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The Maryland Centrifugal eXperiment (MCX) is a hydrogen plasma confinement

experiment with a rotating mirror magnetic configuration. This experiment was de-

signed to test the concepts of centrifugal confinement and velocity shear stabilization

which may allow scaleability to a fusion reactor. These two concepts, however, rely

on supersonic plasma fluid velocities, which, apart from possible plasma instabilities,

could be greatly reduced by fluid drag with neutral hydrogen, leading to decreased

confinement. Resonant charge exchange between a hydrogen ion and a hydrogen

atom is believed to be the dominant drag mechanism on the rotating plasma. Neu-

tral hydrogen emission lines (particularly the Balmer-α line, Hα) are therefore of

primary interest in diagnosing how neutral hydrogen affects plasma confinement. For

this purpose, a multi-chord Hα emission detector (multi-chord HED) was designed

and constructed by the author in order to measure emissivity profiles. These pro-

files, together with an atomic collisional-radiative model, provide estimates of neutral

hydrogen density and local charge-exchange times. Varied experimental parameters

were applied to MCX discharges and the resulting variations in neutral density are

compared to theoretical scaling laws. The charge-exchange times are compared to

the measured momentum confinement time. We find that the inner and outer-most

flux surfaces are not distinctly identified by the emissivity profile and the emissivity is



dominant at the vacuum chamber wall. We also find that, while the overall emissivity

profile does not match theoretical prediction, neutral density scaling is approximately

described by the models. In addition, charge-exchange times are found to be much

smaller than the momentum confinement time as well as to scale differently than the

momentum confinement time.

This dissertation includes a detailed description of the multi-chord HED system

and its calibration, both spectrally and absolutely. We also present models based on

neutral and plasma interaction which provide the scaling laws used to compare to

experimental results.
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Chapter 1

Introduction

The Maryland Centrifugal eXperiment (MCX) is a plasma confinement experiment

with mirror magnetic geometry. The central aim of this experiment is to explore the

use of centrifugal forces and shear flows to enhance plasma confinement for fusion [1].

Enhanced confinement through centrifugal forces is expected to be achieved by rotat-

ing the plasma in a magnetic field of mirror geometry. This concept is illustrated in

Fig. 1.1. As the plasma rotates in the azimuthal direction it experiences a centrifugal

force in the rotating frame and the magnetic field supplies a force perpendicular to the

field which constrains the plasma to the flux surface (frozen in MHD theory). These

two forces result in a net force toward lower magnetic field intensity (mid-plane) and

away from high field intensity (mirror throats). The azimuthal rotation is a drift mo-

tion produced by a radial electric field and the axial magnetic field (uφ = E×B/B2),

and is maintained against drag forces by a radial current (F = j × B). This is de-

scribed in more detail in Sec. 2.1. Enhanced confinement is also expected due to the

presence of shear in the azimuthal rotation of the plasma [2–4]. Here, the radial shear

is expected to suppress interchange instabilities, thus improving plasma confinement.

In this chapter, we begin with a description of the importance of characterizing

neutral hydrogen behavior in this experiment, thus motivating the present research.

Next, we give a brief summary of previous research done on this experiment with

regard to neutral behavior. Finally, we give a brief outline of the remainder of this

dissertation.
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Figure 1.1: As plasma rotates in the φ̂ direction it experiences a centrifugal force
which, when constrained to a magnetic flux surface, drives it toward the mid-plane.

1.1 Previous Studies of Neutral Hydrogen on MCX

Any plasma confinement device is necessarily finite in spatial extent and therefore

contains a boundary between the confined plasma and the outside world. The prop-

erties of this boundary depends heavily on the type of device and, in particular, the

magnetic configuration used for confinement. Nevertheless, one aspect all devices

share is the intrinsic temperature difference and resulting difference in states of mat-

ter, i.e. hot (> 105 ◦K) plasma on one side of the boundary and room temperature

solid or gaseous matter on the other. The physical distance between these two ex-

tremes and its effect on the confinement properties of the plasma is central to fusion

research. It has been said that many problems in physics are determined by their

boundary conditions [5]. Due to this large change in temperatures, plasma bound-

aries inevitably contain cold neutrals, the non-ionized state of the plasma species.

These neutral particles at the plasma edge can have profound impacts on the general

confinement properties of the plasma. For example, studies performed on the Alcator

C-Mod tokamak suggest that edge neutral densities as low as 0.1% of the plasma

core density are significant enough to affect plasma flows and may be important in

H-mode (high confinement mode) physics [6]. Thus, much of fusion research is de-
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voted to the study of plasma boundaries and the effect that neutral particles have on

plasma temperature, density, and stability.

Neutral studies on MCX have been done previous to this work. Messer [7, 8]

has made rough estimates of ionization fraction by assuming that the measured con-

finement time is equivalent to the charge exchange time, τM = τcx = 1/Nαcx, and

assuming a value for the charge exchange rate coefficient, αcx. This estimate pre-

dicted neutral densities of less than 1% (. 1012 cm−3). This is a reasonable estimate,

consistent with pre-fill gas pressures and measurements of electron densities made at

the that time. Ghosh has performed extensive spectroscopic measurements on MCX,

extracting estimates for electron density, electron temperature, ion temperature, and

neutral density [9–11]. His estimate of neutral density is about 5% (95% ionization

fraction) [10], which may be inconsistent with Messer’s estimates. However, Ghosh’s

estimate was obtained via an absorption model for the hydrogen Lyman-α emission

line and may be more heavily weighted by the edge regions of the plasma where the

neutral density (and Lyα absorption) is larger.

The problem with global estimates of neutral density is that the density may

change several orders of magnitude from the edge to the core, thus accurate deter-

mination of an effective charge-exchange time requires absolute measurement of the

neutral density profile. Both the plasma core, where ion-neutral collisions are ex-

pected to be less frequent, and the plasma edge, where these collisions are expected

to be more frequent, will contribute to an effective ion-neutral collision rate. How-

ever, the edge region may be most important in determining the effect of neutrals on

general plasma confinement, as evidenced by theoretical studies on plasma-neutral

interaction [12–14] and experimental efforts to measure neutral density at plasma

boundaries [15–17]. Thus it is necessary to measure an absolute neutral density pro-

file in order to characterize its effect on plasma confinement.
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In order to further our understanding of the effects of neutral particles on MCX

discharges a multi-chord Hα emission detector (multi-chord HED) has been developed

and implemented by the author. The use of absolute emission from a particular atomic

transition in an atom or ion to determine the density of the species is not new and

different instruments have been employed on various types of fusion experiments in

order to measure absolute transition line emission [15–22]. Each instrument, though,

has common characteristics: light collection via optical lens(es); light detection via

photo-diode, charge coupled device, or photomultiplier tube; and absolute calibration

via calibrated emission source (usually accompanied by an integrating sphere for the

purpose of homogenizing the output in solid-angle). The details of these character-

istics depend heavily on the emission line of interest and the logistics surrounding

optical access to the plasma region of interest. The HED developed for MCX is

unique in that it is comprised entirely of standard, off-the-shelf optical components,

rendering it inexpensive (∼$1 k/channel), extensible, and highly versatile.

The critical ionization velocity (CIV) [23] effect is a significant phenomenon in

plasma physics related to plasma-neutral interaction. Investigations of this effect in

MCX discharges was initiated by Lunsford [24] and continued by Teodorescu [25].

These studies indicate that the plasma-neutral interaction resulting in observed CIV

in MCX discharges may occur in the vicinity of the end insulators. The multi-chord

HED system may be useful in studying CIV effects in MCX discharges in the future.

However, under the current experiment configuration, optical access to the insulator

region is inadequate for the HED system to be of much use, thus CIV effects are not

addressed in this work.

1.2 Outline of this Dissertation

This dissertation will proceed as follows. Chapter 2 briefly describes the basic MHD

theory behind MCX and the most current theoretical treatments of neutral particles
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applied to MCX. Here we will show that plasma rotation is driven by applied current

against loss of angular momentum through energy, momentum, and particle losses.

We also show two 1D plasma-neutral fluid models, one without centrifugal consider-

ations and one with centrifugal considerations. These assert scaling laws for neutral

density profiles. Also described here will be the atomic cross-sections for processes of

interest, in particular the emission of hydrogen Balmer-α radiation.

Chapter 3 gives an extensive description of the primary diagnostic for this work,

the Hα emission detector multi-chord array. This includes a description of the com-

ponents of the device itself, considerations for vacuum chamber reflections, and the

absolute calibration procedure.

Chapter 4 provides the primary results of measurements made by the HED multi-

chord array. This chapter contains four sections in which data is presented and

interpreted: radial Hα emissivity profiles, general discharge and Hα emissivity phe-

nomenological behavior, neutral density and charge-exchange time scaling, and tem-

poral behavior of Hα emissivity.

Chapter 5 recommends future research endeavors, both theoretical and experi-

mental, regarding Hα and neutral particles in MCX discharges.

Appendix A provides detailed derivations of both 1D neutral models discussed in

Chapter 2. A detailed proof that the effective solid-angle of an HED viewing chord

is uniform along the line of sight is given in Appendix B, supplementing Chapter 3.

Appendix C details the Abel transform and its inversion technique as it is applied in

this work.
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Chapter 2

Neutral Modeling at MCX Mid-Plane

In this chapter we endeavor to describe the basic confinement paradigm of MCX dis-

charges, namely centrifugal confinement, and the effect that a neutral fluid may have

on this confinement. We begin with a set of MHD equations which include a neutral

fluid and proceed to show that large rotation velocity is central to the centrifugal con-

finement concept. We also show that the presence of a neutral fluid represents a drag

on the plasma rotation, which motivates the study of neutral particles in MCX dis-

charges. Plasma-neutral collision processes are then discussed followed by a descrip-

tion of the recent plasma-neutral fluid models applied to MCX discharges. Finally,

we discuss the relationship between neutral hydrogen and the hydrogen Balmer-α

emission line (Hα line).

2.1 Basic MCX Theory

In this section we will derive the basic expression describing centrifugal confinement

and indicate how the presence of a neutral fluid may impede the required plasma ro-

tation. Let us begin with the following standard continuity and momentum equations

for a single-fluid (MHD) plasma with a neutral fluid.

6



∂n

∂t
+∇ · (nu) = −n2αr + nNαi (2.1)

m
∂nu

∂t
+m∇ · (nuu) +∇p =

1

c
j×B−mn2αru +mnNαiU

−mnNαcx (u−U) (2.2)
∂N

∂t
+∇ · (NU) = n2αr − nNαi (2.3)

m
∂NU

∂t
+m∇ · (NUU) +∇P = mn2αru−mnNαiU

+mnNαcx (u−U) . (2.4)

Here, αcx is the charge-exchange rate coefficient, αi is the ionization rate coeffi-

cient, and αr is the recombination rate coefficient. Uppercase variables denote neutral

fluid variables while lowercase denote plasma variables, except for m, which is the

mass for both a hydrogen atom as well as a hydrogen ion. We have ignored viscosity,

considering it of lower order.

Under equilibrium conditions, with the use of Eq. (2.1), Eq. (2.2) becomes

nmu · ∇u +∇p =
1

c
j×B−mnN (αcx + αi) (u−U) . (2.5)

We can obtain the basic expected behavior of MCX discharges from analyzing Eq. (2.5).

We use a combination of magnetic coordinates (ψ, φ, b) and cylindrical coordinates

(r, φ, z). Here ψ is the flux coordinate, which corresponds to the r coordinate at the

mid-plane (z = 0), φ is the usual angular coordinate about the z axis, and b is the

coordinate along the magnetic field, which corresponds to z at the mid-plane. First,

let us enumerate some preliminary assumptions.

1. The angular frequency of plasma rotation, Ω = uφ/r, is assumed to be only

a function of ψ, the magnetic flux coordinate. This means that flux surfaces

rotate as rigid rotors and is consistent with MHD frozen-in theory.
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2. The plasma is azimuthally symmetric. This means that the magnitudes of all

variables involved are not functions of φ.

3. uφ � uψ,b. This is a good approximation as uφ is typically twice the ion

sound speed and under ideal equilibrium conditions uψ,b will only arise through

diffusive processes.

4. We assume that the plasma is isothermal.

To analyze MCX MHD equilibrium, we will construct the two independent equations

which Eq. (2.5) implies (the φ̂ equation is superfluous due to the symmetry). First

we will examine Eq. (2.5) away from the mid-plane. Here we are primarily concerned

with showing the centrifugal effects. Using the above assumptions we can directly

evaluate the first term on the left-hand side of Eq. (2.5) in cylindrical coordinates as

follows.

nmu · ∇u = nm
uφ
r
∂φ(uφφ̂+ urr̂ + uzẑ)

= nm
uφ
r

(−uφr̂ + urφ̂)

≈ −nm u2
φ

r
r̂

= −nmrΩ2r̂ = −1

2
nmΩ2∇r2 . (2.6)

Thus the convective term is approximately in the radial direction only (having both

ψ̂ and b̂ components). The φ̂ components of Eq. (2.5) then give

φ̂ ·
(

1

c
j×B−∇p

)
= φ̂ · [mnN (αcx + αi) (u−U)]

jrBz = mcnN (αcx + αi) (uφ − Uφ) , (2.7)

indicating that the cross-field current must balance the rotational momentum losses,

i.e the applied radial current is what drives the system against the drag imposed by
8



neutral particles. It is worthy of note here that the primary momentum loss mech-

anism is believed to be charge exchange. This will be discussed further in Secs. 2.2

and 2.4. It is also worthy of note that the recombination term originally present in

the momentum equation has cancelled since it also appears as a particle sink in the

continuity equation.

Taking the projection of Eq. (2.5) onto b̂ gives the components along the magnetic

field; recall that ub and Ub are lower order, so that the pressure term and the convective

term balance.

nm b̂ · (u · ∇u) = −b̂ · ∇p

nm
1

2
Ω2∇‖r2 ≈ ∇‖p

nm
1

2
∇‖
(
Ω2r2

) ≈ ∇‖p

nm
1

2
∇‖u2

φ ≈ ∇‖p . (2.8)

Here we have used Eq. (2.6) and the fact that Ω = Ω(ψ) is independent of b. This

shows that the centrifugal force balances the pressure gradient along the magnetic

field, i.e. faster rotation enhances mirror confinement. Note that the convective term

has a projection along the magnetic field only at locations away from the mid-plane

(i.e. z 6= 0), where r̂ has a non-zero projection onto b̂.

Now, using the isothermal assumption, ∇bp = T∇bn, and the plasma ion sound

speed, c2
s = T/m, we may write the following.

nm
1

2
∇bu

2
φ = mc2

s∇‖n
1

2
∇‖
(
uφ
cs

)2

=
1

n
∇‖n

1

2
∇‖M2

s = ∇‖ ln
n

A

n(ψ, b) = AeM
2
s /2 , (2.9)

9



where Ms is the sonic Mach number. By evaluating n at the mid-plane we get an

expression for A. At the mid-plane, we will take the convention that ψ ↔ r and

b↔ z = 0. Here, we require the expression for n(ψ, b) to reduce to the radial density

profile, n(r, z)|z=0 ≡ n0(r). At the mid-plane, the Mach number becomes only a

function of r, or equivalently ψ, and Ms|z=0 = rΩ(r)/cs = Ms,0(ψ). These produce

the final expression for n(ψ, b).

n(ψ, b) = n0(ψ) exp
[
(M2

s −M2
s,0)/2

]
= n0(ψ) exp

[
Ω2(ψ)

(
r2 − r2

0

)
/2c2

s

]
, (2.10)

where r and r0 have the same flux coordinate, ψ, i.e. they are on the same field

line. We see from Eq. (2.10) that the density at a location away from the mid-plane

is related exponentially in r to the density on the same field-line at the mid-plane.

For MCX field geometry, field lines decrease in radius further from the mid-plane

as they approach the mirror throats, thus plasma density should be much smaller

away from the mid-plane. By considering magnetic flux conservation we my write

πr2
0B0 = πr2

mirBmir → r2
0/r

2
mir = Bmir/B0 = R, where r0 and rmir are located at the

mid-plane and mirror throat, respectively, and reside on the same flux surface, and

R is the mirror ratio. Then,

n(ψ, bmir) = n0(ψ) exp
[−M2

s,0(ψ) (1− 1/R) /2
]
, (2.11)

indicating enhanced centrifugal confinement for larger mirror ratios and larger Mach

numbers. This is the canonical result which motivates the centrifugal confinement

scheme.

What we have endeavored to demonstrate is the basic MCX confinement paradigm

and the importance of maintaining a high rotation velocity. We have shown that

neutrals play a primary role as a drag on plasma rotational velocity, expressed in

10



Eq. (2.7), and that the effects of neutrals along the field should be of lower order

compared to the centrifugal forces driving the plasma toward the mid-plane. We

should note here, however, that this is merely a good starting point from which to

analyze neutrals and may prove to be inaccurate. For example, the above theoretical

approach has not attempted to address the possibility of Critical-Ionization-Velocity

effects [23], nor has it addressed the increased relative effect of neutrals near the

insulator or transition regions where plasma density is expected to be much smaller

than at the mid-plane. These may have profound effects on the plasma rotation

velocity.

2.2 Neutral Processes

Essential to studying the transport of neutrals and their effect on plasma confinement

are the mechanisms for physical interaction between the neutrals and the plasma. The

mechanisms by which plasma and neutral fluids interact are ionization, recombination,

and charge-exchange.1 A detailed understanding of all three processes is beyond the

scope of this work, nevertheless it is appropriate to indicate some of their general

characteristics as they apply to MCX discharges.

Ionization is the process by which a neutral particle loses its bound electron and

becomes an ion. This can be considered an inelastic collision process in which collision

energy is transferred to the bound electron of the neutral, ejecting the electron and

ionizing the neutral. The collisional particle can be an existing free electron (electron-

impact ionization), an existing ion (ion-impact ionization), another neutral particle,

or even a photon (photo-ionization). However, due to the electron’s much smaller

mass and concomitant larger velocity, electron-impact ionization stands alone as the

dominant process and we will only consider this type of ionization process.
1CIV is also a plasma-neutral interaction, but the fundamental mechanism is not fully under-

stood [23] and we do not address CIV phenomena in this work.
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Recombination can occur as a two-body process (radiative-recombination) whereby

a single electron becomes bound to an ion, forming a neutral particle with the elec-

tron at some excited state and then radiatively decaying to lower excited states,

presumably until it reaches the ground state. Recombination can also occur even for

energetic free electrons through a three-body collision process in which one electron

loses a sufficient amount of energy to a second electron, allowing the first to be bound

to the participating ion. Like radiative-recombination, this process can also produce

a neutral in an excited state which radiatively decays. We do not consider three-body

recombination in this work.

Charge-exchange is a process by which a neutral transfers its electron to a nearby

ion. The original and final neutral particles can be in any excited state, however, the

transfer from ground state to ground state is dominant due to a resonance effect [26].

Note that charge-exchange does not directly affect the local neutral or plasma density,

as there is not a net increase or decrease of either neutrals, ions, or free electrons.

However, charge-exchange can be a dominant transport mechanism since a high en-

ergy ion, presumably trapped by a magnetic field, can become a high energy neutral

which is not trapped by a magnetic field, thus providing an efficient way to transport

plasma energy out of the plasma.

Figure 2.1 illustrates the concept of neutral and plasma diffusion. Neutral density

is expected to be high near the vessel wall since ions and electrons colliding with

the wall will transfer most of their energy to the wall, allowing them to more easily

recombine (effectively increasing the recombination rate). At the core of the plasma, it

is expected that neutral density is very low (high ionization fraction). Where plasma

and neutrals interact, ionization, recombination, and charge-exchange will transfer

particles, energy, and momentum back and forth between the plasma and neutral

fluids. In addition, both fluids diffuse against the gradient of their respective density.

