A Component-based I mplementation of |so-surface
Rendering for Visualizing Large Datasets *
(Extended Abstract)

Michael D. Beynon', Tahsin Kurct, Umit Catalyurek?, Alan Sussman', Joel Saltz™

T Institute for Advanced Computer
Studies
and
Dept. of Computer Science
University of Maryland
College Park, MD 20742
{beynon, kurc,unm t, al s, saltz}@s. und. edu

* Dept. of Pathology
Johns Hopkins Medical Institutions
Baltimore, MD 21287

1 Introduction

Isosurface rendering isatechniquefor extracting and visualizing surfaces within a 3D volume. It isawidely
used visualization method in many application areas. For instance, in atypical anaysisof datasets generated
by environmental simulations, a scientist examines the transport of one or more chemicalsin theregion be-
ing studied. 1so-surface rendering is a method that is well-suited for visualizing the density distributions of
chemicalsin theregion. Figure 1 shows arendering of the output from a reactive transport simulation.

A number of research projects[2, 5, 6, 11] have examined algorithmsand methodsfor the visua i zation of
large, out-of-core datasets on workstationsand parallel machines. Recent research on programming models
for developing applications in a distributed environment has focused on the use of component-based mod-
els[8], in which an applicationis composed of multipleinteracting computational objects. In this paper, we
describe a component-based implementation of isosurface rendering for visualizing very large datasetsin a
distributed, heterogeneous environment. We use DataCutter [3, 4], a component framework that supports
subsetting and user-defined processing of large multi-dimensional datasetsin a distributed environment. We
present experimental results on a heterogeneous collection of multiprocessor machines.

2 DataCutter

DataCutter provides a framework, called filter-stream programming, for devel oping data-intensive applica-
tionsthat executein adistributed, heterogeneous environment. In thisframework, the application processing
structure is implemented as a set of components, called filters. Data exchange between filters is performed
through a stream abstraction.

*This research was supported by the National Science Foundation under Grants #ACI-9619020 (UC Subcontract #10152408)
and #A Cl-9982087, the Office of Naval Research under Grant #N6600197C8534, Lawrence Livermore National Laboratory under
Grant #B8500288 (UC Subcontract #10184497), and the Department of Defense, Advanced Research Projects Agency, USAF, AFMC
through Science Applications International Corporation under Grant #F30602-00-C-0009 (SAIC Subcontract #4400025559).

Figure 1: Isosurface rendering of chemical densitiesin areactive transport simulation.

D)
‘ S , =@ ;Jﬂﬂ\é;
’uow2Nuow1 ‘:’uowo‘ host; host,]ﬂﬂ

/ \ 1]]]] P host;
[t] [t]) ®

(a) Data buffers and end-of-work mark- (b) PFC filter group instantiated using
erson astream. transparent copies.

Figure 2: DataCutter stream abstraction and support for copies.

2.1 Filtersand Streams

A filter is a user-defined object that performs application-specific processing on data. Currently, filter code
is expressed using a C++ language binding by sub-classing afilter base class. The well-defined interface for
filters consists of init, process, and finalize callback functions. A streamis an abstraction used for al filter
communication, and specifies how filters arelogically connected. A stream providesthe means of dataflow
between two filters. All transfers to and from streams are through a provided buffer abstraction. Streams
transfer datain fixed size buffers. The current prototype implementation uses TCP for point-to-point stream
communication.

Filter operations progress as a sequence of cycles, with each cycle handling a single application-defined
unit-of-work (UOW). An example of a UOW would be rendering of a simulation dataset from a particular
viewing direction. A work cycle startswhen thefiltering service callsthefilter init function, whichiswhere
any required resources such as memory can be pre-allocated. Next the processfunctioniscalled to read from
any input streams, work on databuffersreceived, and writeto any output streams. A special marker issent by
the runtime system after the last buffer to mark the end for the current UOW (see Figure 2(a)). Thefinalize
functioniscalled after al processing isfinished for the current UOW, to allow release of alocated resources
such as scratch space. The interface functions may be called again to process another UOW.

