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Mid-ocean ridges are a fundamental component of plate tectonics on Earth.
They are the longest mountain ranges; combined, they stretch over 70,000 km of the
Earth’s surface. They are significant sources of volcanism, producing more than 20
km’ of new oceanic crust each year. The volcanism observed at the ridge axis is
linked to processes that transport and focus melt in the underlying upper mantle.

Typically, upper mantle melt distribution is inferred either through inversion
of geophysical data, such as electromagnetic signals, or through geodynamic
modeling. Both approaches require robust constitutive relationship between on
electrical conductivity, permeability, and porosity. Unfortunately, direct

measurements of transport properties of partially molten rock are technically



challenging due to the extreme conditions required for melting. This work aims to
quantify permeability-porosity and electrical conductivity-porosity relationships of
partially molten monomineralic and polymineralic aggregates by simulating fluid
flow and direct current within experimentally obtained, high-resolution, three-
dimensional (3-D) microstructures of partially molten rocks.

In this study, I synthesized rocks containing various proportions of olivine,
orthopyroxene (opx), and basaltic melt, common components of the upper mantle. I
imaged their 3-D microstructure using high-resolution, synchrotron-based X-ray
micro-computed tomography. The resulting 3-D geometries constitute virtual rock
samples on which pore morphology, permeability, and electrical conductivity were
numerically quantified.

This work yields microstructure-based electrical conductivity-porosity and
permeability-porosity power laws for olivine-melt and olivine-opx-melt aggregates
containing melt fractions of 0.02 to 0.20. By directly comparing the velocity and
electrical fields, which are outputs of the fluid flow and direct current simulations,
respectively, this study provides strong evidence that fluid and electricity travel
through distinctly different pathways within the same rock, due to the stronger
dependence of fluid flux on hydraulic radius. This study also provides the first
quantitative evidence of lithological melt partitioning, where melt fractions spatially
associated with olivine are systematically higher than those with orthopyroxene due
to the relatively low surface energy density of olivine-melt interfaces with respect to

opx-melt interfaces. The results of this study place important, novel constraints on 3-



D melt distribution and transport properties of the partially molten mantle regions

beneath mid-ocean ridges.
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Preface

In this document, the transport properties, e.g. permeability and electrical
conductivity, of monomineralic and polymineralic partially molten rocks are
quantified and linked to volume proportion of melt. Since transport properties of
partially molten rocks are notoriously difficult to measure due to the extreme
pressure-temperature conditions required for melting and high viscosity of basaltic
melt, I take a novel approach: imaging and digitizing synthetic partially molten
mantle rocks using advanced. These 3-D images constitute virtual rock samples on
which digital rock physics (DRP) experiments can be conducted and transport
properties can be quantified. My methodology, results, and implications for
understanding melt transport at mid-ocean ridges are discussed over the next six
chapters.

e Chapter 1: I introduce geological context and outstanding questions
related to melt transport at mid-ocean ridges. The concepts necessary
to understand my research methods and findings are introduced.

e Chapter 2: I quantify the 3-D melt distribution and permeability of
partially molten olivine-basaltic melt as a function of melt fraction.

e Chapter 3: I derive the electrical conductivity of partial melts from
microstructural considerations. I compare my results with previously
conducted experiments in literature.

e Chapter 4: I investigate the role of mineral heterogeneity and surface

energy on melt distribution in samples containing olivine,

i



orthopyroxene, and basaltic melt.

e Chapter 5: I compute the permeability and electrical conductivity of
partially molten rock samples composed of olivine, orthopyroxene,
and basaltic melt.

e Chapter 6: Concluding remarks and a preview of future research.

il
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Chapter 1: Introduction

1.1 Melting at mid-ocean ridges

Melting of mantle rock is controlled by environmental conditions, such as
pressure, temperature, and volatile content. For an intraplate region of the upper
mantle far from sources of volcanism, the pressure-temperature conditions are
generally thought to be insufficient to cause melting of the mantle, which is
composed primarily of olivine and pyroxene. At mid-ocean ridges, however,
divergence of the overriding oceanic plates induces a pressure gradient that pulls
upward hot rock sourced deeper in the mantle. The resultant pressure drop, which
occurs faster than thermal equilibration, carries the peridotite across its solidus (Fig.
1.1), inducing partial melting — also known as decompression melting — over a broad
region (Allégre et al., 1973; McKenzie and Bickle, 1988). The pressure and
temperature conditions in the upper mantle, which vary with depth, define a prism-
shaped region of partial melt more or less centered about the ridge axis that extends
laterally for hundreds of kilometers (McKenzie and Bickle, 1988; Oxburgh, 1980).
Seismic (e.g. MELT Seismic Team, 1998; Toomey et al., 1998). Magnetotelluric (e.g.
Evans et al., 1999; Key et al., 2013) surveys of the fast-spreading East Pacific Rise
confirmed this conceptual model of mid-ocean ridge melting. However, the
mechanism for transporting and focusing melt to the ridge axis is still debated.

A number of theories have been proposed to explain the transport of melt
from depth to the ridge, which involves both the ascent of melt and redirection to the

ridge axis (melt focusing). For a long time, it was thought that the same pressure
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gradient that induces decompression melting is also responsible for focusing melt
(Phipps-Morgan, 1987; Ribe, 1988; Spiegelman and McKenzie, 1987). However, it
was determined that divergence of the plates alone required unrealistic upper mantle
viscosity values to account for magma ascent rates inferred from uranium-series data.
Advection of trapped melt by means of buoyancy-driven convection (Buck and Su,
1989; Rabinowicz et al., 1984; Scott and Stevenson, 1989) was another popular
theory at that time but required higher melt fractions than are observed by
geophysical methods and a lower permeability than standard estimates.

Current thinking is that melt percolates through the upper mantle via porous
flow along a grain boundary network of interstitial melt. Though porous flow is most
often thought of in in the context of fluid transport in the crust, where overburden
pressures are sufficiently low to maintain interconnected pore space, the
compressibility of melt is low enough to support an intergranular, interconnected
network. The permeability of this network has been a parameter of high interest, since
it relates the percolation velocity of melt on the aggregate-scale to local pressure
gradients.

A number of attempts have been made to determine the permeability of
partially molten rock, including consideration of idealized melt geometries, network
modeling, and direct measurement on analogue systems. However, as will be
discussed in more detail, these methods neither consider the proper three-dimensional

(3-D) pore structure of partially molten rocks nor the correct chemistry.
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Figure 1.2: Idealized representation of three-dimensional melt geometry using
isotropic tetrakaidecahedral grain shape. Included are two-dimensional cross-sec-
tions of melt features. (A) Interconnected melt tubules that form at three and
four-grain junctions for 8 < 60°. (B) Isolated melt tubules form at four-grain junc-
tions for 6 > 60°.



1.2 Melt microstructure

The grain-scale geometry of a partially molten rock is controlled by energy
minimization processes (Bulau et al., 1979). For a melt fraction (¢) below the
disaggregation limit (¢ < 0.25) (Scott and Kohlstedt, 2006), spatial variations in
surface energy associated with interphase boundaries constitute thermodynamic
gradients that drive melt into an equilibrium configuration (Smith, 1964; Waff and
Bulau, 1979). The fluid transport, electrical, and mechanical properties of the rock
depend crucially on the morphology and topology of the interstitial melt network.

A good indicator of the microstructure geometry is the dihedral angle ()
(Smith, 1964, 1948), which is the angle that subtends two solid-melt interfaces. In
general, 0 varies from grain contact to grain contact, depending on the relative surface
energy densities of the adjacent phase boundaries. However, for two identical,
adjacent, isotropic grains separated by melt, 6 is defined by the following relation:

cos(g):% (1.1)
where yss and yq are the surface energy densities of the solid-solid and solid-liquid
phase boundaries, respectively. For # < 60° and any melt fraction, melt forms an
interconnected network along triple junctions consisting of prismatic melt tubules that
are connected at four-grain junctions (Fig. 1.2A) (von Bargen and Waff, 1986).
Conversely, for 8 > 60°, melt forms isolated pockets at grain corners (Fig. 1.2B)
unless a critical melt fraction is exceeded. ys and y, are fundamental to the chemistry
and mineralogy on either side of the interface. An aggregate composed of olivine,
which is the primary upper mantle mineral component, and basaltic melt exhibits a

median dihedral angle of ~35° (Waff and Bulau, 1982), so an olivine-basaltic melt
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aggregate should support an interconnected melt network.

Analysis of 2-D cross-sections (e.g. Cooper and Kohlstedt, 1982; Waff and
Bulau, 1982; Cmiral et al., 1998; Faul and Fitz Gerald, 1999) reveal a range of melt
features. Most those features are prismatic melt tubes that reside at three and four-
grain junctions, which is consistent with the von Bargen and Waff (1986) model.
However, additional melt features, such as melt films and melt pools, also exist due to
the anisotropic surface energy density of olivine-basaltic melt interfaces (Faul, 2000;
Laporte and Provost, 2000). This observation is confirmed by 3-D analysis of the
coordination number distribution (Fig. 1.3), where the coordination number is defined
as the number of melt features that connect at a single point and is a measure of the
melt network topology. Fig. 1.3 highlights the diversity of features present in olivine-

basalt aggregates (e.g. prismatic tubules, melt films, melt pools).

1.3 Permeability of the melt microstructure
1.3.1 Permeability of idealized geometries

An interconnected, interstitial melt network facilitates melt transport over
distances larger than the grain-scale (Turcotte and Schubert, 2014). A crucial
parameter used for modeling melt transport in mid-ocean ridge systems is
permeability (k), which is a measure of the capacity of the rock to transport melt.

Permeability is a power law function of melt fraction,

(1.2)

where ¢ is the melt fraction and d is the average grain size [m”]. C and n are power

law parameters that depend on the morphology and topology of the melt network. For



idealized melt network geometries (e.g. Frank, 1968; von Bargen and Waff, 1986),
Eqn. (1.2) can be analytically derived. For example, a network composed of uniform
tetrakaidecahedral grains, i.e. prismatic melt tubules residing at three and connecting
at four-grain junctions, permeability is given by Eqn. (1.2), where n =2 and C is 1600
(von Bargen and Waff, 1986). Another model (Faul et al., 1994) that assumes
ellipsoidal inclusions, an approximation to a partial melt with wet grain faces, yields a
power law exponent of n = 3. However, melt geometries of real partially molten rocks
are heterogeneous and exhibit a range of melt features at different melt fractions, in
which case Eqn. (1.2) is an empirical relation.

In order to assess the influence of melt network heterogeneity on permeability,
Zhu and Hirth (2003) used a network permeability model to randomly vary the
diameter of melt tubules in a pack of isotropic, tetrakaidecahedral grains. They found
that for a uniform tubule diameter, the permeability-melt fraction power law was the
same as that analytically derived by von Bargen and Waff (1986). Though for
randomly varying melt tubule diameters, computed permeabilities adhered to a power
law exponent n = 3. Though a major step forward from idealized geometries, a
systematic laboratory quantification of partially molten mantle rock permeability is

needed.

1.3.2 Experimental constrains on permeability
Permeability is technically challenging to measure for partially molten
systems because of the extreme pressure-temperature conditions required for melting

and the high viscosity of basaltic melt. Therefore, a number of studies (e.g. Holness
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and Graham, 1991; Jurewicz and Watson, 1984; Mibe et al., 1998; Wark and Watson,
1998; Wark et al., 2003; Watson and Brenan, 1987) look to analogue systems that
have wetting properties similar to the olivine-basaltic melt system. For example,
Wark and Watson (1998) measured the permeability of aggregates composed of
quartz plus H,O brine (6 = 32°). They found permeability adheres closely to Eqn.
(1.2), where power law parameters n = 3 and C = 200 (Fig. 1.4). Studies that used
analogue materials provided valuable insight to the grain-scale fluid distribution in
real, heterogeneous porous rocks. However, grain-scale fluid distribution is sensitive
to distribution of surface energy — and therefore mineralogy and fluid chemistry — so
it is unclear if the findings of analogue studies apply to partially molten mantle rocks,
which are composed primarily of olivine. In order to properly constrain the
permeability of partially molten mantle rock, a chemistry and mineralogy that is
representative of the mantle must be used.

Several attempts to measure the permeability of olivine-basalts have been
made. For example, Renner et al. (2003) measured the compaction rate of olivine-
basaltic melt samples, undergoing draining in response to an imposed pressure
gradient. By relating the measured compaction rate to permeability, they found their
results implied a permeability-melt fraction relationship that qualitatively resembled
Wark and Watson (1998) (power law parameters n = 3 and C = 200), but a rigorous
fit to the data was not conducted. Furthermore, permeability is a property of the
instantaneous melt geometry. As the melt fraction and grain-scale melt distribution
changes during compaction, so does the permeability.

An additional experimental constraint on olivine-basaltic melt permeability-
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melt fraction relationship was provided by Connolly et al. (2009), who used a high-
temperature, high-pressure centrifuge to mimic compaction-driven flow that occurs
during melt transport under upper mantle conditions. Their samples were spun to
accelerations of 400-700 g, which greatly enhanced the rate of melt flow. Using a
scanning electron microscope (SEM) to measure the porosity profile of their samples
(Fig. 1.5) before and after centrifuging, they were able to back out sample
permeability. Their sample was composed of olivine-basalt and had melt fractions of
0.05. Their data suggested a piece-wise permeability-melt fraction relationship: a
quadratic (n = 2) dependence for low melt fractions and a cubic (n = 3) dependence
on melt fraction for higher melt fractions, which they interpret as indicative of a
change in melt morphology from a tubule-dominant network at low melt fraction to
one that is populated by higher-coordination number connections. They estimated the
geometrical constant C to range between 3 and 27, which is consistent with a highly
heterogeneous grain-scale melt distribution. Though their experiment was a
significant leap forward in linking permeability to the melt microstructure, it is not
straightforward to assess boundary effects of their experimental setup. Therefore, it is
necessary to independently constrain the permeability as a function of melt fraction

using alternative methodology.

1.3.3 Electrical conductivity of partially molten mantle rocks
The electrical conductivity of partially molten mantle rock can be used as a
tool for probing melt content of the mantle and for inferring the 3-D grain-scale

distribution of melt in partially molten rock samples. The presence of partial melt
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increases the electrical conductivity of mantle rock by several orders of magnitude
(e.g. Roberts and Tyburczy, 1999; ten Grotenhuis et al., 2005; Yoshino et al., 2010).
For an olivine-basaltic melt aggregate, the bulk electrical conductivity is an average
of the electrical conductivities of olivine and basaltic melt, which is on the order of
0.01 S/m (Constable, 2006; Yoshino et al., 2010) and 1-10 S/m (Roberts and
Tyburczy, 1999; ten Grotenhuis et al., 2005; Yoshino et al., 2010) for olivine and
basaltic melt, respectively. If melt exists as isolated pockets, i.e. melt fraction is
below the percolation threshold and dihedral angle is greater than 60°, olivine and
melt will conduct in series. As a result to bulk electrical conductivity of the aggregate
be very low. Conversely, if melt forms an interconnected network, bulk electrical
conductivity is high, since melt and olivine conduct electricity in parallel. The bulk
electrical conductivity of an actual partially molten rock will be somewhere between
these two end-member cases.

Much like permeability, bulk electrical conductivity of partially molten rocks
adheres to a power law, specifically Archie’s Law:

O = A0 0" (13)

where 4 and m are power law parameters, opux and omer are the electrical
conductivities of the bulk and melt phase, and ¢ is melt fraction. Eqn. (1.3) is an
empirical relation that assumes the mineral phase is a good insulator relative to the
melt phase, which is true for olivine-basaltic melt aggregates.