12
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Figure 2.1: Plasma diffuses away from regions of high plasma density and toward
the boundary (a wall or magnetic flux surface). Neutral gas diffuses away from
high neutral density (a wall or magnetic flux surface) and into the plasma region.
These fluids interact via recombination, αr, charge-exchange, αcx, and ionization, αi.
In equilibrium, these processes balance to create static plasma and neutral density
profiles.
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Figure 2.2: Charge-exchange, ionization, and recombination rate coefficients are
shown as functions of electron temperature for different plasma densities. The
charge-exchange rate coefficient is plotted versus ion temperature. Charge-exchange
dominates, particularly for Te < 6 eV. Recombination dominates ionization for
Te . 1.2 eV. Ionization and recombination data are obtained from Johnson & Hin-
nov [27]; charge-exchange data is adapted from Hutchinson [26].
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In Fig. 2.2 are shown ionization, recombination, and charge-exchange rate co-

efficients as a function of electron temperature (ion temperature for αcx) and for

various plasma densities. The ionization rate coefficient is a strong function of elec-

tron temperature and dominates recombination for Te & 1.2 eV. In contrast, the

charge-exchange rate coefficient is a weak (∼ T
1/3
i ) function of ion temperature and

dominates both recombination and ionization for Te < 10 eV. The ionization and re-

combination data are obtained from Johnson & Hinnov [27], and the charge-exchange

data is adapted from Hutchinson [26]. Hutchinson indicates that the charge-exchange

rate coefficient still exceeds that for ionization for Te > 10 eV, contradicting Fig. 2.2.

This may be explained by the fact that the data are obtained from two separate

sources. This may be resolved by obtaining rate coefficient data from established

scientific databases. It is appropriate to use data from Johnson & Hinnov here since

we use their data for Hα interpretation as well. Nevertheless, this small discrepancy

in relative magnitude between charge-exchange and ionization rate coefficients is of

minor importance to the present work since both ion and electron temperatures are

not accurately known.

2.3 Neutral Density & Hα

The hydrogen Balmer-α line (Hα, λ = 656.285 nm) is emitted when a bound electron

spontaneously decays from the n = 3 principal quantum state to the n = 2 principal

quantum state in a hydrogen atom. Thus, the emissivity (photons per unit volume

per unit time) of Hα is a direct measurement of the density of the n = 3 quantum

state, i.e. γα = A32N3, where A32 is the Einstein coefficient for spontaneous emission.

In order to convert Hα intensity into information about neutral density, we require

a radiative-collisional model which will determine the population of the appropriate

excited state for a given set of relevant conditions, such as electron temperature,

electron density, and ground state atomic hydrogen (neutral) density. The difficulty
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lies in obtaining this relationship for values of these conditions which are inconsistent

with thermal equilibrium for a local volume, or local-thermal-equilibrium (LTE). If

we could satisfy LTE conditions, one could easily determine the population of any

quantum state by calculating Boltzmann factors. However, in order to achieve LTE,

the characteristic collision rates for producing excited atomic states (electron and

proton impact excitations) must be much larger than the spontaneous (radiative)

decay rates of the excited states (Einstein coefficients). Criterion for meeting LTE

conditions has been studied in detail by Griem, the application of which indicate that,

for estimated MCX discharge temperatures, electron densities are several orders of

magnitude too low to satisfy LTE, and marginal for the n = 3 quantum state to

be considered in LTE with free electrons and higher excited states [28], therefore an

alternate treatment is required.

Atomic & molecular processes are currently a subject of much research in the con-

text of fusion research [29], indeed there are several collisional-radiative codes which

address “non local thermal equilibrium” or NLTE [30]. However, these sophisticated

treatments are not necessary at this stage of neutral particle studies on MCX. John-

son & Hinnov [27] have produced a seminal work which provides the foundational

principles upon which the more developed treatments are based. Using appropriate

effective rate coefficients, Johnson & Hinnov solved a matrix of rate equations consist-

ing of the collision rates (collisional excitation, collisional de-excitation, ionization,

and recombination) as well as atomic processes, such as radiation and absorption.

They used a coronal type model, which essentially assumes that free electrons are in

thermal equilibrium and that bound electrons in a sufficiently high quantum state

are part of the continuum of free electrons, i.e. the atom is effectively ionized for

these states. The most current collisional-radiative codes are capable of considering

not only higher quantum states than those included in the calculations of Johnson &

Hinnov, but also more complex processes such as molecular dissociation of hydrogen
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Figure 2.3: Shown is the emission rate of Hα as a function of electron temperature
for various electron densities. Strong temperature dependence is seen for Te . 10 eV.

as well as impurity species effects [30]. Nevertheless, under many circumstances, these

represent higher order corrections to the Johnson & Hinnov results.

Since we are using the results of Johnson & Hinnov it is necessary to describe

qualitatively the data which will be used to analyze the experimental data in this

dissertation. Generally, the population of the quantum state n = 3 of hydrogen, and

hence Hα emissivity, depends on electron temperature, electron density, and neutral

density. We can describe this relationship with the following expression.

γα(N, ne, Te) = Nνα(ne, Te) (2.12)

The emissivity of Hα is proportional to the neutral ground state density (N) and the

emission rate (να), which is a function of electron density and temperature. This

expression can be obtained from Eqs. (12) & (15) in Johnson & Hinnov [27], where

steady state is assumed and the ionization term in Eq. (12) is of higher order. Here,

the emission rate, να, is comprised of tabulated values found in Johnson & Hinnov.

Figure 2.3 shows the emission rate of Hα as a function of electron temperature from

about 0.4 eV to 40 eV for various electron densities. Notice the strong temperature

dependence for Te . 10 eV. The density dependence is relatively weak in comparison.
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Figure 2.4: Shown is the sensitivity of neutral density estimates to electron density
(a) and electron temperature (b). Nominal plasma conditions are chosen to be ne =
7× 1014 cm−3 and Te = 3.3 eV. Here, the neutral density calculations are normalized
to that resulting from these nominal conditions and a fixed emissivity. For each plot
only the abscissa parameter is changed, while the other is fixed at the nominal value.

We will be assuming Te = 3.3 eV [11] and constant electron densities for analysis

presented in this work, therefore it is appropriate to show the sensitivity of neutral

density estimates around Te = 3.3 eV and a nominal ne = 7 × 1014 cm−3 for a fixed

emissivity (Fig. 2.4). Because a given emissivity value is proportional to neutral den-

sity, the sensitivity of calculated neutral density to electron temperature and density

is just N/N∗ = ν∗α/να, where the superscript “*” indicates the nominal value, i.e.

ν∗α = να(7 × 1014 cm−3, 3.3 eV) ∼ 5.5 × 103 ph. s−1. We see in Fig. 2.4(a) that for

the ranges in density presented in this work the estimate of neutral density may be

between about 0.7× and 3× the value estimated. Similarly, Fig. 2.4(b) indicates a

possible range between about 0.1× to 103×. Clearly the electron temperature de-

pendence is the most significant, underscoring the need for improved temperature

measurements.

2.4 MCX Neutral Models

The purpose of the Hα emission detector system is to understand the distribution

of neutrals in MCX discharges. This, in turn, should give us insight into prevalent
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neutral-catalyzed transport mechanisms. As such, we require some theoretical predic-

tion of neutral behavior against which physical measurements can be compared, i.e.

a neutral model. Furthermore, given the fact that Hα emissivity generally depend on

electron temperature, electron density, and neutral density, it is desirable that we be

able to vary these parameters in our model in order to make appropriate comparisons.

In this section, we present two models against which experimental data will be

compared: one in which centrifugal effects are ignored and one in which centrifugal

effects are included. Both are isothermal diffusion models with perfect recycling

at the boundary and are based on work done by Goldston & Rutherford [31] and

adaptations done by Ng [32]. The present models have been modified from Goldston

& Rutherford’s treatment in that density dependence of the diffusion coefficients is

maintained and the set of equations is solved for moderate system sizes.

2.4.1 Numerical Modified Goldston-Rutherford Model

The first model, termed Numerical Modified Goldston-Rutherford (NMG), is a 1D

slab model which ignores centrifugal effects and is identical to the 1D model presented

by Ng [32]. NMG is derived in detail in Appendix A but here we describe the final

result.

y′′ =
2

3

(
y2 − c√y) (2.13)

n̂ =
√
y (2.14)

N̂ =
1

3
D
(
c− y3/2

)
(2.15)

Here, in application to MCX discharges, the spatial coordinate is the radius, r. Also,

in the above equations, n̂ = n/n0 , N̂ = N/n0, and lengths are normalized to l0,
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Figure 2.5: Shown are normalized plasma and neutral density profiles for the NMG
model. Figure (a) shows the profiles for different neutral penetration depths, l0. The
neutral density profiles are normalized by D (see Eq. 2.15) in order to be shown with
the plasma density profile. Figure (b) shows the plasma density for l0/a = 0.1 and
the corresponding neutral density scaling for different D.

where n0 is the maximum plasma density and we have the following definitions.

D ≡ mc2n2
0

B2
0

ηαcx (2.16)

l0 ≡
√

T

mn2
0αiαcx

, (2.17)

where terms have there usual meanings. The interpretation of l0 is the geometric

mean of the ionization and charge-exchange mean-free-paths for a neutral particle at

the location of maximum plasma density, i.e.
√
λiλcx.

We are now in a position to discuss the impact of the relevant parameters on the

plasma and neutral densities. First, Eq. (2.13) is a differential equation of order unity

which determines the shape of the density profiles and c is a constant of integration.

This shape is only a function of the system size in units of the neutral penetration

distance, l0; thus, for a fixed system size the density profiles will be determined by

the neutral penetration depth. It is seen from Eq. (2.14) that n̂ follows directly from

the solution to Eq. (2.13). N̂ also follows directly from the solution of Eq. (2.13), but

its amplitude is scaled by D.
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Figure 2.5(a) shows how both n̂ and N̂ profiles change with l0, while holding D

fixed. The plot abscissa is scaled to a fixed system size, a = 1, thus −0.5 ≤ r̂ ≤ 0.5

is the system domain where r̂ = (r − r0)/a and the center of the system is located

at radius r0. Due to the symmetry of the solution, only half of the system domain is

plotted. Notice that the neutral penetration relative to the system size (0.5, 0.3, and

0.1) changes the gradients of the density profiles and pushes the interaction region

further toward the edge, as expected. Also notice, that as the neutral penetration

distance increases, the neutral density increases relative to the plasma density. This

effect can be understood by the dependence of l0 on the the ionization rate coefficient.

If αiis suppressed, then, for fixed D, fewer neutrals that arrive at the center will be

ionized, thus increasing their population until the neutral loss balances the diffusion.

Note that we cannot produce this result by changing either n0 or αcx since these also

appear in Eq. (2.16).

Figure 2.5(b) shows different D scaling for fixed l0/a = 0.1. Since the system size

is fixed, the solution to Eq. (2.13), and hence n̂, is unchanged (shown as the green

curve). Clearly, N̂ scales linearly with D.

2.4.2 Numerical Modified Goldston-Rutherford Centrifugal Model

The second model, termed Numerical Modified Goldston-Rutherford Centrifugal (NMGC),

is identical to NMG except that centrifugal effects have not been ignored. The in-

clusion of the centrifugal term is entirely the work of the author. This model is also
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Figure 2.6: Shown are the normalized plasma and neutral density profiles with cen-
trifugal effects for different neutral penetration depths (a) and different D scaling
(b).

derived in Appendix A and the final result is as follows.

y′′′ = −ĝy2 − ĝĝ′y + ĝ′′y +
3

2
ĝ′y′ − ĝ2y′ + 2ĝy′′ − 1

2
ĝ

(y′)2

y

+yy′ +
1

2

y′

y
y′′ (2.18)

n̂ = y1/2

N̂ = D
ĝy′ + ĝ′y − y′′√

y
. (2.19)

The same definitions used for NMG also apply here and familiar quantities are nor-

malized by n0 and l0. The normalized centrifugal term is manifested as ĝ, which

is the same for both the neutral and plasma fluids. This centrifugal term depends

on the plasma rotation velocity, but for simplicity is chosen to be parabolic (see

Appendix A). The expression for g is as follows.

ĝ =
M2

s

r̂0

(
1− 4r̂2

â2

)
,

where Ms
∼= 2 is the ion sonic mach number, r̂0 = r0/l0 = 15 cm/l0 is the normalized

“center” of the plasma, and â = a/l0 ∼= 20 cm/l0 is the nominal plasma width.
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Figure 2.6(a) shows how both n̂ and N̂ profiles change with l0 and constant cen-

trifugal effects, while holding D fixed. The plot abscissa is scaled to a fixed system

size, a, similar to Fig. 2.5 except that the full normalized system is shown because

the centrifugal effects break the symmetry. Notice that as the profiles are relatively

insensitive to neutral penetration lengths indicating that the centrifugal terms domi-

nantly affect the solution profiles. However, like NMG, the neutral penetration depth

affects neutral density relative to the plasma density. N̂ scales linearly with D, as

before (Fig. 2.6(b)).

2.4.3 Hα Emissivity Profiles

In Secs. 2.4.1 & 2.4.2 we saw normalized plasma and neutral density profiles result-

ing from the NMG and NMGC models. Together with electron temperature and a

radiative-collisional model (discussed in Sec. 2.3), these profiles imply an Hα emissiv-

ity profile. We display these emissivity profiles in this section using nominal MCX

discharge conditions (R = 6, n0 = 7 × 1014 cm−3, Bmid = 0.21 T, Te = 3.3 eV, and

Ti = 15 eV).

Figure 2.7 shows the Hα emissivity profile resulting from the NMG model (a) and

the NMGC model (b) under the same nominal discharge conditions. The models

do not determine the locations of the inner and outer-most magnetic flux surfaces;

these are chosen based on a vacuum magnetic field-line map and they determine the

absolute system size. The nominal discharge conditions determine l0 and D. We

wish to point out two features resulting from the NMG model (Fig. 2.7(a)). First

is the hollow emissivity profile. This is due to the symmetry of the solution, with

the emissivity peaks resulting from the larger neutral density near both the inner and

outer-most flux surfaces. Second is that the emissivity drops rapidly in close proximity

to these flux surfaces due to the rapid decrease in electron density near the plasma

boundary. The emissivity profile resulting from the NMGC model (Fig. 2.7(a)) shares
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Figure 2.7: Shown are nominal Hα emissivity profiles with (b) and without (a) cen-
trifugal effects. Nominal discharge conditions were applied to the NMG and NMGC
models (R = 6, n0 = 7×1014 cm−3, Bmid = 0.21 T, Te = 3.3 eV, and Ti = 15 eV). The
resulting plasma and neutral density profiles, as well as Te = 3.3 eV, were used to de-
termine the emissivity profiles. The vertical dashed lines indicate the locations of the
inner-most and outer-most magnetic flux surfaces. The vertical solid lines indicate
the locations of the inner cathode and vacuum chamber wall.

this feature at the outer-most flux surface for the same reason. However, this profile

is not hollow due to the centrifugal force driving both neutrals and plasma toward

the outer-most flux surface.

2.5 Conclusions

In this chapter we have shown the basic principles underlying centrifugal confinement,

motivating the need to achieve high plasma rotation speeds. We have also discussed

the processes which may impede plasma rotation in the context of neutral drag which

motivates the study of neutral particles in MCX discharges.

We have also presented two fluid models representing possible neutral behavior

and its effect on both neutral and plasma profiles. It is important to emphasize

that these models are at the beginning stages of development. In particular, they

assume isothermal conditions and are fairly liberal in the scaling of terms in the full

set of MHD equations. Nevertheless, they provide a good starting point by provid-

ing predicted profiles and scaling laws. It should also be noted that the boundary
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conditions used in these models may not accurately reflect those in MCX discharges.

The models assume a hard boundary which provides perfect recycling of plasma to

neutrals (nu = −NU) rather than the gas blanket possibly surrounding MCX plasma

discharges.

Finally, we have illustrated the relationship between atomic hydrogen, electron

density, electron temperature, and the resulting Balmer-α emission, allowing us to

estimate the atomic hydrogen density.
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Chapter 3

The Hα Emission Detector

The Hα emission detector (HED) was designed and constructed by the author pri-

marily to measure the absolute emission of the Balmer-α line of hydrogen (656.285

nm). The purpose in measuring intensity of a spectral line in the primary neutral

species is to be able to calculate its density, i.e. spectral emission line intensity is

related to species population. In this chapter we present a detailed description of an

individual HED, including all of its optical components. We also describe the time

and spectral response of a typical HED. Finally, include a detailed description of the

calibration procedure used to establish the absolute emission response.

3.1 Hα Emission Detector Characteristics

There are two versions of the HED system, Version-1 and Version-2. HED systems

numbered 1–7 employ Version-1 and systems numbered 8–18 employ Version-2. The

difference between the two versions is the model of photo-detector and the type of

instrument amplifier used to condition the signal for data acquisition. These will be

discussed in more detail in this section. The Hα emission detector consists of five main

components: 1. the collection optics assembly, 2. an optical fiber, 3. a filter assembly,

4. a photo diode detector, and 5. an instrument amplifier. The following paragraphs

describe these components, their sub-components, and their purpose in more detail.

Figure 3.1 shows a schematic drawing of a typical Version-1 HED system, highlighting

the most relevant components. In addition, it also shows a conceptual illustration of

the HED viewing volume, which is discussed in detail in Appendix B.
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︷ ︸︸ ︷

︷ ︸︸ ︷Interference Filter Assembly

Photo-Diode Interference
Filter

Collection Optics Assembly

1.1 cm

77.3 cm

Figure 3.1: Shown is a schematic drawing of the Hα emission detector. Depicted
is Version-1 which uses the Thorlabs DET110 silicon photo-diode unit. For clarity,
1” optics are illustrated for the filter assembly; however, all HED versions use 1/2”
optics. Version-2 is more compact since the Thorlabs PDA36A silicon photo-diode
unit contains an integrated instrument amplifier.
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The collection optics assembly consists of a Thorlabs standard 1/2”×1” optical

lens tube, 1/2”×1” adjustable lens tube, a 1/2” SMA fiber adapter, and a 1/2” plano-

convex lens with a 40 mm focal length. The lens tubes serve to position the optical

fiber relative to the collection lens and eliminate stray light from entering the fiber

optic cable. The fiber is positioned approximately 2 mm outside the focal length of

the lens, resulting in an image distance of 77.3 cm and an image size of 1.1 cm (about

18× magnification). The position of the fiber relative to the lens was designed so that

the optical image of the fiber tip would be the same size as the clear aperture of the

collection optics assembly and that the fiber image would be at a distance larger than

the diameter of the MCX vacuum chamber (55.2 cm). This creates a virtual “tube”

defining the viewing volume of an HED system. This viewing volume is discussed in

Appendix B.

The optical fiber transmits the light collected by the collection optic assembly

to the optical filter assembly. The optical fiber has a 600 µm diameter glass core

and is 20 m long. By using an optical fiber we are able to position the electronic

components of the HED system away from possibly harmful magnetic fields. The

core size of the fiber-optic was chosen to maximize the amount of light delivered to

the photo-detectors while allowing sufficient collimation of the light for an interference

filter in a relatively compact design.

The filter assembly consists of two collimating lenses and an interference filter1,

housed in light-tight lens tubes. The optical filter assembly uses Thorlabs standard

1/2” optics. This compact design was developed in order to reduce the physical size

and cost of an individual HED system. The low cost makes it possible to assemble an

entire filter assembly for any available optical bandpass filter, thus allowing intensity

measurements of other emission lines.
1CVI Melles-Griot F1.5-656.2-4-0.50
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The Version-1 photo-detector is the Thorlabs DET110 and the Version-2 photo-

detector is the Thorlabs PDA36A. These two units differ in that the PDA36A contains

an integrated amplifier, but the photo-diode and accompanying circuitry are identi-

cal. The photo-diode is a 3 mm×3 mm silicon diode with an optical response in the

visible spectrum (350 nm–1100 nm). The DET110 and PDA36A have output signal

bandwidths as high as a few hundred megahertz, depending on the output impedance

(DET110) or chosen gain (PDA36A). The PDA36A supersedes the DET110 in Thor-

labs product line and is a welcome improvement due to its integrated instrument

amplifier.