2.2 Support for Parallelism: Transparent Filter Copies

Once the application processing structure has been decomposed into a set of filters, it is possibleto use mul-
tiplefilters for implementing a pipeline of processing on data as it progresses from data sources to clients.
The choice of filter placement is a primary degree of freedom in affecting application performance. Good
performance can be obtained by placing filters with affinity to data sources near the sources, minimizing
communication volume on slow links, and placing filtersto deal with heterogeneity [3]. Note that pipelining

works well when all stages are balanced, both in terms of relative processing time of the stages, aswell as
the time of each stage compared to the communication cost between stages. Oftentimes, the processing of
filter-based applicationsis not well balanced, which resultsin bottlenecksthat cause other filters before and
after a bottleneck filter to becomeidle. Thisimbalance and resulting performance penalty can be addressed
using another degree of freedom, parallelism, by executing multiple copies of a singlefilter across a set of
host machines. The runtime performance optimizationstarget the combined use of ensembles of distributed-
memory systems and multiprocessor machines. In DataCutter, we provide support for transparent copies,
in which the filter is unaware of the concurrent filter replication. We define a copy set to be all transparent
copies of agiven filter that are executing on a single host.

The filter runtime system maintains the illusion of a single logical point-to-point stream for communi-
cation between alogical producer filter and alogical consumer filter. When the logical producer or logical
consumer is transparently copied, the system must decide for each producer which copy to send a stream
buffer to. For example, in Figure 2(b), if copy P issues a buffer write operation to the logical stream that
connectsfilter P to filter I, the buffer can be sent to the copy set on hosts or hosty. Each copy set shares
asingle buffer queue which provides demand-based balance within asingle host. For distribution between
copy sets (different hosts), we consider severd policies: (1) Round Robin (RR) distribution of buffersamong
copy sets, (2) Weighted Round Robin (WRR) among copy sets based on the number of copies on that host,
(3) a Demand Driven (DD) sliding window mechanism based on buffer consumption rate.

Not all filterswill operate correctly in parallel astransparent copies, because of internal filter state. For
example, afilter that attemptsto compute the average size of all buffers processed for a unit of work will not
arrive at the correct answer, because only a subset of all buffers for the unit-of-work were seen at any one
copy, hencetheinternal sum of buffer sizesislessthan thetruetotal. Such cases can be annotated to prevent
the runtime system from utilizing transparent copies, or an additional application-specific combinefilter can
be appended to merge partia resultsinto the final output.

3 Isosurface Rendering

In isosurface rendering, we are given athree-dimensional grid with scalar values at grid points and a user-
defined scalar value, called theiso-surface value. The visualization agorithm has two main steps. Thefirst
step extracts the surface on which the scalar valueis equal to theiso-surface value. The second step renders
the extracted surface (iso-surface) to generate an image. In the component architecture, each of these steps
isimplemented as afilter. The filter-based implementation consists of atota of four filters (Figure 3). A
read (R) filter reads the volume data from local disk, and writesthe 3D voxel elementsto its output stream.
An extract (E) filter reads voxels, produces a list of triangles from the voxels, and writes the triangles to
itsoutput stream. A raster (Ra) filter reads triangles from itsinput stream, renders the trianglesinto a two-
dimensional image from aparticul ar viewpoint, and writestheimageto itsoutput stream. During processing,
multiple transparent copies of theraster filter can be executed. In that case, an image containing a portion of
therendered triangleswill be generated by each copy of the raster filter. Thereforeamerge (M) filter isused
to composite the partia resultsto form the final output image. The merge filter also sendsthefina imageto
the client for display.

B
O —O—@—®

read isosurface shade + merge
dataset extraction rasterize | view

Figure 3: Isosurface rendering application modeled asfilters.