Note the similarities between Eqn. 1.2 and Eqn. 1.3. Both are power laws that
relate a bulk transport properties to characteristics of the melt microstructure. The fact

that the same pathways that facilitate fluid flow are also available to conduction of
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electrical current has garnered significant interest in linking permeability and
electrical conductivity. We address the possibility of using electrical conductivity as a

tool for inferring permeability in Chapter 3.

1.3.4 Using electrical conductivity to infer 3-D melt distribution

It is common practice to infer 3-D melt geometries from measured values if
Obulk- Fig. 1.6 is comparison of an Archie relation for the olivine-basaltic melt system,
obtained by fitting measured bulk electrical conductivity data, and the geometric
mixing models (Fig. 1.6A). Measured values of opuk for olivine-basaltic melt
aggregates appear to straddle the Hashin-Shtrikman upper bound, which assumes a
non-uniform pack of spherical grains completely wetted by a uniform layer of melt
(Fig. 1.6B). However, this interpretation is inconsistent with microscopy studies that
observe coexisting melt tubules, melt films, and melt pools. A derivation of electrical
conductivity for a real partially molten rock geometry from microstructural
considerations, which is discussed in Chapter 3, is therefore needed to explain the

high bulk electrical conductivities observed in synthetic partial melts.

1.3.5 3-D melt distribution from X-ray micro-computed tomography

Rather than inferring a 3-D melt distribution of olivine-basaltic melt samples
by comparing measured bulk properties to idealized mixing models, the three-
dimensional melt microstructure can be obtained using synchrotron X-ray micro-
computed tomography (u-CT) (Zhu et al,, 2011). u-CT is a three-dimensional

imaging technology that exploits the difference in relative X-ray absorption
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efficiencies of materials. u-CT has been used for decades to study the pore structure
of crustal rock samples. However, u-CT has only recently been applied to study the
olivine-basalt partially molten system in part due to the technical challenge associated
with resolving the small density contrast (~400 kg m™) between olivine and basaltic.
Novel reconstruction algorithms that incorporate diffraction-enhanced tomography
(Fitzgerald, 2000), also known as qualitative phase retrieval, allow one to highlight
grain-basalt interfaces. The resulting high-resolution, 3-D image constitutes a virtual
rock sample on which microstructural analysis or digital rock physics (DRP)

experiments can be conducted.

1.4 Basics of X-ray micro-computed tomography

There are two categories of X-ray p-CT: absorption-contrast and phase-
contrast tomography. Both are inverse problems that are solved using some
implementation of the filtered-back-projection method (see Kak and Slaney (1988)
for a review of principles).

Absorption-contrast tomography utilizes spatial variations in the density
distribution to image an object. The estimated spatial density distribution can be
computed by inverting a series of projections taken along different ray paths through
the object (Fig. 1.7 & Fig. 8). Each projection contains a record of the proportion of
X-ray attenuation integrated along the ray path. For each X-ray path, the X-ray

intensity / is given by
I=1, exp[—j,u(x)dx} (1.4)
where Iy is the intensity of the incident X-ray and u is the absorption coefficient along

16



the path of the X-ray. Reconstructing the 3-D image amounts to finding the
absorption coefficients u that relate the known incident X-ray intensity to the
attenuated signal recorded in the projections. Robustly resolving material interfaces
using absorption contrast tomography requires a sufficiently large density contrast
between materials. As was discussed briefly in Section 1.3.4, the density contrast
between olivine and basalt is too low for absorption-contrast alone to be effective at
imaging samples composed of olivine and quenched basaltic melt.

Additional information can be obtained from the diffraction signal embedded
in the X-ray projection. There are two classes of phase-contrast tomography:
“qualitative” phase-contrast tomography (e.g. Fitzgerald (2000)), commonly referred
to as “edge-enhancement,” incorporates information about diffraction of X-rays at the
mineral-mineral or mineral-fluid interface to highlight those interfaces. Qualitative
phase-contrast tomography was successfully applied to monomineralic partially
molten forsterite-basalts (Zhu et al., 2011). However, even edge-enhancement is not
sufficient to resolve polymineralic aggregates that contain olivine-orthopyroxene
(opx) and opx-basalt interfaces, whose density contrast is ~70 kg m™. Therefore,
quantitative phase-contrast-tomography (e.g. Paganin et al., 2002), which exploits the
spatial distribution of the index refraction, can be used to improve the image quality.
Common quantitative phase retrieval algorithms (Paganin et al., 2002) essentially
perform joint-inversions between absorption-contrast and phase-contrast tomography.
They provide excellent image quality when the density contrast between components

1s small.
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projection angle (0

Figure 1.7: Schematic of X-ray reconstruction process (Fusseis et al., 2014). (a) X-ray radiograph. (b) Schematic
demonstrating the collection of X-ray radiographs for different angles. (c) Transformation of radiographs into
sinogram.

Figure 1.8: Demonstration of image reconstruction using a single cross-sectional slice (Fusseis et al., 2014).
(Top) Illustration of ray paths whose grayscale value corresponds to the grayscale value of the projection.
(Bottom) Reconstruction performed using the number of projections in the corresponding above image. The
number of projections used in reconstruction increases from left to right. As the number of projections increas-
es, the object being imaged becomes better resolved, i.e. closer to Fig.1.7b.



1.6 Segmentation of grayscale image

The grayscale output of the reconstruction algorithm is not immediately
lendable to automatic quantification and numerical computation of physical
properties. An additional step, often referred to as segmentation, needs to be
conducted to transform the grayscale image to a label image, wherein each voxel is
assigned a non-negative integer identification number. Once “segmented,” a number
of algorithms can be used to quantify the morphology and topology of the mineral
and fluid structure. Label images can be easily discretized and be used as the
computational domain in digital rock physics (DRP) simulations to compute physical
rock properties.

The goal of segmentation is to accurately capture the spatial distribution of
materials based on their grayscale values so that the reconstructed digital rocks are
representative of the real samples. Refer to Fusseis et al. (2014) for a quantitative
comparison of segmentation techniques applied to X-ray u-CT of geological
materials. For the purpose of this project, it suffices to say that common segmentation
algorithms fall into two categories: global and local. Global segmentation algorithms
involve thresholding the data by a globally defined variable, such as the grayscale
value at the inflection of the grayscale histogram computed for the whole subvolume.
Conversely, local segmentation algorithms assign label identifiers to pixels based on
locally varying quantities. Local segmentation algorithms are better at repressing the
random or speckled noise and the long-wavelength grayscale variations but are

computationally expensive to perform on large volumes.
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1.7 Digital rock physics applied to partially molten rock: an overview

The true power of u-CT comes to light when it is combined with numerical
simulations. The 3-D label images constitute virtual rock samples on which any
virtual rock physics experiment can be conducted and any range of parameters can be
tested with relative ease. With a DRP approach, tweaking an experiment amounts
changing input parameters or boundary conditions. Material properties can be
accurately derived from first principles and directly linked to characteristics of the
rock microstructure.

I used DRP techniques to characterize microstructure and compute
permeability and electrical conductivity of olivine-basalt aggregates (Chapter 2 and 3)
and olivine-opx-basalt (Chapter 4 and 5) aggregates as a function of melt fraction.
Melt morphologies and topologies are quantified on statistically representative
volumes and linked to transport properties. A number of 3-D image processing,

segmentation, and automated quantification tools are also discussed.
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Chapter 2: Experimental quantification of permeability of partially molten

mantle rocks

Abstract

Melt percolation in mantle rocks is currently poorly constrained, especially at
low melt fractions. At mid-ocean ridges, for example, geochemical and geophysical
observations produce divergent estimates of how much melt is present in the mantle
and how quickly it moves. Accurate estimates of permeability and grain-scale melt
distribution in mantle rock are necessary to reconcile these observations. We present
three-dimensional (3-D), 700 nm-resolution images of olivine-basalt aggregates,
containing nominal melt fractions (¢,) between 0.02 and 0.20. Samples were prepared
from a powdered mixture of San Carlos olivine and high-alumina basalt and hot-
pressed in a solid-media piston-cylinder apparatus at 1350 °C and 1.5 GPa. Images
were obtained using synchrotron X-ray micro-computed tomography (u-CT) from the
Advance Photon Source at Argonne National Laboratory. Stokes flow simulations,
conducted using the digital melt volume as the numerical domain, determine that the
permeabilities of experimental charges range from 2x107"° to 5x10™"° m? for ¢,=0.02
to 0.20, respectively. The simulation results are well represented by the power-law

relation between permeability (k) and melt fraction (4), k = ¢" d*/ C, where n = 2.6 +
0.2, and assuming a grain size of 35 pm, C =587 . These results place important new

constraints on rates of melt migration and melt extraction within partially molten

regions of the mantle.
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2.1 Introduction

At mid-ocean ridges, the divergence of lithospheric plates causes an upwelling
of hot mantle. The pressure relief during ascent carries peridotite across its solidus
and induces partial melting. The melt, which is less dense than the surrounding
mantle, separates from the solid and percolates towards the surface via porous and
possibly channelized flow (e.g. Kelemen et al., 1997). The melt extraction rate is
governed by the permeability of the mantle, which is highly influenced by the amount
of melt present as well as the topology and connectivity of the melt network. Despite
its importance for understanding melt transport in the mantle, the permeability of
partially molten mantle rock is poorly constrained. The aim of this study is to provide
better permeability estimates through the quantification of grain-scale melt
distribution.

At textural equilibrium, the relationship between permeability and the grain-
scale melt distribution in a partially molten rock takes the form of a power law
(Cheadle, 1989; Connolly et al., 2009; McKenzie, 1984; Ricard et al., 2001; von

Bargen and Waff, 1986; Wark and Watson, 1998),

¢nd2
C

k=

2.1)

where d is grain size, n is the power law exponent, and C is a geometric factor
influenced by the dihedral angle. For an isotropic system with uniform grain size and
shape, n=2 (McKenzie, 2000; von Bargen and Waff, 1986). However, for more
complex systems, where the effects of crystal anisotropy and grain-scale
heterogeneity are no longer negligible, higher vales of n should be used. For example,

a value of n=3 represents well porous flow through a non-uniform network of packed
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tetrakaidekahedral grains (Zhu and Hirth, 2003). These model results have been
corroborated by permeability experiments conducted on analogue systems composed
of quartzite + H,O and calcite + H,O where grain size distribution is non-uniform,
grain shapes are anisotropic, and n~3 (Wark and Watson, 1998).

Mineralogy plays an important role, through its influence on surface free
energy, in determining the minimum-energy configuration of the system. Therefore,
experiments conducted on partial melts with chemistry similar to the mantle must be
considered. Some permeability experiments (Connolly et al., 2009; Renner et al.,
2003) have been conducted for olivine partial melts. They find that the permeability
of partially molten olivine basalt at high melt fractions (¢ > 0.02) is consistent with a
power law where n~3. However, permeametry of partially molten aggregates in these
experiments is technically challenging. Consequently, the results of such studies are
subject to considerable uncertainty.

Grain-scale melt distribution is typically studied by examining backscattered
electron images from two-dimensional (2-D) cross-sections of isostatically pressed
samples (e.g. Cmiral et al., 1998; Faul and Fitz Gerald, 1999). By assuming a model
about the three-dimensional (3-D) connectivity of the melt network, it is possible to
infer and estimate sample permeability using the 2-D data. However, those estimates
are innately ambiguous, since permeability is an intrinsic property of the 3-D
microstructure (Zhu et al., 2011). Therefore, a fully 3-D approach must be employed
in order to accurately determine sample permeability. Two methods may be employed

for characterizing microstructures in three dimension: serial cross-sectioning (Garapié¢
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et al., 2013; Wark et al., 2003) and synchrotron X-ray micro-computed tomography
(n-CT) (Watson and Roberts, 2011; Zhu et al., 2011). This study focuses on the latter.

Constraints on mantle permeability come from both geochemical and
geophysical observations. Analyses of uranium-series isotopes in mid-ocean ridge
basalts (MORB) (Lundstrom et al., 1995; McKenzie, 2000, 1985; Sims et al., 2002;
Stracke et al., 2006), have shown a measureable degree of secular disequilibrium

81 and its shorter-lived daughter nuclides **°Th and **°Ra. Preservation of

between
secular disequilibrium at the surface implies a low melt fraction retained by the
mantle, ¢ < 0.01, with a relatively fast upwelling velocity at ~1 m yr' (Kelemen et
al., 1997). By contrast, geophysical observations imply considerably higher melt
fraction. For example, seismic and magnetotelluric data (Evans et al., 1999; The
MELT Seismic Team, 1998) from the East Pacific Rise 17°S give evidence that the
melt fraction in the mantle is 0.01 to 0.02, implying that melt extraction is inefficient
at lower melt fractions. In a more recent study, Key et al. (2013) reported a melt
fraction close to 0.10 under the East Pacific Rise 9°N using magnetotelluric
inversions. Accurate estimates of permeability of partially molten rocks are needed to
reconcile the apparent contradiction in melt fraction.

In this study, we utilize high-resolution p-CT to digitally capture the 3-D melt
distributions of olivine-basalt aggregates isostatically pressed in a piston-cylinder
apparatus at 1350 °C and 1.5 GPa. Nominal melt fractions (¢,) of samples
systematically ranged from 0.2 to 0.20 (Zhu et al., 2011). To demonstrate textual

equilibrium of these experimental charges, we also conducted time series experiments

at nominal melt fraction of 0.05 (refer to Appendix A). For each sample, we selected
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several representative subvolumes and characterized their permeability, grain size
distribution, and melt interconnectivity. The permeability of each subvolume was
calculated by numerically solving the Stokes fluid questions for the velocity and
pressure fields within the digital melt microstructure. Permeability was plotted as a
function of the measured melt fraction (¢,,) in the corresponding subvolume and an
empirical relation between permeability and melt fraction was obtained. Our results
provide new experimental constraints on the permeability and melt distribution of

partially molten rocks.

2.2 Experimental Methods
2.2.1 Sample Preparation

Experimental charges were prepared from a powder mixture of natural, high-
alumina basalt (Mg #=0.705) and San Carlos olivine (~Fog) (Zhu et al., 2011).
Olivine grains were sorted using a sieve to a maximum grain size of 10 um. The
nominal melt fraction desired for each sample was obtained by varying the basalt
content of the mixture, which was then homogenized with ethanol for six hour-long
cycles in an automatic agate mortar and pestle. The homogenized mixtures were
pressed into cylindrical pellets under a 1-ton press, placed into graphite capsules (Fig.
2.1A), and dried overnight at 400 °C to remove water. The whole assembly was
centered in a straight-walled graphite furnace using crushable MgO spacers. The
pressure medium for all experiments consisted of a CaF, sleeve.

Experiments were conducted using 1.27 cm assemblies (Boyd and England,

1960). Pressure was initially applied using the cold piston-in technique (Johannes et
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al., 1971). The friction correction for the assemblies was calibrated against the Ca-
tschermakite breakdown reaction at 1.2 to 1.4 GPa and 1300 °C (Hays, 1966) and
determined to be less than the pressure uncertainty of the pressure gauge, so no
correction has been applied to the reported pressures. Temperature was measured and
controlled using a W3Reg7/W»ysRess thermocouple; no correction for the effect of
pressure on thermocouple EMF has been applied to the reported temperatures. N, was
flowed over the thermocouple wires to minimize thermocouple oxidation over the
course of an experiment. Temperatures are estimated to be accurate to £10°C and
pressures to =50 MPa. The temperature difference over the capsule was determined to
be less than 5 °C using offset thermocouples. Experiments were terminated by
shutting off the power. Upon completing each experimental run, the graphite capsule
was sawed open to expose the surface of the experimental charge (Fig. 2.1B). The
exposed surface was polished and reflected light photomicrographs were taken. A
cylindrical ~0.9mm diameter cylindrical samples was then cored from each charge to
be used for pu-CT analysis (Fig. 2.1C).

