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Q-Law is a Lyapunov guidance law for low-thrust trajectory design. Most

prior implementations of Q-Law were limited to relatively simple low-thrust trans-

fers. This work aims to improve the optimality, usability, and efficiency of Q-Law

for better application to the mission design process. To accomplish this, Q-Law

is combined with direct collocation to form an efficient hybrid method for high-

fidelity, many-revolution trajectory design. Additionally, forward and backward

Q-Law propagation are combined to form a novel method for Lunar transfer trajec-

tories. This technique rapidly produces spiral trajectories to the Moon and provides

mission designers with a means for efficient trade space exploration. Additionally,

backward propagated Q-Law is combined with heritage trajectory design software

to produce spiral escape trajectories as well as single and double Lunar swingby

trajectories for interplanetary rideshare mission scenarios. Lastly, analytical partial

derivatives of the Q-Law thrust vector calculation are derived, and the Q-Law algo-

rithm is wrapped in a nonlinear programming problem. When these derivatives are



used to generate the trajectory state transition matrix, the efficiency and accuracy

of the optimization is superior to finite difference solutions. Using this approach,

a novel Q-Law multiple shooting method is formulated and tested on various low-

thrust transfer problems. These enhancements to the standard Q-Law algorithm

enable efficient trade space exploration for more complex low-thrust trajectories,

with a specific emphasis on the needs of SmallSat rideshare missions.
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Chapter 1: Introduction

1.1 Problem Definition and Motivation

In recent years, the use of low-thrust solar electric propulsion (SEP) has be-

come increasingly common in both Earth-orbiting and interplanetary spacecraft due

to the specific impulse improvements of roughly one order of magnitude over chem-

ical alternatives. This increased efficiency results in smaller launch vehicles, larger

dry masses to orbit, longer propellant-limited lifetimes, and/or more capable tra-

jectory designs. However, these transfers require higher electric power (typically

generated by larger solar arrays) and longer transfer times. In particular, planeto-

centric low-thrust transfers between widely spaced orbits often require hundreds of

orbital revolutions and last many months. Generating many-revolution low-thrust

trajectories presents a challenging design problem since the directions of the thrust

vector must be solved throughout each orbit. Furthermore, when SEP systems are

chosen, eclipsing effects must also be considered. During an eclipse, the spacecraft’s

solar panels are shaded from the Sun and therefore cannot power the thruster,

forcing a coast arc. This constraint introduces discontinuous dynamics and further

increases the complexity of the already-challenging many-revolution optimal transfer

problem.
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Application of these low-thrust propulsion systems is becoming increasingly

popular as space agencies look to leverage SmallSat spacecraft for Lunar and in-

terplanetary exploration. The SmallSat mission class is particularly relevant to

NASA’s SIMPLEx program and the interplanetary rideshare mission concept in

general, where lower-budget missions enjoy a discounted launch cost and ride sec-

ondary to a much larger mission. Unfortunately, rideshare opportunities to the

Moon or interplanetary space are much less common and provide little scheduling

flexibility to the secondary payloads as compared to Geostationary Transfer Orbit

(GTO) rideshares. If equipped with a low-thrust propulsion system, a rideshare

spacecraft placed in GTO could spiral out to a capture orbit at the Moon or per-

form Lunar gravity assist(s), therefore raising its Earth escape velocity for a more

efficient interplanetary cruise. The SMART-1 mission demonstrated this concept by

leveraging a rideshare into GTO, from which it spiraled out over many months and

then captured at the Moon [1, 2]. The Lunar Trailblazer SIMPLEx mission also

leverages this framework to achieve a 100 km polar orbit at the Moon [3].

Low-thrust Lunar missions typically involve ESPA-class spacecraft, as ESPA

ring adapters are commonly used and are often a proposed architecture for rideshare

missions [4]. The SMART-1, Lunar Trailblazer, and Lunar Ice Cube spacecraft

all classify as ESPA-class and employ low-thrust engines [2, 3, 5]. These missions

demonstrate that low-cost Lunar exploration is possible using SmallSats but requires

low-thrust engines to achieve Lunar science orbits. The GTO rideshare mission con-

cept can be enabling for the SmallSat community, as it eliminates the dependence

on larger interplanetary/Lunar launches while still yielding significant launch cost

2



reductions. The drawbacks of this mission type are much longer flight times and

a challenging trajectory design problem to solve. Unfortunately, the problem com-

plexity and computational burden can force analysts to generate only locally optimal

point solutions rather than developing insight into the global trade space.

The objective of this work was to further develop an existing low-thrust guid-

ance algorithm by improving solution optimality, algorithm efficiency, and the appli-

cation/relevance to real-world mission design problems. Spiral Lunar transfers and

gravity assist trajectories present complex examples of the many-revolution trans-

fer problem, are highly desirable to space agencies and the SmallSat community.

This work aimed to extend the application of this analytical guidance law to these

trajectory types and provide an efficient method for exploring the trade space, giv-

ing analysts better insight to the mission design space. Additionally, significant

effort was given to effectively pairing the guidance algorithm with other direct opti-

mization techniques to reduce computation time and generate optimal high-fidelity

solutions.

1.2 Low-Thrust Many-Revolution Design Methods

Historically, the many-revolution problem has been solved with indirect opti-

mal control techniques [6, 7]. Indirect optimization uses the necessary conditions

from the calculus of variations to formulate a two-point boundary value problem.

Typically numerical techniques are used to aid in the solution of this problem. Indi-

rect methods are advantageous in that the problem dimension remains small, making

3



them suitable for a differential corrector scheme like single or multiple shooting. In

this approach, a guess is provided for costate parameters, and the equations of mo-

tion are evaluated. The costates are then corrected by the numerical algorithm

employed, and the process is repeated until the optimality conditions are satisfied.

Unfortunately, initial guesses for the costates are nonintuitive, and the resulting tra-

jectory is very sensitive to these parameters. This sensitivity is further amplified for

more complex trajectories with many revolutions. Indirect methods also suffer from

the need to re-derive the equations of motion for the costates for differing dynamical

environments, which can be challenging when trying to implement a high-fidelity

dynamical model.

One common approach to reduce overall sensitivity is orbital averaging, where

a new set of approximate dynamics are obtained by eliminating the fast variable and

representing incremental changes in the orbital elements over each revolution [8, 9].

Orbital averaging is computationally efficient and an excellent approach for initial

planning due to accurate time-of-flight (TOF) and mass prediction. Adversely,

omission of the fast variable in the optimization can lead to trajectory inaccuracy

in dynamical regimes in which averaged behavior is not representative. This can

occur for trajectories with a very large semi-major axis, as the uncertainty on the

trajectory solution can have more significant consequences. For example, when

trying to rendezvous with the Moon, the period of the Lunar intercept orbit is

a significant fraction of the Lunar synodic period. Uncertainty on this orbit due

to averaged approximations will have major repercussions when trying to properly

phase with the Moon for intercept.

4



Recent contributions by Aziz introduced the Sundman transformation to Dif-

ferential Dynamic Programming (DDP) to solve for many-revolution trajectories

[10]. DDP is based on Bellman’s Principle of Optimality [11], and it involves divid-

ing the trajectory into multiple stages and solving an optimization subproblem for

each stage. The subproblems are solved in a backward sweep from the final to the

initial stage, with each subproblem solution minimizing the cost-to-go incurred from

the subsequent trajectory stages. After the backward sweep identifies the controls

for each stage, a forward sweep integrates the states and controls forward to obtain

a new reference trajectory for the next backward sweep. This process is repeated

until convergence.

Direct methods are another common technique for producing spiral trajec-

tories, which involve discretizing the continuous optimal control problem into a

Nonlinear Programming Problem (NLP). While DDP solves a small NLP for each

stage subproblem, direct methods solve one large NLP for the entire trajectory. An

example of this approach is Runge-Kutta (RK) parallel shooting with equinoctial

elements, which was used to generate time-optimal spiral trajectories by Scheel and

Conway [12]. Another popular technique is collocation. In this approach, the dis-

cretization is accomplished by representing the states and control parameters with

polynomial splines and using either integral or derivative constraints to enforce the

system dynamics [13, 14, 15]. This approach was used extensively within this work.

To handle the discontinuous SEP control dynamics caused by eclipses, Geffroy

and Epenoy used an averaging approach to incorporate environment constraints like

eclipsing from Edelbaum’s cylindrical shadow model [16, 17]. Ferrier and Epenoy
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were among the first to exploit smoothing techniques for eclipses while studying the

indirect problem [18]. Betts and Graham and Rao used a direct collocation method

to solve for many-revolution trajectories with eclipsing [19, 20]. In both of their

approaches, trajectory thrust phases were terminated at the shadow entrance, and

a coast phase was enforced until the shadow exit. Aziz developed a smooth logistic

function to model eclipses with DDP [21]. The logistic function method was adapted

to direct collocation and multiple shooting in this work.

Unfortunately, these techniques, and trajectory optimization techniques as

a whole for the many-revolution problem, are either computationally sensitive, ex-

pensive, or rely on averaged dynamics. However, heuristic guidance algorithms have

been developed as a means to rapidly generate high-fidelity, close-to-optimal trajec-

tories, most notably, Petropoulos’s Q-Law [22, 23]. Q-law is a feedback, Lyapunov

control method with an analytical thrust vector calculation. Q-Law, although typ-

ically sub-optimal, produces trajectories very quickly and includes the fast variable

in the system dynamics. The user can influence Q-Law’s behavior and performance

by tuning sets of gains that relate the importance of different orbit element targets.

Classical Q-Law’s primary flaw arises when trying to target a full 6-state boundary

condition because Q-Law asymptotically approaches the desired orbit and cannot

target a specific true anomaly value. In the past, Q-Law solutions have been used

as an initial guess in the high-fidelity DDP trajectory optimization software Mys-

tic [24]. The aspects of all of the preceding approaches are briefly summarized in

Table 1.1.

6



Table 1.1: Qualitative aspects of many-revolution low-thrust transfer methodologies.
Method Optimality Sensitivity Problem Size Dynamics Full State Targeting

Indirect[6, 7, 18] Local High Low Full Yes
Direct[20] Local Moderate/High High Full Yes

Averaged[8, 9] Local Low Low Approximate No
DDP [10] Local Moderate/High High Full Yes

Closed-loop[22, 23] Sub-optimal Very Low Low Full No

1.3 Dissertation Overview

The focus of this work is to extend the Q-Law guidance algorithm relevance

and applicability to realistic mission design scenarios. To accomplish this, the clas-

sical Q-Law method is combined with other mission design software and direct

optimization techniques and used to generate complex planetocentric, Cislunar, and

interplanetary trajectories. This research is presented in the following manner:

• Chapter 1: The introductory chapter begins with an overview of low-thrust

transfers and their application to modern space exploration. A literature re-

view of historical approaches is provided. A comparison is given for these

methods, and the benefits of analytical guidance laws are identified.

• Chapter 2: The dynamical model used throughout this research is presented.

This chapter begins with the governing equations for perturbed orbital mo-

tion, which includes the perturbation models for spacecraft thrust, third body

gravity, and an aspherical central body. Next, the classical and modified

equinoctial orbital element sets are presented. A smooth eclipse model for

solar electric propulsion spacecraft is given.

• Chapter 3: The guidance algorithm used in this research, Q-Law, is pre-
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sented. This chapter begins with a brief overview of Lyapunov control theory

and presents the Q-Law thrust vector calculation. Practical strategies for im-

plementing Q-Law, like gain tuning, are discussed. Simple example problems

that demonstrate the benefits of using coast arcs and gain tuning are given.

Sixth element targeting challenges are also discussed.

• Chapter 4: This chapter focuses on a hybrid method that combines Q-Law

with direct collocation. First, the theory behind direct collocation and nonlin-

ear programming are briefly given. Also, the numerical Jacobian calculation

techniques relevant to this research are discussed. An example low-thrust

transfer from GTO to Geostationary orbit (GEO) is solved using the methods

presented. Time-optimal and mass-optimal trajectories are produced, and the

results are compared to existing literature solutions.

• Chapter 5: A new approach that combines forward and backward propagated

Q-Law is presented and applied to spiral Lunar transfers. This approach

is demonstrated as an initial guess tool for a test problem inspired by the

SMART-1 mission. Numerical results are compared to existing literature. This

method is then demonstrated as a trade study tool for a realistic Earth-Moon

transfer. A departure orbit parameter sweep is performed and the resulting

Q-Law solutions are used as an initial guess for direct optimization. Lastly,

fixed arrival condition transfers from Low-Earth Orbit (LEO) to Low-Lunar

Orbit (LLO) are solved using only backward propagated Q-Law. Propellant

usage trade studies are generated for this scenario.
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• Chapter 6: Spiral Lunar swingby escape trajectories are explored. Q-Law

is paired with the Evolutionary Mission Trajectory Generator (EMTG) to

produce single and double Lunar gravity assist trajectories for a SmallSat

spacecraft traveling to a comet.

• Chapter 7: Analytical partial derivatives of the Q-Law thrust vector calcu-

lation are derived. A smooth true anomaly coasting function is also given.

The process of using these derivatives to produce the trajectory state transi-

tion matrix is presented and a new Q-Law shooting technique is formulated.

This method is demonstrated on several test problems, which include a GTO-

GEO transfer, an Earth-Moon transfer, a Mars transfer and spiral down, and

a single Lunar gravity assist escape.

• Chapter 8: A summary of this work is presented. Recommendations for

future work are proposed.

1.4 Summary of Contributions

The major contributions of this thesis to the state of the art are:

• A demonstration of the benefits of combining Q-Law with direct collocation

for many-revolution trajectories. A logistic eclipse model was incorporated

into the collocation for smooth-eclipse handling.

• The development of a Forward-Backward Q-Law approach for rapid low-thrust

Lunar trajectory design. This method is shown to produce effective initial
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guesses for optimization and can be used for preliminary trade study analysis.

• The exploration of SmallSat spiral escape trajectories using backward Q-Law

and the perturbed Sims-Flanagan model.

• The derivation and application of analytical partial derivatives of Q-Law thrust

vector calculation to compute the trajectory state transition matrix. A Q-Law

shooting nonlinear programming problem is formulated for gradient-based gain

tuning and to enforce nonlinear constraints on the initial state.

• The combination of Q-Law shooting with the Sims-Flanagan interplanetary

model for end-to-end trajectory design in one optimization problem.

10



Chapter 2: System Dynamics

2.1 Perturbed Orbital Motion

The most basic spacecraft trajectory occurs in the two-body problem, when

one body has negligible mass and the other is a point mass central body. In this sce-

nario, the spacecraft motion can be described by Kepler’s laws of planetary motion

as listed in Reference [25] and described below:

1. The orbit of each planet is an ellipse with the Sun at one focus.

2. The line joining the planet to the Sun sweeps out equal areas in equal times.

3. The square of the period of a planet is proportional to the cube of its mean

distance to the Sun.

The spacecraft state can be written in cartesian coordinates as shown below, with

boldface variables representing a vector quantity.

r = [x, y, z]T (2.1)

v = [ẋ, ẏ, ż]T (2.2)
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In this state representation, the equations of motion for a Keplerian orbit are

r̈ = − µ
r3
r (2.3)

with µ being the central body gravitational constant (GM) and r =‖r‖.

In many cases, the two-body problem is an over-simplification of the system

dynamics, and perturbations are included to improve the orbit fidelity. Perturba-

tions represent the other forces acting on the spacecraft besides the point mass

central body gravity. These forces can include aspherical gravity of the central

body, gravitational forces from other planetary bodies, solar radiation pressure, and

thrust from the spacecraft’s propulsion system. When perturbations are included,

the cartesian two-body dynamics become

r̈ = − µ
r3
r + δ (2.4)

where δ represents the sum of the inertial perturbing accelerations. In this work,

perturbations from J2−4 and n-body gravity were included in addition to the thrust

generated by the spacecraft’s low-thrust propulsion system.

The aspherical gravity perturbations are calculated using Equations 2.5 to 2.8.

δgr = − µ
r2

n∑
k=2

(k + 1)

(
Re

r

)k
Pk(sinφ)Jk (2.5)

δgn = −µ cosφ

r2

n∑
k=2

(k + 1)

(
Re

r

)k
P
′

k(sinφ)Jk (2.6)
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în =
ên − (êTn îr)îr∥∥∥ên − (êTn îr)îr

∥∥∥ (2.7)

δg = δgnîn − δgr îr (2.8)

Here, P
′

k is the derivative of the kth Legendre polynomial, Pk, with respect to sinφ,

ên = [0, 0, 1]T , φ is the geocentric latitude, Re is the Earth’s radius, Jk are the zonal

harmonic coefficients, and îr is the spacecraft position unit vector, defined later in

Equation 2.14. Additionally, third-body accelerations are calculated in the inertial

frame using Equation 2.9, where rj0 is the position of the jth body with respect to

Earth and rj is the position of the spacecraft with respect to the jth body.

δp =

Nb∑
j=1

−µj

(
rj0
r3
j0

+
rj
r3
j

)
(2.9)

The spacecraft thruster can be throttled and is modeled using a maximum

flow rate ṁmax

ṁmax = −Tmax

g0Isp

(2.10)

where Tmax is the maximum thrust, Isp is the specific impulse, and g0 is standard

gravity. The actual flow rate is then

ṁ = ṁmax

√
Tn · Tn + λ2 (2.11)
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where Tn is the normalized thrust vector.

In Equation 2.11, λ is used as a fictitious “mass leak” that prevents the unde-

fined mass flow rate partial derivatives that arise when the magnitude of normalized

thrust approaches zero. Typically, λ is set to be a small number that does not

significantly impact solution accuracy but permits optimal coast arcs in gradient-

based optimization. If the spacecraft thrust vector is represented in the inertial

frame, then the perturbing acceleration vector due to thrust and the total inertial

disturbing acceleration is calculated using Equations 2.12 and 2.13.

δT =
T

m
Tn (2.12)

δ = δg + δp+ δT (2.13)

where T is the thrust applied and m is the spacecraft mass.

2.2 Orbital Element Sets

It is often beneficial to use orbital element sets instead of the cartesian repre-

sentation because most of the elements vary slowly when perturbations are present.

In this work, classical orbital elements (COE) and modified equinoctial elements

(MEE) were utilized. The equations of motion for both of these element sets are de-

scribed by variational equations defined in the spacecraft’s local frame. This frame

is formed by the basis vectors (îr, îθ, îh).
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îr =
r

‖r‖
, îh =

r × v
‖r × v‖

, îθ = îh × îr (2.14)

For use with either orbital element set, the perturbations described in Equa-

tions 2.5 to 2.9 must be rotated into the local frame using the transformation formed

by the frame’s basis vectors, as shown in Equations 2.15 to 2.17:

RQI =

[
îr îθ îh

]T
(2.15)

∆g = RQIδg (2.16)

∆p = RQIδp (2.17)

The total disturbing acceleration vector in the local frame ∆ = (∆r,∆θ,∆h) is then

modeled as

∆ = ∆T + ∆g + ∆p (2.18)

where ∆T is similar to Equation 2.12 but with the thrust vector represented in

the local frame, ∆g is the central body’s higher order gravity acceleration, and

∆p represents third-body accelerations. Typically, the control law or optimizer

determines Tn directly in the local frame, so no rotation is needed to calculated ∆T .
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2.2.1 Classical Orbital Elements

The classical orbital elements provide an easy-to-visualize representation of

the osculating orbit. This set is comprised of semi-major axis a, eccentricity e,

inclination i, argument of periapsis ω, and right ascension of the ascending node Ω.

Semi-major axis and eccentricity describe the size and shape of the orbit, and the

other elements dictate the orientation of the orbit plane. One additional quantity,

such as true anomaly θ, specifies the spacecraft’s location on the orbit. Some of

these elements are illustrated in Figure 2.1. The drawback of the classical element

set is the singularities at circular and equatorial orbits. When e = 0, ω and θ are

undefined, and when i = 0, Ω and ω are undefined.

Orbit

Reference 
Direction

𝞈
Argument 
of Periapsis 

θTrue Anomaly

Ω
Longitude of 
Ascending Node

Reference Plane

Spacecraft

Ascending Node
Inclination

i

Figure 2.1: Classical orbital elements.
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Perturbations can be applied to the classical orbital elements through the

variational equations shown in Equation 2.19. These equations are defined in the

spacecraft’s local frame formed by the basis vectors (îr, îθ, îh).

ȧ =
2a2

h

(
e sin θ∆r +

p

r
∆θ

)
ė =

1

h

(
p sin θ∆r + [(p+ r) cos θ + re]∆θ

)
i̇ =

r cos(θ + ω)

h
∆h

Ω̇ =
r sin(θ + ω)

h sin i
∆h

ω̇ =
1

eh

(
−p cos θ∆r + (p+ r) sin θ∆θ

)
− r sin(θ + ω)

h tan i
∆h

θ̇ =
h

r2
+

1

eh

(
p cos θ∆r − (p+ r) sin θ∆θ

)

(2.19)

where h is the specific angular momentum, p is the semi-latus rectum, r is the

current orbital radius, and ∆r, ∆θ, ∆h are the perturbing acceleration components

in the local frame. These perturbing accelerations can be decomposed to in-plane

and out-of-plane angles α and β and the specific acceleration magnitude f .

∆r = f cos β sinα,

∆θ = f cos β cosα, (2.20)

∆h = f sin β.
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The full COE state also includes the spacecraft mass:

xCOE = [a, e, i, ω, Ω, θ, m]T (2.21)

2.2.2 Modified Equinoctial Elements

In this work, some trajectory optimization efforts employed a modified equinoc-

tial element state representation with spacecraft mass included [26, 27]. The MEE

set, l, includes the semi-latus rectum, p, four parameters describing eccentricity and

inclination, f, g, h, k, and the true longitude fast variable, L.

l = [p, f, g, h, k, L]T (2.22)

The relationship between MEE and the classical orbital elements is

p = a(1− e2)

f = e cos (ω + Ω)

g = e sin (ω + Ω)

h = tan
(
i/2
)

sin Ω

k = tan
(
i/2
)

cos Ω

L = θ + ω + Ω

(2.23)

The corresponding equations of motion for an MEE state perturbed by an acceler-
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ation are expressed below:

l̇ = A∆ + b (2.24)

Here, A is a 6 x 3 matrix defined as:

A =
1

q

√
p

µ



0 2p 0

q sinL (q + 1) cosL+ f −g(h sinL− k cosL)

−q cosL (q + 1) sinL+ g f(h sinL− k cosL)

0 0 1
2
(1 + h2 + k2) cosL

0 0 1
2
(1 + h2 + k2) sinL

0 0 h sinL− k cosL



(2.25)

where q is a constant used to simplify the expression:

q = 1 + f cos(L) + g sin(L) (2.26)

The vector b is the effect of the central-body’s point-mass acceleration on the MEE

state representation’s fast variable:

b =

[
0, 0, 0, 0, 0,

√
µp

(
q

p

)2
]T

(2.27)
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The full MEE state also includes the spacecraft mass:

xMEE = [p, f, g, h, k, L, m]T (2.28)

The trajectory optimization also employed the Sundman transformation [28]

to transform the independent variable from time to true longitude, L. This transfor-

mation reduces the sensitivity of the many-revolution problem, and when beginning

with a mesh equally spaced in true longitude, can reduce the number of mesh re-

finements needed. Differentiation with respect to true longitude is denoted by (′).

t′ =
∂t

∂L
= L̇−1 (2.29)

The state dynamics then become

x′ = L̇−1
[
ṗ, ḟ , ġ, ḣ, k̇, 1, ṁ

]T
(2.30)

with the 1 included to bring time into the state vector in place of the fast variable.