The instrument amplifier for HED Version-1 is a transimpedance amplifier with

two gain settings and was designed by the author for use with the DET110. It

was designed to maximize signal bandwidth (& 500 kHz) and transimpedance (∼
500 kV/A), thus optimizing signal strength and time response. The PDA36A comes

with an integrated transimpedance amplifier with many gain settings. The gains and

bandwidths are listed in Table-3.1. The values of the transimpedance gains listed in

Table-3.1 are for reference purposes only; their precise values are of little importance

since the absolute response of the whole system is consolidated into a single calibration

factor, which is the topic of Sec. 3.4.2.

The output signal bandwidths of the various gain settings for Version-1 and

Version-2 systems were experimentally verified using a high-speed LED. The led was

DC biased and fed a sinusoidal signal from a signal generator. The bandwidths listed

in Table-3.1 represent the -3 dB point for the associated gain setting.

3.2 Vacuum Chamber Reflections

The multi-chord HED array is comprised of 16 HEDs, each of which collect chord-

integrated emissions. The viewing chord of each terminates on the interior of the

MCX vacuum chamber or opposing viewport. The MCX vacuum chamber is made
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Table 3.1: Typical HED Gains & Signal Bandwidths

Transimpedance (kV/A) Bandwidth (kHz)

Version-1
50 550
500 550

Version-2
1.51 17× 103

4.75 12.5× 103

15 2100
47.5 785
151 320
475 100
1500 37.5
4750 12.5

of brushed stainless steel and has diffusive reflection properties. It is, therefore, very

important to characterize the amount of light which can be “scattered” into the sight

of a single chord by the interior of the vacuum chamber. To this end, a bench test

was performed on a piece of stainless steel similar to that of the vacuum chamber.

In addition, an in-situ test was performed using a piece of flock-paper as a type of

beam dump. The results of these tests are presented in this section and show that

reflections need not be considered under the present surface conditions of the MCX

vacuum chamber.

A simple bench test was performed to ascertain the reflectance properties of stain-

less steel. A piece of 304 stainless steel plate with #4 brush surface finish was acquired

by Kurt J. Lesker Co. This is the same material, surface finish, and manufacturer,

of the MCX vacuum chamber. An HED collection optic assembly was placed with

a view perpendicular to the face of the steel plate and at a distance of 23 cm from

the plate. A uniform light source2 was placed at a distance of 26 cm from the plate,

illuminating the same spot on the plate which is viewed by the HED collection optic.
2Labsphere IHLS-100-075 halogen lamp and 3P-GPS-040-SF integrating sphere.
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Figure 3.2: Shown are the results for the reflectance tests performed on stainless steel,
flock paper, and delrin. The stainless steel was obtained from Kurt J. Lesker Co. and
had a #4 brush finish (similar to the interior of the vacuum chamber). The delrin is
black in color and its surface had been sand-blasted.

The uniform source was varied in angular position but its distance from the illumi-

nated target spot was kept constant. For each angular position of the source, 10,000

measurements (10 seconds at 1 kHz sampling rate) were made by a data acquisition

system. Averages and standard deviations were calculated from the measurements at

each angular position. A control measurement was made by placing the HED collec-

tion optic assembly at a distance of 49 cm from the uniform source and viewing the

source directly. A dark measurement was taken as well in order to subtract ambient

light effects and to account for electronic signal offsets.

The results of the stainless steel reflectance tests are shown in Figure 3.2 as the

blue data. The blue curve is a Lorentzian fit to the data. The standard deviations of

all measurements were similar and are represented by the single error bar. Here the

measurement results were normalized by the control measurement (after subtracting

dark measurements), indicating about a 0.6% maximum reflectance. This may seem

to be a rather insignificant amount; however, the relevant number is not the maximum

reflectance but the integration of the reflectance over all angles. This is because an

MCX discharge is approximately an extended emission source, so that light from

virtually any angle may be scattered into the line of sight of an HED view chord.
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The sum of the contribution of reflection from all angles reveals a total contribution

that is 50% of the control measurement, which is too large to leave unaddressed.

Other plasma confinement experiments have successfully corrected for optical re-

flections in the data analysis [33], but it is more desirable to eliminate them altogether.

For this purpose we tested the possibility of using flock paper on the vacuum cham-

ber wall and a delrin flange as methods for mitigating reflections. Bench tests were

performed for both flock paper and delrin (with sandblasted surface finish) with the

identical setup as that used for the stainless steel. The results are shown in Fig-

ure 3.2 for flock paper (red squares) and delrin (black circles). The results show that

reflections from both flock paper and delrin are indistinguishable from zero.

Flock paper is not ideal for insertion into the vacuum chamber. The possibility

of out-gassing aside, the primary concern is that the plasma may damage it, thereby

contaminating the plasma; nevertheless, its attractive reflection property warranted

an in-situ test. Before any flock paper was attached to the MCX vacuum chamber, an

HED was configured with an 11 cm impact parameter view chord. Several discharges

were taken at nominal MCX parameters (VB = 10 kV, B = 2.2 kG, Pfill = 5 mTorr,

and R = 7) and the Hα signal from these served as a control. Then the vacuum cham-

ber was opened and a 2”×2” piece of flock paper was adhered to the vacuum chamber

at the location where the view chord terminated. Several discharges were taken at

the same parameters and the Hα signals recorded. Any significant difference between

the two sets of signals should indicate the extent to which reflections contribute to a

chord integrated Hα signal.

The results of the in-situ flock paper tests are shown in Figure 3.3. Shown are the

bank voltages (red) and HED signals (blue) averaged over the time interval 2 ms <

t < 3 ms. The error bars represent the standard deviation from the mean for that

time interval. It is worthy to note that the fluctuations represented by the error

bars are not an uncertainty in the measurements (electronic noise) which are of order
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Figure 3.3: Shown are the results of the in-situ flock paper test. Left of the vertical
dashed line are the control discharges (no flock paper present). At the dashed line
flock paper was inserted and the remaining discharges taken.

0.5 mV, but are real fluctuations in the plasma behavior. To the left of the vertical

dashed line are the control discharges (square data points). Notice the initial rise in

bank voltage for the first few discharges, due to conditioning effects. To the right

of the vertical dashed line are discharges taken with the flock paper present (circle

data points). Notice the initial rise in bank voltage, again due to conditioning after

recently breaking vacuum. Also notice the elevated Hα signal for the first discharge

and a drop in the signal that correlates with the rising bank voltage.

The Hα signal levels after conditioning are comparable (within 10%) between the

control discharges and those with the flock paper present and do not indicate a 50%

reflection contribution as predicted by the bench tests. The in-situ test seems to indi-

cate that, in fact, reflections are not a problem under the present surface conditions of

the vacuum chamber. The inside of the vacuum chamber at the mid-plane leaves no

room for more robust reflection mitigation techniques, such as stacked razor blades,

hence flock paper may be the only possible mitigation mechanism. In consideration

of this, the null result of the in-situ test is fortunate since the flock paper showed

significant damage after only 8 discharges. Figure 3.4 shows a photograph of the the

flock paper adhered to the vacuum vessel (left) and a comparison between the flock

paper removed from the vacuum chamber and a virgin piece cut from the same stock
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Figure 3.4: Shown is a piece of flock paper adhered to the interior of the vacuum
vessel (left) and is located just below an upper-tangential viewport. The discoloring
of the vacuum vessel was present before insertion of the flock paper. The same piece
of flock paper is compared to an undamaged piece (right).

(right). The indifference to the flock paper may be explained by the condition of the

interior of the vacuum chamber. After many years and several thousand discharges,

the interior of the vacuum chamber has become discolored and dulled, as can be seen

in Fig. 3.4. This is in contrast to the new “shiny” steel plate acquired for the bench

tests.

3.3 Viewport Transmission

Ideally, each HED system would be calibrated in-situ, thus incorporating all of the

optical elements. However, due to the proximity of the vacuum chamber to the

expected plasma location and the wide range of viewing angles required to view the

entire plasma cross-section with a multi-chord array (particularly at the outer edge),

an in-situ calibration is impractical. Fortunately, the entire optical and electrical

system of an HED can be treated as one system during calibration and only the

viewport must be treated separately. Each HED unit will be sighting through the

viewport at different angles, so it is important to characterize the viewport’s optical

transmission as a function of incident angle. We measured the transmittance of the
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viewport and present the results in this section, comparing them to basic optical

theory.

The transmittance of light through a boundary between two mediums of different

refractive index can be found in many standard optics texts [34–36]. The total power

transmittance through a single boundary is

T (θ) = t2⊥ + t2‖ (3.1)

where t⊥ and t‖ are the transmittances for the electric field perpendicular and parallel

to the plane of incidence, respectively. Their expressions are in terms of the incident

angle and the indices of refraction for the incident (ni) and transmitted (nt) medium.

t⊥ =
2ni cos θi

ni cos θi +
√
n2
t − n2

i sin2 θi
(3.2)

t‖ =
2nint cos θi

n2
t cos θi + ni

√
n2
t − n2

i sin2 θi
(3.3)

We are interested in determining the transmission across two boundaries: from vac-

uum to glass to air. The total transmittance then becomes

T (θ) = t2⊥,12t
2
⊥,23 + t2‖,12t

2
‖,23 (3.4)

Here, the numeric subscripts indicate the boundary and direction of transmission,

e.g. “12” means transmitting from medium 1 into medium 2.

The viewport through which the HED array views is a Kurt J. Lesker VPZL-800

made of Kovar 7056 crown glass with refractive index n = 1.4873. The viewport

was removed from the vacuum chamber in order to measure its transmittance. An

HED unit was placed a fixed distance from a uniform light source, directly viewing its

output port, and control and dark measurements were taken. The glass viewport was
3www.corning.com

34
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Figure 3.5: Shown are the results of the viewport transmittance test. The black curve
is the predicted transmittance [34] (see Eq. (3.4)) with 1% absorption. The blue curve
is an empirical fit to the data. The transmittance is virtually constant (92%) for all
angles of interest (< 30◦).

then placed between the light source and the HED collection optic, oriented at various

angles relative to the optic axis of the HED collection optic. Measurements taken at

each angular orientation were recorded by a data acquisition system and included

10,000 samples (10 s at 1 kHz sample rate). The average and standard deviation was

calculated for each orientation.

Shown in Fig. 3.5 are the results of the transmission measurements for the glass

viewport. The red data points represent the measured transmission as a fraction

of the control measurement (after subtracting dark measurements). The error bars

are the standard deviation of each measurement. The black curve is the theoretical

prediction expressed by Eq. (3.4) with 1% absorption (×0.99). The blue curve is a

fourth-order polynomial fit to the measurements.

We see in Fig. 3.5 that the measured transmission agrees very well with Eq. (3.4),

if a 1% absorption factor is included. Also of note is that the data are in agreement

with the specifications of the manufacturer (92% at 589 nm). The measurement

uncertainty is due to electronic noise (∼ 0.6 mV). It is uncertain why the data does

not agree with the theory for θ > 50◦, but may be due to multiple reflections within

the glass, which are not considered in Eq. (3.4). However, the view chords of the HED
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array do not exceed 30◦ from normal incidence, thus the discrepancy is irrelevant. 92%

transmission may be considered constant for the relevant incident angles of the HED

array and is included in the overall calibration factor for each HED system.

3.4 Hα Emission Detector Calibration

Since neutral hydrogen density is related to the intensity of radiative transitions from

its excited states, it is necessary to calibrate the absolute spectral response of the HED

system. An HED system consists of several optical components, each contributing to

the overall loss of light intensity reaching the photo-diode detector, ultimately affect-

ing the signal amplitude. Furthermore, the absolute spectral response of the DET110

and PDA36A photo-detectors are not calibrated by the manufacturer.4 These effects

can vary from one HED system to another, requiring each unit to be independently

calibrated. The following sections describe in detail the calibration procedures needed

to fully characterize an HED system for interpreting Hα emissions. Section 3.4.1, de-

tails the procedure for obtaining the shape of the spectral transmission of the optical

components of a single HED system. Section 3.4.2 details the absolute calibration

procedure in mathematical language, culminating in an overall calibration factor for

an HED system.

3.4.1 Hα Emission Detector Spectral Calibration

Clearly, if we wish to measure the emission intensity of a particular spectral line, an

appropriate filter must be chosen both to include the line of interest and to exclude

all other possible emission lines. While every optical component of an HED sys-

tem will have a wavelength dependent transmittance, the variation of these spectral

transmittances are considered to be very small over the wavelength range for which
4The specification sheet accompanying these detector models describe a spectral response curve

which is intended for estimation purposes only and does not represent a bona-fide calibration.
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the interference filter’s transmittance is significant. Therefore we only need to con-

sider the spectral transmittance of the interference filter. Furthermore, the spectral

response of the DET110 and PDA36A are limited to wavelengths between 300 and

1200 nm, therefore the rejection characteristics of filter only need to be demonstrated

within this wavelength domain. However, it will be shown in Sec. 3.4.2 that only

an accurate knowledge of the shape of the spectral transmittance for the interference

filter, F (λ), is required to complete the calibration, since the absolute response is

absorbed into the total response of the system.

The shape of the spectral transmittance of the interference filter is obtained as fol-

lows. An HED collection optic directly views the output port of a uniform calibrated

light source, transmitting the light through an HED optical fiber and through an HED

interference filter assembly. However, the interference filter assembly is detached from

the photo-diode unit and coupled to one of the fiber optic cables attached to the spec-

trometer entrance slit. It is critical that interference filter assemblies are used in order

to imitate the HED system configuration as much as possible. A different setup would

not appropriately characterize any shift and/or broadening of the filter transmittance

due to imperfect collimation within the interference filter assembly. A spare interfer-

ence filter assembly is prepared with identical optical configuration except that the

interference filter is removed. Replacing the assembly containing a filter for one that

does not allows us to record the “raw” spectrum of the uniform light source for use

as a control signal. The gate time of the spectrometer’s CCD camera is adjusted to

maximize the control signal without saturating the CCD. Many spectra are recorded

with both types of filter assemblies, creating two ensembles. An ensemble average of

each pixel is then taken to eliminate pixel noise. We do not smooth the data within an

individual spectra since this will affect the apparent optical bandpass of the system.

The two resulting spectra are then divided, yielding the precise shape of the optical

bandpass of the system. Division by the control spectrum cancels the effects of the
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Figure 3.6: Shown is the normalized spectral transmittance of a typical HED in-
terference filter across the visible spectrum (a), and near Hα (b). The broadband
transmittance data was provided by the manufacturer. The narrow band data (blue
curve with representative error bars) was produced by the author with the use of a
broadband light source and spectrometer. The data is fit to a Lorentzian distribution
(red curve). A spectral emission from a typical MCX discharge is shown for reference
(green). Note the presence of C+ emission lines.

spectral shape of the source as well as relative response between pixels on the CCD.

The resulting spectral bandpass is then normalized to its maximum value.

The normalized spectral transmittance for a typical HED interference filter is

shown in Fig. 3.6. Figure 3.6(a) shows the broadband response (supplied by the

manufacturer), illustrating that the interference filter rejects appropriate wavelengths

away from the Hα emission line. Figure 3.6(b) shows the optical pass-band in more

detail, as measured by the author. In the vicinity of Hα there are two distinct C+

lines (657.987 nm & 658.470 nm) appearing in MCX discharges, the intensity of

which varies relative to Hα depending on the discharge parameters, particularly pre-

fill pressure. It is desirable, therefore, to suppress the contribution of these lines to

the signal produced by an HED system. The interference filter shows a suppression

of these wavelengths by about a factor of five.
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3.4.2 Hα Emission Detector Absolute Calibration

The absolute calibration of each HED system was carried out using a calibrated

light source and integrating sphere (Labsphere IHLS-100-075 lamp and 3P-GPS-040-

SF integrating sphere). The light source is a halogen lamp with regulated power

supply. The integrating sphere is a spherical shell with a highly diffusive surface on

the interior. The purpose of the integrating sphere is to produce a uniform output

intensity, both in solid-angle and across the entire area of the output port. The

spectral radiance at the output port of the integrating sphere is calibrated by the

manufacturer. An HED system is situated to view the output port of the uniform

source and the output of the HED system is collected on the same data acquisition

system that is used to for standard MCX discharges (National Instruments PXI-6133

DAQ Card).

The final signal produced by an HED unit depends on the light source being

viewed, how the source is viewed by the HED unit (design of the collection optic

assembly), the various absolute spectral losses and responses, and electronic signal

amplification. These items are separated into four functions, that, when multiplied

and appropriately integrated, give the final HED signal. The source function is the

spectral emissivity of the light source, I(λ, r,Ω, t); generally this is wavelength, space,

solid-angle, and time dependent, and carries units of ergs s−1 cm
−3

nm−1 sr.−1. This

will be defined later for the calibrated light source and the Hα emission line. The way

in which an HED unit views the light source is defined by the optical design of the

collection optic assembly. This is described by a spatially dependent, function, g(r),

which is the solid-angle seen by the collection optic assembly for an infinitesimal source

located at r and has units of sterradians. The spectral and electronic responses of the

HED system are represented by the spectral transmittance of the interference filter,

F (λ), discussed in Sec. 3.4.1, and a function R(λ, ω) with units V s/erg. For reasons

described in Sec. 3.4.1, F (λ) has a maximum value of 1. R(λ, ω) includes the absolute
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spectral response of the solid-state photo-diode and the electronic amplification, as

well as any losses incurred in the system. The ω dependence is due to the signal

bandwidth determined by all electronic components involved. The final signal, S(ω, t)

in volts, produced by an HED system from a general emission source is the integration

over the products of all these quantities.

S(ω, t) =

∫
V

∫
λ

g(r)F (λ)R(λ, ω)I(λ, r,Ω, t) dλ dV (3.5)

Here, cylindrical coordinates (r, φ, z) are used with respect to the collection optics,

i.e. r is measured from the optic axis, φ about the optic axis, and z along the optic

axis. The volume integral is carried out over the relevant emission volume, i.e. the

volumetric intersection of the collection optics view chord (domain of g(r)) and the

emission volume (spatial domain of I(λ, r,Ω, t)).

In Eq. (3.5), determination of F (λ) is detailed in Sec. 3.4.1 and g(r) is discussed

in detail in Appendix B. The wavelength dependence of the light source, I, is known

for the calibrated light source, but only its shape is known for Hα. This leaves two

unknowns: the amplitude of the emission line shape for Hα, the determination of

which is the purpose of an HED system; and R(λ, ω), the determination of which

is the purpose of the calibration procedure discussed in this section. We make the

following simplifications regarding the functions contained in Eq. (3.5).

1. The calibration source and Hα emissivity in MCX discharges are assumed to be

uniform in solid-angle; therefore, all functions are independent of Ω.

2. We assume that the spectral emissivity of the source, I, does not change sig-

nificantly across the optic axis (in the r direction), but may change along the

optic axis (in the z direction).

3. 1
πR2

∫
g(r, φ, z) r dr dφ = G , the effective solid-angle, is independent of z. This

is proven in Appendix B (see Figs. B.4 & B.5).
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4. We assume that the unknown spectral response of the HED, R(λ, ω), does not

vary significantly in the domain of λ where F (λ) is significant and does not

vary significantly for ω less than the electronic bandwidths listed in Table-3.1,

i.e. R(λ, ω) = R(λ0) in the domains approximately655 nm < λ < 658 nm5 and

ω < 2π · 100 kHz6.

