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In this thesis, I discuss the fabrication and measurement of Al/AlOx/Al transmons that have 

electrodes with different superconducting gaps. With gap-engineering, the tunneling of single 

quasiparticle from the low-gap side to the high-gap side can be suppressed, hence increasing the 

relaxation time T1. The best gap-engineered device showed T1 exceeding 300 μs. Large T1 

fluctuations in my devices were also observed. I proposed a mechanism for exploring the T1 

fluctuation data and discuss the possible underlying cause of the T1 fluctuations.  

I first discuss the theory of the loss in gap-engineered transmons, with a focus on the loss 

from non-equilibrium quasiparticles. The model yields the quasiparticle-induced loss in transmons 



  

and its dependence on temperature. I also discuss how multiple Andreev reflection (MAR) effects 

might alter these conclusions, leading to a further reduction in T1. 

I then describe the design, fabrication and basic characterization of the transmon chip 

SKD102, which features two transmons – one with thin-film electrodes of pure Al and another that 

had one electrode made from oxygen-doped Al. I next examined T1 vs temperature and how the 

T1 fluctuations depended on temperature. I compare my results to a simple model and find 

reasonable agreement in transmons on chip SKD102, KL103 and KL109, which had different 

electrode and layer configurations.  

Finally, I analyze T1 fluctuations in different devices and as a function of temperature and 

propose a model to explain this behavior. Over the different devices, the T1 fluctuation magnitude 

roughly scaled as T1
3/2. With increasing temperature, T1 decreases due to a higher density of 

thermally generated quasiparticles. In contrast, for an individual device measured from 20mK to 

250 mK, the fluctuation magnitude appears to be proportional to T1. I present a model of 

quasiparticle dissipation channels that reproduces both of these observed scaling relationships. 
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Chapter 1 

Introduction 

1.1 Quantum Computing 

The concept of quantum computing can be traced back to the 1980s, when Richard 

Feynman, Paul Benioff, and Yuri Manin proposed the idea of a fully quantum model for 

computation. Physicist Paul Benioff pioneered the concept of quantum computing in 1980 in a 

paper on quantum mechanical model of the Turing machine [1]. This demonstrated reversible 

computing [2] was possible via the Schrödinger equation. Yuri Manin and Richard Feynman did 

additional research to show how a quantum computer could perform better than a classical 

computer for certain types of calculations [3][4]. As research into quantum computing progressed, 

Kazuhiro Igeta and Yoshihisa Yamamoto proposed using atoms and photons as a physical platform 

for building a quantum computer [5]. Their proposal sparked a frenzy of experimental activity as 

researchers began to investigate many possible types of qubits and the feasibility of building a 

working quantum computer.  

In the 1990s, David Deutsch and Richard Jozsa proposed a deterministic quantum 

algorithm that could efficiently solve a particular computational problem that no deterministic 

classical algorithm could solve efficiently. They were able to demonstrate the superiority of a 

quantum computer over a classical computer [6]. Peter Shor's quantum algorithm [7] for prime 

factorization of integers was also developed in 1994, sparking a surge of interest in building 

physical realizations of quantum computers.  
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Since this early work, trapped ion [8][9], quantum dot [10], superconducting [11][12], and 

linear optical qubits [13], have been developed with relatively high-fidelity control and quantum 

error correction. Despite these and many other technological advances over the last two decades, 

there are still many challenges to overcome before large-scale quantum computers can be built. 

One of the most significant challenges is developing fault-tolerant quantum systems capable of 

correcting errors caused by decoherence and noise [14]-[17]. The potential of quantum computing 

to solve problems that are currently intractable for classical computers makes it an exciting field 

of research. Quantum computing has the potential to revolutionize fields such as cryptography 

[18], drug discovery [19], and materials science [20], and may have a significant impact on our 

society in the coming years. 

 

1.2 Superconducting Qubits  

A qubit is a fundamental unit of quantum information that is the quantum analog of a 

classical binary bit, in which information is stored in the quantum state of the system. I will also 

use “qubit” to define a two-level system that contains this information. While a classical bit can 

only be in one of two states, either 0 or 1, a qubit can be in a superposition of states, representing 

both 0 and 1. In addition, the state of a qubit can be entangled with the state of other qubits. Because 

of these quantum properties of qubits, quantum computers can perform certain types of 

calculations much faster than classical computers.  

The coherence time of a qubit measures the lifetime of the logic state and serves as a metric 

for completing logic operations. Decoherence is due to two causes: energy relaxation and 

dephasing, which are ultimately caused by entanglement between the qubit and its environment. 

This entanglement causes information in the qubit to be lost to the environment [21][22]. 
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The field of coherent quantum effects in superconducting devices began in the 1980s with 

the discovery of macroscopic quantum tunneling [23][24] and quantum energy levels in Josephson 

devices [25]. This work continued with the development of single-electron devices [26] and the 

Cooper-pair box [27], and the search for macroscopic quantum coherent oscillations in the rf 

superconducting quantum interference device (rf SQUID) [28][29]. The superconducting quantum 

computation began when the Cooper-pair box was shown by Nakamura et al. [11] to undergo 

coherent quantum oscillations. This served as the foundation for early superconducting qubits. 

However, charge qubits are sensitive to quasiparticles and charge noise, severely limiting the 

lifetime of the quantum states. Ultimately, this limitation was eventually overcome by making the 

electrostatic charging energy EC much smaller than the Josephson energy EJ and by adding a low-

loss shunting capacitance across the junction to effectively reduce loss due to the junction 

dielectric. This new device, called a transmon [30], achieved useful anharmonicity and was less 

sensitive to noise, making it a more practical option for superconducting quantum computing.  

Superconducting qubits are currently among the leading candidates for building scalable 

quantum computers. They can be designed to have reasonably long coherence times and fast gate 

times and they can be produced in large quantities using standard lithographic techniques. Ongoing 

work to develop systems with 400 and more superconducting qubits has been reported [31] by 

IBM, indicating that progress toward building a practical large-scale quantum computer using 

superconducting qubits is being made. 

 

1.3 Overview of Dissertation  

The goal of my research is to fabricate transmon devices gap-engineered to suppress 

quasiparticle tunneling between the two electrodes of the junction thus enhance the relaxation time 
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T1. In this dissertation, I discuss the fabrication of gap-engineered transmons and how 

superconducting gap differences affect quasiparticle induced relaxation. The qubits I fabricated 

and measured were fixed frequency transmons. The transmons were mounted in 3D cavities to 

allow measurement of the qubit state and to provide isolation of the qubit from the environment. I 

also discuss fluctuations in the transmon relaxation time T1 and propose a mechanism that may be 

the underlying cause of these fluctuations.  

In Chapter 2, I introduce the quantum theory of the transmon and discuss the relaxation 

time T1. In chapter 3, I discuss the BCS theory and superconducting gaps of thin films. In Chapter 

4, I explain modeling of quasiparticles induced loss in junctions that have two electrodes with 

different superconducting gaps. In Chapter 5, I describe the design and fabrication of the cavity 

and transmons. In Chapter 6, I illustrate the experimental setup I used to acquire data. My key 

experimental results are presented in the rest of the dissertation. Device characterization is 

discussed in Chapter 7. In Chapter 8, I go over the different transmon layouts I used and the 

corresponding relaxation time measurements. Chapter 9 demonstrates relaxation time fluctuations 

and a model of fluctuating dissipation channels which seems to capture some of the behaviors 

observed in the T1 fluctuations. Finally, Chapter 10 summarizes the thesis and concludes with 

some suggestions for additional research. 
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Chapter 2 

Theory of Transmons  

In this chapter, I discuss the quantum behaviors of transmons and their applications to 

quantum computing. I begin with an overview of the Hamiltonian and the role of the Josephson 

junction - a critical component in transmon systems. I examine the energy levels and their 

anharmonicity, a key property of transmons. I then discuss energy relaxation and dephasing and 

conclude with a discussion of the parameters 𝑇1, 𝑇2, and 𝑇ϕ.  

 

2.1 Quantum Harmonic LC-Oscillator 

The simple harmonic oscillator is one of the best-understood quantum systems in physics. 

This is very fortunate because a ground understanding of the quantum harmonic oscillator is 

helpful for understanding transmons circuit Quantum Electrodynamics (cQED) [1] and numerous 

other systems [2]. A simple harmonic LC-oscillator circuit can be built by connecting an inductor 

with inductance L across a capacitor with capacitance C. One can write the Hamiltonian for an 

isolated LC-oscillator as: 

𝐻̂ =
𝑄̂2

2𝐶
+
𝛷̂2

2𝐿
, (2.1) 

where 𝑄̂ and Φ̂  are Hermitian operators for the charge on the capacitor and the flux in the inductor, 

respectively.  

The non-Hermitian raising and lowering operators can be built as [3]: 
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𝑎̂ = √
𝐶𝜔𝑟
2ħ

(Φ̂ +
𝑖𝑄̂

𝐶𝜔𝑟
) (2.2𝑎) 

𝑎̂† = √
𝐶𝜔𝑟
2ħ

(Φ̂ −
𝑖𝑄̂

𝐶𝜔𝑟
) , (2.2𝑏) 

where 𝑎̂ is the annihilation operator, 𝑎̂† is the creation operator, and 𝜔r = 1/√𝐿𝐶 is the angular 

resonance frequency.  

The Hamiltonian for the harmonic oscillator can then be written as:  

𝐻̂𝑄𝐻𝑂 = ħ𝜔0 (𝑎̂
†𝑎̂ +

1

2
) = ħ𝜔0 (𝒩̂ +

1

2
) , (2.3) 

where 𝒩̂ = 𝑎̂†𝑎̂ is the photon number operator [3]. Eq. (2.3) is diagonal with eigenvalues n=0, 1, 

2, ... and results in equally spaced energy levels by ħ𝜔0.  

If a non-linear inductor is incorporated into the LC-oscillator circuit, the system behaves 

like an artificial atom with unevenly spaced energy levels. Uneven level spacing is required to 

enable the manipulation of only two energy levels in a qubit while leaving other levels unaffected. 

Nonlinearity is accomplished for superconducting qubits by incorporating a Josephson junction 

[4], which functions as a nonlinear inductor within the circuit. 

 

2.2 Josephson Junction 

The concept of a Josephson junction (JJ) was first introduced by Brian D. Josephson in 

1962 [5]. It is the essential building block of any type of superconducting qubits. One ideal for a 

Josephson junction is a trilayer structure that has two superconducting layers separated by a very 

thin insulating layer (see Fig. 2.1). For most superconducting qubits that are currently being used, 

the junction is made of Al/AlOx/Al. This type of Josephson junction can be made relatively easily 



 

 

7 

 

and turns out to be relatively robust. Aluminum has a stable oxide layer (AlOx). On the other hand, 

the superconducting transition temperature (Tc) of Al is about 1.2 K and the oxide layer can contain 

atomic-scale defects, called two-level systems or TLS, in the interfaces, that can be detrimental to 

the qubit lifetime.  

Aluminum is not an obvious choice for building Josephson junctions because of its 

relatively low Tc. Despite having zero dc resistance at 𝑇c, superconductors have non-zero ac losses. 

This is because the electrons in the superconductor are bound as Cooper pairs with a binding 

energy of Δ ≅ 1.76𝑘𝐵𝑇𝑐 [6]. At non-zero temperature, thermal energy can break some pairs, which 

generate “quasiparticles”. I provide some additional discussion of Cooper pairs and quasiparticles 

in Chapter 3. Quasiparticles also results in loss in a tunnel junction, which will be discussed in 

Chapter 4.  

 

 

 

 

Figure 2.1: Illustration of an S-I-S Josephson junction formed by sandwiching a thin layer of 

insulation between two superconductors. The electrodes of the junction are connected to a voltage 

source V that drives current I through the junction.  
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 The key electrical characteristic of a Josephson junction is the relationship between the 

phase difference 𝜙 across the junction, the junction current I, and the junction voltage V. They can 

be described by the Josephson equations [5]: 

𝐼 = 𝐼0 sin 𝜙 (2.4𝑎) 

𝑉 = 𝜙0
𝑑𝜙

𝑑𝑡
, (2.4𝑏) 

where ϕ0 = Φ0/2π = ℏ/2e is the reduced flux quantum, Φ0 is the flux quantum, and 𝐼0 is the 

critical current. Combining Eqs. 2.4 (a) and 2.4 (b), I can write:  

𝑉 =
𝜙0

𝐼0 cos 𝜙

𝑑𝐼

𝑑𝑡
. (2.5) 

This is similar to the current-voltage relation for an inductor 𝑉 = 𝐿𝐽 ∗
𝑑𝐼

𝑑𝑡
 and implies that the 

Josephson junction can be thought of as a non-linear inductor with inductance 𝐿𝐽 =

Φ0/(2π𝐼0 cos 𝜙). 

An inductor that is carrying current I has a stored magnetic energy of  
1

2
 𝐿𝐼2. Similarly, a 

Josephson junction with phase difference 𝜙 has a stored energy of 𝐻𝐽 = −𝐸𝐽𝑐𝑜𝑠 𝜙 , where 𝐸𝐽 =

𝛷0𝐼0/2𝜋 is the Josephson energy. 𝐶𝐽 is the capacitance between the two superconducting layers 

of the junction, there will also be a charging energy 𝐻𝐶 = 4𝐸𝐶𝑛
2, where  𝑛 =

𝑄

2𝑒
 is the pair charge 

number and 𝐸𝐶 = 𝑒
2/(2𝐶𝐽)  is the charging energy of the junction. Connecting 𝐿𝐽  and 𝐶𝐽  in 

parallel gives us LC oscillator with angular resonant frequency: 

𝜔𝑝 =
1

√𝐿𝐽𝐶𝐽
=
1

ℏ
√8𝐸𝐽𝐸𝐶 . (2.6) 

For a Josephson junction, ωp is called the plasma frequency and it is an important parameter. It 

can be shown that ωp only depends on the transparency of the insulating layer to tunneling of pairs 
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and the dielectric constant but is independent of the junction area. For AlOx insulation layers, the 

oxidation process is the most important factor in determining the transparency.  

 

2.3 Cooper Pair Box  

The Cooper-pair box (CPB) was the first experimentally realized superconducting qubit 

[7][8]. Figure 2.2 shows a circuit schematic of a CPB. A single Josephson junction J is connected  

in parallel to capacitance CJ. CPBs are typical biased with a gate voltage Vg, which is applied to a 

gate capacitance Cg  and can be used to set the polarization charge on the island. 

The Hamiltonian associated with a Cooper Pair Box (CPB) can be expressed as [8] 

ℋ̂ = 4𝐸𝐶(𝑛̂ − 𝑛𝑔)
2
− 𝐸𝐽 cos 𝛾̂ , (2.7) 

where n̂ is operator for excess number of Cooper pairs that tunnel onto the island, 𝑛𝑔 = −𝐶𝑔𝑉𝑔/2𝑒 

is the reduced gate charge, and γ̂  is the operator for the superconducting phase difference across 

the Josephson junction. Here again EJ and EC  are the Josephson energy and the charging energy. 

Typically, Cooper-pair boxes have 𝐸𝐽 ≪ 𝐸𝐶. In this limit, the charge on the island serves as a 

sharply defined quantum number that is controlled by ng. The operators n̂ and γ̂ are conjugate 

variables and satisfy the commutation relation [3]： 

[𝛾̂, 𝑛̂] = 𝑖. (2.8) 

The Hamiltonian equation (2.7) can also be expressed in the phase basis as [8]: 

ℋ𝐶𝑃𝐵 = 4𝐸𝐶 (−𝑖
∂

∂𝜙̂
− 𝑛𝑔)

2

− 𝐸𝐽 cos 𝜙̂ . (2.9) 
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Figure 2.2: Circuit diagram of a Cooper-Pair Box 

 

 

The exact solutions for the wavefunctions can be written in terms of the Mathieu functions and the 

energy eigenvalues are given by [9]： 

𝐸𝑚 = 𝐸𝐶𝑎2[𝑛𝑔 + 𝑘(𝑚,𝑛𝑔)] (−
𝐸𝐽
2𝐸𝐶

) , (2.10) 

where 𝑚 = 0,1,2,… , 𝑎𝑟(𝑞)  is the characteristic value for even Mathieu functions with 

characteristic exponent 𝑟 =2 and parameter 𝑞 = 𝑛𝑔 + 𝑘(𝑚, 𝑛𝑔),   and 𝑘(𝑚, 𝑛𝑔)  is an integer-

valued function that specifies the order of the eigenvalues. The ground and excited states of the 

CPB with energy 𝐸0 and 𝐸1, respectively, determine the qubit transition energy.  

Figure 2.3 shows 𝐸𝑚 for 𝑚 = 0,1,2 and 3 for different values of 𝐸𝐽/𝐸𝐶, corresponding to 

the states |𝑔⟩, |𝑒⟩, |𝑓⟩ and |ℎ⟩ of the qubit. For the Cooper-pair box regime 𝐸𝐽/𝐸𝐶 ≪ 1, the 𝐸𝑚 

curves depend strongly on 𝑛𝑔, while for 𝐸𝐽/𝐸𝐶 ≫ 1 , which is the phase qubit limit [10], the 𝐸𝑚 

are almost independent of 𝑛𝑔. CPB qubits are normally operated [11] at 𝑛𝑔 = ±0.5, where 𝐸01 is 
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minimum. This operating point is commonly called the "sweet spot", because 𝐸01 is least affected 

by small fluctuations in 𝑛𝑔, protecting the qubit from small levels of charge noise. However, the 

charge noise in the CPB turned out to be so large that the coherence time was quite short, even at 

the sweet spot. For this reason (charge noise) the CPB is no longer considered a viable qubit 

candidate. This was one of the main motivations for the design of the transmon, which was 

proposed by Koch et al. [12].  

 

 

Figure 2.3: The first three energy levels of the cooper-pair box as a function of ng, plotted for 

different values of EJ /EC [13]. For all plots, the black curve corresponds to E0, the red curve 

corresponds to E1 and the blue curve corresponds to E2. 
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2.4 Transmon Qubit  

The transmon regime corresponds to 𝐸𝐽 ≫ 𝐸𝐶 , which typically 𝐸𝐽 = 50 𝐸𝐶. In this limit, 

𝐸01 is almost independent of 𝑛𝑔.  To reduce loss from the junction dielectric, this limit is typically 

achieved by adding a low-loss shunting capacitor 𝐶𝑥 parallel to the junction. This reduces 𝐸𝐶  and 

improves T1 (see Fig. 2.4).  

I note that the Hamiltonian for the transmon is identical to that of a CPB or an un-biased 

phase qubit, the only difference between them is the 𝐸𝐽/𝐸𝐶 ratio. Using perturbation theory, the 

Hamiltonian of a transmon can be rewritten as [3] 

ℋ̂ ≅ √8𝐸𝐽𝐸𝐶 (𝑏̂
†𝑏̂ +

1

2
) − 𝐸𝐽 −

𝐸𝐶
12
(𝑏̂† + 𝑏̂)

4
. (2.11) 

 

 

Figure 2.4: Circuit diagram of an isolated transmon. 

 



 

 

13 

 

𝑏̂† and 𝑏̂ are the corresponding creation and annihilation operators, respectively for excitations n 

the transmon, and we have only retained terms to 4th order in 𝑏̂†  and 𝑏̂. The first term is the 

harmonic oscillator Hamiltonian, with spacing between levels √8𝐸𝐽𝐸𝐶  while the last term 

introduces an anharmonicity. In this approximation, the energy of the 𝑚-th level 𝐸𝑚 is [13] 

   𝐸𝑚 = √8𝐸𝐽𝐸𝐶 (𝑗 +
1

2
) − 𝐸𝐽 −

𝐸𝐶

4
(2𝑚2 + 2𝑚 + 1). (2.12)                   

Thus, the transmon transition energy 𝐸01 is to this order: 

𝐸01 = 𝐸1 − 𝐸0 = √8𝐸𝐽𝐸𝐶 − 𝐸𝐶 . (2.13) 

 In order to function as a qubit, the transmon levels need to be anharmonic. In other words, 

the next highest transition energy 𝐸12 = 𝐸2 − 𝐸1 must be sufficiently different from 𝐸01 that the 

lowest two energy levels (m = 0,1) can be driven without producing excitations to the m = 2 level. 

The anharmonicity 𝛼 is defined as:  

𝛼 = 𝐸12 − 𝐸01. (2.14) 

From Equation (2.13), one finds [9] 

𝛼 = −𝐸𝐶 . (2.15) 

This negative sign of 𝛼 means 𝐸12 is smaller than 𝐸01. For 𝐸01/ℎ ∼ 3 to 10 GHz, one typically 

would like 𝛼 ≈ −200 MHz and this gives 20 ≲ 𝐸𝐽/𝐸𝐶 ≲ 200 as an acceptable range for the 

transmon. It should also be noted that Eq. (2.15) is only approximate and more accurate values for 

𝐸m and 𝛼 can be obtained with the Mathieu function solutions.   
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2.5 Circuit QED System 

A transmon is often capacitively coupled to a microwave resonator to provide control and 

allow the state to be measured [9]. The resonator can be a planar resonator (for 2D transmons) 

[14][15] or a 3D cavity (for 3D transmons) [16][17]. This arrangement makes use of circuit 

quantum electrodynamics (cQED) techniques [2]. The cQED technique has several important 

benefits, including: (1) isolation of the qubit from direct coupling to the external electromagnetic 

environment; (2) high-power and quantum non-demolition microwave measurements (QND) [18]; 

and (3) potential to be used as quantum bus [19] for entangling multiple qubits. 

 The Jaynes-Cummings Hamiltonian was developed in 1963 by Edwin T. Jaynes and 

Frederick W. Cummings [20] to describe the interaction of a two-level atom with a single mode 

of a quantum electromagnetic field. In cQED, this approach has been generalized to model the  

Hamiltonian of a qubit linked to a single mode of a cavity. 

For a two-level system with a transition frequency 𝜔𝑞 coupled to a cavity with frequency 

𝜔𝑟, the Jaynes-Cummings Hamiltonian is [20] 

ℋ̂ = ℏ𝜔𝑟𝑎̂
†𝑎̂ +

ℏ𝜔𝑞
2
𝜎̂𝑧 + ℏ𝑔𝑔𝑒(𝑎̂𝜎̂

+ + 𝑎̂†𝜎̂−). (2.16) 

 

Here the coupling strength is 𝑔𝑔𝑒 ,  𝑎̂† is the creation operator for photons in the cavity and 𝑎̂ is the 

annihilation operator. 𝜎̂𝑥, 𝜎̂𝑦 , and 𝜎̂𝑧  are the 𝑥−, 𝑦 - and 𝑧-Pauli matrices, respectively and the 

raising and lowering operators 𝜎± are defined as 

𝜎± =
𝜎𝑥 ± 𝑖𝜎𝑦

2
. (2.17) 

The 𝜎 operators only act on the qubit state. Let the qubit's energy eigenstates be |𝑔⟩ and |𝑒⟩,  and 

the resonator's energy eigenstates be the number states |𝑛⟩. The product states donated by |𝑔, 𝑛⟩ 

and |𝑒, 𝑛⟩  are a natural choice for the basis of the coupled system. The coupling term in this basis 
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is entirely off-diagonal has the critical property of preserving the total number of excitations in the 

system. The matrix elements of the coupling terms are [20]:   

ħ𝑔𝑔𝑒⟨𝑔,𝑚|(𝑎𝜎
+ + 𝑎†𝜎−)|𝑒, 𝑛⟩ = ħ𝑔𝑔𝑒√𝑛 + 1𝛿𝑚,𝑛+1 (2.18𝑎) 

ħ𝑔𝑔𝑒⟨𝑒, 𝑛|(𝑎𝜎
+ + 𝑎†𝜎−)|𝑔,𝑚⟩ = ħ𝑔𝑔𝑒√𝑚 + 1𝛿𝑛,𝑚+1 (2.18𝑏) 

The coupling term effectively mixes states with the same total number of excitations. It is useful 

to define an operator 𝒩 for the total number of excitations as [20] 

𝒩 = 𝑎†𝑎 +
𝜎𝑧
2
+
1

2
, (2.19) 

I note that with this definition, the number of excitations is zero for the ground state of the system, 

i.e. 

𝒩|𝑔, 0⟩ = 0. (2.20) 

Due to the structure of the Jaynes-Cummings coupling term, we can rewrite the 

Hamiltonian in Eq. (2.16) with a block-diagonal form in the number basis with 2 × 2 blocks along 

the diagonal:  

ℏ [
(𝑛 − 1)𝜔𝑟 +

𝜔𝑔𝑒
2

𝑔𝑔𝑒√𝑛

𝑔𝑔𝑒√𝑛 𝑛𝜔𝑟 −
𝜔𝑔𝑒
2

] . (2.21) 

The eigenvalues of this matrix are: 

𝐸𝑛,± = (𝑛 −
1

2
)ℏ𝜔𝑟 ±

ℏ

2
√Δ2 + 4𝑔𝑔𝑒2 𝑛, (2.22) 

where Δ  is the detuning between the qubit and resonator frequencies Δ ≡ 𝜔𝑔𝑒 − 𝜔𝑟 .  The 

corresponding eigenvectors are given by 

|𝑛, +⟩ = cos (𝜃𝑛)|𝑒, 𝑛 − 1⟩ + sin (𝜃𝑛)|𝑔, 𝑛⟩ (2.23𝑎) 

|𝑛, −⟩ = −sin (𝜃𝑛)|𝑒, 𝑛 − 1⟩ + cos (𝜃𝑛)|𝑔, 𝑛⟩. (2.23𝑏) 
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where the 𝜃𝑛 is given as 

tan(2𝜃𝑛) =
2𝑔𝑔𝑒√𝑛

Δ
. (2.24) 

The ground state is |𝑔, 0⟩ with energy 

𝐸0 = −
ℏ𝜔𝑔𝑒

2
. (2.25)

The states |𝑛, ±⟩ are the dressed states of the Jaynes-Cummings system. The uncoupled qubit and 

resonator 'bare states' are 'dressed' due to the coupling.  

Define the critical number of photons 

𝑛crit ≡
Δ2

4𝑔𝑔𝑒
2 . (2.26)

In terms of 𝑛crit , we can write the energy eigenvalues as 

𝐸𝑛,± = (𝑛 −
1

2
)ℏ𝜔𝑟 ±

ℏΔ

2
(1 +

𝑛

𝑛crit 
)

1

2
. (2.27)

and then we have 

tan 2𝜃𝑛 = √
𝑛

𝑛crit 
. (2.28)

From these expressions, we see that the ratio 𝑛/𝑛crit  is an important parameter in determining the 

eigenvalues and eigenvectors of the Hamiltonian. 

The limit 𝑛 ≪ 𝑛crit  is called the dispersive limit. From Eq. (2.26), we can see that this limit 

is more easily satisfied when Δ ≫ 𝑔𝑔𝑒 . In this limit, with perturbation expansion of the expressions 

we have:  

𝐸𝑛,± ≈ (𝑛 −
1

2
)ℏ𝜔𝑟 ±

ℏΔ

2
(1 +

2𝑔𝑔𝑒
2 𝑛

Δ2
) . (2.29)

We then write the unitary transformation 𝒯 as 
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𝒯 ≈ exp {
𝑔𝑔𝑒

Δ
(𝑎𝜎+ − 𝑎†𝜎−)} . (2.30)

Applying this transformation, we have Hamiltonian:  

𝒯𝐻𝐽𝐶𝒯
† ≈ 𝐻̃𝐽𝐶

(2) = ℏ𝜔r𝑎
†𝑎 +

ℏ𝜔̃𝑔𝑒
2

𝜎𝑧 + ℏ𝜒(𝑎
†𝑎)𝜎𝑧 . (2.31) 

where 𝜒 = 𝑔𝑔𝑒
2 /Δ is called the 'dispersive shift' of the resonator frequency and 𝜔̃𝑔𝑒 = 𝜔𝑔𝑒 + 𝜒 is 

the Lamb-shifted qubit frequency.  

 To understand how the state of a qubit can be manipulated, one needs to include in the 

Hamiltonian the effect of a microwave drive. Following the method of Steck [21], I consider the 

situation where the qubit is driven by an oscillating electric field. Suppose that the electric field is 

given by 

𝐸⃗ (𝑡) = 𝜀 𝐸0 cos 𝜔d𝑡 ≡
1

2
𝜀 𝐸0(𝑒

𝑖𝜔d𝑡 + 𝑒−𝑖𝜔dt), (2.32) 

where 𝜀  is the polarization vector for the field, 𝐸0 is the amplitude of the electric field of the drive, 

and 𝜔d is the drive frequency. If the qubit has an electric dipole moment operator  𝑑 , then we can 

write [22] 

𝑑 ̂ = ⟨𝑔|𝑑 |𝑒⟩(|𝑔⟩⟨𝑒|+|𝑒⟩|𝑔⟩) ≡ ⟨𝑔|𝑑 |𝑒⟩(𝜎− + 𝜎+) .       (2.33) 

The drive Hamiltonian can then be written as [22] 

ℋint  = −𝑑 ⋅ 𝐸⃗ 

 =
𝐸0
2
⟨𝑔|𝜀 ⋅ 𝑑 |𝑒⟩(𝜎− + 𝜎+)(𝑒𝑖𝜔d𝑡 + 𝑒−𝑖𝜔d𝑡)

 ≃
𝐸0
2
⟨ g|𝜀 ⋅ 𝑑 |e⟩(𝜎−𝑒𝑖𝜔d𝑡 + 𝜎+𝑒−𝑖𝜔d𝑡).