3.1 Extract Filter

Our implementation uses the marching cubes algorithm [10], which is a commonly used agorithm for ex-
tracting iso-surfaces from arectilinear mesh. In thisalgorithm, volume elements (voxels) are visited one by
one. At each voxel, the scalar values at the corners of the voxel are compared to theiso-surface value. If the
scalar values are all less than or all greater than the iso-surface value, no surface passes through the voxel.
Otherwise, using the scalar values at the corners, the agorithm generates a set of trianglesthat approximate
the surface passing through the voxel. The trianglesfrom the current voxel are added into alist of triangles.

Theextract filter receives datafrom theread filter infixed size buffers. A buffer containsa subset of vox-
elsinthe dataset. Note that each voxel is processed independently in the marching cubes algorithm. There-
fore, the extract filter can carry out iso-surface extraction on the voxelsin a buffer as soon as the buffer is
read from its input stream. Moreover, multiple copies of the extract filter can be instantiated and executed
concurrently. The data transfer between the extract filter and the raster filter is also performed using fixed-
size buffers. Theextract filter writesthe trianglesextracted from each voxel in the current input buffer to the
output buffer. When the output buffer isfull or the entire input buffer has been processed, the output buffer
is sent to the raster filter. This organization allows the processing of voxelsto be pipelined.

3.2 Raser Filter

Theraster filter performs rendering of thetrianglesreceived in fixed size buffers from the extract filter. First,
thetrianglesin the current input buffer are transformed from world coordinatesto viewing coordinates (with
respect to theviewing parameters). Thetransformed trianglesare projected onto a2-dimensional image plane
(the screen), and clipped to the screen boundaries. Then, the filter carries out hidden-surface removal and
shading of trianglesto produce arealisticimage. Our implementation used the Gouraud shading method [12].
Hidden-surface removal determineswhich polygonisvisibleat a pixel ocation on theimage plane. We now
discusstwo hidden-surface remova methods. z-buffer rendering [12] and active pixel rendering [9]. For the
following discussion, a pixel location (z,y) on the image plane is said to be active if at least one pixel is
generated for that location. Otherwise, it is called an inactive pixel location.

3.21 Z-buffer Rendering

In this method, a 2-dimensional array, called a z-buffer, is used for hidden-surface removal. Each z-buffer
entry correspondsto a pixel in the image plane, and stores a color value (an RGB value) and az-vaue. The
(z-value,color) pair storesthe distance and color of the foremost polygon at apixel location. A full z-buffer
isalocated and initialized in the init method of each instantiated copy of the raster filter.

The z-buffer algorithm initially inserts triangles from the input buffer into ay-bucket structure, whichis
an array (of size N, where N isthe y-resolution of the screen) of linked lists. A polygonisinserted into the
linked list at the y-bucket location corresponding to the lowest scanline that intersects the on-screen projec-
tion of the polygon. A scanline correspondsto a row of pixels on the screen. After thisinitiaization step,
hidden-surface removal is performed in scanline-order starting from the lowest numbered scanline. Thetri-
anglesin the y-bucket of the current scanline and the triangles whose y-extent overlapsthe scanline are pro-
cessed. The intersection of atriangle with the current scanline creates line segments, called polygon spans,
which are rasterized one-by-one generating pixels for the scanline. Each new pixel is compared with the
pixel stored in the corresponding z-buffer location. If the distance to the screen of the new pixel islessthan
the pixel stored in the z-buffer, the new pixel replaces the pixel in the z-buffer.

Since hidden-surface removal operations are order-independent, i.e., the result does not depend on the
order triangles are processed, one z-buffer is sufficient to store the partial image. As the raster filter reads
data buffers from its input stream, the contents of each buffer is rendered to the same z-buffer. When the

X
wpa |RGB
z

WPA location

MSAlL LT TTTITTITTITTITTITT]

Scanline position

[TYTT TR T TTTTTTTTT scanline
X

(X,RGB.Z)

Figure 4: Rasterizing a polygon span in the active pixel rendering algorithm.