With these assumptions, Eq. (3.5) reduces to an integration over the interference filter

spectral transmittance and the emission source.

S(t) =

∫
V

∫
λ

g(r)F (λ)R(λ, ω)I(λ, r,Ω, t) dλ dV

= R(λ0)

∫
z

(∫ 2π

0

∫ R

0

g(r, φ, z) r dr dφ

) (∫
λ

F (λ)I(λ, z, t) dλ

)
dz

S(t) = πR2GR(λ0)

∫
z

∫
λ

F (λ)I(λ, z, t) dλ dz . (3.6)

The uniform light source is calibrated in spectral radiance at the surface of the

output port. This means that the spectral radiance, RS, is known as a function of

λ and the functional dependence on z of the source’s spectral emissivity is a Dirac-

delta function, IL = RSδ(z − z0), where RS has units ergs s−1 cm−2 sr−1 nm−1 and z0

is the position of the output port relative to the collection optics. Furthermore, the

calibrated light source is time independent. Thus the signal produced by an HED

viewing the uniform light source is

SL = πR2GR(λ0)

∫
λ

F (λ)RS(λ) dλ .

5Based on data sheets accompanying the PDA36A, the instrument response changes less than
1% over this interval.

6The transimpedence gains used for measurements during MCX discharges are 500 V/A (Version-
1) and 475 V/A (Version-2).
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Solving for R(λ0) yields an expression comprised entirely of known quantities.

R(λ0) =
SL

πR2G
∫
λ
F (λ)RS(λ) dλ

. (3.7)

To complete the calibration, all that remains is to consider the line shape of Hα

in an MCX discharge. The Hα emission line can be approximated as a Gaussian

distribution whose width is largely determined by Doppler broadening, as follows.

Iα(λ, z, t) =
hc

λ0

γα(z, t)

(4π sr.)
√
πw

e(λ−λ0)2/w2

, (3.8)

where γα(z, t) is the emissivity with units of [ph. cm−3 s−1], which may be dependent

on time and may change along the optic axis. An additional factor of 4π sr. is included

in the denominator in order to carry the appropriate units for spectral emissivity.

Here, we assume that Doppler shifts due to rotation velocity and any line broadening

due to temperature and pressure will not change w enough to affect the integration

over λ in any significant way7. Now we can present an expression for the signal

obtained from an HED which is viewing Hα emissions.

Sα(t) = πR2GR(λ0)

∫
z

∫
λ

F (λ)I(λ, z, t) dλ dz

=
SL∫

λ
F (λ)RS(λ) dλ

hc

λ0

∫
λ

F (λ)

4π
√
πw

e(λ−λ0)2/w2

dλ

∫
γα(z, t) dz

=
hc

4π3/2wλ0

∫
λ
F (λ)e(λ−λ0)2/w2

dλ∫
λ
F (λ)RS(λ) dλ

SL

∫
z

γα(z, t) dz

Sα(t) = Cα
∫
z

γα(z, t)dz , (3.9)

where we define

Cα ≡ hc

4π3/2wλ0

∫
λ
F (λ)e(λ−λ0)2/w2

dλ∫
λ
F (λ)RS(λ) dλ

SL . (3.10)

7A rotation velocity of 50 km/s cooresponds to a wavelength shift for Hα of ∆λα = 0.1 nm, which
is much smaller than the FWHM of the interference filter (1.5 nm).
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Table 3.2: HED Calibration Factors
HED λ0 (nm) FWHM (nm) Cα (10−19 V cm2 s)

1 656.19 1.76 3.82
2 656.16 1.73 3.46
3 656.07 1.74 3.23
4 656.10 1.78 3.51
5 656.07 1.78 3.14
6 656.10 1.73 3.31
7 656.12 1.81 3.48
8 656.11 1.75 3.54
9 656.14 1.76 3.52
10 656.07 1.84 3.34
11 656.19 1.72 3.61
12 656.11 1.74 3.57
13 656.07 1.82 3.90
14 656.14 1.83 4.00
15 656.09 1.75 4.30
16 656.15 1.76 4.19
17 656.18 1.61 4.10
18 656.16 1.57 4.46

Note that G falls out of the expression for the calibration factor, Cα, because it is

independent of z. The integral over z in Eq. (3.9) is the subject Abel inversions

discussed in Appendix C. Also notice in Eq. (3.10) that the function F (λ) appears in

both the numerator and denominator, hence an overall constant accompanying the

spectral transmittance would cancel out of the expression and only the shape function

is needed. The Hα line width, w, is determined from a spectral line emission measured

by the spectrometer from a standard MCX discharge. Its value was determined

to be about 0.06 nm, so the integration over the emission line shape may be well

approximated as a Dirac-delta function. The calibration factor, Cα, for each HED

system is listed in Table-3.2, along with its filter’s central wavelength and full-width-

half-max.
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3.5 Conclusions

The Hα emission detector is a compact, versatile, and inexpensive (∼$1 k/channel)

emission diagnostic. The modular, off-the-shelf components allow new systems to be

assembled and old systems to be serviced or modified relatively easily. The system can

easily be adapted for any visible emission line for which an appropriate interference

filter can be obtained. In addition, the compact design of the collection optic assembly

affords a large degree of freedom in the application and logistic location of the device;

essentially, it can be placed at any viewport location while occupying little space. It

is this versatility that motivated incorporating the same collection optic assembly for

use with the 1 m spectrometer.

In this chapter, we have demonstrated that the HED is spectrally and temporally

suitable for measuring absolute Hα emission from MCX discharges. In addition we

have documented the characteristics of all HED systems employed on MCX, partic-

ularly the absolute calibration factors.
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Chapter 4

Experimental Results & Discussion

In this chapter, we present the results of the experiment which comprise the main

findings of this dissertation. We begin with a description of the MCX experiment.

Radial emissivity profiles are then presented which show dominant emissions at the

vacuum chamber wall. Next we present phenomenological behavior of the discharges

as experimental parameters are varied. The scaling of neutral density estimates are

compared with the prescription of the models presented in Sec. 2.4, showing moderate

agreement in the magnetic field and pressure scans. The scaling of estimated charge-

exchange times are compared to measured momentum confinement times. Lastly, we

discuss the temporal behavior of radial Hα emissivity profiles.

4.1 Experiment Description

The Maryland Centrifugal eXperiment is a pulsed discharge which is sustained for

about 5 ms. The driving mechanism is a set of 30 capacitors which are charged to a

desired voltage. The MCX experiment is essentially the discharge of these capacitors

from a central cathode to the vacuum chamber, through a volume of hydrogen gas.

The capacitors provide the electric field and energy required for initial breakdown

of the gas and formation of the plasma. The remaining electric potential on the

capacitors then maintain the electric field in the plasma, producing the E ×B drift

rotation as well as the j × B driving force. The data acquisition system records

data using LabVIEW PXI-6133 digitizers at 1 MHz simultaneous sampling rates.

The internal clock from a single PXI-6133 DAQ card is used to trigger an external
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Figure 4.1: An MCX discharge can be modeled as as the electric circuit shown here.
The plasma voltage, Vp, and plasma current, Ip, are measured at the location indicated
by the blue dot. The capacitor C1 represents the capacitor bank. The resistors R1

and R2 are the series and crowbar resistors, respectively. Switches S1 and S2 are
mercury ignitron switches. The plasma is modeled as a resistor and capacitor in
parallel, shown inside the red dashed box.

digital pulse generator which is used as a synchronization device for the start ignitron,

crowbar ignitron, and the CCD camera employed by the visible spectrometer.

MCX 0-dimensional discharge behavior can be described by a simple electric cir-

cuit model, shown in Fig. 4.1. Illustrated in the figure is the capacitor bank (C1), the

start ignitron switch (S1), series resistor (R1), crowbar ignitron switch and resistor

(S2 and R2), and plasma capacitance and resistance (Cp and Rp, encompassed by the

red dashed line). Plasma voltage, Vp, and current, Ip, are measured at the location

indicated by the blue dot.

An MCX discharge commences as follows. The data acquisition system begins

sampling at t = 0; at t = 0.5 ms the start ignitron closes (switch S1 in Fig. 4.1),

applying the full capacitor bank voltage between the center cathode and the vacuum

chamber (across the pre-fill hydrogen gas). Depending on pre-fill gas pressure, applied

bank voltage, and applied magnetic field, a period of voltage hold-off occurs after

which the experiment enters a break-down stage in which the gas begins ionizing.

Following this breakdown stage is a formation/spin-up stage in which the plasma’s
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Figure 4.2: Shown are the following signals: plasma voltage (kV), plasma current
(kA), plasma density (1014 cm−3), and Hα emissivity (1018 ph. cm−2 s−1). Also in-
dicated is the start time, t1, the end of the breakdown phase, t2, the end of the
formation/spin-up phase, t3, the crowbar time, tc, and a quasi-steady-state period
(shaded), 2 ms < t < 3 ms. The shaded region is the period over which data is
analyzed for this dissertation.

azimuthal momentum and density increases. Next is a near steady-state stage, after

which the crowbar ignitron is closed (switch S2), creating a type of shunt for the

remaining charge on the capacitor bank as well as for the stored energy in the plasma.

More detailed descriptions of both the discharge stages and the MCX circuit model,

particularly in regard to post-crowbar analysis, are given by Sarah Messer [7] and

Robert Lunsford [24].

Figure 4.2 shows a typical MCX discharge (MCX080929-41) illustrating the afore-

mentioned stages of the discharge. The shaded region 2 ms ≤ t ≤ 3 ms is the time

period of interest for a majority of the analysis presented in this dissertation. signals

for plasma voltage and current, electron density, and Hα emissivity are plotted. Indi-

cated by vertical dashed lines are the following times of interest: t1 is the closing of

the start ignitron (switch S1, Fig. 4.1); t1 < t < t2 is the breakdown stage; t2 < t < t3

is the formation/spin-up stage; t3 < t < tc is a quasi-steady state stage; tc is the

closing of the crowbar ignitron (switch S2, Fig. 4.1).
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The three main diagnostics of interest to this work are the infrared interferome-

ter, visible spectrometer, and a multi-chord array of Hα emission detectors (HEDs).

All are situated at the mid-plane (z ' 0) of the MCX device. The interferometer is

a Mach-Zehnder type using a 3.39 µm HeNe laser [37]. It is situated at the lower

tangential port with an impact parameter of 16.5 cm. The spectrometer is a 1 me-

ter Czerny-Turner type with a 600 groove/mm grating. The detector used for the

spectrometer is an intensified CCD camera with a 528 px × 748 px CCD chip. The

spectrometer achieves a five chord capability by using a five-chord fiber bundle. The

fibers are arranged vertically in the bundle and the resulting image on the CCD chip

is along the vertical (528 px) dimension. The spectral view of the CCD camera is

about 13 nm having an approximate inverse dispersion of 0.17 /px and centered at

approximately 656.28 nm (Hα). The instrument width of the spectrometer is no larger

than 3 px. The spectrometer employs the same type of collection optic assemblies

and optical fibers as the HED array.

The multi-chord Hα emission detector array (see Chapter 3) is composed of 16

HED systems arranged at the mid-plane with different impact parameters. In order

to fit 21 collection optics (16 HED and 5 spectrometer) at the top tangential port,

two vertical rows of 8 collection optics were arranged for the HEDs and a third row of

five for the spectrometer. One row is located at z = 3.5 cm containing odd numbered

HEDs, another row is located at z = −1.5 cm containing even numbered HEDs. The

z location of each row is listed in Table-4.1 along with each chords impact parameter

and angle of incidence with respect to the viewport. The z location of each row and

the vertical spacing within each row were arranged in such a way that the outer-

most HED and spectrometer chords as well as the inner-most HED chords were not

“clipped” by the edges of the 8” viewport (≈ 150 mm diameter opening).

There are four primary goals intended to be achieved with Hα profile measure-

ments:
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Figure 4.3: Shown is a cross-section of the vacuum vessel at the mid-plane (z = 0)
depicting the locations of each HED in the multi-chord arrangement. 16 chords
are arranged in two vertical columns of 8 chords each. One column contains odd-
numbered HEDs (blue) and the other contains even-numbered HEDs (red). The
columns are separated by 5 cm and the radial resolution is 1.4 cm. The angle of
incidence with respect the viewport for each chord is listed in Table-4.1.

Table 4.1: HED Chord Locations.
# r (cm) z (cm) θ (◦) # r (cm) z (cm) θ (◦)

3 6.0 3.5 22.0 11 16.8 3.5 3.1
4 7.4 -1.5 20.4 12 18.2 -1.5 4.9
5 8.7 3.5 16.2 13 19.5 3.5 10.1
6 10.1 -1.5 14.5 14 20.9 -1.5 12.0
7 11.4 3.5 9.9 15 22.2 3.5 17.4
8 12.8 -1.5 8.2 16 23.6 -1.5 19.5
9 14.1 3.5 3.5 17 24.9 3.5 25.0
10 15.5 -1.5 1.7 18 26.3 -1.5 27.2
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1. Obtain confirmation of the plasma width, a, between the inner and outer-most

flux surfaces. Figure 2.7(a) suggests that the emissivity may fall to zero outside

the locations of the inner and outer-most magnetic flux surfaces, where plasma

density may be zero.

2. Compare Hα intensity measurements with those predicted by both the NMG

and NMGC models.

3. Compare the scaling of neutral density, estimated from Hα measurements, with

that prescribed by the NMG and NMGC models.

4. Compare the scaling of the charge-exchange time, estimated from Hα measure-

ments, with measurements of the momentum confinement time.

To accomplish the goals listed above, an experimental campaign was undertaken in

which four input parameters were varied. The varied parameters were the mirror

ratio, R, the mid-plane magnetic field, Bmid, the fill pressure, Pfill, and the applied

capacitor bank voltage, Vbank. By varying the mirror ratio we expect to see a change

in the plasma width or changes in the location of the inner and outer-most flux

surfaces. From Eqs. (2.16) & (2.17), we expect to see variational dependence of

the neutral density on magnetic field and plasma density. Fill pressure provides the

necessary variation in plasma density. It is less clear what is to be expected by

varying the applied bank voltage. Typically, larger capacitor bank voltages do not

result in larger voltages across the plasma (or larger rotation velocities), but rather

in reduced plasma resistance and larger plasma current. This may indicate increased

plasma temperature1, but we do not currently have reliable diagnostics dedicated to

measuring electron and ion temperatures. Nevertheless, variations in applied bank

voltage are included in the experiment.
1Increased plasma current may be inconsistent with increased plasma temperatures, since in-

creased temperatures should improve plasma performance.
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Table 4.2: Applied Experimental Conditions.

set Bmid (T) R Vbank (kV) Pfill (mTorr)

1 0.15, 0.18, 0.21, 0.24 6 10 5
2 0.21 4, 5, 7 10 5
3 0.21 6 8, 9, 11, 12 5
4 0.21 6 10 1, 9
5 0.3 5.1 10 5

Table-4.2 lists the experimental parameters for the experiment. Each parameter

was varied while keeping all other parameters fixed. It is not intended to completely

fill the parameter space, but only to observe the scaling of the measurements as a

single input is varied. There is one exception which is due to the constraints of the

power supplies driving the magnetic field (listed as set 5). It was desirable to extend

the magnetic field as high as possible (0.3 Tesla), limited only by the solenoid coils’

power supply; however, the mirror coils’ power supply limits the mirror ratio to 5.1

for mid-plane field magnitude of 0.3 T.

The data presented in this chapter represents an average over the quasi-steady

state period 2 ms < t < 3 ms, unless stated otherwise. Analysis procedures specific

to particular results are described in detail as the results are presented.

4.2 Radial Profiles in MCX Discharges

The purpose of developing a multi-chord detector system is to obtain radial profile

information. Here we present measured Hα emissivity profiles and compare them to

the two theoretical models described in Sec. 2.4. The profile measurements indicate

that emissivity (and neutrals) are dominant near the wall of the vacuum chamber, that

there is no indication of inner and outer-most flux surfaces (and hence no information

about the plasma width), and that the profile shapes are largely independent of the

plasma conditions produced within currently available MCX parameters.
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All radial Hα profile information presented in this work has been conditioned

using a data smoothing routine in order to reduce the effect of observed systematic

error. HED measurements, prior to Abel inversion, indicated spatial fluctuations

in Hα emissivity on the scale of the chord separation (1.4 cm) and which appeared

to be invariant to parametric variations. This is shown as the green triangles in

Fig. 4.4(a). These are raw chord integrated measurements. The reader may observe

spatial oscillations particularly for radii between about 10 and 15 cm, as well as

between about 19 and 23 cm. Because this pattern is on the scale of the chord

separation and persists throughout the parametric scans, it was determined to be

systematic. After the main experimental campaign, the multi-chord arrangement was

re-situated such that the z locations of both vertical rows were closer together (3 cm

separation). This resulted in a smoother profile, further supporting the conclusion

that the spatial fluctuations were systematic. The most likely explanation is that

reflection properties of the vacuum chamber wall differ significantly enough from one

location to another as to produce this effect. Recall that the reflectance test performed

on the vacuum vessel wall was only done for one chord location (see Sec. 3.2).

To suppress this systematic error in the chord integrated measurements, a spa-

tial filter was applied to the data as part of the analysis routine. The algorithm

used was Matlab’s filtfilt function, using a three element window, i.e. <new

profile >=filtfilt([1,1,1]/3,1,<old profile >). This has the effect of smooth-

ing the profile information but does not affect the value of the endpoints (chords 3 &

18).

Figure 4.4 shows the Hα emissivity profile for standard experimental parameters

(Bmid = 0.21 T, R = 6, VB = 10 kV, Pfill = 5mTorr). Figure 4.4(a) shows the chord

integrated signals (uninverted measurements of the HEDs). The green triangles are

the raw measurements, the blue squares are the measurements after applying the

spatial filter to suppress systematic error. The solid red curve is a fourth-order poly-
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nomial fit constrained to be symmetric about r = 0 and terminated at the vacuum

chamber wall. Figure 4.4(b) shows the emissivity profile (the Abel inversion of the

chord integrated signals). Notice that the smoothing of the chord integrated profile

has a large effect on the condition of the inverted data, where it is seen that the

systematic spatial variations are exacerbated. Also notice that the emissivity profiles

resulting from both the smoothed chord data and the polynomial approximation fall

below zero around r = 12 cm. This unphysical result is an indication of systematic

error most likely due to the persistence of wall reflection effects. In Appendix C.2 we

show that the Abel inversion process limits the effect of systematic mis-measurement

of a single chord to the nearest inward chord. Thus, it is unlikely that the negative

emissivities are due to the systematic mis-measurement of a single chord. Neverthe-

less, the error is smaller than the emissivity amplitude near the chamber wall and

therefore does not significantly affect the qualitative interpretation of the profiles.

We will estimate the systematic error to be about 5 × 1016 ph. cm−3 s−1 for inverted

profiles, which will be reflected in the error bars of profile data presented henceforth.