(2.34) 

Here I have applied the rotating wave approximation (RWA) [23] to average out the fast counter-

rotating terms. The Rabi frequency [24] for the atom interacting with the field can then be defined 
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as

Ωq = −
𝐸0

ℏ
⟨g|𝜀 ⋅ 𝑑 |e⟩. (2.35) 

With this definition, the drive Hamiltonian can be written as, 

ℋint =
ℏΩq

2
(𝜎−𝑒𝑖𝜔d𝑡 + 𝜎+𝑒−𝑖𝜔d𝑡). (2.36)         

 The drive Hamiltonian for a resonator can be obtained by replacing the qubit operators in 

Eq. (2.36) with the corresponding ladder operators for a resonator [25]: 

ℋint
(res) =

ℏΩr
2
(𝑎𝑒𝑖𝜔d𝑡 + 𝑎†𝑒−𝑖𝜔d𝑡), (2.37) 

where Ωr is the effective Rabi drive frequency for the resonator. The driven Jaynes-Cummings 

Hamiltonian in the dispersive limit can then be written as, 

ℋ⃗⃗ = ℏ𝜔r𝑎
†𝑎 +

ℏ

2
(𝜔ge + 2𝜒𝑎

†𝑎)𝜎𝑧

 +
ℏΩq
2
(𝜎−𝑒𝑖𝜔dt + 𝜎+𝑒−𝑖𝜔dt) +

ℏΩr
2
(𝑎𝑒𝑖𝜔d𝑡 + 𝑎†𝑒−𝑖𝜔d𝑡).

(2.38) 

A unitary transformation to the rotating frame of the drive can be applied to remove the 

time dependence [26] yielding: 

ℋ = ħΔr𝑎
†𝑎 +

ħ

2
(Δge + 2𝜒𝑎

†𝑎)𝜎𝑧 +
ħΩq
2
(𝜎− + 𝜎+) +

ħΩr
2
(𝑎 + 𝑎†), (2.39) 

where Δr = 𝜔r − 𝜔d and Δge = 𝜔ge − 𝜔d are the detunings between the drive and the resonator 

or qubit respectively. 

 

2.6 Energy Relaxation and Dissipation Mechanisms  

Roughly speaking, the relaxation time 𝑇1 measures how long it takes for the excited state 

to return to its undriven steady state. In the last two decades, better fabrication techniques, deeper 
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understanding of relaxation mechanisms and better qubit designs have led to large improvements 

in T1 of superconducting qubits (from 𝜇𝑠  to ms) [27][28]. The main factors affecting 𝑇1  are 

coupling to microwave mode [29], dielectric TLS loss [30] and loss due to quasiparticles. My main 

focus was on quasiparticle induced relaxation [31] due to non-equilibrium quasiparticles tunneling 

through the transmon junction.  

 

2.6.1 Relaxation Time 𝑻𝟏  

The precise definition of the relaxation time T1 is that it is the time required for the qubit 

to return to its equilibrium thermal state after it has been excited. For non-zero temperature, this 

will differ from the time for the excited state to return to the ground state. In general, the relaxation 

rate can be written as [32] 

1

𝑇1
= Γ𝑒→𝑔 + Γ𝑔→𝑒. (2.40) 

Here Γ𝑒→𝑔 is the rate at which the excited state |𝑒⟩ relaxes back to the ground state |𝑔⟩, and Γ𝑔→𝑒 

is the rate at which the qubit is thermally excited from |𝑔⟩ to |𝑒⟩. The importance of T1 arises from 

manipulating quantum states effectively. If the excited state decays too fast, it becomes challenging 

to perform many operations before quantum coherence is lost and there is an error in a 

computation. 

It is essential to note that T1 would not be infinite even at absolute zero temperature (T=0). 

This limitation arises due to coupling of the qubit to the electromagnetic environment and other 

atomic-scale quantum systems. 

For a transmon, the environment's influence can be characterized by the complex 

admittance 𝑌(𝜔). Analogous to the impedance of free space Z0, the reciprocal of the real part of 

Y quantifies the dissipation experienced by the device. Specifically, for each transmon decay 
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process, we can associate an admittance 𝑌(𝜔)  in parallel with the transmon. The transmon's 

characteristic decay RC time constant is then given by [33][34] 

𝑇1 =
𝐶Σ

Re𝑌(𝜔𝑔𝑒)
, (2.41)

where 𝐶Σ = 𝐶𝐵 + 𝐶𝐽 is the total capacitance across the Josephson junction.  

In practice, it is often necessary to include more than one loss mechanism and the overall 

relaxation rate 𝛤1 is 

Γ1 =
1

𝑇1
= ∑  𝑖

1

𝑇1,𝑖
. (2.42)

where 1/𝑇1,𝑖 is the relaxation rate from the 𝑖th  relaxation channel.  

 

2.6.2 Purcell Effect  

The Purcell effect discovered in 1946 by Edward M. Purcell [29] describes the 

enhancement or suppression of the spontaneous emission rate of atoms in a resonant cavity. 

According to Fermi's golden rule [35], the transition rate of an atom in vacuum is proportional to 

the density of states of the final states. Except near a cavity resonance, the density of final photon 

states in a cavity is much lower than the density of states in free space. For coupling of a transmon 

to a single-mode cavity, the Purcell effect contribution to relaxation is given by [29] 

1

𝑇1, Purcell 

= (
𝑔𝑔𝑒

𝜔r −𝜔q
)

2

𝜅. (2.43) 

It should be emphasized that this formula is only applicable for |𝜔r −𝜔q| ≫ |𝑔𝑔𝑒 |. Due to the 

Purcell effect, the spontaneous emission rate of a qubit in a cavity can be increased in the case of 

resonance and decreased in the case of far detuning, compared to qubit in free space. The transmon 

relaxation in the “Purcell limit” will be determined by the cavity decay rate 𝜅, and hence by the 
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cavity photon lifetime as well as the detuning and the coupling to the cavity. Additional Purcell 

contributions will typically be present as a result of the qubit's coupling to higher order cavity 

modes. Increasing |𝜔r − 𝜔q| is often the easiest way to decrease Purcell loss. However, the cavity 

is also used to read out the qubit state and increasing |𝜔r − 𝜔q| reduces the signal-to-noise ratio 

in the read-out. Another method to prevent qubit relaxation from the Purcell effect while 

preserving measurement rate is to use a Purcell filter [36], which restricts microwave transmission 

at the qubit frequency via bandpass filtering. 

 

2.6.3 Two-Level Systems 

TLS loss refers to dissipation caused by the interaction between the qubit and atomic-scale 

two-level systems (TLSs) in the surrounding dielectric materials [37]. TLSs are due to microscopic 

defects or impurities that can couple electrically to the qubit, resulting in relaxation and dephasing 

processes. Two-level systems (TLSs) may exist in Al oxide in the Josephson junction, any exposed 

metal surface and the substrate, as well as the substrate-metal and substrate-air interface TLS loss. 

It has been identified as a significant factor in limiting the 𝑇1 of transmons [30][37][38]  

The relaxation rate of a transmon due to TLS loss can be written as:  

1

𝑇1
=

𝜔𝑔𝑒
𝑄𝑡𝑎𝑛 𝛿

= 𝜔𝑔𝑒(𝑃𝐴𝑆 tan 𝛿𝐴𝑆 + 𝑃𝑆𝐶 tan 𝛿𝑆𝐶 + 𝑃𝐶𝐴 tan 𝛿𝐶𝐴). (2.44) 

Here 𝑃𝑘 is the participation ratio, defined as the fraction of electric energy stored in the volume of 

region 𝑘 with intrinsic quality factor 𝑄𝑘 and loss tangent tan 𝛿𝑘 in the single photon limit. 𝐴𝑆, 𝑆𝐶 

and 𝐶𝐴 represent the interfaces between air and substrate, substrate and conductor, and conductor 

and air. Additionally, TLS-induced dephasing processes reduce the coherence, limiting the fidelity 

of quantum gate operations. A significant complication is that TLS loss depends on power and 
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temperature. In addition, there may be discrete, TLS’s as well as a continuous background, which 

can affect the expected frequency dependence and temperature dependence. 

 

2.6.4 Quasiparticle Loss 

As mentioned in Section 2.3, a Cooper pair consists of two electrons with opposite 

momentum and spin that are bound together. A dc current carried by Cooper pairs exhibit zero 

resistance, a signature of the superconducting state. It takes energy ~ 2∆ to break a Cooper pair, 

but doing so creates excitations known as quasiparticles. Non-equilibrium quasiparticles are now 

a well-recognized source of relaxation in superconducting qubits [31][39]-[41]. When a 

quasiparticle tunnels through the junction [42], it can gain or lose some of its energy E. In 

particular, a quasiparticle tunneling through the junction can cause an excited qubit to decay by 

transferring energy ħωge from the qubit to the quasiparticle. Quasiparticle tunneling can also 

excite a qubit from the ground-state qubit to the excited state by transferring energy ħωge from the 

quasiparticle to the qubit.  

The current noise created by quasiparticles tunneling through the junction is intrinsically 

related to dissipation. For conventional single-particle tunneling (no multiple Andreev reflection), 

the quasiparticle current noise power spectrum at frequency 𝑓𝑔𝑒 can be written as [43] 

𝑆𝐼(𝑓𝑔𝑒) = 𝑒(𝐼𝐿→𝑅 + 𝐼𝑅→𝐿), (2.45) 

where fge = ωge/2π is the qubit |g⟩ to |e⟩ transition frequency, IL→R is the current flowing across 

the junction as a result of quasiparticles travelling from the left to the right electrode when there is 

a voltage hfge/e across the junction and IR→L is the current generated by quasiparticles traveling 

from the right to the left electrode. This quasiparticle tunneling noise can induce spontaneous 

transitions between the qubit states |e⟩ ↔ |g⟩. In Eq. (2.45),  𝑆𝐼(𝑓𝑔𝑒) is a double-sided quantum 
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noise spectrum [32] with positive frequency corresponding to the transition |e⟩ → |g⟩ and negative 

frequency corresponding to the transition |g⟩ → |e⟩. From Fermi's golden rule, the rate at which 

|e⟩ relaxes back to |g⟩ is [43] 

𝛤𝑒→𝑔 = |⟨𝑔 |sin
𝜙̂

2
| 𝑒⟩|

2

𝑆𝐼(𝑓𝑔𝑒) =
𝐸𝑐

ℎ𝑓𝑔𝑒𝑒2
𝑆𝐼(𝑓𝑔𝑒). (2.46) 

For negative frequencies, the noise produces excitations of the ground state of the transmon at a 

rate given by [43] 

𝛤𝑔→𝑒 = |⟨𝑒 |sin
𝜙̂

2
|𝑔⟩|

2

𝑆𝐼(−|𝑓𝑔𝑒|) =
𝐸𝑐

ℎ|𝑓𝑔𝑒|𝑒2
𝑆𝐼(−|𝑓𝑔𝑒|). (2.47) 

Then the relaxation rate 𝛤1,𝑞𝑝 due to quasiparticle tunneling can be written as 

𝛤1,𝑞𝑝 ≡
1

𝑇1,𝑞𝑝
=
𝐸𝑐
ℎ𝑒2

(
𝑆𝐼(𝑓𝑔𝑒)

𝑓𝑔𝑒
+
𝑆𝐼(−|𝑓𝑔𝑒|)

|𝑓𝑔𝑒|
) . (2.48) 

To use this expression, we must determine  𝑆𝐼(𝑓𝑔𝑒), which depends on the quasiparticle 

density and distribution. MAR (Multiple Andreev Reflections) effects may also be important, and 

Eq. (2.48) will then require considerable modification. More discussion about quasiparticle loss 

can be found in Chapter 4 where I give a detailed analysis of the situation including the temperature 

dependence, and when the tunnel junction has electrodes with different energy gaps. 

 

2.7 Dephasing Time 𝑻𝝓 

The dephasing time 𝑇𝜙  quantifies the loss of phase coherence due to pure dephasing 

processes, i.e. processes that do not cause energy relaxation. Pure dephasing can be attributed to 

noise in transition frequency of the system. Any pure state of a quantum system with two levels 

can be represented as 
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                                               |𝜓(0)⟩ = cos (
𝜃

2
) |0⟩ + sin (

𝜃

2
) 𝑒𝑖𝜙0|1⟩,                                          (2.49) 

where |0⟩ and |1⟩ are the ground state and excited state of the qubit. 𝜃0 and 𝜙0 can be considered 

as polar and azimuthal angles on the Bloch sphere (see Fig. 2.5). Now, assuming that relaxation 

can be ignored, the time evolution of the state can be determined by applying the unitary operator 

on |𝜓(0)⟩: 

𝑈(𝑡) = 𝑒−
𝑖ℋ𝑡
ℏ .         (2.50) 

ℋ is the Hamiltonian of the system. Applying 𝑈(𝑡) to Eq. (2.49) then gives 

|𝜓(𝑡)⟩ = 𝑒
−𝑖ℋ𝑡
ℏ  |𝜓(0)⟩ 

                                               = cos (
𝜃

2
) 𝑒

−
𝑖𝐸g𝑡

ℏ |𝑔⟩ + sin (
𝜃

2
) 𝑒

𝑖(𝜙0−
𝐸e𝑡
ℏ
)
|𝑒⟩.                                 (2.51) 

Note in Eq. (2.51) that the overall phase of |𝜓(𝑡)⟩  has no physical relevance. After 

removing an overall complex factor, the physically equivalent state can be written as 

|𝜓(𝑡)⟩ = cos (
𝜃

2
) |𝑔⟩ + sin (

𝜃

2
) 𝑒

𝑖(𝜙0−
(𝐸e−𝐸g)

ℏ 𝑡)
|𝑒⟩.                     (2.52) 

                                             

Figure 2.5: Geometrical representation of Bloch Sphere. |𝜓⟩ is a state in between the |0⟩ and |1⟩. 
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The g -to-e transition angular frequency is: 

𝜔ge ≡
𝐸e−𝐸𝑔

ℏ
=

𝐸𝑔𝑒

ℏ
. (2.53)

I can then write: 

       |𝜓(𝑡)⟩ = cos (
𝜃

2
) |𝑔⟩ + sin (

𝜃

2
) 𝑒𝑖(𝜙0−𝜔ge𝑡)|𝑒⟩.                              (2.54) 

Let us now assume that the qubit transition frequency fluctuates in time as [44] 

      𝜔𝑔𝑒(𝑡) = ⟨𝜔𝑔𝑒⟩ − 𝛿𝜔𝑔𝑒(𝑡), (2.55)

where 𝛿𝜔𝑔𝑒(𝑡) is the fluctuation at time 𝑡. Then the phase at time 𝑡 can be defined as 

𝜙(𝑡) = 𝜙0 − ⟨𝜔𝑔𝑒⟩𝑡 − ∫  
𝑡

0
𝛿𝜔𝑔𝑒(𝑡

′)𝑑𝑡′. (2.56)

The correlation function 𝜙(𝑡) for the phase fluctuations can now be written as 

𝜙(𝑡) ≡ ⟨𝛿𝜔𝑔𝑒(0)𝛿𝜔𝑔𝑒(𝑡)⟩ =
1

2𝜋
∫  
∞

−∞

𝑆𝜔𝑔𝑒(𝜔)𝑒
−𝑖𝜔𝑡𝑑𝜔, (2.57) 

where 𝑆𝜔𝑔𝑒(𝜔) is the power spectrum of the frequency fluctuations.  

Now consider the function 

F(𝑡) ≡ ⟨𝑒−𝑖 ∫  
𝑡
0  𝛿𝜔𝑔𝑒(𝑡

′)𝑑𝑡′⟩ . (2.58)

Using the relation ⟨𝑒𝑖Δ𝜑⟩ = 𝑒−
1

2
⟨Δ𝜑2⟩

 [44], then we have:  

F(𝑡)  = exp (−
1

2
∫  
𝑡

0

 𝑑𝑡1∫  
𝑡

0

 𝑑𝑡2⟨𝛿𝜔𝑔𝑒(𝑡1)𝛿𝜔𝑔𝑒(𝑡2)⟩)

 = exp (−
1

4𝜋
∫  
∞

−∞

 𝑑𝜔𝑆𝜔𝑔𝑒(𝜔)∫  
𝑡

0

 𝑑𝑡1∫  
𝑡

0

 𝑑𝑡2𝑒
−𝑖𝜔(𝑡1−𝑡2))

 = exp (−
|𝑡|

2𝜋
∫  
∞

−∞

 𝑑 (
𝜔𝑡

2
)𝑆𝜔𝑔𝑒(𝜔) sinc

2 (
𝜔𝑡

2
))  .                                      (2.59)

 

The sinc2 (𝜔𝑡/2) term will give higher dephasing at lower noise frequencies. This relation can be 

used to examine the dephasing due to some standard types of noise [44].  
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Consider first Gaussian white noise, which has a uniform noise power spectral density 

𝑆𝜔𝑔𝑒(𝜔) = 𝑆0. For this case, Eq. (2.59) can be evaluated as 

F(𝑡) = e
−|𝑡|𝑠0
2 . (2.60) 

This indicates that the phase decay is exponential with dephasing time constant: T𝜙 = 2/𝑆0. 

Next consider the case of 1/𝑓 noise [44] with 𝑆𝜔𝑔𝑒(𝜔) ∝ 1/|𝜔|. One finds [44]: 

F(𝑡) ∝ e
−𝑡2

2𝜎2 . (2.61) 

The phase decays with a Gaussian envelope.  

Due to the reconfiguration of ions within the tunnel barrier, Josephson junctions may 

exhibit critical current fluctuations and charge noise [45]. Noise in 𝐼0 causes fluctuations in 𝐸𝐽 and 

hence fluctuations in 𝜔𝑔𝑒. Since 𝜔𝑔𝑒 ∝ √𝐼𝑐, the variance in 𝜔𝑔𝑒 can be written as [46]: 

⟨𝛿𝜔𝑔𝑒
2 ⟩ = (

∂𝜔𝑔𝑒
∂𝐼𝑐

)

2

⟨𝛿𝐼0
2⟩ ≃ (

𝜔𝑔𝑒
2𝐼𝑐

)
2

⟨𝛿𝐼0
2⟩. (2.62) 

For a 1/f spectrum, we can apply Eq. (2.61) and show that:  

𝑇𝜙 ∝
2

𝜔𝑔𝑒
. (2.63) 

Charge noise enters in an analogous form,  

⟨𝛿𝜔𝑔𝑒
2 ⟩ = (

∂𝜔𝑔𝑒
∂𝑛𝑔

)

2

⟨𝛿𝑛𝑔
2⟩. (2.64) 

Due to coupling between the transmon and cavity in a cQED system, fluctuations in the 

number of photons N in the microwave cavity also causes dephasing. If the microwave input/output  

lines are not properly isolated and thermalized, this can impose significant limitations on the 

coherence time. In particular, the transverse coupling [47] of a transmon and cavity mode induces 
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a 2𝜒 shift in 𝜔𝑔𝑒  per cavity photon. In 2006, A. A. Clerk and D. Wahyu Utami [48] demonstrated 

that dephasing from cavity photons could be expressed as 

1

𝑇𝜙
≡ Γ𝜙 =

𝜅

2
Re [√(1 +

2𝑖𝜒

𝜅
)
2

+
8𝑖𝑛̅𝜒

𝜅
− 1] , (2.65) 

where 𝜅 is the cavity decay rate, and 𝑛̅ is the average number of thermal photons in the cavity. In 

this limit 𝜒 ≫ 𝜅, this reduced to 

1

𝑇𝜙
≅ 𝑛̅𝜅 (2.66) 

2.8 Coherence Time 𝑻𝟐 

A qubit that is prepared in a superposition state can decohere due to dephasing and energy 

relaxation processes. The coherence time 𝑇2  is related to 𝑇1 and 𝑇𝜙 by [49]: 

1

𝑇2
=

1

2𝑇1
+
1

𝑇𝜙
. (2.67) 

This relation puts an important upper bound on 𝑇2 given by 𝑇2 ≪  2𝑇1. 

The coherence time 𝑇2 is also called the spin-echo time [50]. Spin-echo measurements are 

insensitive to first-order inhomogeneous broadening, i.e. spin-echo decay measurements are 

insensitive to minor shot-to-shot variations in energy level transition frequencies. The Ramsey 

coherence time, also known as the spectroscopic coherence time 𝑇2
∗, is another useful characteristic 

time of a qubit. The spin-echo decay time 𝑇2  is insensitive to shot-to-shot variations 

(inhomogeneous broadening), whereas the Ramsey decay time 𝑇2
∗ includes contributions from 

inhomogenous broadening. Ramsey spectroscopy includes contributions from loss, pure 

dephasing, and inhomogeneous broadening. Thus, 𝑇2
∗ ≤ 𝑇2. For a qubit that experiences low-

frequency disturbances, 𝑇2
∗ can be important for understanding possible causes. 
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Chapter 3 

The Superconducting Energy Gap Δ and 

Granular Aluminum Thin Films 

The superconducting gap Δ is often thought of as being an intrinsic property of a 

superconducting material. However, granular aluminum thin films exhibit a superconducting gap 

that depends on the site of the grains. In this chapter, I discuss the superconducting gap and the 

behavior of granular aluminum thin films. A major goal of my research was to produce granular 

Al thin films with specific gap values and then use these to build long-lived transmons (see Chapter 

5).  

 

3.1 BCS Theory and Superconducting Gaps 

Bardeen, Cooper, and Schrieffer (BCS) proposed in the late 1950s [1][2], a theory that 

provided the first basic understanding of superconductivity. It accomplished this by offering a 

microscopic explanation of superconductivity based on quantum mechanics. One of the key 

features of the BCS theory is that the electrons form a Cooper pair [3]. The pairing involves the 

electrons causing a distortion of the crystal lattice by attracting nearby positive ions. This altered 

electrostatic environment subsequently attracts a second electron. This can be thought of as two 

electrons exchanging a virtual photon. The two electrons in a Cooper pair possess opposite 

momenta and opposite spin (s-wave pairing). 

Thus, the BCS provided an explanation to how electrons can surmount the Coulomb 

repulsion, which normally would prevent two negatively charged electrons from binding together. 
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The Coulomb force between two electrons is inherently repulsive due to their negative charge. 

However, in the BCS theory, this repulsion is attenuated by the electrical screening within a 

conductor; the collective behavior of free-moving charge carriers neutralizes an external electric 

field within a short distance [1]. 

Another key feature of the BCS theory is the existence of a critical temperature Tc below 

which the Cooper pairs are condensed into a coherent macroscopic quantum state described by the 

BCS wave function. At sufficiently low temperatures, the production of Cooper pairs causes an 

instability in the Fermi Sea of electrons, and the Cooper pairs condense into a single ground state. 

The BCS ground state wavefunction is: 

|ΨBCS⟩ = ∏  

k=k1,k2…kn

(uk + νkck,↑
† c−k,↓

† )|Φ0⟩, (3.1) 

where ck,↑
† c−k,↓

†
 represents the pair creation operator with 0 total momentum, |νk|

2 is the electron 

occupancy probability, |uk|
2 = 1 − |vk|

2  is the electron vacancy probability, and |Φ0⟩  is the 

vacuum state (no electrons). The BCS Hamiltonian of a superconducting system is: 

Ĥ =∑  

k,σ

(ϵk − μ)ck,σ
† ck,σ +∑ 

k,l

Vklck,↑
† c−k,↓

† c−l,↓cl,↑. (3.2) 

The first term is the kinetic energy of the electrons with respect to the system's chemical potential 

μ . The second term represents the attractive interaction between electrons with interaction 

coupling strength Vkl. 

The ground state |ΨBCS⟩ given in Eq. (3.1) is a many-body state composed of a phase-

coherent superposition of pairs of electrons occupying states (k ↑, −k ↓). Following the discussion 

in Tinkham [4] due to the coherence, operators c−k↓ck↑ can have non zero expectation values and 

we can write c−k↓ck↑ = ⟨c−k↓ck↑⟩ + (c−k↓ck↑ − ⟨c−k↓ck↑⟩), where the second term can be small 
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[4]. Substituting this expression into the interaction term in the Hamiltonian Eq. (3.2), one finds 

[4]:  

Ĥ = ∑  

k,σ

  (ϵk − μ)ck,σ
† ck,σ +∑  

k,l

 Vkl(⟨ck↑
† c−k↓

† ⟩⟨c−l↓cl↑⟩ + ⟨ck↑
† c−k↓

† ⟩(c−l↓cl↑

−⟨c−l↓cl↑⟩) + (ck↑
† c−k↓

† − ⟨ck↑
† c−k↓

† ⟩)⟨c−l↓cl↑⟩)

 =∑  

k,σ

  (ϵk − μ)ck,σ
† ck,σ +∑ 

k,l

 Vkl(⟨ck↑
† c−k↓

† ⟩c−l↓cl↑ + ck↑
† c−k↓

† ⟨c−l↓cl↑⟩

−⟨ck↑
† c−k↓

† ⟩⟨c−l↓cl↑⟩) .                                                                                                         (3.3)

 

The order parameter can now be defined as Δk = −∑l  Vkl⟨c−l↓cl↑⟩  [4] which allows the 

Hamiltonian to be written as  

Ĥ =∑  

k,σ

(ϵk − μ)ck,σ
† ck,σ −∑  

k

(Δk
†c−k↓ck↑ + Δkck↑

† c−k↓
† − Δk⟨ck↑

† c−k↓
† ⟩). (3.4) 

Equation (3.4) can then be written in matrix form [4] 

Ĥ =∑  

k

[(ck↑
† c−k↓) (

ξk −Δk

−Δk
† −ξk

)(
ck↑

c−k↓
† ) + ξk + Δkbk

†] . (3.5) 

Here note that ξk = ϵk − μ and bk = ⟨c−k↓ck↑⟩. The Hamiltonian can now be diagonalized by 

introducing the quasiparticle operators γk0 and γk1
†

from the Bogoliubov-Valatin transformation 

[5]  

ck↑ = uk
∗γk0 + νkγk1

†  

c−k↓
† = −νk

∗γk0 + ukγk1
† ,

(3.6) 

Using Eq. (3.6), we rewrite the Hamiltonian as 

Ĥ = ∑  k   [(γk0
† γk1) (

uk −νk
νk
∗ uk

∗ ) (
ξk −Δk
−Δk

+ −ξk
) (

uk
∗ νk

−νk
∗ uk

) (
γk0

γk1
† )

+ξk + Δkbk
†].

(3.7)

By expanding the middle three matrices and selecting the uk and νk so that the coefficients of the 
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off-diagonal terms  γk0
† γk1

†
 and γk1γk0 vanish, we may diagonize the Hamiltonian Eq. (3.7) in the 

basis. The three middle matrices from Eq. (3.7) are multiplied which yield [add ref.] 

(

(|𝑢𝑘|
2 − |𝜈𝑘|

2)𝜉𝑘 + Δ𝑘𝑢𝑘𝜈𝑘
∗ + Δ𝑘

∗ 𝑢𝑘
∗𝜈𝑘                            2𝑢𝑘𝜈𝑘𝜉𝑘 − 𝑢𝑘

2Δ𝑘 + 𝜈𝑘
2Δ𝑘

∗

2𝑢𝑘
∗𝜈𝑘

∗𝜉𝑘 − 𝑢𝑘
∗2Δ𝑘

∗ + 𝜈𝑘
∗2Δ𝑘                    − ((|𝑢𝑘|

2 − |𝜈𝑘|
2)𝜉𝑘 + Δ𝑘𝑢𝑘𝜈𝑘

∗ + Δ𝑘
∗ 𝑢𝑘

∗𝜈𝑘)
) . (3.8) 

The coefficients of undesired (off-diagonal) components will disappear if 

(
Δk
∗ νk
uk

)

2

+ 2ξk (
Δk
∗ νk
uk

) − |Δk|
2 = 0, (3.9) 

Solving the resulting quadratic equation yields: 

Δk
∗ νk
uk

= √ξk
2 + |Δk|

2 − ξk = Ek − ξk, (3.10) 

where 

Ek = √ξk
2 + |Δk|2. (3.11) 

Ek in Eq. (3.11) is the energy of a quasiparticle with wavevector k. From this result we see that the 

minimum energy to excite a quasiparticle is the energy gap |Δk|. The quantity Δk can also be taken 

as the order parameter of the system [4][6][7] and disappears when T > Tc. 

Using |uk|
2 + |vk|

2 = 1 and Eq. (3.10), we can also write 

|νk|
2 = 1 − |uk|

2 =
1

2
(1 −

ξk
Ek
) . (3.12) 

Using this expression, the remaining diagonal terms in Hamiltonian Eq. (3.7) can be evaluated and 

one finds [5]: 

Ĥ =∑  

k

Ek(γk0
† γk0 + γk1

† γk1) +∑  

k

(ξk + Δkbk
† − Ek). (3.13) 



 

 

32 

 

The last item in Eq. (3.13) is called the condensation energy [5] and is the energy difference 

between the superconducting state and the normal state at T = 0.  The first term in Eq. (3.13) is 

excitation energy from the ground state and the excitations (quasiparticles) are created by γk0 and 

γk1
†

. The excitations are also known as "Bogoliubons" or "Bogoliubov qausiparticles." 

By inverting the transformation in Eq. (3.5), we get [5]: 

γk0
† = uk

∗ck↑
† − νk

∗c−k↓

γk1
† = uk

∗c−k↓
† + νk

∗ck↑.
(3.14) 

c−k↓  removes an electron with (−k ↓)  from the system and this is equivalent to introducing an 

electron with (k ↑) . Thus  γk0
†

 effectively forms excitations with momentum k and spin ↑ . 

Similarly, γk1
†

 creates excitations with wave vector -k and spin ↓.  

Combing Eq. (3.5) with the order parameter Δk = −∑l  Vkl⟨cl↓cl↑⟩ , we can write 

[5]

𝛥𝑘 = −∑  𝑙 𝑉𝑘𝑙𝑢𝑙
∗𝜈𝑙(1 − ⟨𝛾𝑙0

†𝛾𝑙0⟩ − ⟨𝛾𝑙1
†𝛾𝑙1⟩). (3.15) 

At T = 0, there will be no quasiparticles and Eq. (3.15) reduces to [5]: 

Δk = −∑  

l

Vklul
∗νl = −

1

2
∑  

l

Vkl
|Δl|

El
, (3.16) 

To proceed, we can assume a very simple form for the BCS interaction: 

𝑉𝑘𝑙 = {
 −𝑉              if |𝜉𝑘| < ħ𝜔

 0               otherwise .