2.3 Eclipse Model

The eclipsing model used within the trajectory optimization problems lever-

aged a logistic function and follows the method presented by Aziz et al. [21], as

shown in Equations 2.31 to 2.34. Here, r�/sc is the position of the Sun with re-

spect to the spacecraft, rB/sc is the position of the central body with respect to the

spacecraft, RB is the central body radius, and R� is the Sun’s radius.
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Figure 2.2: Logistic function drop off.

aSR = arcsin
R�
r�/sc

(2.31)

aBR = arcsin
RB

rB/sc
(2.32)

aD = arccos
rTB/scr�/sc

rB/scr�/sc
(2.33)

I =
1

1 + e−cs[aD−ct(aSR+aBR)]
(2.34)
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Figure 2.3: Eclipse diagram.

The spacecraft is eclipsed when aSR+ aBR > aD. Figure 2.2 shows the reduction

in function value at the event crossing, and Figure 2.3 shows the system at the be-

ginning of an eclipse. Figure 2.3 was recreated in Reference [29] based on Reference

[21]. The logistic function in Equation 2.34 provides penumbra detection and is used

to limit the available power during both partial and full eclipses. The magnitude

of I is bounded between 0 and 1. This function provides continuity when entering

an eclipse, which is crucial for gradient-based optimization schemes that require

continuous dynamics throughout each phase. The coefficients, cs and ct, are used

to affect the sharpness of the intensity curve when passing in/out of the shadow.

The nominal coefficient values presented by Aziz et al. were used, cs = 298.78 and

ct = 1. When Q-Law propagation was not performed within a gradient-based op-

timization scheme, root-finding was used to exactly detect shadow crossings. The
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power discontinuities were acceptable in this case as event functions stopped the

integration to adjust the power available for thrusting. To determine the ephemeris

position of the Sun and other planetary bodies, the SPICE Toolkit and the de430

planetary ephemeris kernel were used [30]. The trajectory optimization eclipsing

constraint is formulated as

∆T =
Tmax

m
ITn (2.35)
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Chapter 3: Q-Law Lyapunov Guidance Algorithm

Heuristic guidance algorithms have been developed as a means to rapidly gen-

erate close-to-optimal trajectories, with the most notable being Petropoulos’s Q-Law

[22, 23]. Q-law is a Lyapunov control method that determines the instantaneous

thrust direction at each point along the trajectory toward the target orbit. The

following section provides an introduction to Lyapunov control theory and presents

the Q-Law guidance algorithm. The benefits of including coast arcs and gain tuning

as well as sixth element targeting challenges are discussed and demonstrated.

3.1 Lyapunov Control Functions

A Lyapunov function is a continuous scalar function V (x) with continuous

first-order partial derivatives on a region D. It also must be positive definite ev-

erywhere except the origin, V (x) > 0 for all x 6= 0. The stability of the system

described by Equation 3.1 can be determined by the time-derivative of V (x) [31].

ẋ = f(x) (3.1)
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V̇ (x) = ∇V (x)T · f(x) (3.2)

If there exists a Lyapunov function such that V̇ (x) ≤ 0 on some region D that

contains the origin, then the system is stable. Furthermore, if V̇ (x) < 0 on some

region D that contains the origin, then the existence of V (x) guarantees asymptotic

stability of the origin. Q-Law’s functionality comes from Lyapunov control theory,

which extends the Lyapunov function concept to systems with controls inputs, as

in Equation 3.3.

ẋ = f(x,u) u(t) ∈ U (3.3)

A control-Lyapunov function for this system is a continuously differentiable scalar

function on a region D that is positive definite except at the origin with the following

property:

∀x 6= 0,∃u V̇ (x,u) = ∇V (x)T · f(x,u) < 0 (3.4)

The control profile u(t) is then selected such that it minimizes V̇ (x,u) at each point

in time, therefore reducing V (x) toward the origin as quickly as possible.

u∗(t) = argmin
u∈U

V̇ (x,u) (3.5)
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3.2 Q-Law Thrust Vector Calculation

The Q-Law candidate Lyapunov function is defined as

Q = (1 +WPP )
∑

œ

WœSœ

[
d(œ,œT )

œ̇xx

]2

(3.6)

with œ = (a, e, i, ω,Ω). In Equation 3.6, œ̇xx is the maximum rate of change of each

element over the local frame thrust vector and true anomaly, θ. Also, Wœ represents

the components of the gain vector W given to the orbital elements, and d(œ,œT )

is the difference between the values of the current and target orbital elements. The

maximum rate of change of each element, œ̇xx, are

ȧxx = 2f

√
a3(1 + e)

µ(1− e)
(3.7)

ėxx =
2pf

h
(3.8)

i̇xx =
pf

h(
√

1− e2 sin2 ω − e|cosω|)
(3.9)

Ω̇xx =
pf

h sin i(
√

1− e2 cos2 ω − e|sinω|)
(3.10)

ω̇xx =
ω̇xxi + bω̇xxo

1 + b
(3.11)

where b is nominally 0.01, f is the specific acceleration due to thrust, and

26



ω̇xxi =
f

eh

√
p2 cos2 θxx + (p+ rxx)2 sin2 θxx (3.12)

ω̇xxo = Ω̇xx|cos i| (3.13)

cos θxx =

1− e2

2e3
+

√
1

4

(
1− e2

e3

)2

+
1

27

1/3

−

−1− e2

2e3
+

√
1

4

(
1− e2

e3

)2

+
1

27

1/3

− 1

e
(3.14)

rxx =
p

1 + e cos θxx
(3.15)

In Equation 3.6, Sœ are the components of S. In the thrust vector calculation, S

and P represent penalty functions that keep semi-major axis and periapsis from

growing too large or too small. They are defined as

S =


[
1 +

(
a−aT
maT

)n]1/r

for œ= a

1 for œ= e, i, ω, Ω

(3.16)

P = exp

k(1− rp
rpmin

) (3.17)

with the nominal values of m = 3, n = 4, r = 2, and k = 100. The proximity

quotient Q is differentiated to minimize Q̇, therefore driving Q to zero as quickly as

possible to reach the desired orbit. The derivative of Q can be calculated using the

chain rule, as shown in Equation 3.18,
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Q̇ =
∑

œ

∂Q

∂œ
œ̇ (3.18)

with œ̇ coming from Equation 2.19. Q̇ can be rewritten in the following form [32]:

Q̇ = D1 cos β cosα +D2 cos β sinα +D3 sin β (3.19)

The terms D1, D2 and D3 can be calculated by evaluating

D1 =
∑

œ

∂Q

∂œ

∂œ̇

∂∆θ

(3.20)

D2 =
∑

œ

∂Q

∂œ

∂œ̇

∂∆r

(3.21)

D3 =
∑

œ

∂Q

∂œ

∂œ̇

∂∆h

(3.22)

To calculate the partial derivatives of Q, it is convenient to define the intermediate

term V with components defined as

Vœ = Sœ

[
d(œ,œT )

œ̇xx

]2

(3.23)

The partial derivatives of Q are then found to be

∂Q

∂œ
= WP

∂P

∂œ
W TV + (1 +WPP )W T ∂V

∂œ
(3.24)

The optimal local frame thrust vector for reducing Q is then found by aligning the
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thrust vector in the anti-direction defined by the D1−3 coefficients.

u =
−(D2, D1, D3)T√
D2

1 +D2
2 +D2

3

(3.25)

Q-Law also has an optional mechanism for coasting known as “effectivity”.

Effectivity compares the effectiveness of reducing Q at the current point on the

osculating orbit, Q̇n, with the most effective point on the current osculating orbit,

Q̇nn. These expressions are given as [23]

ηa =
Q̇n

Q̇nn

(3.26)

ηr =
Q̇n − Q̇nx

Q̇nn − Q̇nx

(3.27)

where ηa and ηr are the absolute and relative effectivity, respectively, and

Q̇nn = min
θ

Q̇n (3.28)

Q̇nx = max
θ

Q̇n (3.29)

Analytic expressions for Q̇nn and Q̇nx are not available and are generally multimodal,

so numerical approaches must be employed. To solve for these terms, a simple grid

search over 50 equally spaced true anomaly points along θ = [0, 2π) results in a

rapid solution with sufficient accuracy. Given a user-specified absolute or relative

effectivity cutoff, thrust is applied when the current effectivity is above the cutoff

value and ∆T = 0 otherwise. Although effectivity checks provide a simple and
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straightforward coast mechanism, they add computational expense to the trajectory

propagation.

3.3 Gain Tuning

The Woe term in the Q-Law Lyapunov function refers to the user specified

gains for each orbital element, which determine the priority given to each orbital

element during the thrust vector calculation. A gain of zero means that element

can vary unconstrained. A very large gain yields a thrust direction that converges

the element to the desired value as quickly as possible. This provides a useful way

to shape the trajectory by controlling which elements are changed most quickly,

and the chosen gain values can have significant effects on the resulting trajectory.

Unfortunately, the gain space typically has many local optima. To find globally

optimal solutions, evolutionary algorithms are typically employed to optimize the

targeted gains and minimize the TOF cost function. Additionally, multi-objective

genetic algorithms can be used to generate TOF-propellant usage pareto-fronts and

prove to be a reliable means of optimizing both the Q-Law gains and effectivity

parameters [33, 34]. A general Q-Law optimization setup is shown in Figure 3.1.

One benefit of using evolutionary algorithms is the ease with which the population

can be parallelized across multiple processors, which decreases computation time

and/or increases the population size that can be evaluated in a given amount of

time.

A new technique for gain tuning is to use gradient-based optimization to iden-
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Figure 3.1: Typical Q-Law optimization setup.

tify locally optimal gain combinations. This method can be very effective at isolating

the nearest local optima, and if a strong initial guess were provided, can be sufficient

for finding suitable gains. This approach is introduced and developed in Chapter 7.

It is noted that there exists an MEE Q-Law formulation [32, 35, 36], but

it is not used in this work due to the element coupling. In practice, it can be

advantageous to let one or more of the classical elements vary unconstrained, such

as the case when trying to target a GTO orbit without a fixed right ascension.

However, due to the coupled relationships described in Equation 2.23, this cannot

be accomplished using MEE Q-Law.

3.4 Basic Transfers

Q-Law was originally developed and tested on relatively simple low-thrust

transfer problems. To demonstrate the function of the Q-Law gains and effectivity

parameters, two simple test problems are solved. The first is a LEO to GEO transfer

known as Case A in the original Q-Law manuscripts [22, 23], and the second is an
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equatorial to polar orbit transfer that was used to test heuristic guidance laws by

Hatten [37]. In both problems, the dynamics are reduced to the two-body problem

without eclipsing. The problem parameters are listed in Tables 3.1 and 3.2.

Table 3.1: LEO-GEO problem specifications.

Mission Parameter
m0 300 (kg)

Thrust 1 (N)
Isp 3100 (s)

µEarth 3.9860047× 105 km3/s2

a0 7000 (km)
e0 0.01
i0 0.05◦

ω0 0◦

Ω0 0◦

θ0 0◦

atarget 42000 (km)
etarget 0.01
itarget free
ωtarget free
Ωtarget free

Figure 3.2 shows the LEO-GEO transfer for the minimum-time case and when

absolute effectivity coasting is included. When coasting is included, the effectivity

checks limit the initial thrust to only occur near periapsis, therefore raising apoapsis.

After growing apoapsis, the thrust centers around apoapsis to efficiently raise peri-

apsis and reduce eccentricity. This process begins to resemble the low-thrust version

of a Hohmann transfer and would become more exaggerated as ηa approaches 1.

Figures 3.3 and 3.4 show trajectories for the equatorial orbit to polar orbit

transfer problem. These solutions demonstrate the influence that the Q-law gains

can have on the resulting trajectory. Figure 3.3 was generated with Wa,We,Wi = 1.

In this case, each element is weighted the same, but the large inclination change is
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(a) Unity gains solution and no coasting. Flight time =
15.1 days. Propellant used = 43 kg.

(b) Unity gains solution with ηa = 0.7. Flight time = 35.2
days. Propellant used = 38.1 kg.

Figure 3.2: LEO-GEO trajectories.
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Table 3.2: Equatorial to polar problem specifications.

Mission Parameter
m0 300 (kg)

Thrust 1 (N)
Isp 3100 (s)

µEarth 3.9860047× 105 km3/s2

a0 10000 (km)
e0 0.01
i0 1e-3◦

ω0 0◦

Ω0 0◦

θ0 0◦

atarget 10000 (km)
etarget 0.01
itarget 90◦

ωtarget free
Ωtarget free

the dominating term in Q. As a result, Q-Law raises the orbital radius in an effort

to make the plane change easier to achieve. This results in a deviation from the

target semi-major axis and eccentricity but results in a faster inclination change.

The orbit is then lowered and circularized as the inclination approaches the target.

By increasing the weights on semi-major axis and eccentricity, priority is given

to those elements in the thrust vector calculation and the deviation away from the

target values is minimized. As an example of this, Figure 3.4 was generated with

Wa,We = 50, Wi = 1. The increased Wa,We makes raising the orbital radius for

a faster plane change less effective at reducing Q than performing a less-efficient

plane change near the target semi-major axis and eccentricity. This results in a

trajectory between the two orbits that is almost circular and maintains a nearly

constant semi-major axis throughout the duration of the transfer. In the context of

this problem, this actually results in a much longer flight time but provides a strong
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example of how much influence gain tuning can have on the resulting solution.

3.5 Fast Variable Targeting

As previously mentioned, Q-Law suffers from the inability to target a specific

fast variable. A successful Q-Law transfer will place the spacecraft somewhere on

the target orbit, but the mission designer will have no control over the arrival true

anomaly. If a specific point on the orbit must be reached, the spacecraft could

simply coast until that point is reached after converging onto the other elements.

In the scenario when perturbations are present, Q-Law thrust can be applied for

orbit maintenance while waiting to reach the target anomaly. Thus the goal of fast

variable targeting is to modify the Q-Law algorithm such that the full six-state is

targeted faster than the baseline “achieve orbit then wait” approach.

An attempt at including fast variable targeting within the Lyapunov function

was made in Reference [38]. However, this approach resulted in inconsistent flight

times and took much longer to converge than the baseline approach. Two other

unsuccessful attempts at sixth-element targeting are presented here. The first in-

volves adding a true anomaly term into Q that takes the same form as the other

elements. The second attempt uses a change of variables to replace true anomaly

with a slow-moving term related to mean anomaly.

To include true anomaly in Q, the summation in Equation 3.6 is extended

to include θ. The first step to calculating θ̇xx is to find the max rate of change in

thrust vector space. To accomplish this, the thrust vector is aligned to be along the
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Figure 3.3: Equatorial to polar trajectory with unity gains and no coasting. Flight
time = 33.3 days.
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Figure 3.4: Equatorial to polar trajectory with weighted a, e and no coasting. Flight
time = 42.3 days
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direction formed by the coefficients from θ̇ in Equation 2.19:

u =
( p
eh

cos θ,−p+r
eh

sin θ, 0)T√
( p
eh

cos θ)2 + (−p+r
eh

sin θ)2

(3.30)

When applied to θ̇, this results in

θ̇u =
h

r2
+

f

eh

√
(p cos θ)2 + ((p+ r) sin θ)2 (3.31)

Then to find θ̇xx, Equation 3.31 must be maximized over θ. Clearly true anomaly

changes fastest at periapsis, θ = 0, which leads to

θ̇xx =
h

(a(1− e))2
+
pf

eh
(3.32)

This approach was tested on a simple eccentric transfer known as Case C in the

original Q-Law manuscripts with a target true anomaly of apoapsis, θ = 180◦. The

problem parameters are listed in Table 3.3. Note that this problem has an unusually

high thrust to mass ratio, so a shorter integration time step of 100 seconds was used.

Additionally, the fixed step integration used to propagate the spacecraft can overstep

the fast-moving true anomaly target, despite including a convergence tolerance. As

a result, root-finding was performed at the target true anomaly on every revolution

to check for element convergence at the proper point of the orbit.

As a baseline comparison, standard Q-Law was used to target the final orbit,

and then the spacecraft waited until apoapsis was achieved. This solution trajectory

is shown in Figure 3.5 and the corresponding osculating orbital elements are shown
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Table 3.3: Eccentric orbit transfer problem specifications.

Mission Parameter
m0 300 (kg)

Thrust 9.3 (N)
Isp 3100 (s)

µEarth 3.9860047× 105 km3/s2

a0 9222.7 (km)
e0 0.2
i0 0.573◦

ω0 0◦

Ω0 0◦

θ0 0◦

atarget 30000 (km)
etarget 0.7
itarget free
ωtarget free
Ωtarget free
θtarget 180◦

Wa 1
We 1

in Figure 3.6.

The Wθ > 0 cases yielded mixed results depending on the chosen values for

Wθ. When a small value is used, Wθ < 0.3, the solution remains unchanged from

the baseline case as the low gain value results in minimal emphasis within the thrust

vector calculation. However, larger values actually result in significant thrusting near

the end of the transfer in an effort to reach apoapsis more quickly. This thrusting

reduces the orbital radius, therefore speeding up θ̇, but typically pushes semi-major

axis outside of the convergence tolerance. This results in a “miss” of the target

elements despite reaching the target true anomaly more quickly, therefore adding

another revolution onto the transfer. An exaggerated example of this behavior can

be seen in the osculating elements of the Wθ = 10 solution, shown in Figure 3.7. This
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Figure 3.5: Eccentric transfer trajectory with initial and final orbits included.

Figure 3.6: Baseline solution osculating orbital elements.
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process repeats on every revolution, therefore prohibiting convergence, as shown in

the plots of the osculating Q for the two cases, Wθ = 0 and Wθ = 1. Note that in

the Wθ = 1 and Wθ = 10 cases, integration was terminated after 5 days to prevent

the spacecraft mass from dropping too low.

It is noted that this approach resulted in thrusting to more quickly reach

the target true anomaly, which would achieve the goal of fast variable targeting if

semi-major axis were not pushed outside of the convergence region. If large semi-

major axis tolerances are acceptable, then this approach could result in faster flight

times. However, in a realistic mission design scenario, tight tolerances (< 50 km)

are typically used and would not work well with the θ targeting thrust.

Figure 3.7: Wθ = 10 solution osculating orbital elements.

The second 6th-element targeting effort replaced true anomaly with a slow
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Figure 3.8: Osculating Q values.

varying term based on mean anomaly. Mean anomaly is defined as

M = M0 +

∫ t

t0

ndt (3.33)

where t0 is a given epoch and n is the mean motion, defined as the n =
√

µ
a3 .

Differentiating Equation 3.33 yields

d

dt
M =

d

dt
M0 + n (3.34)

Derivations of d
dt
M0 are readily available in astrodynamics textbooks like References

[25, 39], resulting in
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d

dt
M0 =

d

dt
M − n =

b

ahe
[(p cos θ − 2re)fr − (p+ r) sin θfθ] (3.35)

where b is the orbit semi-minor axis. The quantity M0 was used as the 6th element

targeting variable, and d
dt
M0 was included into the system dynamics. This change

of variables was used in Reference [40] to study the averaged dynamics of a particle

in orbit around Saturn.

The initial thought was that the slow variations of M0 would yield better

targeting conditions than its oscillating, fast-moving anomaly counterparts. For use

in Q-Law, Ṁ0xx is needed and was found using the same process that was used to

find θ̇xx earlier in this section.

Ṁ0u =
fb

ahe

√
(p cos θ − 2re)2 + ((p+ r) sin θ)2 (3.36)

Due to the complexity of this expression in terms of θ, the equation was discretely

sampled for θ values between [0, 2π] to identify Ṁ0xx. This approach allowed for the

targeting of a specific M0 as shown in Figure 3.9, but unfortunately did not yield

proper mean anomaly targeting. The issue lies in that the semi-major axis will

generally change during a low-thrust transfer, which yields changes in mean motion.

As a result,
∫ t
t0
ndt is unknown at the arrival of the orbit, so proper targeting of

M0 does not result in proper targeting of M . Further inspection of Reference [40]

shows that the averaged perturbation dynamics studied did not result in semi-major

axis variations, which allowed M0 to sufficiently model the particle’s 6th element.

Unfortunately this is generally not the case for low-thrust transfers.
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Figure 3.9: M0 = 0 targeting solution osculating orbital elements.

An iterative approach was attempted next, with the initial iteration proceeding

without 6th element targeting. This provided a reference quantity for
∫ t
t0
ndt and

an initial guess for the M0 target. Ideally, targeting this initial guess would result

in a transfer that approaches the target orbit location. The target M0 can then be

updated to account for the targeting errors until convergence on a transfer that hits

the proper mean anomaly. However, including M0 targeting in the thrust vector

calculation changes the thrust profile, therefore changing the element osculation and

flight time. This results in significant changes in
∫ t
t0
ndt. This behavior prohibits the

iteration process from converging onto an M0 value that properly targets apoapsis.

Results of the iterations are shown in Table 3.4.

The inability for Q-Law to effectively target all six elements poses a signifi-
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Table 3.4: Results for iterative M0 targeting.