end-of-work marker is received from the input stream, the raster filter sends the contents of the entire z-
buffer to the merge filter in fixed size buffers. The merge filter also alocates and initializes a z-buffer when
itisinstantiated. As datais received from the raster filter, the received z-buffer values are merged with the
values stored in the local z-buffer. Results are merged by comparing each pixel to the loca z-buffer, and
choosing the one with the smallest distance to the screen. After all buffers are received and processed, the
merge filter extracts color values from the z-buffer and generates an image to send to the client for display.
We can view the z-buffer rendering al gorithm as having two phases: (1) alocal rendering phase, inwhich
input buffers are processed in the raster filter, and (2) a pixel merging phase, in which z-buffers are merged
in the merge filter. The end-of-work marker behaves as a synchronization point between the two phases and
among all copies of the raster filter, since all the copieswait until receiving this marker to start sending data
tothemergefilter. In thez-buffer rendering a gorithm, the system memory is not efficiently utilized, because
each copy of theraster filter allocatesafull z-buffer. Moreover, z-buffer rendering may introducelarge com-
muni cation overhead in the pixel merging phase because pixel information for inactivepixel locationsisaso
sent. Memory usage, and communication and synchronization overheads can be reduced by not storing or
sendinginactive pixelsin each copy of theraster filter. Thisalgorithmisreferred to as active pixel rendering.

3.2.2 ActivePixel Rendering

Thisalgorithm utilizes a modified scanline z-buffer scheme to store foremost pixelsin consecutive memory
locationsefficiently. Essentialy, active pixel usesa spare representation of the dense z-buffer. It also avoids
alocationandinitialization of afull z-buffer. Two arrays are used for hidden-surfaceremoval. Thefirst array
isthe Winning Pixel Array (WPA), which is used to store the foremost (winning) pixels. Each entry in this
array containsthe position on the screen, distanceto the screen, and color (RGB) vaue of aforemost pixel.
Since hidden-surfaceremoval iscarried out in scanline order, the pixelsinthe WPA arein scanline order and
pixelsin a scanline are stored in consecutive locations. Hence, only the = value of a pixel at (x,y) position
on the screen is stored in the location field. In our implementation, fixed size buffers for the output stream
of theraster filter are used for the WPA. The second array, the Modified Scanline Array (MSA) (of size M,
where M isthe x-resolution of the screen), is an integer array and serves as an index into the WPA for the
scanline being processed.

Asin the z-buffer rendering algorithm, the input buffer triangles are processed in scanline order. At the
beginning of each scanline, the negative value of the scanline number is stored in thelocation field of thefirst
available WPA entry. That entry is used as a marker to indicate the beginning of a new scanline. Then, the
index of the next available positionin the WPA isstored into an integer, named start. During the processing
of apolygon span, when a pixel isgenerated for aposition x in the current scanline, thelocation = inthe MSA
is used to access the WPA (see Figure 4); the value stored in the MSA entry (MSA[z]) is used as an index
into the WPA. If MSA[z] has avalue greater than start, it means that the WPA entry at location MSA[z] is
updated by a span belonging to the current scanline. In that case, the generated pixel is used to update the

entry inthe WPA. Otherwise, the pixel generated for the current scanline is directly appended to the WPA,
and the index of the the pixel’s position in the WPA is stored in MSA[z]. Thisindexing scheme avoids re-
initialization of the M SA at each scanline. The WPA issent to the merge filter when full or when all triangles
in the current input buffer are processed. In thisway, processing of trianglesin theraster filter is overlapped
with merging operationsin the merge filter. Also, unlikethe z-buffer algorithm, there is no synchronization
point between the local rendering phase and pixel merging phase, allowing pipelining of dl filtersincluding
the merge.

4 Experimental Results

In this section, we experimentally demonstrate the implications of structuring the isosurface rendering ap-
plicationin different ways, and show how DataCutter provides appropriate support for efficient executionin
a shared, heterogeneous environment.