Two suites of experiments were conducted (Table 2.1). The first suite was a
time series, which was conducted to determine the minimum time required for a
sample to reach textural equilibrium. All of the time series samples have a nominal
melt fraction of 0.05 and the sintering time varied systematically from 42 to 336
hours (see Appendix A). The second suite of samples consisted of nominal melt
fractions of 0.02, 0.05, 0.10, and 0.20. The sintering time for each sample was

sufficiently long to ensure textural equilibrium (Zhu et al., 2011).
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2.3 Analytical Methods
2.3.1 Synchrotron X-ray micro-computed tomography

Microtomography was conducted at 2-BM of the Advanced Photon Source at
Argonne National Laboratory, Argonne, IL. A multi-layer monochrometer was used
to select a narrow band (27 keV) of X-rays. Those photons were then passed through
the olivine-basalt sample (Fig. 2.2). On the opposite side of the sample, the X-rays
were transmitted to a LuAg:Ce scintillator, converting them into visible light. A CCD
camera was used to detect the visible light, and the light intensity was recorded. The
sample was rotated 180° in 0.12° increments to build a digital volumetric
representation of the sample in about 20 minutes (Fig. 2.2). For each sample, the raw
intensity data was processed using GidRec (Dowd et al., 1999) into a stack of image
slices. Each slice is a grayscale image whose constituent pixels have values that are
functions of X-ray attenuation, which is in turn, a function of material density. In this
way, u-CT is used to differentiate phases, so long as the density contrast between the
phases is substantial.

Silicate melt samples pose a unique problem in that the density contrast
between olivine and basalt is not sufficient to differentiate the phases using standard
phase contrast techniques. To circumvent this issue, we employed diffraction-
enhanced imaging (Fitzgerald, 2000) to improve the contrast between olivine and
basalt (Zhu et al., 2011). Diffraction-enhanced imaging utilizes the interference
pattern, which occurs in the near-field Fresnel diffraction regime, to highlight the
olivine-basalt interfaces and produce high-resolution 3-D microstructure of olivine-

basalt systems.
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2.3.2 Subvolume selection

Due to limited computation power, we selected only a few cubic subvolumes
per sample for analysis. The size of those subvolumes ranged from 140x140x140
um’ (i.e. 100x100x100 pixel’) to 350x350x350 um’ (i.e. the 500x500x500 pixel’)
(Fig. 2.3). We determined through a series of permeability analyses on progressively
larger subvolumes that a 350x350x350 um’ subvolume is sufficiently representative
of the sample microstructure. Refer to Appendix A.1 for details.

Several 350x350x350 um’ subvolumes from each sample were analyzed.
Although each subvolume is susceptible to local heterogeneities in the melt
microstructure, taken together, these subvolumes adequately represent the melt
microstructure of the entire sample. Analyses of sample permeability, grain size, and
interconnectivity were conducted using a combination of Avizo® and Matlab®”

software.

2.3.3 Noise reduction and segmentation techniques

To reduce noise and suppress artifacts that remain from the imaging process,
we employed a non-local means filter (Buades et al., 2005) and an anisotropic
diffusion filter (Weickert et al., 1998) (Fig. A.1). Once we reduced the noise to an
acceptable level, we implemented a series of algorithms to segment the grayscale
data. Segmentation is a procedure by which we transform grayscale data into a binary
label file required for our quantitative analyses of the microstructure (Fig. A.2). Two
techniques were used for segmenting the grayscale data: a marker-based watershed

transformation and a top-hat threshold.
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——— 280x280x280um?®
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Figure 2.3: Subvolume sampling. (A) Tomography slice from the middle of scoba-12 (¢n =0.05). Subvolumes of
various sizes, shown as colored boxes, are defined from (B) the larger 3-D reconstructed image. The permeability of
each subvolume was calculated in order to quantify the variation in microstructure within each sample and to deter-
mine the minimum size for a representative volume (see Appendix A).
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The watershed transformation (Beucher, 1992) is based on the idea of
redefining grayscale pixel value as topographic relief. First, interphase boundaries are
highlighted by thresholding the grayscale gradient of the denoised image. Then a
global threshold is employed to make an initial try at segmenting the denoised data.
The image is then inundated starting from the initial segmentation. The regions
defined by the thresholded gradient act as impermeable barriers to the rising virtual
fluid, preventing the merging of distinctly different phases. The result, after the
watershed transformation, is a high-quality, segmented binary image where phase
boundaries are defined exactly at grayscale inflections.

The watershed transform is suitable for accurately segmenting larger features
in the data; however, it tends to miss very thin melt conduits. To capture these finer
details, a top-hat filter (Vincent, 1993) is applied and then a global threshold is
utilized to select those details. The size of the kernel is selected based on the size of
those features. An opening filter is then applied to the inverse of the image in order to
smooth out the boundaries of the image. Some user-controlled refinements of the
binary image were typically needed. The size of the features that top-hat segmenting
is able to recognize is limited by the kernel size. Avizo limits the size of the kernel to
twenty pixels, so a watershed transform is still needed if there are features in the 2-D
slice that are larger than the kernel size. Examples of the final 3-D binary images for

four charges of different nominal melt fractions are show in Fig. 2.4.

2.3.4 Quantification of network topology

We performed a series of systematic analyses on subvolumes of the 3-D
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binary image of our olivine-basalt samples. We quantify the melt fraction, grain size
distribution, network interconnectivity, and permeability for each subvolume (Table
A.1). The melt fraction (¢n) of each subvolume is measured by calculating fraction of
voxels, the three-dimensional image unit, assigned to the melt phase in the segmented
image. The measured melt fraction of a subvolume may vary from the nominal melt
fraction (¢,) because of sample heterogeneity and possible melt-rock interactions.
Uncertainty on the measured melt fraction was estimated by contracting (low bound)
and dilating (upper bound) the binary melt image by one pixel (Fusseis et al., 2012).
For this reason, error bars are asymmetric.

Grain size distribution was quantified using Avizo’s Separate Objects module.
The module takes the binary label image as input and performs a series of high-level
algorithms, including a watershed transform, distance transform, and numerical
reconstructions, to separate individual grains by a 1-pixel boundary. We report the
grain size distribution for every subvolume as the distribution of equivalent
diameters. Separation of individual grains is difficult when melt fraction is low, since
the only thing that separates grains are melt channels. Therefore large uncertainties in
the equivalent diameter distributions are expected for the scoba-9 (¢,=0.02) sample.

Quantification of the melt network connectivity was accomplished using
Avizo’s skeletonization module. Skeletonization is the process by which the general
melt microstructure is simplified to an interconnected skeleton network. The skeleton
is used to assess the topology of the melt network. First, a distance map is calculated.
Second, a thinning algorithm is applied to the binary image that removes pixel-by-

pixel the outer layers of melt channels until only a string of pixels remain. The
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Figure 2.4: Volume renderings of the melt distribution for olivine—basalt containing nominal melt fractions of
(A) 0.02,(B) 0.05, (C) 0.10, and (D) 0.20. The dimensions of each subvolume are 140x140x140 pgm3. Gray
represents the melt phase, empty spaces are olivine grains, and red highlights the intersection of melt and the
bounding box.
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algorithm is calibrated so as to preserve small features of the melt microstructure.
Finally, the mean thicknesses of the melt conduits are retrieved from the distance
map. A Matlab” script, called ScobaCleaner.m, was written to automatically remove
spurious features from the skeletonized melt network (see supplementary material and

Zhu et al. 2011).

2.3.5 Quantification of permeability

Permeability calculations were performed using Avizo’s XLab Hydro module.
Two different computational modules were used: the Absolute Permeability
Experiment Simulation (APES), which computes a scalar estimate of the
permeability, and the Absolute Permeability Tensor Calculation (APTC), which
computes the 3x3 permeability tensor for the subvolume. Both APES and APTC
implement the finite volume method (Harlow and Welch, 1965) to solve the Stokes

Equations for the velocity and pressure fields. The Stokes Equations are given by

Vu=0 2.2)
uVu—-Vp=0 '

where p is the pressure [Pa], u is the viscosity [Pa s] of the simulated fluid, and u is
the velocity [m s'].

For APES, flow in the digital melt domain is driven by a pressure differential
(AP) imposed across the subvolume (Fig. 2.5). A 1-pixel-wide impermeable layer is
added to the sides of the sample domain parallel to the flow in order to prevent loss of
fluid through the adjacent faces. Accommodation zones are added to the inflow and
outflow faces of the subvolume to ensure that there is a self-consistent pressure field

over the faces. The APES module then solves for the velocity field in the melt domain
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(Fig. 2.5). Each APES fluid flow simulation was conducted along the z-direction,
parallel to the cylindrical sample axis. During post-processing, the volumetric flux O
[m’ s'] across the sample end faces is computed, and an application of Darcy’s Law

yields the permeability k [m].
L
k=-0 = (2.3)

where 4 is the cross-sectional area [m”] and L [m] is the length of the computational
domain.

Contrary to the APES, APTC simulates fluid flow by solving a modified,
volume-averaged form of the Stokes Equations (Gray, 1975)

{V-D =0
(2.4)

uv’D-vd =1
where D is a tensorial representation of the spatial deviation of the velocity [s™'], d is
a vectorial representation of the spatial deviation of the pressure [Pa s m'], and I is
the 3x3 identity matrix. Rather than invoking Darcy’s Law, the permeability tensor K

is computed by volume-averaging D over the whole computational domain V.

1
K==[Ddv (2.5)
VV

Equation systems 2.2 and 2.4 do not lend themselves immediately to solving
through implicit methods, since matricies of this form are singular. Therefore, an
artificial compressibility coefficient (Chorin, 1967) is incorporated in the discretized
forms of Eqn. 2.2 and 2.4.

Differing from the APES module, which imposes a pressure gradient to

induce fluid flow, the APTC module supplies mass to the system via a volumetric
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source term in the discretized formulation of Eqn. 2.4. Accommodation zones are
defined on all six faces of the subvolume to impose periodic boundary conditions
between parallel faces. One major drawback of the APTC module is computational
cost of the calculation. Moreover, significant permeability anisotropy is not expected
in our isostatically pressed samples. The APES module, in contrast, is a relatively
quick computation capable of calculating the scalar permeability for a given
subvolume, provided the permeability is not significantly anisotropic. For our study,
APES is the preferred module for calculating sample permeability. APTC is only

used to verify the absence of significant permeability anisotropy.

2.4 Results

The analyses mentioned above were performed on all 350x350x350um’
subvolumes for nominal melt fractions ranging from 0.02 to 0.20. Refer to the Table
A.1 of the online supplement for a complete list of results. From now on, subvolumes
will be referred to using the notation “scoba-a-b-c ”, where the placeholders a, b, and
c refer to the sample number, subvolume dimension in pixels, and the subvolume

identification number, respectively (Table A.1).

2.4.1 Grain size results
Results from our time series experiments (Appendix A) indicate that the
olivine-basalt samples with ¢, of 0.02, 0.05, 0.10, and 0.20 have equilibrium textures.
The olivine-basalt aggregates with ¢, from 0.05 to 0.2 exhibit lognormal

Equivalent Diameter Distributions (EDD). However, the scoba-9 sample (¢,=0.02)
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has an EDD that differs significantly from the others, which likely results from a
failure of the Separate Objects module to accurately segment individual grains at
small melt fractions. For melt fractions as low as 0.02, many of the melt channels are
below the resolution of pu-CT (Zhu et al., 2011). When this is the case, two or more
adjacent grains may be misrepresented as a single large grain. This may explain why
the mean EDD reported for scoba-9 is much larger than the others, and it may also
explain why the EDD exhibits a long tail for equivalent diameters larger than 80um.
These larger grains cannot be remnants of the pre-sintered samples, since the
maximum grain size of the pre-sintered experimental charge is 10 pm.

The mean equivalent diameters for scoba-9 (¢,=0.02), scoba-12 (¢,=0.05),

scoba-6 (4,=0.10), and scoba-5 (¢,=0.20) are 42737 um, 34"5 um, 38"} um, and
4177 um, respectively (Fig. 2.6). Errors are asymmetric because equivalent diameter

distributions are characteristically lognormal.

2.4.2 Connectivity of melt network

Results from connectivity analyses are conveyed as Coordination Number
Distributions (CND) in Fig. 2.7. The skeletonization analysis replaces melt-filled
triple junctions with tubules whose widths vary along their axes. The intersections
between melt tubules are designated “nodes.” Connectivity is defined as the number
of melt tubules connected to each node. The connectivity of an ideal melt network is
predicted to be 4 (von Bargen and Waff, 1986), but it varies in natural systems like
our samples (Zhu et al., 2011). We determine the CND of one 350x350x350um’

subvolume from each sample.
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To describe the CND in a physical context, nodes with a coordination number
of 1 represent dead-end melt channels. Nodes with a coordination number of 2 are
removed from the skeleton, since two connected melt conduits effectively act as one
single conduit. Nodes with a coordination number of 3 are mostly associated with
regions where melt pooling or grain boundary wetting is occurring. A node with a
coordination number of 4 indicates a four-grain junction. Nodes with a coordination
number of 5 or higher are either representative of physical junctions in which more
than four grains are present, or artifacts from the ScobaCleaner.m algorithm when the
connections from short tubules get merged (Table A.2).

The CNDs of scoba-5 (¢,=0.20), scoba-6 (¢,=0.10), scoba-12 (¢,=0.05), and
scoba-9 (¢,=0.02) indicate that the frequency of coordination number 4 nodes
decreases as melt fraction increases (Fig. 2.7). This represents a decrease in the
number of melt junctions connected to four melt tubules. Conversely, the frequency
of coordination number 3 increases over the same range, representing an increase in
melt grain boundary wetting. The higher connectivity nodes, e.g. 5-8, have more or
less the same frequency across scoba-12, scoba-6, and scoba-5.

Scoba-9 (¢,=0.02) appears to contradict the progression towards a
coordination number 4 dominated melt microstructure, since coordination number 3
nodes represent a clear majority of the nodes in the network. However, many thin
melt tubules in scoba-9 appear broken and register as nodes having a connectivity of
1. This artifact is a result of the pu-CT resolution limits. A node having four connected
tubules might register as a node that has only three connecting tubules if one of those

tubules is removed during cleaning or data processing. This would account for the
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Figure 2.6: Equivalent diameter distributions from 350 x 350 x 350 um® subvolumes of (A) scoba-9-500-4, (¢, = 0.02), (B)
scoba-12-500-1 (¢, = 0.05), (C) scoba-6-500-4 (¢, =0.10), and (D) scoba-5-500-1 (¢, =0.20). The geometric mean, geomet-
ric standard deviation (o), and number of grains contained within each sample are reported. Histograms are calculated with
30 bins. Dashed lines represent the best-fit lognormal distributions to the equivalent diameter data.
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anomalously high abundance of dead-end tubules as well as the less-than-expected
frequency of coordination number 4 nodes. Notwithstanding these resolution limits, it
is clear that the melt network remains well connected even when the nominal melt

fraction is 0.02 and the measured melt fraction of representative subvolumes

approaches 0.0121700°. Therefore, even at low melt fractions our subvolumes

support fluid flow.