Iteration # Flight Time (days) Target M0 (deg) M −
∫ t
t0
ndt (deg)

0 1.46 - 66.80
1 2.99 66.80 -142.86
2 2.90 -142.86 19.35
3 2.43 19.35 178.65
4* 5.00 178.65 -

* Did not converge within flight time limits.

cant problem for more complex applications like low-thrust rendezvous or intercept

where hitting a time-varying true anomaly is required. To overcome this challenge,

backward propagation can be used to design trajectories that target a fully defined

state. This process is outlined in Chapter 5 and is used to design spiral Lunar

transfers and Lunar gravity assist trajectories.
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Chapter 4: Direct Collocation with a Q-Law Initial Guess

This chapter demonstrates the benefits of pairing Q-Law with a direct collo-

cation approach for the many-revolution orbit transfer problem and is based on the

work published in Reference [29]. An introduction to the collocation transcription

method and nonlinear programming is also given. Here, Q-Law was used to gen-

erate a close-to-optimal trajectory for a GTO to GEO transfer with the inclusion

of spherical harmonic gravity perturbations and eclipsing. This trajectory solution

was then divided into two segments at a patch point, with the phase that falls after

the patch point used as the initial guess for direct optimization. The fraction of

Q-Law’s solution not used in the optimizer guess was unchanged, and the patch

point was used to enforce continuous states between the Q-Law final condition and

optimizer initial condition. The result was a continuous trajectory whose first phase

was produced by Q-Law and second phase from the optimizer, as depicted in Fig-

ure 4.1. In this study, the fraction of the Q-Law solution used to seed the initial

guess was varied, and the optimizer then produced the trajectory to the desired

ending conditions. To solve the collocation phases, the GPOPS-II software was uti-

lized, which uses an hp-adaptive Legendre–Gauss–Radau collocation method [41]

and transcribes the optimal control problem into a large, sparse nonlinear program-
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ming problem. Mesh-refinements were applied and the problem was re-optimized

until satisfactory tolerances in the implicit integration were achieved [42].

Figure 4.1: Q-Law and NLP problem setup.

Collocation is a common approach for solving the low-thrust transfer problem[19,

20, 43, 44, 45]. One challenge for planetocentric low-thrust trajectory optimization

is the power discontinuities that result when the spacecraft passes through the cen-

tral body shadow. John Betts and Graham and Rao both make notable efforts to

include eclipsing within a collocation trajectory optimization scheme [19, 20]. Betts

used a receding horizon algorithm and a Lyapunov control law different than Q-Law

[46] to generate an initial guess for the trajectory. The trajectory was divided ex-

plicitly into thrust and coast phases, and the receding horizon algorithm determined

an initial guess for how many phases are needed to achieve the target orbit. Graham

and Rao solved the same minimum time GTO-GEO problem that is the focus of

this chapter. They solved the problem initially without considering eclipses. The

solution was then evaluated for eclipses and the solution terminated at first shadow

entry. The non-eclipsed, minimum-time problem was solved again starting from the

47



shadow exit point, and this process was repeated until all eclipses were found and

the target orbit was met. This approach results in a suboptimal final solution be-

cause the trajectory is piecewise optimized. In contrast to Betts and Graham and

Rao, this research implemented a logistic eclipsing function [21] in the continuous

dynamics to model the power/thrust drop inside the shadow. This allows the entire

collocation problem to be reduced to a single phase.

The goal of this work was to exploit Q-Law’s speed and close-to-optimal so-

lutions paired with direct collocation’s ability to utilize the entire Q-Law solution

(path, controls, eclipse regions) as an initial guess, satisfy desired endpoint con-

straints, and produce optimal trajectories. Here, the trade between computation

time and solution optimality is presented as the patch point location is varied

along the Q-Law solution for both time-optimal and mass-optimal trajectories. This

methodology was compared against a well-known GTO-GEO transfer problem that

has been solved by several authors in previous literature [8, 9, 20].

4.1 Direct Collocation

The general trajectory design optimal control problem is defined as follows.

Find the state, x(t) ∈ Rnx , control u(t) ∈ Rnu , initial time t0, and final time tf on

the interval t ∈ [t0, tf ] that minimizes the Bolza form cost function J in Equation

4.1 subject to the variable bounds listed in Equations 4.2 and 4.3 and the dynamic,

boundary, and path constraints listed in Equations 4.4 to 4.6, respectively.
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J = φ(x(t0), t0,x(tf ), tf ) +

∫ tf

t0

L(x(t),u(t), t)dt (4.1)

xl ≤ x(t) ≤ xu (4.2)

ul ≤ u(t) ≤ uu (4.3)

ẋ = f(x(t),u(t), t) (4.4)

bl ≤ b(x(t0), t0,x(tf ), tf ) ≤ bu (4.5)

gl ≤ g(x(t),u(t), t) ≤ gu (4.6)

In this work, this continuous optimal control problem was solved using direct

methods, where the optimal control problem is discretized using collocation so it can

be formulated as a finite-dimension parameter optimization problem. Collocation

is a parameterization method where the state and controls are approximated by

piecewise polynomials, and derivative or integral dynamic constraints are enforced

at discrete points in time along the trajectory. For a problem on the interval [t0, tf ],

a mesh of size N will consist of discretized time points and the state and control

parameters associated with each time point.
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Π : t0 = t1 < ... < tN = tf (4.7)

Z = [x1,u1,x2,u2...xN ,uN ]T (4.8)

For numerical convenience, the optimal control problem time interval is mapped

from t ∈ [t0, tf ] to τ ∈ [−1,+1] through the following transformation,

τ =
2t

tf − t0
− tf + t0
tf − t0

(4.9)

As a result of the new independent variable τ , the new transformed optimal control

problem is defined as: Find the state, x(τ) ∈ Rnx , control u(τ) ∈ Rnu , initial time

t0, and final time tf that minimizes the Bolza form cost function J subject to the

variable bounds listed in Equations 4.11 and 4.12 and the dynamic, boundary, and

path constraints listed in Equations 4.13 to 4.15, respectively.

J = φ(x(−1), t0,x(+1), tf ) +
tf − t0

2

∫ +1

−1

L(x(τ),u(τ), τ ; t0, tf )dτ (4.10)

xl ≤ x(τ) ≤ xu (4.11)

ul ≤ u(τ) ≤ uu (4.12)
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dx(τ)

dτ
=
tf − t0

2
f(x(τ),u(τ), τ ; t0, tf ) (4.13)

bl ≤ b(x(−1), t0,x(+1), tf ) ≤ bu (4.14)

gl ≤ g(x(τ),u(τ), τ ; t0, tf ) ≤ gu (4.15)

There are many types of collocation schemes with varying degrees of fidelity,

and the quality of the solution depends on the accuracy of the differential equa-

tion approximation. Common low-order schemes leverage Euler and trapezoidal

integration steps, as shown in Equations 4.16 and 4.17, respectively.

xi+1 = xi + ∆τif(xi,ui, τi; t0, tf ) (4.16)

xi+1 = xi +
∆τi
2

(
f(xi,ui, τi; t0, tf ) + f(xi+1,ui+1, τi+1; t0, tf )

)
(4.17)

Defect constraints are evaluated at each mesh point and are defined to be the error

between the predicted quadrature state and the actual state. The defect constraints

for the two methods described above are defined as

∆i = xi − xi+1 + ∆τif(xi,ui, τi; t0, tf ) (4.18)
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∆i = xi − xi+1 +
∆τi
2

(
f(xi,ui, τi; t0, tf ) + f(xi+1,ui+1, τi+1; t0, tf )

)
(4.19)

These two methods suffer from low-order accuracy, which limits their useful-

ness for complex problems. The Euler scheme is a first order method, O(h), and the

trapezoidal method is a second order method, O(h2). The fidelity of the solutions

produced by these methods can be improved through a denser mesh that provides

a better approximation to the system dynamics. However, increasing the number

of segments will increase the complexity and computation expense of the resulting

optimization problem. For real-world problems, it is usually more practical to use

a higher order method that will require fewer segments to accurately model the

system.

Higher order accuracy can be achieved by approximating the state and control

with Lagrange polynomials and placing the nodes used to form these polynomials

at the roots of a Legendre polynomial. This approach is used in the collocation

scheme leveraged for this research, which is a variable-order Legendre-Gauss-Radau

(LGR) method provided through the GPOPS-II optimal control software [41]. In

this method, a particular mesh segment is approximated as

x(τ) ≈X(τ) =

Nk+1∑
j=1

XjLj(τ), Lj(τ) =

Nk+1∏
l=1,l 6=j

τ − τl
τj − τl

(4.20)

where Lj(τ), (j = 1, ...., Nk + 1) is a basis of Lagrange polynomials and [τ1, ..., τNk ]
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are the LGR collocation points [47]. The derivative of X(τ) is found to be

dX(τ)

dτ
=

Nk+1∑
j=1

Xj
dLj(τ)

dτ
(4.21)

The defect constraints are formulated by collocating the dynamic constraints in

Equation 4.13 at the LGR points.

∆i =

Nk+1∑
j=1

DijXj −
tf − t0

2
f(Xi,Ui, τi; t0, tf ) = 0 (4.22)

where Ui is the control approximation in the current mesh interval and

Dij =
dLj(τ)

dτ
, i = 1, ...., Nk, j = 1, ...., Nk + 1 (4.23)

is the Nk x (Nk + 1) Legendre-Gauss-Radau differentiation matrix [48]. The cost

function in Equation 4.10 is then approximated as

J ≈ J = φ(X1
1 , t0,X

N
Nk+1, tf ) +

N∑
n=1

Nk∑
j=1

tf − t0
2

wni L(Xn
i ,U

n
i , τ

n
i ; t0, tf )dτ (4.24)

where N is the number of mesh segments in the trajectory, wni are the LGR quadra-

ture weights in mesh interval n, X1
1 is the approximation of x(−1), and XN

Nk+1

is the approximation of x(+1). This process is used to discretize the continuous

optimal control problem into a parameter optimization problem known as a Non-

linear Programming Problem. After a solution is found, the state and controls are

interpolated to evaluate the constraint errors throughout the trajectory. Segments
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with errors larger than the specified tolerances can be further divided into smaller

segments or approximated with a higher order polynomial to reduce the error [42].

4.2 Nonlinear Programming

After the continuous optimal control problem is transcribed, it takes the form

of a Nonlinear Programming Problem. A Nonlinear Programming Problem is an

optimization problem where the minimization of an objective function is achieved

by varying a set of decision variables x, subject to a set of equality and inequality

constraints. These problems take the following form:

min
x
J(x) Rn 7→ R

s.t. lb ≤

 x

c(x)

 ≤ lu (4.25)

x ∈ Ω ⊆ Rn, c ∈ Rm, lb, lu ∈ Rn+m

where J(x) is a scalar objective function, c(x) is a vector of constraint functions,

{lb, lu} are vectors of constant lower and upper bounds on x and c(x), and Ω is the

feasible region for the NLP. Feasible points for the problem posed in Equation 4.25

are those that satisfy all of the problem constraints. Gradient-based approaches,

including sequential quadratic programming (SQP) and interior-point methods, are

the most popular for solving this problem type. SNOPT and IPOPT are well-known
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NLP software that leverage SQP and interior-point methods, respectively [49, 50].

NLP solvers attempt to solve the problem defined in Equation 4.25 by identify-

ing a solution that satisfies the Karush-Kuhn-Tucker first order necessary conditions

[51, 52]. To achieve this, the Lagrangian is defined to be

L(x,λ) = J(x)− λTc(x) (4.26)

The partial derivatives of the Lagrangian with respect to the decision variables x and

the Lagrange multipliers λ provide the first order necessary conditions for solving

the NLP:

∇xL(x,λ) = ∇xJ(x)−GT (x)λ = 0 (4.27)

∇λL(x,λ) = −c(x) = 0 (4.28)

In Equation 4.27, G(x) represents the Jacobian of the constraint functions. The

accuracy of the dense Jacobian entries can have significant effects on the NLP solver’s

ability to converge on a solution satisfying Equations 4.27 and 4.28. Poor Jacobian

accuracy can require additional iterations for the optimizer to converge or lead to

numerical difficulties that prevent a solution from being found.
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4.3 Numerical Differentiation Techniques

Solving an NLP requires calculating the Jacobian of the system constraints. If

analytical expressions for these derivatives are known, it is very beneficial to supply

them directly to the optimizer. However, analytical derivatives are often difficult to

generate or not available for complex problems. In this scenario, it is common prac-

tice to estimate the Jacobian entries numerically, with the most popular technique

being finite differencing. Most NLP solvers include finite differencing capabilities

built into the software. The most commonly used finite differencing formulas are

shown in Equations 4.29 and 4.30.

∂f(x)

∂x
=
f(x+ h)− f(x)

h
+O(h) (4.29)

∂f(x)

∂x
=
f(x+ h)− f(x− h)

2h
+O(h2) (4.30)

While finite differencing presents a straightforward and easy-to-implement

method of derivative approximation, there are several drawbacks to this approach.

First and foremost, the accuracy of the calculated derivative directly corresponds to

the chosen step size h. As indicated in Equations 4.29 and 4.30, the Taylor series

truncation error can be reduced by using a smaller step size, but only up to a certain

point. Choosing a step size too small will increase the floating point round-off error

on a computer, leading to derivative inaccuracies. Additionally, there can be sig-

nificant computational cost associated with finite differencing. Even the first order
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method shown in Equation 4.29 requires multiple function evaluations, and if the

function is computationally expensive to evaluate, this can lead to significant run-

time. This effect is amplified if higher-order approximations are used. As a result,

it is often best to avoid finite-differencing when possible.

Another technique for numerically estimating derivatives is the complex-step

method [53]. In this approach, a truncated Taylor series is also used. However,

unlike in finite differencing, the perturbing step is chosen to be in the imaginary

direction. Performing this truncation and isolating the first derivative term leads to

∂f(x)

∂x
=
im(f(x+ ih))

h
+O(h2) (4.31)

In this expression, there is no subtraction term that could lead to floating point

round-off, as was the case with finite differencing. As a result, the step size can be

chosen to be very small, leading to a derivative estimation accuracy within floating

point precision.

The last numerical differentiation technique used in the research is the dual

number automatic differentiation approach. When using dual numbers, the element

ε is defined to have the following property:

ε2 = 0 (4.32)

Using this property yields the following relationship:

(a+ bε)(c+ dε) = ac+ (ad+ bc)ε (4.33)
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Next, a Taylor series expansion with a perturbation in the dual direction is evaluated.

f(x+ ε) = f(x) + εf ′(x) + ε2
f ′′(x)

2
+ ε3

f ′′′(x)

6
+ ... (4.34)

Applying the property described in Equation 4.32 to Equation 4.34 shows that the

second order and higher terms vanish.

f(x+ ε) = f(x) + εf ′(x) (4.35)

Therefore, the solution from evaluating f(x) with a unity dual part contains the

exact functional derivative in its dual part. This capability has been implemented

in the JuliaDiff library, which provides an efficient and easy-to-use means to calculate

numerically exact derivatives [54].

4.4 Optimization Problem Setup

The goal of the single phase optimal control problem is to determine the tra-

jectory x′ =
[
p(L), f(L), g(L), h(L), k(L)

]
and the control variables u containing

the normalized thrust vector Tn = (ur, uθ, uh) that minimize the objective function

J . Here, the objective function was TOF, as shown in Equation 4.36.

min J = tf (4.36)

subjected to the dynamical constraints of Equations 2.24, 2.29 and 2.30. Addi-

tionally, there were several other constraints. Equation 4.37 arises because the
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time-optimal problem was solved with thrust fixed at the maximum value, with the

only exception being when the spacecraft was shaded in an eclipse.

u2
r + u2

θ + u2
h = 1 (4.37)

Equation 5.1 ensured a continuous transition between the Q-Law phase and the

collocation phase, regardless of the selected transition point.

xopt
(
topt0

)
− xQLaw

(
tQLawf

)
= 0

topt0 − t
QLaw
f = 0 (4.38)

Equation 5.2 enforced the desired terminal condition (i.e geosynchronous orbit).

popt
(
toptf

)
= pdes

f opt
(
toptf

)
= fdes

gopt
(
toptf

)
= gdes (4.39)

hopt
(
toptf

)
= hdes

kopt
(
toptf

)
= kdes

The dynamics were evaluated with L as the independent variable for numerical
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efficiency, but the patch point location and continuity constraints were formulated

with time as the independent variable. No specific fast variable was targeted in

the terminal constraints. When eclipses were present in the collocation phase, the

logistic function allowed for a single phase transfer from the transition point to the

terminal condition. This means the dynamics, including control, were continuous

without any discrete break points. Bounds were also placed on the state and control

variables to ensure that f , g, h, k, ur, uθ, and uh stay within ±1.

The equivalent mass-optimal control problem was also solved using the minimum-

time Q-Law solution TOF as the constrained duration for GPOPS-II. In this for-

mulation, thrust was allowed to vary between zero and Tmax, thus allowing for

non-eclipsed coast arcs. The optimization problem then became

min J = −mf (4.40)

with the normalized thrust path constraint modified to

0 ≤ u2
r + u2

θ + u2
h ≤ 1 (4.41)

and the NLP solver determining both the control direction and magnitude.

4.5 Example: GTO to GEO Transfer

Q-Law was used to generate a solution to a well-known GTO-GEO low-thrust

trajectory problem previously solved in the literature [8, 9, 20]. The Q-Law trajec-
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tory propagation was executed inside Matlab’s built-in genetic algorithm parallelized

across 4 processors [55, 56, 57]. A population size of 50 was used and the gain search

was restricted between 1e-3 and 10 for the elements of interest, Wa, We, Wi. The

algorithm used a crossover fraction of 0.8, migration fraction of 0.2, and a conver-

gence tolerance of 1e-5. Setting WΩ and Wω to zero eliminates those elements from

the thrust vector calculation, allowing Q-Law to focus on the elements of interest

for the GTO-GEO transfer.

4.5.1 Time-Optimal Results

First, it is noted that the Q-Law controls rely on Gauss’s variational equations

which have singularities at e = 0 and i = 0, so eccentricity and inclination just above

zero were targeted for GEO. Additionally, Q-Law asymptotically approaches the

desired orbital elements, so it was very beneficial to specify a convergence tolerance

for each element. The tolerances allowed the Q-Law algorithm to terminate when

the trajectory closely approached the desired orbit, but it resulted in a solution that

did not exactly meet the endpoint conditions. However, allowing the NLP solver to

optimize the last phase of the trajectory improved the solution by both improving the

optimality and ensuring the boundary constraints were satisfied within the NLP’s

tolerances, which are generally much tighter than Q-Law’s. The results are presented

according to the percent of the solution produced by the optimizer in time (e.g. the

50% NLP case refers to the solution where the first 50% of the trajectory in time

was produced by Q-Law and the last 50% was produced by the optimizer). For this
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particular problem, the 50% point in time into the trajectory occurred very close to

the final eclipse. The patch point was placed at the end of the last eclipse and used

as the 50% patch point location to evaluate the computation time when no eclipses

were present in the optimization phase. The Q-Law states were converted to MEE

before use in GPOPS-II and were scaled using lscale as a length scale, tscale as a

time scale, and Lscale as a fast variable scale. The values used for the time and fast

variable scales naturally presented themselves for the chosen GTO-GEO problem,

but the length scale proved to be more sensitive when eclipses were included. Some

trial and error was needed to find a suitable value.

The GTO-GEO initial and target orbits are provided in Table 4.1. The GTO

elements refer to an orbit with a perigee of 6563.6 km, an apogee of 42164.3 km, and

an inclination of 28.5◦. The GEO elements refer to a circular, equatorial orbit with

a radius of 42165 km. Table 4.2 outlines the settings and parameters used for the

dynamics models, Q-Law algorithm, and GPOPS-II. Computations were executed in

Matlab on a Windows laptop with 16 GB RAM and Intel(R) Core(TM) i7-4712HQ

CPU 2.3 GHz processor. Table 4.3 presents the time-optimal results, compared

to previous literature. The 0% solution trajectory and control history are shown in

Figures 4.2a and 4.2b. The 50% solution trajectory and control history are shown in

Figures 4.3a and 4.3b. The 100% solution trajectory and control history are shown

in Figures 4.4a and 4.4b, and the osculating orbital elements for all time-optimal

cases are shown in Figures 4.5a to 4.5c.

Although Q-Law does not exactly meet the endpoint constraints, the NLP

solver ensured that all constraints were met and increased optimality, as demon-
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(a) Q-Law trajectory.

(b) Control history.

Figure 4.2: Q-Law solution from GTO-GEO.

63



(a) Trajectory. Eclipsed portions of the trajectory are black. The top-left figure is an equatorial
projection along the x-y plane, the top right figure is a 3-D view, and the bottom figure is an x-z
projection.

(b) Control history.

Figure 4.3: GTO-GEO solution for the 50% case. The Q-Law phase appears in red
and the GPOPS-II phase in yellow.
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(a) Optimal trajectory

(b) Optimal control history.

Figure 4.4: GPOPS-II solution from GTO-GEO.
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Table 4.1: Initial and target orbits in equinoctial coordinates

Orbit p (km) f g h k
GTO 11359.07 0.7306 0 0.25396 0
GEO 42165 0 0 0 0

(a) Osculating semi-major axis. (b) Osculating eccentricity.

(c) Osculating inclination.

Figure 4.5: Time-optimal osculating orbital elements.
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Table 4.2: Dynamics constants, Q-Law parameters, and GPOPS-II settings.
Constant Value

Universal Time Departure March 22, 2000 00:00:00.000
m0 1200 kg
Isp 1800 s
P 5 kW
λ 1× 10−4

η 0.55
g0 9.80665× 10−3 km /s2

µ♁ 3.9860047× 105 km3/s2

R♁ 6378.14 km
R� 695500 km
J2 1086.639× 10−6

Perturbing Bodies None
Planetary Ephemeris Kernel de430

Q-Law Parameter Value
Wa 2.406
We 1.786
Wi 9.469
WΩ 0
Wω 0
ηa 0
ηr 0

atarget 42165
etarget 0.01
itarget 0.01◦

atol 10 km
etol 0.001
itol 0.01◦

GPOPS-II Setting Value
NLP Solver SNOPT

Derivative Type Central Differences
Collocation Method RPM-Differentiation

Scales Method None
NLP Tolerance 1× 10−6

Mesh Method hp-LiuRao[42]
Mesh Tolerance 1× 10−5

Max Col. Pts 14
Min Col. Pts 2

lscale 17× 103 km
tscale 100× 86400 s
Lscale 50× 2π rads
mscale 1000 kg

Mesh Pts Per Revolution (Non-Eclipsed) 3
Collocation Pts Per Mesh (Non-Eclipsed) 5

Mesh Pts Per Rev. (Eclipsed) 7
Col. Pts Per Mesh (Eclipsed) 5

cs 289.78
ct 1
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strated by the 50% and 100% case results. Using their multi-phase method, Graham

and Rao[20] found a solution with TOF= 121.22 days and ∆m = 172.23 kg, which

is 2.19% longer than the 100% NLP solution. When the patch point was placed

in front of many Q-Law eclipses, which only occurred in the 100% NLP case, the

optimization became more sensitive and sometimes got stuck in a local minimum

near the Q-Law solution. To increase the likelihood of producing a more globally

optimal result and overcome the eclipse induced sensitivity, the 50% NLP case was

included in the guess for the 100% NLP case (i.e. the first half of the initial guess

was produced by Q-Law and the second half by GPOPS-II). The improved solution

optimality and robust convergence was well worth the relatively small computation

time needed to produce the 50% NLP result used in the 100% NLP case initial guess.

