
Generating E�cient Stack Code for JavaTatiana Shpeisman and Mustafa TikirDepartment of Computer ScienceUniversity of Marylandfmurka,tikirg@cs.umd.eduOctober 8, 1999AbstractOptimizing Java byte code is complicated by the fact that it uses a stack-based execution model.Changing the intermediate representation from the stack-based to the register-based one brings theproblem of Java byte code optimizations into well-studied domain of compiler optimizations for register-based codes. In this paper we describe the technique to convert a register-based code into the Java bytecode. The code generation techniques developed for the stack-based computers are not directly applicableto this problem as the comparative cost of the local memory and stack manipulation instructions in JVMis quite di�erent from that in the stack-based computers. Naive verbose translation of the register-based code into the Java byte code produces the code with many redundant store and load instructions.The tool that we have developed allows to remove 90-100 % of the stores to the local (i.e., non-global)variables. It produces the Java byte code that is slightly faster and shorter than the original byte codeeven when no optimizations except for register allocation are performed on the register-based code.1 IntroductionThe Java programming language is becoming more and more popular as its design answers a demandfor a completely-speci�ed, portable and secure programming language. The only major complaint aboutJava is its performance. Optimizing Java is a wide-spread topic of the ongoing research. Developing theoptimizations for the Java byte code rather than for the Java source code has several advantages: thebyte code is independent from any compiler that was used to generate it, the byte code may be generatedfor languages other than Java and, �nally, the byte code optimizations can be performed as a prepass toJust-In-Time (JIT) compilation.Optimizing the Java byte code is complicated by the fact that it uses a stack-based execution model.The problems of performing static analysis and transformations on the stack-based code are well de-scribed by Raja Vallee-Rai and Laurie Hendren [VRH98]. They propose a Java byte code optimizationframework called Soot that uses a register-based 3-addressed intermediate representation. Such a frame-work brings a problem of optimizing a Java byte code into well-studied domain of compiler optimizationsfor register-based codes. Yet, using the register-based representation for the Java byte code creates twoadditional problems: converting the byte code into a register-based code, and converting a register codeinto a stack-based Java byte code. While the �rst problem has been practically solved, much roomremains in developing the techniques to convert the register code into an e�cient byte code. The codecurrently generated by Soot is verbose and ine�cient. In fact, transforming the byte code into a Jimplerepresentation used by Soot and back into the byte code may increase the number of byte code instruc-tions by about 50 %. This code size increase is due to the redundant store and load instructions that areintroduced by verbose translation of the register code instructions into the stack code instructions.There can be two approaches to generating the byte code that contains a reasonable number of localmemory instructions: to generate the optimal byte code directly from the register-based code, or to,�rst, convert a register-based code into an ine�cient byte code, and then optimize the byte code usingthe results of the analysis performed on the register code. We have developed the technique that isbased on the second approach, that is, we �rst convert a register code into an ine�cient stack code, andthen optimize it using the results of live variable analysis performed on the register code. Our goal is toeliminate as many store instructions as possible without introducing additional instructions whose only1