Experiments were run on a dedicated cluster of SMP nodes for repeatability (8 2-processor Pentium I1
450MHz nodes, 256M B memory, one 18GB disk, RedHat 6.2 Linux distributi on; one 8-processor Pentium 11
550MHz node, 4GB memory, RedHat 7.1betaLinux). The 2-processor nodes have a Gigabit Ethernet inter-
connect; the 8-processor nodeis connected to the 2-processor nodes over 100 Mbit Ethernet.

We experimented using adataset generated by the parallel environmental simulator ParSSim [1], devel-
oped at the Texas I nstitutefor Computational and Applied Mathematics (TICAM) at the University of Texas.
The dataset is 1.5GB in size and contains the simul ation output for fluid flow and the transport of four chem-
ical species over 10 time steps on arectilinear grid of 302 x 125 x 125 points. The grid at each time step
was partitioned into 1536 equal sub-volumes in three dimensions, and was distributed to 64 data files us-
ing a Hilbert curve-based declustering agorithm [7]. The datafiles were distributed to disks attached to the
2-processor nodes in round-robin order for each configuration. The number of read filters for a given exper-
iment indicates the degree of dataset partitioning. For all experiments, we rendered a singleiso-surfaceinto
a2048x2048 RGB image. Thetiming values presented are the average of five repeated runs.

Wefirst present abaseline experiment where each of thefour filtersareisol ated and executed on aseparate
host in pipelinefashion. Thefirst table showsthe number of buffers and total volume sent between the pairs
of filters. The active pixel version sends many more buffers, but they have a smaller total size. The second
table shows the processing times of each of the basefilters, the sum of these processing times, and the actual
responsetime. Raster isby far the most expensivefilter.

Active Pixdl | Z-buffer

R—E | E—Ra Ra—M Ra—M

number 443 470 16 469

volume (MB) 38.6 11.8 32.0 28.5
R E Ra M um || RespTime
z-buffer 068 53% | 1.65 13.0% | 943 745% | 090 7.1% || 12.66 11.22
activepixd || 064 43% | 1.64 11.2% | 11.67 79.5% | 0.73 5.0% | 14.68 12.65

One of the degrees of freedom in a component-based implementation is to decide how to decomposethe
application processing structure into components. We have experimented with three different configurations
of the iso-surface application filters described in Section 3, where multiple Read, Extract, and Raster filters
are combined into asinglefilter (Figure5). In al configurations, The M ergefilter is always a separatefilter,
and only one copy of Merge is executed on one of the nodesin all experiments.

Rer+Fa-(w) | | (R)~ERa~(M)

(8) RERa-M configuration (b) RE-Ra—M configuration (c) R-ERa—M configuration
Figure 5: Experimental configurationswith different combinations of Read, Extract, and Raster asfilters.

4.1 Background Load

In thisexperiment, we examinethe performance of thethreefilter configurationsand the DataCutter policies
for buffer distributionamong multipletransparent filter copies (see Section 2.2), when thereis computational
load imbal ance among the nodesin the system dueto other user processes. One copy of each filter (excluding
M erge) was executed on each of eight 2-processor nodes. Background load was added to 4 of the nodes by
executing a user level job that consumes CPU time, at the same priority asthefilter code. The node running
the M erge filter does not have a background job. Since we are using LinuxThreads, which execute threads
as kernel processes, the actua filter thread slowdown depends on the number of application filters and the
number of background jobs, plus one DataCutter system thread on each node.

Active Pixel Rendering Z-buffer Rendering
Configuration | # Bg Jobs RR | WRR DD RR | WRR DD
RERa-M 1 313 | 316 | 316 1145 | 1149 | 11.54
RE-Ra—M 1 307 | 3.03| 3.06| 1156 | 11.58 | 11.64
R-ERa—M 1 320 | 321 | 325| 11.73 | 11.86 | 11.87
RERa-M 2 413 | 422 | 416 | 1231 | 12.01 | 11.79
RE-Ra—M 2 395 | 372 | 371| 1257|1277 | 12.10
R-ERa—M 2 407 | 408 | 387 1312|1352 | 1231
RERa-M 4 710 | 689 | 6.71| 13.39 | 13.77 | 13.82
RE-Ra—M 4 589 | 582 | b542| 1529 | 1519 | 1459
R-ERa—M 4 6.36 | 6.30| 575 15.98 | 16.09 | 14.31
RERa-M 8 12.74 | 1217 | 12.20 || 19.85 | 20.24 | 19.50
RE-Ra—M 8 1063 | 9.90| 958 2281 | 22.98 | 20.43
R-ERa—M 8 1116 | 11.01 | 9.65 || 22.87 | 23.63 | 20.35