The first observation to note from Fig. 4.4 is that there is no apparent hollow

emissivity profile, unlike that which was predicted by the NMG model. Second, is

that the emissivity is dominant near the vacuum chamber wall (' 27 cm) and not

immediately inside the expected positions of either the inner-most or outer-most

magnetic flux surfaces (indicated by vertical dashed lines). This motivates the use

of the NMGC model as a comparison, which is shown as the blue curves. These

were obtained by using the plasma density (measured by the interferometer, n0 =

6.4 × 1014 cm−3), assuming Te = 2.5 eV and Ti = 30 eV, and shifting the inner and

outer-most flux surfaces outward by 2.5 cm. Using the standard temperatures of

3.3 eV and 15 eV, respectively, results in a peak emissivity level that is about 3×
smaller. Shifting the flux surfaces was done in order that the model results would

coincide better with the measurements. It should be mentioned, however, that the
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Figure 4.4: Shown are chord integrated signals from the HED multi-chord array for
a standard discharge (MCX080929-41) (a), and the Abel inversion of those signals
resulting in an emissivity profile (b). The raw data is given as green triangles and
smoothed data as blue squares. The red curve represents a fourth-order polynomial
fit to the raw data (b) and its Abel inversion (a). The blue curves are the result of the
NMGC model using plasma conditions from the discharge and assuming Te = 2.5 eV
and Ti = 30 eV. Vertical dashed lines indicate the location of the expected inner and
outer-most magnetic flux surfaces. Vertical solid lines indicate the location of the
cathode and vacuum chamber wall.

conditions applied here to the NMGC model resulted in Nwall ' 1.2 × 1014 cm−3,

a maximum ionization fraction of about 99% (which occurs at r = 15 cm), and an

average ionization fraction of 95% over the assumed plasma width.

We should also mention here that the profiles observed are qualitatively much

different than those previously observed by Ghosh [11] in two ways. First, Ghosh ob-

served mildly hollow profiles for neutral hydrogen emissivity. Second, he observed an

emissivity level at 6 cm which was about 10× the emissivity at 25 cm. The reason for

this change from inboard dominated to outboard dominated emissivity is not known.

However, it is possible that changes to end insulators and/or surface conditioning of

the vacuum chamber could have affected this change. No hypothesis can be formu-

lated at this time as to how the end insulator may have contributed to the change

in emissivity pattern. Many years of MCX discharges without baking or discharge

cleaning the vacuum chamber may have contaminated the chamber wall with large

amounts of hydrogen, thus it may be sourcing large amounts of neutral particles dur-
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Figure 4.5: Shown are normalized, chord-integrated signals from five HEDs
(MCX081006-01. . . 05) and the spectrometer (MCX081006-17. . . 21). The profile ob-
tained from the spectrometer corroborates the results of the HED multi-chord array.

ing discharges. Efforts are currently underway to implement baking and discharge

cleaning in order to determine if this is plausible.

For the purpose of checking the qualitative results of the emissivity profile, several

discharges were executed in which five HED view chords, distributed between 6 cm

and 26 cm, were given to the spectrometer. The spectra taken were then integrated

over the interval 655.2 nm < λ < 657.4 nm to include the entire Hα emission line.

The five point spatial profiles for each discharge are normalized by the maximum

intensity chord and then individual chords are averaged over the discharges. Fig-

ure 4.5 shows the comparison between the ensemble averaged profile as measured by

the HED array (discharges MCX081006-01. . . 05) and that of the spectrometer (dis-

charges MCX081006-17. . . 21). The error bars indicate the standard deviations from

the mean. Keep in mind that we do not have a relative calibration between the spec-

trometer chords so the profiles cannot match exactly. Nevertheless, the qualitative

agreement between the two indicates that the profiles measured by the HED array

are correct.

Neutral density and charge-exchange time will be discussed in Sec. 4.4, but for

reference purposes the emissivity data in Fig. 4.4(b) is converted to neutral density

and charge-exchange time estimates as a function of radius and shown in Fig. 4.6.
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Figure 4.6: Shown is a neutral density profile (a) and charge-exchange time profile
(b) as a function of radius under standard discharge conditions. The neutral density
is estimated from the emissivity data in Fig. 4.4(b) and τcx from the neutral density
(1/Nαcx). A few selected error bars are shown for the charge-exchange plot in order
to show the increasing uncertainty for decreasing radius due to N → 0.

Neutral density is estimated using Eq. (2.12) with the assumptions that n(r) = n

(uniform plasma density) and Te = 3.3 eV. The charge-exchange time is calculated

as τcx = 1/Nαcx with Ti = 15 eV assumed. The selected error bars in the charge-

exchange plot indicate increasing uncertainty for smaller radii owing to N → 0. In

addition, τcx for r < 12 cm is omitted since the data is less than zero. Nevertheless,

if the emissivity data is to be interpreted as neutral density approaching zero, then

the charge-exchange time may become much larger for radii less than 12 cm.

Since the neutral density profile in Fig. 4.6(a) is determined with the assumption

of a flat electron temperature profile, it is appropriate to mention the possible effect

that a temperature gradient near the chamber wall will have on estimated neutral

density near the wall. From Fig. 2.4 we saw that the interpretation of neutral density

from Hα emissivity is very sensitive to electron temperature. For example, for fixed

electron density, the neutral density is about 1 order of magnitude larger at Te = 2 eV

than at Te = 3.3 eV, for a given emissivity. Similarly, the neutral density is about 3

orders of magnitude larger for Te = 1 eV. Thus, several of the outer-most data points

in Fig. 4.6(a) could be an order of magnitude larger. However, it is unlikely that
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Figure 4.7: Shown is a neutral density profile (a) resulting from the assumed parabolic
electron temperature profile (b) and the Hα emissivity data in Fig. 4.4(b). The vertical
black lines indicate the inner cathode and vacuum chamber wall. The vertical dashed
lines indicate the location of the expected inner and outer-most flux surfaces.

neutral density at the chamber wall (outer-most data point) could be larger than the

pre-fill atomic density of about 3× 1014 cm−3.

Figure 4.7 shows a resulting neutral density profile if a parabolic temperature

profile is assumed. Here the maximum electron temperature is 3.3 eV and the tem-

perature reduces to 1 eV at the plasma boundaries. The plasma boundaries are shifted

outward by about 2 cm from their expected positions.

It was found that varied experimental parameters had little effect on the relative

emissivity profile, except at the outer-most chord. The absolute amplitude of the

emissivity profiles do change considerably with experimental parameters, which will

be discussed in Sec. 4.4. The relative emissivity profiles are shown in Fig. 4.8. These

were obtained using the same procedure described earlier, except that here the profiles

are normalized by the emissivity value at r = 21 cm. As before, the vertical dashed

lines indicate the expected inner and outer-most flux surfaces.

4.3 MCX Discharge Phenomenology

In this section we report the results of absolute Hα emissivity and neutral density

estimates with variations in experimental parameters. There are four figures in this

57



0

2

4

6

8

0 5 10 15 20 25 30

γ
(n

or
m

.)

r (cm)

(a)

0

2

4

6

8

0 5 10 15 20 25 30
γ

(n
or

m
.)

r (cm)

(b)

0

2

4

6

8

0 5 10 15 20 25 30

γ
(n

or
m

.)

r (cm)

(c)

0

2

4

6

8

0 5 10 15 20 25 30

γ
(n

or
m

.)

r (cm)

(d)

Bmid (T)
0.15
0.18

0.21
0.24

0.26
0.30

R
4
5

5.1
6

7

Pfill (mTorr)
1 5 9

VB (kV)
8
9

10
11

12

Figure 4.8: Shown are relative emissivity profiles for different applied magnetic field
(a), mirror ratio (b), fill pressure (c), and capacitor bank voltage (d). Each profile
is an average of about 10 discharges under the same experimental parameters. Each
ensemble averaged profile is normalized by its emissivity value at r = 20.9 cm.
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section, each presenting the results from the variation of a single experimental pa-

rameter (magnetic field, fill pressure, mirror ratio, or capacitor bank voltage). Each

figure contains six plots: (a) Hα emissivity, γ, “inside” the plasma and at the vacuum

chamber wall; (b) neutral density estimates at these same locations; (c) Alfvén Mach

number; (d) electron density; (e) average plasma rotation velocity, 〈uφ〉; (f) momen-

tum confinement time. Each datum presented forthwith represents an average value

over the time interval 2 ms < t < 3 ms for a single discharge. Following each figure

are discussions of phenomenological behavior contained therein.

The neutral densities were calculated using Eqs. (2.12), assuming Te = 3.3 eV [11],

and assuming a flat plasma density profile, i.e. n(r) = ne where ne is determined by

the interferometer. The Alfvén Mach number, MA, was included in the analysis

because a perturbed outer-most flux surface may help explain the large emissivity

activity at the vacuum chamber wall (see Sec. (4.2)). MA is calculated as 〈uφ〉 /vA
where 〈uφ〉 ∼= Vp/aBmid and vA = Bmid/

√
4πnemi. The plasma width, a, is taken

to be the distance between the unperturbed inner and outer-most flux surfaces, as

calculated by a magnetic field line map, and is only a function of mirror ratio, R.
The momentum confinement time is calculated as the RC time of the plasma [37]

given by

τM =
1

2

L

ln(r2/r1)

Vp
Ip

(
1 + 4πmic

2 ne
B2

mid

)
. (4.1)

Here, r1 and r2 are the presumed radii of the inner and outer-most flux surfaces,

respectively, and L = 130 cm is the approximate plasma scale size in the z (axial)

direction.

Figure 4.9 shows the results for a magnetic field variation 0.15 T ≤ Bmid ≤ 0.30 T.

The applied capacitor bank voltage was 10 kV, fill pressure was 5 mTorr, and mirror

ratio was 6 for all discharges with the exception that the mirror ratio was 5.1 for dis-

charges at which Bmid = 0.30 T (see Table 4.2). We make the following observations.
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Figure 4.9: Shown versus mid-plane applied magnetic field is the Hα emissivity at
the wall and inside the outer-most flux surface (a), the neutral density at those same
locations (b), the Alfvén Mach number (c), electron density (d), average plasma
rotation velocity with CIV reference curve (e), and momentum confinement time (f).
The Critical Ionization Velocity is shown for reference (red curve) (e). (Discharges
MCX080929-11. . . 61, MCX080930-44. . . 50.)
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• Both the emissivity at the wall and emissivity from within the plasma decrease

with increasing magnetic field. The emissivity at the wall drops more rapidly

than does the emissivity interior to the plasma.

• The neutral density estimates at the wall and interior to the plasma appear

to decrease with increasing magnetic field. This is discussed in more detail in

Sec. (4.4).

• MA is near 1 for low values of Bmid and decreases nearly linearly between 0.18 T

and 3 T.

• The plasma density remains fairly constant.

• 〈uφ〉 increases slightly for 0.15 T < Bmid < 0.18 T, but remains constant for

Bmid > 0.18 T.

One would expect cross-field transport to decrease with increasing magnetic field,

thus the decreasing emissivity (and neutral density) is qualitatively consistent with

an expected enhanced particle confinement. However, the apparent reduction in neu-

tral density does not accompany an increase in plasma density. Since the plasma

density calculation assumes a uniform density profile, it is possible that the decreas-

ing emissivity at the wall is primarily the result of decreasing plasma density and

temperature at the wall only, while leaving the average phase shift of the interferom-

eter largely unaffected. This may imply, however, that the drop in neutral density at

the wall is inaccurate. For example, if the plasma density at the wall is 3×1014 cm−3,

less than about half the nominal value, and the electron temperature drops to 2.5 eV,

the emissivity at the wall would drop to its observed value at 0.3 T while the neutral

density at the wall would remain unchanged at about 4 × 1013 cm−3. This would

be consistent with a slight recession of the plasma away from the vacuum chamber

wall due to improved particle confinement, while the interior density profile remains

largely unaffected.
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The high Alfvén mach number may explain the existence of high emissivity at

the wall. Since MA ∼ 1, we can have no expectation that the inner and outer-most

flux surfaces are unchanged for these discharges. It is unclear what role high Alfvén

Mach number may play in the intrinsic confinement quality of the plasma. However,

for large MA magnetic field lines will be perturbed from their vacuum positions (the

centrifugal pressure is comparable to the magnetic pressure), so it is plausible that

centrifugal forces push magnetic field lines (along with the plasma) into the vacuum

chamber wall, enhancing the emissivity at the wall. Then, as MA decreases, the

field lines recede from the wall leading to a decrease in plasma density at the wall.

The effect of large MA is currently being investigated by members of the MCX team

through the analysis of diamagnetic loops and a detailed theoretical treatment of the

discharge magnetics.

Figure 4.10 shows the results of variation in fill pressure between 1 and 9 mTorr.

While only three fill pressure settings were intended (1, 5, and 9), conditioning dis-

charges were taken at the beginning of each day before the fill pressure stabilized to

5 mTorr, resulting in a broad range of fill pressures near 5 mTorr. Variations in fill

pressure have a near one-to-one correspondence to variations in plasma density, so

fill pressure provides good control over the plasma density. All data in Fig. (4.10)

are plotted against plasma density (except Fig. (4.10)(d)), as this is more physically

relevant than the fill pressure. We make the following observations.

• Hα emissivity at the wall and interior to the plasma appear to have a cubic

relation to plasma density.

• Neutral density at the wall and interior to the plasma appear to have a quadratic

relation to plasma density. This is discussed in more detail in Sec. (4.4).

• MA ∼ 0.6 for standard conditions and increases for larger fill pressures, in

accordance with its
√
n dependence.
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Figure 4.10: Shown versus electron density is the Hα emissivity at the wall and
inside the outer-most flux surface with suggestive ∼ n3 curve (a), the neutral den-
sity at those same locations with a suggestive ∼ n2 curve (b), the Alfvén Mach
number with ∼ √n curve (c), average plasma rotation velocity with CIV reference
curve (e), and momentum confinement time with ∼ n curve (f). The electron den-
sity is plotted versus fill pressure (d) indicating a near linear relationship (black
line). (Discharges MCX080929-3. . . 10, 32. . . 41, MCX081002-01. . . 05, MCX081003-
01. . . 05, MCX081006-01. . . 05, MCX081007-01. . . 25, MCX081008-46. . . 55.)
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• 〈uφ〉 increases over 1014 cm−3 < n < 4 × 1014 cm−3, but remains constant for

n > 4× 1014 cm−3.

• The momentum confinement time increases linearly in accordance with its n

dependence.

Figure 4.11 shows the results from varying the mirror ratio. Recall that the pri-

mary result from changing the mirror ratio ought to give some information about the

outer-most flux surface, and possibly also the inner-most flux surface. In Fig. 4.8(b)

we see no clear indication of the inner-most flux surface, and information about the

outer-most flux surface is not evident except possibly that it is coincident with the

vacuum chamber wall. We make the following observations.

• The plasma rotation velocity, 〈uφ〉, increases only slightly from R = 4 to R = 5,

after which it appears to remain constant.

• MA, ne, and τM increase between R = 4 and R = 6, then decrease for R = 7.

• Hα (and neutral density) at the wall increases only slightly from R = 4 to

R = 5, then increases more rapidly for R > 5.

• Hα emissivity (and neutral density) interior to the plasma does not increase

from R = 4 to R = 5, in contrast to emissivity near the wall, but increases only

for R > 5.

The data here suggests a possible velocity limit which is unrelated to CIV and Alfvén

velocity limits. Furthermore, the Hα emissivity information also suggests that some-

thing changes between R = 5 and R = 6. While it may be possible that the plasma

rotation velocity is CIV limited at the insulator for R ≤ 5, this cannot explain the

observed limit for higher mirror ratios. In addition, 〈uφ〉 is limited for R ≥ 5, while

MA is less than 1 and continues to increase untilR = 6; this suggests that the rotation

velocity cannot be hitting an Alfvén velocity limit either.
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Figure 4.11: Shown versus mirror ratio is the Hα emissivity at the wall and r =
20.9 cm (a), the neutral density at those same locations (b), the Alfvén Mach number
(c), electron density (d), average plasma rotation velocity with CIV reference curve
(∼ √R) (e), and momentum confinement time (f). Note that N does not increase
with R interior to the plasma except for R > 5. (Discharges MCX080929-32. . . 41,
MCX080930-11. . . 50.)
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It may be that the outer-most flux surface is contacting the vacuum chamber

wall for higher mirror ratios due its perturbation by the moderate Alfvén mach

numbers, causing elevated emissivity as well as enhanced drag on the plasma ro-

tation. For example, the unperturbed location of the outer-most flux surface is

{22, 23.4, 24.6, 25.8} cm for R = {4, 5, 6, 7}, but an MA
∼= 0.6 may cause the flux

surface to be displaced by ∼ 2 cm,2 which means that the flux surface could be co-

incident with the chamber wall for R ≥ 6. The magnetics of MCX discharges are

currently being investigated, particularly in the context of moderate Alfvén mach

numbers.

The effect of a perturbed outer-most flux surface may be enhanced by the presence

of a scrape-off layer, as well. A scrape-off layer width can be calculated as λSOL =√
D⊥L/vth whereD⊥ is the cross-field diffusion coefficient, L = 65 cm is a scale length

to the nearest limiter, and vth is the ion thermal velocity [5]. So, for example, if Bohm

diffusion and Ti = 15 eV are used, λSOL ≈ 1 cm, thus plasma may begin contacting

the vacuum chamber wall at the mid-plane for mirror ratios as low as 5.

Figure 4.12 shows the results of the voltage scan. Here, quantities are plotted

versus plasma current, Ip, since this is more physically relevant than applied bank

voltage; also, variation in applied bank voltage more strongly affects plasma current

rather than plasma voltage. We make the following observations.

• The average plasma rotation velocity,〈uφ〉, remains nearly constant, possibly

CIV limited.

• Electron density increases nearly linearly, but possibly is limited for Ip ≥ 2.5 kA.

• The momentum confinement time remains relatively constant, but drops slightly

for Ip ≥ 2.5 kV, or possibly it is weakly linear with Ip.

• Hα emissivity at the wall and interior to the plasma increase with Ip but possibly

is limited for Ip ≥ 2 kA.
2Conversations with W. Young.
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Figure 4.12: Shown versus plasma current is the Hα emissivity at the wall and
r = 20.9 cm (a), the neutral density at those same locations (b), the Alfvén Mach
number (c), electron density (d), average plasma rotation velocity with CIV reference
curve (e), and momentum confinement time (f). (Discharges MCX080929-32. . . 41,
MCX081003-06. . . 40, MCX081006-06. . . 15.)
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The possible limiting of plasma density may be a result of the finite number of particles

available in the entire vacuum chamber during the discharge. Unlike the pressure scan,

here the particle inventory (ions + neutrals) remains essentially fixed, thus an increase

in plasma density must come at the expense of neutral density somewhere within the

vacuum chamber. The expected plasma volume is approximately 1/3 that of the entire

vacuum chamber, thus a plasma density of about 3× the atomic density of the fill gas

(∼ 3× 1014 cm−3 for hydrogen at 5 mTorr) may suggest a significant depletion of the

ambient neutral particles. Indeed, Fig. 4.12(d) shows ne possilby limiting near 3× the

atomic fill gas density. Thus it is possible that as the density increases, the neutral

“blanket” density is depleted, until the neutral density at the plasma boundary is no

longer determined by the ambient neutral density but dominated by wall recycling.

This could explain the apparent saturation of Hα emissivity as well.

However, the above postulation is in contrast to the increasing estimates of neutral

density shown in Fig. 4.12(b). The neutral density, though, is estimated under the

assumption of fixed Te = 3.3 eV. Since the plasma voltage remains constant (〈uφ〉)
and the plasma current is increasing, the power into the plasma, Pp = VpIp, also

increases. This increased power must be balanced by an increased power loss through

all possible channels, i.e. Pp =
∑

i χiEi/τi, where Ei is the energy contained in

a channel and τi is the characteristic confinement time for the channel. By virtue

of how the average rotation velocity (∼ Vp) and the momentum confinement time

(∼ nVp/Ip, Eq. (4.1)) are calculated, one can see that the power into the plasma

rotation channel is proportional to the input power.

PM =
Eφ
τM

∝ nV 2
p

nVp/Ip
= VP Ip = Pp .

However, this does not preclude power entering other channels, such as ion and elec-

tron temperature. So, if Pp ∝ PT ∼ nT/τE as well, it is possible that temperature is
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Figure 4.13: Shown is the relative change in plasma temperature (a), and the resulting
estimate of neutral density at the vacuum chamber wall (b). Both are plotted versus
plasma current. The change in plasma temperature is estimated from power balance
and assumes that τE remains constant. T ∗ is a nominal temperature (T ∗e = 3.3 eV)
assumed under standard discharge conditions (Ip ' 1.8 kA).

also changing with plasma current. For example, if the energy confinement time re-

mains constant (' 50µs, assuming Ti = 15 eV under nominal discharge conditions),

then plasma temperature may change linearly with plasma current (Fig. 4.13(a)).