purpose is to change the order of the values on the stack. (We allow the dup instructions to be usedinstead of loads when such a transformation is likely to enable a store instruction elimination.)We believe that our goal is well justi�ed. Although Java does provide the byte code instructionswhose combination can be used to arbitrary reorder top four stack words, it is unclear whether usingsuch instructions is better than using local memory instructions. Usually, the Java byte code is notexecuted by the stack CPU, but is interpreted or JIT compiled. The relative cost of the local memoryand stack manipulation instructions depends on the implementation of JVM and/or JIT compiler andis not known in general. On the other hand, eliminating the store instructions without introducing thestack manipulation instructions should be always pro�table. A byte code interpreter gets less instructionsto interpret and perform. A JIT compiler gets less instructions to analyze, and more variable whose liferange can be found without performing expensive global live variable analysis.There has been some earlier work on generating an e�cient stack-based code, but none of it can bedirectly applied to the problem of generating the stack-based code for Java. An early work by Brunoand Lassagne solved the problem of generating an optimal code that evaluates an expression withoutdependencies on the stack with a �nite depth. Later work has concentrated on performing the peepholeoptimizations [Han89, Hay86]. Relatively recently Koopman has investigated the problem of eliminatingmemory instructions for a basic block or even the whole program [PJK94]. This work has providedus with useful insights on the problem of stack-based code generation. Yet, technique developed byKoopman is based on the assumption that a single local variable instruction is more expensive than asequence of instructions that operate on the stack, and, thus, cannot be directly applied to the Java bytecode.The rest of the paper is organized as follows. Section 2 brie
y describes our implementation of a Javabyte code optimization framework that uses a register-based intermediate representation. In Section 3we give a detailed description of the technique to convert a register-based code into an e�cient Java bytecode. The experimental results are described in Section 4. We �nish the paper by giving our conclusionsand acknowledgments.2 General FrameworkA compiler that optimizes Java byte code while working with the register code representation shouldperform the following three steps: convert a byte code into a register code, optimize the register codeand convert the register code into the byte code.Our main interest is in the last step. Yet, it is impossible to convert a register code into the bytecode unless we �rst obtain the register code (When we started this work the Soot framework has not yetbeen publicly available). A commonly accepted technique for converting a Java byte code into a registercode is based on simulating the run-time stack. We used a simpler approach and, much to our surprise,obtained a good register code. The �rst stage of our translation is to convert each stack instructioninto a register code instruction, with the �xed register numbers assigned to the stack locations and localvariables. The next step is copy propagation and dead-code elimination. The register code obtainedafter these two steps still has some extra copy instructions that correspond to the store operations in thebyte code. To get rid of them we use a optimization that we call a \backward copy propagation".As it may be guessed from its name, the backward copy propagation propagates the copies backward.Given a copy instruction with source and destination registers, it replaces a previous de�nition of thesource register with the de�nition of the destination register, swaps the source and destination of thecopy instruction and moves it to the position immediately after the replaced de�nition. An example ofconverting a byte code into the register code is given in Figure 1.The only optimization that we perform on the register code before converting it back into a bytecode is register allocation. Our register allocation algorithm is based on the graph coloring techniques[Muc97]. We construct the webs, i.e., the collections of de�nition-use chains that share a common use,perform simple register coalescing, build an interference graph and color it based on the priorities givento the webs according to static reference count.3 Converting a Register Code into a Byte CodeConverting a register code into an e�cient stack code is not a trivial task. A direct translation, when eachregister instruction is translated into a sequence of the byte code instructions that load the argumentson the stack, perform the necessary operation and store the result into a local variable, results in a code2