(3.19) 

Here ω represents the Debye cutoff frequency of the lattice. This choice implies that electron-

electron interaction caused by the phonons only takes place in a thin shell near the Fermi surface. 

With this choice, the gap does not change with the direction of k. This is the “BCS model” of the 

electron-phonon interaction [1][2] and it yields an isotropic or s-wave symmetric pairing. 
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Inserting Vkl from Eq. (3.17) into Eq. (3.16), we can obtain a self-consistency equation [5] 

Δ =

{
 
 

 
  
𝑉

2
∑  

𝑘̅

Δ

𝐸𝑘
         if |𝜉𝑘̅| < ħ𝜔

  0                   otherwise. 

(3.18) 

In Eq. (3.18), I note that the sum is only over a small shell around the Fermi energy with |𝜉𝑘| =

|𝜖𝑘 − 𝜇| < ℏ𝜔. Transforming the sum over k into an integration over energy ξ from −ℏω to ℏω, 

equation (3.18) becomes: 

1 = V∫  
ℏω

0

1

√ξ2 + Δ2
D(ξ)dξ. (3.19) 

Note that the Δ has been cancelled from both sides of Eq. (3.18) and the factor of 2 disappears 

because of the symmetry of the integration over ξ. Substituting 𝜉 = 𝑥𝛥 and assuming that for the 

limited integration range the typical metal density of states D(ξ) can be taken as a constant D0, one 

finds [5]: 

1 = VD0 sinh
−1 x|0

ℏω
Δ = VD0 sinh

−1 (
ℏω

Δ
) (3.20) 

Rearranging this expression gives the BCS equation for the energy gap [4] 

𝛥 =
ℏ𝜔

sinh (
1
𝑉𝐷0

)
≈ 2ℏ𝜔𝑒

−1
𝐷0𝑉. (3.21)

 

This result for Δ is only accurate in the weak-coupling regime 𝐷0𝑉 ≪ 1.Also, the effects 

produced by quasiparticles must be considered at non-zero temperatures. At temperature T, the 

Fermi function provides the probability of a quasiparticle excitation with energy 𝐸𝑘: 

𝑓(𝐸𝑘) =
1

𝑒
𝐸𝑘
𝑘𝐵𝑇 + 1

. (3.24) 

At non-zero temperatures, Eq. (3.15) becomes [5]: 
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𝛥𝑘 = −∑  𝑙 𝑉𝑘𝑙𝑢𝑙
∗𝜈𝑙[1 − 2𝑓(𝐸𝑙)] = −∑  𝑙 𝑉𝑘𝑙

𝛥

2𝐸𝑙
𝑡𝑎𝑛 ℎ (

𝐸𝑙

2𝑘𝐵𝑇
) (3.23)

Using Eq. (3.17) and again assuming that 𝛥 is independent of the k direction, one can show that 

[5]: 

1

𝑉
= ∫  

ℏ𝜔

0

tanh (
√𝜉2 + 𝛥2

2𝑘𝐵𝑇
)

√𝜉2 + 𝛥2
𝐷(𝜉)𝑑𝜉. (3.24)

 

 Equation (3.24) determines the superconducting gap as a function of temperature T. The 

critical temperature 𝑇𝑐  is where the gap disappears, and the material turns into a regular metal. 

Substituting 𝛥 = 0 and 𝑇 = 𝑇𝑐 into Eq. (3.24) gives [5]:  

1 = 𝑉𝐷0∫  
ℏ𝜔

0

tanh (
𝜉

2𝑘𝐵𝑇𝑐
)

𝜉
𝑑𝜉. (3.25) 

In the weak-coupling limit ℏ𝜔 ≫ 2𝑘𝐵𝑇, this gives [5]: 

1

𝑉𝐷0
= (ln (

ℏ𝜔

2𝑘𝐵𝑇𝑐
) − ln 0.44) (3.26) 

and thus 

𝑘𝐵𝑇𝑐 = 1.136ℏ𝜔𝑒
−1
𝑉𝐷0 . (3.27) 

Comparing Eq. (3.21) and Eq. (3.27), we find that the superconducting gap 𝛥(0) at T=0 and the 

critical temperature 𝑇𝑐 are related by 

𝛥(0)

𝑘𝐵𝑇𝑐
=

2

1.13
= 1.764. (3.28) 

Thus in conventional BCS theory there is a direct correlation between the critical temperature 𝑇𝑐 

and the superconducting gap 𝛥(0). 
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3.2 Granular Aluminum Thin Films  

Granular aluminum films are made up of small aluminum grains separated by thin 

insulating barriers of aluminum oxide (Al2O3). My research made use of granular aluminum thin 

films because their superconducting gap can be changed by altering the grain size.  

In the late 1960s, researchers discovered surprising behavior of aluminum thin films grown 

in low-pressure oxygen [8]. In particular, these films showed enhanced superconducting critical 

temperature 𝑇𝐶. The key to this enhancement was the small size of the grains that were produced 

when small amounts of oxygen were present during the growth of the film.  

Granular films are best described using the Ginzburg-Landau equation. This involves the 

parameter kappa κ, defined as the ratio of the penetration depth λ to the coherence length ξ. The 

parameter κ determines whether the superconductor will be Type-I (κ<
1

√2
) or Type-II (κ>

1

√2
) [4]. 

Pure aluminum is a Type-I superconductor, with a Ginzburg-Landau parameter κ approximately 

equal to 1.5x10-3 , which is much less than the Type-II threshold of 1/√2. 

However, κ increases when disorder is introduced. The effect of disorder can be quantified 

using the mean free path l for the scattering from structural defects or inhomogeneities. This 

scattering reduces the coherence length according to [4]:  

1

𝜉
=
1

𝜉0
+
1

ℓ
, (3.29) 

where ξ0 is the coherence length in the absence of disorder. In the dirty limit ℓ ≪ 𝜉0 the coherence 

length ξ is approximately equal to ℓ  , and the Ginzburg-Landau parameter κ becomes 

approximately equal to 𝜆/ℓ. This means that disorder can significantly increase κ, pushing the 

aluminum into the realm of Type-II superconductivity. This phenomenon has particular relevance 

for granular aluminum films. If the size of the aluminum grains is smaller than ξ0, it has been 

argued that this effectively reduces the coherence length [4], leading to an increase in κ and 𝛥. 
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Since 1960s, granular superconductors have been studied extensively. Although various 

models being put forth to explain their unconventional properties [9][10], there does not seem to 

be any agreement on the cause of the enhancement. The oxide layers between grains are generally 

understood to produce a highly non-uniform structure in the aluminum film. The oxygen causes 

thin insulating barriers to form between the grains. These barriers somewhat isolate each grain, 

turning them into individual islands of superconductivity within the film. As a result of the granular 

structure, each of the superconducting grains within a granular aluminum film could potentially 

exhibit a different critical temperature. This variation would be expected due to the differences in 

the size and separation of the grains, and the degree of disorder within the grains, all of which can 

influence the superconductivity state.  

By manipulating the conditions under which the granular aluminum films are fabricated, 

such as the deposition rate, the oxygen content, or the substrate temperature, the grain 

characteristics and film properties can be tuned. Figure 3.1 shows an Atomic Force Microscope 

(AFM) topographic surface scan image of a granular Al thin film. This film was with 70 nm thick 

and grown using an oxygen doping pressure of 2.5 µTorr during the evaporation. The grain size 

clearly varies, which may cause local variations in the gap. Such variations could also lead to 

spatial variations in the non-equilibrium quasiparticle density and prevent quasiparticles diffusing. 

I will present detailed results on transmons fabricated from granular aluminum in Chapter 5 and 

Chapter 7.  
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Figure 3.1: Topography of 70 nm thick granular Al film showing rough surface. 
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Chapter 4 

Theory of Quasiparticle Behavior in Junctions 

that Have Different Gaps 

In Chapter 2, I briefly discussed dissipation mechanisms that lead to relaxation of 

superconducting qubits. In this chapter, I will focus on the main topic of my research – relaxation 

due to quasiparticle tunneling. I will discuss theoretical modeling of quasiparticle induced loss and 

the behavior of non-equilibrium quasiparticles in junctions with electrodes that have different 

superconducting energy gaps. From the model, we find the temperature dependent density of 

quasiparticles and calculate the relaxation time of qubits. I will also discuss Multiple Andreev 

Reflection in the S-I-S junction and its impact on the relaxation of the transmon. 

 

4.1 Quasiparticles 

According to the BCS theory [1][2], superconductivity arises due to the formation of 

Cooper pairs [3] at low temperatures. These pairs consist of two electrons with opposite 

momentum and spin, which are bound together by an attractive interaction mediated by lattice 

vibrations (phonons). As discussed in Chapter 3, to break a Cooper pair requires a minimum energy 

of 2Δ, where Δ is the superconducting gap. For a superconductor in the weak-coupling BCS limit, 

the superconducting critical temperature Tc is related to the gap by the expression Δ = 1.76kBTc. 

Pair breaking can be caused by thermal energy, a microwave drive that is sufficiently strong, 

optical illumination or the absorption of high energy particles such as cosmic rays.  
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4.1.1 Thermal Quasiparticles  

The number of equilibrium thermal quasiparticles at temperature T is given by [4] 

𝑛𝑡ℎ𝑞𝑝 = ∫  
+∞

−∞

𝐷(𝐸)𝑓(𝐸)𝑑𝐸, (4.1) 

where 𝑓(𝐸) = 1/(𝑒
1

(𝐸−𝜇)/𝑘𝐵𝑇 + 1) is the Fermi distribution, 𝜇  is the chemical potential [5] and 

𝐷(𝐸) is the superconducting density states of the quasiparticles, given by 

                                                   𝐷(𝐸) = {
2𝑁0

|𝐸|

√𝐸2−Δ2
,  for |𝐸| > Δ                             (4.2a)

       0 ,       for |𝐸| ≤ Δ                                                     (4.2𝑏)

Here 𝑁0 = 3𝑛𝑒/4𝜀𝐹  is the density of states of the electrons of one spin in the normal metal, 𝜀𝐹 is 

the Fermi energy and 𝑛𝑒 is the electron density [4]. Setting the chemical potential 𝜇 = 0, the Eq. 

(4.1) then gives  

𝑛thqp  = 4𝑁0∫  
∞

𝑎

 
𝐸

√𝐸2 − Δ2

1

1 + 𝑒
𝐸
𝑘𝐵𝑇

𝑑𝐸

 = 4𝑁0∫  
∞

Δ

 𝑑𝐸
𝐸

√𝐸2 − Δ2
𝑒
−

𝜀
𝑘𝑔𝑇∑  

∞

𝑛=0

  (−1)𝑛
−
𝑛𝐸
𝑘𝐵𝑇.

(4.3) 

In the last expression, a Taylor expansion has been used to evaluate (1 + 𝑒𝐸/𝑘𝐵𝑇)
−1

. In the limit 

𝐸 ∼ Δ ≫ 𝑘𝐵𝑇, we get  

𝑛𝑡ℎ𝑞𝑝  ≃ 4𝑁0𝑘𝐵𝑇∫  
∞

Δ
𝑘𝐵𝑇

 
𝑥𝑒−𝑥

√𝑥2 − (
Δ
𝑘𝐵𝑇

)
2

𝑑𝑥

 

 = 4𝑁0𝑘𝐵𝑇𝑒
−
Δ
𝑘𝐵𝑇

(

 ∫  
∞

0

 𝑑𝑦
𝑦
1
2𝑒−𝑦

√𝑦 +
2Δ
𝑘𝐵𝑇

+
Δ

𝑘𝐵𝑇
∫  
∞

0

 𝑑𝑦
𝑦−

1
2𝑒−𝑦

√𝑦 +
2Δ
𝑘𝐵𝑇)

 .

(4.4) 

For 2Δ/𝑘𝐵𝑇 ≫ 1, the formula becomes [4] 
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𝑛thqp ≈
4𝑁0(𝑘𝐵𝑇)

3
2𝑒

−
Δ
𝑘𝐵𝑇

√2Δ
(
√𝜋

2
+

Δ

𝑘𝐵𝑇
√𝜋) (4.5) 

Again, taking the limit Δ ≫ 𝑘𝐵𝑇 gives 

𝑛thqp = 2√2𝜋𝑘𝐵𝑇Δ𝑁0𝑒
−
Δ
𝑘𝐵𝑇 . (4.6) 

Eq. (4.6) implies that there are practically no quasiparticles present if 𝑇 ≪ Δ/𝑘𝐵. For example, for 

aluminum Δ = 170𝜇𝑒𝑉 at T = 20 𝑚𝐾, one finds 𝑛thqp ∼ 7 × 10
−37𝜇m−3.  

 

4.1.2 Non-Equilibrium Quasiparticles  

Quasiparticles may affect the performance of a wide range of superconducting devices. At 

small densities, one expects the effects to scale linearly with quasiparticle density. Unfortunately, 

it is difficult to directly measure the quasiparticle density. Instead, one is forced to use indirect 

measurement of quasiparticle density by measuring a property that depends on quasiparticle 

density, such as the relaxation time T1.  The disadvantage of this approach is that relaxation has 

contributions from mechanisms that do not involve quasiparticles. 

From published experiments the claimed fraction of broken Cooper pairs often falls in the 

range of 𝑥𝑞𝑝 =10-9-10-5 [5]-[9]. This is not a density, but an inferred fraction 𝑥𝑞𝑝 = 𝑛QP/𝑛CP 

which is the number of quasiparticles normalized by the number of Cooper pairs per unit volume. 

Most transmons are made of thin Al films and are thermally anchored to the mixing chamber of a 

dilution refrigerator around 20 mK. As discussed above, the expected density of thermally 

generated quasiparticles at such temperature is vanishingly small. For Δ ≈ 170𝜇eV for Al, we get 

𝑥𝑞𝑝 ≈  10-50. This is many orders of magnitude smaller than observed densities, the extra 

quasiparticles are called non-equilibrium quasiparticles.  
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Non-equilibrium quasiparticles could be caused by the absorption of infrared radiation or 

high frequency microwaves from higher temperature stages of the dilution refrigerator [10], 

photons traveling through the transmission lines [11], stray cosmic radiation [12], or background 

radioactivity [12]. In the steady state, the rate of excess quasiparticle creation will be balanced by 

recombination of the quasiparticles to Cooper pairs and trapping. Trapping can occur at normal 

defects and vortices. If trapping prevails over recombination, the overall quasiparticle density is 

simply given 𝑛𝑞𝑝 = 𝑛𝑛𝑒𝑞𝑝 + 𝑛𝑡ℎ𝑞𝑝 [13]. 

In 1970, Owen and Scalapino [14] proposed a model for the distribution of non-equilibrium 

quasiparticles by defining an effective chemical potential 𝜇∗ in the Fermi distribution: 𝑓(𝐸 −

𝜇,𝑇) → 𝑓(𝐸 − 𝜇∗, 𝑇).  Except for this substitution, the theory is the same as the equilibrium 

theory. In particular, we can write 

𝑛𝑞𝑝 = 4𝑁0∫  
∞

0

𝐷(𝜖)
𝑑𝜖

1 + 𝑒𝛽(𝜖−𝜇∗)
, (4.7) 

where 𝜖 = √𝐸2 + Δ2 and 𝛽 = (𝑘𝐵𝑇)
−1. 

  In the low temperature limit when T ⩽ 𝑇𝑐, the non-equilibrium quasiparticle density 

becomes

𝑛𝑡ℎ𝑞𝑝 ≃ 2𝑁0√
2𝜋Δ

𝛽
𝑒−𝛽(Δ−𝜇

∗) (4.8) 

This can be solved for the effective chemical potential as a function of T and 𝑛𝑛𝑒𝑞𝑝 

𝜇∗ ≃ 𝑘𝐵 T ∗ ln (
𝑛𝑛𝑒𝑞𝑝

2𝑁0√2𝜋𝑘𝐵𝑇Δ
) + Δ. (4.9) 

Parker proposed another model [15] where the nonequilibrium quasiparticle distribution 

results from an effective temperature 𝑇∗, i.e. 𝑓(𝐸, 𝑇) → 𝑓(𝐸, 𝑇∗). In this model,    
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(
𝑛𝑞𝑝
𝑛𝑡ℎ𝑞𝑝

)

2

≅ (
𝑇∗

𝑇
)
3

(∫  
∞

𝑋𝐺
∗
 

𝑥2𝑑𝑥
𝑒𝑥 − 1

∫  
∞

𝑋𝐺

 
𝑥2𝑑𝑥

𝑒𝑥 − 1
) , (4.10) 

where 𝑋𝐺
∗ =

2Δ(𝑇∗)

𝑘𝐵𝑇∗
 and 𝑋𝐺 =

2Δ(𝑇)

𝑘𝐵𝑇
. Physically, The Parker model results in a population of “hot” 

quasiparticles with 𝑇∗ > 𝑇, which the Owen and Scalapino model can give an equivalent density 

of  “cold” quasiparticles at the ambient temperature 𝑇. Since hot and cold quasiparticles do not 

have the same distribution, the two models are not equivalent. 

 

4.2 Quasiparticle Relaxation and Excitation with Regions that Have Different 

Gaps 

From the BCS theory, one expects the density of thermal quasiparticles in a material 

increases when the temperature increases.  From this, one would expect that the transmon 

relaxation time T1 would decrease as the temperature increases.  It was thus very surprising that 

the group of our collaborator, Rui Zhang [16], observed that some samples showed an increase in 

T1 as temperature T increased from 30 to 100 mK.  

In this section, this behavior is explained as arising from the behavior of non-equilibrium 

quasiparticles [17]-[19] when the junction electrodes have slightly different superconducting gaps. 

This explanation also suggests that deliberately engineering the gaps of the two electrodes may 

provide a way to increase the T1 of transmon qubits.   

Our transmons have two Al pads connected to the electrodes of a Josephson junction. The 

Al pads in combination with the junction itself give total capacitance CΣ to the device. When 

properly chosen, this capacitance suppresses charge noise [20] and couples the device to the 3D 

superconducting Al cavity. Details of my transmon construction are covered in chapter 5. 
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To keep this discussion as simple as possible, I consider just the two lowest levels of the 

transmon and assume that the coupling strength 𝑔 between the cavity and the qubit satisfied 𝑔 ≪

2𝜋|𝑓𝑐 − 𝑓01|, where 𝑓𝑐  is the cavity resonance frequency and 𝑓01 is the qubit's 0-to-1 transition 

frequency, this is the dispersive limit. From the discussion in section 2.6.1, the decay rate of an 

undriven transmon is [21] 

1/𝑇1 = Γ1→0 + Γ0→1, (4.11)     

where Γ1→0 is the rate at which the excited state relaxes back to the ground state and Γ0→1 is the 

rate at which the excited state is excited from the ground state due to energetic processes. I next 

assume that individual single quasiparticle tunneling through the junction is the main source 

causing relaxation, and in this case [22]  

Γ1→0 =
𝐸𝑐

ℎ𝑓01𝑒2
𝑆𝐼(𝑓01), (4.12) 

where 𝑆𝐼(𝑓) is the current noise power spectral density of the quasiparticle tunneling current at 

frequency 𝑓01. 𝑆𝐼(𝑓) is a double-sided quantum noise spectrum [21]. Positive frequencies cause 

downward transitions, while negative frequencies cause excitations. The upward transition rate is  

Γ0→1 =
𝐸𝑐

ℎ𝑓01𝑒2
𝑆𝐼(−𝑓01) (4.13) 

The noise spectrum results from single quasiparticle tunneling through the junction is 

𝑆𝐼(𝑓) = 𝑒(𝐼L→R + 𝐼R→L). (4.14) 

Here 𝐼L→R is the current from single quasiparticle tunneling from the left to the right electrode and 

𝐼R→L is the corresponding current from quasiparticle tunneling from the right to the left electrode 

at voltage 𝑉 = ℎ𝑓/𝑒. A physical picture for this behavior is that transmon relaxation results when 

energy ℎ𝑓01 is transferred from the transmon to quasiparticles that tunnel through the junction. 
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To calculate the quasiparticle currents 𝐼L→R and 𝐼R→L, we have to carefully consider the 

physical layout of our transmons. Our transmons are fabricated using a double-angle evaporation 

technique [23] that involves depositing two thin-film aluminum (Al) layers to create a Josephson 

junction, as depicted in Fig. 4.1. Fabrication begins with the deposition of the first Al layer onto a 

sapphire substrate, followed by oxidation to form a thin AlOx tunnel barrier. Subsequently, the 

second Al layer is deposited on top of the first layer using an e-beam resist-bridge stencil, resulting 

in a precisely defined junction with small overlap between the two layers. It is important to note 

that the two Al layers can have different thicknesses, and variations in the growth conditions can 

lead to significant variations in their superconducting gaps [24]-[27].  

I will assume that the first layer has a superconducting gap Δ1 and this forms the left 

electrode (See Fig. 4.1). The second layer and right electrode has a superconducting gap Δ2. This 

electrode connects to the right pad of the transmon. Note that both the right and left side of the 

device have two layers. I denote the volume of the first and second layer on the right to be Ω1R 

and Ω2R, respectively. To ensure coverage, the second layer is approximately twice as thick as the 

first layer and the left and right side volumes are vertically same. Then we have the approximate 

volume relations Ω1 L ≈ Ω1R ≈ Ω2R/2 ≈ Ω2 L/2. As we will see, the relative volumes of the layers 

may play a significant role in the temperature dependence of quasiparticle induced relaxation 

phenomenon.  

For the devices I built and measured, ℎ𝑓01 ≪ Δ1, ℎ𝑓01 ≪ Δ2. I will also assume that non-

equilibrium quasiparticles are generated in the junction electrodes by an external source that breaks 

pairs such as strong radiation. In addition, I assume that the quasiparticles in each pad have 

thermalized to the substrate's temperature T and that the two layers in each pad are in good 

diffusive contact. These assumptions imply that the non-equilibrium quasiparticles in each region 
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Figure 4.1: Schematic view of the Al/AlOx/Al Josephson junction. The junction is made of two 

Al layers - a thinner layer 1 (green) with superconducting gap Δ1 and a thicker layer 2 (blue) with 

gap Δ2 and connects the Ω1L region on the left and Ω2R region on the right.  

 

 

will still have a Fermi-Dirac distribution: 𝑓𝐹𝐷(𝐸) and obey 𝑓𝐹𝐷(−𝐸) = 1 − 𝑓𝐹𝐷(𝐸). Under this 

assumption, quasiparticles with 𝐸 > 0 quasi electrons and 𝐸 < 0 quasi holes will both contribute 

to the current noise. From Eq. (4.14), the noise which is at frequency 𝑓 is related to 𝐼𝐿→𝑅  and 𝐼𝑅→𝐿 

at an applid voltage 𝑉 = ℎ𝑓/𝑒. From Tinkham, for an ideal tunnel junction in the low transparency 

limit [4], the current can be written as:  

 

𝐼𝐿→𝑅 =
2

𝑒𝑅𝑛
∫  
∞

0

|𝐸|𝜃(𝐸 − Δ1)

√𝐸2 − Δ1
2

|𝐸 + ℎ𝑓|𝜃(𝐸 + ℎ𝑓 − Δ2)

√(𝐸 + ℎ𝑓)2 − Δ2
2

𝑓𝐹𝐷(𝐸, 𝜇1𝐿)(1 − 𝑓𝐹𝐷(𝐸 + ℎ𝑓, 𝜇2𝑅))𝑑𝐸, (4.15) 
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where 𝑅𝑛  is the normal-state tunneling resistance of the junction, 𝜃(𝐸)  is the Heaviside step 

function, 𝐸 is the quasiparticle energy, and 𝜇1 L and 𝜇2R are the chemical potential for the 𝐸 > 0 

quasiparticles on the left side of region 1 and right side of region 2, respectively.  

From the previous discussion, the density of quasiparticles in the system is determined by 

the chemical potential [28]. For the left side of region 1, the density of quasiparticles is [16]  

𝑛1L = 4𝑁0∫  
∞

Δ1

𝐸

√𝐸2 − Δ1
2
𝑓𝐹𝐷(𝐸, 𝜇1L)𝑑𝐸 

                                                   = 4𝑁0Δ1∑  

∞

𝑛=1

(−1)𝑛+1𝑒
𝑛𝜇1L
𝑘𝐵𝑇 𝐾1 (

𝑛Δ1
𝑘𝐵𝑇

)                                           (4.16) 

where 𝐾1 is the modified Bessel function, 𝑁0 = 3𝑛𝑒/4𝜀𝐹 is the single-spin density of electron 

states in the normal state at the Fermi level, 𝑛𝑒 is the electron density, and 𝜀𝐹 is the Fermi energy. 

The density 𝑛2𝑅 of quasiparticles of layer 2 on the right is obtained by changing Δ1 to Δ2 and 𝜇1 L 

to 𝜇2R in Eq. (4.16).  

The next step is to calculate the noise spectrum from the junction currents by evaluating 

Eq. (4.14) with positive frequencies. My junctions were designed so that  Δ1 < Δ2, Δ2 − Δ1 <

ℎ𝑓01, Δ1 − 𝜇1 L ≫ 𝑘𝐵𝑇 and Δ2 − 𝜇2R ≫ 𝑘𝐵𝑇. Unfortunately, some of my junctions did not meet 

these design goals.  Nevertheless, if these constraints are satisfied, then  

𝐼𝐿→R ≈
𝛼(Δ1,Δ2)

𝑒𝑅𝑛

𝑛1 L

2𝑁0
[1 −

𝑒
−
(Δ1−Δ2+ℎ𝑓01)

𝑘𝐵𝑇

√𝜋𝑘𝐵𝑇Δ2
𝛽
𝑛2R

8𝑁0
] , (4.17)                               

where [16]: 

𝛼(Δ1, Δ2) =
Δ1 + ℎ𝑓01 + 𝑧0𝑘𝐵𝑇

√(Δ1 + ℎ𝑓01 + 𝑧0𝑘𝐵𝑇)2 − Δ2
2

(4.18)
 

and 
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𝛽(Δ1, Δ2) =
√2Δ2+𝑧0𝑘𝐵𝑇

(Δ2+𝑧0𝑘𝐵𝑇)

(2Δ1+𝑧0𝑘𝐵𝑇)
3
2

(Δ1+𝑧0𝑘𝐵𝑇)

√Δ2

√4Δ1+𝑧0𝑘𝐵𝑇
≈ 2. (4.19)                                

The quantity 𝑧0𝑘𝐵𝑇 acts like an effective thermal energy of the quasiparticles. Applying 

different values of 𝑧0 for Eq. (4.18) and comparing to the numerical integration of Eq. (4.15), we 

find that 𝑧0 = 0.3 provides a good approximation for typical parameters. Similarly, the current 

𝐼R→L can be obtained by exchanging the subscripts 1 and 2 and 1L and 2R everywhere in Eqs. 

(4.17), (4.18) and (4.19). 

Using Eqs. (4.13) and (4.16), one finds [16], 

S𝑙(𝑓01) ≈
1

𝑅𝑛𝑁(0)
[
𝛼(Δ1,Δ2)

2
𝑛1L +

𝛼(Δ2,Δ1)

2
𝑛2R] . (4.20)         

Combining Eqs. (4.13) and (4.20) yields 

Γ1→0 ≈
1

𝜏𝑜𝑛𝑒
[
𝛼(Δ1, Δ2)

2
𝑛1L +

𝛼(Δ2, Δ1)

2
𝑛2R] , (4.21) 

where 

𝜏0 = 3𝑅𝑛𝐶 (
ℎ𝑓01
2𝜀𝐹

) . (4.22) 

A similar analysis of the excitation rate, which corresponds to negative frequencies in Eq. 

(4.20), gives 

Γ0→1 ≈
𝑒
−
ℎ𝑓01
𝑘𝐵𝑇

𝜏0𝑛𝑒
[
𝛾(Δ1, Δ2)

2
𝑛1L𝑒

−
(Δ2−Δ1)
𝑘𝐵𝑇 +

𝛾(Δ2, Δ1)

2
𝑛2R𝑒

−
(Δ1−Δ2)
𝑘𝐵𝑇 ] , (4.23) 

where

𝛾(Δ1, Δ2) = 𝛼(Δ1, Δ2)
(Δ2+𝑧0𝑘𝐵𝑇)

√2Δ2+𝑧0𝑘𝐵𝑇

√2Δ1+𝑧0𝑘𝐵𝑇

(Δ1+𝑧0𝑘𝐵𝑇)
. (4.24) 

Using Eq. (4.11) (4.21) and (4.23), we can rewrite the relaxation time as [16]: 
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𝑇1 ≈
2𝜏0𝑛𝑒

[𝛼(Δ1, Δ2) + 𝛾(Δ1, Δ2)𝑒
−
(Δ2−Δ1+ℎ𝑓01)

𝑘𝐵𝑇 ] 𝑛1 L + [𝛼(Δ2, Δ1) + 𝛾(Δ2, Δ1)𝑒
−
(Δ1−Δ2+ℎ𝑓01)

𝑘𝐵𝑇 ] 𝑛2R

. (4.25)
 

If Δ1 = Δ2 = Δ, this expression becomes  

𝑇1 ≈
√(Δ+ ℎ𝑓01 + 𝑧0𝑘𝐵𝑇)2 − Δ2

(1 + 𝑒
−
ℎ𝑓01
𝑘𝐵𝑇)(Δ + ℎ𝑓01 + 𝑧0𝑘𝐵𝑇)

2𝜏0𝑛𝑒
(𝑛1L + 𝑛2R)

. (4.26)
 

From Eq. (4.26), we can see that the relaxation time scales inversely with the average 

quasiparticle density 𝑛1L  and 𝑛2R . Taking a different limit, 𝑘𝐵𝑇 ≪ Δ2 − Δ1 < ℎ𝑓01 , the non-

equilibrium quasiparticles will tend to accumulate in layer 1, since the gap of layer 1 is smaller 

than the gap of layer 2. In this case we will tend to have 𝑛2𝑅 ≪ 𝑛1𝐿 and the relaxation time reduces 

to 

𝑇1 ≈
2𝜏0𝑛𝑒

𝛼(Δ1, Δ2)𝑛1𝐿
. (4.27) 

As a result, at sufficiently low temperatures, we expect the relaxation time to scale inversely with 

the quasiparticle density in the junction's low-gap electrode. 