Using this same linear relationship for electron temperature to estimate the neutral

density from the Hα emissivity shows a decreasing neutral density at the wall for

increasing plasma current (Fig. 4.13(b)). This may be consistent with diminishing

neutral density surrounding the plasma due to increasing plasma density.

4.4 Neutral Density & Charge-Exchange Time Scaling

In Sec. 4.2 we compared emissivity profiles with those prescribed by the models pre-

sented in Sec. 2.4. However, it still remains to be seen whether the neutral density

scales appropriately with certain experimental parameters. In addition, independent

of the profile form factor (determined by a specific model), the overall scaling of the es-

timated neutral density and the estimated charge-exchange time can still give insight

as to whether neutrals are playing a major role in the behavior of MCX discharges.
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In this section we present the scaling of both neutral density and the charge-exchange

time.

According to the models presented earlier (2.4), the neutral density is expected to

scale as

N ∼ n3
0

B2
ηαcx . (4.2)

This expression shows neutral density scaling with the cube of the plasma density,

inversely with the square of the magnetic field, linear with resistivity (∼ T
−3/2
e ), and

linear with the charge-exchange rate coefficient (∼ T
1/3
i ).

As in Sec. 4.3, the neutral density is calculated from Eq. (2.12), using Te = 3.3 eV

and ne(r) = ne. For the purpose of calculating αcx we use an estimated ion tem-

perature of 15 eV [11], thus αcx ' 2.5× 10−8 cm3 s−1 (adapted from Hutchinson, see

Fig. (2.2)). We do not have any recent measurements of ion temperature or electron

temperature, let alone their scaling with experimental parameters, and therefore as-

sume that they remain constant as plasma density and magnetic field are varied. The

results of neutral density scaling with plasma density and magnetic field are shown

in Figs. 4.14(a) and 4.14(b), respectively.

In Fig. 4.14(a) is shown the results of neutral density scaling with plasma density.

This data was obtained from the pressure scan and is the same as that shown in

Fig. 4.10(b). We have plotted both the neutral density calculated at r = 20.9 cm and

r = 26.3 cm (vacuum chamber wall). In order to properly show the scaling of neutral

density, independent of absolute magnitude, the neutral density estimates determined

from the emissivities are normalized to their values under nominal discharge condi-

tions, N∗ = N(ne = 7×1014 cm−3). The figure shows that neutral density scales more

closely with n2
0 than with n3

0, for both r = 20.9 cm and r = 26.3 cm locations. At low

plasma density there is a slight relative increase in neutral density. This may be due

to out-gassing from the vacuum chamber which may dominate at low fill pressures,

thus providing a neutral source other than recycling (not considered by the models).
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Figure 4.14: Shown is neutral density scaling with electron density (a) and with
magnetic field (b). Both plots have data from r = 20.9 cm (blue square) and from
near the vacuum chamber wall (r = 26.3 cm, red triangle). Overlaid are n3 and
n2 trends (black solid and dashed curves, respectively). For plot (b), the plasma
density dependence is removed (N/n3η) in order to isolate magnetic field dependence.
Overlaid is a B−2 trend (black curve). All datum are normalized by the value under
nominal discharge conditions (n = 7× 1014 cm−3, B = 2.1 kG).

Figure 4.14(b) shows the neutral density scaling with magnetic field. This data

was obtained from the magnetic field scan (see Fig. 4.9(b)). Since the plasma density

is not fixed for variation in B (see Fig. 4.9(d)) we have divided out the plasma density

dependence (including η) from the neutral density, i.e. N/n3
0η. The resulting values

were then normalized by their nominal values occurring under standard discharge

conditions. The figure indicates that neutral density scales consistently with B−2 for

both radial locations. The spread in reproducibility appears large in the magnetic

field scaling, nevertheless the agreement is good.

One caveat in regard to these scalings is that the scaling of electron temperature

is unknown and the dependence of neutral density estimates on electron temperature

is strong (see Sec. 2.3, Fig. 2.4). For the density scan, the plasma current remains rel-

atively constant, except at the lowest densities, and changes throughout the magnetic

field scan. As mentioned previously, we do not know how Ti or Te scale with exper-

imental parameters, but it may be reasonable to expect them to vary with plasma

current. Thus, information regarding plasma temperature scaling will affect the plots

shown in Fig. 4.14.
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For the confinement time scaling we have plotted the charge-exchange time di-

vided by the momentum confinement time, τcx/τM in order to show both the relative

magnitude and relative scaling with experiment parameters. The charge-exchange

time is calculated for both the r = 20.9 cm and r = 26.3 cm (vacuum chamber wall)

locations as τcx = 1/Nαcx (Ti = 15 eV is assumed). The momentum confinement

time is calculated from the plasma density, applied magnetic field, and expected radii

of the inner and outer-most flux surfaces (Eq. (4.1)) and is the same data shown in

Figs. 4.9–4.12(f). We make the following observations from Fig. 4.15.

1. Magnetic Field (Fig. 4.15(a))

• τcx � τM, by nearly a factor of 100

• τcx scales closely with τM for B < 3 kG

2. Mirror Ratio (Fig. 4.15(b))

• τcx � τM, by about a factor of 10 or more

• τcx does not scale with τM and relatively decreases with increasing R

3. Plasma Density (Fig. 4.15(c))

• τcx ' τM/3 for low densities

• τcx does not scale with τM but decreases rapidly for increasing plasma

density

4. Plasma Current (Fig. 4.15(d))

• τcx � τM by at least a factor 50

• τcx scales well withτM
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Recall that neutral densities are estimated from Hα emissivity under the assump-

tion of uniform plasma density and electron temperature. This is most likely not

the case, particularly near the plasma edge or near the wall, where plasma den-

sity and electron temperature surely drop below their average or peak values. Since

the Hα emission rate is an increasing function of electron temperature and density,

the neutral density near the wall is most likely underestimated. This means that

the charge-exchange times near the wall are most likely overestimated. The charge-

exchange times are already too small by at least a factor of 10, so it seems that τcx

near the wall cannot significantly contribute to the momentum confinement time.

The charge-exchange rate coefficient, αcx, is an increasing function with plasma tem-

perature, thus decreasing plasma temperatures near the wall or plasma edge may

decrease αcx and increase our estimates of τcx. However, αcx is a weak function of

temperature (∼ T
1/3
i [26]) while the neutral density determined from Hα emissivity

is a strong function of electron temperature and density, thus it is unlikely that the

plasma temperature would drop rapidly enough relative to electron temperature and

density to allow the overestimate of αcx to overcome the underestimate of N . There-

fore, estimates of τcx near the plasma edge or vacuum chamber wall are not likely to

increase, even if decreasing plasma and electron temperatures and decreasing electron

density in this region are considered.

It may be more appropriate to use estimates of τcx near the plasma core in deter-

mining the relevance of neutrals to the overall momentum confinement time. Here,

due to the higher plasma and electron temperatures and electron densities, the state

of underestimate of N and overestimate of αcx are not so profound. Here, τcx may eas-

ily achieve values greater than or equal to τM due to the uncertainty in Hα emissivity

and its proximity to zero.

More important than the absolute magnitude of the charge-exchange time is that

it does not scale the same as the momentum confinement time for changes in mirror
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ratio or plasma density. This suggests that charge-exchange has little impact on the

momentum confinement time. However, again we point out that the scaling of electron

temperature with experimental parameters is unknown and can have a profound effect

on neutral density estimates, and hence the charge-exchange time.

4.5 Hα Emissivity Temporal Analysis

The primary focus of this work was to characterize Hα profiles under nominally equi-

librium conditions. However, one of the advantages of the HED system is that it is

time resolved to about 10 µs. In this section we present initial, non-extensive, tem-

poral analysis. We illustrate the time history of a typical Hα profile, commenting on

the formation and extinguishing of the plasma.

Figure 4.16 shows the time history of an Hα emissivity profile for a typical MCX

discharge (MCX080929-41). Here, an Abel inverted profile is produced for every point

in time (1µs), but each profile is smoothed prior to inversion, as discussed in Sec. 4.2.

The profiles are re-sampled using a cubic-spline interpolation and then combined into

a two-dimensional array (r × t), giving the surface plot shown.

The first general observation to note is the large amplitude of the profile at the

outer-most chord (r = 26.3 cm), as seen in the previous sections. Next, is the clear

indication of breakdown (between the first two dashed lines) and extinguishing stages

(4 ms < t < 6 ms) in Fig. 4.16(a). An expanded view of the time period between

the first two dashed lines is shown in Fig. 4.16(b), highlighting the breakdown phase

observed at the mid-plane. There are two main observations to note regarding the

breakdown stage.

• The discharge appears to start at lower radii and moves outward at about

4 km/s.
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Figure 4.16: Shown is a full time history of a normalized emissivity profile for standard
conditions (a). Plots (b) and (c) show expanded views for 0.6 ms < t < 0.8 ms and
0.8 ms < t < 1.0 ms, respectively. The color-bars indicate the emissivity in units of
1017 ph. cm−3 s−1. Plot (c) has a reduced color scale in order to reveal the amplitude
variation for that time period. (Discharge MCX080929-41.)
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• The discharge at the mid-plane seems to have two peaks, separated in time by

about 40 µs, the second of which coincides with the plasma voltage minimum

at 700 µs (see Fig. 4.2, t2).

In Fig. 4.2, the initial hold-off stage lasts only 50 µs before current begins to flow

and “breakdown” commences (t = 550µs). However, Fig. 4.16(b) shows no evidence

of breakdown until about 100 µs after the breakdown stage begins (t = 650µs).

It is possible that the discharge originates somewhere other than at the mid-plane.

Nevertheless, the end of the breakdown stage does coincide well with the second Hα

peak at 700 µs. Thus, it is possible that the discharge originates away from the

mid-plane but only comes into view at the mid-plane 100 µs later. For example,

with a temperature of 1 eV, the ion thermal velocity is about 10 km/s. This means

the discharge may have originated about 1 m from the mid-plane which is near the

insulator region.

The two separate structures in Fig. 4.16(b) suggests either a “double” discharge

or possibly a single discharge “blob” which is rotating. If it is a single blob rotating,

the time separation between renditions (40µs) suggests a rotation velocity of about

27 km/s, which is not implausible. Furthermore, the apparent radial velocity may

be due to the angular and radial separation of the chords, i.e. rotating at fixed

radial location the blob would be viewed first by the inner-most radial chord and

later viewed by outer chords. However, the inner-most chord ought to view the blob

last as it passes around on the side nearest the collection optics, resulting in a type

of zig-zag pattern. This is not seen in Fig. 4.16(b)., and therefore the most likely

explanation is the existence of two separate breakdown structures. This does not

preclude some angular motion of the structures; if the motion is entirely azimuthal

then an angular separation of about 60◦ between the inner and outer-most chords

would suggest a rotation velocity no larger than about 3.5 km/s.
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The observation regarding the extinguishing of the plasma (4 ms < t < 6 ms) is

that it appears to extinguish inward, i.e. from larger radii to smaller radii.

4.6 Conclusions

There are several major conclusions which we have arrived at based on the results of

this experiment.

• The location of the inner and outer-most flux surfaces cannot be confirmed

under the present experimental conditions, except possibly that the outer-most

flux surface coinsides with the chamber wall.

• The variation of controllable parameters suggests that plasma interaction with

the vacuum chamber wall may be dictating the emissivity profile since relative

emissivity profiles remain unchanged except for the outer-most chord.

• The profile shape predicted by the NMGC model does not accurately predict the

Hα emissivity profile. However, the moderate agreement between the predicted

scaling of the NMGC model and the scaling of the estimated netural density

from emissivity measurements is compelling.

• The disagreement in magnitude between charge-exchange times and momen-

tum confinement times and the disagreement in scaling in the mirror ratio and

plasma density scan, suggests that charge-exchange may not significantly con-

tribute to the momentum confinement time.

Determination of the inner and outer-most flux surfaces (r1 and r2, respectively)

has real implications for at least two MCX measurements: the rotation velocity,

〈uφ〉 = Vp/aBmid, where a = r2 − r1; and the plasma density. Both the inner and

outer-most flux surfaces have been assumed to be the same as their vacuum location.

This may be inaccurate in the presence of plasma, particularly when considering the

moderate Alfvén Mach numbers observed. The presumed plasma width for a mirror
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ratio of 6 is about 18.4 cm and is unlikely to be smaller than this since the outer-

most flux surface should have a propensity to move outward due to the centrifugal

force of the plasma. Thus a may be slightly underestimated and the rotation velocity

may be overestimated. The plasma density calculation is based on a single chord

interferometer with impact parameter 16.5 cm, and thus is inversely dependent on

the path length through the plasma, n ∼ ∆φ/l, where ∆φ is the phase shift of

the interferometer and l = 2
√
r2

2 − 16.52. Thus the plasma density calculation may

be slightly overestimated since an increase in r2 increases the path length through

the plasma, reducing the required density needed to produce a given interferometric

phase shift. An overestimate on rotation velocity and plasma density both imply an

overestimate on MA.

The main shortcoming of the HED array in measuring neutral density is that it

does not have complementary multi-chord density and temperature diagnostics. In

principle, with these capabilities, a neutral density measurement would be nearly

direct, requiring only the use of an atomic model to link electron density & tempera-

ture and Hα emissivity to neutral density. Without these, however, estimating neutral

density requires an assumption (crude model) of these quantities. This is precisely

what has been done in this chapter. Unfortunately, since the Hα emissivity profiles

predicted by both the NMG and NMGC models seem to be contradicted by the obser-

vations, an even cruder assumption had to be made, i.e. uniform electron density and

temperature profiles. While the inclusion of centrifugal terms in the model (NMGC)

may help explain why the emissivity profile is not hollow and dominates near the

outboard side of the plasma, the relative profile of the NMGC model remains dissim-

ilar to the observations in curvature and inflection. In addition, to achieve similar

emissivity values by the NMGC model, it was required to assume ion and electron

temperatures of 30 eV and 2.5 eV, respectively. These are not implausible, and may

be consistent with the possible temperature gradients near the edge of the plasma.
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However, as mentioned earlier, in this electron temperature range, small changes in

Te have large effects on the ionization rate coefficient and emission rate for Hα, thus

it is relatively easy to adjust emissivity magnitudes for a model with only modest

temperature adjustments.

The small charge-exchange times relative to the momentum confinement times

suggests a more complicated relationship between the two. The presumption that

charge-exchange is directly related to momentum confinement assumes that the charge-

exchange mean-free-path for a neutral particle is larger than the system size, i.e. if

an ion in the core of the plasma becomes a neutral through charge-exchange, this re-

sulting fast neutral will most likely escape the plasma without experiencing another

charge-exchange (back to an ion). Under this situation, the ion charge-exchange time

should determine the momentum confinement time. However, if the charge-exchange

mean-free-path for a neutral is much smaller than the system size, then an ion which

becomes a fast neutral will charge-exchange back to an ion before it (and its momen-

tum) can escape. Indeed, λcx = vT/nαcx ∼= 2 mm for a 15 eV neutral near the core

of the plasma (n ∼= 7 × 1014 cm−3). This means that it is possible that very small

ion charge-exchange times could be related to larger momentum confinement times

since many charge-exchange events are required before an ion’s momentum escapes

the system.
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Chapter 5

Future Developments

In this chapter we discuss the possibilities for enhancing or augmenting our under-

standing of the role that neutral particles play in the behavior of MCX discharges.

These are primarily motivated by the shortcomings in the theory and diagnostics

discussed previously in this work. Future experiments are also recommended.

5.1 Neutral Modeling Improvement

One of the primary concerns with the neutral and plasma modeling presented in this

dissertation is the lack of comprehensive treatment of the fluid equations. In Sec. 2.4

we presented two diffusion models. We were able to compare general scaling of these

models to the experimental results but there remains an uncertainty in the applicabil-

ity of both models due to discrepancies in the profiles. In particular, the isothermal

assumption may be inaccurate and may change the density profiles significantly due

to the temperature dependence of the ionization, recombination, and charge-exchange

rate coefficients, as well as the Hα emission rate, να.

Ng made significant progress in modeling neutral behavior for an MCX type dis-

charge [32]. He also began work on adapting his neutral model to more accurately

reflect MCX magnetic field geometry. Unfortunately, neither of his 2D models include

centrifugal treatment in the radial direction and he made isothermal assumptions. Ac-

cording to Simpson [38], centrifugal forces in the radial direction are important for

neutrals as well. Thus it is necessary to have a more comprehensive model for neu-

trals. Indeed, the NMGC model presented in Sec. 2.4 is compelling in this regard.

While it does not agree with the emissivity observations entirely, it correctly predicts
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outboard dominated emissivity and the nominal magnitude can be made to agree with

only moderate adjustments to the assumed temperatures. Thus it may be worthwhile

to include centrifugal terms in Ng’s 2D model. In addition, it may be useful to explore

neutral blanket boundary conditions rather than hard wall boundary conditions.

Huang developed a full 3D MHD code with MCX field geometry which included

temperature dependence as well as viscosity and thermal conductivity, however it

does not consider neutrals [39]. Ideally, we could consider modifying Huang’s full

3D MHD code to include a full 3D treatment of neutrals. However, this may be too

ambitious as a next step since this would involve adding one scalar (continuity) and

two vector (momentum & pressure) equations to the existing code, as well as adding

coupling terms (ionization, recombination, and charge-exchange). Another approach

would be to use Huang’s existing MHD simulation and add neutral particle treat-

ment in a Monte-Carlo fashion, similar to DEGAS [40]. Here, the plasma behavior is

determined independent of neutrals and the neutral behavior is dictated by a “fixed”

plasma background. This has the advantage that Huang’s code need not be modi-

fied. However, this has the disadvantage that neutral particles would be treated as a

perturbation, which may not be appropriate.

5.2 Hα Emission Detector Improvement

There are three possible improvements which can be made to the Hα emission detec-

tor. However, due to the current intended use of the HED array, the author does not

recommend making any improvements. In order of importance, the possible improve-

ments are:

1. Reduce systematic error in emissivity measurements through the use of appro-

priate beam dumps.
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2. Update the Thorlabs DET110 photo-detectors on HEDs numbered 1–7 to the

Thorlabs PDA36A.

3. Improve spatial resolution, temporal resolution, and detection sensitivity.

The most pressing improvement needed in regard to Hα measurements is to reduce the

systematic error. While we demonstrated in Sec. 3.2 that reflections from the vacuum

chamber wall should be negligible, this investigation did not include all possible view

chord locations. Furthermore, in Sec. 4.2 we determined that there still remained

systematic error most likely attributed to reflections. The most appropriate way to

mitigate reflections is to use a beam dump, such as stacked razor blades. Unfortu-

nately, the existing vacuum chamber does not afford the space required to implement

this type of beam dump. The use of non-reflective material (such as flock paper),

which occupies negligible space, seems to be the only method available; however, this

is also infeasible considering that plasma is undoubtedly “scraping” the chamber wall

at the mid-plane, thus any material applied to the chamber wall will not only be

damaged and contaminate the discharge, but may become an emission source itself.

Ideally, the vacuum chamber would be modified (or a new one designed) to include

the necessary recesses in which beam dumps could be placed. Nevertheless, the sys-

tematic error, while the most important, is not significant enough to warrant such

expensive endeavors and useful information can continue to be gleaned from the HED

array.

Updating the seven DET110s to PDA36As will improve the signal to noise ratio

for those HEDs due to the superior amplifier in the PDA36A. This is certainly simple

to implement and would only cost about $2k.