2.4.3 Permeability results

Permeability was computed for three to five 350x350x350 pm® subvolumes
per sample (Fig. 2.3). Fig. 2.8 shows the calculated permeability as a function of the
measured melt fraction of each subvolume. We performed a linear fit on the data
using the total least squares algorithm based on York et al. (2004), including the
standard error on measured melt fraction. Since permeability values were calculation
results, no uncertainty was reported. Uncertainty of melt fractions came from the
ambiguity in the location of the olivine-basalt phase interface. The upper and lower
bounds of melt fractions were estimated by expanding and shrinking the melt phase
by 1 pixel at the olivine-melt interface (Fusseis et al., 2012). When fitting the data,
we shift the porosity value to halfway between the upper and lower bounds of melt
fraction. We find that fluid flow in our olivine-basalt samples is well characterized by
a power-law relationship between permeability and melt fraction (Eqn. 2.1), where

the power law exponent is n = 2.6 + 0.2(10c), and, assuming a grain size of 35 pm in

our samples, the geometric constant is C = 587 (1o).
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Figure 2.7: Coordination number distribution of melt fraction series experiments. Relative frequency of coordination numbers
of 350x350x350 um?* subvolumes of (A) scoba- 9-500-4 (¢, = 0.02), (B) scoba-12-500-1 (¢, = 0.05), (C) scoba-6-500-4 (¢,
= 0.10), and (D) scoba-5-500-1 (¢, = 0.20). Total counts of each coordination number are reported above each bar. The
network skeleton of a representative 105x105x105 um?® is included as an insert for each sample. The nodes in the skeleton are
color-coded according to their coordination number, e.g.1-black, 3—red, 4—green, 5-blue, 6-magenta, and > 6 — yellow. The
radius of the melt tubules in the skeleton visualized in the inserts are proportional to melt conduit thickness in the original,
pre-skeletonized melt microstructure.

44



2.4.4 Permeability Anisotropy
We computed the permeability tensor K for the scoba-12-500-4 subvolume

(6¢,=0.05) using the APTC module, yielding

186  2x107 -6x107
K=| 2x10® 190 8x107 |x10"”m’ (2.6)
-6x107 8x107  1.94

The eigenvalues of K, called the principal permeabilities, are 2.02x10™"° m?, 1.88x10"
'm? and 1.81x10"° m% The coefficient of variation of these values is ~6%, which is
negligible compared to modeling uncertainty. Therefore, we conclude that the melt
microstructure of our sample is isotropic at the scale of this 350x350x350um’
subvolume. Since the microstructures are isotropic, we conclude that isostatically
pressing the samples produces an isotropic permeability structure, so the APES
module is sufficient for computing the permeabilities of our subvolumes.
The permeability of this subvolume determined by the APES module is 4.6x10™"° m?,
which is about a factor of 2 larger than the determination from APTC. The
discrepancy is likely due to the different formulation of the permeability
determination problem. The formulation used by APES is closest to the original
definition of permeability and is therefore preferred here. We also artificially rotated
the subvolume and recalculated the permeability by APES in three mutually
perpendicular directions. We find the permeabilities to be 5.4x10™"° m? 4.7x10™"° m?,
and 4.6x10"° m? for £, ky, and k;, respectively. Permeability values are similar within
~3.9% relative variance, which confirms that the permeability in our samples is

essentially isotropic.
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2.5 Discussion
2.5.1 Morphology of melt microstructure

Visual inspection of our melt microstructures reveals that, for low melt
fractions the network topology resembles the ideal model proposed by von Bargen
and Waff (1986), where melt preferentially reside to three and four-grain junctions.
As the nominal melt fraction increases to 0.05, we visually observe the onset of grain
boundary wetting, though melt tubules continue to be the dominant feature of the melt
microstructure. At ¢,=0.10, there is an inversion from a tube-dominated network to
one in which the melt films and pools are the most prominent features. Finally, for
#,=0.20, grain boundaries are almost completely wetted, as the sample is approaching
its theoretical disaggregation limit, ¢,>0.20 (Hier-Majumder et al., 2006; McKenzie,

1984).

2.5.2 Interpretation of power law exponent

The permeability of an ideal melt network, in which grain size is uniform,
depends on the square of melt fraction, i.e., »=2 when melt resides at triple junction
(von Bargen and Waff, 1986) and on the cube of melt fraction, i.e. n=3, as higher
melt fraction (Wark et al., 2003). This transition may correspond the two
morphological regimes observed here, i.e. a tubule-dominated at low melt fractions
(n=2) versus pool and film-dominated at higher melt fractions (n=3). Considerations
of grain-scale heterogeneity would also produce »n=3 (Zhu and Hirth, 2003).

However, the data from this study are captured adequately by a single relation with »

= 2.6 + 0.2 and C = 5875. More complex relations are not justified by the data,
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considering the uncertainty of our porosity and permeability estimates.

The experimental results of Renner et al. (2003) and Connolly et al. (2009) are
compatible with #n=3, which, considering that these experiments infer permeability
indirectly from the compaction rate of olivine-basalts aggregate, present an
encouraging agreement with our study. Therefore, microstructure readjustment during
quenching appears to be minor in our experiments and our permeability—porosity
relation can probably be used to describe olivine-basalt aggregates at mantle
conditions. For extrapolation to higher temperatures and pressures, we may need to
consider an increased importance of melt film grain faces, as the dihedral angle
appears to decrease as temperature and pressure increase (Yoshino et al., 2009b).
However, melt films observed at high melt fraction in our sample do not have a
marked effect on our permeability—porosity relation. Future work would need to
address their contribution to permeability at low melt fraction, high pressure, and high
temperature.

Given the various melt geometries present in our datasets, a value of n=2.6,
between 2 and 3, is not surprising. Consider a mixture of subvolumes consisting of
end member melt distributions, one end member is entirely made up of melt tubules
along triple junctions (n=2) while the other contains only wet grain boundaries and
melt pools (n=3). The overall permeability of the system is the mixing of the
individual subvolume permeabilities and, in the absence of a large-scale order
between these subvolumes, will converge to the geometric mean permeability as the

number of subvolumes increases (Madden, 1976). If the permeability of each

subvolume V; is given by the empirical relation k, = C,¢" , the geometric mixing leads
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to an equation for the total permeability A

1 nm+ ... +ny

ky=(C,...Cy)V gV 2.7

where N is the total number of subvolumes. Eqn. 2.7 is, in its own right, a power law,
the same as Eqn. 2.1. In our case, our end member distributions have n=2 and n=3, so
Eqn. 2.7 leads to a new power law exponent of 2.5, which is very much consistent
with the value of n = 2.6 = 0.2 obtained by our fit. A value of n between 2 and 3 can

be though of as representing a mixing of melt geometries.

2.5.3 1-D mantle model
Given the new empirical relation between permeability and the melt fraction,

230
f

we make a simple model of melt transport in the mantle. If “"Th disequilibrium

observed is produced at 60 to 75 km depths, melt transport must have occurred at a

velocity w of order of 1 m yr' (3x10™® m/s). Darcy’s law implies
ko n
ow="20"0pg 2.8)

where ko=d2/C is the permeability coefficient, ¢ is the porosity, Ap is the density

contrast between melt and solid mantle, p=10 Pa s is the melt viscosity (Ryan and
Blevins, 1987) and g~10 m/s is the acceleration of gravity.

Assuming a grain size of 3 mm (Toramaru and Fujii, 1986), we estimate
ko~1.55x107 m*. If p=3300 kg m™, p=2700 kg m™ (Stolper et al., 1981), Ap=600 kg

m™. From Eqn. 2.8, the porosity needed to sustain a melt velocity w is given by

¢= (W/,B)ﬁ 2.9)

where B = koApg/u = 9.3x10° m s”'. Therefore, preserving >°Th disequilibrium
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produced at depth requires a porosity of at least 0.0068. This number is comparable
with estimates from seismic studies (The MELT Seismic Team, 1998), although at
the low end of the observational constraints. Higher porosity results in faster melt
velocity, which is more easily reconciled with **°Th excess in MORB.

An alternative estimate of mantle porosity can be obtained from a mass
balance between melt produced by decompression of a mantle column at velocity W
(Ribe, 1985; Spiegelman and Elliott, 1993):

piow = pFW (2.10)

where F'is degree of melting, which increases with height above the level where melt
starts. By combining Eqns. 2.8 and 2.10, the mean melt fraction retained by our

model mantle is estimated at.

1

_(pFWY) 2.11
[ (pf ﬁ) (2.11)

Remarkably, the permeability in this model does not depend on porosity but only on

geodynamical parameters

k:&ﬂ (2.12)
Py Apg

Assuming F=0.20 at the top of the melting column (Asimow et al., 1995) W=5
cm yr' (1.7x10° m s™) (Spiegelman and Elliott, 1993), we obtain a melt fraction
¢=0.0085, and, according to Eqn. 2.8, a melt velocity of 5.0x10®* m s (~1.6 m yr'").

If this velocity were valid for the entire melting column, the transit time

through the melting column z), would be
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I-n

t, :%:{& Fij " By, (2.13)

£
where F) is the degree of melting in the column. However, the degree of melting
increases upward in the column. Assuming a linear increase of F from 0 to Fi
through a column of height z,,, we obtain
t, =nt, (2.14)
For F=0.2 and zy=75 km, t7~136 kyrs. This value is in the high end of what
is permissible to preserve >*°Th excesses, especially considering that chromatographic
effect will reduce the velocity of isotopes (Spiegelman and Elliott, 1993). However,
the transit time depends on grain size to the power -2/n through the B coefficient.
Increasing the grain size to 1 cm reduces the melt transit time to 54 kyrs, although a
melt fraction of 0.0034 which is harder to reconcile with geophysical estimates of
melt content underneath mid-ocean ridges.

230Th constraints but could

A larger melt fraction would be compatible with
not be sustained by melting of an upwelling mantle column. However, these
calculations assume a very simple system, i.e. 1-D melt percolation through a uniform
network in steady state. They do not give any consideration heterogeneities in the
melt distribution larger than the grain-scale. It may be possible to reconcile uranium-

series disequilibrium and geophysical observations if the mantle is heterogeneous,

with high porosity channels.

2.5.4 Implications for mantle heterogeneities

High melt fraction dunite conduits have been observed in ophiolites and
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appear necessary to explain chemical disequilibrium between mid-ocean ridge basalts
and the mantle residuum (Dick, 1977; Johnson and Dick, 1992; Kelemen et al., 1992;
Quick, 1982; Spiegelman and Kelemen, 2003). Dunite conduits form as a buoyant
melt, which is saturated in olivine but under-saturated in orthopyroxene (Ortoleva et
al., 1987), reacts with pyroxene-bearing peridotite, simultaneously dissolving the
orthopyroxene and precipitating olivine (Kelemen et al., 1997, 1995a, 1995b). The
dissolution of pyroxene is an incongruent melting reaction: more melt is produced by
volume than is removed from the system by the precipitation of olivine (Kelemen et
al., 1995b), and increases both melt fraction and permeability. Naturally, the rate of
dissolution is enhanced in regions where permeability is increased, which, in turn
continues to enhance permeability. Thus, a positive feedback, known as the reactive
infiltration instability (RII), is established between the opx dissolution and
permeability enhancement. Numerical models (Aharonov et al., 1995; Kelemen et al.,
1997; Spiegelman et al., 2001; Spiegelman and Kelemen, 2003) have shown that the
RII is capable of producing banded dunite structures similar to those found in nature.
Our results have direct implications for melt transport within these conduits.
At the grain-scale, permeability is largely controlled by the local melt distribution,
which is determined by local variations in the free surface energy of the system. Free
surface energy is an intrinsic property of the system composition, i.e. the mineral
phases present and the composition of the melt. Since the compositions of our
samples are similar to those of partially molten dunite, it stands to reason that melt
transport within these dunite conduits adheres to the power-law relationship between

permeability and melt fraction that we constrain here. Due to the RII, the melt
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fraction within dunite conduits is four times the overall mantle melt content
(Spiegelman et al., 2001). Therefore, the permeability of these conduits is about 37
times larger than for a homogeneous mantle. Neglecting melt production by RII, the
channels would occupy 25% of the mantle, so that channelization would increase the
velocity by approximately a factor of 10, making it easier to preserve >'Th
disequilibrium while verifying the mass balance considerations described in the
previous section.

The permeability of dunite conduits may further increase if the difference in
surface energy between olivine and opx is sufficient to preferentially partition melt to
olivine-rich areas (Watson, 1999), increasing melt content in dunite conduit beyond
the product of incongruent melting. Lithological melt partitioning has been proposed
to occur in mantle systems where olivine and opx are present. However, experimental
evidence for melt partitioning in systems with mineralogies similar to the mantle is
lacking. Although more research is needed to establish the extent to which the RII
and lithological partitioning modify the permeability structure of the mantle, dunite
conduits are good candidates for enhancing overall melt transport within the partially

molten region of the mantle beneath mid-ocean ridges.

2.6 Conclusion

This study is the first to use a 3-D imaging technique on synthetic partially
molten peridotites to estimate sample permeability. Visual inspection of the digital
microstructures shows that for melt fractions as low as 0.02, interconnected melt

channels residing along grain edges are the dominant features of the melt network.
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For melt fractions greater than 0.05, considerable melt pooling and grain boundary
wetting are observed in addition to melt channels. Measured connectivity
distributions confirm the increased contribution of grain boundary wetting as melt
content increases.

The permeability of our samples was computed numerically for sufficiently
large representative subvolumes and ranged from 4x107° to 2x10™"° m® for melt
fractions ranging from 0.02 to 0.20. The relationship between permeability and local
melt fraction is adequately represented by a power law k=d¢/"/C, with d the grain size
(approximately 35 um in our samples), the exponent n = 2.6 =+ 0.2, and the geometric
constant C = 5875 . A first-order calculation, based on mass balance in a 1-D melting

column, show that our empirical relation implies a melt fractions of order 1% under
mid-ocean ridges with upwelling velocities of order 1 m yr'' leading to transit times
through the melting column that are consistent with those constrained by uranium-
series analyses. Combined with numerical computation, u-CT has proven to be a
useful tool for characterizing the microstructure of partially molten peridotites and
computing their material properties. The results of this study place important new

constraints on melt transport beneath mid-ocean ridges, where partial melting occurs.
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Chapter 3: Influence of microstructure on electrical conductivity of partially

molten rocks

Abstract

Estimates of melt content beneath fast-spreading mid-ocean ridges inferred
from magnetotelluric tomography (MT) vary between 0.01 and 0.10. Much of this
variation may stem from a lack of understanding of how the grain-scale melt
geometry influences the bulk electrical conductivity of a partially molten rock,
especially at low melt fraction. We compute bulk electrical conductivity of olivine-
basalt aggregates over 0.02 to 0.20 melt fraction by simulating electric current in
experimentally obtained partially molten geometries. Olivine-basalt aggregates were
synthesized by hot-pressing San Carlos olivine and high-alumina basalt in a solid-
medium piston-cylinder apparatus. Run conditions for experimental charges were 1.5
GPa and 1350 °C. Upon completion, charges were quenched and cored. Samples
were imaged using synchrotron X-ray micro-computed tomography (u-CT). The
resulting high-resolution three-dimensional (3-D) image of the melt distribution
constitutes a digital rock sample, on which numerical simulations can be conducted to
estimate material properties. To compute bulk electrical conductivity, we simulated a
direct current measurement by solving the current continuity equation, assuming
electrical conductivities for olivine and melt. An application of Ohm’s Law yields the
bulk electrical conductivity of the partially molten region. The bulk electrical
conductivity values for nominally dry materials follow a power-law relationship gpui

= Aomeng™ with fit parameters m = 1.3 £ 0.3 and 4 = 0.66 + 0.06. Laminar fluid flow
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simulations were conducted on the same partially molten geometries to obtain
permeability, and the respective pathways for electrical current and fluid flow over
the same melt geometry were compared. Our results indicate that the pathways for
flow fluid can be different from those for electric currents. The tortuosity of direct
current pathways is lower than that of fluid flow pathways. The simulation results are
compared to existing experimental data, and the potential influence of volatiles and

melt films on electrical conductivity of partially molten rocks are discussed.