iload 1 S0=R1 { { {iload 2 S1=R2 { { {iadd S0=S0+S1 S0=R1+R2 R2=R1+R2 R2=R1+R2istore 2 R2=S0 R2=S0 S0=R2 {iconst 5 S0=5 S0=5 S0=5 S0=R5a) Byte code b) After direct c) Copy propagation d) Backward e) Dead-codetranslation & dead-code elimination copy propagation eliminationFigure 1: Backward copy propagation examplewith many redundant store and load instructions. In this section we describe the techniques that allowus to eliminate most of them.A store instruction removes a value from the top of the stack and places it into a register. Thesubsequent load instruction copies the value from the local variable back on the stack. Under certainconditions, it is possible to remove both store and load instructions, thus, letting the value reside onthe stack rather than in a local variable between its de�nition and use. If a store instruction is used bymultiple load instructions it may be necessary to �rst replace them by dup instructions.We shall say that a store instruction is local if its variable is dead at the end of the basic block,and global otherwise. Eliminating the global store instructions is much more complicated problem thaneliminating the local ones. Fortunately, most of the stores in a stack code naively generated from theregister code are the local ones. We do not attempt to remove the global store instructions. Further onwe shall always mean that the store instruction under investigation is dead at the end of the basic block.3.1 Overview of the algorithmTo convert a register code into the byte code we �rst perform a naive translation and then optimize thegenerated byte code. For each basic block we perform the following steps:� eliminate store instructions that are followed by a single load.� recognize and replace the patterns of two consecutive loads that can be replaced by a dup2 instruc-tion (e.g., iload 1; iload 2; iload 1; iload 2 can be replaced by iload 1; iload 2; dup2.)� eliminate store instructions that are followed by multiple loads� recognize and replace the patterns that can be replaced by iinc instructions.Our experiments have shown that the above order of the optimization steps works best. Most of thestore instructions are followed by a single load instruction. Eliminating such instructions is relativelyeasy and allows to signi�cantly reduce the size of the code. In fact, in our implementation we performthis step while converting the register code into a stack code rather than as a separate pass. Replacingtwo loads by a single dup instruction is an enabling transformation that allows to eliminate more storeinstructions at the next step. The increment instructions are introduced last as they hide the storeinstruction and prevent them from being eliminated.After processing all the basic blocks we perform one additional optimization on the whole controlgraph. If all the predecessors of a basic block end with exactly the same sequence of instructions, thissequence is moved to the beginning of the basic block. This transformation reduces the size of the bytecode but does not change the number of instructions being executed. The most common situation whenit is applicable arises from conditional assignments.In the remainder of this paper we shall describe our techniques for eliminating a store followed by asingle load and a store followed by multiple loads in more detail.3.2 Eliminating a store followed by a single loadConsider a store/load pair separated by some instruction sequence. The interleaving instructions consumesome words from the stack and produce some words on the stack. We shall say that an instructionsequence is stack independent if it neither consumes nor produces any stack words. Here, we mean thecommulative e�ect of executing the instruction sequence rather than a sum of the words consumed andproduced by single instructions. For example, instructions istore 0; iload 0 consume one word from3

public final class E1 {int a[],b[];public void foo(int i) {b[i]=a[i];}} R2=R0.bR3=R0.aR4=R3[R1]R2[R1]=R4returna) Source code b) Register codeCode Stack1: aload 0 this . .2: get�eld <Field int b[]> b . .3: astore 2 . . .4: aload 0 this . .5: get�eld <Field int a[]> a . .6: astore 3 . . .7: aload 3 a . .8: iload 1 a i .9: iaload a[i] . .10: istore 4 . . .11: aload 2 b . .12: iload 1 b i .13: iload 4 b i a[i]14: iastore . . .15: return . . .
1: aload 02: get�eld <Field int b[]>4: aload 05: get�eld <Field int a[]>8: iload 19: iaload10: istore 412: iload 113: iload 414: iastore15: returnc) Byte code obtained by naive translation d) Removed 2 store/load w/o instruction reordering1: aload 02: get�eld <Field int b[]>12: iload 14: aload 05: get�eld <Field int a[]>8: iload 19: iaload10: istore 413: iload 414: iastore15: return 1: aload 02: get�eld <Field int b[]>12: iload 14: aload 05: get�eld <Field int a[]>8: iload 19: iaload14: iastore15: returne) Reorder instructions f) All stores are removedFigure 2: Eliminating store instructions followed by a single load instruction4