Lastly, it would be rather simple to improve the spatial resolution of the HED array

by making the collection optics more compact and adding more HED systems to the

array. It is possible to use 1/4” standard optics for the collection optics assembly,

making it more compact and allowing more detectors to use a single viewport. This
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will, of course, decrease the signal strength of an HED by about a factor of 4 from

its current configuration, so it may be desirable to improve the sensitivity of the

system as well. Improved sensitivity could be accomplished with the use of photo-

multiplier units in place of photo-diode units. This has the additional advantage of

greatly improving the time response. However, this would likely increase the cost of

a single HED considerably. Improved spatial and temporal resolution, however, are

not priorities at present, nor would they necessarily be priorities in the future.

5.3 Future Experiments

The importance of electron temperature has been emphasized throughout this disser-

tation and we recommend implementing Langmuir probes for addressing this issue.

The use of such a probe at the mid-plane could provide valuable information about

electron density and temperature near the plasma edge. Minor efforts have been made

in the past to implement Langmuir probes, however, serious attention has not been

given to the the technical requirements of such an endeavour. This should be given a

high priority in the near future.

In this work, we have not made any consideration for impurity ions or impurity

neutrals, nor have we considered molecular hydrogen and its dissociation process.

We have only considered a purely hydrogenic plasma with neutral atomic hydro-

gen. However, these may be important factors in plasma confinement devices. In

particular, radiation from carbon ions may be a significant energy loss mechanism.

Indeed, plasma interaction with impurities is currently of significant interest in re-

search regarding radiative and collisional processes, particularly in the context of

Tokamak divertor regions, where temperatures are much lower than that of the core

plasma [29]. Plasma temperatures for MCX discharges are comparable to those of

Tokamak divertor regions, thus impurity species may play a significant role.
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There has not been any work done in the past to investigate the impurity level in

MCX discharges. However, there are efforts currently under way to reduce impurity

levels through baking and glow-discharge cleaning. These efforts may also provide

insight into whether or not the vacuum chamber is a significant source of neutral

particles during discharges. Collisional-radiative codes [30] are capable of treating

impurities, particularly carbon, so an estimate of impurity concentrations should be

possible by measuring the absolute emission of one or more emission lines. This, too,

would require better understanding of electron temperature and density. An impurity

emission detector (IED) could be made by replacing the interference filter in an Hα

emission detector with one appropriate for an impurity emission line.

A topic of behavior related to neutrals which has not been addressed significantly

in this work is the Critical Ionization Velocity effect (CIV) [23]. Nevertheless, studying

this phenomenon is crucial to understanding MCX discharge behavior. Work has been

done to study evidence of the existence of this effect in MCX discharges and the source

of this effect is believed to originate at the end insulators [25]. By determining neutral

density and profiles near the insulator, we may be able to confirm whether the CIV

effect is determined near the insulator or at other locations. This would require an

independent measurement of plasma density in the region near the insulator, and

thus may not be practical. Another impediment is the lack of optical access to the

insulator region, i.e. there are not any viewports which adequately view the insulator

region. This is because the insulator face lies in the middle of the solenoid magnets,

thus barring any direct view of the insulator faces. However, it may be beneficial

to conduct similar experiments in the transition region (z ∼ 80 cm) of the plasma

discharge, where optical access is available and a second interferometer is currently

being installed.
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Appendix A

Neutral Model Derivations

Neutral modeling has been initiated in the context of centrifugally confined plasmas

by Sheung-Wah Ng [32]. In his doctoral dissertation, Ng presented a 1D two-fluid

diffusion model in magnetic field with slab geometry, similar to the work of Goldston

& Rutherford [31]. The modification made from Goldston’s treatment was to allow

for density dependence in the diffusion coefficients and to allow for a moderate sys-

tem size. This model will be derived in this appendix and is termed the Numerical

Modified Goldston-Rutherford (NMG) model. A second model is also derived which

is identical to NMG except that centrifugal terms are not discarded. The latter model

is the work of the author and termed the Numerical Modified Goldston-Rutherford

Centrifugal (NMGC) model.

The models in the following sections focus on a 1D cross-field treatment at the

mid-plane of MCX discharges. We will begin the derivation from Eqs. (2.1)–(2.4) and

progress to a common point among both models, after which the remainder of each

derivation will be completed in turn. For convenience we duplicate Eqs. (2.1)–(2.4)

here.
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∂n

∂t
+∇ · (nu) = −n2αr + nNαi (A.1)

m
∂nu

∂t
+m∇ · (nuu) +∇p =

1

c
j×B−mn2αru +mnNαiU

−mnNαcx (u−U) (A.2)
∂N

∂t
+∇ · (NU) = n2αr − nNαi (A.3)

m
∂NU

∂t
+m∇ · (NUU) +∇P = mn2αru−mnNαiU

+mnNαcx (u−U) . (A.4)

Here, all terms have their usual meanings, uppercase indicates neutral quantities,

lowercase indicates plasma quantities, αi is the ionization rate coefficient, αr is the

recombination rate coefficient, and αcx is the charge-exchange rate coefficient.

By expanding the divergence terms in Eqs. (A.2) & (A.4), using Eqs. (A.1) &

(A.3), and considering dynamic equilibrium, we obtain the following.

∇ · (nu) = −n2αr + nNαi (A.5)

mnu · ∇u +∇p =
1

c
j×B−mnN (αcx + αi) (u−U) (A.6)

∇ · (NU) = n2αr − nNαi (A.7)

mNU · ∇U +∇P = mn (Nαcx + nαr) (u−U) . (A.8)

Since we are considering only the mid-plane location and azimuthal symmetry, we

can make the following assumptions.

• Scalar quantities are independent of φ due to azimuthal symmetry.

• All quantities are independent of z at the mid-plane due to reflective symmetry,

except possibly quantities in the ẑ direction.

• We assume isothermal conditions.
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These allow the convective terms in the momentum equations to have the form

u · ∇u =

(
ur∂rur − 1

r
u2
φ

)
r̂ +

(
ur∂ruφ +

1

r
uruφ

)
φ̂+ (ur∂ruz + uz) ẑ . (A.9)

We will now address the j×B term and use resistive Ohm’s law to express it in

terms of u.

E +
1

c
u×B = ηj (A.10)

E×B +
1

c
(u×B)×B = ηj×B

−B
2

ηc

[
u−

(
u · b̂

)
b̂
]

+
1

η
E×B = j×B . (A.11)

Using Eq. (A.11), the assumptions mentioned above, Eq. (A.9), and only consid-

ering a 1D system in the radial direction (taking scalar product of vector equations

with r̂), we have the following.

∂rnur +
1

r
nur + n∂zuz = −n2αr + nNαi (A.12)

mn (ur∂rur − g) + 2T∂rn = −B
2

ηc2
ur −mnN (αcx + αi) (ur − Ur) (A.13)

∂rNUr +
1

r
NUr +N∂zUz = n2αr − nNαi (A.14)

mN (Ur∂rUr −G) + T∂rN = mn (Nαcx + nαr) (ur − Ur) , (A.15)

where g ≡ u2
φ/r and G ≡ U2

φ/r are the centrifugal terms for the plasma and neutral

fluids, respectively. Note that E×B does not have a radial component since B = Bzẑ

and we assume time independence (∂tB = c∇ × E = 0). Furthermore, we assume
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αr � αi, αcx and ur � Ur �
√
T/m. This leaves

(nu)′ = nNνi (A.16)

−mng + 2Tn′ = −B
2

ηc2
u (A.17)

(NU)′ = −nNαi (A.18)

−mNG+ TN ′ = −mnNαcxU , (A.19)

where prime denotes ∂r.

We now normalize the equations as follows: densities by n0, the maximum plasma

density, velocities by
√
T/m, and lengths by l0 =

√
λcxλi =

√
T/mn2

0αcxαi, the

geometric mean of the charge-exchange and ionization mean-free-path for a neutral

atom at the location of maximum plasma density. The normalized equations are as

follows.

(n̂û)′ = an̂N̂ (A.20)

n̂′ =
1

2
(n̂ĝ − bû) (A.21)(

N̂Û
)′

= −an̂N̂ (A.22)

N̂ ′ = N̂Ĝ− 1

a
n̂N̂Û , (A.23)

where we have defined

a ≡
√

αi
αcx

(A.24)

b ≡ B2

ηmc2n2
0

√
αiαcx

. (A.25)

Adding Eq. (A.20) to Eq. (A.22) and integrating, using perfect recycling at the

boundary, gives

n̂û+ N̂Û = 0 . (A.26)
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Solving Eq. (A.23) for N̂Û =
(
N̂Û − N̂ ′

)
a/n̂ and Eq. (A.21) for û = (n̂ĝ − 2n̂′) /b,

and inserting these into Eq. (A.26) gives

(
n̂2ĝ − 2n̂n̂′

) 1

b
+
(
N̂Ĝ− N̂ ′

) a
n̂

= 0 . (A.27)

Solving Eq.(A.20) for N̂ , inserting û, and taking its derivative gives

N̂ =
(n̂û)′

an̂
=

(n̂2ĝ − 2n̂n̂′)
′

abn̂
(A.28)

N̂ ′ =

[
(n̂2ĝ − 2n̂n̂′)

′

abn̂

]′
. (A.29)

Inserting these into Eq. (A.27) gives a differential equation for the normalized

plasma density.

n̂3ĝ − 2n̂2n̂′ +
1

n̂

(
n̂2ĝ − 2n̂n̂′

)′
Ĝ−

[
1

n̂

(
n̂2ĝ − 2n̂n̂′

)′]′
= 0

n̂3ĝ +
1

n̂

(
n̂2ĝ − 2n̂n̂′

)′
Ĝ−

[
1

n̂

(
n̂2ĝ
)′]′ − 2n̂2n̂′ +

[
2

n̂
(n̂n̂′)

′
]′

= 0 . (A.30)

This can be simplified by making the substitution y = n2, with the following result.

ĝy2 + Ĝ

(
ĝy − 1

2
y′
)′
− (ĝy)′′ +

1

2

y′

y
(ĝy)′

−1

3
y1/2

(
y3/2

)′
+

1

2
y1/2

[
y−1/2y′′

]′
= 0 . (A.31)
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The two models diverge beyond this point. If we neglect the centrifugal terms

(g = G = 0), then we recover the solution by Ng [32].

− 2

3

(
y3/2

)′
+
[
y−1/2y′′

]′
= 0

y′′ =
2

3

(
y2 − cy1/2

)
(A.32)

n̂ = y1/2 (A.33)

N̂ =
1

3
D
(
c− y3/2

)
, (A.34)

where we have used Eqs. (A.24), (A.25), (A.28), and (A.32), as well as defined D ≡
ηmc2αcxn

2
0/B

2 to obtain the expression for N .

The second model is obtained by retaining the centrifugal terms but simplifying

by setting g = G. This is justified since we expect that, through charge-exchange, the

neutral particles will be dragged along with the azimuthal plasma flow. After some

algebra, the result is

y′′′ = −ĝy2 − ĝĝ′y + ĝ′′y +
3

2
ĝ′y′ − ĝ2y′ + 2ĝy′′ − 1

2
ĝ

(y′)2

y

+yy′ +
1

2

y′

y
y′′ (A.35)

n̂ = y1/2

N̂ = D
ĝy′ + ĝ′y − y′′√

y
. (A.36)

For simplicity, ĝ is assumed parabolic, having a maximum at the nominal center of

the plasma (r = 15 cm) and equal to zero at the plasma boundary. It is expressed as

ĝ =
M2

s

r̂0

(
1− 4r̂2

â2

)
,

where Ms
∼= 2 is the ion sonic mach number, r̂0 = r0/l0 = 15 cm/l0 is the normalized

“center” of the plasma, and â = a/l0 ∼= 20 cm/l0 is the nominal plasma width.
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Equations (A.32) & (A.35) are solved with the use of Matlab’s ode45 solver

and lsqnonlin non-linear least-square optimizer in a “shooting” scheme. Initial left

boundary conditions are chosen (y(0) = 0 and sufficiently more derivatives), then the

least-square optimizer optimizes over the left boundary conditions (except y(0) = 0)

until ode45 produces a solution satisfying the constraints y(rmax) = 0 and ymax = 1.

Appendix B

Optical Geometry of the HED View Chord

The collection optics assembly performs the job of collecting optical emissions from

MCX discharges in such a way as to provide reasonable spatial resolution. When

considering a multi-chord system, it is inherently necessary to consider the “volume”

from which emissions are sampled in each chord. It is thus necessary to understand

the optical geometry of the viewing chord of the collection optics. In the following

analysis of the chord viewing volume, we show that the configuration of the collection

optics gives a uniform effective solid-angle along the optic axis, making line-integrated

chord measurements much easier to interpret and unfold in Abel inversions. This is

an extension to the work done by Alan DeSilva [41].

The measured value of the emissivity, γα, depends on the geometry of the collection

optics. The detector measures optical power which is proportional to the rate that

photons strike the detector. If we consider a loss-less optical system, the rate that

photons strike the detector is equal to the rate at which photons enter the system,

Nα. Since each HED system collects photons along a line-of-sight, the total rate of

photon collection is the integration over the chordal viewing volume of the spatially

dependent plasma emissivity, γα, and the solid-angle ( in sterradians) of the collection

optics as seen by a source point, g(r). This is summarized in the following expression

(c.f. Eq. (3.5)).

Nα =

∫
V

γα(r)

4π sr.
g(r) dV . (B.1)
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A factor of 4π sr. is included since γα is uniform in solid-angle. The solid-angle of a

source point is purely a function of the configuration of the collection optics and will

be determined forthwith. Our collection optics assembly consists of a 1/2-inch plano-

convex lens, an optical fiber, and standard 1/2-inch lens tube pieces. The optical

fiber tip is placed relative to the lens such that its optical image is the same diameter

as the lens’ clear aperture (11 mm) and its image distance (77.3 cm) is larger than

the diameter of the MCX vacuum chamber (∼ 60 cm). This ensures that the viewing

volume of the optical system is limited to the cylindrical “tube” described by the lens

and the image of the fiber tip.

The defined viewing volume can be understood in the following way. The path of

a light ray passing through the lens and through the optical fiber tip can be extended

backward to a point on the fiber image. This is just a restatement of first-order

geometric optics. Now consider a light ray originating from any location between the

lens and the fiber image. Clearly, if this light ray is to be “collected” by the fiber,

its ray must pass through the lens. However, it is also required that this light ray’s

backward trajectory also pass through the fiber image, otherwise it will be mapped to

a location outside the fiber tip and will not be collected. Thus, for locations between

the lens and fiber image, the viewing volume is restricted to points lying inside the

“tube” defined by the lens and the fiber image, since this is the only region in which

a straight line can pass through both the lens and fiber image.

Now that we have defined our viewing volume, we can turn our attention to

the solid-angle of a point source, g(r). Expanding the integral in Eq. (B.1) and

incorporating the limits of the viewing volume, we have

Nα =

∫ L

0

γα(z)

4π sr.

∫ 2π

0

dφ

∫ R

0

g(r, z) r dr dz , (B.2)
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Figure B.1: Shown is a longitudinal cross-section of the optical geometry for an
HED collection optics assembly. Segment DM represents the lens and segment GJ
represents the image of the optical fiber tip. There is rotational symmetry about
the optic axis, segment AH. The colored regions labeled I, II, III, and IV each have
different expressions for the solid-angle of light collected by the optical fiber from
a point source with coordinates (r, z) located within that region (see Eqs. (B.3) &
(B.4)).

where we have used cylindrical coordinates with the origin at the center of the lens,

the z axis extends along the optic axis, and r is measured from the optic axis. Also,

L is the fiber image distance and R is the radius of both the lens and fiber image.

We have also assumed that the cylindrical viewing volume is narrow enough that γα

does not vary across its diameter, i.e. γα(r) ∼= γα(z). In Fig. B.1 we illustrate the

viewing volume geometry. Segment DM represents the lens, segment GJ represents

the fiber image, and point F is an emission source located at (r, z). Symmetry about

the optic axis (AH) is assumed.

We refer to Figs. B.1 & B.2 in order to determine g(r, z). The definition for g(r, z)

is simply the solid-angle of the source point which overlaps the lens as well as the

fiber image. This is represented by the segment BD. We calculate this solid-angle

from the overlapping area of the circles defined by the lens diameter DM and the

segment BE. This overlapping area is shown in Fig. B.2 as the red-shaded region.

The collection region shown in Fig. B.1 is divided into four regions, each repre-

senting a different constraint on the light rays capable of passing into the fiber. For

a source point lying in region I, light rays are constrained by the points G and J ; for
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Lens Solid-angle constrained
by fiber image

Figure B.2: The light collected by the optical fiber tip from a source point, (z, r) (see
Fig. B.1), subtends a solid-angle represented by the red shaded region. The circle
with radius R represents the lens (Fig. B.1, segment AD) and the circle with radius b
represents the solid-angle of the source point constrained by the fiber image (Fig. B.1,
segment GJ). The segment labels are the same as those in B.1. The z-axis (optic
axis) is pointing out of the page.
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region IV, it will be the points D and M . For region II and III, the constraint will

be from the points D and G. Figures B.1 & B.2 are correlated, i.e. points with the

same label in both figures represent the same physical point.

We proceed by describing the area of the red shaded region in Fig. B.2 as a function

of the source position, (r, z). The expression for this area, A, is different depending

on whether the source point is located in region I, II, III, or IV. The procedure for

obtaining the relevant expressions is tedious but straight-forward. Using normalized

coordinates, ẑ = z/L, r̂ = r/R, and Â = A/πR2 (see Figs. B.1 and B.2), these

expressions are

Â(r̂, ẑ) =



ẑ2

(1− ẑ)2
cos θ , Region I

cos θ

π

[
cos−1

(
r̂2 + 1− 2ẑ

2r̂(1− ẑ)

)
+

ẑ2

(1− ẑ)2
cos−1

(
r̂2 − 1 + 2ẑ

2r̂ẑ

)
− r̂

1− ẑ

√
1−

(
r̂2 + 1− 2ẑ

2r̂(1− ẑ)

)2
 , Region II, III

cos θ , Region IV,

(B.3)

g(r̂, ẑ) =
A(r, z)

z2
=
πR2

L2

Â(r̂, ẑ)

ẑ2
. (B.4)

Figure B.3 is a plot of Eq. (B.4) as a function of normalized distance from the

optic axis, r̂, for various normalized positions along the optic axis, ẑ. For ẑ = 0.5,

half way between the lens and the image of the fiber tip, the area of the light cone

intersected by the lens exactly coincides with the area of the lens. As the point moves

from the optic axis, the light cone no longer coincides perfectly and less of the light

is collected by the fiber. For positions ẑ < 0.5, the intersection of the light cone and

the lens is completely subsumed by the lens, thus movement away from the optic axis
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ẑ = 0.1
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Figure B.3: Shown is the normalized solid-angle of light collected from a source point
as a function of the source point’s normalized location, (r̂, ẑ). r̂ is the radial coordinate
measured from the optic axis and normalized to the lens radius; ẑ is the longitudinal
coordinate (along the optic axis) normalized to the image distance.

does not change the amount of light collected by the fiber until the light cone reaches

the lens boundary, beyond which the coincident area diminishes.

The integration over z in Eq. (B.2) is the subject of the Abel transform, which

is discussed in Appendix C. Here we want to determine the effective solid-angle as a

function of z, thus we are concerned only with the φ and r integrations of Eq. (B.2).

The effective solid-angle is expressed as follows.