Table 1: Comparison of execution time (seconds) for filter configurations with background jobs. 8 nodes
total are used, with 7 nodes executing 1 copy of each of the filters except the merge filter (and background
jobson 4 of those nodes), and 1 node executes 1 copy of dl filtersincluding the merge filter. Load balancing
policies are round robin (RR), weighted round robin (WRR) and demand driven (DD).

Asshownin Table 1, increasing the number of background jobs on a subset of the 8 nodes increasesthe
execution time as expected. For the round-robin policy (RR), the combined filter that contains Read sends
one buffer to every consuming filter. Weighted Round Robin (WRR) is expected to have the same effect as
RR, since the number of copies per node of any given filter is one in this experiment. Since only half the
nodes are actually experiencing the background load, there is load imbalance among the two sets of nodes.
For the Demand Driven (DD) policy, when aconsumer filter processesadatabuffer received from aproducer,
it sends back a acknowledgment message (indicating that the buffer has been consumed) to the producer.
The producer chooses the consumer filter with the least number of unacknowledged buffers to send a data
buffer. Asisseen from thetable, the DD policy deals best with the load imbalance, by dynamically schedul-
ing buffers among the filters. The main tradeoff with DD is the overhead of the acknowledgment messages
for each buffer versus the benefits of hiding load imbalance. Our results show that in this machine configu-

ration the overhead isrelatively small, because the performance of DD iscloseto that of RR and WRR when
backgroundload islow. Astheload imbalance among nodesincreases, DD achievesbetter performance over
RR and WRR, especially for the active pixel algorithm.

For the z-buffer algorithm, all threefilter configurations achieve similar performance. Since full z-buffer
arrays are combined in the merge filter, the communication overhead dominates the execution time and the
merging of partia images becomes a bottleneck. For the active pixel algorithm, the performance of the RE—
Ra—M and R—-ERa—M filter configurationsisbetter than the RERa—M configuration, especially using the
DD policy. The RERa—M configuration never shows improvement using DD, because a single combined
filter alows no demand-driven distribution of buffers among copies, and the output for each filter goesto
the single M erge copy. In most cases, the RE—Ra—M configuration shows the best performance, since the
raster filter isthe most compute intensivefilter among all thefilters, and the volume of datatransfer between
RE and Raislessthan that of datatransfer between R and ERa in the experiments. Thus, welimit the next
experiment to the RE—Ra—M configuration.

4.2 Varyingthe Number of Nodes

Thisexperiment comparesthe performance of the active pixel a gorithm against that of the z-buffer algorithm
when the number of nodesisvaried. We also ook at the performance implications of running two copies of
the raster filter on each node and of colocating some of the copies of the raster filter with the merge filter.
The execution times are shown in Table 2. In thisexperiment, no background jobs are run on the nodes, and
asingle RE filter was executed on each node.

Active Pixel Rendering Z-buffer Rendering
Configuration | #Ra || 1 node | 2 nodes | 4 nodes | 8 nodes || 1 node | 2 nodes | 4 nodes | 8 nodes
RE-Ra-M 1(0) na| 1270 4.81 2.89 na| 1132 7.65 10.65
1(1) || 1218 7.32 4.17 3.00 || 10.74 7.92 7.89 11.48
RE-Ra-M 2(0) n/a 7.73 3.22 2.60 n/a 9.27 10.52 19.04
2(2 8.16 5.70 3.88 3.24 8.57 8.85 11.71| 20.78

Table 2: Comparison of execution time (seconds) whilevarying number of nodes. In the second column, the
value in the parentheses is the number of raster filters colocated with the merge filter when there are more
than 2 nodes. For the 1-node configuration, the raster and merge filters must be col ocated.

