distribution of input
chunks in the output space, the number of output chunks that the input chunk maps to in the two
output tiles is proportional to the area of the input chunk inside each output tile. The average area
inside T2 of all the input chunks in region R2 is expected to be 1

4 of the total area of the input
chunks in that region. Therefore,

number of output chunks in T2 that an input chunk maps to = � y0
4 y1y0y1

= �
4

Similarly, the number of output chunks in T1 that the input chunk maps to is 3
4�. For input chunks

that fall inside one of the four R4 regions in T1, each input chunk maps to three other output tiles,
say T2 (to the right of T1), T3 (below T1), and T4 (diagonally across from T1) in Figure 4. An
analysis similar to one for region R2 shows that the input chunk maps to 9

16�, 3
16�, 3

16�, and 1
16�

output chunks in output tiles T1, T2, T3, and T4, respectively. We can therefore compute the
expected number of input chunk messages in each region as

number of messages due to region R1 = C(�;P )
number of messages due to region R2 = C(3

4
�;P ) + C(1

4
�;P )

number of messages due to region R4 = C( 1
16

�;P ) + 2 � C( 3
16

�;P ) + C( 9
16

�;P )
Given that each processor owns in average IdaP input chunks for a tile, the expected number of input
chunk messages for a processor per tile is thenImsg = IdaP (area(R1)x0x1

C(�;P ) + area(R2)x0x1
[C(3

4
�;P ) + C(1

4
�;P )]+area(R4)x0x1

[C( 1
16
�;P ) + 2 � C( 3

16
�;P ) + C( 9

16
�;P )])

3.4 Estimating Execution Times

After the counts for each operation and each phase of query execution are calculated, the counts
must be used to produce estimated execution times to predict the relative performance of the various
strategies. We briefly describe our initial approach for estimating the relative execution time of the
strategies.

We do not require estimating the absolute execution time of each strategy accurately. Our goal
is to estimate the relative performance of the strategies so that the best strategy for an application
and machine configuration is chosen, especially when one strategy performs significantly better
than the others, and to compute this estimation without much overhead. For this reason, we use a
simple method to compute execution times of the strategies. I/O and communication counts per
processor in Table 1 are first converted into I/O and communication volumes by multiplying them
by the average input and output chunk sizes. The communication and I/O times per processor per
phase are computed by dividing the respective communication and I/O volumes by the measured
communication and I/O bandwidths of the target machine. The computation cost in each phase is
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the computation count per processor times the cost of processing an input or output chunk in each
phase. The total execution time is then the sum of the estimated times for communication, I/O and
computation in each phase of query execution.

4 Experimental Results

In this section we present experimental evaluation of the cost models on a 128-node IBM SP
multicomputer. Each node of the SP is a thin node with 256 MB of memory; the nodes are connected
via a High Performance Switch that provides 110MB/sec peak communication bandwidth per node.
Each node has one local disk with 500MB of available scratch space. We allocated 220MB of
that space for the input dataset and 50MB for the output dataset for these experiments. The AIX
filesystem on the SP nodes uses a main memory file cache, so we used the remaining 230MB on
the disk to clean the file cache before each experiment to obtain reliable performance results.

In the experiments we first use synthetic datasets to evaluate the cost models under controlled
scenarios. The output dataset is a 2D rectangular array. The entire output attribute space is regularly
partitioned into non-overlapping rectangles, with each rectangle representing an accumulator chunk
in the output dataset. The input dataset has a 3D attribute space, and input chunks were placed in
the input space randomly with a uniform distribution. The assignment of input and output chunks
to the disks was done using a Hilbert curve-based declustering algorithm [10]. In these experiments
the size of the input and output datasets were fixed. The output dataset size is set at 400MB, with
1600 output chunks. The input dataset size is set at 1.6GBytes. We varied several of the input
dataset parameters, to show that DA performs better than the other two strategies in some cases,
while SRA performs better for other cases. There are several parameters (e.g., size of datasets,
number of chunks in a dataset, extent of a chunk in the dataset) that can be varied to create different
scenarios. As was previously discussed, communication for SRA and FRA results from output
chunks that are replicated on multiple processors, whereas input chunks are communicated for DA.
The value of �, the average number of input chunks that map to an output chunk, determines the
volume of communication in SRA, whereas the volume of communication in DA is affected by
the value of �, the average number of output chunks that an input chunk maps to. We varied the
number and extent of input chunks to create different � and � values. A large � value means that
each output chunk is likely to be replicated on all processors, thereby increasing the volume of
communication for SRA. On the other hand, a small � value may not require an output chunk to
be replicated on all processors. Similarly, a large � value means that an input chunk is likely to be
sent to many processors for DA, thus increasing the volume of communication.