Instruction Stack State Number of wordsconsumed producedload 0 r0 . 0 1load 2 r0 r2 0 1put�eld <Field int x> . . 2 0load 2 r2 . 0 1a) A code fragment with two load instructionsInstruction Stack Stateload 0 r0 . .load 2 r0 r2 .dup x1 r2 r0 r2put�eld <Field int x> r2 . .b) Second load is replaced by dup x1Figure 3: Finding the right dup instructionthe stack and produce one word on the stack, while instructions iload 0; istore 0 neither produce norconsume any stack words. The pair of store and load instructions separated by some instructions canbe safely eliminated if and only if the interleaving instructions are stack independent. This conditiontrivially holds when the interleaving instruction sequence is empty, i.e. store is immediately followed bythe load.What do we do if the interleaving instructions are not stack independent? One solution would beto handle some special cases by introducing the instructions that interchange the values on the stack.Yet, our goal is to eliminate the extra instructions, so we would like to avoid introducing the newones. Instead, we attempt to interchange the instructions so that store and load are separated by theindependent sequence. This transformation is possible if there exist an independent instruction sequenceending with the store under consideration and it is legal to interchange it with the interleaving instructionsequence.Interchanging two sequences of instructions is legal only if it does not violate the data dependenciesand does not contradict to the precise exception model, i.e., does not change the relative order of theinstructions whose execution may result in an exception being thrown. Any instruction that accesses anarray element or an object �eld may throw an exception. We interchange two instruction sequences onlyif no more than one of them contains an array access, a �eld accesses or a function call; there are no
ow, anti or output dependencies between the local variables; and there are no monitor instructions.An example that illustrates the above technique is shown in Figure 2. The Java source code andthe register code for method foo are shown in Figures 2a and b. The byte code produced by the directtranslation of the register code shown in Figure 2c contains three pairs of store/load instructions: 3and 11, 6 and 7, 10 and 13. The �rst two pairs can be simply removed as they are separated by theindependent instruction sequences. The resulting code is shown in Figure 2d. The instructions 10 and13 are separated by iload 1 instruction that produces one value on the stack. To enable store/loadelimination we interchange this instruction with the independent sequence f4,5,8,9,10g. In the resultingcode (see Figure 2e) the store is immediately followed by the load. The �nal byte code with all the storeinstructions eliminated is shown in Figure 2f.3.3 Eliminating a store followed by multiple loadsThe problem of eliminating a store instruction whose variable subsequently is used by several loadinstructions can be reduced to two smaller problems: replacing a load that is preceded by another loadby a dup operation and eliminating a store followed by a single load.Consider two load instruction separated by several other instructions. If the interleaving instructionsequence does not produce any words on the stack it is possible to eliminate the second load by introducing5

final public class E2 {int n;final public void foo(int []a, int k) {a[k]=++n;}} R3 = R0.nR4 = 1R3 = R3 + R4R0.n = R3R1[R2] = R3returna) Source code b) Register code1: aload 02: get�eld <Field int n>3: iconst 14: iadd5: istore 36: aload 07: iload 38: put�eld <Field int n>9: aload 110: iload 211: iload 312: iastore13: return
1: aload 02: get�eld <Field int n>3: iconst 14: iadd5: istore 39: aload 110: iload 26: aload 07: iload 38: put�eld <Field int n>11: iload 3 // to be removed12: iastore13: returnc) After stores with single loads have been eliminated d) Reorder instructions1: aload 02: getfield <Field int n>3: iconst 14: iadd5: istore 39: aload 110: iload 26: aload 07: iload 3new: dup x1 // inserted8: put�eld <Field int n>12: iastore13: return
9: aload 110: iload 26: aload 01: aload 02: getfield <Field int n>3: iconst 14: iaddnew: dup x18: put�eld <Field int n>12: iastore13: returne) Replaced iload 3 by dup x1 f) Eliminated pair istore 3 and iload 3Figure 4: Eliminating store with multiple loads6