Asseenin Table 2, the active pixel agorithm performs better than the z-buffer algorithm as the number
of nodesisincreased because of the pipelining and overlapped processing of trianglesand merge operations.
Moreover, the z-buffer agorithm incurs much higher communication overhead than the active pixel ago-
rithm, causing the merging of partial resultsto become bottleneck and flooding the interconnect between the
nodes. Thiseffect is seen from thetable by theincrease in the execution time of the z-buffer a gorithm when
the number of nodesisincreased from 4 to 8.

Increasing the number of theraster filtersimproves performancefor the active pixel agorithm. However,
the increase in not linear. The amount of data processed by each copy decreases as the number of nodesis
increased, whilethetotal volume of datasent to the mergefilter remains constant. M erge can bethought of as
aquasi-sequentia portion of the application; for the activepixel a gorithm, merging operationsare somewhat
pipelined, but for the z-buffer a gorithmthereisabarrier beforethemerge. Therefore, asthe number of nodes
and the number of the raster filters increase, M erge becomes a bottleneck. This situation is more visiblefor
the z-buffer algorithm; performance degrades when the number of the raster filtersisincreased from oneto
two on 8 nodes. Colocating some copiesof theraster filter with M erge hel psimprove performance on smaller
numbers of nodes by reducing the volume of communication. However, execution time may increase when
multiple copies of the raster filter are colocated with M erge on larger number of nodes. All thefilters onthe

8

same node are multiplexed onto the CPU by the OS. Thus, M erge does not get adequate CPU time on the
node where it executes, resulting in increased execution time for the entire application.

4.3 Using a Heterogeneous Collection of Nodes

5 B
fe), | | (e
o e | ®

2cpu 2cpu 8 cpu

Figure 6: Heterogeneous collection of nodes experimental setup, varying number of 2-processor nodes.

In this experiment, we use the 8-processor machine as a compute node and vary the number of 2-processor
nodes (Figure 6). We look at the performance of different filter configurations using the active pixel ago-
rithm. Merge is executed on the 8-processor node along with 7 ERa or Ra filters. One copy of each filter
except Merge is run on every 2-processor node for each configuration. The dataset is partitioned among
diskson the 2-processor nodes. Notethat whileinterprocessor communication is done over Gigabit Ethernet
among the 2-processor nodes, all communi cation to the 8-processor node goes over slower 100Mbit Ethernet.

1 data node 2 data nodes 4 data nodes 8 data nodes
Configuration|| RR|WRR| DD| RR|WRR| DD| RR{WRR| DD || RR|WRR | DD
RE-Ra—M 726 | 3.02| 304|569 | 262|299 | 437 | 298|350 | 3.75| 2.89 | 3.83
R-ERa—M 822 | 397 | 422|647 | 408 | 399 | 510| 407 | 411 | 400 | 3.69 | 420
Table 3: Comparison of execution time (seconds) for filter configurations using the active pixel algorithm
while varying the number of nodes storing the dataset. The 8-processor hode is a compute node.

Inall cases, the RE-Ra—M configuration performs better than R-ERa—M because of lower volume of
communication. When the number of 2-processor hodes is high we don’t obtain performance benefits from
using the 8-processor node. The main reason is the slow network connection to and from the 8-processor
node, which causes too much communication overhead. Neverthel ess, use of the 8-processor nodeimproves
performance when data is partitioned on a small number of nodes. Decompaosing the application into an
appropriate set of filters alows usto move part of the computation to the 8-processor node, thusresulting in
better parallelism. Our results also show that WRR achieves the best performance among all the DataCutter
policiesin thisexperiment. Notethat there are no background jobs running on the nodes. Hence, DD should
behave similarly to WRR, but acknowledgment messages from filters running on the 8-processor node incur
high overhead in DD because of the slow network connection.