In these experiments we varied the number and extent of input chunks to produce (�, �) pairs of(9; 72) and (16; 16). We set the computation time to 1 millisecond for processing an output chunk in
the initialization, global combine, and output handling phases, and to 5 milliseconds for processing
each intersecting (input,output) chunk pair in the local reduction phase. In selecting the cost for
the local reduction phase computation, we chose a value that is larger than the computation costs
in the initialization and global combine phases, but also is small enough so that the computation
cost relative to communication and I/O for the queries is not too large. Otherwise, the queries
become very computationally intensive, and the performance of the strategies is affected only by
computational load balance across the processors.

Note that the average input and output chunk size, � and � values, and I/O and communication
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Figure 5: Measured (left) and estimated (right) total execution time for queries with (�; �)= (9; 72).
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Figure 6: Measured (left) and estimated (right) total execution time for queries with(�; �) = (16; 16).
bandwidths in each phase are needed to evaluate the cost models described in Section 3, to compute
estimated execution times. In this work I/O and communication bandwidths were measured by
running a set of queries (including the queries in Figures 5 and 6) on the target machine and
taking the average value across these queries. These values were used to estimate the execution
times of the query strategies across all queries. For a real application the same strategy may be
applied; the user may run several sample queries to compute the average application level I/O
and communication bandwidths. Since the values of � and � depend on the mapping function
specified for a range query (see Figure 1), the values must be computed for each query. This can be
accomplished using the minimum bounding rectangle (MBR) of each input and output chunk that
intersects the query. The MBR of each input chunk is mapped to output chunks via the mapping
function, and the value of � for the input chunk is computed by counting the number of output
chunks the input chunk maps to. The average � is calculated as the average of � values over all
input chunks. The average � value can be computed from the equation I� = O�, where I is the
number of input chunks, and O is the number of output chunks (i.e. the total number of chunks
sent is the same as the total number of chunks received, across all processors).

Figure 5 shows the measured and estimated query execution times of the query strategies for
cases in which DA performs better than the other strategies. Figure 6 shows the measured and
estimated query execution times for cases in which SRA performs best. As is seen from the figures
the cost models can estimate the relative performance of the strategies under varying scenarios.
Figures 7(a)-(d) show breakdowns of the measured and estimated values into computation time,
I/O volume, and communication volume. As is seen from the figures, the cost models are able
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Input Dataset Output Dataset Computation
Num. of Total Num. of Total Average Average (in milliseconds)

App. Chunks Size Chunks Size � � I–LR–GC–OH
SAT 9K 1.6GB 256 25MB 161 4.6 1–40–20–1
WCS 7.5K 1.7GB 150 17MB 60 1.2 1–20–1–1
VM 16K 1.5GB 256 192MB 64 1.0 1–5–1–1

Table 2: Application characteristics.

to estimate relative computation time, I/O volume, and communication volume for the query
processing strategies for different � and � values for varying number of processors. The cost
model for DA does not accurately estimate the communication volume for 16 processors, as seen
in Figure 7(d). This is because the cost model assumes perfect declustering of the output chunks
that an input chunk maps to. Thus, with � = 16, an input chunk on one processor is expected to be
sent to fifteen other processors. In practice, however, perfect declustering is not achieved, and an
input chunk is sent to fewer than fifteen processors. As a result, the actual communication volume
is less than what the cost model predicts.

We have also evaluated the cost models for different application scenarios, varying the number
of processors. We used application emulators [26] to generate various application scenarios
for the applications classes that motivated the design of ADR (see Section 1). An application
emulator provides a parameterized model of an application class; adjusting the parameter values
makes it possible to generate different application scenarios within the application class and scale
applications in a controlled way.

Table 2 summarizes dataset sizes and application characteristics for three application classes;
satellite data processing (SAT) [7], analysis of microscopy data with the Virtual Microscope
(VM) [1], and water contamination studies (WCS) [15]. The output dataset size was a fixed size
for each application. The last column shows the computation time per chunk for the different phases
of query execution (see Section 2); I-LR-GC-OH represents the Initialization-Local Reduction-
Global Combine-Output Handling phases. The computation times shown represent the relative
computation cost of the different phases within and across the different applications. The LR value
denotes the computation cost for each intersecting (input chunk, accumulator chunk) pair. Thus,
an input chunk that maps to a larger number of accumulator chunks takes longer to process. In all
of these applications the output datasets are regular arrays, hence each output dataset is divided
into regular multi-dimensional rectangular regions. The distribution of the individual data items
and the data chunks in the input dataset for SAT is irregular. This is because of the polar orbit
of the satellite [18]; the data chunks near the poles are more elongated on the surface of the earth
than those near the equator and there are more overlapping chunks near the poles. The input
datasets for WCS and VM are regular dense arrays that are partitioned into equal-sized rectangular
chunks. We selected the values for the various parameters to represent some typical scenarios
for these application classes on the SP machine, based on our experience with the complete ADR
applications.