 

4.3 Modeling Quasiparticle Density 

From the previous discussion, one can see that T1 depends on n1L and n2R. To find how T1 

depends on temperature, we have to find how the quasiparticle densities n1L and n2R depend on 

temperature. To do so, we need to account for the non-equilibrium and equilibrium quasiparticles.  

It is unknown if our transmons’ nonequilibrium pair-breaking is driven by high-energy 

phonons, infrared photons, optical photons, or other processes [29]-[31]. To keep things simple, I 

assume that there is a constant, temperature-independent source that generates non-equilibrium 
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quasiparticles at a steady rate in layer 1 (which is directly in contact with the substrate) in both the 

left and right transmon pads. I also assume that the quasiparticles are thermalized to the substrate's 

temperature T and that the two layers in each pad are in good diffusive contact. 

In order to model the behavior of quasiparticles in a Josephson junction that has regions 

with different gaps, I also made the following assumptions:  

(1) The left side of the junction is formed from contact to layer 1L, which has small volume 

Ω1L with low gap Δ1. Above this in layer 2L, which has large volume Ω2L with high 

gap Δ2. 

(2) The right side of the junction is formed from high gap Δ2  and large volume 

Ω2R. Beneath this is layer 1R with small volume Ω1R = Ω1L and gap Δ1. 

(3)  The junction only contacts the low gap region on the left side and the high gap region 

on the right side. 

(4) I neglect the transfer of quasiparticles across the junction when calculating the steady 

state density of quasiparticles in the different layers. This should be a good 

approximation since the contact between layers 1 and 2 is much larger than the junction 

area. 

(5) On each side of the junction, layer 1 can easily exchange quasiparticles with layer 2. 

(6) Nonequilibrium quasiparticles are only created on each side of the junction in layer 1, 

which we assume is in contact with the substrate. 

(7) We ignore quasiparticle recombination and instead assume that quasiparticles are 

captured by normal-metal inclusions, interfaces, vortices or other deviations from bulk 

superconductivity. 
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With these assumptions, the net rate of quasiparticle generation in the two layers on the left can 

be written as: 

               
𝑑𝑁1L
𝑑𝑡

= 𝐺𝑝1 + 𝐺𝑔1 − 𝐺𝑡𝑟,1 L𝑁1L − 𝐺L,1→2𝐴L
𝑁1L
Ω1L

+ 𝐺L,2→1𝐴L
𝑁2L
Ω2L

(4.28𝑎) 

                
𝑑𝑁2L
𝑑𝑡

= 𝐺𝑔2 − 𝐺𝑡𝑟,2 L𝑁2L − 𝐺L,2→1𝐴L
𝑁2L
Ω2L

+ 𝐺L,1→2𝐴L
𝑁1L
Ω1L

.               (4.28𝑏) 

Here 𝑁 is the number of quasiparticles in the region with the subscript, 𝐴L  is the contact area 

between the two layers on the left, 𝐺𝑝1 is the rate at which non-equilibrium quasiparticles are 

generated in layer 1,𝐺𝑔𝑗  is the rate at which quasiparticles are generated thermally in layer 𝑗, 𝐺𝑡𝑟 

is the rate at which quasiparticles are trapped in the indicated region, and 𝐺L,𝑖→j is the rate at which 

quasiparticles escape from layer 𝑖 and 𝑔 to 𝑗 on the left. We obtain the steady state number of 

quasiparticles in region 1 on left by setting the derivatives in Eq. (4.28) to zero, which yields [16] 

𝑁1L =
(
𝐺𝑝1
𝐺𝑡𝑟,1 L

+
𝐺𝑔1
𝐺𝑡𝑟,1 L

) +
𝐺L,2→1
𝐺𝑡𝑟,2 L

𝐴L
Ω2 L

(
𝐺𝑝1
𝐺𝑡𝑟,1 L

+
𝐺𝑔1
𝐺𝑡𝑟,1 L

+
𝐺𝑔2
𝐺𝑡𝑟,1 L

)

1 +
𝐺L,2→1
𝐺𝑡𝑟,2 L

𝐴L
Ω2 L

+
𝐺L,1→2
𝐺𝑡𝑟,1 L

𝐴L
Ω1 L

. (4.29) 

It is helpful to consider some limits of Eq. (4.29) to understand this expression. When T 

goes to zero, the thermal generation terms 𝐺𝑔1 and 𝐺𝑔2 are zero. Setting the transfer rates 𝐺L,2→1 

and 𝐺L,1→2 to zero for disconnected regions, we obtain  

𝑁1L = 𝐺𝑝1/𝐺𝑡𝑟,1L ≡ 𝑁𝑛𝑒,1L. (4.30)    

Here we introduce the parameter 𝑁𝑛𝑒,1L to describe the number of non-equilibrium quasiparticles 

in the steady state at zero temperature in region 1 on the left if it was disconnected from all other 

regions. Similarly the number of thermal quasiparticles in the two regions on the left to be 

identified as 

𝑁𝑡ℎ,1L ≡ 𝐺𝑔1/𝐺𝑡𝑟,1L (4.31) 
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and

𝑁𝑡ℎ,2L ≡ 𝐺𝑔2/𝐺𝑡𝑟,2L. (4.32)  

Different kinds of quasiparticle traps, such as normal metal inclusions, normal metal 

surface layers, normal metal interfaces, and trapped flux vortices, will result in trapping rates that 

scale differently with the thickness, area and volume of the region. For simplicity I will assume 

that the trapping is due to magnetic flux vortices that penetrate both layers of the sample. If each 

vortex acts like a cylinder with a surface trapping area of  

𝐴𝑣 = 2𝜋𝑟𝑣ℎj, (4.33) 

where 𝑟𝑣 is the effective radius of the vortex and ℎj is the thickness of layer j. Then the total rate 

at which quasiparticles are trapped in region 1L is then 

𝐺𝑡𝑟,1 L𝑁1 L =
𝑁1 L

Ω1 L
𝑣2𝜋𝑟𝑣ℎj𝑁𝑣1, (4.34) 

where 𝑣 is the speed of the quasiparticles and 𝑁𝑣1 is the number of vortices. Since layer 1 is on 

top of layer 2, I assume they have the same number of vortices, 𝑁𝑣1 = 𝑁𝑣2. The trapping rate in 

region 2L is then: 

𝐺𝑡𝑟,2 L𝑁2 L =
𝑁2 L

Ω2 L
𝑣(2𝜋𝑟𝑣ℎ2)𝑁𝑣1. (4.35) 

Combining these two equations gives 

𝐺𝑡𝑟,1L
𝐺𝑡𝑟,2L

=
Ω2L
Ω1L

𝑣(2𝜋𝑟𝑣ℎ1)𝑁𝑣1
𝑣(2𝜋𝑟𝑣ℎ2)𝑁𝑣1

=
Ω2L
Ω1L

ℎ1
ℎ2
=
𝐴2 L

𝐴1 L
= 1, (4.36) 

Notice that 𝐴2 L = 𝐴1 L is the planar area of layers 1 and 2 on the left.  

I can now rewrite the general expression for 𝑁1L in Eq. (4.29) as: 

𝑁1L =
(𝑁𝑛𝑒,1L + 𝑁𝑡ℎ,1L) +

𝐺L,2→1
𝐺𝑡𝑟,1L

𝐴L
Ω2L

(𝑁𝑛𝑒,1L +𝑁𝑡ℎ,1L +𝑁𝑡ℎ,2L)

1 +
𝐺L,2→1
𝐺𝑡𝑟,1 L

𝐴L
Ω2L

+
𝐺L,1→2
𝐺𝑡𝑟,1 L

𝐴L
Ω1L

. (4.37) 
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If the trapping rate is relatively slow compared to exchange rate from layer 2 to layer 1, then:  

𝐺L,2→1
𝐴L
Ω1 L

> 𝐺L,2→1
𝐴L
Ω2 L

≫ 𝐺𝑡𝑟,1L. (4.38) 

Equation (4.37) then reduce to:  

𝑁1L ≈
1

1+
𝐺L,1→2
𝐺L,2→1

Ω2L
Ω1L

(𝑁𝑛𝑒,1L +𝑁𝑡ℎ,1L +𝑁𝑡ℎ,2L). (4.39)                                      

In thermal equilibrium there will be just as many quasiparticles flowing from 1 to 2 as from 

2 to 1 so that,  

𝐺L,1→2𝐴L
𝑁𝑡ℎ,1L
Ω1L

= 𝐺L,2→1𝐴L
𝑁𝑡ℎ,2L
Ω2L

, (4.40) 

which yields 

𝐺L,1→2
𝐺L,2→1

Ω2L
Ω1L

=
𝑁𝑡ℎ,2L
𝑁𝑡ℎ,1L

. (4.41) 

Next consider the thermally generated quasiparticles in region 1L. Setting 𝜇 = 0 in Eq. 

(4.16), we have  

𝑁𝑡ℎ,1L ≈ 2𝑁(0)Ω1 L√2𝜋𝑘𝐵𝑇Δ1𝑒
−
Δ1
𝑘𝐵𝑇 . (4.42) 

Region 2L has a similar expression. Equation (4.39) then becomes:  

𝑁1L ≈
Ω1L√Δ1𝑒

−
Δ1
𝑘𝐵𝑇

Ω1 L√Δ1𝑒
−
Δ1
𝑘𝐵𝑇 +Ω2 L√Δ2𝑒

−
Δ2
𝑘𝐵𝑇

(𝑁𝑛𝑒,1L +𝑁𝑡ℎ,1L + 𝑁𝑡ℎ,2L). (4.43) 

From this result, the density of quasiparticles in region 1 with left becomes:  

𝑛1L ≈ 𝑛𝑡ℎ,1 + (
Ω1L√Δ1𝑒

−
Δ1
𝑘𝐵𝑇

Ω1L√Δ1𝑒
−
Δ1
𝑘𝐵𝑇 + Ω2L√Δ2𝑒

−
Δ2
𝑘𝐵𝑇

)𝑛𝑛𝑒,1L, (4.44) 
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where 𝑛𝑡ℎ,1 = 𝑁𝑡ℎ,1L/Ω1L  is the density of thermally generated quasiparticles in layer 1. We 

assume there is the same density in regions 1L and 1R. A similar analysis gives the quasiparticle 

density in region 2R as:   

𝑛2R ≈ 𝑛𝑡ℎ,2 +(
Ω2R√Δ2𝑒

−
Δ2
𝑘𝐵𝑇

Ω1R√Δ1𝑒
−
Δ1
𝑘𝐵𝑇 + Ω2R√Δ2𝑒

−
Δ2
𝑘𝐵𝑇

)(
Ω1R
Ω2R

) 𝑛𝑛𝑒,1R. (4.45) 

I note that this assumes that non-equilibrium quasiparticles are only being generated in layer 1. 

 

4.4 Andreev Reflection 

4.4.1 Introduction of Andreev Reflection 

Andreev reflection [32] of quasiparticles play a significant role in quasiparticle tunneling 

in junctions that have barriers with non-zero transparency. 

Andreev reflections are most easily understood at a superconductor-normal metal (S-N) 

interface. Suppose an electron with energy E (measured from 𝜖𝐹 ) that is less than the 

superconducting gap ∆ approaches an S-N boundary from the normal metal side. In this situation, 

the electron can't enter the superconductor due to the lack of available quasiparticle states matching 

its energy. Instead, the incoming electron is reflected back into its normal metal as a hole and a 

Cooper pair enters the superconductor (see Fig. 4.2). This “Andreev reflection” process conserves 

both charge and momentum. 

In contrast to regular reflections, which decrease the transport current through the junction, 

Andreev reflections lead to an increase in the conductance around zero bias [32]. The amount of 

Andreev reflection is affected by the height and width of the potential barrier between the 

superconductor and the normal metal. For instance, a fully transparent barrier (strength Z=0 or 

transparency 
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Figure 4.2: The process of Andreev reflection in S-N interface. Black and white circles represent 

electrons and holes, repectively. The horizontal arrows represent the momentum.  The vertical 

arrows represent the spin.  

 

 

transparency D=1) will have a large contribution from Andreev reflections. Increasing barrier 

strength (denoted by a higher Z value, a small transparency D) suppresses Andreev reflections, 

causing the current-voltage characteristic to resemble that of a conventional normal-insulator-

superconductor (N/I/S) tunnel junction [32].  

 

4.4.2 BTK Model with S-N Junction 

The Blonder-Tinkham-Klapwijk (BTK) model [33] provides a convenient method for 

including Andreev reflections when finding the I-V curves of N/S interfaces. Their model is based 

on the generalized semiconductor model using the Bogoliubov-de Gennes (BdG) equations. To 

deal with the interface, they included a potential barrier and matched the wavefunctions at the 

interface to find the transmission and reflection coefficients. 



 

 

55 

 

Starting from my discussion in Chapter 3, we can rewrite Eq. (3.6) and get the one-

dimensional Bogoliubov equation [4][33] for the superconducting side of the junction: 

(

 
−
ℏ2

2𝑚

∂2

∂𝑥2
− 𝜇 + 𝐻0𝛿(𝑥) Δ(𝑥)

Δ∗(𝑥)
ℏ2

2𝑚

∂2

∂𝑥2
+ 𝜇 − 𝐻0𝛿(𝑥))

 (
𝑢(𝑥)

𝑣(𝑥)
) = 𝐸 (

𝑢(𝑥)

𝑣(𝑥)
) . (4.46) 

There is no superconducting gap on the normal metal side, so Eq. (4.46) becomes simply:  

(

 
−
ℏ2

2𝑚

∂2

∂𝑥2
− 𝜇 0

0
ℏ2

2𝑚

∂2

∂𝑥2
+ 𝜇

)

 (
𝑢(𝑥)

𝑣(𝑥)
) = 𝐸 (

𝑢(𝑥)

𝑣(𝑥)
) . (4.47) 

The eigenvalues for the energy E in the normal metal side can be found from Eq. (4.47) and one 

finds simply:  

𝐸 = +√(
ℏ2𝑘2

2𝑚
− 𝜇)

2

, (4.48) 

where 𝜇 = ℏ2𝑘𝐹
2/2𝑚 is the Fermi energy. We then have two solutions: one corresponds to an 

electron with wavevector  𝑘𝑒̅̅ ̅ such that |𝑘𝑒̅̅ ̅| > 𝑘𝐹  and energy 𝐸 =
ℏ2𝑘𝑒

2

2𝑚
− 𝜇. The other solutions 

correspond to a hole which has a wavevector  𝑘ℎ̅̅ ̅ such that |𝑘ℎ̅̅ ̅| < 𝑘𝐹  and energy 𝐸 = −
ℏ2𝑘ℎ

2

2𝑚
+ 𝜇. 

The wavefunctions corresponding to these solutions are: 

Ψ𝑒(𝑥) = (
 1

0
)𝑒±𝑖𝑘𝑒𝑥,   where  𝑘𝑒 = √

2𝑚

ℏ2
(𝐸 + 𝜇) (4.49𝑎) 

Ψℎ(𝑥) = (
 0

1
)𝑒±𝑖𝑘ℎ𝑥,   where  𝑘ℎ = √

2𝑚

ℏ2
(𝜇 − 𝐸) (4.49𝑏) 

On the superconducting side, Eq. (4.46) gives eigenvalues of energy 

𝐸 = +√(
ℏ2𝑞2

2𝑚
− 𝜇)

2

+ Δ2, (4.50)  
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noticed that Eq. (4.50) implies that √𝐸2 − Δ2 =
ℏ2𝑞𝑒

2

2𝑚
− 𝜇. For 𝑞𝑒 > 𝑘𝐹 , one finds √𝐸2 − Δ2 =

−
ℏ2𝑞ℎ

2

2𝑚
+ 𝜇, which gives the solution for quasi-electrons, which the hole case occurs for 𝑞ℎ < 𝑘𝐹 . 

The wavefunctions for quasiparticles on the superconducting side can then be written as:  

Ψ𝑒(𝑥) = (
𝑢0
𝜈0
) 𝑒±𝑖𝑞𝑒𝑥,   where  𝑞𝑒 = √

2𝑚

ℏ2
(√𝐸2 − Δ2 + 𝜇) (4.51𝑎) 

Ψℎ(𝑥) = (
𝜈0
𝑢0
) 𝑒±𝑖𝑞ℎ𝑥,   where 𝑞ℎ = √

2𝑚

ℏ2
(𝜇 − √𝐸2 − Δ2) . (4.51𝑏) 

Using Eq. (4.51) into Eq. (4.46), we find: 

𝑢0 = √
1

2
(1 +

√𝐸2 − Δ2

𝐸
) (4.52) 

𝜈0 = √
1

2
(1 −

√𝐸2 − Δ2

𝐸
) . (4.53) 

Given Eqs. (4.49) and (4.51) for the wavefunctions, we can assume that when an S-N interface is 

present there will be incident and reflected waves. For an incident electron wave function which 

comes from the normal metal (left) electrode towards the interface S-N, I can write: 

Ψin (𝑥) =
1

√𝑣𝑒
(
 1

0
)𝑒𝑖𝑘𝑒𝑥. (4.54)

This incident wave will be reflected back to the normal left side as two left-moving waves 

corresponding to both an electron and a hole. Note that the momentum of a left moving hole is the 

negative of a left moving electron [33], and we have [33]: 

Ψr (𝑥) =
𝑟𝑒𝑒

√𝑣𝑒
(
 1

0
)𝑒−𝑖𝑘𝑒𝑥 +

𝑟ℎ𝑒

√𝑣ℎ
(
 0

1
)𝑒+𝑖𝑘ℎ𝑥, (4.55) 



 

 

57 

 

where 𝑟𝑒𝑒  is the amplitude of the electron’s reflection coefficient, 𝑟ℎ𝑒  is the amplitude of the 

Andreev reflection coefficient of the holes from incident electrons [33] and 𝑣𝑒 ≃ 𝑣ℎ ≃ 𝑣𝐹  is the 

Fermi velocity on the left side. 

On the right side of the interface (the superconductor), the transmitted wave consists of 

right-moving electron-like quasiparticles and right-moving hole-like quasiparticles and we can 

write the wave function as: 

Ψtr (𝑥) =
𝑡𝑒𝑒

√𝑤𝑒
(
𝑢0
𝜈0
) 𝑒+𝑖𝑞𝑒𝑥 +

𝑡ℎ𝑒

√𝑤ℎ
(
𝜈0
𝑢0
) 𝑒−𝑖𝑞ℎ𝑥, (4.56) 

where 𝑡𝑒𝑒 is the amplitude of the electron transmission coefficient and 𝑡ℎ𝑒 is the amplitude of the 

hole transmission coefficient [33]. Note that in Eq. (4.56) 𝑤𝑒  and 𝑤ℎ  are the quasiparticle 

velocities. To find the velocity of the quasiparticles in superconducting electrode, we use the 

relation 𝑣 =
1

ℏ
|
𝑑𝐸

𝑑𝑘
| to obtain: 

𝑤𝑒 =
√𝐸2 − Δ2

𝐸

ℏ𝑞𝑒
𝑚

(4.57𝑎) 

𝑤ℎ =
√𝐸2 − Δ2

𝐸

ℏ𝑞ℎ
𝑚

(4.57𝑏) 

Blonder et al. [37] solved the quasiparticle velocities using a semiclassical approximation. The 

approximation is based on that 𝐸 and Δ are relatively small compared to the Fermi energy 𝜇. This 

gives: 

𝑤𝑒 ≈ 𝑤ℎ ≈
√𝐸2 − Δ2

𝐸

ħ𝑘𝑓
𝑚

(4.58) 

By matching the wave functions and their slope at the S-N interface, we can get the four 

coefficients [33]: 

𝑟ℎ𝑒 =
𝑢0𝑣0

𝑢0
2 + 𝑍2(𝑢0

2 − 𝑣0
2)

(4.59𝑎) 
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𝑟𝑒𝑒 =
(𝑍2 + 𝑖𝑍)(𝑣0

2 − 𝑢0
2)

𝑢0
2 + 𝑍2(𝑢0

2 − 𝑣0
2)

(4.59𝑏) 

𝑡𝑒𝑒 =
(1 − 𝑖𝑍)𝑢0√𝑢0

2 − 𝑣0
2

𝑢0
2 + 𝑍2(𝑢0

2 − 𝑣0
2)

(4.59𝑐) 

𝑡ℎ𝑒 =
𝑖𝑍𝑣0√𝑢0

2 − 𝑣0
2

𝑢0
2 + 𝑍2(𝑢0

2 − 𝑣0
2)

(4.59𝑑) 

where the barrier height parameter is defined as [33]:  

𝑍 =
𝐻0𝑚

ℏ2𝑘𝑓
=
𝐻0
ℏ𝑣𝑓

. (4.60) 

  Blonder et al. next defined the transmission and reflection coefficients from Eq. (4.59): 

𝐴 = |𝑟ℎ𝑒|
2  is the probability of Andreev reflection, 𝐵 = |𝑟𝑒𝑒|

2  is the ordinary reflection 

probability of electrons, 𝐶 = |𝑡𝑒𝑒|
2 is the transmission probability of electrons without branch 

crossing while 𝐷 = |𝑡ℎ𝑒|
2 is the transmission of the holes with branch crossing. Note that if 𝐸 <

Δ, we will have 𝐶 = 𝐷 = 0 [33].   

The concept of “branch crossing” that was introduced by Blonder et al. [33] arises from 

the existence of four mechanisms that contribute to current through an S-N interface. The first 

contribution is due to electrons that travel to the S-N contact from the normal side. Such electrons 

may be Andreev reflected as holes or normally reflected as electrons, or may result in 

quasiparticles that are transmitted to the superconducting side. The second contribution is caused 

by holes in the N side that impinge on the S-N interface. The third contribution is from electron-

like quasiparticles originating on the superconducting side and transferring electrons or holes to 

the normal side. The last process involves hole-like quasiparticles in the superconductor that are 

incident on the S-N interface. To obtain the overall current, we simply add the currents from each 

process. Blonder et al. find: 
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𝐼 = 2𝑁(0)𝑒𝑣𝑓𝜎∫  
∞

−∞

[𝑓0(𝐸 − 𝑒𝑉) − 𝑓0(𝐸)](1 + 𝐴(𝐸) − 𝐵(𝐸))𝑑𝐸. (4.61) 

Here N(0) is the single spins density of states at the Fermi energy of the electrons in the normal 

metal side.  

 

4.4.3 Multiple Andreev Reflection in S-I-S junctions 

Equation (4.61) is for the current in an S-N junction. For transmons, we are interested in 

S-I-S junctions. The effects produced by Andreev reflection become quite complex in S-I-S 

junctions because of the phenomena of Multiple Andreev Reflections (MAR) [34]. Here I discuss 

what happens in superconducting junctions (S-I-S) under a finite voltage and describe bias how a 

quasiparticle may undergo multiple Andreev reflections. During each Andreev reflection, charge 

of ±2e is transferred across the junction, and the quasiparticle gains or loses an energy of 2eV 

(where V is the voltage across the junction). After n such Andreev reflections, a quasiparticle may 

have acquired enough energy to enter one of the superconducting electrodes.  

In the following discussion, I mainly follow the approach of Averin and Bardas [34]. Their 

discussion is particularly clear and describes the current-voltage characteristics of a single S-I-S 

superconducting channel with arbitrary transmission [34]-[37]. 

Figure 4.3 illustrates my version of the AB model of an S-I-S junction. This model is 

essentially an S-N-I-N-S junction. The left lead in this model is a superconductor with gap Δ1, 

while the right lead is a superconductor with gap Δ2. For my research, I am interested in the case 

where Δ1 ≠ Δ2. 𝐴𝑛, 𝐵𝑛, 𝐶𝑛 and 𝐷𝑛 are the amplitudes of the electron and hole wavefunctions in  
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Figure 4.3: Illustration of Andreev reflections process that occur in a model of an SIS tunnel 

junction. The model has two S/N interfaces. An electron-like quasiparticle enters from the left 

electrode. 𝐴𝑛 and 𝐵𝑛 represent rightward and leftward moving electron amplitudes and 𝐶𝑛 and 𝐷𝑛 

represent the amplitudes of leftward and rightward moving holes. The label n represents the net 

number of Andreev reflections. 𝑎𝑛 is the n-th reflection amplitude.  

 

 

the left and right normal regions. In the middle of the junction is a tunnel barrier where electrons 

or holes are reflected or transmitted. A barrier that is entirely transparent will have transparency 

𝐷 = 1. In general, the quantum channel will not be completely transparent, and D will be between 

0 and 1. It's important to note that D is different from the potential barrier Z that we discussed 

earlier in the BTK model. They are related by 𝐷 = 1/(1 + 𝑍2) [33]. Andreev reflections take 
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place at each S-N interface. This gives rise to the possibility of multiple Andreev reflections and 

multiple barrier scattering, which significantly complicates the analysis.  

Andreev reflection can be characterized by a reflection amplitude 𝑎  that depends on 

quasiparticle energy 𝜀 [34]: 

𝑎(𝜀) =
1

Δ
× {

𝜀 − sgn (𝜀)(𝜀2 − Δ2)
1
2,      for     |𝜀| > Δ

𝜀 − 𝑖(Δ2 − 𝜀2)
1
2,      for     |𝜀| < Δ

. (4.62) 

Averin and Bardas then defined a scattering matrix to account for the tunnel barrier: 

𝑆𝑒𝑙 = (
𝑟 𝑡

𝑡 −
𝑟∗𝑡

𝑡∗
) , (4.63) 

where r is the probability amplitude of the quasiparticle reflected from the barrier in the normal 

region (see N1 in Fig. 4.2), and t represents the probability amplitude for a quasiparticle to be 

transmitted through the barrier. In the AB model, wavefunctions in region N1 generated by an 

electron-like quasiparticles incident from the left superconductor can be written as [34]: 

𝜓𝑒𝑙 = ∑ [(𝑎2𝑛𝐴𝑛 + 𝐽𝛿𝑛0)𝑒
𝑖𝑘𝑥 + 𝐵𝑛𝑒

−𝑖𝑘𝑥]𝑒−
𝑖(𝜀+2𝑛𝑒𝑉)𝑡

ℏ

∞

𝑛=−∞

(4.64𝑎) 

𝜓ℎ = ∑ [𝐴𝑛𝑒
𝑖𝑘𝑥 + 𝑎2𝑛𝐵𝑛𝑒

−𝑖𝑘𝑥]𝑒−
𝑖(𝜀+2𝑛𝑒𝑉)𝑡

ℏ

∞

𝑛=−∞

  , (4.64𝑏) 

where 𝑘 and 𝜀 are the wave-vector and energy of the incident quasiparticle, and 𝑎𝑛 = 𝑎(𝜀 + 𝑛𝑒𝑉), 

and n is the net number of Andreev reflection. The second term of the electron wave function in 

Eq. (4.64) corresponds to a quasiparticle incident from the superconductor and this produces an 

electron in the normal region with effective source amplitude [34]: 

𝐽(𝜀) = [1 − |𝑎(𝜀)|2]
1
2. (4.65) 

AB find the wave functions in region N2 of the channel are: 
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𝜓𝑒𝑙 = ∑ [𝐶𝑛𝑒
𝑖𝑘𝑥 + 𝑎2𝑛+1𝐷𝑛𝑒

−𝑖𝑘𝑥]𝑒−
𝑖(𝜀+(2𝑛+1)𝑒𝑉)𝑡

ℏ

∞

𝑛=−∞

(4.66𝑎) 

𝜓ℎ = ∑ [𝑎2𝑛+1𝐶𝑛𝑒
𝑖𝑘𝑥 + 𝐷𝑛𝑒

−𝑖𝑘𝑥]𝑒−
𝑖(𝜀+(2𝑛+1)𝑒𝑉)𝑡

ℏ ,

∞

𝑛=−∞

(4.66𝑏) 

where the sum over 𝑛 represents contributions from multiple Andreev reflections. In this case, it 

takes over all integers from −∞ to ∞. 