However, for a similar transfer with no/fewer eclipses, the 50% case would likely not

need to be included in the initial guess for the 100% case. Additionally, the number

of initial mesh points was increased to 7 for revolutions containing Q-Law eclipses.

This method successfully produced a single-phase, 163-revolution trajectory with

eclipsing from GTO to GEO, but it required significantly more computation time

and mesh refinements than the 50% case. This is because additional mesh points

were required to accurately model the transition phases associated with entering

and exiting an eclipse, and eclipses were not present in the 50% case optimization

phase. When the patch point was placed at the Q-Law trajectory start, the result-

ing TOF is within 0.3% of the averaged solution. The discrepancies likely result

from the errors associated with approximating eclipses with a logistic function and

getting stuck in a local minimum because of an imperfect initial guess. It is noted
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that the computation time for the 0% case (Q-Law only) is the time for one Q-Law

evaluation and not the time required by the genetic algorithm to identify optimal

gains. Genetic algorithm computation time will vary with the computing resources

available for parallelization.

Table 4.3: Time-optimal problem results for varying patch point location and liter-
ature comparison

%NLP %Q-Law TOF (days) ∆m (kg) CPU Time
0 100 119.79 170.81 < 1 min
50 50 119.46 170.30 4 min
100 0 118.62 169.44 2.75 hrs

Graham & Rao[20] - 121.22 172.23 -
Orbital Averaging[8, 9] - 118.35 169.2 -

Although this analysis was able to produce the 100% NLP case, the compu-

tation time needed to produce this solution was very large. This is partly because

the partial derivatives for this problem were estimated using finite differencing. As

previously discussed, this adds computation time and can require more iterations

from the optimizer. The other source of computation time is the inclusion of the

eclipses within the optimization. As more eclipses were introduced, more collocation

points and mesh iterations were needed to accurately represent the thrust dynamics

in the shadow transition region. It may be more desirable for a mission designer to

use gain-tuned Q-Law (rather than NLP solvers) as a means to identify eclipses and

quickly produce an initial solution that is close to optimal. Then, an optimization

of the Q-Law trajectory starting just after the last eclipse will increase solution op-

timality and meet the endpoint constraints without adding significant computation

time.
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4.5.2 Mass-Optimal Results

The 50% mass-optimal problem was also investigated. Similar to the time-

optimal problem previously discussed, a patch point was placed at the 50% point

along the minimum-time Q-Law trajectory, with the phase after the patch point

serving as an initial guess for GPOPS-II. In this analysis, the TOF is fixed as the

Q-Law TOF and the thrust magnitude was allowed to vary between off and Tmax, as

described in Equation 4.41. The same constants, Q-Law parameters, and optimizer

settings as the minimum-time problem were used. The only exception was that

IPOPT with a tolerance of 1× 10−6 was used instead of SNOPT to solve the NLP

because IPOPT was found to be more efficient when thrust magnitude is allowed to

vary. Q-Law’s effectivity checks were then used to investigate the additional TOF

needed for Q-Law to match the propellant savings observed in the 50% mass-optimal

solution. For direct comparison to the 50% mass-optimal case, effectivity checks are

not used until after the 50% patch point. Each solution is described in Table 4.4 and

the resulting trajectories and control shown in Figures 4.6a, 4.6b, and 4.7. Relative

effectivity, as described in Equation 3.27, was used as the cutoff method. Note that

Table 4.4 does not report values for WΩ or Wω as those elements are not targeted

for this problem.

These results highlighted the deficiencies of the effectivity checks, as they

need almost 3 days more flight time to match the GPOPS-II propellant savings

and can be computationally expensive. In the mass-optimal problem, fixing the

TOF saved more than 1 kg of propellant over the initial Q-Law solution. Although
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(a) Mass-optimal solution for 50% case.

(b) Q-Law trajectory with effectivity checks to match
GPOPS-II minimum-mass propellant savings.

Figure 4.6: Mass-optimal and Q-Law effectivity equatorial x-y trajectory projections
for the GTO-GEO 50% Case. Optimal/forced coasts appear in blue.
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Table 4.4: Mass-optimal results for the 50% case and Q-Law with effectivity coasting
mechanism. The 50% time-optimal and original Q-Law solutions are also presented
for comparison.

Problem TOF (days) ∆m (kg) ηr CPU Time (min)
50% Mass-Optimal 119.79 169.19 - 30

Q-Law + Effectivity 122.44 169.19 0.0151 4
Q-Law 119.79 170.81 0 < 1

50% Time-Optimal 119.46 170.30 - 4

Figure 4.7: Normalized thrust magnitude for mass-optimal solution and Q-Law with
effectivity checks. The first 60 days are omitted as they are the same for each case.
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only small propellant savings were found here, this demonstrated the ability to

solve mass-optimal problems using a minimum-time Q-Law guess, which may be

relevant when a properly gain-tuned Q-Law successfully produces a minimum-time

solution whose TOF meets mission requirements. Mission designers could then

constrain the TOF and optimize over any fraction of the Q-Law trajectory to reduce

propellant usage. The mass-optimal problem is generally more difficult to solve, and

the optimized solution demonstrated bang-bang control in the early stages of the

optimized transfer. Figure 4.6a shows that the optimal coast locations occur earlier

along the trajectory near periapsis, and the coasting stops when additional coasts

would violate the TOF constraint. Comparing Figures 4.6a and 4.6b, it can be seen

that Q-Law’s relative effectivity check behaves differently than GPOPS-II and tends

to coast near true anomalies ±π
2
. These coast locations were a result of the large

inclination gain and occurred near the least effective point on the osculating orbit

for reducing Q. Figure 4.7 shows the normalized thrust magnitudes for both cases.
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Chapter 5: Low-Thrust Lunar Transfers

This chapter demonstrates how Q-Law can be used for low-thrust Earth-Moon

transfers as described in References [58, 59]. The optimal low-thrust Earth to Moon

transfer problem has been studied extensively. Many of these efforts employed hy-

brid methods, where parameter optimization is used to directly reduce the cost

function at each iteration and the controls are parameterized by the costate differ-

ential equations. Kluever and Pierson used this method to produce spiral trajecto-

ries from LEO to LLO in the restricted three-body problem [60], and Ozimek and

Howell used the same technique to generate spiral trajectories to periodic orbits in

the Earth-Moon system [61]. Direct methods are another common technique for

producing spiral trajectories. Herman and Conway used this method to generate

low-thrust Earth-Moon transfers [62]. Additionally, Betts used direct collocation to

produce time-optimal and mass-optimal solutions for a trajectory problem similar to

the SMART-1 trajectory. To solve this SMART-1 test problem, Betts’s initial guess

generation efforts required grid scans of velocity-vector thrusting spirals and solv-

ing nonlinear optimization subproblems to generate near-feasible guesses [15]. As

discussed in prior chapters, another technique for generating low-thrust trajectories

is to use Q-Law feedback guidance. Prior Q-Law studies often focused on relatively
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simple planetocentric transfers [22, 23, 32, 63, 64], but Jagannatha et al. expanded

Q-Law’s applicability by using backward propagated Q-Law to design trajectories

from GTO to an Earth-Moon halo orbit [65].

This chapter presents a novel application of Q-Law to generate spiral trajec-

tories to the Moon that provides superior initial guesses and enables trade studies

that were previously too computationally expensive. This new approach joins for-

ward and backward propagated Q-Law phases at a patch point near the Moon’s

sphere of influence to construct end-to-end Earth spiral escape to lunar spiral cap-

ture trajectories. This approach is parallelized and wrapped in a Multi-Objective

Evolutionary Algorithm to explore the mission design space. The resulting Q-Law

solutions provide a strong, feasible initial guess for direct collocation to optimize the

trajectory. The Q-Law trajectories are propagated in a full dynamics model, so ob-

taining a feasible, high-fidelity trajectory for use as an initial guess only requires one

Forward-Backward Q-Law evaluation. This represents a significant advancement in

Lunar spiral transfer initial guess generation as compared to Betts’s approach [15].

The trajectory optimization uses the same transcription method as in Chapter 4.

All trajectory optimization phases are constructed with continuity constraints, re-

sulting in a continuous trajectory within NLP constraint tolerances from the Earth

parking orbit to the target Lunar orbit. The dynamics model can have arbitrarily

high-fidelity and includes eclipses.

The effectiveness of this new method as an initial guess tool is demonstrated on

a problem inspired by the SMART-1 mission, and the results are compared to those

of Betts [15]. Then, Forward-Backward Q-Law is demonstrated as a method for per-
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forming trade studies by analyzing new mission scenarios with modern departure

epochs and an ESPA-class spacecraft. In this first test problem, possible GTO de-

parture epochs and right ascensions were swept through to produce minimum-time

trajectories and identify which rideshare scenario makes Lunar capture most diffi-

cult. Mass-optimal trajectories were also generated to evaluate possible propellant

savings over the minimum-time solutions. In the second test problem, the delivered

mass and arrival epoch were constrained. Then using only backward Q-Law, Pareto

optimal trajectories were found for a spacecraft departing from Low Earth Orbit

(LEO) and arriving at Low Lunar Orbit (LLO). Using these test problems, it is

shown that this approach is very enabling for direct optimization efforts and can

perform trajectory trade studies that were previously prohibitively computationally

expensive. Leveraging this technique allows for efficient trade space exploration and

provides feasible, multi-phase initial guesses for optimal trajectory generation.

5.1 Forward-Backward Q-Law

As discussed in Chapter 3, Q-Law cannot effectively target a specific true

anomaly, and while Q-Law will generally converge to the desired final orbit, the user

will have no control over where on that orbit the spacecraft will arrive. This makes

designing Q-Law trajectories to the Moon particularly difficult as a time-varying

true anomaly needs to be targeted to achieve proper phasing with the Moon. Ad-

ditionally, a Lunar orbiter mission will have a target orbit once captured at the

Moon, which introduces a second phase to the trajectory design problem. To over-
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come the Moon phasing challenge and address the required two trajectory phases,

a forward-backward Q-Law approach was introduced.

Target State

Departure
State

Departure Orbit

Orbit Containing Target State

Standard Q-Law
Thrust Vector

Reversed Q-Law
Thrust Vector

Backward Propagated
Trajectory

Forward Propagated
Trajectory

Backward Q-Law shifts the true anomaly
uncertainty to the departure orbit. 

Figure 5.1: Forward and backward Q-Law comparison.

As depicted in Figure 5.1, backward propagated Q-Law moves the true anomaly

uncertainty to the departure orbit and can be used to target a specific point on an

orbit. By starting at the target state, targeting the departure orbit, and reversing

the calculated thrust vector, backward Q-Law will solve for a trajectory that starts

somewhere on the departure orbit and ends exactly at the target state.

To solve for spiral trajectories to the Moon, backward and forward propagated

Q-Law phases are patched together to target the Moon from the Earth departure

orbit and solve for the Lunar spiral. The patch point location is selected near the

Moon’s sphere of influence to serve as the initial conditions for both the backward

and forward Q-Law phases. An illustration of this methodology is shown in Figure
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5.2, and the forward-backward Q-Law procedure is summarized below.

Figure 5.2: Forward-Backward Q-Law depicted in the Earth-Moon rotating frame.

1. Select patch point location, mass, and epoch. Chosen to be loosely captured

at the Moon in selenocentric orbital elements.

2. Run forward Q-Law in the selenocentric frame from the patch point to the

Lunar target orbit.

3. Convert patch point state to Earth-centered orbital elements.

4. Set Earth-centered path point as initial conditions.

5. Set Earth departure orbit (e.g. GTO) as target.

6. Flip the Q-Law thrust vector within the dynamics model.

7. Propagate backwards in the Earth-centered frame from the target state to the

departure orbit.
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By leveraging the patch point and backward Q-Law, Q-Law’s inability to tar-

get a full state is overcome by shifting the true anomaly variations to the initial and

final orbits. All propagation can be executed in an arbitrarily complex dynamics

model, resulting in a high-fidelity trajectory from the Earth departure orbit to the

Lunar target orbit that is continuous in state, mass, and epoch.

5.2 Optimization Problem Setup

Generating spiral trajectories to the Moon is a two phase optimal control

problem, and the Q-Law solutions were used as initial guesses for these phases. The

optimal control problem setup follows the one described in Section 4.4 with minor

differences in the problem constraints. Equation 5.1 forced the desired initial con-

dition for phase 1 to be the desired Earth departure orbit. The subscript represents

which phase the state and time are in.

x1 (0)− xdes (0) = 0 (5.1)

Equation 5.2 forced the phase 2 terminal condition to be the desired final orbit

at the Moon. The time superscript represents initial or final time, and the state

variable superscript indicates the ECI or rotating selenocentric frame. Although an

MEE state was used for the optimization, the terminal state was converted back to

classical orbital elements to ensure the target orbit is achieved while also allowing

for any desired subset of the orbital elements to remain free.
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a$2
(
tf2

)
− ades = 0

e$2
(
tf2

)
− edes = 0

i$2
(
tf2

)
− ides = 0 (5.2)

Ω$
2

(
tf2

)
− Ωdes = 0

ω$
2

(
tf2

)
− ωdes = 0

Equation 5.3 ensured that the state, mass, and time are continuous through the

transition between phases 1 and 2. Here, ECIQ$ represents the rotation between

the selenocentric and the ECI frames, and xECI$ represents the Moon’s state relative

to Earth in the ECI frame.

xECI1

(
tf1

)
−
[
ECIQ$ (t02)x$

2

(
t02
)

+ xECI$
(
t02
)]

= 0

m1

(
tf1

)
−m2

(
t02
)

= 0 (5.3)

tf1 − t02 = 0

The state and control variable constraints ensured that f , g, h, k stayed within ±2

and so ur, uθ, and uh stayed within ±1. Equations 4.36 and 4.37 or 4.40 and 4.41

were used for time-optimal and mass-optimal problems, respectively. All trajectory
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optimization for this problem used IPOPT as the NLP solver. In the mass-optimal

problem, IPOPT was found to be superior to SNOPT at producing bang-bang coast

arcs on many-revolution trajectories.

5.3 Example: SMART-1 Mission

A trajectory design problem inspired by ESA’s SMART-1 mission was pre-

sented and solved by Betts [15]. He successfully produced spiral trajectories from

GTO to the Moon using the SMART-1 spacecraft specifications and nominal de-

parture orbit. Betts produced his initial guesses through a velocity-vector thrusting

grid scan that searched for the closest approach to the Moon. Then, starting at the

final Lunar orbit, an NLP was defined that varied the spacecraft weight, epoch, true

anomaly, and right ascension such that when the spacecraft was propagated back-

wards in time (assuming retrograde velocity-vector thrusting), the discontinuity to

the end of the Earth-centered spiral phase was minimized. These two spiral phases

were then connected by a Lambert coasting arc. Using this initial guess framework,

Betts computed time-optimal and mass-optimal trajectories. Each solution con-

sisted of three phases: a maximum thrust spiral out, a coast arc into Lunar space,

and a maximum thrust spiral down at the Moon. Eclipsing was not considered.

To demonstrate the capabilities of the forward-backward Q-Law solution as

an initial guess for direct optimization, it was applied to Betts’s trajectory design

problem. The problem parameters used to produce the Q-Law solution and setup

the optimal control software are shown in Table 5.1. Both mission phases included
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Earth, Moon, and Sun gravity, and the Earth spiral out phase included J2−4 gravity

perturbations, as was used by Betts. The selenocentric frame for the Lunar spiral is

defined by the Moon’s angular momentum direction, the intersection of the Moon’s

orbit with the equatorial plane, and the vector that completes the right-hand system.

The basis vectors for this frame are defined as

k̂m =
rm × vm
‖rmxvm‖

, îm =
k̂m × k̂e∥∥∥k̂m × k̂e∥∥∥ , ĵm =

k̂m × îm∥∥∥k̂m × îm∥∥∥ (5.4)

with k̂e = [0 0 1]T and rm, vm as the Moon’s position and velocity at the reference

epoch. The rotation between ECI and selenocentric coordinates is

Q =
[
îm ĵm k̂m

]
. (5.5)

Deviations with a fixed departure epoch and mass can arise because an epoch

and spacecraft mass must be selected for the patch point, and after reverse-propagation,

there is no guarantee that the terminal mass and epoch will align with the desired

departure mass and epoch. For the SMART-1 mission scenario, the Q-Law solution

was only used as an initial guess for the optimizer, which easily resolved any errors

at the initial guess departure epoch or mass from the desired values. As a result,

there was no significant patch point epoch or mass iteration required in the Q-Law

design, and the total computation time for the full GTO-Moon Q-Law solution was

less than a second. Given the large number of revolutions involved in both the

time-optimal and mass-optimal cases, the first optimization iteration was done with
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Table 5.1: SMART-1 Problem Parameters
Mission Parameter
Reference Epoch Dec 20 2002

m0 350 kg
Thrust 73.19 mN
Isp 1675.8 s

Dynamics Constants
g0 9.80665× 10−3 km /s2

µ♁ 3.9860047× 105 km3/s2

µ� 1.32712440018× 1011 km3/s2

µ$ 4.90486× 103 km3/s2

R♁ 6378.14 km
R� 695500 km
R$ 1737.5 km
J2 1086.639× 10−6

J3 −2.565× 10−6

J4 −1.608× 10−6

Planetary Ephemeris Kernel de430

Lunar Patch Point Specification (Rotating Selenocentric Frame)
a 50000 km
e 0.1
i 90.0◦

ω 270◦

Ω 90◦

θ 180◦

Mass 275 kg
Epoch July 31 2003

Backward Q-Law Parameter
Central Body Earth

Wa 10
We 1
Wi 1
Wω 1
WΩ 0
ηa 0
ηr 0

atarget 24661.14 km
etarget 0.7162279
itarget 7◦

ωtarget 178◦

atol 10 km
etol 0.01
itol 0.1◦

ωtol 0.1◦

Forward Q-Law Parameter (ECI Frame)
Central Body Moon

Wa 1
We 1
Wi 1
Wω 1
WΩ 0
ηa 0
ηr 0

atarget 7238.0 km
etarget 0.6217187
itarget 90◦

ωtarget 270◦

atol 10 km
etol 0.01
itol 0.1◦

ωtol 0.1◦

Optimal Control Setting Value
NLP Solver IPOPT

Derivative Type Central Differences
Collocation Method RPM-Differentiation

NLP Tolerance 1× 10−6

Mesh Method hp-LiuRao[42]
Mesh Tolerance 1× 10−4

Max Collocation Pts 14
Min Collocation Pts 2
lscale (Phase 1) 1× 105 km
tscale (Phase 1) 100× 86400 s
lscale (Phase 2) 1× 104 km
tscale (Phase 2) 10× 86400 s

Lscale 2π radians
mscale 1000 kg

Mesh pts per Revolution (Phase 1) 10
Collocation pts per Mesh (Phase 1) 3
Mesh pts per Revolution (Phase 2) 5
Collocation pts per Mesh (Phase 2) 3

83



the patch point fixed in space. This allowed the NLP to move the trajectory around

the patch point in both space and time as needed without optimizing the transition

between the two mission phases, which drastically reduced the complexity of the

problem. A solution was found with less than 1 hour of computation time. The

second iteration used the prior solution as the initial guess and included a dynamic

patch point, resulting in time-optimal and mass-optimal trajectories from GTO to

the target Lunar orbit as shown in Figures 5.3 to 5.5. The results are presented in

Table 5.2 and compared to Betts’s results.

Table 5.2: Trajectory optimization results for the SMART-1 problem and literature
comparison.

TOF (days) Final Mass (kg) Improvement
Betts Time-Optimal 198.38 274.66 -

Time-Optimal 191.97 275.20 6.4 days (3.23%)
Betts Mass-Optimal 201.28 275.00 -

Mass-Optimal 230.0 290.38 15.38 kg (5.59%)

In the time-optimal problem, the solution found using this method outper-

formed Betts as there is no coast arc present in our solution. For the mass-optimal

problem, thrust magnitude was allowed to vary throughout the trajectory, which

presents a more challenging optimal control problem than Betts’s approach of vary-

ing the Lunar-insertion coast arc duration. The mass-optimal solution demonstrates

bang-bang control and involved coast arcs on every revolution, allowing for signifi-

cant propellant savings over the span of the trajectory.
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Figure 5.3: Time-optimal SMART-I trajectory in ECI coordinates.
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Figure 5.4: Mass-optimal SMART-I trajectory in ECI coordinates.
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Figure 5.5: Mass-optimal SMART-I trajectory in rotating selenocentric coordinates.
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5.4 Example: GTO-Moon Mission

In addition to providing suitable initial guesses for direct optimization, forward-

backward Q-Law was found to be a fast and easily parallelizable way to gain valuable

insight into the trajectory trade space without extensive optimization. To demon-

strate this, a new mission scenario was constructed with a modern departure epoch

and ESPA-Class spacecraft with an updated thruster. In this problem, the space-

craft used the Apollo Constellation Engine Max (ACE Max) Hall thruster, which is

a 1 kW class Hall Effect thruster currently in development by Apollo Fusion, Inc.

[66]. The SMART-1 Lunar target orbit was also used and the Lunar frame was

changed to be the body-fixed rotating frame. The new problem and departure orbit

parameters are listed in Table 5.3. A thruster duty cycle was included to account

for possible thrust errors and constraints that limit thruster levels during the actual

mission.

Table 5.3: ESPA-Class Problem specifications.