G(z) =
1

πR2

∫ 2π

0

∫ R

0

g(r, z) r dr dφ

=
1

πR2

∫ 2π

0

∫ R

0

πR2Â(r̂, ẑ)

L2ẑ2
r dr dφ

= 2
πR2

L2

[∫ 1−2ẑ

0

ÂI

ẑ2
r̂ dr̂ +

∫ 1

1−2ẑ

ÂII

ẑ2
r̂ dr̂

+

∫ 2ẑ−1

0

ÂIV

ẑ2
r̂ dr̂ +

∫ 1

2ẑ−1

ÂIII

ẑ2
r̂ dr̂

]
. (B.5)

We note here that the integrals over ÂIr̂/ẑ
2 and ÂIVr̂/ẑ

2 are identical under the

coordinate transformation ẑ → 1 − ẑ (reflection symmetry about ẑ = 0.5); this is

also true for the integrals over ÂIIr̂/ẑ
2 and ÂIIIr̂/ẑ

2. This means that we only have
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Figure B.4: Shown is the deviation of the effective solid-angle, G, as a function of
distance along the optic axis. ẑ is the distance along the optic axis, normalized by L,
the image distance. The value of G is very nearly constant between the lens and the
optical fiber image. In addition, it is nearly equivalent to the solid-angle subtended
by the lens at a distance equal to the image distance, i.e. πR2/L2.

to carry out the integrations for regions I & II, then perform appropriate coordinate

transformations to obtain the results for regions III & IV. The result is shown in

Fig. B.4 for 0 ≤ ẑ ≤ 0.5; the result for 0.5 ≤ ẑ ≤ 1 is identical, but reflected about

ẑ = 0.5. We see that the effective solid-angle deviates very little from πR2/L2 between

the lens and the fiber tip image, meaning that it is effectively independent of z. This

is what we endeavored to show, and makes chord-integrated signals from an HED

much easier to interpret, as emissions anywhere along the optic axis are weighted

virtually the same.

In addition to this theoretical treatment, measurements were performed in order

to confirm that light sources at different locations along the optic axis are indeed

weighted the same in the output signal of an HED. This was done using a uniform light

source (integrating sphere), whose output port completely subsumes the cross-section

of the optical viewing volume of the collection optics for positions 0 ≤ z ≤ 77.3 cm.

Measurements were taken with the collection optics viewing the output port at various

distances along the optic axis. Since the uniform light source output is constant, any

change in the output signal from an HED could be interpreted as a change in the

effective solid-angle, i.e. δG(z). The result of the measurements is shown in Fig. B.5.
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Figure B.5: Shown, as a function of distance along the optic axis, is a normalized
signal from an HED viewing a uniform light source (a) and an expanded view (b).
Both plots show the possible effect of 0.05% internal reflections contributing to the
total signal. The normalized signal is within 1% of unity for z ' 20 cm. Each HED
collection optic is further than 15 cm from the interior of the vacuum chamber, as
measured along its optic axis.

The data is normalized to the measured signal at z = 39 cm. Figure B.5(a) shows that

the solid-angle is virtually constant, as predicted, at least for z & 20 cm. Figure B.5(b)

shows the same data over a smaller range in order to show the detail and characteristic

error bar.

The increase in the relative signal for z . 20 cm may be explained by reflections

inside the collection optic assembly. Recall that not all light passing through the

collection lens enters the optical fiber, but only those rays whose backward trajectory

also intercepts the fiber tip image. A considerable amount of light passes through the

lens into the collection optic assembly that does not directly enter the optical fiber.

The red curve in Fig. B.5(a) shows the effect of an estimated 0.05% internal reflection,

that is, if 0.05% of all the light entering the collection optics (less the light directly

entering the fiber) is eventually reflected into the fiber. A detailed ray tracing and

characterization of the reflection properties of the anodized aluminum components

would be needed to quantify this effect more precisely. However, the estimate here

serves to illustrate that the increased signal at close ranges is consistent with even a

small fraction of internal reflection. Nevertheless, collection optic assemblies will be
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located no closer than 15 cm to the vacuum chamber, so this effect will be limited to

≤ 3%.
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Appendix C

Abel Transform

The multi-chord array of Hα emission detectors was conceived to provide profile in-

formation for Hα emissivity and hence neutral particle density. The HED is a passive

device and therefore relies on information about the interior of the plasma to be

carried outside the plasma and to the collection optics of the HED. Necessarily, this

introduces a contamination of the emissivity information from the interior of the

plasma by emissivity information from larger radii. This means that the photons

reaching an HED device may originate from anywhere within its field of view. Hence,

an HED signal represents a of sum of all the emissions within its field of view, or chord

integrated signal. This was laid out in detail in Appendix B. Here, we describe the

Abel inversion, a method for extracting local information from an integrated chord

measurement in cylindrically symmetric geometries.

Many methods and algorithms have been established for calculating Abel Trans-

forms and their inverses [42–46]. These paradigms have a few things in common: an

attempt to decrease computation time and a method to decrease errors associated

with an inversion process. Essentially, each method decreases computational expense

by separating the geometrically dependent part from the field function part of the

Abel transform and its inverse transform. The geometric part is independent of the

data to be treated, allowing it to be stored and used for multiple data sets, hence

reducing computation time. To address potential errors directly attributable to in-

version techniques, most methods employ some type of data interpolation, thereby

increasing the data resolution to be inverted and reducing errors which are enhanced

by numerical derivatives.
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Figure C.1: Shown here is an illustration of a field function, f(r), with chord inte-
grated value, F (y). The differing shades of color are intended to represent different
values of the scalar field function f(r).

We begin this appendix by first detailing both the continuous and discrete Abel

transforms, drawing attention to the possible errors involved in the inversion process.

This is followed by an investigation of the error incurred in applying the discrete Abel

inverse transform in the context of the work presented in this dissertation.

C.1 The Continuous & Discrete Abel Transform

The Abel Transform is an integral transform similar to any other integral transform,

such as Fourier or Laplace transforms. The Abel transform takes a function in one

coordinate space and transforms it into another coordinate space. Like other trans-

forms, the two coordinate spaces have different physical interpretations. For example,

the Fourier transform converts a function from the time domain (t) to the frequency

domain (ω), and the inverse Fourier transform converts back to the time domain. The

Abel transform converts a scalar field function, f(r), from the radial domain to the

y domain, interpreted as the impact parameter of an integrated chord measurement.
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Consider a known scalar field function, f(r), and its integrated value along a

straight line, F (y), shown in Fig. C.1. The value of F (y) can be expressed as

F (y) = 2

∫ ∞
y

r√
r2 − y2

f(r) dr , (C.1)

where r is the radial coordinate and y is the minimum value of r for the particular

chord location, i.e. the impact parameter. The inverse transform is given by [26]

f(r) = − 1

π

∫ ∞
r

1√
y2 − r2

dF

dy
dy . (C.2)

It is straight forward to show that Eqs. (C.1) & (C.2) are inverses of one another by

substituting one into the other and evaluating. Notice that the upper limit in both

equations is ∞. In general, knowledge of f(∞) is required in order to perform the

transform, or F (∞) to perform the inverse transform. If the function f(r) is finite

for r ≤ a and f(r) = 0 for r > a, i.e. f is restricted to a finite region in space

(f(∞) = 0), then the upper limit in both Eqs. (C.1) & (C.2) can be replaced with

a. In practice, this only requires that a multi-chord configuration contain at least

one chord located at y ≥ a. In any case, the outermost chord (located at ymax) will

define the upper limit to the inverse transform, however, unless the outermost chord

yields no signal, information about f(r) between ymax and a cannot be determined

and the inverse transform cannot be performed without making assumptions about

a and f(r).

It is a rare situation that either f(r) or F (y) are of such a form that either

Eq. (C.1) or Eq. (C.2) can be evaluated analytically. Thus it is requisite to discuss

discrete methods for evaluating these two equations. The Abel transform and its

inverse can be evaluated using standard numerical integration techniques, however

this is computationally expensive. This is clear upon inspection of the transform. To

obtain a single Abel Transform value, Fi = F (yi), for example, the corresponding
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Figure C.2: This illustrates a discrete perspective of the Abel Transform. This is
similar to Fig. C.1 except that discrete concentric regions are shown, segregated by
dashed circles. Each region that intersects with the viewing chord has a different color
rectangle indicating the approximate intersection. The length of these rectangles is
the weighting factor applied to fj and comprises the Abel matrix, l.

integral expression must be evaluated as

Fi =
N∑
j=i

rj√
r2
j − y2

i

fj =
N∑
j=i

lijfj . (C.3)

This direct discrete formulation has two main issues. First, it is clearly computation-

ally expensive. Second, algebraic manipulation of the expression is required in order

to avoid the singularities in the integrand whenever rj = yj.

One method used to mitigate the computational expense is to use the matrix form

of Eq. (C.3). This expression can be converted directly into a matrix expression,

offering a trade-off between computation speed and memory. This is realized by

investing the time necessary to create the Abel matrix, l, and storing it in memory

for later use. This is particularly useful for Abel matrices where N � 10. However,

this does not address the issue of singular integrands. To resolve this issue, we must

reformulate the discrete Abel transform rather than simply evaluate the continuous

expression in a discrete manner.

To reformulate the discrete Abel Transform, first consider the physical interpre-

tation in the expression of the continuous form in Eq. (C.1): we are “summing” the
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contributions of f(r) along a straight line with impact parameter y. If we divide the

field into concentric circular regions, the center of each coincideing with a different

chord’s impact parameter, we can then sum the values of f corresponding to each

region weighted by the length of the chord in the region. This is illustrated in Fig. C.2

and results in the following expression for the Abel matrix.

lij =



√
(ri + ∆r/2)2 − r2

i i = j√
(rj + ∆r/2)2 − r2

i −
√

(rj −∆r/2)2 − r2
i i < j

0 i > j

(C.4)

This form of the Abel matrix is similar to that formulated by Bell [47] and identical

to the “Onion Peeling” method described by Dasch [44]. Note that lij in Eq. (C.4)

has upper triangle form, has an inverse, and hence avoids the singularity problem

apparent in Eq. (C.3). The two expressions can be viewed loosely analogous to the

Midpoint vs. Left Riemann integral approximation methods.

Dasch describes another method for obtaining Abel inverted data, which he calls

a 3-Point Abel Deconvolution [44]. This method uses a second order polynomial fit

for dF/dy, in Eq. (C.2), near the measurement impact parameters, yi. The matrix

expression for the 3-Point Abel Deconvolution method is given by

Lij =



0 j < i− 1

Ii,j+1(0)− Ii,j+1(1) j = i− 1

Ii,j+1(0)− Ii,j+1(1) + 2Iij(1) j = i

Ii,j+1(0)− Ii,j+1(1) + 2Iij(1)− Ii,j−1(0)− Ii,j−1(1) j ≥ i+ 1

Ii,j+1(0)− Ii,j+1(1) + 2Iij(1)− 2Ii,j−1(1) i = 0, j = 1

(C.5)
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where

Iij(0) =



0 j = i = 0 or j < i

1
2π

ln

{√
(2j+1)2−4i2+2j+1

2j

}
j = i 6= 0

1
2π

ln

{√
(2j+1)2−4i2+2j+1√
(2j−1)2−4i2+2j−1

}
j > i

(C.6)

and

Iij(1) =


0 j < i

1
2π

√
(2j + 1)2 − 4i2 − 2jIij(0) j = i

1
2π

{√
(2j + 1)2 − 4i2 −√(2j − 1)2 − 4i2

}
− 2jIij(0) j > i

. (C.7)

This method provides a factor of two less noise in the inversion compared to the Onion

Peeling method. However, this method relies on equally spaced projection measure-

ments located at impact parameters which are integer multiples of the measurement

spacing, i.e. yi = i∆r. Because this restriction is sometimes impractical and the noise

reduction is not significant to our application, we use the Onion Peeling method of

Abel transform and inverse transform.

C.2 Inversion Validation & Error Estimates

As mentioned earlier, many methods have been employed to reduce errors directly

associated with computing Abel transforms and their inverses [42–46]. While all

methods differ in particulars, all essentially use data interpolation to reduce errors.

The data interpolation paradigms use types of spline fits to measured data [42, 45],

orthogonal function expansions of measured data [43, 46], or second order polynomial

fits [44]. The Onion Peeling method applied to the data presented in this disserta-

tion does not interpolate between data points and therefore offers no error reduction

mechanism. As such, it is critical that we present some estimate on the error pro-

106



duced by the Abel inversion process and establish confidence in our application of the

algorithm.

To begin an estimation on the error produced by an Abel inversion, we begin with

a simulated emissivity projection, shown in Fig. C.3(a). This emissivity projection

was created from a simulated emissivity profile shown in Fig. C.3(b). The emissivity

profile is normalized and its shape, while somewhat arbitrary, was chosen to resemble

the measured profiles of MCX discharges presented in Sec. 4.3. If we had an arbitrarily

large number of chords, the blue curve in Fig. C.3(a) is what they would measure.

However, we only have a limited number of chords, and the measurements seen by

these are shown in Fig. C.3(a) as red triangles.

Now let us consider an Abel inversion, as discussed in the previous section. Apply-

ing an Onion Peeling method directly to the discrete chord data in Fig. C.3(a) results

in the corresponding red triangles in Fig. C.3(b). The deviation of the “measured”

values from the true values in Fig. C.3(b) gives an indication of the error introduced

by the Abel inversion. This can be highly dependent on the type of profile being

measured and the fortuitous positions of the view chords relative to features in the

projected profile. In order to quantify the error involved, we investigate two types of

error: error due to independent, random noise in the measurements of each chord;

and error due to the systematic mis-measurement of a chord.

For a quantitative analysis we can compare statistical results with error estimates

put forth by Dasch [44], namely

δfi = N
(

N∑
j=1

L2
ij

)1/2

, (C.8)

where N is the amplitude of the noise in the measurement signal, and Lij = l−1
ij is the

inverse Abel matrix. This estimate is valid if the measurement error in each chord

is independent. This excludes irregularities in the field being measured, and limits
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us to instrumental noise. To compare effects of noise on our particular profile with

Eq. (C.8), we did the following. First, we begin with the projection signals, Γ, and

apply random Gaussian noise with amplitude N = 0.05 to each projection signal,

denoted Γ∗. We then deconvolve the noisy data directly with the matrix operation

γ∗ = LΓ∗. This is repeated 100 times and the standard deviation is calculated for

each chord independently and is represented by the error-bars in Figs. C.3(a) & (b).

Explicitly, δΓ∗ =
√∑

(Γ∗ − 〈Γ∗〉)2/N ∼= 0.05 and δγ∗ =
√∑

(γ∗ − 〈γ∗〉)2/N . The

magnitude of δγ∗ is plotted along with Eq. (C.8) in Fig. C.3(c). This shows that the

expected error from Abel inversion due to random noise matches very well with that

estimated by Dasch. Also shown in Fig. C.3(c) is the absolute deviation of the average

deconvolved signal, | 〈γ∗〉−γ|, which indicates the contribution of systematic error due

to the lack of chord resolution as well as the imperfectly centered noise distributions.

As an additional test, the procedure was also performed with N = 0.0003, which

more appropriately resembles the instrumental noise of an HED. This variance is

much smaller than the plotted symbol size, and therefore not included in Figs. C.3(a)

& (b), but the error magnitude results are shown in Fig. C.3(d). This indicates that

systematic error will dominate the interpretation of chord measurements in MCX

discharges.

It is seen in Fig. C.3(d) that the systematic error is most significant (∼ 10%)

for the first chord and diminishes for further inward chords. This is due to the first

chord’s proximity to the large profile gradient at r = 0.9 and the lack of resolved

measurements in this region. From Fig. C.3(c) we see that the random noise has

the largest impact on systematic error for chords 1–12, while chords 13–16 remain

virtually unaffected compared to Fig. C.3(d), even though the noise amplitude differs

by 2 orders of magnitude. This is due to the imperfectly centered noise distributions.

To futher investigate systematic errors due to mis-measurement of an HED, we

again start with the same profiles as before. However, instead of applying random
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Figure C.3: Shown are the results of Abel inversion error due to random error in
chord measurements. (a) A projection profile (blue) shown with 16 chord measure-
ments (red triangles), each with N = 0.05 random Gaussian error. (b) The actual
profile (blue) shown with the inverted measurements and their resulting error (red
triangles). (c) The absolute deviation of the average inverted signal (blue squares),
amplitude of statistical error (red triangles), and the statistical error prescribed by
Dasch, Eq. (C.8) [44]. (d) Similar to (c) except that N = 0.0003 was used for the
noise amplitude.
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Figure C.4: Shown is a chord integrated profile (blue) with a single chord mis-
measured (a), the resulting inverted profiles (b), and the difference between the in-
verted profiles and the actual profile (c). The red triangles correspond to profiles
associated with the overestimated measurement and the green circles correspond to
the underestimated measurement. The blue squares represent perfect measurements.

noise we simply modify one of the chord measurements and then observe how that

“error” propagates to the remaining inverted measurements. Figure C.4 shows such

and experiment. Here we have taken the projection profile (Γ) and 16 perfect pro-

jection measurements (Γ∗), and multiplied only chord 15 (r ' 0.85) by a factor of

1.2 (Γ†) and 0.8 (Γ‡) . The three resulting inverted profiles are shown in Fig. C.4(b).

The difference from the actual profile, γ, is shown in Fig. C.4(c).

We can see from these results that the effect of a systematic error of a single

chord is to alter the neighboring inside shell in the opposite way, i.e. if a chord mea-

surement is overestimated then the neighboring inside shell will be underestimated

after inversion. We also see that the error does not propagate significantly beyond

the nearest inside chord. This is because the onion peeling method determines the
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local field value by subtracting off contributions from exterior shells. A systematic

overestimate(underestimate) of one chord will then present too much(little) subtrac-

tion from the next inward chord measurement, resulting in a systematic underesti-

mate(overestimate) of the emissivity of the next inward shell. However, since the next

inward shell is affected in the opposite way, their combined effect is virtually cancelled

and subsequent inward shells are largely insulated from the error. We can also see the

systematic error due to insufficiently resolved measurements of the projected profile

near r = 0.9.
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Appendix D

Nominal MCX Parameters

For reference purposes we include a table of nominal MCX discharge parameters and

a table of nominal time scales. These parameters are not intended to represent the

best values achieved or to indicate the full range (or limitations) of these parameters.

They are intended for “back-of-the-envelope” calculations, or to make approximate

scaling arguments.
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Table D.1: Nominal MCX Discharge Parameters

Parameter Value Parameter Value

Vp 4 kV B0 2100 G

Ip 2 kA R 6
pfill 5 mTorr Nfill 3.2× 1014 cm−3

a 18.4 cm L‖ 130 cm
n0 7× 1014 cm−3 η⊥ 1.5× 10−14 s

〈uφ〉 100 km/s cs 50 km/s

Ms 2.7 MA 0.6
Te 3.3 eV Ti 15 eV

ln Λ 7.7 vAi 170 km/s
ωe 1.3× 1012s−1 ωi 29× 109 s−1

Ωe 3.7× 1010 s−1 Ωi 2.0× 107 s−1

ρe 21µm ρi 1.9mm
Γe 3.9× 10−3 Γi 8.5× 10−4

λ 1µm

Table D.2: Nominal MCX Discharge Time Scales

Time Expression Value (µs)

Radial Alfvén a
vA

1

Axial Alfvén L
vA

7.5

Rotation Period π(r2+r1)

〈uφ〉 9.7

Interchange Growth
√
aL
vT

13

Axial Sonic L
cs

27

Mirror Loss (electron)
√
πRL
vT

eeΦ/T 49

Ambipolar Diffusion a2τi
8ρ2i

210

Resistive 4πa2

c2η
300

Momentum Confinement 400
Mirror Loss (ion)

√
πRL
vT

eeΦ/T 1000

Viscous Damping τi
a2

ρ2i
1700

Axial Ion Heat τi
L2

λ2
i

1700

Bohm Diffusion 4a2eB
cT

1900

Axial Electron Heat τe
L2

λ2
e

1900
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