AB next used the scattering matrix to relate the wavefunctions in region 1 and 2. They 

wrote this matching conditions as [34]: 

(
𝐵𝑛

𝐶𝑛

) = 𝑆𝑒𝑙 (
𝑎2𝑛𝐴𝑛 + 𝐽𝛿𝑛0

𝑎2𝑛+1𝐷𝑛

)  (4.67a) 

(
𝐴𝑛

𝐷𝑛−1

) = 𝑆ℎ (
𝑎2𝑛𝐵𝑛

𝑎2𝑛−1𝐶𝑛−1

) , (4.67𝑏) 

where 

𝑆ℎ = 𝑆𝑒𝑙
∗  ,  (4.68𝑎) 

𝑆𝑒𝑙 = (
𝑟 𝑡

𝑡 −
𝑟∗𝑡

𝑡∗
) (4.68𝑏) 

Using Eqs. (4.67), Averin and Bardas presented a recursion relation for finding the 

coefficients 𝐴𝑛, 𝐵𝑛, 𝐶𝑛 and 𝐷𝑛 for the case Δ1 = Δ2. From Eq. (4.67a) we can get: 

𝐵𝑛 = 𝑟𝑎2𝑛𝐴𝑛 + 𝑟𝐽𝛿𝑛0 + 𝑡𝑎2𝑛+1𝐷𝑛 , (4.69) 

𝐶𝑛 = 𝑡𝑎2𝑛𝐴𝑛 + 𝑡𝐽𝛿𝑛0 −
𝑟∗𝑡

𝑡∗
𝑎2𝑛+1𝐷𝑛 . (4.70) 



 

 

63 

 

Then from Eq. (4.69) and Eq. (4.70), we can get 𝐶𝑛 and, 𝐷𝑛 as a function of 𝐴𝑛 and 𝐵𝑛 : 

𝐷𝑛 =
1

𝑡𝑎2𝑛+1
𝐵𝑛 −

𝑟𝑎2𝑛
𝑡𝑎2𝑛+1

𝐴𝑛 −
𝑟𝐽𝛿𝑛0
𝑡𝑎2𝑛+1

, (4.71) 

𝐶𝑛 = (
|𝑟|2

𝑡∗
𝑎2𝑛 + 𝑡𝑎2𝑛)𝐴𝑛 −

𝑟∗

𝑡∗
𝐵𝑛 + (

|𝑟|2

𝑡∗
+ 𝑡) 𝐽𝛿𝑛0. (4.72) 

We get the similar results for the Eq. (4.67b): 

𝐴𝑛 = 𝑟
∗𝑎2𝑛𝐵𝑛 + 𝑡

∗𝑎2𝑛−1𝐶𝑛−1, (4.73) 

𝐷𝑛−1 = 𝑡
∗𝑎2𝑛𝐵𝑛 −

𝑟𝑡∗

𝑡
𝑎2𝑛−1𝐶𝑛−1. (4.74) 

Substituting 𝐶𝑛 from Eq. (4.70) into Eq. (4.73), we get: 

𝐴𝑛+1 = 𝑟∗𝑎2𝑛+2𝐵𝑛+1 + 𝑡
∗𝑎2𝑛+1 [(

|𝑟|2

𝑡∗
𝑎2𝑛 + 𝑡𝑎2𝑛)𝐴𝑛 −

𝑟∗

𝑡∗
𝐵𝑛 + (

|𝑟|2

𝑡∗
+ 𝑡) 𝐽𝛿𝑛0]

= 𝑟∗𝑎2𝑛+2𝐵𝑛+1 + 𝑅𝑎2𝑛𝑎2𝑛+1𝐴𝑛 + 𝐷𝑎2𝑛𝑎2𝑛+1𝐴𝑛 − 𝑟
∗𝑎2𝑛+1𝐵𝑛 + 𝑅𝑎2𝑛+1𝐽𝛿𝑛0 +𝐷𝑎2𝑛+1

 (4.75)

thus:

𝐴𝑛+1 − 𝑎2𝑛+1𝑎2𝑛𝐴𝑛 = √𝑅(𝑎2𝑛+2𝐵𝑛+1 − 𝑎2𝑛+1𝐵𝑛) + 𝐽𝑎1𝛿𝑛0, (4.76) 

where R = |𝑟|2.  

The same method can be used to derive the recursion relation for 𝐵𝑛 [34]:  

𝐷𝑎2𝑛+1𝑎2𝑛+2
1 − 𝑎2𝑛+1

2 𝐵𝑛+1 − (
𝑎2𝑛+1
2 𝑅 − 1

𝑎2𝑛+1
2 − 1

−
𝐷𝑎2𝑛−1

2 𝑎2𝑛
2

𝑎2𝑛−1
2 − 1

−𝑅𝑎2𝑛
2 )𝐵𝑛 + +(

𝑎2𝑛−1𝑎2𝑛(𝑎2𝑛−1
2 𝑅 − 1)

𝑎2𝑛−1
2 − 1

− 𝑅𝑎2𝑛𝑎2𝑛−1)𝐵𝑛−1

= −𝑟𝐽𝛿𝑛,0 − 𝑟𝐽𝑎2𝑎1𝛿𝑛−1,0 + 𝑟𝐽𝑎2𝑎1𝛿𝑛−1,0

(4.77) 
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These recursion relations are important because Eq. (4.76) and Eq. (4.77) can be solved by 

choosing a maximum value nm for n and setting all coefficients to 0 if |n| > nm. The wavefunction 

amplitudes An and Bn are needed to find the current through the S-I-S junction, as I describe in the 

next session. 

 

4.4.4 Transmon Relaxation with Multiple Andreev Reflections  

 Quasiparticles tunneling through a junction that is biased with a voltage V can gain or lose 

energy neV from MAR process. This implies that MAR can cause dissipation in the transmon and 

this dissipation will be greater than that due to single quasiparticle tunneling. During an MAR 

process, the total charge transferred across the junction is 𝑛𝑒 = ± e, ± 2e, ± 3e...and the resulting 

relaxation rate of the qubit is: 

1

𝑇1
≅

1

2ħ𝜔𝐶
∑ 2𝑞𝑛 ∗ 𝐼𝑛 (

ℎ𝑓

𝑞𝑛
)

∞

𝑛=−∞

=
1

2ħ𝜔𝐶
∑ 2𝑛𝑒 ∗ 𝐼𝑛 (

ℎ𝑓

𝑛𝑒
)

∞

𝑛=−∞

, (4.78) 

Thus, to find the relaxation rate due to quasiparticle, we need to find the current at voltage ℎ𝑓/ 𝑛𝑒 

due to each process that transfers different charge ne across the junction, where 𝑛 = ± 1, ± 2, 

± 3,... ∞. In conventional single quasiparticle tunneling through a low-transparency junction, only 

the n = 1 term will be important. However, for junctions, with non-zero transparency, MAR can 

be important and higher order terms will dominate.  

The approach developed by Averin and Bardas [34] provides a model for finding the 

current-voltage characteristics of an S-I-S junction undergoing MAR for the case Δ1= Δ2. This 

approach was generalised to the case Δ1 ≠ Δ2 by W. T. Liao et al. [38]. With MAR, an applied 

voltage can lead to multiple Andreev reflections, allowing for the transport of multiple Cooper 

pairs across the junction in addition to quasiparticles. The resulting current-voltage characteristics 
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have features that occur at voltages that are a fraction of the superconducting gap voltages of the 

electrodes, as well as at their sum and difference.  

When an electron-like quasiparticle with energy 𝜀 is incident from the left superconducting 

electrode onto the S/N interface, we could find the wavefunctions by applying Eqs. (4.64) (4.65) 

and (4.68). The electron and the hole probability current density can then be found by applying: 

𝑗 =
ħ

2𝑚𝑖
(𝜓∗𝛁𝜓 − 𝜓𝛁𝜓∗). (4.79) 

In principle, we can use this to find the total probability current density due to an electron-like 

quasiparticle with energy 𝜀  incident from the left superconducting side. AB find that this 

probability current density can be written as a sum of Fourier components [34]: 

𝑗(𝜀, 𝑡) =
ħ𝑘

𝑚
∑  

𝐾=0,±1,±2,..

𝑗𝐾(𝜀, 𝑉)𝑒
𝑖2𝐾𝑒𝑉𝑡

ħ . (4.80) 

Intepreting over energy and including the occupancy and density of states of the quasiparticles, 

one can write the total current as: 

𝐼(𝑡) =∑  

𝑘

𝐼𝑘𝑒
𝑖2𝑘𝑒𝑉𝑡/ħ, (4.81) 

where 𝐼𝑘 is the current for the k-th Fourier component.  

 For my devices, I need to include contributions from non-equilibrium quasiparticles. I 

assume the non-equilibrium quasiparticles have an occupancy function 𝑔𝐿(𝜖) for the electron-like 

quasiparticles and  𝑔𝐿(−𝜖)  for the hole-like quasiparticles: 

                                                          𝑔(𝜖, 𝑇) = {

1

1+𝑒

𝜖−𝜇
𝑘𝐵𝑇

     for     𝜖 > 0.                                     (4.82𝑎)

1

1+𝑒

𝜖+𝜇
𝑘𝐵𝑇

     for     𝜖 < 0.                                     (4.82𝑏)

For thermal equilibrium quasiparticles, we have 𝜇 = 𝜖𝐹  and this was the case considered by AB 
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and by W. T. Liao et al. For non-equilibrium quasiparticles, 𝜇 will be determined by the density 

of non-equilibrium quasiparticles (see discussion in section 4.1.2). For thermal equilibrium 

quasiparticles, W. T. Liao et al. formed the k-th Fourier component which can be written as [38]:  

              𝐼𝑘 =
𝑒

2𝜋ℏ
[2𝑒𝑉𝐷𝛿𝑘0 − ∫ 𝑑𝜖 (1 − 2𝑔𝐿(𝜖))

∞

−∞

𝑋𝑘
(𝐿) + ∫ 𝑑𝜖 (1 − 2𝑔𝑅(𝜖))

∞

−∞

𝑌𝑘
(𝑅)] , (4.83)  

where:   

𝑋𝑘
(𝐿) = 𝐽𝐿(𝜖)(𝑎2𝑘

∗(𝐿)𝐴𝑘
∗(𝐿) + 𝑎−2𝑘

(𝐿) 𝐴−𝑘
(𝐿)) + ∑ (1+ 𝑎2𝑛

(𝐿)𝑎2(𝑛+𝑘)
∗(𝐿) )(𝐴𝑛

(𝐿)𝐴𝑛+𝑘
∗(𝐿) − 𝐵𝑛

(𝐿)𝐵𝑛+𝑘
∗(𝐿))

∞

𝑛=−∞

(4.84𝑎) 

𝑌𝑘
(𝑅) = 𝐽𝑅(𝜖)(𝑎2𝑘

(𝑅)𝐴𝑘
(𝑅) + 𝑎−2𝑘

∗(𝑅)𝐴−𝑘
∗(𝑅)) + ∑ (1 + 𝑎2𝑛

∗(𝑅)𝑎2(𝑛+𝑘)
(𝑅) )(𝐴𝑛

∗(𝑅)𝐴𝑛+𝑘
(𝑅) − 𝐵𝑛

∗(𝑅)𝐵𝑛+𝑘
(𝑅) ).

∞

𝑛=−∞

(4.84𝑏) 

Here D is the junction transparency. The superscript L in the Ak and Bk factors are quasiparticle 

amplitudes that arose from quasiparticles that were sourced from the left electrode, while the 

superscript R in the Ak and Bk factors designate amplitudes that arose from quasiparticles that were 

sourced from the right electrode. Similarly, the L superscript in the ak factors designates an 

Andreev reflection amplitude off the left electrode, while the superscript R superscript in the ak 

factors designates an Andreev reflection amplitude off the right electrode. The 𝑋𝑘
(𝐿)

 factor is 

generated by electron-like or hole-like quasiparticles that started from the left electrode, while the 

𝑌𝑘
(𝐿) factor is generated by electron-like or hole-like quasiparticles that started from the right 

electrode. This result applies to Δ1 ≠ Δ2 as well as Δ1= Δ2. Unfortunately, the electron-like and 

hole-like contributions have been combined. In Eq. (4.83a) and (4.83b) the sums are formally over 
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all integer values, i.e. for n = 0,±1,±2, ... ±∞. The sums cannot be completed analytically and 

we need to resort to numerical evaluation and terminate these sums. 

Notice that the integration over energy 𝜖 in Eq. (4.82) represents a sum over independent 

events. There will be a probability of seeing each event, or rate at which each event occurs, and a 

charge that is transferred during each event. The charge may correspond to a single electron 

transfer of ±𝑒, as in Giaever tunneling of a quasiparticle from one electrode to the other electrode 

of a junction. It can also be that charge ±2e is exchanged, as occurs for Andreev reflection of a 

quasiparticle from an electrode. When multiple Andreev processes are included, in general a 

process can involve the transfer of ne charges, where n is an integer. For determining the transmon 

relaxation using Eq. (4.83) it will be necessary to not only determine the current contributions from 

the electron-like and hole-like quasiparticles from each electrode, but we will also need to tease 

out each process, the rate at which each process occurs and the charge transfer during each process.  

Table 4.1 lists the 16 possible distinct processes that may occur with MAR in an S-I-S 

junction [38]. In this Table, positive n corresponds to clockwise movements around the diagram 

in Fig. 4.1. In the kernel column, 𝐵𝑛
𝐿(𝐸, E’, V), for example, designates the amplitude for leftward 

going electrons in region N1 with energy E’=E+2neV that were generated by an electron that was 

incident from the left electrode (L-superscript) with energy E. As another example, 

𝐷𝑛
𝑅′(𝐸, E’, V) designates the amplitude for rightward going holes in region N2 with energy E’ that 

were generated by a hole that entered from the right electrode (R’-superscript) with energy E. 

Similar to the discussion in Sec. 4.4.3, the amplitudes for the 16 processes can be solved from 

recursion relations, which are shown in Table 4.2.  

Figure 4.4 shows an example simulation of current integrals for D=0.05, Δ1 =

220𝜇eV, Δ2 = 200𝜇eV, 𝜇1 = 𝜇2 = 28.37 𝜇eV, kBT = 13𝜇eV. The blue curve shows the current 
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from Process #3, the red curve shows the total current from all 16 processes. For process #3, which 

involves an electron from the left side Andreev reflecting off the right side and a hole being 

injected into the left side. This is the key Andreev process. I consider a current flow from right to 

left when V was applied. I can write the current as:  

𝐼#3 = ∑  

∞

𝑛=−∞

2𝑛𝑒

2𝜋ħ
∫  
∞

−∞

|𝐴𝑛
𝐿 (𝐸, 𝐸′)|2|J𝐿(E)|

2|J𝐿(E
′)|2(g𝐿(E)g𝐿(E′))𝑑𝐸 (4.85) 

where the occupancy and kernel terms of Process #3 can be found in the Table 4.1. The 

characteristics are quite complicated, there are many features in this plot. The most prominent 

feature includes in the blue curve, at eV= Δ1+Δ2 =420 𝜇eV. This is due to quasiparticle Giaever 

tunneling when there’s enough voltage. Two other features are at eV=200 𝜇eV  and 220 𝜇eV 

(corresponding to Δ1 and Δ2). These are due to quasiparticles in the gap Δ1=200 𝜇eV and Δ2=220 

𝜇eV. At eV=110 𝜇eV and eV=100 𝜇eV (half of Δ1 and Δ2), this is due to MAR with n=2 (2eV 

transfer).  Below 80 𝜇eV, the current is small and independent of voltage. This current is from non-

equilibruim quasiparticles. These step sizes will grow with the increased transparency.  
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Figure 4.4: I-V curve for Andreev Reflection considering Process #3 and total current in semi log 

scale. 
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Table 4.1: Andreev tunneling processes. −e in 2nd and 4th columns denote electron-like 

quasiparticle (charge −e), h denotes a hole with positive charge e, L is the left electrode, R is right 

electrode, L is left electrode. E is initial energy of the injected quasiparticle, E’ is energy of emitted 

quasiparticle, Q is the charge transferred from the L to R electrode due to the process. 

 

# start  end  occupancy source/drain kernel E′ ΔQ 

1 −e L −e L 
𝑔L(E)* 

(1 − 𝑔L(E
′)) 

|JL(E)|
2| JL(E

′)|2 |Bn
L(E, E′, V)|

2
 Ee

= E + 2neV 
-2ne 

2 −e L −e R 
𝑔L(E)* 

(1 − 𝑔𝑅(E
′)) 

|JL(E)|
2|JR(E

′)|2 |Cn
L(E, E′, V)|

2
 Ee = E+ 

(2n + 1)eV 
-(2n+1)e 

3 −e L h L 𝑔L(E)𝑔L(E
′) |JL(E)|

2| JL(E
′)|2 |An

L (E, E′, V)|
2
 −(E + 2neV) 

= −Eh 
-2ne 

4 −e L h R 𝑔L(E)𝑔𝑅(E
′) |JL(E)|

2|JR(E
′)|2 |Dn

L(E, E′, V)|
2
 

−(E + (2n
+ 1)eV)
= −En 

-(2n+1)e 

5 −e R −e L 
𝑔𝑅(E)* 

(1 − 𝑔L(E
′)) 

|JR(E)|
2|JL(E

′)|2 |Bn
R(E, E′, V)|

2
 Ee = E+ 

(2n + 1)eV 
-(2n+1)e 

6 −e R −e R 
𝑔𝑅(E)* 

(1 − 𝑔𝑅(E
′)) 

|JR(E)|
2JR(E

′)|2 |Cn
R(E, E′, V)|

2
 Ee

= E + 2neV 
-2ne 

7 −e R h L 𝑔𝑅(E)𝑔L(E
′) |JR(E)|

2 JL(E
′)|2 |An

R(E, E′, V)|
2
 

−(E + (2n
+ 1)eV)
= −En 

-(2n+1)e 

8 −e R h R 𝑔𝑅(E)𝑔𝑅(E
′) |JR(E)|

2|JR(E
′)|2 |Dn

R(E, E′, V)|
2
 −(E + 2neV) 

= −Eh 
-2ne 

9 h L −e L 
(1 − 𝑔L(E)) ∗ 

(1 − 𝑔L(E
′)) 

|JL(E)|
2| JL(E

′)|2 |Bn
L′(E, E′, V)|

2
 

Ee 
= −E + 2neV 

-2ne 

10 h L −e R 
(1 − 𝑔L(E))* 

(1 − 𝑔𝑅(E
′)) 

|JL(E)|
2|JR(E

′)|2 |Cn
L′(E, E′, V)|

2
 

Ee = −E + 
(2n + 1)eV 

-(2n+1)e 

11 h L h L 
(1 − 𝑔L(E))* 

 𝑔L(E
′) 

|JL(E)|
2| JL(E

′)|2 |An
L′(E, E′, V)|

2
 

E − 2neV 
= −Eh 

-2ne 

12 h L h R 
(1 − 𝑔L(E)) 
𝑔𝑅(E

′) 
|JL(E)|

2|JR(E
′)|2 |Dn

L′(E, E′, V)|
2
 

E
− (2n + 1)eV 

= −Eh 
-(2n+1)e 

13 h R −e L 
(1 − 𝑔𝑅(E)) 

*(1 − 𝑔L(E
′)) 

|JR(E)|
2|JL(E

′)|2 |Bn
R′(E, E′, V)|

2
 

Ee = −E + 
(2n + 1)eV 

-(2n+1)e 

14 h R −e R 
(1 − 𝑔𝑅(E))

∗ (1 − 𝑔𝑅(E
′)) 

|JR(E)|
2JR(E

′)|2 |Cn
R′(E, E′, V)|

2
 

Ee = −E 
+2neV 

-2ne 

15 h R h L 
(1 − 𝑔𝑅(E)) 
∗ 𝑔L(E

′) 
|JR(E)|

2| JL(E
′)|2 |AR

′
(EE′V)|

2
 

E
− (2n + 1)eV 

= −Eh 
-(2n+1)e 

16 h R h R 
(1 − 𝑔𝑅(E)) 
∗ 𝑔𝑅(E

′) 
|JR(E)|

2| JR(E
′)|2 |Dn

R′(E, E′, V)|
2
 

E − 2neV 
= −Eh 

-2ne 
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Table 4.2: Unity Source Recursion relations for finding the electron and hole wave amplitudes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

e-source on left 

(process 1-4) 

h-source on left 

(process 9-12) 

e-source on right 

(process 5-8) 

h-source on right 

(process 13-16) 

𝒜𝑛

= 𝑟∗𝑎2𝑛ℬ𝑛 + 𝑡
∗𝑎2𝑛−1𝒞𝑛−1 

𝒜𝑛

= 𝑟∗𝑎2𝑛ℬ𝑛 + 𝑡
∗𝑎2𝑛−1𝒞𝑛−1

+ 𝑟∗𝛿𝑛0 

𝒜𝑛 = 𝑟∗𝑎2𝑛ℬ𝑛 + 𝑡
∗𝑎2𝑛−1𝒞𝑛−1 𝒜𝑛

= 𝑟∗𝑎2𝑛ℬ𝑛 + 𝑡
∗𝑎2𝑛−1𝒞𝑛−1

+ 𝑡𝛿𝑛−1,0 

ℬ𝑛 = 𝑟𝑎2𝑛𝒜𝑛 + 𝑡𝑎2𝑛+1𝒟𝑛

+ 𝑟𝛿𝑛0 

ℬ𝑛 = 𝑟𝑎2𝑛𝒜𝑛 + 𝑡𝑎2𝑛+1𝒟𝑛 ℬ𝑛 = 𝑟𝑎2𝑛𝒜𝑛 + 𝑡𝑎2𝑛+1𝒟𝑛

+ 𝑡𝛿𝑛0 

ℬ𝑛 = 𝑟𝑎2𝑛𝒜𝑛 + 𝑡𝑎2𝑛+1𝒟𝑛 

𝒞𝑛 = 𝑡𝑎2𝑛𝒜𝑛 − 𝑟
∗
𝑡

𝑡∗
𝑎2𝑛+1𝒟𝑛

+ 𝑡𝛿𝑛0 

𝒞𝑛 = 𝑡𝑎2𝑛𝒜𝑛 − 𝑟
∗
𝑡

𝑡∗
𝑎2𝑛+1𝒟𝑛 𝒞𝑛 = 𝑡𝑎2𝑛𝒜𝑛 − 𝑟

∗
𝑡

𝑡∗
𝑎2𝑛+1𝒟𝑛

+ 𝑟𝛿𝑛0 

𝒞𝑛 = 𝑡𝑎2𝑛𝒜𝑛 

−𝑟∗
𝑡

𝑡∗
𝑎2𝑛+1𝒟𝑛 

𝒟𝑛−1

= 𝑡∗𝑎2𝑛ℬ𝑛 − 𝑟
𝑡∗

𝑡
𝑎2𝑛−1𝒞𝑛−1 

𝒟𝑛−1

= 𝑡∗𝑎2𝑛ℬ𝑛 − 𝑟
𝑡∗

𝑡
𝑎2𝑛−1𝒞𝑛−1  

+ 𝑡∗𝛿𝑛0 

𝒟𝑛−1

= 𝑡∗𝑎2𝑛ℬ𝑛 − 𝑟
𝑡∗

𝑡
𝑎2𝑛−1𝒞𝑛−1 

𝒟𝑛−1 = 𝑡∗𝑎2𝑛ℬ𝑛  

−𝑟
𝑡∗

𝑡
𝑎2𝑛−1𝒞𝑛−1

+ 𝑟∗𝛿𝑛−1,0 
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Chapter 5 

Transmons Design and Fabrication 

The transmon qubits I fabricated and measured were based on a three-dimensional (3D) 

configuration [1], in which the qubit is mounted in a three-dimensional microwave cavity made of 

superconducting Al, as in H. Paik's original design. This innovative design offers some advantages 

over 2D configurations [2], including reduction of decoherence caused by surface dielectric loss 

and reduced loss due to coupling to low-Q microwave modes. Consequently, this strategy allows 

for potentially longer lifetimes of the qubits.  

In this chapter, I describe the design and fabrication of a transmon chip SKD102.  Dr. 

Sudeep Dutta wrote the pattern and I fabricated the chip. In Section 5.1, I discuss the design of our 

transmons as well as the test patterns and the layout of the chips.  In section 5.2, I discuss the cavity 

design. This is followed, in section 5.3, with a discussion of transmon fabrication, including 

substrate preparation, e-beam lithography, thermal evaporation, and lift-off. In the remaining 

sections I describe initial testing on the junctions and films that I used to characterize the process. 

 

5.1 Transmon Design 

The design of our 3D transmons is similar to that of many other groups [3][4]. I used the 

same design for our conventional and gap-engineered transmons.  For most of my transmon chips, 

there were two transmons and two sets of test junction patterns on one 5mm × 5mm sapphire chip. 

The main reason for having two transmons on one chip was to allow me to fabricate and 

simultaneously test a gap-engineered transmon and a standard transmon. 
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Figure 5.1(a) shows the design of our transmon chip pattern. Each transmon has two large 

pads which act as shunting capacitors for the Josephson junctions. They also act as a dipole antenna 

to couple to the mode of the cavity. Each pad is 500 μm x 650 μm and this layout gives CΣ ~ 80fF 

and  𝐸𝑐/ℎ ≃ 200 MHz on a sapphire substrate. My design target was for a transmon frequency 

below 4 GHz which reduces the loss from the Purcell effect [5]. 

For spectroscopic measurements to distinguish the two transmons on each chip, the 

junction areas were designed to differ by 10% with 200 nm × 200 nm and 200 nm × 220 nm, 

respectively, which tends to give critical currents that differ by 10%. In practice however, there is 

too much variation in our oxidation process to make this difference reliable, so in addition the 

spacings between the two pads were also made to differ. I used spacings of 120 μm and 150 μm, 

respectively, which resulted in a 10% difference in Ec. This difference in Ec was observable by 

measuring the anharmonicity and transition frequencies. 

Each chip also included test junctions. Below each transmon, there was a test pattern with 

eight Josephson junctions (see Fig. 5.1(b)). Each test junction was identical to the left transmon 

with 200 nm × 200 nm junction sizes. The eight junctions in a pattern share one capacitance pad 

in the center. The purpose of these test patterns was to check the resistance variation in co-

evaporated junctions and identify good oxidation patterns.  
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  (a) 

 

   (b) 

.                            

Figure 5.1: CAD drawing of the chip design. (a) Two transmons (large structures) and two sets of 

testing junctions below. (b) Detail of the testing junctions. 
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   (a)                                      (b)

 

Figure 5.2 (a) CAD drawing of transmon pads (blue) and the Josephson junction (red).  (b) Detail 

of the Josephson junction design.  

 

Figure 5.2 (a) shows the CAD design of the left transmon. The blue rectangles represent 

the transmon capacitor pads and the red line represents the Josephson junction and its connections 

to the pads. The dimensions of each pad are 500 μm × 650 μm. Figure 5.2 (b) shows the design 

for the Josephson junction of the left transmon. This pattern gives a resist bridge between two 

disconnected lines; the bridge is used for two-angle evaporation of the junction [6]. The two 200 

nm wide lines are perpendicularly oriented to each other and separated by the 250 nm resist bridge. 

The right transmon has slightly different dimensions as discussed above. 
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5.2 Cavity Design 

The microwave cavities I used in my research were built by Dr. Cody Ballard [7]. A 

photograph of cavity SI-2a is shown in Fig. 5.3. The 5 mm × 5 mm transmon chip was placed 

inside the 3D cavity. 

This cavity has a fundamental cavity resonance of about fc = 6.115 GHz [8]. Setting the 

cavity's resonance higher than the transmon's transition frequency of ~ 3-6 GHz was an intentional 

design choice to decrease loss from the Purcell effect [5]. The cavity was made from Al because 

it exhibits low energy loss when it is in a superconducting state. The cavity was fitted with two 

non-magnetic SMA (Sub Miniature version A) connectors. These served as the input and output 

pins for the microwave drive and readout, respectively [9]. The strength of the coupling between 

the cavity mode and these ports was fine-tuned by carefully adjusting the length of the central 

conducting pin of the SMA connector that extends into the cavity [7]. 

 

5.3 Transmon Fabrication  

For the construction of transmons, it's crucial to follow a precise and reliable fabrication 

process. Dust, unwanted oxide layers between the superconductor and substrate, contaminants, 

impurities, and errors in the alignment of the layers can significantly degrade the performance or 

operating parameters of the transmon. The fabrication of my transmons was carried out in the Toll 

Physics Building room B0219 and the FabLab in the Kim Building at the University of Maryland. 

In the following sections, I present a comprehensive description of each step in the fabrication 

procedure.   
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Figure 5.3: Picture of Al cavity SI-2a. The left half has a transmon chip mounted inside it. 

The SMA connectors (gold) are for the microwave input and output signals. The transmon chip 

was secured in place with indium between the sides of the chip and the cavity. The cavity was then 

sealed with In between the two halves. 

 

 

5.3.1 Substrate Cleaning  

The substrate preparation was performed in the FabLab by Dr. Sudeep Dutta. A clean 3-

inch diameter c-axis oriented sapphire wafer was used. This wafer was 430 μm thick and polished 

on one side. The wafer was rinsed with acetone, methanol, isopropanol and finally water to remove 

any solvent residue. Each rinsing process took around 1 min. The wafer was then dried with 

nitrogen gas and baked on a hot plate at 200 C for about 5 minutes.   
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5.3.2 Application of Resist Layers 

The wafer was mounted on a Headway EC101 wafer spinner [10] and LOR10A resist [11] 

was applied. The spin speed was increased from 1000 rpm to 4000 rpm for 45 s. This speed and 

time results in a 1000 nm thick layer. The wafer was then baked on a hot plate at 180C to 200C 

for 10 minutes. Following the baking step, with the wafer stationary on the spinner, a drop of 950 

PMMA C2 [12] was next applied. I then spun the wafer at 4000 rpm for 45 s, leaving a 150 nm 

thick layer. The wafer was then baked at 230C in an oven for 2 hours.  

Since sapphire is highly insulating, charging problems would occur during e-beam writing.  

To prevent this, I added a conducting layer.  This anti-charging layer was 15 nm of thermally 

evaporated Al on top of the LOR/PMMA bi-layer stack.  

 

5.3.3 Wafer Dicing 

Before dicing the chip, 1813 photoresist [13] was applied to the wafer and spun at 4000 

rpm for 45 s. It was then baked at 120 C for 5 minutes. This protected the e-beam layers and the 

anti-charging layer from damage and contamination. Cutting was done on a Microautomation 

Industries Model 1006 dicing saw [14] with a 200 m wide diamond blade to dice a wafer into 5 

mm by 5 mm chips.  In order to mount the wafer to the dicing saw stage, tape from Ultron Systems, 

Inc [15] was used.  