3.1 Introduction

At mid-ocean ridges, melt is thought to percolate over a broad, partially
molten region through a grain-scale network of interconnected melt (Fig. 3.1). The
capacity of the upper mantle to transport melt, which is ultimately responsible for the
production of oceanic crust, strongly depends on the spatial distribution of melt in the
mantle. The magnetotelluric (MT) method, which exploits the high conductivity of
partially molten rock, is a valuable tool used to probe the melt content of the upper
mantle. Though MT measurements are consistent with the presence of partial melt at
mid-ocean ridges, they disagree on the shape of the melting region and on the local
melt fraction, with estimates in the literature varying from as low as 0.01-0.03 (Evans
et al., 1999) to as much as 0.10 (Key et al., 2013). The first step towards reconciling
MT survey estimates is to robustly link electrical conductivity of partially molten
mantle rocks to the grain-scale morphology and interconnectivity of melt. A
microstructure-based approach to constraining electrical conductivity as a function of

melt fraction will provide a baseline for extrapolate laboratory measurement to
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Upwelling Mantle

Figure 3.1: Schematic diagram of a symmetrically spreading mid-ocean ridge. Surface
arrows denote the spreading direction, curved arrows denote the upwelling direction of
the mantle, blue region represents the ocean, brown represents the lithosphere, orange
gradient represents the asthenosphere, and red represents the partially molten region
beneath the ridge axis. Modified from Weatherley, (2012). Pop-out figure is a depiction
of an idealized, grain-scale melt geometry that is modified from Toramaru and Fujii

(1986).
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natural conditions and to assess the potential contributions of volatiles and melt
anisotropy to bulk electrical conductivity.

Bulk electrical conductivity of partially molten rock strongly depends on
interconnectivity of the highly conductive melt phase. For a monomineralic system,
under hydrostatic melting conditions, melt settles into an equilibrium configuration
that minimizes the total surface energy of the system. The degree of interconnectivity
can be assessed by the dihedral angle associated with its constituent solid-liquid phase
boundaries (Bulau et al., 1979; Waff and Bulau, 1979). For a dihedral angle greater
than 60°, melt forms isolated pockets. In this case, the melt and solid phases are
connected in series and the bulk electrical conductivity of the mixture is only
marginally greater than that of the solid. However, for a dihedral angle less than 60°,
as is the case for a partially molten olivine-basalt (Cmiral et al., 1998; Cooper and
Kohlstedt, 1984; Jurewicz and Jurewicz, 1986; Toramaru and Fujii, 1986; Waff and
Bulau, 1982), melt forms an interconnected network along grain edges (von Bargen
and Waff, 1986). As such, the melt conducts electricity in parallel with olivine and
the bulk electrical conductivity for melt fractions greater than 0.01 increases by at
least one order of magnitude (Roberts and Tyburczy, 1999; ten Grotenhuis et al.,
2005; Yoshino et al., 2010).

Since the electrical conductivity of rock strongly depends on the melt
geometry, bulk conductivity versus melt fraction relationships have been derived for a
number of idealized melt geometries: cube pack (Waff, 1974), tube Ilattice
(Schmeling, 1986), and hard sphere pack (Hashin and Shtrikman, 1963; Waft, 1974).

Though these end-member cases are useful for conceptualizing melt configurations,
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partially molten mantle rocks are heterogeneous and exhibit a range of melt features
(Faul, 2000; Laporte and Provost, 2000; Miller et al., 2014; Wark et al., 2003)
depending on the melt fraction present. At melt fraction larger than ~0.01, melt
mostly resides in triple junctions connected at four-grain junctions (Miller et al.,
2014; Toramaru and Fujii, 1986; Waff and Bulau, 1982, 1979; Zhu et al., 2011)
though melt films that wet two-grain boundaries have also been observed at low melt
fraction (Cmiral et al., 1998; Faul, 2000; Garapi¢ et al., 2013). Melt pools exist with
increasing frequency as melt fraction increases, leading to an increased degree of
grain boundary wetting or spillover from triple junctions (e.g., Zhu et al., 2011). At
melt fraction of 0.2, melt pools are the dominant feature of the melt network (Miller
et al., 2014; Zhu et al., 2011). The coexistence of multiple geometries for a given melt
fraction highlights the importance to consider realistic, three-dimensional (3-D) melt
geometries when computing material properties like electrical conductivity.

Experiments conducted on partially molten olivine-basalts find that bulk
electrical conductivity varies as a power law with melt fraction (i.e., Archie’s Law):

Obuk=ATmeid” (3.1)

where opyik 1s bulk conductivity, omerr 1s melt conductivity, and ¢ is melt fraction. 4
and m are power law parameters that depend on the melt morphology and
interconnectivity. Values m=0.89 to 1.30 and 4=0.73 to 1.47 have been reported for
olivine-basalt partial melts (Roberts and Tyburczy, 1999; ten Grotenhuis et al., 2005;
Yoshino et al., 2010). These studies do not directly link electrical conductivity with
the melt network morphology.

Most studies find that the data on partially molten samples overlap the upper
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Hashin-Shtrikman bound linking the conductivities of pure olivine and melt end-
members, However, the upper Hashin-Shtrikman bound is intended to represent a
loose pack of uniformly wetted spheres. We argue that this interpretation is
inconsistent with microstructural observations of texturally equilibrated rocks (e.g.
Cmiral et al., 1998; Cooper and Kohlstedt, 1984; Jurewicz and Jurewicz, 1986;
Toramaru and Fujii, 1986; Waff and Bulau, 1982). Also, end-member conductivities
were not always directly measured as part of the experiments. While experimental
constraints on the electrical conductivity of partially molten rock as a function of melt
fraction are essential to interpret MT data, a direct link between electrical properties
and melt geometry is still missing.

In addition, the use of electrical conductivity to infer permeability of systems
where direct permeability measurements could be challenging, such as partially
molten rocks, has garnered significant interest. With the assumptions that pathways
for both conductivity and permeability are linked to the microstructure of the rock,
several studies have discussed the apparent formation factor, defined as the Gpyi/Gmelt
and its relation to microstructure in various porous media (Avellaneda and Torquato,
1991; Johnson et al., 1986; Katz and Thompson, 1987). A self-consistent analysis of
permeability and electrical conductivity using network (David, 1993) and laminar
flow models on periodic pore spaces (Martys and Garboczi, 1992; Schwartz et al.,
1993) conclude that these approaches produce comparable results in terms of
extrapolating permeability from electrical conductivity. However, considering the
fundamental differences in the physics of electrical conduction and fluid flow, it is

important to examine the link between electrical conductivity and permeability based
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on microstructure.

In this study, we compute the bulk electrical conductivity and permeability of
digital rocks that represent the real 3-D distribution of melt in olivine-basalt samples
synthesized at mantle pressure-temperature conditions. Each sample was digitized by
high-resolution, 3-D imaging using synchrotron-based X-ray micro-computed
tomography (u-CT) (Zhu et al., 2011). The resulting 3-D images constitute digital
rocks, on which direct current and fluid flow simulations were conducted. The
potential influence of melt films at two-grain boundaries, which have been observed
with high-resolution microscopy, on electrical conductivity and permeability is
evaluated. We separately assess the influence of H,O in melt and olivine by adjusting

the electrical conductivity of olivine and melt.

3.2 Methods
3.2.1 Sample preparation and imaging

The samples considered in this study are synthetic olivine-basalts aggregates
representing partially molten rocks (Miller et al., 2014; Zhu et al.,, 2011).
Experimental charges were prepared from a powered mixture of San Carlos olivine
and natural, Fogy, high-alumina basalt (Mg #=0.0705) mixed in proportion to achieve
nominal melt fractions 0.02, 0.05, 0.10, and 0.20. Charges were isostatically hot-
pressed under simulated mantle pressure-temperature conditions (1.5 GPa and 1350
°C) in a solid-medium piston-cylinder apparatus for a minimum of 1 week to achieve
textural equilibrium. Upon completion, charges were quenched, turning the molten

basalt to glass, and ~1 mm cores were drilled from the samples. Cores were imaged
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using a combination of absorption-contrast and phase-contrast X-ray u-CT at 27 keV
to resolve the small density contrast between olivine and basaltic glass. Projections of
the integrated X-ray absorption and phase shift were recorded over 180° at 0.12°
increments and reconstructed into 3-D grayscale datasets using GridRec (Dowd et al.,
1999). Voxel (3-D pixel) values in the reconstructed images roughly correspond to

material density. Cubic voxels are 700 nm in length, measured along the voxel edge.

3.2.2 Subvolume selection

Sample cores often exhibit significant decompression cracking. These cracks
are voids that are not present at elevated pressure and temperature. To circumvent
decompression cracks — and to reduce the size of the computational domain — we
consider smaller subsets, or subvolumes, that are cropped from the whole-sample
images (Miller et al., 2014). All the subvolumes used in direct current simulations,
with the exception of those we used to assess the potential influence of H,O, have
dimensions 280 pm X% 280 pm X% 280 um, which was determined to be representative
of the bulk based on an electrical conductivity convergence analysis conducted on
progressively larger, nested subvolumes (Fig. 3.2). At least three statistically

representative subvolumes were cropped from each sample.

3.2.3 Noise-removal and segmentation

Grayscale subvolumes were processed using an edge-preserving anisotropic

diffusion filter (Weickert et al., 1998) to remove noise and artifacts, improving the
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Figure 3.2: Determination of a representative subvolume. Background is a cross-sectional tomography slice of a sample
containing melt fraction 0.05. Slice was sampled along the radial-azimuthal plane of the cylindrical sample. Cubic subvolumes
of various sizes were cropped from the sample and their bulk conductivities were computed, assuming olivine is a perfect insu-
lator, and plotted as a function of volume (foreground). All subsequent computation are conducted on subvolume 400x400x400
voxel® (280 um)>.
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efficacy of automatic segmentation algorithms. In order to setup a numerical domain
for computation, grayscale subvolume data were transformed into label images using
a variety of semi-automatic segmentation techniques: watershed transform (Beucher
and Meyer, 1992; Beucher, 1992) for high melt fraction and a bottom-hat global
threshold (Vincent, 1993) for low melt fraction. Refer to Miller et al. (2014) for more
details in data processing.

The melt fraction of each subvolume was calculated by counting the number
of cubic, uniform voxels labeled as basalt. A robust uncertainty analysis of the
measured melt fraction requires access to the point-spread function of the image data,
which is difficult to obtain. As an alternative, following Fusseis et al. (2012), we
estimate lower and upper bounds for the melt fraction by measuring the melt fraction
associated with the contracted and dilated melt image, respectively. Contractions and
dilations were conducted along all three orthogonal directions of the cubic

subvolume.

3.2.4 Direct current simulations

Though the electrical response of a partially molten rock is controlled by the
variable mobility of charge carriers to an alternating electric field — either by ambient
electromagnetic waves in the Earth or an alternating current source in the laboratory —
we chose to simulate direct current only to obtain bulk electrical conductivity. Bulk
electrical conductivity should not depend on the type of electrical source, whether it is
inferred from the frequency-dependence of alternating current measurements or the

direct current simulations. We focus on modeling charge transport by solving the

64



current continuity equation and do not explicitly consider the mobility of charge
carriers.
Our model is based on the formulations proposed by Garboczi (1998) and
Zhan et al. (2010). Each segmented label image is considered the computational
domain in a direct current simulation. We solve the current continuity equation,
which is the Laplace Equation
V-(cVy)=0 (3.2)
where o is the local electrical conductivity [S m™] of voxels associated with each
conductive material and y is the local scalar electric potential [V] defined at voxel
centers. Electric current is driven by an imposed electric potential differential (A¥)
across the subvolume, between the inlet and outlet faces. A no-flux condition is
imposed at the four faces parallel to the global electric potential gradient to ensure
current is conserved (Fig. 3.3). Using a second-order centered finite-difference

formulation, Eqn. (3.2) at each voxel becomes

Zn:’(z:i(‘//j ~y,)=0 (3-3)

j=1
where 7 is the number of connecting voxels and ;; is the electrical conductance of the
bond connecting voxels i and j. The distinction between electrical conductance and
electrical conductivity is a geometric factor, which is unity for bonds connecting
voxels in a uniform cubic grid. Voxels i and j are restricted to adjoining elements.
With consideration of the no-flux and inlet/outlet conditions, Eqn. (3.3) is
reformulated into a matrix equation

KW, =b (3.4)

m
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where b,, is a vector that contains the influence of the boundary conditions on interior
voxels and x, is a positive definite, symmetric matrix that contains the electrical
conductances of the bonds connecting each voxel. Elements are summed over m
indices. An additional constraint on the system comes from current continuity, which
states that the conductance of each bond must satisfy

— 2O-lo-m

= (3.5)
o, +O'm

Im

If voxels / and m belong to the same material, the conductance of the connecting bond
is just the electrical conductivity of that material. Conductance between voxels that
are not neighbors equals zero. Eqn. (3.4) is solved using the conjugate gradient
method to a tolerance of 1x10”. An incomplete Cholesky factorization (Meijerink
and van der Vorst, 1977) was used as a preconditioner to improve convergence rate of
the conjugate gradient solver. Each simulation was set-up, discretized, and solved
using custom, Matlab-based finite-difference software.

Evaluating the effect of melt films along grain boundaries requires a special
procedure since the resolution of p-CT is not sufficient to observe possible nanometer
scale melt films. We employ an upper bound approach. First we use Avizo’s Separate
Objects module, based on the morphological watershed transform, to define likely
olivine-olivine grain boundaries. Assuming all the interfaces are covered by melt
films, each voxel at grain boundaries thus consists of both olivine and melt. We
assign to these voxels an electrical conductivity that is the parallel average of the

olivine and basalt conductivities,
O-film = Gmeltx + O-olivine (1 - Z) (36)

where y is the proportion of the voxel that is occupied by melt. Assuming a melt film
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thickness of 100 nm, the maximum value reported in the literature (Cmiral et al.,
1998), and considering that our voxels have a uniform thickness of 700 nm, y=1/7.
This approach is similar to that taken by Zhan et al. (2010) to model the effect of an
electric double layer on bulk electrical conductivity of sandstone. This approach
overestimates the effects of melt films along olivine-olivine grain boundary as the
effective conductivity of the voxels should be anisotropic and Eq. 6 should only be
valid in the grain-parallel direction. We are able to bracket the effect of the melt films

by comparing simulations with y=0 and y=1/7.

3.2.5 Fluid flow simulations

Permeability simulations were conducted using Avizo XLab Hydro following
Miller et al. (2014). In these simulations, accommodation zones, where fluid spreads
evenly over the inlet and outlet faces, were appended to the sample subvolumes. The
Stokes Equations, which assume steady-state laminar flow, were solved on a
staggered finite-volume grid (Harlow and Welch, 1965). Flow was induced by
imposing pressure drop 4P across the input and output faces. A no-flux condition was
imposed at the material interface and the intersection of the melt geometry with the
bounding box. As XLab Hydro cannot consider variations in material properties we
could not evaluate the effects of melt films using a similar strategy as in the direct
current simulations. Instead, we assigned a 1-voxel thick surface along the olivine-
olivine boundaries as melt. This approach grossly exaggerates the effect of melt films,
which are no more than 1/7 voxel thick. An alternative approach would have been to

resample the melt geometry to a voxel size that is comparable to the actual melt film
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thickness (tens of nanometers). However, this approach would increase the number of
degrees of freedom in our system to an unmanageable size, and as shown later, the
exaggerated melt films, as handled by our simplified approach, alter both the
permeability and the porosity in the simulations, with negligible effect on the

porosity-permeability relationship of partially molten rocks.