Measured and estimated values for computation time, I/O volume and communication volume
for each application are shown in Figures 8–10. As is seen from the figures, the cost models are able
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(a) Measured, (�; �) = (9; 72).
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(b) Estimated, (�; �) = (9; 72).
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(c) Measured, (�; �) = (16; 16).
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(d) Estimated, (�; �) = (16; 16).
Figure 7: Measured and estimated computation time (left), I/O volume (middle), and communica-
tion volume (right), for different queries on different number of processors.
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to estimate the relative volume of I/O and communication in each application for varying number
of processors. However, the cost models fail to estimate the relative computation times of the
strategies for the SAT and WCS applications. Our experiments show that in these two applications
there is a load imbalance in the computation assigned to the various processors. There are two
main reasons for the load imbalance in these applications. First, the distribution of data elements
in the output attribute space is not uniform for SAT. Second, the Hilbert curve-based declustering
algorithms do not achieve optimal distribution of the input and output chunks across the processors,
causing load imbalance in some cases. Since the cost models assume perfect declustering and a
uniform distribution of the computations across the processors, the models may fail to predict the
relative computation times of the strategies in those cases. Figure 11 shows the measured and
estimated total execution time for each application. As is seen from the figure, the cost models can
successfully predict the relative performance of the strategies for the VM application, which has
a uniform distribution of input and output chunks. For the SAT and WCS applications, however,
the cost models fail to predict the relative performance of the strategies in some cases. One of the
reasons is the load imbalance in computation as is mentioned previously. Another reason is that
I/O and communication bandwidths may vary across applications and across different number of
processors. We used the I/O and communication bandwidths computed from synthetic datasets
for estimating the total execution time of the applications. We observed that there can be a
large difference between the bandwidths measured from the synthetic datasets and the bandwidths
measured in some of the runs of the WCS application. We plan to further investigate these cases to
understand why I/O and communication bandwidths may change by large amounts across different
applications and different number of processors, and look into approaches to estimate such changes
to make our cost models more accurate.

5 Related Work

Several runtime support libraries and file systems have been developed to support efficient I/O in
a parallel environment [2, 8, 12, 13, 19, 21, 24, 25]. These systems mainly focus on supporting
regular strided access to uniformly distributed datasets, such as images, maps, and dense multi-
dimensional arrays. ADR differs from these systems in several ways. First, ADR is able to carry out
range queries directed at irregular spatially indexed datasets. Second, computation is an integral
part of the ADR framework. With the collective I/O interfaces provided by many parallel I/O
systems, data processing usually cannot begin until the entire collective I/O operation completes.
Third, data placement algorithms optimized for range queries are integrated as part of the ADR
framework.

Parallel database systems have been a major topic in the database community [9] for a long
time, and much attention has been devoted to the implementation and scheduling of parallel
joins [17, 20]. As in many parallel join algorithms, our query strategies exploit parallelism by
effectively partitioning the data and workload among the processors. However, the characteristics
of the distributive and algebraic aggregation functions allowed in our queries enable deployment of
more flexible workload partitioning schemes through the use of ghost chunks. Several extensible
database systems have been proposed to provide support for user-defined functions [3, 23]. The
incorporation of user-defined functions into a computation model as general as the relational model
can make query optimization very difficult, and has recently attracted much attention [22]. ADR,
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(a) Measured.
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(b) Estimated.

Figure 8: Measured and estimated computation time (left), I/O volume (middle), and communica-
tion volume (right) for SAT application.
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(b) Estimated.

Figure 9: Measured and estimated computation time (left), I/O volume (middle), and communica-
tion volume (right) for WCS application.
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(a) Measured.
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Figure 10: Measured and estimated computation time (left), I/O volume (middle), and communi-
cation volume (right) for VM application.
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Figure 11: Measured and estimated total execution times for SAT (left), WCS (middle) and VM
(right) applications.
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on the other hand, implements a more restrictive processing structure that mirrors the processing
of our target applications. Good performance is achieved through effective workload partitioning
and careful scheduling of the operations to obtain good utilization of the system resources, not
by rearranging the algebraic operators in a relational query tree, as is done in relational database
systems.

6 Conclusions and Future Work

We have described an approach to guide and automate selection of the best query processing strategy
for a given query within the ADR framework. We have presented analytical cost models to predict
the relative performance of three query processing strategies for different application scenarios and
machine configurations. Our results on a 128-node IBM SP show that in most cases the cost models
are able to predict the relative performance of the strategies, both for synthetic datasets and for our
driving applications. However, our cost models can fail when there is a significant computational
load imbalance or when there is a large variance in measured I/O and communication costs on the
parallel machine, because the current models assume both a computational load balance and fixed,
predictable I/O and communication bandwidth from the machine. We plan to further investigate
these limitations and devise approaches to accurately model the costs of the query execution
strategies for a wider range of applications and machine configurations.
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