Mission Parameter
Year 2025
m0 180 (kg)

Thrust 60 (mN)
Isp 1760 (s)

Duty Cycle 95 (%)
a0 24363.99 (km)
e0 0.7306
i0 27◦

ω0 0◦

Ω0 free

To simulate a realistic mission design scenario, possible departure right ascen-

sions and epochs were explored to determine the worst case launch scenario. All
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propagation was done using the same perturbing forces as the SMART-1 problem

with the addition of eclipsing and Lunar J2−4 gravity perturbations. When propa-

gating backwards toward Earth, the inclusion of J2 can make converging to a specific

argument of periapsis and right ascension difficult. The spacecraft mass grows with

the TOF, and when significant changes in argument of periapsis or right ascension

are required, the TOF can increase significantly. To overcome this challenge, a

simplifying assumption was made that the spacecraft will follow a velocity-vector

thrusting profile until perigee is raised past the radiation belts (r = 58000 km),

which reduces the size of the trajectory design problem significantly. This tech-

nique was used on the original SMART-1 mission [2] and was initially planned for

NASA’s DART mission [67]. The backward Q-Law problem was then adjusted such

that it matches the osculating orbit achieved after raising perigee. This intermedi-

ate orbit was much larger than GTO and was less influenced by aspherical gravity

perturbations, thus allowing Q-Law to easily converge. As discussed in Chapter 3,

Q-Law cannot target a specific true anomaly. In order to produce a fully continu-

ous trajectory, an additional convergence constraint was added to Q-Law that en-

forces thrusting until the desired true anomaly on the intermediate orbit is achieved.

Note that Q-Law did not adjust the trajectory to meet this true anomaly, rather

it thrusted to maintain the desired orbit until the target true anomaly is achieved.

This method resulted in a trajectory that followed velocity-vector thrusting from

GTO to an intermediate orbit just outside the radiation belts, backward Q-Law

from that intermediate orbit to the Lunar patch point, and forward Q-Law from the

Lunar patch point to the target Lunar orbit, as shown in Figure 5.6.
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This trajectory was guaranteed to be continuous in position and velocity but

not necessarily in mass and epoch. The discontinuity occurred when the backward

Q-Law converged to the terminal state of the velocity-vector spiral because the patch

point mass and epoch may not match the target values after reverse propagation.

If forward-backward Q-Law is only used for initial guess generation, NLP solvers

can easily eliminate these discontinuities. However, in this analysis, it was sought

to use Q-Law for trade studies and therefore needed to generate continuous, feasible

solutions. To achieve mass and epoch continuity, the forward and backward Q-Law

phases were wrapped in the Borg Multi-Objective Evolutionary Algorithm (MOEA)

found in the JuliaOpt library [68]. The decision variables were the Lunar patch point

location, mass, and epoch and the Q-Law gains for both phases, as listed in Table

5.4. Bounds were placed on the decision vector variables to reduce the search space.

The two objectives are shown in Equations 5.6 to 5.7, where ∆m and ∆t are the

mass and epoch discontinuities at the intermediate orbit, respectively. The TOF

term represents the sum of the backward and forward Q-Law flight times. c1 = 10

worked well at minimizing errors and yielding a low TOF, and typically the solution

with the lowest objective sum was taken as optimal solution. In some cases when the

resulting TOF or errors were too large, the MOEA population was evaluated to find a

more suitable solution along the Pareto front. In this problem, the solution space was

very multi-modal, with many possible combinations of patch point mass and epoch

resulting in a small error after backward propagation. Evolutionary algorithms are

good at bypassing local minima, and the added TOF objective ensured the solutions
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Phase 1: Earth-Centered
Velocity Vector Spiral

Multi-Objective Evolutionary Algorithm

Phase 2: Earth-Centered
Backward Q-Law

Phase 3: Moon-Centered
Forward Q-Law

Departure
Conditions

Vary patch point
state, mass, epoch

Minimize mass and
epoch discontinuities t1

t2

Minimize t2-t1

Arrival
Conditions

Figure 5.6: Forward-Backward Q-Law optimization procedure.

are feasible and close to time-optimal. All propagation was done using the Tsitouras

5/4 Runge-Kutta method implemented in Julia’s differential equation suite [69].

This differential equation suite is very beneficial as the solvers are generally very fast,

event functions can easily be incorporated for eclipsing and orbit convergence, and a

minimum time-step can be specified for variable-step solvers. This is advantageous

because the solver will still meet the required tolerances where it can, and it will

not get stuck due to thruster chatter, a common problem when using variable-step

solvers for complicated Q-Law trajectories.

J1 = c1(|∆m|+|∆t|) (5.6)

J2 = TOF (5.7)

This process was parallelized on a laptop with 8 GB RAM and a 2.6 GHz
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Table 5.4: GTO-Moon Problem MOEA decision vector and bounds.
Patch Point Parameter Lower Bound Upper Bound

epoch (days past target epoch) 40 100
mass 120 (kg) 160 (kg)

a 50000.0 (km) 60000.0 (km)
e 0.3 0.8
i 60◦ 120◦

ω 240◦ 300◦

Ω 0◦ 360◦

θ 180◦ 360◦

Earth Phase Parameter Lower Bound Upper Bound
Wa 0.1 10.0
We 0.1 10.0
Wi 0.1 10.0
Wω 0.1 10.0
WΩ 0.1 10.0

Moon Phase Parameter Lower Bound Upper Bound
Wa 0.1 10.0
We 0.1 10.0
Wi 0.1 10.0
Wω 0.1 10.0
WΩ 0.0 0.0

Quad-Core Intel Core i7 processor to sweep through departure right ascensions and

epochs. The MOEA was limited to 3000 function evaluations, which typically took

15-20 minutes to produce one complete trajectory with minimal mass and epoch

error. It is noted that each Q-Law evaluation took less than 1 second to execute

and produce a trajectory to the Moon, and the iteration was only needed to reduce

mass and epoch discontinuities. The underlying forward-backward Q-Law method is

very computationally efficient and therefore benefits from large-scale parallelization.

The results for the right ascension and departure epoch sweep trajectories

are shown in Figure 5.7. As the departure right ascension approaches 180◦, the

plane change required to properly phase with the Moon increases. These high plane
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change scenarios proved to be much more challenging for Q-Law and resulted in

longer flight times. The high plane change cases, 130◦ ≤ Ω0 ≤ 270◦, benefited

from a larger MOEA population and additional iterations. A population of 250

with a 5000 function evaluation limit was used to better refine the results in these

cases. Cases with departure right ascensions outside this range converged to a low

TOF very quickly and exhibited more stable behavior. Figure 5.7a shows bi-weekly

oscillations in the minimum TOFs across the calendar year, and Figure 5.7c shows

the flight times for Ω0 = 0◦ with the corresponding Lunar distance to Earth at the

end of each radiation belt spiral. It is clear that this oscillation is related to the

variation in Lunar orbital distance because of its slightly eccentric orbit. Figures 5.7b

and 5.7d show the ∆V and required propellant usage for each departure scenario,

respectively. Additionally, during the mission planning phase, it may be beneficial

to gauge the number of engine cycles needed to fly each trajectory. This parameter

sweep provided a useful way to identify possible eclipsing for each departure scenario,

as shown is Figure 5.7e. It is noted that for some departure conditions, the spacecraft

could achieve capture at the Moon with very little eclipsing.

The Q-Law solutions for the January 1 departure scenario were also used

to seed the optimizer to produce time-optimal solutions, as shown in Figure 5.8 for

comparison. The associated mass and epoch discontinuities are shown in Figure 5.9.

Figure 5.8 shows a departure right ascension around 180◦ results in the longest TOF

for both Q-Law and the optimized solution, representing the worst case departure

condition. In all departure scenarios, forward-backward Q-Law produced solutions

near the time-optimal solution, with the closest solutions being less than 5% from
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Figure 5.7: Results of the ESPA-Class Mission departure right ascension and epoch
sweep.
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Figure 5.8: Minimum time solutions for the ESPA-Class Mission with a January 1
departure.
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Figure 5.9: Mass and epoch errors for the trajectories shown in Figure 5.8.
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(a) Q-Law

(b) Time-Optimal

Figure 5.10: Minimum time solutions for a January 1 departure with right ascension
= 90◦.
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the optimal control solution. Q-Law’s TOF is largest with 130◦ ≤ Ω0 ≤ 270◦ because

the required right ascension change is near 180◦ for these transfers. Unlike Q-Law,

the optimal control software was able to optimally leverage 3rd body gravity to

reduce the TOF needed to phase with the Moon, which contributed significantly to

the resulting TOF differences.

The January 1, Ω = 90◦ departure scenario was selected as the test mission

scenario to explore possible propellant savings. A comparison of the Q-Law and

time-optimal trajectories for this scenario are shown in Figure 5.10. To generate

mass-optimal solutions, the same method depicted in Figure 5.6 was used but with

Q-Law’s effectivity-triggered coasting included. The effectivity sampling mesh was

spaced out every 10 degrees in true anomaly. The absolute effectivity constant was

varied on both the backward and forward Q-law phases to produce a TOF-Final

Mass Pareto front. The results from the effectivity sweep were also used as the

optimizer initial guess to produce time and mass-optimal point solutions from the

intermediate orbit outside the radiation belts to the target Lunar orbit.

Q-Law found significant propellant savings when coasting was included, and

in some cases, these savings did not require a large TOF penalty, as shown Figure

5.11. When compared to the optimal solutions, the Q-Law results are within a

few kilograms of spacecraft delivered mass, and they provided very suitable initial

guesses. The trajectory for the mass-optimal point-solution with TOF = 163.63

days, final mass = 146.78 kg is shown in Figures 5.12 and 5.13.
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Figure 5.11: ESPA-Class Mission Final Mass vs. TOF.
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Figure 5.12: Earth-centered mass-optimal trajectory in the inertial frame.
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Figure 5.13: Selenocentric mass-optimal trajectory in the rotating frame.
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5.5 Example: LEO to LLO Transfer

Multi-Objective Evolutionary Algorithm

Phase 2: Earth-Centered
Backward Q-Law Phase 1: Moon-Centered

Backward Q-Law

Departure
Conditions

Vary patch point state, Q-Law
gains, and effectivity constant

Minimize initial
mass,  t1-t0

t0

t1

Arrival
Conditions

Figure 5.14: All Backward Q-Law optimization procedure.

The next mission scenario explored involved a SmallSat class spacecraft trans-

ferring from a circular LEO parking orbit to a polar LLO. In addition to a LEO

rideshare, this mission scenario introduces the possibility of leveraging a low-cost,

small-lift launch vehicle to deliver the spacecraft into LEO. The small-lift launch

vehicle case offers a launch dedicated specifically to the SmallSat and adds signif-

icant scheduling flexibility, which may be advantageous for smaller-scale missions.

Given the higher ∆V associated with transferring between low-altitude orbits, this

spacecraft employed two ACE Max thrusters to reduce flight time. In this problem,

the delivered mass and arrival epoch were constrained, representing the scenario

where mission/science objectives dictate the required delivered dry mass and ar-

rival epoch at the target Lunar orbit. The LEO departure orbit was constrained in

semi-major axis, eccentricity, and inclination, so this scenario assumed the launch
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mass can be tailored and phasing orbits in LEO can be used to meet the modeled

departure state. To solve this problem, Moon-centered backward Q-Law was used

to spiral out from LLO to a patch point, where Earth centered backward Q-Law

then took over to complete the spiral to LEO. In the prior GTO-Moon mission

scenario, the MOEA was needed to reduce the mass and epoch discontinuities that

arise from a fixed departure mass and epoch. An all-backward Q-Law trajectory

has no discontinuities as the departure epoch and mass are free to vary. As a result,

the MOEA wrapped Q-Law solver can directly trade TOF with propellant usage.

To produce the Pareto front, the MOEA varied the Moon-centered Q-Law gains,

effectivity parameter, and target orbital elements. It also varied the Earth-centered

Q-Law gains and effectivity parameter. This process is shown in Figure 5.14. The

decision vector variables and bounds are shown in Table 5.5, and the static problem

parameters are shown in Table 5.6. Note that only semi-major axis and eccentricity

were targeted in the Moon-centered phase. Omitting the other elements greatly

reduced the problem size and produced favorable results compared to when plane

change was included. Each function evaluation within the MOEA resulted in a tra-

jectory that starts at LLO and propagates backward to meet the target semi-major

axis and eccentricity described by the patch point in the current decision vector.

After achieving the target orbital elements, the Earth-centered phase began, which

propagated the trajectory from the patch point down to LEO. The MOEA was

limited to 10000 function evaluations and used a population size of 200.

Figure 5.15 shows that differing arrival right ascensions can result in very

different propellant requirements, with the Ω = 270◦ case performing the best. For
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Table 5.5: LEO-LLO Problem MOEA decision vector and bounds.
Moon Phase Parameter Lower Bound Upper Bound

Wa 0.1 10.0
We 0.1 10.0
Wi 0.0 0.0
Wω 0.0 0.0
WΩ 0.0 0.0
ηr 0.0 0.5

atarget 40000.0 (km) 60000.0 (km)
etarget 0.1 0.8

Earth Phase Parameter Lower Bound Upper Bound
Wa 0.1 10.0
We 0.1 10.0
Wi 0.1 10.0
Wω 0.0 0.0
WΩ 0.0 0.0
ηr 0.0 0.5

Table 5.6: LEO-LLO Problem specifications.

Mission Parameter
Arrival Epoch Jan 1 2025

mf 200 (kg)
Thrust 120 (mN)
Isp 1760 (s)

Duty Cycle 95 (%)

LLO Parameter
a 2000 (km)
e 0.1
i 90◦

ω 0◦

Ω free

LEO Parameter
a 7000.0 (km)
e 0.01
i 27◦

ω free
Ω free
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(a) LEO-LLO propellant usage trades for different LLO right ascensions.

(b) LEO-LLO trajectory for Ω = 0◦. TOF = 306 days.

Figure 5.15: Backward Q-Law solutions for the LEO-LLO scenario.
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both the Ω = 90◦ and 270◦ arrival orbits, the propellant requirements start to flatten

out near TOF = 350 day before quickly dropping off as flight time increases. In

all cases, launch masses less than 310 kg are observed, which falls within typical

rideshare requirements and the lift capabilities of existing small-lift launch vehicles

[70, 71]. This mission scenario presents a challenging trajectory design problem given

the large number of revolutions, coast arcs, and eclipses present. This high-fidelity

mass trade would have required immense computational effort if it were conducted

using other existing optimization techniques like collocation. However, despite the

transfer complexity, combining two backward propagated Q-Law phases and a Multi-

Objective Evolutionary Algorithm allowed for efficient and direct generation of the

propellant usage Pareto front.
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Chapter 6: Low-Thrust Lunar Swingby Escape Trajectories

This chapter is based on the work presented in Reference [72]. Gravity assists

are well-known to provide significant spacecraft ∆V, and are commonly used in in-

terplanetary missions to alter the spacecraft energy and/or orbit plane [73, 74, 75].

Gravity assist sequences can also be applied to more efficiently escape the Earth-

Moon system. This was demonstrated by both STEREO spacecraft, which leveraged

Lunar swingbys to escape from highly eccentric geocentric orbits [76]. The double

Lunar gravity assist sequence has been shown to be very effective at achieving higher

escape C3. Yárnoz et al. extended the database approach of Lantoine and McElrath

to identify many families of double Lunar flyby trajectories [77, 78, 79]. In their

work, a database was constructed by searching through the system configuration

space in the Sun-Earth Circular Restricted Three Body Problem for feasible, bal-

listic Moon-Moon transfers. For a given problem, the database was searched for an

existing solution that meets the required escape condition, which was then used as

the initial guess for a high-fidelity differential corrector.

In this chapter, the focus is on rideshares to GTO where the spacecraft then

escapes under its own power by leveraging Lunar gravity assists. Spiral trajectories

were generated starting from GTO and ending with the first Lunar gravity assist in
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the sequence. This gravity assist either propelled the spacecraft out into interplan-

etary space or altered its Earth-centered orbit such that it encountered the Moon

again for a higher energy escape. These trajectory types were compared with con-

ventional spiral escape solutions for a flyby mission of Comet 45P. All spirals were

generated from backward propagated Q-Law [22, 23, 59], and the Lunar swingby

and interplanetary phases were designed using the Evolutionary Mission Trajectory

Generator (EMTG) [80].

6.1 Perturbed Sims-Flanagan Transcription

The low-thrust model used for the non-spiral portion of this study was based

on the Sims-Flanagan transcription and is shown in Figure 6.1 [81]. The Sims-

Flanagan transcription discretizes the trajectory, with the boundaries of each phase

serving as a control point. A phase has two parts to it. The first half of the trajectory

begins with forward propagation from the previous control point, and the second half

begins with backward propagation starting at the next control point. Continuity

constraints are enforced at the match point between the two parts. Phases are

discretized into N equally-sized time steps, and the spacecraft state is propagated

between time steps by solving Kepler’s equation. Within each time step, impulsive

velocity changes are applied to the spacecraft’s state as an approximation to the

continuous thrusting of a low-thrust engine. The ∆V impulses are limited such that

they cannot exceed the ∆V achievable by the continuously thrusting engine over

the course of one time step. Gravitational perturbations from additional bodies are
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Figure 6.1: A single Sims-Flanagan phase divided into N time steps.

also included in the ∆V applied to the spacecraft to better represent the dynamics

[82, 83].

The forward and backward propagation ∆V impulses were calculated using

Equation 6.1 and Equation 6.2, respectively.

v+
k = v−k +

NactiveDTmax∆tk
mk

uk +
n∑
p=1

−µp
r3
p

rp∆tk (6.1)

v−k = v+
k −

NactiveDTmax∆tk
mk

uk −
n∑
p=1

−µp
r3
p

rp∆tk (6.2)

Here, Nactive is the number of active thrusters, D is the thruster duty cycle, Tmax is

the maximum available thrust for the current time step, ∆tk =
tf−t0
N

, µp is the gravi-

tational parameter of the perturbing body, rp is the distance between the spacecraft

and that body at the time of the impulse, and uk is the kth time step control vector.

The spacecraft mass at the kth time step was calculated as

mk = mk−1 ±‖uk−1‖D∆tkṁmaxk−1
(6.3)
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with a + sign taken during the backward propagation. The mass flow rate was

calculated using Equation 2.10, and the optimization problem was constrained to

ensure more realistic control and dynamics. The control vector at each time step

was constrained such that

‖uk‖ =
√
uxk + uyk + uzk ≤ 1 (6.4)

Additionally, match point constraints were enforced to ensure continuity between

the forward and backward propagated sections of the trajectory. The match point

constraints used the terminal states after forward and backward propagation and

were formulated as:

c = XF
mp −XB

mp =


rB − rF

vB − vF

mB −mF


= 0 (6.5)

Gravity assists, like the one diagrammed in Figure 6.2, were modeled by enforcing

the patched conic approximation shown in Equations 6.6 to 6.8.

v∞+ − v∞− = 0 (6.6)

δ − π − 2 arccos
1

1 + rminv2
∞

µ

≤ 0 (6.7)
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Figure 6.2: Planetary gravity assist.

δ = arccos
v∞−v∞+

v∞−v∞+

(6.8)

6.2 Monotonic Basin Hopping

Monotonic Basin Hopping (MBH) is a global optimization heuristic method

that explores the entire design space. MBH identifies locally optimal solutions and

searches for improvements in other nearby solutions through stochastic variation.

The MBH process consists of two loops: an inner loop and an outer loop. The inner

loop evaluates the current design variables and consists of a gradient-based opti-
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mization scheme that identifies a locally optimal solution. NLP solvers have been

successfully used for this step and have proven to be very effective when applied to

spacecraft trajectory optimization [84, 85]. The outer loop selects values for the de-

sign variables by creating random perturbations on the current best decision vector,

i.e., the decision variables that have produced the best NLP cost function thus far.

By perturbing the current best decision vector, MBH moves the solution guess away

from the current local optima in search of a better solution basin, allowing the NLP

solver to identify a more optimal solution. This process is depicted in Figure 6.3.

A

B

C

D

Hop

Local 
Optimization

Figure 6.3: Monotonic Basin Hopping procedure.
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6.3 Lunar Swingby Design

Prior work on the double Lunar swingby problem has shown that Solar grav-

ity perturbations are key to achieving a naturally occurring V-infinity Leveraging

Maneuver (VILM) [77, 86]. After the first swingby changes apoapsis, the solar per-

turbations can have significant effects on the spacecraft at large orbital distances.

This ∆V can alter the encounter v∞ of the second gravity assist, making it more

efficient for achieving escape. As a result, including these perturbations in the

Sims-Flanagan model is important for generating the Moon-Moon legs in the dou-

ble swingby sequence.

In this work, both single and double Lunar swingbys were explored. In the

single flyby case, the initial state was bounded at the Moon’s position, and a maxi-

mum impulse bound was applied to limit the outgoing v∞. An Earth centered coast

phase takes the spacecraft to the Earth-Moon Sphere of Influence (SOI), with the

remaining mission phases computed using Sun-centered Sims-Flanagan. MBH was

applied to the trajectory optimization decision vector to search the design space.

The perturbed Sims-Flanagan model paired with MBH generally identified single

flyby solutions very quickly.

The double swingby problem is much more difficult than the single flyby case

to solve, and generating an initial solution can be challenging as the Moon-Moon legs

are complicated to design and many families of transfers exist [77]. However, it was

found that leveraging high v∞ single flyby solutions can be a beneficial first step to

design the double flyby sequence. In this approach, a high v∞ single flyby trajectory
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was designed first. Next, the Moon-Moon leg was constructed. In the Moon-Moon

leg, the initial position and v∞ were constrained as before, but now the subsequent

Earth-centered Sims-Flanagan phase targeted the second Lunar encounter for a

Zero Sphere of Influence (ZSOI) flyby that matched the conditions identified by

solving the high v∞ single flyby problem. This approach reduced the search space

by constraining the second Lunar encounter, allowing the MBH to easily identify

an initial solution that ensures the flyby sequence results in an advantageous Earth

escape condition. After the second flyby, the spacecraft exited the Earth’s SOI

into interplanetary space, similar to the single flyby case. Thrusting was allowed

in the Moon-Moon leg so the spacecraft can perform its own low-thrust VILMs in

addition to the perturbations experienced from the Sun. This was advantageous as

the spacecraft did not need to rely on Solar perturbations as the only source of the

∆V needed before the next Lunar encounter. This can reduce Moon-Moon flight

time and transfer complexity over ballistic solutions.