3.2.6 Computing tortuosity

Since we solve for the velocity and electrical fields, it is straightforward to
compute the tortuosity of each simulation. Tortuosity is defined as the ratio of length
of the path a parcel of fluid — or electron for direct current simulations — would travel
through the geometry to the length of that geometry in the direction parallel to flow.
The tortuosity can be recovered by computing the path length of streamlines, since
streamlines are also pathlines for laminar flow. The streamlines can be weighted by
its associated mass flux (Matyka et al., 2008). If we take the limit as the spacing
between the streamline seeds goes to zero, as would be the case in a continuum, the

tortuosity can be calculated using,

<2‘:ag>> 3.7)

where umag 1s the velocity magnitude and u. is the z-component of the velocity,

T =

assuming z is the direction of flow (Duda et al., 2011).

3.3 Results
3.3.1 Electrical conductivity

Bulk electrical conductivity was computed for each subvolume label image
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Figure 3.4: Relations between electrical conductivity, permeability, and melt fraction reported on a log-linear
scale. Results are fitted to Archie power-law relations. Permeabilities are fitted to power laws A=C¢", where C and

n are fit parameters.
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(280 pm)’, assuming conductivities of 7.53 S m™ (ten Grotenhuis et al., 2005) and
0.009 S m™" (Constable, 2006) for nominally dry melt and olivine, respectively.
Summary of results are listed in Table 3.1. Simulation results are reported as a
function of the measured melt fraction (Fig. 3.4). A linear fit to the simulations results
on a log-log scale, assuming that our data lie at the midpoint between our error bars
(York et al., 2004), give Archie parameters m=1.3+0.3 and 4=0.66+0.06 (Fig. 3.4).
The value for our power-law exponent m agrees, within uncertainty, with data from
Roberts and Tyburczy (1999) and ten Grotenhuis et al. (2005). Most of the
differences in 4 between Roberts and Tyburczy (1999) and ten Grotenhuis et al.

(2005) can be attributed to the different experimental condition.

3.3.2 Permeability

Laminar flow simulations were conducted on the same subvolumes as the
direct current simulations. Permeabilities are plotted as a function of melt fraction and
compared to bulk electrical conductivities (Fig. 3.4). A fit to the permeability data in
log-log space gives power law exponent n=2.7+0.7, consistent with Miller et al.
(2014). There is a clear difference in the power law curves between electrical
conductivity and permeability. Fig. 3.5 shows that electricity flows more uniformly
through the pore network and is less sensitive to pore diameters than fluid flow,
which is consistent with the results of David (1993) and Martys and Garboczi (1992).
Fluid flow, on the other hand, is dominated by a few major flow pathways, through

which most of the mass is transported.
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Figure 3.5: Visual comparison of fluid flow (top) and direct current (bottom) simulation results. Streamlines are computed for
the velocity (fluid flow) and current density (direct current) fields from randomly placed in space occupied by melt. The loca-
tions of streamline seeds are determined randomly and weighted according to the magnitude of the field quantity to emphasize
locations of high magnitude.
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3.3.3 Tortuosity

The tortuosity of our Stokes flow simulations, as computed by Eqn. (3.5) (Fig.
3.6), is consistently higher than direct current simulations, which provides
quantitative evidence that electricity flows diffusively though the entire melt network,
whereas fluid flow focuses along specific pathways. As fluid travels through
distinctly different pathways through the melt network than does electricity, linking
permeability to electrical conductivity is strictly empirical, with no microstructural
justification. It should be noted that the high tortuosity of direct current and fluid flow
simulations conducted at ¢=0.02 relative to those pertaining to higher melt fractions

are likely due to low interconnectivity of the digital geometries ¢<0.02.

3.4 Discussion
3.4.1 Electrical conductivity and permeability comparison

Differences between the permeability and electrical conductivity of an
aggregate can be attributed to the differences in the radius dependence between the
fluid and electric fluxes. Consider a simple network of interconnected tubes of
various widths. For each tube, there is an analytical expression for the fluid and

electric fluxes. The fluid flux (Q) is given by

_mh* AP

0= S,uT

(3.8)

where b is the radius of the tube, u is the viscosity of the fluid, 4P is the pressure
difference from one end of the tube to the other, and L is the tube length. The electric

flux (@) is given by
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®= nbz% (3.9)

where 4 Y is the difference in electric potential from one end of the tube to the other.
The strong dependence of the fluid flux on the radius of the tube causes fluid flow to
be far more sensitive to the pathways available to flow. Since mass and current are
both conserved quantities, the strong radius dependence of fluid flux results in the
formation of a so-called “critical pathway” (David, 1993) through which most of the
material is transported. The fact that tortuosity for laminar flow simulations is
consistently higher than direct current simulations is evidence of these critical

pathways.

3.4.2 Comparison with experimental data

Our simulations results on electrical conductivity are compared to mixing
models (Fig. 3.7A) that assume idealized melt geometries and electrical
conductivities for each material. Five different idealized melt geometries are
considered: parallel and series bounds, upper and lower Hashin-Shtrikman bounds
(Hashin and Shtrikman, 1963), and a geometric average model. The parallel
composite model, which assumes melt is organized into a series of pipes that extend,
with zero tortuosity, through an insulating secondary phase, constitutes an absolute
upper bound for the bulk electrical conductivity. The series model is the parallel
model rotated 90°, so that current must pass through both olivine and melt. It is the
absolute lower bound for the electrical conductivity of a composite material. Hashin-
Shtrikman bounds are conceptually similar to the parallel and series bounds, except

they assume a system composed of loosely packed spheres surrounded by a uniform
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Figure 3.7: A) Comparison of bulk electrical conductivity computed from partially molten geometries obtain from pu-CT and mixing
models for idealized melt geometries. Direct current simulations are conducted on synthetic datasets for straight tubes and serial layers
for parallel and series bounds, respectively, to demonstrate the accuracy of the numerical model. B) Influence of melt films on bulk
electrical conductivity and permeability computed using the three-phase conductivity model. C) Influence of H,O in melt on the bulk
electrical conductivity and comparison with experimental data. D) Influence of H,O in olivine on the bulk electrical conductivity and
comparison with experimental data.
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layer of melt. The geometric mean model (Madden, 1976) considers a larger
composite that consists of series and parallel sub-composites.

Fit to our simulation results yields power law parameters m=1.3+0.3 and
C=0.66+0.06, which is between the Hashin-Shtrikman bounds, assuming
Golivine=0.009 S m™ and 6,ne=7.53 S m™'. This is consistent with a heterogeneous melt
distribution like those observed in microscopy studies (e.g. Cmiral et al., 1998;
Cooper and Kohlstedt, 1982; Faul and Fitz Gerald, 1999; Garapi¢ et al., 2013; Miller
etal., 2014).

Our results are systematically offset from the Hashin-Shtrikman upper
boundary by a factor of 2 to 3. However, experimentally measured partially molten
olivine-basalt electrical conductivities are often shown to overlap with the upper
Hashin-Shtrikman bound (ten Grotenhuis et al, 2005; Yoshino et al, 2010). Although
we do not have access to the actual samples from these studies, the chemistry,
mineralogy, and preparation procedures are nominally the same as our own,
suggesting that there is an additional contribution to the bulk conductivity that cannot
be accounted for by separately considering the electrical conductivity of olivine and
melt.

Recently, Zhang et al. (2014) measured the electrical conductivity of partially
molten peridotite as a function of strain in simple shear. They separately measured the
electrical conductivity of their melt and partially molten aggregates before and after
deformation and found the electrical conductivity of their undeformed aggregate to be
between the Hashin-Shtrikman lower and upper bounds, consistent with our study.

Interestingly, the electrical conductivity of the deformed sample, measured in the
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shear direction, overlapped the upper Hashin-Shtrikman bound. The change in
conductivity before and after deformation may result from either a change in melt
distribution or a reaction taking place during the experiment, which produces high
conductivity phases. Similar effects may be present in other experimental studies in
which measured values of electrical conductivity of partially molten samples are in
agreement with the Hashin-Shtrikman upper bound.

Our study provides a rigorous link between melt distribution geometry and
electrical conductivity. Direct current simulations on synthetic datasets of straight and
parallel tubes are in good agreement with analytical solutions to the Laplace equation.
Due to limitations in current imaging techniques, it is conceivable that some
connections of the melt network are missing from the melt distribution obtained for
samples with low melt fractions. However, the missing connections could not explain
the discrepancy between our simulation results and the experimental data because
simulations conducted on subvolumes containing nominal melt fractions 0.10 and
0.20, in which melt channels are completely interconnected, still yield electrical
conductivity values less than experimental measurements. However, melt films,
which are too thin to resolve with p-CT, and the presence of H>O in melt and olivine
during electrical conductivity measurements, may play an important role. We

describe below what the effect of these features would be.

3.4.3 Melt films

In addition to melt tubules and pools, a number of high-resolution studies

(Cmiral et al., 1998; Faul, 2000; Faul et al., 1994; Garapi¢ et al., 2013; Waff and
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Faul, 1992; Wirth et al, 1996) document thin films of melt at some two-grain
junctions. The thickness of melt films ranges between 3 nm and 100 nm. It has been
suggested that thin films control melt transport at low melt fraction (Faul, 1997). We
apply our direct current and Stokes flow models to quantifying the influence of melt
films on bulk electrical conductivity and permeability using the approximations to
melt films described in Section 3.2.2. By assuming all grain-grain boundaries are
wetted by melt — i.e. the anisotropy of grain boundary surface energy is neglected—
our approach gives an upper bound for the influence of melt films. Fluid flow
simulations are conducted assuming that a full, 1-voxel fluid layer wets grain-grain
boundaries.

Results are plotted in Fig. 3.7B. Artificially imposing melt films in our
olivine-basalt geometry increases sample conductivity and has a similar effect on the
bulk conductivity as increasing olivine electrical conductivity. This is because the
voxels at grain boundaries are now considered an average of olivine and melt
electrical conductivities, whereas these voxels were considered olivine only in the
previous series of simulations. Bulk electrical conductivity increases substantially at
low melt fraction and less so for higher melt fraction. The large error bounds on our
melt fraction suggest that this change for $>0.02 is within uncertainty. Nevertheless,
the inclusion of melt films alone cannot account for the high electrical conductivities
observed in experiments, even though their effect is grossly exaggerated in our
simulations.

Including melt films substantially increases the permeability of our partial

melt geometries. At the same time, the presence of melt films also substantially
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increase melt fraction. The resulting porosity-permeability relationship does not differ
significantly from that of Miller et al. (2014) without melt films. Actually, the
permeability of a subvolume that includes melt films is systematically lower than
permeability of a subvolume of similar porosity that does not include melt films.
Although the difference is minimal and likely insignificant, melt films reduce
permeability for a given porosity.

The larger effect of the melt films on bulk electrical conductivity relative to
permeability is consistent with the concept of a critical pathway. In permeability
computations, melt films contribute little to the critical pathways because fluid flux’s
strong dependence on hydraulic radius. In contrast, electrical conductivity flows more
diffusively and uses melt films as viable pathways for electric transport. Thus melt
films may be important contributors to the electrical properties of partially molten
rocks, especially if their chemistry is distinct from the chemistry of the melt (Wirth,
1996). However, their contribution to the bulk electrical conductivity is not sufficient
to account for the apparent discrepancy between the simulated and measured bulk

electrical conductivities.

3.4.4 H;O in melt

The presence of volatiles, specifically H;O and CO,, in melt is an excellent
candidate for enhancing bulk electrical conductivity at high melt fraction. An addition
of ~1 wt. % H,O to an otherwise dry basaltic melt can increase the electrical
conductivity by a factor of 3 (Ni et al., 2011). CO; has an even stronger effect on the

melt electrical conductivity (Sifré et al., 2014; Yoshino et al., 2010) but is not
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explicitly addressed here. To assess the effect of H,O on the bulk electrical
conductivity of partial molten rocks, we run direct current simulations for various

melt conductivities and convert to H,O concentration for the melt using

860.82 — 204 46.[C,, ,
L =2172- : (3.10)
T—11468

log o

where C,, is the concentration of H>O in the melt and 7" is temperature. Starting

values for melt electrical conductivity were adopted from measured values (ten
Grotenhuis et al., 2005). Though different degrees of melting will likely produce
subsequently different HO concentrations — since H,O will partition form olivine to
the melt — we assume a uniform increase in the melt conductivity.

Our results are presented in Fig. 3.7C. A H,O concentration of 1.7 wt. % is
sufficient to explain the high conductivities for high melt fraction in ten Grotenhuis et
al. (2005) but underestimates the conductivity at lower melt fraction. Therefore, the
electrical conductivity-melt fraction power-law does not match their experimental
results at lower melt fraction. As melt fraction decreases, the electrical conductivity

of olivine will have a stronger influence on the bulk electrical conductivity.

3.4.5 HO in olivine

Under hot, “dry” conditions, the electrical conductivity of olivine, which is
controlled by polaron electron hopping (Constable, 2006; Dai et al., 2010; Schock et
al., 1989; Wanamaker and Duba, 1993; Xu et al., 2000; Yoshino et al., 2009a), is
three to four orders of magnitude less than that of basaltic melt and should contribute
insignificantly to the bulk electrical conductivity. Under “wet” conditions, however,

olivine electrical conductivity can increase significantly (e.g. Wang et al., 2006;
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Yoshino et al., 2006, 2009; Poe et al., 2010; Jones et al., 2012; Dai and Karato,
2014a, 2014b; Gardés et al., 2014) though the magnitude of its influence on the bulk
electrical conductivity of olivine is debated (Gardés et al., 2014). To explore the
effect of an increased olivine electrical conductivity, we run direct current simulations
using a range of higher olivine conductivities.

The conductivity of olivine with some fraction of water is estimated according
to the model of Gardés et al. (2014). They consider three superposed conduction
mechanisms. The first two, diffusion of cation vacancies and polaron hopping,
operate under anhydrous conditions at high and low temperatures, respectively
(Constable, 2006; Dai et al., 2010; Schock et al., 1989; Wanamaker and Duba, 1993;
Xu et al., 2000; Yoshino et al., 2009a), while the third mechanism is related to the
presence of hydrogen in olivine.

B AH Vacancy A Polaron Athdmusfaql_go
vacancy

_ T RT polaron ~ r7 hydrous RT
o=0,""¢€ +o, e +0, Gyl (3.11)
where AH are the activation enthalpies for the mechanisms, Cy, is the weight

concentration of H,O in the olivine, a corrects for the decrease in the activation
enthalpy for increasing H,O concentration, R is the ideal gas constant, and 7 is
temperature.

Results are plotted in Fig. 3.7D. We find that increasing olivine conductivity
noticeably enhances the bulk conductivity at low melt fraction and changes the shape
of the bulk electrical conductivity-melt fraction power-law. If we assume wet
conditions for both olivine and melt, we find that on=15.60 S/m and Goivine=0.045
S/m explains experimental data by ten Grotenhuis (2005). An olivine electrical

conductivity of 0.045 S/m at 1475 °C translates to ~145 ppm. Given, the solubility of
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H,O in olivine ~90 ppm (Gaetani et al., 2014), measured at 1200 °C, it is difficult to
justify 145 ppm HO concentration in olivine. However, without solubility data
measured at higher melt temperature, it is unclear whether the solubility of H,O in
olivine at 1200 °C can be extrapolated to 1475 °C.

The trend of the data from laboratory measurements (e.g., ten Grotenhuis et
al., 2005) may reflect water in the aggregates, with the combined effect of water in
olivine and melt films dominant at low melt fraction and water in the melt dominant
at high melt fraction. Neither effect is expected to significantly affect the relation

between permeability and melt fraction.