 

5.3.4 E-Beam lithography 

Before doing e-beam lithography, I peeled off the chosen chip from the dicing adhesive 

tape. I then put the chip into an acetone bath for 3 minutes to remove the protective 1813 resist 

layer. I then dried the chip with 𝑁2 gas. I next applied a drop of aquaSAVE, a conductive polymer, 
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and spun the chip at 4000 rpm for a minute. The aquaSAVE helped to further reduce charging 

problems. After this step, the chip was then ready for e-beam writing.  

E-beam writing was done on a Raith Eline system [16] in the FabLab using an accelerating 

voltage of 10 kV. I used a 60 m aperture for junctions and a 120 m aperture for capacitance 

pads. After adjusting the beam alignment and focus, the system was ready to do the writing. First, 

following the procedure of Dr. Sudeep Dutta for the junction layers, I used a dose of 160 μC/cm2 

with step size of 20 nm in x and y. For the pads layer, I used a dose of 200 μC/cm2 with 100 nm 

lateral step size. The design was loaded as DXF format files with different layers. After checking 

the position list of each layer and the estimated dwell time, the chip was written. This typically 

took about one hour for pattern writing [16]. 

 

5.3.5 Developing the Resists 

After finishing the writing, I developed the e-beam resist in the cleanroom of the FabLab. 

First, I removed the aquaSAVE anti-charging layer by rinsing the chip in water for one minute and 

then drying it with nitrogen gas. I next removed the Al anti-charging layer by placing the chip in 

a beaker of MF CD-26 [17] for 3 minutes. I next rinsed the chip in deionized water for 30 s and 

dried it with nitrogen gas. I then developed the PMMA e-beam resist layer by putting the chip in 

a beaker with a mixture of MIBK [18] and isopropanol in a ratio of 1:3 for about 80 s. I then moved 

the chip to a beaker of isopropanol for 30 s and dried with nitrogen gas. These steps removed all 

the areas that had been exposed by the electron beam.  

I next placed the chips in MF CD-26 again to develop the undercut of the junction bridges. 

The development time for this step depends on the desired undercut widths. I typically used a 

development time of 50 s. After this I put the chip in DI water for one minute and dried the chip.  
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In Fig. 5.4, the undercut from the development of the LOR is visible as a bright edge around the 

pattern. After developing, each transmon pattern has an undercut bridge where the junction will 

be. 

 

 

 

 

 

 

Figure 5.4: An optical photograph of the e-beam resist layers of the junction area after the 

development process. The brighter areas are the undercut region.  

 

 



 

 

81 

 

5.3.6 Thermal Evaporation 

I used the cryo-pumped thermal evaporator in Room 0219 in the Toll Physics Building to 

perform the evaporation (see Fig. 5.5). The base pressure of this evaporator is about 2 × 10-7 Torr. 

For Al evaporation, I used top #2 of the evaporator. This evaporator top is designed for double-

angle evaporation and has an angle indicator, which controls the sample tilt and can be seen 

through a window on the evaporator.  

The evaporator has a small, separate volume which can be filled with oxygen for use during 

the oxidation step. This oxygen reservoir is connected to the chamber with a general-purpose valve 

and a needle valve. The needle valve allows precise control of oxygen pressure during the 

deposition (see last section of this Chapter). 

After venting the evaporator, I loaded an evaporation boat with 5 or six pieces of Al shot; 

I used electrode #1 with tungsten wire evaporation baskets for the Al shot. I next clamped the chips 

onto a sample holder made by Dr. Sudeep Dutta. For depositing transmons with different layers, a 

mechanical mask was attached under the sample holder. If identical devices were needed, this 

mask was not used. Otherwise, the end of the mask was attached to the shutter with a string. With 

this system you can move the mechanical mask, and also cover chips when you don’t want to 

deposit, or only expose chips you want by rotating the shutter. The moving mask attached to the 

shutter make a allowed me to make different depositions on different devices on the same chip. I 

then mounted the sample holder onto the rotating stage of the evaporation top, placed the top back 

onto the vacuum chamber and then pumped out the system to base pressure. I typically pumped 

overnight to ensure a low background pressure. 
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 5.3.7 Double-Angle Al Deposition and Oxidation 

For transmon chip SKD102 with left transmon 𝑄𝐿1 and right transmon 𝑄𝑅1, I first set the 

sample stage angle to 𝜙= - 45º and the entire chip with two qubits was then exposed to the 

evaporating aluminum. The typical evaporation rate was 0.3 nm/s to 0.6 nm/s. I stopped the Al  

 

 

Figure 5.5: Photograph of the thermal evaporator. 

 

 



 

 

83 

 

deposition at a thickness of ℎ1=28 nm. the base electrode layers of the left and right transmons 

were evaporated at the same time, they should have the same superconducting gap Δ1. 

 After evaporating the base layer, I closed the shutter and stopped the evaporation. After 

waiting one minute for the system to cool down, I closed the valve between the cryopump and the 

evaporation chamber. I then oxidized the first Al layer by opening the general valve between the 

oxygen reservoir and the chamber to bleed in the desired amount of 𝑂2 .The amount of the 𝑂2 I 

used would vary from evaporation to evaporation. For device SKD102, I used 2 Torr of 𝑂2 for 7.5 

minutes. After the oxidation I reopened the cryo-pump valve and pumped the system for about 5 

to 10 min to reach base pressure. During this process, I also changed the mechanical mask position, 

so the right transmon was totally covered by the mechanical mask while the left transmon was 

exposed to the evaporation source. 

I then set an angle of 𝜙= -12.5º relative to the chip surface for the second evaporation, 

which is for second layer (counter electrode layer) of the gap-engineered transmon (left transmon). 

I then opened the needle valve to let oxygen in slowly. When the 𝑂2 pressure inside the chamber 

stabilized to 2.5× 10−6 Torr, I opened the shutter and started the evaporation. The second layer of 

the left transmon needs to fully cover the base electrode layer and should be twice as thick as the 

first layer to form a junction, so I evaporated the second layer to a thickness of about ℎ2= 77 nm. 

After the evaporation, I closed the shutter, turned off the needle valve and stopped the current. 

This gave a second layer with a superconducting gap Δ2 that was greater than Δ1. 

 I then set the angle to 𝜙= 0º and moved the mechanical mask to fully cover the left 

transmon with the right transmon exposed to the evaporation source; no 𝑂2 was present for this 

evaporation. This let me build the right transmon so that it was not gap-engineered. After the 
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evaporation, I closed the shutter and stopped the evaporation at a thickness of ℎ3= 66 nm for this 

layer.  The resulting gap Δ3 of this layer should be close to Δ1.  

Sudeep and I did separate measurements in co-deposited film to obtain the gaps of each 

electrode from 𝑇𝐶  measurements. As discussed in the final section of this Chapter, I also did 

separate tests to determine how the gap of the thin Al films depended on 𝑂2 pressure. For these 

two devices, the 𝑇𝐶 measurements gave Δ1 = 200.0 μeV, Δ2 = 227.1 μeV and Δ3 = 191.1 μeV. 

Finally, in order to have a clean oxide layer on the top layer of both devices, I ended with 

a passivation step. After the evaporation I closed off the cryo-pump and opened the 𝑂2 reservoir 

to set a pressure of about 1.5 Torr for 15 to 30 minutes. After this was done, I vented the chamber 

with 𝑁2, placed the device in a chip holder, and moved onto the lift-off stage. The whole process 

is shown schematically in Fig. 5.6.  Figure 5.7 shows the images of mechanical mask and chip 

holder and how mechanical mask moves during the deposition. Figure 5.8 shows part of the 

evaporation setup inside the evaporator with the location of shutter, mechanical mask and chip 

holder.   

 

5.4 Lift-off Procedure 

I performed the lift-off process in Room 0357 in the Toll Physics Building. The purpose 

of this step is to remove the Al that is not part of the final devices. I first prepared a beaker with 

Remover PG and put it on a hot plate set to 95 ºC, covering it with a glass lid. After 15 min, the 

remover is hot, and I placed the chip in the liquid and left it for about 15 minutes. Next, I removed 

the chip and sprayed it with isopropanol to remove the excess Al. After this, I placed the chip back 

in the Remover PG for at least 30 min on the hot plate. I then removed it, gave it a final isopropanol 

spray, dried it using N2 gas, and placed it in a chip carrier for transport.  I then checked the junctions 
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under the optical microscope. If needed, I would repeat the lift-off process. Figure 5.9 shows SEM 

and optical microscope images of the resulting junction area. 

 

Figure 5.6: Double-angle evaporation fabrication procedure for building two transmons with 

different layer configurations on the same chip in the same pump down. The gap-engineered 

transmon has layers with gaps Δ1 and Δ2. The standard transmon has layers with gaps Δ1 and Δ3. 

 

        

(a) (b) 
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Figure 5.7: Images of chip holder and mechanical mask. (a) The mechanical mask has six holes in 

order to expose the chips on the chip holder. (b) The chip holder has four chips on it. The chip 

SKD102 is placed on position A. The chips on position B, C and D are for collecting the Al thin 

films for gap measurements. The mask is anchored on top of the chip holder with 5mm space in 

between. (c) Three different mask positions showing the deposition process of chip SKD102 with 

two transmons having the same first layer (Δ1) but different second layer (Δ2 and Δ3) and the 

deposition of other three Al thin films. 

 

 

(c) 
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Figure 5.8: Evaporation setup inside the evaporator. The mechanical mask is anchored with the 

chip holder with screws. The chip holder is covered by the mask and its position is fixed while the 

mechanical mask can move horizontally. The mask is also attached to the shutter with a string, so 

it can follow the movement of the shutter. By rotating the shutter, mask can move to different 

positions for different depositions.  
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(a) 

 

                                                 

 

 

 

              

 

 

(b) 

.             

 

Figure 5.9: (a) SEM micrograph showing transmon junction formed using double-angle 

evaporation of Al. (b) Optical micrograph of transmon junction area.  
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5.5 Tunnel Junction Resistance Measurement  

I next measured the resistance across the junctions using the probe station located in the 

sub-basement lab, Room SB 0331. I used a 100 kΩ resistor in series with the probes in order to 

protect the junctions from being blown out by static electricity. To measure the resistance, I used 

a Fluke 87 III handheld digital multimeter [19] set to a fixed range of 600 kΩ. To further protect 

the junctions, I attached a grounding switch via a BNC tee in parallel with the probes. While 

touching the probes to the junction pads, this switch was set to “ground”, which grounded the 

probes; I switched to “live” mode to take the measurement, which connected the probes to the 

circuit. I also used an SCD model 963E benchtop air ionizer [20] to reduce electrostatic charging. 

The gap engineered transmon on SKD102 had normal-state resistance 𝑅𝑛 = 22.4 kΩ and the 

standard transmon had 𝑅𝑛 = 11.4 kΩ. This was an acceptable range and corresponded to an 

expected transition frequency of 2.77 GHz and 3.88 GHz.  

 

5.6 Oxygen Doping Tests on Al Films 

As discussed, I used granular Al with different oxygen doping to fabricate transmon 

electrodes with different superconducting gaps. The gap-engineered transmon needed to have a 

base electrode and counter electrode that had different superconducting gaps. To have good values 

for the gap, I needed to know how much O2 to include during the deposition. To get this data, I 

performed oxygen doping tests on thin Al films.  

The test Al films were deposited on sapphire at a rate of about 0.5 nm/s in a cryo-pumped 

system with a base pressure of 3.5 × 10−7 Torr. Oxygen was bled into the chamber from an 

opening about 13 inches above the substrate and flowed continually through the system during the 

deposition. The O2 pressure was monitored just above the system’s open gate valve and was lower 
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than the pressure at the sample, although we do not have an accurate calibration of difference in 

pressure. The film thickness was monitored using a crystal thickness monitor.  

I deposited thin films with different O2 pressure and thickness. After deposition, the 

resistance of the samples was measured versus temperature to determine the transition temperature 

𝑇𝐶 and the residual resistivity ratio (RRR). The RRR is a measure of the purity and granularity of 

the material. These measurements were carried out using a Physical Properties Measurement 

System (PPMS) in Room 0335 of Toll’s Building.  

Figure 5.10 shows the resulting critical temperature 𝑇𝐶 versus oxygen doping pressure P 

according to crystal monitor during the deposition, the film thickness of the samples were around 

either 15nm and 35nm. However, subsequent profilometer measurements of real thickness showed 

this was about twice as large as the thickness from crystal monitor reading. As expected, higher 

oxygen doping pressure and thinner films [21]-[24] produced higher 𝑇𝐶  values. From 𝑇𝐶 ,  I 

determined the superconducting gap Δ using the BCS Eq. (3.28).  

Finally, Figure 5.11 shows the RRR of the films vs 𝑇𝐶. Higher 𝑇𝐶 films produced lower 

RRR as expected, and all the points fall on practically the same curve, independent of the film 

thickness.  
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Figure 5.10: Plot showing measured film critical temperature 𝑇𝐶 versus O2 gas doping pressure 

𝑃𝑂2. The blue points are for 70 nm thick films and the red points are for 30 nm thick films. Red 

and blue lines are guides to the eye.  
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Figure 5.11: Plot showing measured film residual-resistance ratio RRR (blue points) versus 𝑇𝐶. 

Red line is a guide to the eye. 
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Chapter 6 

Experimental Setup 

This chapter provides an overview of the experimental setup and procedures that I used to 

transmons. I first describe the dilution refrigerator, and then discuss the microwave wiring and 

filtering, the cryogenic amplifier, and room-temperature microwave equipment.  

 

6.1 The Dilution Refrigerator Setup 

To prevent thermal excitation of a superconducting qubit, we require 

𝑘𝐵𝑇 ≪ ħ𝜔𝑞 ≪ 2Δ. (6.1) 

When 𝜔𝑞/2𝜋~4 GHz, this gives a temperature T much less than 200 mK. Consequently, the device 

must be cooled well below this temperature. Our devices were typically cooled using a dilution 

refrigerator with base temperature of approximately 10-20 mK. 

The experiments were carried out in an Oxford Triton 200 series dry dilution refrigerator 

[1]. The refrigerator was in a shielded room in the Toll's Physics Building's sub-basement. The 

electrical connections, gas handling system, compressor, and pumps were outside the shielded 

room.  Electrical connections between the outside and inside the room were carefully shielded and 

filtered.  

The Oxford refrigerator (see Fig. 6.1) has five stages that operate at successively 

reduced temperatures: the outer-vacuum chamber is 300 K, the first pulse tube stage (PT1) was at 

45 K, the second pulse tube stage (PT2) was at 3.2 K, the still is 700 mK, the cold plate runs at 

about 100 mK, and the mixing chamber (MXC) reaches 10-20mK. The mixing chamber can also 
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be heated to allow measurements to be made at higher temperatures, such as those I describe in 

the following chapters. 

 

 

 

Figure 6.1: Picture of Oxford Triton 200 dilution refrigerator. Each stage is labeled with its name 

and operating temperature.  
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The refrigerator has heat shields that are attached to the various stages.  The outermost 

shield of the Oxford refrigerator is just the aluminum outer vacuum container (OVC), which is at 

room temperature.  A Cryomech pulse tube cooler cools down the first two stages. Each pulse tube 

stage has an aluminum shielding can. The still plate has a copper radiation shielding can. In 

addition to these shields, we used a Cu cylinder shield, mounted to the mixing chamber at 15 mK. 

The 3D cavity and device were surrounded by this shield. The interior of this shield was coated 

with SiC and epoxy to absorb stray infrared light [2]. 

Our transmons are somewhat sensitive to changes in magnetic field. It is therefore critical 

to shield the devices from stray fields. Our setup used two high-permeability magnetic shields. 

Both shields were borrowed from Dr. Ben Palmer. One shield was attached to the exterior of the 

OVC at room temperature, while the other was mounted to the Cu-shield on the MXC stage at 20 

mK (see Fig. 6.2). RuO2 is used as thermometer to monitor the temperature in the MXC.  

 

6.2 Input and Output Microwave Lines 

Our microwave setup for measuring transmons is shown in Fig. 6.3. The input microwave 

drive line is constructed from short lengths of rigid UT-85 coaxial cable with stainless steel inner 

and outer conductor [3] to prevent thermal coupling between different stages of the refrigerator. 

Each section of the line has Midwest Microwave attenuators [4] in order to thermalize the signal 

on its way down and attenuate external Johnson-Nyquist noise from high-temperature stages. The 

PT1 stage attenuator was 10 dB, PT2 was 20 dB, and the still attenuator was 6 dB. This resulted 

in a total attenuation of 36 dB between 300 K and 15 mK just due to the fixed attenuators; the lines 

contributed additional attenuation. The input line goes to the mixing chamber and Flexible UT-85  
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(a)                                                                       (b) 

                 

 

Figure 6.2: Picture of magnetic shields: (a) μ-metal magnetic shield attached to the exterior of 

OVC. (b) Inner A4K magnetic shield mounted to the Cu heat shield on the MXC.  

 

coaxial cables were utilized between each component at this stage. Due to its flexibility, this was 

much simpler to deal with than the rigid stainless-steel lines, and it was much simpler to create 

suitable cable sections. Two 20 dB cryogenic attenuators were installed at the MXC (see Fig. 

6.3). As a result, there was a total of 76 dB of fixed attenuation between the source and the cavity 

input pin. After the two 70dB attenuators, a 10.5 GHz low-pass filter from K&L [5] was used (see 

Fig. 6.3). 
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Figure 6.3: Schematic of refrigerator stages showing components on the input and output 

microwave lines.  

2 isolators 
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 The output transmitted microwave signal from the cavity returns to room temperature via 

a separate coaxial line (see Fig. 6.3). The output goes from the output port of the cavity to two 

Pamtek CTH1365KS cryogenic isolators [6] that are mounted on the MXC. These isolators, which 

have a rated range of 4 to 8 GHz, restrict the output line's bandwidth. They each provide 18 dB of 

isolation from waves traveling in the wrong direction. A HEMT (high electron mobility transistor) 

amplifier [7] was installed at the PT2 stage to amplify the output signal. The amplifier has a 

nominal gain of 32 dB, a bandwidth of 4–12 GHz, and a noise temperature of less than 5 K. A 3dB 

attenuator was put just before the HEMT to help match the input impedance. The output line leaves 

the refrigerator and travels to a room-temperature Miteq AMF-3F-04000800 low-noise amplifier 

[8] with a gain of 30 dB and a bandwidth of 4-8 GHz. This amplifier's output was routed to a Mini-

Circuits ZX60-14012L+ amplifier [9] with a gain of 12 dB and a bandwidth of 300 kHz to 14 GHz. 

 

6.3 Room Temperature Electronics Setup  

Figure 6.4 schematically shows the setup of the room-temperature electronics that I used 

for measuring transmons. This setup was initially put together by R. Budoyo [10]. The instruments 

on the left side of Fig. 6.4 were used to control the timing of the pulses and to create various 

microwave signals. The components on the right side of Fig. 6.4 were used for readout. A 10 MHz 

reference signal was provided by a Stanford FS725 Rb frequency standard [11]. Using this 

reference signal, all the measurement components were time-synchronized and stable. This signal 

also ensures that all parts of the measurement system are synchronized to work together properly. 

 The repetition rate of the experiment was set by an Agilent 33120A arbitrary waveform 

generator (AWG) [12]. The AWG created a TTL signal with a frequency matching the repetition 

rate, which was typically set at 1 kHz. A Stanford DG535 pulse generator [13], which controlled 
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the timing of the pulse, was triggered using this TTL signal. Agilent E8257D, Agilent 83731B, 

and Agilent 83732B microwave sources were used to supply qubit drive and cavity readout tones  

[12]. Pulses from a Stanford Instruments DG535 were used to modulate the first two sources to 

produce the cavity and the qubit pulses, respectively. A constant Local Oscillator (LO) reference 

signal that matched the frequency of the cavity source was provided by the third source. The output 

from the cavity was monitored using homodyne detection [14]. A Dell Windows PC with a 

National Instruments PCI-GPIB card was used to link all the sources, pulse generators, and the 

AWG [15]. This configuration allowed us to adjust the measurement parameters via the computer 

running MATLAB software.  

A MAC Technologies C3205-30 directional coupler [16] was utilized to combine the 

pulses produced by the cavity and qubit sources (see Fig. 6.3). This coupler provided 30 dB 

coupling and runs between 4 and 8 GHz. The pulses passed through the screen room wall to the 

top plate of the refrigerator, and then to the refrigerator's input line. The output signal emerged 

from the refrigerator's output line, where it was further amplified by two amplifiers (See. Fig. 6.3). 

Using a Marki IQ0318L IQ mixer, the boosted signal was mixed with the LO signal. The mixer 

supplied two output ports: one for the in-phase (I) port and the other for the quadrature (Q) 

port. The signals from these two outputs were amplified using two Stanford SR560 preamplifiers 

after passing through two identical sets of low-pass filters [13]. Finally, the output I and Q signals 

were sent to a National Instruments BNC-2110 breakout box [15] at the shield room wall. From 

there, the I and Q signals were measured by a National Instruments PCI-6115 data acquisition card 

(DAQ).  
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Figure 6.4: Room temperature microwave setup for qubit measurements [10]. The blue dotted 

lines are the timing portion of the circuit.  
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The data acquisition card (DAQ) performed the essential task of digitizing the I and Q 

signals. This transformed the analog signals into digital data for later processing. The data 

acquisition was set to a rate of 5 million samples per channel per second (5 M samples/channel/s), 

determined by a 5 MHz TTL signal that emanated from an Agilent 33120A arbitrary waveform 

generator (AWG). Finally, Fig. 6.5 shows a photograph of the room temperature instrument rack. 

Figure 6.5: Photograph of rack with microwave pulse control and qubit readout setup. 
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Chapter 7 

Characterization of Two Transmons 

In this chapter, I first describe Dr. Sudeep Dutta and my measurements of the transition 

spectrum on chip SKD102. This chip was sealed in 3D Al microwave cavity SI-2 and there were 

two transmons on the sapphire chip (see Chapter 5). I next discuss characteristic time 

measurements, including Rabi oscillations, the qubit relaxation time T1, the spin echo time T2, and 

Ramsey oscillations for these two transmons.  

 

7.1 Measurement Details 

Chip SKD102 was measured inside the dilution refrigerator in Room SB0331 of the Toll 

Physics Building. The high-power readout method (see section 2.5) was used for these 

measurements.  

Each measurement involved the application of a sequence of pulses. Each sequence of 

pulses started with a cavity pulse that helped calibrate the system's transmission when the 

transmons were in the ground state. The sequence then paused for a delay time of ∆𝑡 (of order 1 

ms) to allow the system to relax enough for spectroscopic measurements. Following this, qubit 

manipulation pulses were then applied. After this, a cavity measurement pulse was applied and the 

amplitude of the transmitted pulse was measured to determine whether the qubit was in the ground 

state or the excited state. This general pulse sequence is shown in Fig. 7.1.  

After both the calibration cavity pulse and the measurement cavity pulse, the amplified 

transmitted signal was passed to an I-Q (in and out of phase) mixer. The output voltage amplitudes 
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𝑉𝐼 and 𝑉𝑄 were measured by mixing them with the reference signal from the cavity drive source 

(see Chapter 6.3). The amplitude of the transmitted output voltage is the magnitude of the coupled 

voltage: 

𝑉𝑡 = √𝑉𝐼
2 + 𝑉𝑄

2. (7.1) 

I define 𝑉0 to be the measured voltage amplitude of the transmitted calibration cavity pulse and 𝑉𝑓 

to be the measured voltage amplitude of the second measurement cavity pulse. Most of my basic 

qubit measurements were based on measuring 𝑉0 and 𝑉𝑓 and I often presented these results as a 

fractional voltage difference: 

𝛿𝑉

𝑉0
=
𝑉𝑓 − 𝑉0
𝑉0

. (7.2) 

This quantity is the scaled difference between the two pulse voltages and is proportional to the 

probability to be in the excited state Pe. I typically averaged for ~1000 shots.  

 

Figure 7.1: General applied pulse sequence for qubit manipulation and state measurements  
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7.2 Cavity Characterization  

After cooling the device to base temperature, the first thing I measured was the cavity 

resonance with the qubits in the ground state. I used a vector network analyzer (VNA) to measure 

the transmission S21 as a function of frequency and power of the rf signal. This setup is different 

from the homodyne pulse that I used for qubit manipulation. The output power was supplied by a 

Keysight E5071C VNA [1] which operated within a frequency range of 900 kHz to 8.5 GHz with 

a power range of -55 dBm to 10 dBm. The VNA's first output port was linked to the rf input port 

on the refrigerator's top panel. The VNA's second port was connected to the rf output of the Mini-

Circuits amplifier (see Fig. 6.3). For the cavity resonance measurement, the VNA determined 

|𝑆21| =  |𝑉out /𝑉in | as a function of frequency and power by measuring the ratio of the microwave 

output signal (with amplitude 𝑉out ) to the input signal (with amplitude 𝑉in ).    

By sweeping the frequency and incrementally increasing rf power, I was able to determine 

the bare cavity frequency 𝜔𝐶/2𝜋 (at high power) and the dressed cavity frequency 𝜔̃𝐶/2𝜋 (at low 

power). This let me confirm that the qubit was functioning as expected and also provided an 

estimate for the dispersive shift [2] 

𝜒𝑔𝑒 = 𝜔𝐶 − 𝜔̃𝐶
|𝑔⟩
 . (7.3) 

Figure 7.2 presents a false-color power map of the cavity, with frequency plotted along the 

x-axis, the power applied by the vector network analyzer (VNA) along the y-axis, and |S21|2 

represented by the color bar. There is a prominent peak at high power centered at 6.1155 GHz. 

This is the bare resonance of the cavity 𝜔𝐶/2𝜋. At low power, the resonance peak shifts to 

approximately 6.1219 GHz. This is the dressed peak of the cavity. It is important to note that this 

shift in frequency is due to the coupling of the cavity to both transmons. From the cavity map, we 
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see that total dispersive shift due to both transmons is 6.4 MHz. Since the qubit frequencies are 

different, this will lead to a different contribution to the dispersive shift from each qubit due to the 

different detuning. Nevertheless, simulations show that the total dispersive shift is pretty close to 

the sum of each qubit’s dispersive shift, i.e. for each qubit, 𝜒𝑔𝑒/2𝜋 ≈ 3.2 MHz. This frequency 

shift confirmed that at least one qubit was functioning. This plot is from the chip’s initial cooldown.  

 

Figure. 7.2: Cavity power map |S21|2 of chip SKD102 in cavity SI-2a. This false-color map shows 

|S21|2 as a function of frequency and rf power applied by the VNA. The main cavity transition 

peaks are the bare transit at 6.115GHz and dressed peak at 6.122 GHz, which are indicated by the 

dashed lines.  



 

 

106 

 

Figure 7.3 shows several frequency line cuts through the |S21|2 data presented in Figure 7.2. 

The left peak corresponds to a VNA power of -10 dBm (black curve), which falls in the bare peak 

regime. Other line cuts are for VNA powers of -45 dBm (red curve), -50 dBm (green curve), and 

-55 dBm (blue curve), falling within the dressed peak regime. Fitting the bare peak to a Lorentzian 

yields a center frequency of 𝜔𝐶/2𝜋  = 6.11552 GHz and a loaded quality factor 𝑄 =49,000. 

Similarly, fitting the dressed peak results in 𝜔̃𝐶/2𝜋 = 6.12189 GHz and a loaded quality factor of 

𝑄 = 48000. Thus, the quality factor of the dressed peak was slightly lower than that of the bare 

resonance, suggesting additional loss in the low-power limit or the existence of additional 

dephasing when the qubit was coupled to the cavity. 

     

Figure 7.3: Line cuts through plot in Fig. 7.2 showing |S21|2 as a function of frequency for four 

applied powers Pc. 
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7.3 Qubit Spectroscopy   

The qubit transition frequencies 𝜔𝑔𝑒 and 𝜔𝑔𝑓 can be measured using spectroscopy with a 

homodyne pulse sequence. This measurement starts with a cavity reference pulse at cavity 

frequency 𝑓𝑐 = 6.1155 GHz and cavity power 𝑃𝑐 = 3 dBm to acquire the background transmission 

𝑆21, followed by an idle interval. Then a qubit tone with a long pulse length and moderate power 

was used to perform qubit spectroscopy. This was followed by a pulsed homodyne measurement 

with a high drive qubit power of 16 dBm at the bare cavity peak (see Fig. 7.1).  

 Figure 7.4 shows two spectroscopic plots of ΔV/V for the two transmon qubits  𝑄𝐿1 and 

 𝑄𝑅1 on SKD102 using a high-power readout. In both cases, a broadened |𝑔⟩ ↔ |𝑒⟩ peak and a two-

photon |𝑔⟩ ⇒ |𝑓⟩ peak are visible. In the plot, the qubit with high |𝑔⟩ ↔ |𝑒⟩ transition frequency 

occurs at 𝜔𝑔𝑒/2𝜋  ~3.7739 GHz and a two-photon transition from |𝑔⟩ ⇒  |𝑓⟩ occurs at 𝜔𝑔𝑓  

/4𝜋~3.6746 GHz. The charging energy can be roughly estimated from this data using 𝐸𝑐/ℎ ≃ 

2(𝜔𝑔𝑒/2𝜋 − 𝜔𝑔𝑓/4𝜋) ≃ 198.5 MHz. The other qubit has a |𝑔⟩ ↔ |𝑒⟩ transition frequency at 

𝜔𝑔𝑒/2𝜋 ~2.9297 GHz and a two-photon transition from |𝑔⟩ ⇒ |𝑓⟩ occurs at 𝜔𝑔𝑓/4𝜋~2.8172 GHz. 

The charging energy is roughly 𝐸𝑐/ℎ  ≃ 2(𝜔𝑔𝑒/2𝜋 − 𝜔𝑔𝑓/4𝜋)  ≃ 225.0 MHz (from 

anharmonicity). From the discussion in Section 5.3, the left qubit has a larger capacitance which 

corresponds to a smaller 𝐸𝑐 . This difference makes it easier for us to distinguish the two qubits. 