5 Conclusions

The component-based i sosurfacerendering allowsaflexibleimplementation for achieving good performance
in a heterogeneous environment and when the load on system resources change. Partitioning the application
into filters and executing multiple copies of bottleneck filters results in parallelism and better utilization of
resources. Theactivepixel agorithmisabetter aternativeto the z-buffer algorithmin the component-based
implementation of isosurface rendering. It makes better use of system memory, and allows the rasterization
and merging operations to be pipelined and overlapped.

9

A demand driven buffer distribution scheme among multiple filter copies achieves better performance
than other policies when the bandwidth of the interconnect is reasonably high and the system load dynami-
cally changes. However, extracommunication required for acknowledgment messages introduces too much
overhead when the network is slow. We plan to further investigate methods to reduce the communication
overhead in DD and look at other dynamic strategies for buffer distribution.

Merging of partial images by asinglefilter is a performance bottleneck in the current implementation.
As the number of copies of other filters or the number of nodes increases, this filter becomes a bottleneck.
Thisis expected, and we areinvestigating other implementations for merging to alleviate this problem, such
as a hierarchy of merging filters. The current approach replicates the image space across the raster filters.
Alternatively, we could partition the image space into subregions among the raster filters, thus eliminating
the merge filter. However, thiswill cause load imbal ance among raster filtersif the amount of datafor each
subregionisnot thesame, or if it varied over time. We also plantoinvestigateahybrid strategy that combines
image-partitioning and image-replication.

References

[1] T.Arbogast, S. Bryant, C. Dawson, and M. F. Wheeler. Parssim: The parallel subsurface simulator, single phase.
http://mwww.ti cam.utexas.edu/~arbogast/par ssim.

[2] C.L.Baj, V. Pascucci, D. Thompson, and X. Y. Zhang. Parallel accelerated isocontouring for out-of-core visu-
alization. In Proceedings of the 1999 IEEE Symposium on Parallel Misualization and Graphics, pages 97-104,
San Francisco, CA, USA, Oct 1999.

[3] M.Beynon, T. Kurc, A. Sussman, and J. Saltz. Design of aframework for data-intensive wide-area applications.
In Proceedings of the 9th Heterogeneous Computing Workshop (HCW2000), pages 116-130. IEEE Computer
Society Press, May 2000.

[4] M.D. Beynon, T. Kurc, A. Sussman, and J. Saltz. Optimizing execution of component-based applications using
group instances. In Proceedings of CCGrid2001: |1EEE International Symposiumon Cluster Computing and the
Grid. IEEE Computer Society Press, May 2001. To appear.

[5] Y.-J. Chiang and C. Silva. Externa memory techniques for isosurface extraction in scientific visualization. In
J. Abello and J. Vitter, editors, External Memory Algorithmsand Visualization, volume 50, pages 247-277. DI-
MACS Book Series, American Mathematical Society, 1999.

[6] M. Cox and D. Ellsworth. Application-controlled demand paging for out-of-core visuaization. In Proceedings
of the 8th IEEE Misualization’ 97 Conference, 1997.

[7] C.Faoutsosand P. Bhagwat. Declustering using fractals. In Proceedings of the 2nd International Conference on
Parallel and Distributed Information Systems, pages 18-25, Jan. 1993.

[8] Globa Grid Forum. http://www.gridforum.org.

[9] T.Kurc, C. Aykanat, and B. Ozguc. Object-space parallel polygonrendering on hypercubes. Computers& Graph-
ics, 22(4):487-503, 1998.

[10] W. Lorensen and H. Cline. Marching cubes: a high resolution 3d surface reconstruction algorithm. Computer
Graphics, 21(4):163-169, 1987.

[11] S.-K.Ueng, K. Sikorski, and K.-L. Ma. Out-of-core streamline visualization on large unstructured meshes. |EEE
Transactions on Visualization and Computer Graphics, 3(4):370-380, Dec. 1997.

[12] A. Watt. Fundamentals of three-dimensional computer graphics. Addison Wesley, 1989.

10