3.4.6 Chemical heterogeneity

We speculate the existence of a thin, electrochemically distinct layer at the
olivine-melt interface that might account for the apparent discrepancy between the
bulk electrical conductivities measured and those we computed using real partial melt
geometries. Electrolytic conduction by Na' ions dissolved in the fluid is the primary
mode of electrical transport in porous sedimentary rocks (Nover, 2005). High
concentration of Na' ions at the mineral-fluid interface would provide an additional
pathway for electrical conduction. In crustal rocks, lattice deficiencies at the surface
of clay minerals result in a locally negative charge that attracts Na+ (Nover, 2005),
coating the mineral-fluid interface with a thin, highly conductive layer, often called
the electric double layer (EDL). The thickness of the EDL is roughly the Debye
length (Debye and Hiickel, 1923; Morgan et al., 1989), which depends on physical

parameters of the fluid phase, such as the molarity and permittivity of solution. For
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reference, the Debye length of the clay-water interface is on the order of a few to tens
of nanometers (Tombacz and Szekeres, 2006; Wan and Tokunaga, 2002). Though the
thickness of the EDL is quite small compared to the diameter of the melt conduits, the
local electrical conductivity of the EDL would be greater than that of the fluid, and
since it forms an interconnected pathway, will conduct in parallel with the fluid.
Therefore, electrical conduction near the mineral-fluid interface may be a separate
and important conduction mechanism to consider, especially at low fluid fraction.

The existence of EDLs in partially molten olivine-basalts is currently not
considered, since the chemistry of olivine-melt interface is intrinsically different from
the clay-water interface. The formation of an EDL on an olivine-melt interface would
require a local charge imbalance, possibly due to concentration of impurities.
Gurmani et al. (2011) and Wirth (1996) have proposed chemical variations in the
presence of melt films but not for every olivine-melt interface. Nevertheless, the
presence of EDLs — or more generally a spatial heterogeneity of the primary charge
carriers — is a convenient mechanism to reconcile our model results and laboratory
measurements. Furthermore, the influence of EDL on the bulk conductivity may be
invisible to impedance spectroscopy if electrical conduction through EDLs operates
in the same frequency spectrum as electrolytic conduction. Unfortunately, modeling
the influence of the EDL on bulk conductivity requires a priori knowledge of the
Debye length and EDL electrical conductivity. These variables, to our knowledge,

have not been constrained for the partially molten olivine-basalt system.

3.5 Conclusion
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We modeled direct current on experimentally obtained olivine-basalt partial
melt geometries in order to link microstructural properties to bulk electrical
conductivity and deconvolute the role of melt geometry from other processes, e.g.
volatile content, that may affect electrical properties. Our digital rock physics
approach for determining the bulk electrical conductivity of partially molten rocks
has the benefit of having fine control on the physics and material properties of the
system, while still adhering to a real melt geometry. Rather than having to rely on an
idealized melt geometry from measured electrical properties of the system, we are
able to compute electrical properties directly from the melt microstructure.

We found that the high bulk electrical conductivities observed in experiments
cannot be accounted for by considering only a two-phase olivine-melt model unless
there is significant enhancement of the melt electrical conductivity by volatiles. The
trends observed in laboratory measurements may reflect water in the aggregates, with
the combined effect of water in olivine and melt films dominant at low melt fraction,
and water in the melt dominant at high melt fraction. Neither effect is expected to
significantly affect the relation between permeability and melt fraction. We speculate
that a high electrical conductivity, chemically distinct electrochemical layer on the
grain-melt interface may also affect laboratory measurements. Such layers have been
well characterized in rocks that contain clay minerals but have not been discussed in

the context of partially molten mantle rocks.
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Chapter 4: Experimental evidence for lithologic melt partitioning between

olivine and orthopyroxene in partially molten harzburgite

Abstract

The grain-scale distribution of melt in partially molten aggregates under
isostatic stress is controlled by gradients in surface energy associated with the grain-
grain and grain-melt boundaries. For a monomineralic aggregate, e.g. olivine-basaltic
melt composed of idealized isotropic grains, melt is more or less equally distributed
among grains. However, in a polymineralic aggregate, e.g. olivine-orthopyroxene
(opx)-basaltic melt, spatial variations in surface energy cause melt to partition
unevenly among the mineral components in favor of a lower energy configuration. In
an aggregate that has substantial mineralogical variability, this phenomenon, known
as lithologic fluid partitioning, can act as a mechanism for concentrating melt and
possibly modify permeability and electrical conductivity of the rock.

Experimental studies that examine analogue systems, e.g. calcite-fluorite-
H,0, observe strong fluid partitioning among the constituent minerals. However,
experimental evidence for melt partitioning between olivine and opx, the two most
relevant minerals to the upper mantle, is lacking. We present experimental results that
elucidate the degree of melt partitioning between olivine and opx in partially molten
harzburgites.

Samples were prepared by mixing powdered oxides and natural, high-alumina
basalt in various proportions to test for lithologic melt partitioning across a range of

melt fractions. Bulk composition was such that a 3 to 2 olivine to opx ratio was
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maintained over all samples; though the measured olivine to opx ratio for subvolumes
varies widely 1.2 and 4.3 between subvolumes. Samples were cored and imaged
using synchrotron-based X-ray micro-computed tomography, producing a high-
quality three-dimensional digital sample. Representative subvolumes were cropped
from the digital samples, avoiding decompression fractures where possible. Grayscale
subvolumes were transformed into label images whereby each voxel is assigned a
phase identification number, e.g. 1 for melt, 2 for olivine, and 3 for opx. Local melt
fraction distributions for olivine and opx were automatically characterized for each
subvolume by counting voxels inside ellipsoidal envelopes that were fitted to each
olivine and opx grain, respectively.

We find that melt partitions in a 1.1 to 1.5 ratio between olivine and opx,
respectively, across all subvolumes. We present lithologic melt partitioning as a
mechanism for focusing melt in the mantle that could potentially enhance average

melt ascent velocities.

4.1 Introduction

Melt transport at mid-ocean ridges is thought to operate via porous flow along
an interconnected, intergranular network (Turcotte and Schubert, 2014). Geochemical
data collected from mid-ocean ridge basalt suggest melt flux is likely dominated by
melt fraction heterogeneities that are larger than the grain size. For example, secular
disequilibrium of uranium-series nuclides (Condomines et al., 1981; Iwamori, 1994;
Newman et al., 1983; Volpe and Hammond, 1991) and the undersaturation of opx

with respect to olivine (Kelemen et al., 1997) are indirect evidence of high-melt
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fraction, high-permeability conduits. Two mechanisms of interest have been proposed
to organize melt on length scales comparable to the compaction length — a natural
length scale that depends only on the material properties of the partially molten
mantle rock: the reaction infiltration instability (RII) (e.g. Aharonov et al., 1995;
Daines and Kohlstedt, 1994; Kelemen et al., 1995a; Spiegelman et al., 2001) and
deformation-induced melt segregation (e.g. Holtzman and Kohlstedt, 2007). The
former is a consequence of the positive feedback between melt flux and opx
dissolution, and the later results from the anisotropic viscosity of partially molten
rock (Qi et al., 2014; Allwright and Katz, 2014). We propose an additional
mechanism that can concentrate and organize melt: lithologic melt partitioning, which
is a consequence of the thermodynamic gradient caused by spatial variations in
mineralogy.

At equilibrium, melt distributes into a configuration that minimizes the total
surface energy of the system. An idealized system composed of uniform, isotropic
olivine grains, the minimum-energy configuration is one in which the melt fraction is
the same around every grain (Fig. 4.1A). However, the presence of secondary
mineral, such as orthopyroxene (opx), which has a higher solid-melt surface energy
density than olivine, will perturb the uniform surface energy distribution, causing
melt to concentrate in olivine-rich regions. This phenomenon, known as lithologic
melt partitioning, where melt partitions unevenly between olivine and opx, results in a
locally high melt fraction in olivine-rich regions and a locally low melt fraction opx-
rich regions.

An alternative — but equivalent — pedagogical model for understanding

&9



A Olivine + Melt

|
0 0.10 0.20

Melt Fraction, ¢

Figure 4.1: Schematic diagram illustrating the minimum energy melt fractions for olivine and opx in a close
system containing a finite amount of melt. Modified from (Park and Yoon, 1985; Watson, 1999). (A) Sche-
matic diagram of an aggregate containing only olivine and basaltic melt. Local melt fraction is the same for
every grain. (B) Schematic diagram of an aggregate containing olivine, opx, and basaltic melt. Spatial
variations in the surface energy distribution, resulting from different mineral component, cause the basaltic
melt to partition unevenly between olivine (higher melt fraction) and opx (lower melt fraction). (C) Total
surface energy contained in a melt-bearing rock system normalized by the total surface energy contained in
a melt-free system plotted as a function of melt fraction for various dihedral angles. Dotted line represents
the total melt fraction contained in an example system. In a homogeneously mixed olivine-opx-basaltic
melt aggregate, local melt fractions associated with olivine (blue circle) and opx (red circle) will adjust to
minimize the energy of the system. Arrows with ¢_ indicate the minimum-energy melt fraction for an open
system that is exposed to an infinite melt reservoir.

90



lithologic melt partitioning uses the concept of the minimum-energy melt fraction.
For a given dihedral angle (Eqn. 1.1), there is a melt fraction, called the minimum-
energy melt fraction (Fig. 4.1C), that minimizes the total interfacial energy of the
system. Consider a simple system consisting of a monomineralic aggregate that is
open to a melt reservoir. The aggregate will draw melt from the reservoir via capillary
action until the minimum energy melt fraction is attained. However, in the upper
mantle, olivine and opx grains coexist. In this more realistic scenario, melt will
partition unevenly between olivine and opx but will not attain their nominal
minimum-energy melt fractions for the given dihedral angle.

Lithologic melt partitioning was observed in analogue systems that consisted
of two juxtaposed mineral aggregates and interstitial H,O. For example, piston-
cylinder experiments (Watson, 1999) showed that H,O partitions in a 5 to 2 ratio
between fluorite and quartz, respectively, and in a 3 to 1 ratio between clinopyroxene
and quartz (Fig. 4.2), respectively. In the same study, lithologic melt partitioning was
examined using juxtaposed olivine and opx aggregates containing the same initial
proportions of basaltic melt. Since the surface energy density of the olivine-basaltic
melt interface is markedly lower than that of the opx-basaltic melt interface, it is
surprising that the sample exhibited no measurable melt partitioning. Watson
concluded that the distance separating the olivine and opx-rich regions was too large
(a few milometers) and viscosity of basaltic melt was too high for lithologic melt
partitioning to occur in the timeframe of the experiment (~6 days).

We approach measuring lithologic melt partitioning in partially molten

harzburgitic rocks using a novel approach. Experimental charges, composed of
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quartz
clinopyroxene

(run 26c¢)

Figure 4.2: Fluid distribution in cylindrical sample consisting of juxtaposed quartz
and clinopyroxene (Watson, 1999). (A) Back-scattered electron (BSE) image of a
polished cross-section. White and black boxes denote areas where melt fractions
were measured. (B) BSE image of one of the quartz analysis locations. (C) BSE
image of one of the clinopyroxene analysis locations. (D) Close-up of the clinopy-
roxene-H,0 microstructure.
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various proportions of olivine, opx, and basaltic melt, were synthesized in solid-
media piston-cylinders apparatuses. Olivine and opx grains were homogeneously
mixed, which reduced the length-scale of partitioning three orders of magnitude.
Cores were drilled from the samples and imaged in three-dimensions (3-D) using
synchrotron-based X-ray micro-computed tomography (u-CT). Statistically
representative volumes were cropped from each sample and local melt distributions
were obtained for olivine and opx by systematically measuring the proportion of melt

in each olivine and opx-rich region.

4.2 Methods
4.2.1 Sample preparation of harzburgite samples

Harzburgite samples were prepared by hot, isostatic pressing of a mixture
containing oxides and natural, high-alumina basalt. The oxide mixture was prepared
by homogenizing oxides mixed in proportion such that olivine (forsterite) and opx
(enstatite) crystals would have the same chemistry as those found in a natural
harzburgite collected from the Southwest Indian Ridge (Dick, 1989). For each melt
fraction, the oxide proportions were adjusted to maintain a nominal 3 to 2 (olivine to
opx) ratio. The ingredients and chemical proportions used in making the oxide
mixtures are reported in Table 4.1.

Not all of the elements could be added to the mix as oxides. Calcium, for
example, was added in carbonate form (CaCOs;). The mix was homogenized for six
one-hour cycles using an automatic agate mortar and pestle. Upon completion, we

applied a decarbonation procedure to transform the carbonates to oxides. To
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Component Drying Conditions Measured Weight (g)

Si0O, 28 hours @ 1000 °C 5.03010
TiO2 N/A 0.00090
Al,O3 28 hours @ 1000 °C 0.13627
Fe;Os3 1 hour @ 800 °C 0.91690
MnO; 2 hours @ 800 °C 0.01649
MgO 216 hours @ 1000 °C 4.65014
CaCO; 4 hours @ 400 °C 0.16765
Na>COs N/A 0.00074
KoCOs N/A 0.00077
NiO 2 hours @ 800 °C 0.01961

Table 4.1: Starting composition and drying conditions of harzburgite oxide/carbonate mix. Mixed in
proportion to attain a 2 to 3 olivine to opx harzburgite mix.
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decarbonate the mixture, it was placed in a furnace at 300 °C and heated to 850 °C at
100 °C/hr. The mix was held at 850 °C for a minimum of 24 hours. Pulverized natural
basalt was added in various proportions to the oxide mix to attain total melt fractions
of 0.02, 0.05, 0.10, and 0.20 when melted. The same homogenization procedure was
repeated for every oxide-basalt mixture.

For each melt fraction, ~36 mg of the oxide-basalt mixture was cold-pressed
into a cylindrical pellet using a 1-ton press and placed into a graphite capsule (Fig.
4.3). Capsules were dried overnight at 400 °C to remove surface H,O from the
experimental charges. Charges were placed in solid-medium piston-cylinder
apparatuses and brought up to 1.5 GPa and 1350 °C using the cold piston-in
technique (Johannes et al., 1971). Details about the uncertainty in pressure and
temperature can be found in Chapter 2.2 and Appendix A.

Upon completion of the piston-cylinder runs, experimental charges were
quenched by turning off the heating source while maintaining a steady flow of cold
water through the space surrounding the pressure vessel. Cylindrical 1-mm cores

were drilled from each sample along the cylindrical sample axis (Fig. 4.3).

4.2.2 Imaging procedure

The image acquisition, pre-processing, and data reduction procedures are
outlined in Fig. 4.4.

Cylindrical harzburgite samples were imaged using a synchrotron light source
at beamline station 2BM-a of the Advanced Photon Source, Argonne National

Laboratory. The very small density contrasts at olivine-opx and olivine-basalt
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boundaries warranted a novel imaging procedure, which involved a combination of
absorption-contrast and phase-contrast imaging techniques. A monochrometer was
used to select a narrow energy spectrum around 24.4 keV. The sample was rotated
180° through the X-ray beam, and at every 0.12° increment, we recorded a snapshot
of the X-ray projection using a CCD camera. Each projection contains information
about the X-ray absorption and phase integrated along the trajectory of the X-ray.
Prior to reconstruction, the background illumination was removed from each
projection.

The open source, Python-based software Tomopy (Giirsoy et al., 2014), which
was developed by the beamline scientists at Advanced Photon Source, was used to
perform the image reconstruction. First, a stripe-removal algorithm based on Miinch
et al. (2009) was applied. A quantitative phase retrieval algorithm, which was based
on Paganin et al. (2002) was used to simultaneously recover the X-ray absorption and
diffraction signal. Finally, GridRec (Dowd et al., 1999) was used to perform the
tomographic reconstruction. In the resulting grayscale image (Fig. 4.5, olivine
(lightest granular phase), opx (darkest granular phase), and quenched basaltic melt

(dark interstitial phase) are clearly distinguishable.