Thus, the spectroscopy indicates that the low transition-frequency qubit is the gap-engineered one 

which we denote as  𝑄𝐿1. The other qubit with higher transition frequency is a nominally standard 

transmon, which I denote as  𝑄𝑅1 (see Fig. 7.4). This is also consistent with the differences in 𝐸𝐽. 

I also note that for 𝑄𝐿1, |e⟩  → |𝑓⟩ is also visible, suggesting a significant thermal population in 

the |e⟩ state for 𝑄𝐿1.   
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Figure 7.4: Qubit spectroscopy of the gap-engineered transmon 𝑄𝐿1  (top) and the nominally 

standard transmon 𝑄𝑅1 (bottom) at high qubit drive powers with qubit transition 𝜔𝑔𝑒/2𝜋 ~3.7739 

GHz and 𝜔𝑔𝑓 /4𝜋~3.6746 GHz for  𝑄𝑅1 and 𝜔𝑔𝑒/2𝜋 ~2.9297 GHz and  𝜔𝑔𝑓 /4𝜋~2.8172 GHz for 

 𝑄𝐿1. 

 

7.4 Rabi Oscillations    

A Rabi oscillation [3], involves driving cyclic transitions between the states |𝑔⟩ ↔ |𝑒⟩ using 

a nearly resonant drive. In the absence of dissipation and dephasing, driving a qubit at the |𝑔⟩ ↔ 

|𝑒⟩ transition frequency causes a sinusoidal oscillation of the system's state between the two levels 

[4]. The process I used to measure Rabi oscillations used the pulse sequence depicted in Fig. 7.5, 
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where the qubit tone pulse duration 𝑡Rabi at ωge is applied with varying Rabi pulse lengths. Figure 

7.6 shows plots of 250 kHz Rabi spanning an 80 s duration for the two transmons on chip 

SKD102. Due to decoherence, the amplitude of the Rabi oscillations decay with a time constant 

𝑇′.  

The waveform can be fit to a function of an exponentially decaying sine wave 

𝑃|𝑒⟩ = 𝐴𝑒
−
𝑡
𝑇′ (1 − cos(ΩR𝑡) + 𝐶. (7.4) 

The constants 𝐴 and 𝐶 are the amplitude of the oscillation and the steady-state population, 

respectively. The two curves shown in Fig. 7.6 have 𝑇′≃ 50 μs. Note that for a frequency-

independent loss and dephasing, the decay time of the Rabi oscillation is related to T1 and T2 by 

[5] 

1

𝑇′
=

1

2𝑇1
+

1

2𝑇2
. (7.5) 

which implies that 𝑇′ ≤ 4𝑇1/3. 

           

Figure 7.5: Pulse sequence for Rabi oscillation measurements. The qubit tone pulse length 𝑡Rabi is 

varied for Rabi measurements.  
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Figure 7.6: Rabi Oscillation decay measurements for transmons  𝑄𝐿1 and  𝑄𝑅1 with 250 kHz Rabi 

frequency. The red curves are fits to an exponential decaying sine wave. 𝑇′≃ 50 μs for both 

devices. 

 

7.5 Relaxation Time 𝑇1    

To measure the relaxation time 𝑇1, I first applied a 1 μs cavity pulse to and measured its 

transmission through the cavity (see Fig. 7.7), the magnitude of this output voltage is 𝑉0. A 

calibrated 𝜋  -pulse was then applied with a length 𝑡π  (calibrated using the Rabi oscillations 

discussed in Sec. 7.4). This 𝜋-pulse puts the qubit into its excited state. I then waited for a time ∆t 

and measured the amplitude of the transmitted cavity pulse 𝑉𝑞. To correct for drift, I also measured 

the transmission through the cavity of a 𝜋-pulse. The transmitted amplitude of this pulse was 𝑉𝜋.  
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Before measuring 𝑉𝜋, I also repeated the measurement of the transmitted amplitude 𝑉𝑔 when the 

system was in ground state. Typically, this process was repeated around 1000 times and the results 

were averaged to determine the population of the qubit in the excited state |𝑒⟩ at the specified time 

delay ∆t using: 

𝑃|e⟩ =
〈𝑉𝑞〉 − 〈𝑉0〉

〈𝑉𝜋〉 − 〈𝑉𝑔〉
. (7.6) 

These steps were repeated for different ∆𝑡 to obtain 𝑃|𝑒⟩ as a function of ∆𝑡. I fit my results to 

𝑃|𝑒⟩ = 𝐴𝑒
−
∆𝑡
𝑇1 + 𝐶, (7.7) 

where A ~ 1 is the initial |𝑒⟩ state occupancy and C ~ 0 is the steady state occupancy or residual 

thermal |𝑒⟩ state occupancy.  

Figure 7.8 shows relaxation measurements of the two qubits on chip SKD102 at the base 

temperature of about 20 mK. Fitting to Eq. (7.7) to my result, for  𝑄𝐿1 yielded T1 = 181 μs and 𝑄𝑅1 

yielded T1 = 84 µs. Repeated measurements showed substantial fluctuations in T1 on successive 

days, as I discuss in Chapter 8. 

 

 

Figure 7.7: Applied pulse sequence for relaxation time 𝑇1 measurements. The delay time ∆t is 

varied. Four transmitted amplitudes 𝑉𝑞, 𝑉0, 𝑉𝜋, 𝑉𝑔 are measured to obtain 𝑃|e⟩ at delay time ∆t 
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Figure 7.8: Blue points show one relaxation measurements for transmons (a)  𝑄𝐿1 and (b)  𝑄𝑅1. 

The red curves are fits to an exponential decay. The fits yielded 𝑇1 = 181 μs for  𝑄𝐿1 and 𝑇1 = 84 

μs for  𝑄𝑅1.  

 

 

 

 

(a) 

(b) 
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7.6 Spin Echo 𝑇2    

The spin-echo technique, pioneered by Erwin Hahn [5], was designed to counteract 

inhomogeneous broadening in nuclear magnetic resonance (NMR). Hahn realized that 

inhomogeneities in the magnetic field were leading to significant spectral broadening [6], and this 

could be removed by using a clever pulse sequence. The dephasing that was not removed causes 

the resulting signal to decay with a characteristic time 𝑇2, called the spin-echo time. 

Figure 7.9 shows the pulse sequence I employed for spin-echo measurement. I first applied 

a 1 μs cavity pulse 𝑉0 and measured the amplitude 𝑉0 of three pulses transmitted through the cavity. 

I next applied a 𝜋/2 pulse to drive the qubit to the x-axis on the Bloch sphere. The system then 

evolved for an interval Δ𝑡/2, followed by a 𝜋-rotation around the x-axis. Assuming no decoherence 

or relaxation, this pulse aligns the state vector with the positive y-axis in the co-rotating frame. 

Then the system again is allowed to evolve for a time Δ𝑡/2. A final −𝜋/2 rotation, in the clockwise 

direction around the x-axis, is executed. The system is then measured, resulting in a signal 

magnitude of 𝑉𝑓. I also measured the response of the system with a 𝜋-pulse labelled as  𝑉𝜋   without 

time delay (∆𝑡 = 0) and its background reference pulse signal 𝑉𝑔. 

 

Figure 7.9: Applied pulse sequence for spin echo 𝑇2 measurements. The delay time ∆t is varied. 
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Figure 7.10: Spin echo measurements (blue points) for transmons (a)  𝑄𝐿1 and (b)  𝑄𝑅1 on chip 

SKD102. The red curve indicates the fit to an exponential decay. The fittings yielded 𝑇2 = 66.5 μs 

for  𝑄𝐿1 and 𝑇2 = 51.9 μs for  𝑄𝑅1.  

 

 In an ideal scenario without any decoherence, this sequence would leave the qubit in its 

excited state. However, the real system experiences decoherence, which reduces the probability of 

finding the system in the excited state. The average final signal was fit to 

𝑃|𝑒⟩ = 𝐴𝑒
−
∆𝑡
𝑇2 + 𝐶2, (7.8) 

(a) 

(b) 
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where 𝐴~1 is the initial |𝑒⟩ state occupancy, and 𝐶2~1/2 is the expected steady-state occupancy.  

 Figure. 7.10 shows my fit to the spin echo data for qubits  𝑄𝐿1 and  𝑄𝑅1 on chip SKD102 

at base temperature. I find 𝑇2 = 66.5 μs and 51.9 μs, respectively. Note that 𝑇2 is related to 𝑇1 and 

the pure dephasing time 𝑇𝜙 by [5] 

1

𝑇2
=

1

2𝑇1
+
1

𝑇𝜙
, (7.9) 

if the loss and dephasing are frequency independent. From the 𝑇1 and 𝑇2 values I measured for 

these two transmons, yields 𝑇𝜙 = 81.5 μs for 𝑄𝐿1 and 𝑇𝜙 = 75.0 μs for 𝑄𝑅1. 

 

7.7 Ramsey Oscillations    

Norman Ramsey, a student of Isidor Rabi, first developed the method now called Ramsey 

interferometry [6]. This method allows highly precise measurement of the transition frequencies. 

To measure a Ramsey Oscillation, I first apply a cavity pulse and measure the transmitted 

voltage 𝑉0 (see Fig. 7.11). After letting the system evolve, I apply a 𝜋/2-pulse, which rotates the 

qubit state around the x-axis. After this pulse, the system is given time Δ𝑡 to evolve. Following 

this, another 𝜋/2-pulse is applied around the x-axis, and the state is then measured by applying a 

cavity pulse and measuring the transmitted amplitude 𝑉𝑓. If Δ𝑡 = 0, the effect is just a 𝜋-pulse, 

resulting in the qubit being left in the excited state. Conversely, if Δ𝑡 is equal to 𝜋/Δ𝜔, which Δ𝜔 

is the detuning, the state vector rotates by 180º along the equator. The subsequent 𝜋/2-pulse then 

returns the state vector to its ground state. For Δ𝑡 > 0, the qubit state can relax and dephase. 

Ramsey fringes are typically generated by driving the qubit with a tone that is just slightly 

off its resonance. When the π/2 pulse deviates by Δ𝜔 from the qubit's resonant frequency 𝜔ge the 

qubit state precesses around the z-axis in the co-rotating frame, with the rotation angle being the 
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product of the detuning Δ𝜔 and the delay time Δ𝑡. The accumulated phase during Δ𝑡 leads to a 

change in the final state's observed population Pe in the |𝑒⟩ state. Consequently, P|e⟩ oscillates with 

a frequency proportional to Δ𝜔. This oscillation decreases in magnitude with a time constant 𝑇2∗ 

called the Ramsey time constant in spectroscopic coherence time. These oscillations can be fit to: 

𝑃|𝑒⟩ = 𝐴(1 + 𝑒
−Δ𝑡
𝑇2
∗
sin(Δ𝜔Δ𝑡)) , (7.10) 

where 𝐴 is the amplitude of the oscillations and Δ𝜔 is the detuning between the drive frequency 

and the qubit transition frequency.  

Figure 7.12 shows the Ramsey oscillations produced by transmon 𝑄𝑅1 on chip SKD102 at 

the base temperature. From the fit, I find 𝑇2∗ = 24.8 μs and detuning Δ𝜔 = 0.4 MHz. Note that the 

Ramsey oscillation of  𝑄𝐿1 was so noisy that it was hard to extract a 𝑇2∗ value.  

By measuring Ramsey Oscillations for different detunings Δ𝜔 , I could map out the 

behavior of the Ramsey fringes. The frequency of the oscillations should match the detuning, 

enabling a highly precise determination of the qubit frequency. By analyzing the oscillation 

frequency relative to the drive frequency, the transition frequency can be pinpointed where the 

Ramsey frequency becomes zero. Figure 7.13 shows an example of the Ramsey fringe 

measurement of  𝑄𝑅1.   

In general, the Ramsey decay is related to the 𝑇1 relaxation and 𝑇𝜙 dephasing times by 

1

𝑇2
∗ =

1

2𝑇1
+
1

𝑇𝜙
+
1

𝑇†
, (7.11) 

where 𝑇† is the time constant for inhomogeneous broadening [7]. Inhomogeneous broadening 

arises specifically from low-frequency noise in measurement-to-measurement variations. 

Inhomogeneous broadening, loss, and dephasing all play a role in determining the qubit's 

spectroscopic linewidth and 𝑇2
*. 
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Figure 7.11: Pulse sequence for Ramsey Oscillation measurements. The delay time ∆t is varied.  

 

Figure 7.12: Measurement of the excited state population P|e⟩ versus Ramsey delay time ∆t of  𝑄𝑅1. 

The red curve indicates the exponential decay fit to the blue data points. The fit yielded 𝑇2∗ = 24.8 

μs with Δ𝜔/2π = 0.4MHz. 
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Figure 7.13: Ramsey fringe measurement results of  𝑄𝑅1. From this plot, the main |g⟩ to |𝑒⟩ qubit 

transition frequency can be extracted at 3.773820 GHz.  

 

7.8 Summary of Measured Parameters of the Devices    

In this chapter, I described the characterization of the cavity SI-2a and the two qubits on 

chip SKD102 and presented initial measurements of 𝑇′, 𝑇1, 𝑇2 and 𝑇2*. I presented the sections in 

the order I usually follow for transmon characterization, but it was necessary to repeat 

measurements fairly often to ensure the qubit parameters had not drifted too much. A summary of 

the main cavity and qubit parameters are provided in Table 7.1.  
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Table 7.1: Summary of the measured parameters of transmons  𝑄𝐿1  and  𝑄𝑅1  on chip 

SKD102. 𝜔𝑔𝑒 is the |𝑔⟩ ↔ |𝑒⟩ transition frequency. In this table, Δ1 is the gap of the pure Al lower 

layer. Δ2 is the gap of the oxygen-doped upper layer of the gap-engineered transmon 𝑄𝐿1. Δ3 is the 

gap of the pure Al upper layer of the standard transmon  𝑄𝑅1. 𝐸𝐽 is the Josephson energy and 𝐸𝑐  is 

the rough estimate for the charging energy. Ω2 / Ω1 is the volume ratio of the upper and lower 

layers of the transmon. 

 

 Gap-engineered transmon  𝑄𝐿1 Standard transmon  𝑄𝑅1 

Junction area (nm2) 200×220 200×200 

𝜔𝑔𝑒/2𝜋 (GHz) 2.9297 3.7738 

ℎ𝜔𝑔𝑒 (μeV) 12 16 

𝐸𝑐/ℎ (MHz) 225.0 198.5 

𝐸𝐽/ℎ (GHz) 5.55 9.95 

Δ1 (μeV) 200.0 200.0 

Δ2 (μeV) 227.7 --- 

Δ3 (μeV) --- 191.1 

Ω2 / Ω1 2.75 2.32 

𝑇′ (μs) 50 50 

𝑇1 (μs) 180.9 84.1 

𝑇2 (μs) 66.5 51.9 
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Chapter 8 

Transmons with Gap-Engineered Electrodes:  

T1 Measurements and Other Results 

In the previous chapter, I described a gap-engineered transmon that showed a relatively 

large value for T1. The gap difference between the transmon electrode and counter-electrode was 

intended to induce loss from single quasiparticle tunneling. Motivated by these findings, I 

constructed Al/AlOx/Al transmons with a range of gap values and large arrangements to discern 

their influence on T1. In this chapter I mainly discuss three specific designs. The first design was 

discussed in the previous chapter. It has a base electrode of pure Al and a counter-electrode of 

oxygen-doped Al. I call this the low gap–high gap device. For the next design, this layout was 

flipped: The base electrode used oxygen-doped Al, and the counter electrode was of pure Al. I 

called this a high-gap low-gap design. The third design involved adding an extra layer of pure 

aluminum to function as a quasiparticle trap.  

In this Chapter, I describe T1 vs time and T1 vs temperature results on three chips. I observed 

large T1 fluctuations in time in each transmon. From these measurements, I tried to unravel the 

source of these fluctuations and the identity of the dominant loss mechanism.   
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8.1  Comparison of Low-Gap High-Gap Transmon and an Undoped Al 

Transmon  

After completing a preliminary characterization of the qubits two qubits  𝑄𝐿1 and  𝑄𝑅1 on 

transmon chip SKD102 (see Chapter 7), I used the high-power pulsed cavity readout technique [1] 

to measure the relaxation time repeatedly over many hours. Each T1 measurements took about 5 

minutes to obtain and required averaging 2000 voltage measurements of Vg, Ve and Vq (see Chapter 

5). After each T1 value was found for one transmon, I immediately measured the T1 of the other 

transmon to get repeated interleaved T1 measurements of 𝑄𝐿1 and  𝑄𝑅1.  

Figure 8.1(a) shows repeated measurements of the relaxation time T1 of the gap-engineered 

transmon  𝑄𝐿1 at the 20 mK base temperature of the refrigerator. The measurements spanned 15 

hours. Large fluctuations were observed, with T1 varying between a minimum of about 100 μs and 

a maximum of about 310 μs. Figure 8.1(b) shows the corresponding plot of T1 versus time for the 

transmon 𝑄𝑅1 which had pure Al layers. Relatively large fluctuations in T1 were also obvious in 

this transmon, with T1 varying between about 50 μs and 100 μs. Thus, the gap-engineered device 

had a T1 that was typically about two or three times longer than that of the standard transmon. All 

the measurements are with 5000 averaging, most uncertainties of the T1 vary between 10% to 20%.  

Examination of Fig. 8.1 reveals that the fluctuations of the two transmons were not cross-

correlated, even though both transmons were on the same chip and the measurements were 

interleaved in time. This strongly suggests that the fluctuations are not consistent with a common 

fluctuating external source that is generating the loss, but rather is consistent with a fluctuating 

loss that is local to each qubit. Further analysis of the fluctuation data will be discussed in the 

Chapter 9.  
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Figure 8.1: (a) The T1 vs time t measurement for the gap-engineered transmon  𝑄𝐿1  on chip 

SKD102. The maximum T1 is over 300 μs. (b) The T1 vs time t for the standard transmon  𝑄𝑅1 on 

the same chip. The measurements of the two devices were interleaved.   

 

8.2  Temperature Dependence of T1  for Low-Gap High-Gap Device and 

Nominal Al Device 

I next measured the temperature dependence of T1 of the transmons  𝑄𝐿1  and  𝑄𝑅1. To 

achieve higher temperatures, power was applied to heater resistors located at the mixing chamber 

plate. This allowed us to reach temperatures between 20 mK and 250 mK. In order to collect the 

temperature-dependent data, I swept the temperature up and down slowly for a few cycles over a 

period of over 2 days. Each measurements took a few mins and required 2000 shots. At temperature 

over 250 mK, T1 decreased to below a few μs and the fidelity of the high-power readout was poor.  

(a) 

(b) 

 𝑸𝑳𝟏  Δ1 < Δ2 

 𝑸𝑹𝟏  Δ1 ≈ Δ3 
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Figure 8.2(a) shows measurements of T1 vs temperature T for the gap engineered transmon 

 𝑄𝐿1. These data were taken while the mixing chamber temperature was slowly swept higher and 

lower two times. There was a large variation in T1 after sweeping to high temperature as well as 

large fluctuations in T1 in this data set, particularly at low temperatures, with T1 ranging between 

about 70 μs at the end of the temperature sweeps and 200 μs at the start of the sweep. At 

temperatures above about 150 mK, T1 decreased rapidly, as expected from loss due to thermally 

generated quasiparticles.  

Figure 8.2(b) shows the corresponding T1 vs T plot for the standard transmon  𝑄𝑅1. This 

data was acquired at the same time as that for transmon 𝑄𝐿1. This transmon also showed significant 

T1 variations and relatively large fluctuations, with T1 ranging between about 60 μs and 90 μs at 

low temperature, as well as a rapid decrease in T1 above about 150 mK due to thermal 

quasiparticles.  

Figure 8.2(c) and (d) show the same T1 vs T data, but on a semi-log plot. Examination of 

these two plots reveal that the fractional size of the fluctuations in T1 does not seem to depend on 

temperature, i.e. the size of the fluctuations in T1 appears to be proportional to T1. In particular, 

this means that the fluctuations in T1 persist with the same relative size into the region where loss 

is dominated by thermal quasiparticles. This was quite unexpected and reveals much about the 

sources of the fluctuations and the origin of the loss in these devices, as I will discuss in Chapter 

9.  
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Figure 8.2: (a) Relaxation time T1 vs temperature T of the gap engineered transmon  𝑄𝐿1 on chip 

SKD 102. T1 was measured while slowly ramping the mixing chamber temperature, with different 

cycles indicated by red and blue points. Each point took around 5 minutes. (b) T1 vs temperature 

T of the standard transmon  𝑄𝑅1  on chip SKD 102. (c) Corresponding semi-log plot of T1 vs 

temperature T for transmon  𝑄𝐿1 and (d)  𝑄𝑅1. 

 

I discussed a quasiparticle model in Sec. 4.2 and Sec. 4.3. This model can be fit to the data 

in Fig. 8.3, and one sees reasonable qualitative agreement. The different fitting curves correspond 

to different non-equilibrium quasiparticle densities, which were used to fit the upper, middle and 

lower bounds of the data. At higher temperature region this reveals that the curves converge to one 

curve, where the loss is dominated by thermally generated quasiparticles and only depends on the 

(a) (b) 

(c) (d) 

 𝑸𝑳𝟏  Δ1 < Δ2  𝑸𝑹𝟏  Δ1 ≈ Δ3 
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temperature. The fits give Δ1 = 225.3 μeV and Δ2 = 230.90 μeV for 𝑄𝐿1 and Δ1 = 190.5 μeV and 

Δ3 =179.6 μeV for  𝑄𝑅1 . These differ from values Δ1 = 200 μeV, Δ2 = 228 μeV and Δ3 = 191 μeV 

that we found from direct measurements of the thin films but pretty close. 

 

 

  

Figure 8.3: (a) Plot of T1 vs T for (a) gap-engineered transmon 𝑄𝐿1 with fitting parameters Δ1 = 

225.3 μeV and Δ2 = 230.90 μeV and (b) standard transmon  𝑄𝑅1 with fitting parameters Δ1 = 190.5 

μeV and Δ3  =179.6 μeV. Red and blue points show measurements for different temperature 

sweeps and the cyan, green, and magenta curves are fits to a two-gap model of loss from 

quasiparticles with different non-equilibrium quasiparticle densities (see inset table). (c) and (d) 

are the semi-log plot of (a) and (b).  

 

 𝑸𝑳𝟏  Δ1 < Δ2  𝑸𝑹𝟏  Δ1 ≈ Δ3 
(b) 

(c) (d) 

(a) 
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8.3  Fabrication and Measurements of High-Gap Low-Gap Transmons 

As I discussed in Sec. 4.2, the relaxation rate of a transmon due to quasiparticles is directly 

related to the density of quasiparticles in the base electrode and counter electrode. The main idea 

of gap-engineering a transmon is that when |Δ1 - Δ2|  ≫ 𝑘𝐵𝑇, the quasiparticles in the high-gap 

side will accumulate in the low-gap side, and if |Δ1 - Δ2| > ℏ𝜔𝑔𝑒, they will not be able to absorb 

energy from the transmon by tunneling to high gap side. 

The quasiparticle model of loss that I presented in Chapter 4 also suggests that having a 

low-gap electrode with a larger volume will make it a more effective quasiparticle trap. Since the 

counter electrode is thicker than the base electrode, this suggests making the counter electrode 

have the lower gap. We call this arrangement a high-gap low-gap transmon. 

To test this idea for improving the T1, I fabricated chip KL103. The overall chip layout is 

the same as that for the chip SKD102 (see Sec.5.1) [2]. In KL103 the base electrode was oxygen 

doped and the counter electrode is pure Al. Figure 8.4 illustrates the fabrication procedure. In 

contrast with the fabrication procedure for SKD102, I did not use a mask to cover half of the chip 

and the transmons have nominally identical layers. I called the left and right transmons 𝑄𝐿2 and 

 𝑄𝑅2. Both transmons have nominally the same oxygen-doped base electrode with gap Δ1 and pure 

Al counter electrode with gap Δ2. Unfortunately, I didn’t co-deposit single films to directly 

measure the gaps, but the gap values were estimated from our test deposition results and the O2 

doping pressure test discussed in Chapter 5. The base electrode with doping has the gap Δ1 around 

257 μeV. The pure Al counter electrode has the gap Δ2 around 200 μeV. In this case, both 

transmons  𝑄𝐿2 and  𝑄𝑅2 have gap differences greater than the ℏ𝜔𝑔𝑒. Electrical characterization 

revealed that the right transmon  𝑄𝑅2 had higher transition frequency at 2.8790 GHz, compared to 

2.6100 GHz for the left transmon 𝑄𝐿2.  
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Figure 8.4: Fabrication procedure for building two transmons on chip KL103 in the same pump 

down. Both gap-engineered transmons have an electrode with gaps Δ1 and a counter-electrode 

with gaps Δ2. 

 

I performed interleaved measurements of T1 versus t for these two devices for over 10 

hours. Figure 8.5(a) shows T1 vs t for transmon  𝑄𝐿2  and Fig. 8.5(b) shows T1 versus t for 

transmon 𝑄𝑅2. The transmons have similar T1 and both show relatively large fluctuations between 

80 μs to 200 μs. The left transmon  𝑄𝐿2 has a slightly longer average value T1. The maximums of 

T1 for both devices appear to be over 200 μs. However, I note that this was not larger than the T1 

of  𝑄𝐿1, even though the gap difference was larger for  𝑄𝐿2 and  𝑄𝑅2 and the volume of the lower 

gap electrode was larger for  𝑄𝐿2 and  𝑄𝑅2. 
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Figure 8.5: (a) T1 vs time t data for the gap-engineered transmon 𝑄𝐿2. (b) T1 vs time t data for the 

gap-engineered transmon 𝑄𝑅2. 

 

 

8.4  Fabrication and Measurements of Transmons with Trapping Layer 

It was quite remarkable that the transmons on chip KL103 didn’t have longer relaxation 

times than transmon 𝑄𝐿1. A possible explanation was that the quasiparticles were getting stuck in 

the granular Al, which would leave quasiparticles in the high gap side, which could tunnel through 

the junction and reduce T1. To examine this idea, I tried adding a low-gap trapping layer on top of 

the electrode and counter-electrode to trap the quasiparticles from both layers.  

(b) 

(a) 
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Figure 8.6 shows the fabrication procedure I used to build the transmons. The overall layout 

of chip KL109 was somewhat different from that of SKD102 and KL103. Both transmons on chip 

KL109 had an oxygen-doped base electrode with gap Δ1, a less-oxygen doped counter electrode 

with gap Δ2 and a pure Al trapping layer with the lowest gap Δ3. I didn’t have co-deposited single 

films to measure the gaps, but I estimated gap values of each layer from the oxygen-doping tests, 

which I discussed in Chapter 5. The base electrode with doping has the gap Δ1 around 265 μeV. 

The less oxygen-doped counter electrode has the gap Δ2 around 220 μeV. The pure Al capping 

layer has the gap Δ3 around 200 μeV.  

 

 

Figure 8.6: Fabrication procedure for building  𝑄𝐿3 and 𝑄𝑅3 on chip KL109. Both transmons have 

a triple-layer structure with gaps Δ1, Δ2 and Δ3. 
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Figure 8.7: SEM image of (a) 𝑄𝐿3 junction area with triple layer structure on chip KL109. (b) 

Detailed view of junction area with colored layers (shifted from original location for better 

illustration of electrode layout): layer 1(blue), layer 2 (green), and layer 3 (orange).  

(b) 

(a) 
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The left and right transmons on this chip were called  𝑄𝐿3 and 𝑄𝑅3 and they were deposited 

at the same time. When depositing the third trapping layer, I applied a slightly different angle 

compared to the counter electrode so it would only touch the base electrode of the left side but not 

the counter electrode of the right side. This guaranteed that the Josephson junction was still 

between the first two layers (base electrode and counter electrode). Figure 8.7 shows SEM images 

of one of the junctions. 

The right transmon  𝑄𝑅3  had a higher transition frequency which is 2.9720 GHz. The 

transition frequency of the left transmon  𝑄𝐿3 was 2.1540 GHz. This was somewhat lower than the 

3 GHz I was aiming for, but acceptable.  

Figure 8.8 shows repeated measurements of the relaxation time T1 of  𝑄𝐿3 and 𝑄𝑅3   at 20 

mK. The measurements spanned about 12 hours and large fluctuations in T1 were again 

evident. 𝑄𝑅3 tended to have a longer T1, which fluctuated between about 80 μs and 120 μs.  𝑄𝐿3 

had T1 that fluctuated between about 40 μs and 80 μs. The T1 values of both devices were shorter 

than my other gap-engineered devices  𝑄𝐿1,  𝑄𝐿2 and  𝑄𝑅2.  

If I compare the T1 results for my gap engineered transmons, the device with highest gap 

difference gave the shortest T1. This was the opposite of what I expected, which means something 

is missing from our understanding of the device behavior. As I mentioned in the beginning of this 

chapter, one possible explanation could be quasiparticles get stuck in the granular Al layers so that 

T1 gets worse with increased granularity. Although the third layer in devices  𝑄𝐿3 and 𝑄𝑅3   were 

meant to fix this problem, it did not. This may have been due to poor contact of the third layer or 

the fact that I used Δ1 and Δ2 that were even larger, producing even more granular films. If this is 

correct the trapping layer may not help. Another group has published results from very granular 

Al resonators which suggest pretty long quasiparticle trapping times in their resonators [3]. In their  
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Figure 8.8(a) T1 vs time t measurements for the gap-engineered transmon  𝑄𝐿3 , which had a 

trapping layer. (b) The T1 vs time t measurements for the gap-engineered transmon 𝑄𝑅3, which had 

a trapping layer. 