Benchmark Class Ratio of the transformed to the original code sizeSoot Framework, Our technique, Our technique,size in instr. size in instr. size in bytesCa�eineMark FloatAtom 1.64 0.99 0.98LogicAtom 1.44 0.97 0.95LoopAtom 1.40 0.98 0.98MethodAtom 1.36 0.94 0.96SieveAtom 1.32 0.96 0.97StringAtom 1.21 1.00 1.00SciMark FFT 1.50 0.96 0.88JBLAS 1.55 0.99 0.93JBLASopt 1.79 0.99 0.94Jacobi 1.67 0.95 0.85LU 1.58 0.99 0.91MonteCarlo 1.67 0.96 0.95FhourStones 2.0 Game 1.68 0.97 0.94Table 1: E�ect of the representation changes on the byte code sizea new dup instruction right after the �rst load. The choice of the dup instruction (dup, dup x1, dup x2,dup2, dup2 x1 or dup2 x2) depends on the number of words being loaded and the number of wordsconsumed by the interleaving instructions. If the number of the consumed words is larger than 3 forsingle word loads or 4 for double word loads the transformation is not possible, as Java byte code does nothave the required dup instructions. Choosing the correct dup instruction is illustrated by the exampleshown in Figure 3. Here, the interleaving sequence consist of a single putfield instruction that consumestwo words from the stack. The required dup operation is dup x1 that copies the word on the top of thestack two words below, thus keeping the two top stack words intact.When, the second load instruction cannot be eliminated we attempt to reorder the instructions toenable the elimination. We look for a sequence of instruction that includes the �rst load instruction andboth consumes and produces the same number of words as being consumed by the interleaving sequence.If such a sequence exist we attempt to interchange it with the remainder of the interleaving sequence.As an example consider the byte code shown in Figure 4c. Two occurrences of load 3 instruction areseparated by instructions 8,9 and 10. These interleaving instructions consume two words from the stackand produce two words on the stack. Thus, we need an instruction sequence containing instruction 7that produces and consumes two words, that is, instructions f6,7,8g. The remainder of the interleavingsequence is instructions f9,10g. Interchanging these two sequences of instructions yields the code shownin Figure 4d. Now it is possible to remove the load instruction 11 by inserting a new dup x1 instruction.In the resulting code shown in Figure 4e there is just one pair of store/load instructions that is eliminatedas have been described in the previous section. The �nal code with all the stores eliminated is shown inFigure 4f.4 Experimental ResultsPerforming the optimizations on the register code for Java programs is practical only if it is possible toconvert the register code into an e�cient byte code. In particular, simply converting a byte code into aregister code and back should not result in the byte code that is worse than the original code. Such atransformation may even improve the byte code, if the original byte code contained extra load and storeoperations. In this section we present the experimental results that show that our techniques allow togenerate the byte code that is no worse or even better than the original byte code.We have performed our experiments on the class �les from the Ca�eineMark 3.0, SciMark and Fhour-Stones 2.0 benchmarks. As our current implementation does not support exceptions we skipped theclasses whose methods throw or catch exceptions. The class �les from Ca�eineMark and FhourStonesbenchmarks have been compiled using Sun's JDK 1.2 javac compiler with -O option. The SciMarkbenchmark contains pre-compiled class �les.For each class �le we performed the following operations: converted the byte code of all the classmethods into a register code, performed the register allocation on the register code and converted the7

Package Class Store instruction ratio,%Local/Total Eliminated/Total Eliminated/LocalCa�eineMark FloatAtom 92 90 98LogicAtom 12 12 100LoopAtom 82 80 97MethodAtom 74 74 100SieveAtom 78 78 100StringAtom 83 83 100SciMark FFT 75 68 90JBLAS 58 58 100JBLASopt 86 81 94Jacobi 79 79 100LU 71 68 96MonteCarlo 77 72 94FhourStones Game 93 89 95Table 2: Relative number of the eliminated store instructionsregister code back into a byte code. We have measured how this sequence of representation changesa�ects the size of the code. We have also run the same transformations using Soot version 1.beta.1[VRH]. The current version of the Soot framework generates a verbose and ine�cient stack code. Weuse this code to demonstrate that a naive direct translation of the register code into a byte code reallyyields a very ine�cient code.Table 1 shows the ratio of the transformed code size to the original code size. The code generated bySoot Framework is about 1.5 times larger than the original byte code. Our technique generates the codethat is even slightly shorter than the original byte code. For most of the class �les, we obtain a betterreduction in the number of bytes