After using this approach to generate an initial feasible solution, the Perturbed

Sims-Flanagan Transcription was used with MBH to evolve the entire trajectory into

a more optimal solution. Then, once an optimal low-fidelity solution was identified,

it was used as an initial guess for a higher-fidelity two-point shooting model. The

two-point shooting transcription is almost identical to the low-fidelity Sims-Flanagan

model. The exception is that instead of using Kepler propagation and treating the

thrust and natural perturbations as bounded impulses, the trajectory is propagated

with an 8th order Runge-Kutta integrator with a realistic acceleration model that

includes both the thrust and n-body gravity perturbations.
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This approach proved to be very effective at generating double Lunar swingby

sequences in EMTG. Figure 6.4 illustrates sample trajectories for each step in the

double swingby design process in the Sun-Earth rotating frame. A description of

the corresponding steps in the double swingby search process is summarized in the

list below.

(1) (2)

(3) (4)

Figure 6.4: Double Swingby trajectory design process.
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1. Generate a Lunar departure high v∞ single flyby trajectory with perturbed

Sims-Flanagan and MBH.

2. Use perturbed Sims-Flanagan and MBH to find a low-thrust Moon-Moon

transfer that targets the flyby conditions identified in Step 1.

3. Evolve the entire trajectory using perturbed Sims-Flanagan and MBH.

4. Refine the solution further using Runge-Kutta two-point shooting and MBH.

To begin the backwards Q-Law propagation, the pre-flyby state was needed.

To determine this, a small NLP was solved to minimize the pre-flyby, Earth-centered

Q. The flyby was modeled as ZSOI, and the patched conic approximation described

in Equations 6.6 to 6.7 was enforced. The NLP solver chose v∞−, thus fully defining

the pre-flyby state with respect to the Moon. The objective, Q, was evaluated after

converting that state to Earth-centered orbital elements. Minimizing the pre-flyby,

Earth centered Q subject to the ZSOI flyby constraints in Equations 6.6 and 6.7

ensured the pre-flyby Earth-centered osculating orbital elements were as close to the

departure orbit as possible, allowing for a more efficient transfer. This calculation

was completed as an intermediate step after EMTG produced a solution.

When propellant usage trades were desired, the Q-Law propagation was wrapped

within the Borg Multi-Objective Evolutionary Algorithm (MOEA) implemented in

the JuliaOpt library. The MOEA varied the Q-Law gains and effectivity parame-

ters to introduce propellant saving coast arcs. This approach was found to be very

effective at generating propellant usage trades.
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EMTG is written in C++, so Q-Law was interfaced with EMTG’s output

through the Python EMTG Automated Trade Study Application (PEATSA) [87].

PEATSA allows for automated trade space exploration for any mission parameters

chosen by the user. The PEATSA studies were parallelized across multiple cores and

setup to call Q-Law after EMTG returns a solution for the case at hand. PEATSA

evaluated the quality of a run based on the propellant usage across Q-Law’s spiral

phase and EMTG’s interplanetary phase.

In this work, spiral escape trajectories were also generated for comparison to

the Lunar gravity assist cases. To generate these trajectories, the EMTG problem

was modified such that the interplanetary phase initial state was placed at the Earth

SOI with a C3 = 0. The Q-Law propagation starts at the SOI state and works

backward down to GTO, resulting in a continuous spiral trajectory that starts in

GTO and ends at the Earth SOI state identified by EMTG.

6.4 Example: Comet 45P Flyby

These approaches were used to generate flyby trajectories with Comet 45P for

a SmallSat spacecraft departing from GTO. Three different escape scenarios were

considered: conventional spiral escape with a C3 = 0, single Lunar flyby, and double

Lunar flyby. The mission parameters used to solve this problem are listed in Table

6.1. The spiral phase dynamics includes Luni-Solar gravity perturbations, J2−4, and

eclipsing.

Figure 6.5 shows some of the double Lunar gravity assist families identified
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Table 6.1: Comet 45P Flyby Problem specifications.

Mission Parameter
Flyby Epoch Bounds Aug 1 2032 - Jan 31 2033

mf 100 (kg)
Max Flyby Velocity 6 (km/s)

Thrust 38 (mN)
Isp 1370 (s)

Duty Cycle 90 (%)

GTO Parameter
a 24363.99 (km)
e 0.7306
i 28.5◦

ω free
Ω free

Q-Law MOEA Parameter Bounds
Wa 0.1 - 10.0
We 0.1 - 10.0
Wi 0.1 - 10.0
ηr 0.0 - 0.3
ηa 0.0 - 0.3

by the MBH in the Sun-Earth rotating frame. In each case, the outgoing v∞ for

the first gravity assist in the sequence was varied, and each solution included low-

thrust VILM’s to influence the second Lunar encounter. Figure 6.6a shows the

interplanetary phase for the double swingby scenario, and Figure 6.6b shows a point

solution for the spiral escape scenario in the ECI frame. Figures 6.6c to 6.6d show

single and double swingby solutions in the Sun-Earth rotating frame.

Figure 6.7 shows the TOF-propellant usage trades for the single and double

swingby cases as well as the escape spiral scenario. The gravity assist cases were

computed with v∞0 varied between 0.4 km/s and 0.7 km/s. As expected, the double

swingby case required the least propellant to achieve the flyby. The second swingby

enabled a higher Earth escape C3 making the interplanetary legs more efficient. As

v∞0 was increased, the propellant cost for the mission was generally reduced, with
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Figure 6.5: Families of low-thrust Moon-Moon transfers to Comet 45P identified by
MBH. Transfers are shown for v∞0 = 0.5, 0.6, and 0.7 km/s.

the exception being the v∞0 = 0.7 km/s single swingby case. For some TOF ranges,

the v∞0 = 0.6 km/s case actually performed better, despite the lower escape C3.

This occurred because the higher v∞0 can yield a less favorable spiral orientation

that required more thrusting to transfer from GTO. Figure 6.8 demonstrates this,

as the v∞0 = 0.7 km/s spiral’s apoapsis extends farther beyond the Moon’s orbit.
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(a) Double Lunar gravity assist interplanetary phase.

(b) Spiral escape with C3 = 0 in ECI frame.

Figure 6.6: Sample escape trajectories to Comet 45P.
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(c) Single Lunar gravity assist with v∞0
= 0.7 km/s.

(d) Double Lunar gravity assist with v∞0
= 0.7 km/s.

Figure 6.6: Sample escape trajectories to Comet 45P.
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Figure 6.7: Comet 45P flyby mass trade for the spiral escape, single Lunar gravity
assist, and double Lunar gravity assist cases.

Tisserand plots were introduced by Strange and Lunguski as a graphical tool

for interplanetary gravity assist tour design [88]. The method uses Tisserand’s

criterion, shown in Equation 6.9, to identify contours of constant v∞ that show how

the spacecraft’s orbit can change due to gravity assists. Figure 6.9 shows an energy

Tisserand plot for the Earth-Moon system with the double swingby states included.

The gravity assists do not move the spacecraft state exactly along the v∞ contour

because the contours were generated under the approximations that the planetary

body is in a circular orbit and the spacecraft lies in the same plane as the perturbing

body. The Moon’s slight eccentricity and the out-of-plane component of the Moon-
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(a) v∞0
= 0.6 km/s.

(b) v∞0 = 0.7 km/s.

Figure 6.8: Single gravity assist solutions in the ECI frame.
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Moon legs violate those approximations, moving the spacecraft off the constant v∞

line. Additionally, the Solar gravity perturbations and low-thrust VILMs provide

the jump between the two flyby’s, enabling the second swingby to achieve a higher

escape energy.

T =
rplanet
a

+ 2

√
a(1− e2)

rplanet
cos i (6.9)

Figure 6.9: Earth-centered E-rp Tisserand plot with before and after flyby states
included. LGA1 and LGA2 refer to the first and second Lunar gravity assists,
respectively.
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Chapter 7: Derivation and Application of Analytical Partial Deriva-

tives of the Q-Law Thrust Vector

This chapter derives and applies the partial derivatives of the Q-Law thrust

vector for a novel Q-Law shooting formulation as presented in Reference [89, 90].

Typically, Q-Law has been used within an evolutionary algorithm to stochastically

vary the element gains to achieve more optimal solutions [29, 32, 34, 58, 65]. Al-

though one Q-Law execution is very efficient, thousands of evaluations within an

evolutionary algorithm will add up to considerable computation time. Gradient-

based optimization methods typically require fewer function evaluations than evolu-

tionary algorithms but converge to a locally optimal solution. This work extended

the Q-Law gain tuning effort to gradient-based optimization by leveraging nonlin-

ear programming to search for locally optimal Q-Law gain combinations and to

enforce nonlinear constraints on the initial state. This was achieved by formulating

the trajectory optimization as a Q-Law shooting problem. Additionally, the Q-Law

shooting NLP was extended to include the well-known Sims-Flanagan interplanetary

model [81]. Combining these two methods enabled the direct design of interplane-

tary spiral escape/capture missions as the cruise and spiral phases were designed in

the same optimization problem.
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As discussed in Section 4.3, NLP solvers can estimate the derivatives needed

for each optimization step through finite differencing, but this approach is slow and

can lead to derivative inaccuracy due to numerical truncation error, resulting in the

solver taking sub-optimal steps during its line search. To overcome this, analyti-

cal partial derivatives are highly sought after in spacecraft trajectory optimization.

When available and correctly implemented, they can have significant effects on the

efficiency and accuracy of the solver [91, 92]. This chapter presents the deriva-

tion of the Q-Law thrust vector partial derivatives with respect to the gains and

current spacecraft state and their application to trajectory optimization. These

derivatives are required to generate a state transition matrix (STM) that contains

the constraint sensitivities for the NLP solver. Matlab’s symbolic toolbox was used

to generate some derivative expressions, and all analytical derivatives were verified

using complex-step and dual numbers.

To demonstrate the capabilities of combining Q-Law with gradient-based opti-

mization and the effectiveness of the analytical partial derivatives, several example

problems were setup and solved. First, a Q-Law multiple shooting problem was

formulated and tested on a common GTO-GEO transfer problem. The shooting

problem was solved with both analytical derivatives and finite differencing as well

as a variable number of trajectory phases to evaluate the effects on cost function

and convergence rate. The logistic eclipse model detailed in Section 2.3 was im-

plemented to provide a smooth power transition through the Earth’s shadow [21].

A logistic coasting function was also developed to limit the spacecraft thrust avail-

able at user-defined true anomaly ranges, providing a smooth, analytical coasting
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mechanism that can be used within the NLP. Next, Q-Law shooting was used to

aid in the design of low-thrust transfers to the Moon. Shannon et al. introduced

the use of backward propagated Q-Law to rapidly design spiral transfers to the

Moon, and they used a multi-objective evolutionary algorithm (MOEA) to reduce

mass and epoch errors after the backward propagation [58, 59]. In this work, it

is shown that Q-Law shooting improves upon this approach and can enforce mass

and epoch boundary constraints to within NLP tolerance. This added capability

enables Q-Law to exactly target a terminal state, mass, and epoch and results in

a higher fidelity trajectory to the Moon. In addition to Q-Law-only transfers in-

side the NLP, the Q-Law shooting method can be extended to combine with other

NLP transcription methods. For example, Q-Law shooting was combined with the

Sims-Flanagan interplanetary model [81], which resulted in a single optimization

problem that encompassed both the spiral escape/capture and the interplanetary

phases. This represents a significant advancement in end-to-end trajectory design

as the common preliminary design approach is to use Edelbaum’s equation, which

limits the spirals to circular orbits and does not include eclipsing or coast arcs [93].

Using Q-Law shooting for the spiral phases yields more accurate flight time and pro-

pellant requirement estimates, and it lets the optimizer vary the design variables in

an effort to minimize a global cost function for the full trajectory. These capabilities

were demonstrated on a Mars transfer and capture spiral trajectory and a Lunar

swingby escape spiral trajectory to Comet 45P. In each example problem, SNOPT

was used to solve the NLP [50].
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7.1 Computation of the Q-Law Thrust Vector Partial Derivatives

First the partials derivatives of ∂Q
∂œ

with respect to the gains are needed. Taking

the partials of Equation 3.24:

∂2Q

∂œ∂Wa

=
∂

∂Wa

∂P

∂œ
W TV +

∂

∂Wa

(1 +WPP )W T ∂V

∂œ
(7.1)

∂2Q

∂œ∂Wa

=
∂P

∂œ

∂W T

∂Wa

V + (1 +WPP )
∂W T

∂Wa

∂V

∂œ
(7.2)

∂2Q

∂œ∂Wa

=
∂P

∂œ
[1, 0, 0, 0, 0]V + (1 +WPP )[1, 0, 0, 0, 0]

∂V
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(7.3)

∂2Q
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=
∂P

∂œ
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[
d(a, aT )

ȧxx

]2

+ (1 +WPP )
∂Va
∂œ

(7.4)

The partials derivatives with respect to the other gains are derived in a similar

fashion.

∂2Q

∂œ∂We

=
∂P

∂œ
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[
d(e, eT )

ėxx

]2
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∂2Q

∂œ∂WΩ

=
∂P

∂œ
SΩ

[
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Ω̇xx
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Now, using ∂2Q
∂œ∂Wœ

, the D1, D2, and D3 coefficient derivatives can be found, leading

to the thrust vector gain partial derivatives.

7.1.1 Partial Derivatives With Respect to Wa
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7.1.2 Partial Derivatives With Respect to We
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7.1.3 Partial Derivatives With Respect to Wi
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7.1.4 Partial Derivatives With Respect to Wω
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7.1.5 Partial Derivatives With Respect to WΩ
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Next, the thrust vector partial derivatives with respect to the spacecraft state

are found. First, the partial derivatives of Equations 3.20 to 3.22 are taken. In this

step, symbolic derivatives were used to find expressions for the Hessian elements of

Q.

7.1.6 Partial Derivatives With Respect to Semi-Major Axis
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7.1.7 Partial Derivatives With Respect to Eccentricity
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(7.46)

∂D3

∂e
=

∂2Q

∂œ∂e

∂œ̇

∂fh
+
∂Q

∂œ

∂2œ̇

∂fh∂e
(7.47)

∂ur
∂e

=
D2(D1

∂D1

∂e
+D2

∂D2

∂e
+D3

∂D3

∂e
)

(D2
1 +D2

2 +D2
3)3/2

−
∂D2

∂e√
D2

1 +D2
2 +D2

3

(7.48)

∂uθ
∂e

=
D1(D1

∂D1

∂e
+D2

∂D2

∂e
+D3

∂D3

∂e
)

(D2
1 +D2

2 +D2
3)3/2

−
∂D1

∂e√
D2

1 +D2
2 +D2

3

(7.49)

∂uh
∂e

=
D3(D1

∂D1

∂e
+D2

∂D2

∂e
+D3

∂D3

∂e
)

(D2
1 +D2

2 +D2
3)3/2

−
∂D3

∂e√
D2

1 +D2
2 +D2

3

(7.50)

7.1.8 Partial Derivatives With Respect to Inclination

∂D1

∂i
=

∂2Q

∂œ∂i

∂œ̇

∂fθ
+
∂Q

∂œ

∂2œ̇

∂fθ∂i
(7.51)
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∂D2

∂i
=

∂2Q

∂œ∂i

∂œ̇

∂fr
+
∂Q

∂œ

∂2œ̇

∂fr∂i
(7.52)

∂D3

∂i
=

∂2Q

∂œ∂i

∂œ̇

∂fh
+
∂Q

∂œ

∂2œ̇

∂fh∂i
(7.53)

∂ur
∂i

=
D2(D1

∂D1

∂i
+D2

∂D2

∂i
+D3

∂D3

∂i
)

(D2
1 +D2

2 +D2
3)3/2

−
∂D2

∂i√
D2

1 +D2
2 +D2

3

(7.54)

∂uθ
∂i

=
D1(D1

∂D1

∂i
+D2

∂D2

∂i
+D3

∂D3

∂i
)

(D2
1 +D2

2 +D2
3)3/2

−
∂D1

∂i√
D2

1 +D2
2 +D2

3

(7.55)

∂uh
∂i

=
D3(D1

∂D1

∂i
+D2

∂D2

∂i
+D3

∂D3

∂i
)

(D2
1 +D2

2 +D2
3)3/2

−
∂D3

∂i√
D2

1 +D2
2 +D2

3

(7.56)

7.1.9 Partial Derivatives With Respect to Argument of Periapsis

∂D1

∂ω
=

∂2Q

∂œ∂ω

∂œ̇

∂fθ
+
∂Q

∂œ

∂2œ̇

∂fθ∂ω
(7.57)

∂D2

∂ω
=

∂2Q

∂œ∂ω

∂œ̇

∂fr
+
∂Q

∂œ

∂2œ̇

∂fr∂ω
(7.58)

∂D3

∂ω
=

∂2Q

∂œ∂ω

∂œ̇

∂fh
+
∂Q

∂œ

∂2œ̇

∂fh∂ω
(7.59)
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∂ur
∂ω

=
D2(D1

∂D1

∂ω
+D2

∂D2

∂ω
+D3

∂D3

∂ω
)

(D2
1 +D2

2 +D2
3)3/2

−
∂D2

∂ω√
D2

1 +D2
2 +D2

3

(7.60)

∂uθ
∂ω

=
D1(D1

∂D1

∂ω
+D2

∂D2

∂ω
+D3

∂D3

∂ω
)

(D2
1 +D2

2 +D2
3)3/2

−
∂D1

∂ω√
D2

1 +D2
2 +D2

3

(7.61)

∂uh
∂ω

=
D3(D1

∂D1

∂ω
+D2

∂D2

∂ω
+D3

∂D3

∂ω
)

(D2
1 +D2

2 +D2
3)3/2

−
∂D3

∂ω√
D2

1 +D2
2 +D2

3

(7.62)

7.1.10 Partial Derivatives With Respect to Longitude of Ascending

Node

∂D1

∂Ω
=

∂2Q

∂œ∂Ω

∂œ̇

∂fθ
+
∂Q

∂œ

∂2œ̇

∂fθ∂Ω
(7.63)

∂D2

∂Ω
=

∂2Q

∂œ∂Ω

∂œ̇

∂fr
+
∂Q

∂œ

∂2œ̇

∂fr∂Ω
(7.64)

∂D3

∂Ω
=

∂2Q

∂œ∂Ω

∂œ̇

∂fh
+
∂Q

∂œ

∂2œ̇

∂fh∂Ω
(7.65)

∂ur
∂Ω

=
D2(D1

∂D1

∂Ω
+D2

∂D2

∂Ω
+D3

∂D3

∂Ω
)

(D2
1 +D2

2 +D2
3)3/2

−
∂D2

∂Ω√
D2

1 +D2
2 +D2

3

(7.66)

∂uθ
∂Ω

=
D1(D1

∂D1

∂Ω
+D2

∂D2

∂Ω
+D3

∂D3
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)

(D2
1 +D2

2 +D2
3)3/2

−
∂D1

∂Ω√
D2

1 +D2
2 +D2

3

(7.67)
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∂uh
∂Ω

=
D3(D1

∂D1

∂Ω
+D2

∂D2

∂Ω
+D3

∂D3
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)

(D2
1 +D2

2 +D2
3)3/2

−
∂D3

∂Ω√
D2

1 +D2
2 +D2

3

(7.68)

7.1.11 Partial Derivatives With Respect to True Anomaly

∂D1

∂θ
=

∂2Q

∂œ∂θ

∂œ̇

∂fθ
+
∂Q

∂œ

∂2œ̇

∂fθ∂θ
(7.69)

∂D2

∂θ
=

∂2Q

∂œ∂θ

∂œ̇

∂fr
+
∂Q

∂œ

∂2œ̇

∂fr∂θ
(7.70)

∂D3

∂θ
=

∂2Q

∂œ∂θ

∂œ̇

∂fh
+
∂Q

∂œ

∂2œ̇

∂fh∂θ
(7.71)

∂ur
∂θ

=
D2(D1

∂D1

∂θ
+D2

∂D2

∂θ
+D3

∂D3

∂θ
)

(D2
1 +D2

2 +D2
3)3/2

−
∂D2

∂θ√
D2

1 +D2
2 +D2

3

(7.72)

∂uθ
∂θ

=
D1(D1

∂D1

∂θ
+D2

∂D2

∂θ
+D3

∂D3

∂θ
)
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∂D1
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1 +D2
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(7.73)

∂uh
∂θ

=
D3(D1

∂D1

∂θ
+D2

∂D2

∂θ
+D3

∂D3

∂θ
)

(D2
1 +D2

2 +D2
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−
∂D3

∂θ√
D2

1 +D2
2 +D2
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(7.74)

7.1.12 Partial Derivatives With Respect to Mass

∂D1

∂m
=

∂2Q

∂œ∂m

∂œ̇

∂fθ
+
∂Q

∂œ

∂2œ̇

∂fθ∂m
(7.75)
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∂D2

∂m
=

∂2Q

∂œ∂m

∂œ̇

∂fr
+
∂Q

∂œ

∂2œ̇

∂fr∂m
(7.76)

∂D3

∂m
=

∂2Q

∂œ∂m

∂œ̇

∂fh
+
∂Q

∂œ

∂2œ̇

∂fh∂m
(7.77)

∂ur
∂m

=
D2(D1

∂D1

∂m
+D2

∂D2

∂m
+D3

∂D3

∂m
)

(D2
1 +D2

2 +D2
3)3/2

−
∂D2

∂m√
D2

1 +D2
2 +D2

3

(7.78)

∂uθ
∂m

=
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∂D1

∂m
+D2

∂D2

∂m
+D3

∂D3
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)
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(7.79)

∂uh
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=
D3(D1

∂D1

∂m
+D2

∂D2

∂m
+D3

∂D3
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)

(D2
1 +D2

2 +D2
3)3/2

−
∂D3

∂m√
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1 +D2
2 +D2
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(7.80)

7.2 Shooting Methods

Shooting algorithms use a simulation of the system to evaluate the initial con-

ditions and control variables. The trajectory segment(s) is repeatedly propagated,

and after each evaluation, a differential correction scheme or optimizer adjusts the

initial conditions and control variables to satisfy a set of constraints. If used within

an NLP, a cost function containing the state and/or control variables will be mini-

mized as well. The propagate-and-update process is repeated until the constraints

are satisfied within a specified tolerance and the cost function is minimized.

The most basic form of the shooting architecture is the single shooting prob-
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lem, which is shown in Figure 7.1. In this problem, only one trajectory arc is present,

and the initial conditions and/or control variables are adjusted to directly evaluate

their effect on the final state after propagating a duration of time T . The constraint

x(T )−xTarget = 0 is enforced to ensure the target state is hit, and the cost function

J(x0,u) is minimized.

Reference Trajectory

Target Trajectory

𝒙!, 𝒖

𝒙!, 𝒖*

𝒙"#$%&'
𝑇

𝑇

Figure 7.1: Single shooting.