 

 

superconducting microwave resonator, some sudden events occur (maybe due to cosmic rays) that 

cause a large increase in quasiparticle density. If a resonator is made of pure Al, these 

quasiparticles would quickly recombine (ms), and the resonator frequency would relax back to a 

relatively small steady state value. By contrast, very granular Al seems to recover slowly which 

may be due to local inhomogeneity in the gap or the presence of tunnel barriers between the 

grains. Whatever the source of quasiparticles, once they get stuck in a granular layer, they have a 

(b) 

(a) 



 

 

133 

 

hard time finding each other and recombining or getting out to the low-gap side.  In that case, there 

will not be good interlayer transfer and the quasiparticles will not empty out of the high-gap side. 

This could leave quasiparticles to tunnel across the Josephson junction and it doesn't matter that 

the low-to-high gap quasiparticle tunneling is suppressed.  

Another possible issue is that the model only assumed single quasiparticle tunnelling in 

present. If MAR is significant, then even quasiparticles trapped in the low-gap side will contribute 

to loss (see Sec. 4.4). 

 

8.5  Charge Dispersion and T1 

I also performed charge dispersion measurements on  𝑄𝑅3  and tried to determine if T1 

depended on the offset charge. The offset charge changes with time and leads to frequency 

variations in a qubit such as  𝑄𝑅3  that shows charge dispersion. This could then lead to T1 

fluctuations if T1 has a frequency dependence. Was this the cause of the T1 fluctuations I was 

observing? To try to answer this question, we prepared the qubit state using a long low power 

excitation at the 2-photon frequency for the |g⟩ - |f⟩ transition. Since the |g⟩ - |f⟩ transition varied, 

this is not a conventional state excitation for direct state lifetime measurement. We then wait a 

delay time ∆t which was varied and measure the state occupancy. From these measurements we 

could extract the lifetime of the |f⟩ and |e⟩ states as a function of the 2-photon excitation frequency.  

I took spectroscopy on 𝑄𝑅3 over a day. I used a long and low power qubit pulse to avoid 

power broading and measured the state using the high-power Jaynes Cummings readout [1]. Figure 

8.9(a) shows spectroscopic measurements of the |g⟩ - |e⟩ transition. The charge dispersion is around 

0.12 MHz. Figure 8.8(b) shows the |g⟩ - |f⟩ two-photon transition. The total charge dispersion for 

|g⟩ - |f⟩ transition was around 1 MHz. Note this is a two-photon transition, this will correspond to 
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twice as much dispersion (2MHz) in the single photon |e⟩ - |f⟩ transition. These charge dispersions 

are consistent with 𝐸𝑐/ℎ = 180 MHz and the qubit Hamiltonian. Note that the |g⟩ - |f⟩ transition 

charge dispersion is much larger than the dispersion of the |g⟩ - |e⟩. With this broader charge 

dispersion, it is easier to identify the frequency dependence of the state lifetimes two-photon which 

I show next. 

 

 

   

 

Figure 8.9: Repeated measurement of charge dispersion spectrum in transmon  𝑄𝑅3. (a) |g⟩ - |e⟩ 

transition versus time t and (b) charge dispersion spectrum for |g⟩ - |f⟩ two photon transition. 

 

 

(a) 

(b) 
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I then performed delayed spectroscopy on the two-photon |g⟩ - |f⟩ transition for 𝑄𝑅3. I first 

measured the transition at 21 frequencies, which covered the dispersion range. I then measured the 

delayed spectrum for the 2-photon |f⟩ - |g⟩ transition. This contains information on the |f⟩ - |e⟩ decay 

and the subsequent |e⟩ - |g⟩ decay. Figure 8.10 shows a general process of getting the state lifetime 

from the delay spectrum measurement. For the measurement in Fig. 8.9, the delay spectrum was 

measured at 21 frequencies and for a range of ∆t values. I fit the signals from different time delay 

∆t to extract T1 at each frequency in the 2-photon frequency range. 

 

Figure 8.10: The general process of getting state lifetime from delay spectrum. First, the repeated 

charge dispersion spectrum is averaged at each fq. Then I measure the spectrum with adding various 

∆t before the cavity readout and get averaged spectrum for each ∆t. Finally, fit the amplitude from  

averaged spectrum with different ∆t to a decay curve and get state lifetime at each fq. 
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I note that in order to measure the delay spectrum, I needed to use a different cavity power 

to measure the state. At low readout power, we are only sensitive to the |f⟩ state. In principle, this 

let me find the |f⟩ state qubit lifetime as a function of |g⟩ - |f⟩ transition frequencies. I then used the 

high-power readout at higher power where it was sensitive to both |e⟩ and |f⟩ states. From this 

second set I could extract the |e⟩ state lifetime as a function of |g⟩ - |f⟩ transition frequencies. 

Figure 8.11 shows results from the delayed spectroscopy measurements. Figure 8.11(a) 

shows |f⟩ state lifetime measurements (low readout power) with time delay from 0 μs to 50 μs. 

Figure 8.11(b) shows the |e⟩ state lifetime measurements (high readout power) with time delay 

from 0 μs to 150 μs. The signals at each frequency decay with increasing time delay ∆t. Note that 

in Fig. 8.11(b), the output is sensitive to both the |e⟩ and the |f⟩ state, but by longer time delay to 

150 μs, most of the signals would be from the |e⟩ state. Comparing the two plots, I note that the 

shapes are different which suggests a variation in T1 with the 2-photon |g⟩ - |f⟩ transition frequency.  

Figure 8.12 shows the resulting lifetime of |e⟩ and |f⟩ states from the delayed spectroscopic 

measurement in Fig. 8.8. The red curve is the |e⟩ state lifetime and the blue curve is the |f⟩ state 

lifetime. |e⟩ state lifetimes vary between 85 to 115 μs, which is similar to the direct T1 measurement 

in Fig. 8.8 (b). The |f⟩ state lifetime varied between 25 to 65 μs. This was short compared to |e⟩ 

state lifetime as expected, but the strong dependence on offset charge was unexpected.  
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Figure 8.11: Delayed spectroscopy measurement of transmon  𝑄𝑅3 versus the 2-photon transition 

frequency: (a) signal from |f⟩ - |e⟩ transition for delay ∆t = 0 - 50 μs and (b) |e⟩ - |g⟩ transition with 

∆t = 0 - 150 μs. 
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Figure 8.12: State lifetime measurement of |f⟩ state and |e⟩ state over the |g⟩ - |f⟩ dispersive 

frequencies. 

 

8.6 Summary of All the Gap-Engineered Devices and Conclusion 

Table 8.1 summarizes the main parameters of all the gap-engineered transmons I made and 

measured ( 𝐸𝑐/ℎ  of some devices are estimated from anharmonicity). I used five different 

approaches to fabricate these devices. All the chips have a design that is similar to that of SKD102, 

with two transmons (left and right) on one sapphire chip. Chip KL04 had two transmons, but only 

one was measureable. Process 1 was used for the fabrication of chip SKD102 and is described in 

detail in Chapter 7. Both transmons have a pure Al base electrode, but the left transmon counter 
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electrode doped with oxygen and the right transmon has a counter electrode made of pure Al. I 

used Process 2 to create two identical transmons with a pure Al base electrode and an oxygen-

doped counter electrode. Process 3 adds a pure 10 nm thick Al trapping layer on top of Process 2. 

Process 4 can be thought of as the inverse of Process 2, with an oxygen-doped base electrode and 

a pure Al counter electrode. I used this for chip KL103. Process 5 had an oxygen-doped base 

electrode, a counter electrode with less oxygen, and a pure Al trapping layer. I used this for chip 

KL109. 

All devices were measured in the same Oxford refrigerator at a base temperature of 20 mK, 

with the chip in a 3D Al cavity. The transmons had transition frequencies between 2.15 GHz and 

5.20 GHz and T1 varied between 4.7 and 310 μs. Figure 8.13 reveals that the maximum T1 values 

increased as the transmon frequency decreased. The red line in Fig. 8.13 shows the phenomenal 

fit of function 

𝑇1 =
17𝑚𝑠∗𝐺𝐻𝑧4

𝑓4
. (8.1) 

I note that most of the transmons with 𝑇1 > 100 μs have transition frequencies below 3 GHz. This 

is much less than the cavity frequency of 6.2 GHz, which reduces the contribution of the Purcell 

effect. I also note that 𝑇1  due to TLS and quasiparticles should both increase as frequency 

decreases, but not this rapidly. More work is needed to verify this behavior and understand its 

cause. 

In conclusion, this chapter I mainly discuss the T1 measurement of gap-engineered 

transmons. The maximum T1 at base temperature (20 mK) was over 300 μs. I also measured 

temperature dependence of T1 from 20 mK to 250 mK (𝑄𝐿1 and 𝑄𝑅1). I then fit these data with 

non-equilibrium quasiparticle model which gives Δ1 = 225.3 μeV and Δ2 = 230.90 μeV for 𝑄𝐿1 

and Δ1 = 190.5 μeV and Δ3 =179.6 μeV for 𝑄𝑅1 , compared to measured gaps Δ1 = 200 μeV, Δ2 = 
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228 μeV and Δ3 = 191 μeV. The transmons 𝑄𝐿2, 𝑄𝑅2, 𝑄𝐿3 and 𝑄𝑅3 with larger gaps and different 

electrode configurations didn’t produce longer T1 than 𝑄𝐿1, which may be due to the granular films 

trapping the quasiparticles. I also discuss the lifetime measurement of 𝑄𝑅3 from delay spectrum to 

figure out the impact of charge dispersion on T1. 

 

 

 

 

Figure 8.13: The maximum T1 vs transmon frequency of the devices in Table 8.1. The red line is a 

fitting line with the power relation of T1 proportional to 𝑓−4.  
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Table 8.1: Parameters of the transmons 
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Table 8.1 (continued): Parameters of the transmons 
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Chapter 9 

Analysis of Relaxation Time Fluctuations  

In all my transmons, T1 fluctuated on the time scale of minutes, with a standard deviation 

larger than 30% of the average. In this chapter, I provide analysis of the fluctuations that reveals 

how they depend on time, on T1 itself, and on the temperature. This analysis shows that for the 

different devices at base temperature, this fluctuation magnitude roughly scales as T1
3/2. On the 

other hand, if I consider how the fluctuations in each device varies with temperature, the 

fluctuation magnitude appears to be proportional to T1. I show that this behavior is inconsistent 

with being caused by a fluctuating source of non-equilibrium quasiparticles, fluctuations in the 

two-level system dielectric loss, Poisson fluctuations in the number of quasiparticles and 

fluctuations in quasiparticle trapping due to changes in the number of vortices. I then propose a 

model in which the dissipation is due to quasiparticles and the fluctuations are produced by 

changes in the number of quasiparticle dissipation channels. This model appears to be consistent 

with the observed T1
3/2 scaling of the fluctuations in different devices at base temperature and the 

linear scaling in T1 if the temperature is swept in individual devices, including when the 

temperature is over 150 mK, where the loss is dominated by thermally generated quasiparticles.  
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9.1 T1 Fluctuation Data 

Figure 9.1(a) shows the same T1 vs temperature T data as Fig. 8.2 for transmons 𝑄𝐿1 and 

 𝑄𝑅1, but in this figure on one semi-log plot. Using this data, we determined the standard deviation 

of T1 as a function of temperature by sorting the results for each device into narrow temperature 

bins, and then taking the standard deviation of the T1 values in each bin.   

Figure 9.1 (b) shows the resulting plot of σT1vs T1 for both devices.  Note that in this plot, 

the points on the right (larger T1 values) are at lower temperature, while the points on the left 

(smaller T1 values) are at higher temperatures, where thermal quasiparticles dominate. Both 

devices show that σT1  is linearly proportional to T1, even at higher temperature. Thus the relative 

fluctuation size σT1 /T1 appears to be constant, independent of the temperature.   

The fact that σT1 /T1 does not vary from low to high temperature suggests that a single 

fluctuating mechanism (the numerator) is responsible over the full range and furthermore that the 

same loss mechanism (the denominator) dominates over the entire range. Since we know the loss 

at high temperature is dominated by quasiparticle loss, this suggests that this is also the dominant 

loss mechanism at low temperatures. We examine this behavior further below to understand 

whether this qualitative observation can be verified quantitatively. 

Our group and our collaborators at LPS have over the last few years acquired additional 

somewhat less detailed data on fluctuations in several other transmons. Some devices were 

measured before and after cycling to room temperature and our collaborators used a different 

dilution refrigerator and measurement system. Figure 9.2 shows a summary plot of 𝜎T1vs T1 for 

several of these transmons at base temperature. The large range of average T1 may be the result of 

the roughly inverse relationship between qubit frequency and T1 that we have observed, gap 
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Figure 9.1: (a) Semi-log plot of relaxation time T1 vs temperature T with results for gap-engineered 

transmon 𝑄𝐿1  (blue) and standard transmon  𝑄𝑅1  (red). (b) Semi-log plot of σT1vs T1 for gap-

engineered transmon 𝑄𝐿1 (blue) and standard transmon 𝑄𝑅1 (red). For this plot, the T1 data in (a) 

was divided into the temperature bins and the standard deviation was then calculated for each bin. 

Note that temperature decreases from left (shorter times T1) to right (longer times T1). Dashed line 

shows σT1 scales linearly with T1. 

(a) 

(b) 
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engineering, as well as other random variations in the devices. The straight line fit on this log-log 

plot shows 𝜎T1is proportional to T1
1.43, which is close to T1

3/2. Needless to say, this is surprising 

not only because these are many different devices and the T1-axis covers about 2 and a half 

decades, but also because the exponent is not 1, which was the exponent seen when plotting σT1vs 

T1 for each single transmon when its temperature was swept. A group from Fermi Lab also found 

similar power law relations of 𝜎T1is proportional to T1
1.5 [1]. 

I note that the point for 𝑄2
* is an outlier. When we first measured this device, the mixing 

chamber shield was not coated with SiC. Thus, this device was measured under different and much 

noisier conditions from the others. Because of this, it showed a significant excess excited state 

population at base temperature and short T1. Our group measured the same chip two additional 

times after the can was coated with SiC and the corresponding points fall in line with the other 

measurements.  

At first sight, it is hard to see what could account for these exponents being different, but 

in the next section I present a simple model that yields a possible explanation of this behavior. 

 

9.2 Model for Fluctuations in Quasiparticle Dissipation Channels 

In order to understand the unusual behavior of the fluctuations in T1 described above, I 

consider a simple model of in which the relaxation rate of a transmon scales with the product of 

the number Nq of quasiparticles in one electrode of the device’s junction and the number Nc of 

quasiparticle dissipation channels that are active in the junction. We can think of a dissipation 

channel as a relatively high-transparency atomic-scale region in the tunnel junction barrier through 

which only quasiparticles can tunnel and cause loss. Variations in the transparency of the channels, 

due to random charge noise for example, could cause variations in the channel conductance, 
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Figure 9.2: Plot of σ𝑇1vs T1 for different transmons at the base temperature of  20 mK. The 

transmons have different resonant frequencies, from 2.7 GHz to 5.2 GHz, and different layer 

configurations (see Table 8.1). The straight line is a power law fit showing σ𝑇1 ∝ 𝑇1
1.43.   𝑄1𝑅, 

 𝑄1𝐿, and  𝑄2 were measured more than one time on different runs of the refridgerator and with 

different cavities.  

 

 

impacting the loss. It is important to note that we typically do not see corresponding large 

fluctuations in the transmon’s transition frequency. This means that the fluctuating channels do 

not affect the tunneling of pairs and must only impact the quasiparticle tunneling. This is somewhat 

unusual or unexpected and why we refer to them as quasiparticle dissipation channels. Kim et al. 

[2] have reported simulations of electron tunneling through Al/AlOx/Al junctions and they seem 
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to show channels. This suggests that channels are inherent to Al/AlOx/Al junctions, at least as I 

fabricated them. 

In this situation, the relaxation rate of the transmon can be written as 

   
1

𝑇1
=

𝑁𝑐𝑁𝑞

𝐴
+

1

𝑇𝛾
, (9.1)                                                                                                                                                            

where 1/𝑇𝛾 is the relaxation rate due to all other processes (Purcell effect, direct coupling to the 

input/output lines, two level systems, etc.) and the factor A may in general depend on other system 

parameters such as the temperature T, the gaps Δ1 and Δ2 of the electrodes, and the volume of the 

electrodes, as well as the device’s capacitance C and the junction’s tunneling resistance Rn. The 

relaxation time T1 will then obey 

 

𝑇1 =
𝐴

𝑁𝑐𝑁𝑞+
𝐴

𝑇𝛾

. (9.2)                                                                                                      

I now assume that the number of dissipation channels Nc undergoes slow fluctuations (over 

times much longer than it takes us to measure T1) with a Poisson distribution, so that the standard 

deviation of Nc obeys 

𝜎𝑁𝑐 = √𝑁𝑐   . (9.3)                                                                                                        

 Here Nc should be taken as the average number of channels. 

 From Eqs. (9.2) and (9.3), the resulting fluctuations in T1 will have a standard deviation 

given by 

𝜎𝑇1 = |
𝜕𝑇1

𝜕𝑁𝑐
|𝜎𝑁𝑐 =

𝐴𝑁𝑞

(𝑁𝑐𝑁𝑞+
𝐴

𝑇𝛾
)
2√𝑁𝑐 =

𝑇1
2𝑁𝑞√𝑁𝑐

𝐴
. (9.4)      

In the limit 𝑇𝛾 >> A/NcNq, i.e. the relaxation rate due to the quasiparticles is much larger than the 

relaxation due to all other processes, then 
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𝑇1 ≈
𝐴

𝑁𝑐𝑁𝑞
, (9.5)                                                                                                           

 and the standard deviation in T1 reduces to 

𝜎𝑇1 ≈
𝐴

𝑁𝑐
2𝑁𝑞

√𝑁𝑐 ≈
𝑇1√𝑁𝑐

𝑁𝑐
= 𝑇1√𝑁𝑐 (9.6)                                        

In this limit, I can then write 

(
𝑇1

𝜎𝑇1
)
2

≈ 𝑁𝑐 , (9.7)                                                                                                      

where Nc should again be taken as the average number of channels. Note that the left side of Eq. 

(9.7) is just the inverse of the relative size of the fluctuations squared. As we noted, the relative 

size of the fluctuations in T1 in our device appears to be temperature independent, and this is 

consistent with Eq. (9.7) if the number of fluctuating channels Nc does not depend on temperature. 

According to Eq. (9.7), the fraction (𝑇1/𝜎𝑇1)
2
 gives the average number of fluctuating 

dissipation channels. If 𝑁𝑐 and the fluctuations in Nc are temperature independent, then varying 

the temperature will just change the number of quasiparticles, which will change T1 of a device, 

and the fluctuations would then obey 

𝜎𝑇1 =
𝑇1

√𝑁𝑐
, (9.8)                                                                                            

with Nc being a temperature-independent constant. This gives a linear dependence of 𝜎𝑇1  on T1. 

This is consistent with the Fig. 9.1 (b), which shows 𝜎𝑇1  for a single device as the temperature T 

is varied. We thus see that the simple model explains why the relative size of the fluctuations is 

temperature independent and why this persists into the thermal quasiparticle limit.  

I note that Eq. (9.8) can also be written in the form 

𝜎𝑇1 ≈
𝐴

𝑁𝑐
2𝑁𝑞

√𝑁𝑐 =
𝐴

𝑁𝑐
3
2𝑁𝑞

= 𝑇1
3/2√

𝑁𝑞

𝐴
 . (9.9)                                  
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Consider now a collection of transmons that are all at the same temperature and have the same 

non-equilibrium quasiparticle number Nq and factor A, but different numbers of dissipation 

channels Nc and relaxation times T1. Clearly this would only be roughly true for the devices 

included in Fig. 9.2, which were measured in different systems and had a range of parameters. 

Nevertheless, when measuring different devices, Eq. (9.9) implies that we should expect to see 

σT1  scaling with T1
3/2, which is similar to the observed scaling. I emphasize that while this does 

not prove that the model is the correct explanation of the phenomenon, it does demonstrate that 

the scaling of σT1  with T1
 seen in Fig. 9.1 (when T1 is varied by sweeping T in individual devices) 

is not inconsistent with the scaling of σT1  with T1
3/2,  seen in Fig. 9.2 (when T1 of different devices 

is measured at the same temperature) [3]. 

 

9.3 Ruling Out Other Sources of Fluctuations 

        Although the above model is quite simple, it is not trivial. We can see this by considering the 

behavior caused by other potential sources of the fluctuations, which do not reproduce the behavior 

we observe in the T1 fluctuations.  

        First, consider a fluctuating external source of non-equilibrium quasiparticles. Of course, I 

mentioned above that such a source is not consistent with the uncorrelated fluctuations in T1 that 

we saw in two transmons that were on the same chip. To see why, note again in this case I can 

write the relaxation rate as 

1

𝑇1
=

𝑁𝑞𝑝

𝐴
+

1

𝑇𝛾
, (9.10)                       

where A is a constant, Nqp is the total number of quasiparticles, and 1/𝑇𝛾 is the relaxation rate due 

to all other processes. The relaxation time can then be written as 
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𝑇1 =
𝐴

𝑁𝑞𝑝+
𝐴

𝑇𝛾

. (9.11)                                          

The total number of quasiparticles will in general include those from thermal generation 

and the external source. As I discussed in Chapter 4, if I ignore recombination and assume 

quasiparticles are lost by trapping, then we can write 

𝑁𝑞𝑝 = 𝑁𝑛𝑒𝑞𝑝 +𝑁𝑒𝑞 , (9.12)                                                                                

where Neq is the number of thermally generated quasiparticles in one electrode of the transmon and 

Nneqp is the number of quasiparticles that were generated by the external source. If Nneqp undergoes 

fluctuations with standard deviation 𝜎neqp, the resulting fluctuations in T1 are 

𝜎𝑇1 = |
𝜕𝑇1

𝜕𝑛𝑛𝑒𝑞𝑝
|𝜎𝑛𝑒𝑞𝑝 =

𝐴

(𝑁𝑞𝑝+
𝐴

𝑇𝛾
)
2 𝜎𝑛𝑒𝑞𝑝 =

𝑇1
2

𝐴
𝜎𝑛𝑒𝑞𝑝. (9.13)        

For different devices run in the same system at the same temperature, we might expect similar 

factors A and 𝜎neqp , and we would then see scaling of 𝜎T1  as T1
2 for different devices at all 

temperatures. This is not consistent with the observed dependence seen in Fig. 9.2. Note also, if 

we measure T1 versus T in a single device, Eq. (9.13) implies that we should expect to see scaling 

of 𝜎T1 as T1
2, which is not observed. Eq. (9.13) also implies that if we sweep the temperature of a 

device and measure (T1/𝜎T1)
2, we should see that it scales inversely with T1

2. This is not observed.  

In the Chapter 8, Figure 8.3 shows results from fitting the maximum T1 vs T curve, the 

minimum T1 vs T curve and the middle T1 vs T curve using a detailed model for loss due to 

quasiparticles in a transmon with electrodes with different gaps. This model was described in 

Sec.4.2 and Sec. 4.3. The model includes non-equilibrium generation of quasiparticles as well as 

thermal generation. However, examination of the higher temperature region reveals that the curves 

converge to one curve; at high temperatures the loss is dominated by thermally generated 
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quasiparticles and only depends on the temperature. Thus at temperatures where thermal 

quasiparticles dominate the loss, fluctuations in the number of non-equilibrium quasiparticles is 

relatively un-important, and this contradicts the observed behavior. We note that this same 

argument can be used to rule out fluctuations in the number of quasiparticles due to fluctuations 

in the quasiparticle trapping rate. 

Next consider what happens if there are fluctuations in the dielectric loss due to fluctuating 

two-level systems.  I can again write the total relaxation rate as  

1

𝑇1
=

𝑁𝑐𝑁𝑞

𝐴
+

1

𝑇𝛾
 , (9.14)                                                                                       

but this time I will suppose that 1/𝑇𝛾 is a fluctuating relaxation rate due to TLS dielectric loss. I  

then find 

𝜎𝑇1 = |
𝜕𝑇1
𝜕𝑇𝛾

|𝜎𝑇𝛾 =
𝐴2

(𝑁𝑐𝑁𝑞 +
𝐴
𝑇𝛾
)
2

𝜎𝑇𝛾
𝑇𝛾
2
=
𝑇1
2

𝑇𝛾
2
𝜎𝑇𝛾  . (9.15)

 

If 𝑇𝛾 and 𝜎𝑇𝛾 are temperature-independent, at least in the temperature range of interest, then Eq. 

(9.15) implies that we would expect to see 𝜎𝑇1 scaling as T1
2 when we sweep the temperature of a 

device. This is not what is observed.  Equation (9.15) also implies that: 

(
𝑇1

𝜎𝑇1
)
2

=
𝑇𝛾
4

𝜎𝑇𝛾
2 𝑇1

2 (9.16)                                                  

Since T1 varies with temperature due to thermal quasiparticles, this implies that the right hand side 

will not be independent of temperature, and that instead the relative size of the fluctuations will 

decrease with increasing temperature. This is quite plausible behavior, but it is not observed in our 

devices. 
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9.4 Conclusion  

 In conclusion, we measured large temporal fluctuations in the relaxation time T1 of 

Al/AlOx/Al transmons. While we have not identified their origin, weak correlations between qubits 

on the same chip suggest a local source. Characterizing the dependence of the fluctuation 

magnitude σT1 on T1 puts further constraints on the nature of the source. In an individual device, 

T1 can be shortened by increasing the temperature and generating thermal quasiparticles. In this 

case, we saw σT1 ∝ T1 up to 250 mK, where the total loss is sure to be dominated by quasiparticles. 

Alternatively, different devices studied at 20 mK showed a wide range of T1, due to differences in 

the intrinsic device properties or measurement environment. In this case, we found σT1 ∝ T1
1.43. 

Neither of these results seemed to depend on gap engineering of the electrodes. We presented a 

simple model that showed this behavior is consistent with a fluctuating number of quasiparticle 

“dissipation channels,” and inconsistent with a fluctuating external source of quasiparticles or two-

level systems. Further work will be needed to find and eliminate the significant loss fluctuations 

in these devices. 
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Chapter 10 

Conclusions  

To conclude, I fabricated Al/AlOx/Al transmons with gap-engineering, mounted the 

devices in a 3D cavity and measured their relaxation time T1. The best gap-engineered device had 

a maximum T1  that exceeded 300 μs. I also measured T1 repeatedly and obtained T1 fluctuation 

data at different temperatures. Based on the observed behaviors, I postulated that the T1 

fluctuations were due to fluctuations in the number of quasiparticle dissipation channels.  

In Chapter 4, I discussed the impact of non-equilibrium quasiparticles on transmon 

relaxation. I introduced a model for quasiparticle-induced loss in transmons and how this loss 

would vary with temperature. Notably, this model can predict a significant T1 rise as T is reduced 

if the two electrodes of a transmon have different gaps and the difference of the gaps is larger than 

ℎ𝑓𝑔𝑒 . In this case, tunneling of single quasiparticle from the low-gap side to the high-gap side can 

be suppressed. Other conditions for seeing this effect are that there must be: i) a mechanism 

generating non-equilibrium quasiparticles, ii) a relatively low quasiparticle trapping rate to allow 

sufficient quasiparticle accumulation in the low gap region at low temperatures, and iii) an absence 

of other loss mechanisms producing substantially larger loss. I also discussed how multiple 

Andreev reflextion (MAR) effects can significantly modify these conditions and reduce T1.  

Chapter 5 is dedicated to the design and fabrication of the transmon chip SKD102 . This 

chip had two transmons with thin-film electrodes of pure Al and counter-electrodes made with 

either pure Al or oxygen-doped Al. The superconducting energy gap of each layer was set by the 

oxygen during that layer deposition, and the layer’s thickness. In Chapter 6, I describe the 
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experimental apparatus and procedures that I used to measure the transmons, including how I 

found T1, T ’, T2 and T2
*.  

In Chapter 7 I discussed the basic characterization of the two transmons on device SKD102. 

Such characterization of a qubit is essential before one can perform qubit manipulation or gate 

operations. Device parameters such as the qubit transition frequency and coherence time, tend to 

drift with time and shift slightly between cooldowns. In the first cooldown, I found that the gap-

engineered transman had a much longer T1 than the non-gap-engineering transmon, even though 

they were on the same chip. 

 In Chapter 8, I described my measurements of T1 as a function of time and temperature for 

the two transmons on chip SKD102. At 20 mK, the gap-engineered device on this chip showed T1 

variations between about 100 μs and 300 μs, while the un-doped device on the same chip showed 

T1 variations between about 50 and 100 μs. The fluctuations in T1 in the two devices were 

uncorrelated. These were remarkably large T1 fluctuations. I also discussed and compared the T1 

measurements from chips KL103 and KL109, which had different transmon electrode 

configurations. All the devices had long T1, but not as long as expected given the gap differences.   

It is possible that this discrepancy was due to quasiparticles getting stuck in the granular Al layers, 

which might cause T1 to get worse with increased granularity, as I observed. Further work should 

focus on lower electrode gap, so the film is less granular and better understanding of MAR.  

Chapter 9 focused on the T1 fluctuations and a model to explain the fluctuation behavior. 

For the different devices made by our group and our collaborators, this fluctuation magnitude 

appears to roughly scale as a power law of T1 with an exponent near 1.5. With increasing 

temperature, T1 decreases due to a higher density of thermally generated quasiparticles. For each 

individual device measured up to 250 mK, the fluctuation magnitude appears to be proportional to 
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T1. I presented a model of quasiparticle dissipation channels that reproduces both observed scaling 

relationships. Finally, I noted that the scaling power laws of T1 are not consistent with fluctuations 

in two-level-system dielectric loss or fluctuations in the density of non-equilibrium quasiparticles.  
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