than in the number of the instructions. This is mainly the result ofperforming the register allocation (the store and load instructions for the registers 0-3 take just one byterather than two). Also, dup instructions take only one byte. Thus, replacing loads to the registers withnumbers 4 and higher by dup instructions reduces the number of bytes without reducing the number ofinstructions.We have also measured the performance of the benchmarks before and after transformations. Wehave used Sun's JVM1.2 with enabled JIT compilation. Our transformed code got 1% better score onthe Embedded Ca�eineMark, 4.5% better score on the SciMark and the same score on the FhourStonesbenchmarkWe have investigated how close to the optimal one is the stack code that we generate. We havemeasured the total number of store instructions in the naive code that we obtain by direct translationof the register code. An optimal code would have no store instructions at all. Our technique attemptsto eliminate only the local store instructions, i.e., the instructions that store to a variable, that is deadat the end of the basic block. Table 2 shows the percentage of local store among all store instructionsin the naive code, the percentage of the store instructions that have been eliminated and the percentageof local store instructions that have been eliminated. Our technique works pretty well. It eliminates atleast 90 % of the store instructions. For six class �les out of the thirteen that we investigated all localstore instructions are eliminated.5 ConclusionsA register-based code is a better studied and more convenient representation for performing programanalysis and optimizations than the stack-based Java byte code. This paper presents the techniqueto convert a register-based code into an e�cient Java byte code. Our transformation tool successfullyeliminates 90-100 % of the local store instructions. The byte code obtained by simply changing theprogram representation from the byte code into a register-based code and back achieves 4.5% betterscore on the SciMark benchmark than the original byte code. Thus, the presented technique can be usedwithin Java byte code optimization framework that uses a register-based intermediate representationwithout fear that ine�cient translation of the register-based code into a stack-code would nullify thee�ect of optimizations performed on the register-based code.8

The presented store elimination algorithm is mostly independent from the register-based code repre-sentation. It performs the optimizations directly on the byte code but needs the results of a live variableanalysis that in our implementation is performed on the register code. Thus, the store elimination algo-rithm presented in this paper can be used by any compiler that generates the Java byte code or even asa stand-alone pass on the Java byte code itself.Our current approach is based on the assumption that eliminating store instructions is always prof-itable as long as no instructions whose only purpose is to change the order of values on the stack isintroduced. We would like to investigate how valid this assumption is for di�erent implementations ofJIT compilers, and whether it is possible to further improve the generated byte code by using more exactinstruction cost model.AcknowledgmentsThis work has started as a class project for CMSC731/838P \Programming Language Implementation:Implementing Java" taught by Dr. William Pugh at the University of Maryland. We thank Dr. Pugh forgiving a wonderful class and encouraging us to continue with our work. We also thank all other membersof the class who provided a supportive environment and beta tested the earlier versions of our code.References[Han89] T. Hand. Performance of the harris rtx-2000 c compiler. In Proc. of the 1989 Rochester ForthConf.,, pages 61{62, June 1989.[Hay86] J. Hayes. An interpreter and object code optimizer for a 32 bit forth chip. In 1986 FORMLConf. Proc., pages 211{221, November 1986.[Muc97] Steven Muchnick. Advanced Compiler Design and Implementation. Morgan Kaufman publish-ers, 1997.[PJK94] Jr. Philip J. Koopman. A preliminary exploration of optimized stack code generation. Journalof Forth Applications and Research, 6(3):241{251, October 1994.[VRH] Raja Vallee-Rai and Laurie J. Hendren. Soot: a java bytecode analysis and transformationframework. http://www.sable.mcgill.ca/soot/.[VRH98] Raja Vallee-Rai and Laurie J. Hendren. Jimple: Simplifying java bytecode for analysesand transformations. Technical Report 1998-4, McGill University, July 1998. Available ashttp://www.sable.mcgill.ca/publications/sable-tr-1998-4.ps.
9