The multiple shooting approach is similar to the single shooting approach, with

the exception that there are multiple trajectory segments now present. By dividing

the trajectory into multiple arcs, the problem sensitivity can be reduced. This is very

beneficial when one or more phases of the trajectory occur in more sensitive dynamic

regimes, such as a close pass to a planetary body. Subdividing the trajectory can

localize these sensitivities to one segment rather than propagating the global initial

conditions all the way through, as is done in single shooting. Additionally, solution

accuracy can be improved. This occurs because numerical integration errors grow

with time, so multiple subarcs with shorter propagation times reduce the overall
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errors within the trajectory. A depiction of a multiple shooting scheme is shown in

Figure 7.2. For an N segment problem,
∑N−1

i=1 x
f
i −x0

i+1 = 0 is enforced as continuity

constraints between the segments. The arrival constraint and cost function are

defined the same as in the single shooting problem.

𝒙!", 𝒖1
𝒙#$%&'(𝒙)", 𝒖2

𝒙!
*

𝒙)
*

𝒙+
*

𝒙,
*

𝒙+", 𝒖3 𝒙,", 𝒖4
𝑻!

𝑻)

𝑻+

𝑻,

Figure 7.2: Multiple shooting.

7.3 Q-Law Shooting Setup

For a particular Q-Law trajectory, the control variables are the gains, Wœ, and

the spacecraft state is defined as

x = [a, e, i, ω,Ω, θ,m]T (7.81)

When Q-Law was used within an NLP, the solver chooses the gains in order to

optimize the flight time cost function, as shown in Equation 7.82. Additionally,

constraints like Equation 7.83 were enforced to ensure the final state after integra-

tion satisfies the desired terminal boundary condition. To effectively optimize the

objective function and satisfy the constraints, the NLP decision vector X, shown in
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Equation 7.84, includes the initial state, the element gains, and the mission flight

time. The initial state in Equation 7.84 can represent the initial conditions for for-

ward or backward propagation. Also, the decision vector can be augmented with

additional gain combinations and intermediate states for the multiple shooting for-

mulation.

J = tf (7.82)

c = xdes − F (x0,W , tf ) = 0 (7.83)

X =
[
a0, e0, i0, ω0,Ω0, θ0,m0,Wa,We,Wi,Wω,WΩ, tf

]T
(7.84)

For an NLP solver to enforce the constraint in Equation 7.83 and minimize the

cost in Equation 7.82, the sensitivities of the final state to the initial state, gains,

and flight time were needed. These sensitivities make up the STM, Φ, which is

defined as

Φ =
∂Xf

∂X0

=

[
∂Xf

∂x0

,
∂Xf

∂W
,
∂Xf

∂tf

]
(7.85)

and evolves according to Equations 7.86 through 7.90.

Φ̇ = AΦ (7.86)
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Φ(t0) = 1 (7.87)

A =
∂f(X)

∂X
(7.88)

Ẋ = f(X) (7.89)

X(t0) = X0 (7.90)

The STM was integrated alongside the trajectory to yield the final sensitivity

matrix, which was reported to the NLP solver. However, the state dynamics and A

matrix depend on the Q-Law thrust vector, u = (ur, uθ, uh), which in turn depends

on the current state and gains. In order to evaluate the A matrix at each time step

during the integration, the partial derivatives of the thrust vector with respect to

the current state, ∂u
∂x

, and gains, ∂u
∂W

, were needed.

As demonstrated by Pellegrini and Russell [94], fixed-step integrators are most

suitable when using the variational equations to generate a trajectory STM. A fixed-

step is advantageous because the time step is chosen independent of the decision

variables, whereas variable-step integrators adjust the step size according to error

estimates dependent on the prior step. To accurately generate the STM, the partial

derivatives of the time step with respect to the NLP decision variables are required,

as shown for a generic explicit Runge-Kutta step in Equations 7.91 to 7.97. An RK
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integration step with s stages is defined as

Xn+1 = Xn +
s∑
i=1

biki (7.91)

where bi are the quadrature weights for the given method and

k1 = f(tn,Xn)h

ki = f(ti + cih,Xn(i))h

(7.92)

In Equation 7.92, Xn(i) represents the state vector at the ith stage of the current

(nth) integration step and is defined as

Xn(i) = Xn +
i−1∑
j=1

aijkj (7.93)

The values for bi, ci, and aij can be obtained from the Butcher tableau for the

chosen RK method. To determine the STM update equation for a given RK step,

the partial derivatives of Equation 7.91 are taken with respect to the initial state.

∂Xn+1

∂X0

=
∂Xn

∂X0

+
s∑
i=1

bi
∂ki
∂X0

(7.94)

Taking the partial derivatives of the definition in Equation 7.92 yields

∂ki
∂X0

= f(ti + cih,Xn(i))
∂h

∂X

∣∣∣∣
(ti+cih,Xn(i))

∂Xn(i)

∂X0

+h
∂f

∂X

∣∣∣∣
(ti+cih,Xn(i))

∂Xn(i)

∂X0

(7.95)
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∂ki
∂X0

=

f(ti + cih,Xn(i))
∂h

∂X

∣∣∣∣
(ti+cih,Xn(i))

+ h A|(ti+cih,Xn(i))

Φn(i) (7.96)

with Φn(i) being the STM value at the ith stage of the current (nth) integration

step. Substituting back into Equation 7.94 and using the definition in Equation

7.85 results in the STM update equation.

Φn+1 = Φn +
s∑
i=1

bi

f(ti + cih,Xn(i))
∂h

∂X

∣∣∣∣
(ti+cih,Xn(i))

+ h A|(ti+cih,Xn(i))

Φn(i)

(7.97)

A nominal time step was used for all integration steps up until a final targeting step

which matched the flight time decision variable exactly. As a result, ∂h
∂X

= [0, 0, ..., 0]

for all steps except the final integration step, where h = tf − t and ∂h
∂X

= [0, 0, ..., 1].

The most basic Q-Law NLP formulation takes the form of a single shooting

problem. Additional phases were introduced within the Q-Law trajectory for a mul-

tiple shooting formulation, with the NLP decision vector augmented to include the

initial state and gains for each phase. The NLP solver then identified the optimal

gains for each phase. Since more phases were introduced, solution optimality in-

creased as more optimal gain combinations can be used for the varying dynamical

environment. However, including additional phases resulted in a larger number of

control variables and defect constraints between the terminal and initial states of

two consecutive phases, thus increasing NLP size and complexity. In the multi-
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ple shooting problem, a new STM was constructed for each phase and propagated

alongside the spacecraft to determine the sensitivities of the resulting defect con-

straints to the phase initial state. The Q-Law multiple shooting concept is depicted

in Figure 7.3.

Nonlinear Programming Problem

Departure
Conditions

t1
x1
W1

Arrival
Conditions

tN-1
xN-1
WN-1

t0
x0
W0

Φ0    Φ1    ΦN-1    

N Phase Q-Law Multiple Shooting 

c1

cN-1

Figure 7.3: Q-Law multiple shooting optimization procedure.

When Q-Law shooting was combined with other trajectory design methods

like the Sims-Flanagan model, the NLP decision vector was augmented to include

the new design variables, as shown in Equation 7.98.

X =
[
XSF ;XQ−Law

]
(7.98)

If true anomaly coasting or a Sims-Flanagan phase was included in the opti-

mization problem, the decision vector was modified to include a variable representing

the final mass after the Q-Law propagation, as shown in Equation 7.99. Equations

7.100 and 7.101 show the nonlinear constraint that was enforced to ensure this rela-

tionship. The cost function can then be changed to include this variable, directing
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the NLP solver to optimize the spacecraft mass after the Q-Law propagation. This

was very beneficial because if the cost function listed in Equation 7.82 was used for

a mass-optimal problem when a Sims-Flanagan phase was included, it could drasti-

cally change the interplanetary solution in an attempt to minimize the mass at the

beginning of the spiral, thus yielding the highest specific acceleration and smallest

spiral flight time. Conversely, this new cost function let the optimizer vary the in-

terplanetary and spiral decision variables to yield the best possible initial/final mass

for the entire trajectory. An example cost function that would be used to maximize

final mass for a planetary spiral down problem is shown in Equation 7.102.

X =
[
a0, e0, i0, ω0,Ω0, θ0,m0,Wa,We,Wi,Wω,WΩ, tf ,m1

]T
(7.99)

[
af , ef , if , ωf ,Ωf , θf ,mf

]T
= F (x0,W , tf ) (7.100)

cm = mf −m1 = 0 (7.101)

J = −m1 (7.102)

Analytical partial derivatives of the Sims-Flanagan model were derived by

Ellison et al. and implemented in EMTG [91, 92]. Their work clearly demonstrates

the benefits of numerically exact partial derivatives for this model. As a result,

accurate sensitivities of the Sims-Flanagan model were obtained through the use of
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dual numbers in the JuliaDiff library [54].

7.4 Logistic Function Coasting

Eclipses pose a challenge when designing many-revolution low-thrust trajecto-

ries because the thrust must be limited while in the shadow. Conventional Q-Law

is a very powerful tool for this problem because event detection root-finding can be

applied during the propagation to precisely detect shadow-crossings. Unfortunately,

this was not applicable when using analytical derivatives in the Q-Law shooting

formulation. The STM was propagated alongside the trajectory, and a root-finding

scheme that introduces a discontinuous drop in thrust/power available posed a prob-

lem for gradient-based optimizers. As a result, the eclipsing model used within the

Q-Law propagation leveraged the same smooth logistic function as the collocation

sections of this research [21].

Additionally, Q-Law’s usual coasting mechanism, effectivity, is not analytical

and therefore cannot be applied within the shooting problem. However, another

logistic function was used to enforce coasting at certain true anomaly ranges. By

constraining the thrust or power available to follow Equation 7.103, the mission de-

signer can force the spacecraft into a coast when it enters the specified true anomaly

region, as shown in Figure 7.4. In Equation 7.103, θL and θU represent the lower

and upper bounds on the true anomaly coast region, respectively. It was found that

cθ = 50 worked well for larger true anomaly ranges and cθ > 100 was more effective

when the coasting range was less than 10 deg wide.
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L =
1

1 + ecθ(θ−θL)(θU−θ)
(7.103)

Figure 7.4: Logistic function coasting at 150◦ ≥ θ ≤ 210◦ with cθ = 100.

A fixed step 4th order Runge-Kutta integration scheme was used to propagate

the spacecraft state and STM inside the NLP. This was beneficial as it is faster than

higher-order methods, and variable-step integrators require the partial derivatives

of the step-size with respect to the current state and are prone to Q-Law thruster

chatter. However, the fixed-step integration has errors associated with each step and

oversteps both the eclipse shadow entry and exit points and the user-defined coast

range. Prior work that employed the logistic eclipse model solved the entire tra-
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jectory optimization problem iteratively, placing integration steps closer and closer

to the exact shadow crossings. Given Q-Law’s closed-loop nature, the iterative ap-

proach was avoided. The fixed step integration errors during the NLP propagation

were accepted because the optimal gains/states found by solving the NLP were ap-

plied to a high-fidelity (HiFi) model that leveraged variable-step integration and

precise event detection. The NLP then served as a means to identify optimal pa-

rameters for the lower-fidelity, fixed-step trajectory problem with the intent that

they are used later in a high-fidelity model that exactly enforced events like shadow

detection and true anomaly coasting and ensured error tolerances were met.

7.5 Example: GTO to GEO Transfer

A well-known GTO to GEO problem was solved to demonstrate the effec-

tiveness of the analytical partial derivatives in the Q-Law shooting formulation

[8, 9, 20, 29]. In this problem, the spacecraft was affected by eclipsing and J2.

The gain combination found by Shannon et al. was used as part of the NLP initial

guess [29]. The orbits and problem parameters used for this problem are shown in

Tables 7.1 and 7.2, respectively.

Table 7.1: Initial and target orbits

Orbit a (km) e incl (deg) ω (deg) Ω (deg)
GTO 24363 0.7306 28.5 0 0
GEO 42165 0 0 - -

The results of this study are summarized in Table 7.3. As expected, formulat-

ing the problem using more trajectory phases resulted in an improved cost function
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Table 7.2: GTO to GEO transfer dynamics constants and Q-Law parameters.

Constant Value
Universal Time Departure March 22, 2000 00:00:00.000 UTC

m0 1200 kg
Isp 1800 s
P 5 kW
η 0.55
g0 9.80665× 10−3 km /s2

µ♁ 3.9860047× 105 km3/s2

R♁ 6378.14 km
R� 695500 km
J2 1086.639× 10−6

Q-Law Parameter Value
Nominal Time Step 1000 secs
Wa (Initial Guess) 2.406
We (Initial Guess) 1.786
Wi (Initial Guess 9.469
Wω (Fixed) 0
WΩ (Fixed) 0

ηa 0
ηr 0

atarget 42165 km
etarget 0.01
itarget 0.01◦

atol 10 km
etol 0.0025
itol 0.01◦

for both the fixed-step NLP and high-fidelity solutions, with the exception of the

3-phase high-fidelity case, which saw a small increase in TOF. When the optimized

gains were used in the high-fidelity model, the resulting flight times were generally

very similar to the NLP results. Additionally, the STM approach has clear bene-

fits over finite differencing. In each case, the analytical STM resulted in satisfied

optimality conditions whereas the finite differencing cases required more iterations

and in some cases, could not converge to an optimal solution. Figure 7.5 shows

two GTO-GEO trajectories. The left trajectory is the NLP solution found using

149



Table 7.3: Minimum-time GTO-GEO problem using NLP wrapped Q-Law.
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a fixed-step integrator with low-fidelity eclipse detection. The right trajectory was

produced by applying the NLP determined gains to the high-fidelity model, ensuring

that integration tolerances were met and eclipse crossings were detected exactly.

The cost function approaches the known orbital averaging solution and agrees

well with the optimal collocation solution found by Shannon et al. [29]. It should

be noted that these Q-Law solutions were subjected to a convergence tolerance

and targeted slightly eccentric and inclined orbit to avoid singularities in Gauss’s

equations. The GEO boundary constraints were not exactly satisfied as they were

in the reference solutions computed using orbital averaging and collocation.

7.6 Example: Lunar Transfer

Rideshares to GTO can provide a cost efficient starting point for a spacecraft

to transfer to the Moon, as demonstrated by the SMART-1 mission. Shannon et

al. introduced the use of backward propagated Q-Law to rapidly design these spiral

transfers to the Moon, as described in Chapter 5 [58, 59]. One challenge with this

method was targeting a specific mass and epoch after the backward propagation. A

MOEA was shown to effectively reduce these errors enough for preliminary design

studies, but in general it cannot eliminate them all together. To show how this

problem can be addressed with Q-Law shooting, the backward Q-Law phase of the

Lunar trajectory design process was isolated and backward Q-Law shooting was

used to target a specific mass and epoch to within NLP tolerance.

In this problem, the spacecraft departed from a GTO state with a fixed true
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(a)

(b)

Figure 7.5: GTO-GEO Trajectory solutions. The NLP fixed-step integrator solution
with low-fidelity eclipsing is shown on the top. The high-fidelity solution is shown
on the bottom.
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anomaly, mass, and epoch. A velocity-vector thrusting spiral was used to exit the

radiation belts as quickly as possible and reduce the problem size. Backward Q-Law

was run from a patch point near the Moon to the velocity-vector thrusting spiral

terminal state, and forward Q-Law was run from the Lunar patch point down to

the target orbit. Using the evolutionary algorithm results from Shannon et al. for

a specific departure scenario, the backward Q-law shooting targeted the velocity-

vector thrusting spiral terminal state, mass, and epoch, as shown in Figure 7.6.

Additional constraints were added to ensure the mass and epoch after the backward

Q-Law propagation match the desired values. In this work, only one specific launch

scenario out of the sweep performed by Shannon et al. was considered. The initial

guess for the Q-Law gains came from the MOEA results for this launch scenario.

The Earth departure and Lunar target orbits are listed in Table 7.4, and the spe-

cific problem parameters used are listed in Table 7.5. The resulting Lunar transfer

trajectory was shown in Figure 7.7.

This solution has a total flight time of 144.1 days and delivers 141.04 kg

of spacecraft mass to the Lunar target orbit. Using Q-Law within an NLP can

successfully satisfy terminal mass and epoch constraints to within NLP tolerance.

This new approach introduced the capability to solve Q-Law trajectories with fixed

final masses and epochs.

Table 7.4: Initial and target orbits

Orbit a (km) e incl (deg) ω (deg) Ω (deg) θ (deg)
Earth Departure 24363 0.7306 27 0 0 0

Lunar Target 7238.0 0.621 90 270 - -
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Nonlinear Programming Problem

Velocity-Vector
Thrusting Profile 

Fixed Departure
Conditions

Eliminate
Mass and

Epoch Errors

Backward Q-Law
Lunar Patch

Point 

Figure 7.6: Backward Q-Law shooting problem setup to target velocity-vector spiral
terminal state.

Table 7.5: Low-thrust Lunar transfer dynamics constants and Q-Law parameters.
Constant Value

Universal Time Departure May 31, 2025 00:00:00.000 UTC
m0 180 kg
Isp 1760 s

Thrust 0.6 N
Duty Cycle 95 %

g0 9.80665× 10−3 km /s2

µ♁ 3.9860047× 105 km3/s2

µ� 1.32712440018× 1011 km3/s2

µ$ 4.90486× 103 km3/s2

R♁ 6378.14 km
R� 695500 km
R$ 1737.5 km
J2 1086.639× 10−6

J3 −2.565× 10−6

J4 −1.608× 10−6

Q-Law Parameter Value
Nominal Time Step 1000 secs

# of Shooting Phases 1
Wa (Initial Guess) 7.668
We (Initial Guess) 7.529
Wi (Initial Guess 1.059
Wω (Initial Guess) 0.8464
WΩ (Initial Guess) 2.426

ηa 0
ηr 0

atarget 93629.37 km
etarget 0.38
itarget 26.96◦

ωtarget 15.10◦

Ωtarget 353.81◦

θtarget 170.60◦

atol 10 km
etol 0.01
itol 0.1◦

ωtol 0.1◦

Ωtol 0.1◦

θtol 0.1◦
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Figure 7.7: Low-thrust transfer to the Moon in the Earth-centered inertial frame
(top) and the selenocentric rotating frame (bottom).
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7.7 Example: Direct Launch and Capture at Mars

The Q-Law shooting formulation can be combined with interplanetary design

techniques like the Sims-Flanagan model. Doing so includes the spiral design in the

same NLP as the interplanetary design, resulting in an end-to-end optimization of

the entire trajectory. This problem is solved as a single NLP with two phases: the

interplanetary phase and the spiral phase. This was demonstrated on a Mars transfer

and capture trajectory. In this problem, a SmallSat spacecraft was launched directly

from Earth and used a low-thrust engine to rendezvous and spiral down at Mars,

as depicted in Figure 7.8. This problem represented the scenario where a SmallSat

rideshares with a larger interplanetary launch to Mars. Nonlinear constraints were

placed on the match point state to ensure that the initial spiral state was loosely

captured and near the planet’s SOI. The specific problem parameters used to solve

this problem are listed in Table 7.6.

Nonlinear Programming Problem

Direct Launch
From Earth

Interplanetary Phase: 
Sims-Flanagan 

Mars Spiral Phase:
Q-Law Shooting 

Match Point
Constraint 

Figure 7.8: Sims-Flanagan + Q-Law Shooting problem setup for a Mars transfer
and capture.

This problem was solved both with and without true anomaly coasting using
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Table 7.6: Mars transfer and capture dynamics constants and problem parameters.

Constant Value
g0 9.80665× 10−3 km /s2

RMars 3389.0 km
µMars 42828.37 km3/s2

R� 695500 km
µ� 1.32712440018× 1011 km3/s2

Mission Parameter Value
Launch Window Open July 1, 2020 00:00:00.000 UTC

m0 200 kg
Isp 1760 s

Thrust 0.60 N

Q-Law Parameter Value
Nominal Time Step 1000 secs

# of Shooting Phases 1
Wa (Initial Guess) 1.0
We (Initial Guess) 3.0
Wi (Initial Guess) 1.0

Wω (Fixed) 0
WΩ (Fixed) 0
atarget 16353 km
etarget 0.4354
itarget 27.5◦

atol 50 km
etol 0.05
itol 0.1◦

the logistic function. When coast arcs were included, they were centered around

apoapsis as this is typically where coasting is most optimal when changes in semi-

major axis are required. The resulting trajectories are shown in Figure 7.9 with

the results summarized in Table 7.7. It can be seen that true anomaly coasting is

effective at increasing the final mass delivered to the Mars target orbit.

Table 7.7: Mars transfer and capture results. TOFs refer to the spiral phase only.
Case NLP mf (kg) NLP TOF (days) HiFi mf (kg) HiFi TOF (days)

No Coasting 159.35 55.19 159.34 55.22
170◦ ≥ θ ≤ 190◦ Coasting 161.65 55.65 161.71 55.96
160◦ ≥ θ ≤ 200◦Coasting 163.60 62.28 163.67 64.01
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(a) Mars capture spiral with no coasting.

(b) Mars capture spiral with coasting between 170◦ ≥ θ ≤ 190◦.

Figure 7.9: Low-thrust Martian capture trajectories.
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(c) Mars capture spiral with coasting between 160◦ ≥ θ ≤ 200◦.

(d) Interplanetary trajectory to Mars. Launch v∞ = 4.23 km/s.

Figure 7.9: Low-thrust Martian capture trajectories.
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7.8 Example: Lunar Swingby Escape to Comet 45P

The last example problem focused on a low-thrust Lunar swingby escape prob-

lem for a SmallSat that departs from GTO and performs a flyby of Comet 45P. This

class of trajectory has been shown to be very enabling for SmallSats by offering ac-

cess to interplanetary space without reliance on a rideshare with an interplanetary

launch [72]. In this problem, backward propagated Q-Law was used to generate

the spiral from the Lunar swingby to GTO, and an additional phase for the Earth-

centered keplerian propagation to Earth’s SOI was added between the Lunar swingby

and the interplanetary phase. This trajectory type is illustrated in Figure 7.10. The

initial spiral state was constrained such that it must obey the patched-conic ZSOI

gravity-assist model with the outgoing state, as described in Equations 6.6 to 6.8.

The specific parameters used to solve this problem are listed in Table 7.8.

ZSOI Lunar
Gravity Assist

Interplanetary Phase: 
Sims-Flanagan 

Nonlinear Programming Problem

Earth Spiral Phase:
Q-Law Shooting 

Comet Flyby

Figure 7.10: Sims-Flanagan + Q-Law Shooting problem setup for a Lunar swingby
spiral escape. Comet Image: ESA/Rosetta/NAVCAM, CC BY-SA IGO 3.0

In this problem, the cost function was defined to be the initial spacecraft mass

at GTO, therefore minimizing the propellant required to deliver the target mass to
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Table 7.8: Lunar swingby escape dynamics constants and problem parameters.
Constant Value

g0 9.80665× 10−3 km /s2

µ♁ 3.9860047× 105 km3/s2

µ� 1.32712440018× 1011 km3/s2

µ$ 4.90486× 103 km3/s2

R♁ 6378.14 km
R� 695500 km
R$ 1737.5 km
J2 1086.639× 10−6

Mission Parameter Value
Launch Window Open Nov 1, 2029 00:00:00.000 UTC
Flyby Epoch Bounds Aug 1 2032 - Jan 31 2033
Max Flyby Velocity 6 km/s

mf 100 kg
Isp 1760 s

Thrust 0.60 N
Minimum Swingby Altitude 200 km

Q-Law Parameter Value
Nominal Time Step 1000 secs

# of Shooting Phases 1
Wa (Initial Guess) 1.0
We (Initial Guess) 5.0
Wi (Initial Guess) 1.0

Wω (Fixed) 0
WΩ (Fixed) 0
atarget 24363 km
etarget 0.7306
itarget 28.5◦

atol 50 km
etol 0.05
itol 0.1◦

the comet flyby. Figure 7.11 shows the resulting trajectories, and Table 7.9 summa-

rizes the results of the coasting and non-coasting solutions. Significant propellant

savings were observed when true anomaly coasting is applied near apoapsis.

Table 7.9: Lunar gravity-assist and comet flyby trajectory results. TOFs refer to
the spiral phase only.

Case NLP m0 (kg) NLP TOF (days) HiFi m0 (kg) HiFi TOF (days)
No Coasting 187.56 137.61 187.42 137.08

170◦ ≥ θ ≤ 190◦ Coasting 179.34 139.93 178.87 139.57
160◦ ≥ θ ≤ 200◦Coasting 172.87 154.93 172.62 155.27
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(a) Spiral Lunar flyby trajectory with no coasting.

(b) Spiral Lunar flyby trajectory with coasting between 170◦ ≥ θ ≤
190◦.

Figure 7.11: Low-thrust escape trajectories to Comet 45P.
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(c) Spiral Lunar flyby trajectory in the Earth-Moon rotating frame
with coasting between 160◦ ≥ θ ≤ 200◦.

(d) Interplanetary trajectory to Comet 45P.

Figure 7.11: Low-thrust escape trajectories to Comet 45P.
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Chapter 8: Conclusions

Rideshare spacecraft missions to cislunar and interplanetary space offer en-

abling trajectories for small-budget exploration efforts. This research extended the

capabilities and application of the existing low-thrust guidance algorithm Q-Law

within the many-revolution transfer problem to address these mission types. Rapid

trade study tools as well as high-fidelity hybrid optimization methods were devel-

oped to provide a useful framework to design these complex low-thrust trajectories.

8.1 Summary

First, Q-Law was used to rapidly produce a transfer trajectory from GTO

to GEO to demonstrate that the Q-Law solution provides a strong initial guess

for direct collocation. The location of the patch point was varied along the Q-

Law solution to demonstrate the existence of a trade space between computation

time and solution optimality as the patch point is moved. The Q-Law gains were

optimized using a genetic algorithm, and the trajectory optimization successfully

produced optimal single phase trajectories from GTO-GEO. When the patch point

was placed at the start of the Q-Law trajectory, the resulting solution exceeded the

results of Graham and Rao [20] and closely approached the known orbital averaging
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solution. However, when eclipses are included in the optimization phase, the solution

becomes more sensitive and computation time increases. Using the high-fidelity Q-

Law to generate a minimum-time solution is very fast and relatively close to the

global optimum. Therefore, it may be desirable to use Q-Law as a means to detect

eclipses, and the remaining, non-eclipsed trajectory phase can quickly be optimized

using the Q-Law solution as the initial guess. The results of this study demonstrate

that solutions that deviate less than 1% from the orbital averaged time-optimal

solution can be produced with this method without significant computation time.

This method was also used to produce a mass-optimal solution with the Q-Law TOF

used as an endpoint constraint in the GPOPS-II mass-optimal problem. The mass-

optimal solution demonstrated bang-bang control and minor propellant savings over

the time-optimal case. This hybrid approach provides a computationally efficient

means to produce near-optimal many revolution trajectories.

Low-thrust spiral transfers to the Moon represent a particularly difficult yet

highly desirable example of the many-revolution problem. In addition to the large

number of revolutions and possible eclipsing, proper phasing with the Moon is

needed for successful capture. However, this trajectory type can be beneficial for

smaller spacecraft looking for discounted launch opportunities through a rideshare

to common Earth parking orbits. This work introduced a novel application of Q-

Law that rapidly generates Earth-Moon spiral trajectories by combining forward

and backward Q-Law propagation. In this approach, a patch point was selected in

Lunar orbital element space and used as the transition between the Earth and Moon

spiral phases. The Earth-centered phase started at the patch point and propagates
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backwards, solving for a trajectory from the departure orbit to the patch point. In

the Moon-centered phase, forward propagated Q-Law solved for a trajectory from

the patch point to the target final orbit, resulting in a continuous trajectory from

the Earth to the Moon.

High-fidelity Q-Law solutions require minimal computation time to generate

and provide excellent initial guesses for direct collocation, representing a significant

improvement in Lunar spiral initial guess generation techniques. This was demon-

strated by solving a trajectory design problem inspired by the SMART-1 mission.

Using this method, a time-optimal solution was found that is four days shorter than

the solution previously identified by Betts, and a mass-optimal solution was found

that exhibits bang-bang control throughout the entire trajectory, resulting in more

than 15 kg of propellant savings over Betts’s mass-optimal result.

The efficiency of the forward-backward Q-Law approach also makes it an ef-

fective trade study tool, allowing mission designers to sweep through the trajectory

trade space much faster than previously possible. A new trajectory design prob-

lem was created with modern epochs and an ESPA-class spacecraft. To explore the

design space for this mission scenario, forward-backward Q-Law was wrapped in a

multi-objective evolutionary algorithm to minimize mass and epoch errors and pro-

duce close to time-optimal solutions. Different departure epochs and right ascensions

were explored to determine the effect on flight time and number of eclipses. Q-Law’s

effectivity coasting was then used on both the forward and backward Q-Law phases

to produce a propellant usage Pareto front for a specific departure case. Using these

solutions as an initial guess, optimized results were compared to the Q-Law effec-
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tivity solutions and were found to be within a few kg of each other. Additionally,

an all-backward Q-Law solver wrapped in a multi-objective evolutionary algorithm

was demonstrated for trajectories from LEO to LLO. When arrival epoch and de-

livered mass are fixed, backward Q-Law can start from the target Lunar orbit and

spiral out to a transition point where Earth-centered backward Q-Law begins and

spirals down to the departure orbit. In this approach, departure mass and epoch

can vary, allowing the multi-objective evolutionary algorithm to directly identify

Pareto optimal transfers. Low-thrust LEO-LLO transfers contain extremely high

numbers of revolutions and eclipses that could over-burden other design techniques.

The approach developed in this research overcomes these issues and efficiently ex-

plores the trajectory trade space. As previously noted, many-revolution trajectory

optimization techniques can be highly sensitive and require favorable initial guesses,

which may be difficult to construct for complicated trajectories. Conversely, rapid

exploration of the problem space using Q-Law can produce solutions that, when

paired with direct optimization, produce near-optimal solutions in minimal time

regardless of eclipsing, prior solution knowledge, or problem complexity.

Additionally, this work demonstrated an approach for designing spiral escape

trajectories that leverage Lunar gravity assists. Single and double flybys were con-

sidered, with the flyby sequence and interplanetary leg of the mission designed using

the perturbed Sims-Flanagan low-thrust model and Monotonic Basin Hopping im-

plemented in EMTG. Low-thrust spirals from GTO were connected to the rest of the

trajectory through the first Lunar gravity assist. These spirals were designed using

backwards propagated Q-Law starting at the Moon. This approach was demon-
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strated by designing single and double lunar gravity assist trajectories as well as

conventional spiral escape trajectories for a sample SmallSat mission to Comet 45P.

As expected, the double flyby cases achieved the highest escape C3, making the

interplanetary phases more efficient. Both the single and double swingby scenar-

ios required significantly less propellant than the conventional spiral escape case,

offering efficient escape trajectory options for interplanetary SmallSats.

Lastly, partial derivatives of the Q-Law thrust vector calculation with respect

to the control law input gains and the spacecraft state were derived. These deriva-

tives were used to generate a trajectory STM, which provided the optimizer with

the exact sensitivities of the terminal Q-Law state to the decision vector. Using

this STM, a Q-Law shooting formulation was developed and applied to various low-

thrust transfer problems. Logistic functions were used to approximate eclipses and

enforce coast arcs at specific true anomaly ranges.

A well-known GTO-GEO transfer was solved using a variable number of shoot-

ing phases as well as finite differencing for comparison. The results from this problem

clearly demonstrated the benefits of providing numerically exact partial derivatives

to the NLP solver and showed that gradient-based gain tuning can be very effec-

tive when a good initial guess is available. As more phases were introduced, the

GTO-GEO NLP cost function approached the known orbital averaging solution.

Also, backward Q-Law shooting was used to help design low-thrust transfers to the

Moon. The shooting algorithm was used in a backward Q-Law phase to target the

specific mass and epoch of the terminal state of a velocity vector thrusting spiral.

In prior studies, targeting these quantities proved challenging and evolutionary al-
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gorithms had to be employed to reduce possible errors. However, Q-Law shooting

is capable of directly varying the starting epoch and mass to enforce boundary con-

straints to within NLP tolerance. This added capability can be used to solve Q-Law

trajectories with fixed final masses and epochs. Additionally, the Q-Law trajectory

sensitivities were used to combine the shooting method with the well-known Sims-

Flanagan interplanetary model, allowing for end-to-end trajectory optimization in

one NLP. This work made this technique viable for spiral escape/capture trajecto-

ries. It provided more accurate flight time and propellant requirement estimates as

well as the ability to target eccentric orbits for this kind of design. This method was

applied to a Mars transfer and spiral down trajectory and a Lunar swingby escape

trajectory to Comet 45P. In both scenarios, true anomaly coasting proved to be ef-

fective at reducing propellant requirements. In all cases, the optimizer results were

refined with a high-fidelity propagator with precise eclipse/true anomaly detection

to demonstrate the utility of the NLP generated trajectories as an input to a high-

fidelity model. In general, the NLP solutions compared closely to the high-fidelity

results.

Spiral transfers to the Moon, either for capture or gravity assist present an

enabling trajectory option for the SmallSat community, allowing for reduced launch

cost and launch window flexibility. The methods described here provide mission

designers with the ability to rapidly generate spiral transfers in the Earth-Moon

system with minimal effort and computation time. This produces better initial

guesses for trajectory optimization and more efficient trade studies during the pre-

liminary mission design phase. Q-Law proves to be an effective tool for Earth-Moon
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spiral design and offers critical mission design capabilities that will be needed as

these mission types becomes more common. Furthermore, the partial derivatives

presented in this paper prove to be effective when applied to the Q-Law shooting

problem. These derivatives were used to develop a new hybrid trajectory design

technique. By combining direct optimization, Lyapunov control, and interplanetary

design techniques, this research improves many-revolution spiral design by offering

gradient-based gain tuning and end-to-end trajectory optimization capabilities.

8.2 Publications and Presentations

Journal Publications

- Shannon, J., Ellison, D., and Hartzell, C., “Analytical Partial Derivatives of the

Q-Law Guidance Algorithm”, Journal of Astronautical Sciences, 2021. (Submitted)

- Shannon, J., Ozimek, M., Atchison, J., and Hartzell, C, “Rapid Design and Explo-

ration of High-Fidelity Low-Thrust Transfers to the Moon”, Journal of Spacecraft

and Rockets, 2021. (Submitted)

- Shannon, J., Atchison, J., Villac, B., Rogers, G., and Ozimek, M., “Mission Design

for the 2020 Mercury Lander Decadal Survey”, Journal of Astronautical Sciences,

2020. (Accepted)

- Shannon, J., Ozimek, M., Atchison, J., and Hartzell, C, “Q-Law Aided Direct Tra-

jectory Optimization of Many-Revolution Low-Thrust Transfers, ” Journal of Space-

craft and Rockets, Vol. 57, No. 4 (2020), pp. 672-682 doi: doi/abs/10.2514/1.A34586
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Conference Presentations

- Shannon, J., Ellison, D., and Hartzell, C., “Analytical Partial Derivatives of the

Q-Law Guidance Algorithm,” 2021 AAS/AIAA Space Flight Mechanics Conference,

AAS Paper 21-274, 2021.

- Shannon, J., Ellison, D., and Hartzell, C., “Exploration of Low-Thrust Lunar

Swingby Escape Trajectories,” 2021 AAS/AIAA Space Flight Mechanics Confer-

ence, AAS Paper 21-273, 2021.

- Shannon, J., Atchison, J., Villac, B., Rogers, G., and Ozimek, M., “Mission Design

for the 2020 Mercury Lander Decadal Survey,” 2020 AAS/AIAA Astrodynamics

Specialist Conference, 2020.

- Shannon, J., Ozimek, M., Atchison, J., and Hartzell, C., “Rapid Design and Explo-

ration of High-Fidelity Low-Thrust Transfers to the Moon,” 2020 IEEE Aerospace

Conference, IEEE, 2020, pp. 1–11.

- Shannon, J., Ozimek, M., Atchison, J., and Hartzell, C., “Q-Law Aided Direct

Trajectory Optimization For The High-Fidelity, Many-Revolution Low-Thrust Or-

bit Transfer Problem,” 2019 AAS/AIAA Space Flight Mechanics Conference, AAS

Paper 19-448, 2019.

8.3 Future Work

Several avenues for further investigation immediately present themselves. Q-

Law single shooting was demonstrated on several complex low-thrust transfer prob-

lems, including an Earth-Moon spiral, single Lunar gravity assist, and a Mars cap-
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ture spiral. Further analysis should examine the effects on these transfers when

additional shooting phases are introduced. A cost function improvement should be

expected, but additional phases can increase the NLP complexity/sensitivity and

run time.

Furthermore, the application of Q-Law shooting to Lunar transfers should be

extended to include the patch point location and the forward propagation phase.

In this work, Q-Law shooting was only used for the backward phase as a demon-

stration of full state, mass, and endpoint targeting capabilities. Initial efforts to

include a variable patch point and the forward propagated phase in the NLP were

unsuccessful. The variations in the patch point location and gains combined with

n-body effects from the Earth and Sun cause the spacecraft to escape the Moon,

prohibiting convergence at the target Lunar orbit. Future efforts could investigate

whether modified equinoctial elements provide a more stable state representation

for this problem.

The Sundman transformation proved to be an important inclusion for the col-

location efforts in this research. It effectively reduces the dynamic sensitivity of the

many-revolution problem and better distributes the mesh points. A logical next

step would be to investigate the benefits of applying the Sundman transformation

to Q-Law shooting. Several transfers investigated in this work have periods of high

eccentricity, and a Sundman transformed independent variable would likely improve

solution accuracy and require fewer integration steps, therefore reducing computa-

tion time for a given trajectory evaluation. However, this could present problems if

the spacecraft is in a highly nonlinear region of the Earth-Moon three-body problem
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or near escape from its central body, as a reasonable step size in an anomaly vari-

able can result in an extremely large step in time. If some prior knowledge of the

solution type is known, the multiple shooting formulation could be well-equipped to

overcome this by varying the independent variable between shooting segments. In

this approach, the propagation can proceed in time in the segment(s) containing the

sensitive region, and the remaining segments can leverage Sundman transformed dy-

namics. The analytical derivatives of the Sundman transformed dynamics will need

to be derived to generate an STM for the constraint sensitivities.
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Kawakatsu. Extended tisserand-poincaré graph and multiple lunar swingby de-
sign with sun perturbation. In Proceedings of the 6th International Conference
on Astrodynamics Tools and Techniques, 2016.

[78] Gregory Lantoine, Timothy P McElrath, and P Timothy. Families of solar-
perturbed moon-to-moon transfers. In 24th AAS/AIAA Spaceflight Mechanics
Meeting. AAS/AIAA, 2014.

[79] Timothy P McElrath, Gregory Lantoine, Damon Landau, Dan Grebow, Nathan
Strange, Roby Wilson, and Jon Sims. Using gravity assists in the earth-moon
system as a gateway to the solar system. 2012.

[80] Jacob A Englander, Donald H Ellison, and Bruce A Conway. Global opti-
mization of low-thrust, multiple-flyby trajectories at medium and medium-high
fidelity. In 24th AAS/AIAA Space Flight Mechanics Meeting, 2014, pages 1539–
1558. Univelt Inc., 2014.

[81] Jonathan Sims and S Flanagan. Preliminary design of low-thrustinterplanetary
missions. In AAS/AIAA Astrodynamics Specialist Conference AAS Paper 99-
338, Girdwood, AK, 1999.

[82] Nathan Strange, Damon Landau, Richard Hofer, J. Snyder, Thomas Randolph,
Stefano Campagnola, James Szabo, and Bruce Pote. Solar electric propulsion
gravity-assist tours for jupiter missions. In AIAA/AAS Astrodynamics Special-
ist Conference, 2012.

[83] Jacob Englander, David Folta, Richard Hofer, and Sun Hur-Diaz. Optimization
of the lunar icecube trajectory using stochastic global search and multi-point
shooting. In AIAA/AAS Astrodynamics Specialist Conference AAS Paper 20-
435, 2020.

[84] CH Yam, DD Lorenzo, and D Izzo. Low-thrust trajectory design as a con-
strained global optimization problem. Proceedings of the Institution of Mechan-
ical Engineers, Part G: Journal of Aerospace Engineering, 225(11):1243–1251,
2011.

[85] Jacob A Englander and Arnold C Englander. Tuning monotonic basin hopping:
improving the efficiency of stochastic search as applied to low-thrust trajectory
optimization. 2014.

180



[86] Hongru Chen, Yasuhiro Kawakatsu, and Toshiya Hanada. Earth escape from a
sun-earth halo orbit using unstable manifold and lunar swingbys. Transactions
of the Japan Society for Aeronautical and Space Sciences, 59(5):269–277, 2016.

[87] Jeremy Knittel, Kyle Hughes, Jacob Englander, and Bruno Sarli. Automated
sensitivity analysis of interplanetary trajectories for optimal mission design.
2017.

[88] Nathan J Strange and James M Longuski. Graphical method for gravity-assist
trajectory design. Journal of Spacecraft and Rockets, 39(1):9–16, 2002.

[89] J. Shannon, M. Ozimek, J. Atchison, and C. Hartzell. Analytical partial deriva-
tives of the q-law guidance algorithm. Journal of Guidance, Control, and Dy-
namics, 2021. In Review.

[90] J. Shannon, D. Ellison, and C. Hartzell. Analytical partial derivatives of the q-
law guidance algorithm. In AAS/AIAA Space Flight Mechanics Meeting. AAS
Paper 21-274, 2021.

[91] Donald H Ellison, Bruce A Conway, Jacob A Englander, and Martin T Ozimek.
Analytic gradient computation for bounded-impulse trajectory models using
two-sided shooting. Journal of Guidance, Control, and Dynamics, 41(7):1449–
1462, 2018.

[92] Donald H. Ellison, Bruce A. Conway, Jacob A. Englander, and Martin T. Oz-
imek. Application and analysis of bounded-impulse trajectory models with
analytic gradients. Journal of Guidance, Control, and Dynamics, 41(8):1700–
1714, 2018.

[93] Theodore N Edelbaum. Propulsion requirements for controllable satellites. Ars
Journal, 31(8):1079–1089, 1961.

[94] Etienne Pellegrini and Ryan P Russell. On the computation and accuracy of
trajectory state transition matrices. Journal of Guidance, Control, and Dy-
namics, 39(11):2485–2499, 2016.

181


	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Problem Definition and Motivation
	Low-Thrust Many-Revolution Design Methods
	Dissertation Overview
	Summary of Contributions

	System Dynamics
	Perturbed Orbital Motion
	Orbital Element Sets
	Classical Orbital Elements
	Modified Equinoctial Elements

	Eclipse Model

	Q-Law Lyapunov Guidance Algorithm
	Lyapunov Control Functions
	Q-Law Thrust Vector Calculation
	Gain Tuning
	Basic Transfers
	Fast Variable Targeting

	Direct Collocation with a Q-Law Initial Guess
	Direct Collocation
	Nonlinear Programming
	Numerical Differentiation Techniques
	Optimization Problem Setup
	Example: GTO to GEO Transfer
	Time-Optimal Results
	Mass-Optimal Results


	Low-Thrust Lunar Transfers
	Forward-Backward Q-Law
	Optimization Problem Setup
	Example: SMART-1 Mission
	Example: GTO-Moon Mission
	Example: LEO to LLO Transfer

	Low-Thrust Lunar Swingby Escape Trajectories
	Perturbed Sims-Flanagan Transcription
	Monotonic Basin Hopping
	Lunar Swingby Design
	Example: Comet 45P Flyby

	Derivation and Application of Analytical Partial Derivatives of the Q-Law Thrust Vector
	Computation of the Q-Law Thrust Vector Partial Derivatives
	Partial Derivatives With Respect to Wa
	Partial Derivatives With Respect to We
	Partial Derivatives With Respect to Wi
	Partial Derivatives With Respect to W
	Partial Derivatives With Respect to W
	Partial Derivatives With Respect to Semi-Major Axis
	Partial Derivatives With Respect to Eccentricity
	Partial Derivatives With Respect to Inclination
	Partial Derivatives With Respect to Argument of Periapsis
	Partial Derivatives With Respect to Longitude of Ascending Node 
	Partial Derivatives With Respect to True Anomaly
	Partial Derivatives With Respect to Mass

	Shooting Methods
	Q-Law Shooting Setup
	Logistic Function Coasting
	Example: GTO to GEO Transfer
	Example: Lunar Transfer
	Example: Direct Launch and Capture at Mars
	Example: Lunar Swingby Escape to Comet 45P

	Conclusions
	Summary
	Publications and Presentations
	Future Work

	Bibliography