4.2.3 Subvolume Selection

A visual inspection of the whole sample reconstruction reveals strong melt
fraction heterogeneity along the cylindrical axis of each sample (Fig. 4.6). The melt
fraction is at a minimum at the bottom of sample and a maximum at the top of the

sample. We interpret this long-wavelength heterogeneity to be caused by melt
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Figure 4.5: Visualizing the X-ray pu-CT data. (A) Tomography slice sampled at depth from harzburgite samples. Samples contains
~5 vol. % quenched basaltic melt (glass). On the right is a closeup of the tomography slice. Olivine (light granular phase), opx
(dark granular phase), and basaltic glass (dark interstitial phase) are clearly visible. (B) View of whole sample. Dark plane
represents the location of the displayed tomography slice. (C) Histogram of a subvolume cropped from the sample.
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Figure 4.6: Vertical melt fraction heterogeneity. Orientation of the sample during sintering is the same as the orientation of
the image. (Left) Grayscale image taken along the vertical axis of the sample. (Right) Melt fraction measured over a over
10-slice intervals. Melt fraction is highest at top of sample and lowest at the bottom of the sample.
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buoyancy. Over the course an experiment, melt which is less dense than the
surrounding olivine or opx, will rise to the top of the sample. As the melt rises, the
loss of mass towards the bottom of the sample is compensated by compaction of the
granular matrix. As melt fraction decreases at the bottom of the sample, surface
tension and compaction forces reach mechanical equilibrium with buoyancy.
Following Miller et al. (2014) and Watson and Roberts (1999), smaller
subsets of data, which we call subvolumes, were cropped from each reconstructed 3-
D image at locations of relatively constant melt fraction. Decompression fractures
(Fig. 4.5A) and long-wave-length melt fraction heterogeneity (e.g. Fig. 4.6B between

280 and 560 um) were avoided.

4.2.4 Image segmentation

In order to characterize the melt distribution, each grayscale subvolume was
converted to a label image: grayscale voxels were assigned values 1, 2, or 3 for
basaltic glass, olivine, or opx, respectively. We developed a semi-automatic
segmentation workflow. First, a trial segmentation of the melt is performed using a
combination of Avizo’s local thresholding module and tophat global threshold. Thin
decompression fractures are manually removed from the image by overlapping the
trial segmentation with a morphological erosion and dilation of the image using a
2x2x2 voxel® ball-shaped kernel. Avizo’s morphological filter toolbox was used.

Subtle contrast at the olivine-opx interfaces and bright imaging artifacts at the
grain edges prevented us from applying the same local threshold technique to

differentiate the opx from the olivine. We used a morphological watershed
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transformation to separate grains and then handpicked opx grains from the aggregate.
Grains that were incorrectly separated were corrected using Avizo’s propagating
contour tool. Once all of the opx grains were differentiated from olivine, the
watershed basins were removed by a simultaneous dilation of the olivine and opx
images. To remove jagged edges, which are artifacts of the morphological watershed
tool, the resulting image was smoothed using an 3x3x3 voxel’ Gaussian kernel. The
segmented melt image is superposed on the olivine-opx segmented image. The result
is a very accurate segmentation of the melt and a slightly less accurate approximation
of the olivine-opx grain boundaries. Accurately estimating the location of the olivine-
melt and opx-melt interfaces is far more important than the olivine-opx interface
since we are most interested in the local melt fraction around each grain. 3-D volume
renderings of the label images are given in Fig. 4.7.

In some samples, a bright, dendritic phase, which we think is partially
recrystallized melt, appears in the melt near the olivine-melt interface. Partially
recrystallization of the melt is usually indicative of an imperfect quench. Since they
are not present melt prior to quenching, voxels associated with these dendritic
features are assigned to melt in the segmentation procedure. Refer to Appendix C,

Fig. C.1) for an image of the bight dendritic phase.

4.2.5 Quantification of local melt fraction distribution
Though a homogeneous mixture of olivine and opx reduces the amount of
time required to reach a steady state microstructure, it complicates evaluation of the

characteristic melt fraction associated with each mineral phase. Therefore, we
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Figure 4.8 Schematic diagram of the local melt fraction analysis technique. Gray
and orange represent grain and melt. Dotted lines are ellipsoid envelopes for differ-
ent growth parameters p =1, 1.4, and 3. p=1 ellipsoid is too small and miss melt. p
= 3 ellipsoid is too large and counts melt from other grains. p = 1.4 is approximately
the optimal value that enclose the melt immediately surrounding the grain.
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adopted a dynamic measuring technique, in which a local melt fraction is measured
for each grain and then plotted in a distribution. Each local melt fraction measurement
was performed by counting melt voxels contained within an ellipsoidal envelope
surrounding each grain. First, an ellipsoid was fitted to each grain (Fig. 4.8) using
ellipsoid_fit.m, which is a freely available software on Matlab Central and is also
included in Appendix C. The principle lengths and orientations of the ellipsoid are
eigenvalues and eigenvectors, respectively, of the ellipsoid fit parameters. Next, we
dilated the fitted ellipsoid by multiplication with a growth parameter p. Phase
proportions were calculated by voxel counting within each ellipsoidal envelope. We
looped through all grains in each subvolume and plotted them as a distribution.
Clearly, local melt fractions depend on p, so we calibrated our algorithm by
computing the local melt fraction distributions for various values of p (Fig. 4.8).
Values for p ranged from 1 (original fit to grain) to 4 (includes many grains). We
wanted an ellipsoid envelop that enclosed only melt adjacent to each grain, which

occurs for values of p =1 to 1.4.

4.2.6 Characterizing grain size distributions

The grain size distribution of each subvolume was determined by estimating
the equivalent diameter, which is defined as the diameter of a sphere having the
equivalent volume as the grain, of each grain. First, an opening filter having a “ball-
shaped” kernel was applied to the segmented grain label images. Second, a
morphological watershed algorithm was used to approximate the solid-solid

boundaries. The equivalent diameter was then measured for each grain.
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The morphological watershed transform is completely automatic; however,
there is a caveat: it sometimes incorrectly approximates grain boundaries. If grain
boundaries are mostly melt-free, the morphological watershed transform can count
multiple grains as a single grain. Aside from manually drawing grain boundaries, we

do not have a method to correct for erroneous grain boundaries.

4.3 Results
4.3.1 Visual inspection of melt distribution

A visual inspection of a clump of opx grains (Fig. 4.9) near the bottom of hzb-
14 (¢n = 0.20) qualitatively demonstrates lithological melt partitioning in a sample
composed of olivine, opx, and basaltic melt. Mineral clumping occurs in higher
frequency near the bottom of the sample where the melt fraction is much lower (¢ ~
0.04) than the top. As pointed out in the figure — and holds true across all samples —
olivine-rich regions are abundant sources of melt with respect to the opx-regions,
which are nearly melt free for low melt fraction.

The presence of a reduced melt fraction that spans several or more grains has
important implications for transport properties of the upper mantle. If present in the
upper mantle, melt rich — or olivine rich because of lithologic melt partitioning —
conduits may increase melt transport efficiency.

In our samples, olivine- and opx-rich regions are mixed more or less
homogeneously in the sample and do not extend through the entire sample. Therefore,
olivine-rich and opx-rich regions cannot conduct fluid flow in parallel. In the mantle,

however, the reactive-infiltration instability is thought to juxtapose olivine with

106



3 /r— -‘-;-f——_

b o o o o

Figure 4.9: Visual inspection of tomography slice that contains ~4 vol. % melt. Effects of lithologic
melt partitioning are clearly visible in the inset outlined in yellow: olivine-rich regions have consider-
ably more melt than opx rich regions.
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harzburgite (Kelemen et al., 1995a), which may allow the high melt fraction, high
permeability olivine-rich region to transport melt in parallel with the low melt
fraction, low permeability opx-rich region and increase the transport efficacy of the

mantle.

4.3.2 Local melt fraction distributions

Local melt fraction distributions were computed for each subvolume. Use of p
as a scaling factor for the ellipsoidal envelope assumes that the size of melt features
scales with grain size. The difference between the median local melt fraction for
olivine and opx are plotted as a function of growth parameter p (Fig. 4.10). As
expected, the local melt fraction tends to the total measured melt fraction of the
subvolume for very large values of p.

We report the minimum energy melt fraction for olivine and opx grains at
Poptimal » Which is the value of p that maximizes the difference between the median
local melt fractions. We can see from Fig. 4.10, that the maximum difference in the
median local melt fractions occurs between popiimal = 1.0 and 1.4. For values less than
Doptimal, VOXels associated with adjacent melt features are missed. For popiimal,
neighboring grains dilute the measured local melt fraction.

We quantify the degree of melt partitioning by a parameter R, which is the
median olivine local melt fraction divided by the median opx local melt fraction. We
find that for all subvolumes, R > 1. Therefore, there is a higher local melt fraction
associated with olivine grains than with opx grains. The difference between the

median olivine and opx local melt fraction appears to increase with increasing melt
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Figure 4.10: Median olivine and opx local melt fractions of each subvolume plotted as a function of
growth parameter p. Optimal p values (plotted as dashed lines) are those that maximize the difference
between olivine and opx median local melt fractions. We report the number of grains taken into
account and the melt partition ratio at the optimal value of p.
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fraction. Results are summarized in Table 4.2.

4.3.3 Grain size distributions

We compute equivalent diameter distributions for olivine and opx (Fig. 4.11).
Equivalent diameter data appear to follow lognormal distributions. Correspondingly,
we report the geometric mean and standard deviation as the mean grain size and
width of grain size distribution. As expected, subvolumes containing order of 1000
grains have narrower distributions. As noted in Miller et al. (2014), the automated
watershed transform that was used to separate 3-D grain data produces a more
accurate grain size distribution when the melt fraction is higher, since grain
boundaries are more easily distinguished if they are coated by melt. Melt-free triple
junctions and dry grain-grain boundaries occur with increasing frequency as the melt
fraction decreases.

In order to understand the kinetics of grain growth in our polymineralic
aggregate and to evaluate the efficiency of grain growth via chemical diffusion
through the interconnected melt network, we plot mean grain size of olivine and opx
as a function of melt fraction (Fig. 4.12). Though there is significant overlap of the
grain size distributions, the median opx grain size increases systematically with melt
fraction while the median olivine grain size is insensitive to changes in melt fraction.

Interestingly we do not see evidence of grain pinning in the olivine grain size data.

4.4 Discussion

4.4.1 Melt concentration due to lithologic melt partitioning
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Figure 4.11: Olivine (left) and opx (right) equivalent diameter distributions measured for each subvol-
ume. Mean and standard deviations are obtained by computing the geometric mean and (1o) standard
deviations. Number of grains used in statistics is also reported.
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Our results are strong evidence that spatial variations in mineralogy cause
lithologic melt partitioning in partially molten harzburgite. However, the length scale
over which spatial gradients in surface energy can segregate melt is not currently
constrained. If the effect of lithologic melt partitioning is short-range, i.e. can only
cause melt fraction heterogeneity in the immediate proximity of low-surface energy
grain surfaces, the permeability structure of the upper mantle should adhere closely to
the mineralogical structure of the geological formation. However, if the range of
lithologic melt partitioning reaches beyond the proximity of adjacent grains, it may
enhance the melt transport capabilities of the upper mantle.

The sharp contrast in melt fraction in close proximity to opx-rich regions
suggests that lithologic melt partitioning is short-range. However, in a closed system
with a finite melt fraction, conservation of mass necessitates that even a tiny
enhancement of the local melt fraction be compensated by a decrease in melt fraction

elsewhere in the sample.

4.4.2 Lithologic melt partitioning and transport properties

Lithologic melt partitioning has the potential to enhance the permeability of
partially molten harzburgite. For a monomineralic system, permeability depends only
on the spatial distribution of melt in the volume. The presence of a low wettability
mineral phase will perturb the otherwise uniform melt distribution, in which case the
effective permeability is some complicated mixing between the permeability of two
end-member mineralogies. Unfortunately, determining the actual mixing relation for

harzburgite effective permeability requires computing permeabilities of both partially

116



50 1 1 I

45

40

35 ¢ §

1

30

:

Equivalent Diameter, d [um]

—_
o
T
!

06 0.05 0.1 0.15 0.2

Melt Fraction, ¢
Figure 4.12: Equivalent diameter variation as a function of melt fraction. Blue and red
represent olivine and opx, respectively. Circles are the median equivalent diameters.
Bottom and top of boxes are the 25% and 75% quartiles, respectively.

117



molten pure olivine-basaltic melts and opx-basaltic melts for various melt fractions,
which we do not have. Nevertheless, percolation theory suggests the effective
permeability of a homogeneously mixed olivine-opx aggregate approaches the
geometric mean of the individual partially molten dunite and pyroxenite end-
members (Madden, 1976). However, if olivine and opx-rich regions are for some
reason organized into conduits, the two regions will conduct fluid flow in parallel,
and the olivine-rich regions will dominate fluid flow. Conversely, if olivine- and opx-
rich regions are overlaid as layers that are oriented perpendicular to the flow

direction, the lower permeability region will determine the effective permeability.

4.4.3 Geological implications for lithologic melt partitioning

There is no evidence that lithologic melt partitioning can create a
mineralogical heterogeneity; an initial mineralogical heterogeneity needs to be
present. The reaction infiltration instability (RII) is a good candidate for establishing
an initial mineralogical heterogeneity. The RII is a positive feedback processes in
which dissolution of opx in a harzburgitic mantle by a melt that is undersaturated with
respect to opx leads to an increase in melt flux that further promotes opx dissolution
(Daines and Kohlstedt, 1994; Kelemen et al., 1997, 1995a). Numerical modeling
using multiphase flow theory has shown that the RII is capable of forming high melt
fraction dunite conduits whose thicknesses range from tens to thousands of meters
(Aharonov et al., 1995; Kelemen et al., 1995a; Spiegelman et al., 2001). More
recently, the RII has been confirmed to produce high melt fraction dunite conduits in

laboratory experiments (Pec et al., 2015). If these dunite conduits are present in the
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upper mantle, they may constitute a thermodynamic gradient that further segregates
melt in the upper mantle.

Lithologic melt partitioning may help to stabilize the formation of high-melt
fraction conduits that form as a result of the RII. Spiegelman et al. (2001) suggests
that once the opx supply has been depleted, the melt fraction will continue to eat
away at the side of the conduits so as to replenish the melt fraction in the conduits lost
to buoyancy. This is an unstable process that causes opx dissolution to progress until
olivine is the sole mineral component of the upper mantle. However, field
observations of banded dunite-harzburgite formations in the Oman ophiolite
(Kelemen et al., 1995a) suggest that dunite conduits are persistent features of the
upper mantle if we assume a steady-state mid-ocean system. Therefore, an additional
mechanism is required to sustain high melt fraction in the dunite conduits. The
observed lithologic melt partitioning in our harzburgite samples may provide a
mechanism for driving melt into the dunite channels, replenishing the melt supply in

the high-melt fraction dunites.

4.4.4 Grain size and melt fraction

We attribute the increase in mean opx grain size with melt fraction (Fig. 4.12)
and the insensitivity of olivine to melt fraction to differences in wetting properties of
the mineral components. Chemical diffusion through an interconnected melt network
is a more efficient means of growing grains than grain boundary diffusion (Watson,
1999). If the dihedral angle associated with a phase boundary is greater than 60°, a

threshold melt fraction is required to maintain interconnectivity of the melt network;
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otherwise melt forms isolated pockets at grain corners. For this scenario, grain
boundary diffusion is the sole mode of transport for the material required to grow
grains. Conversely, for high melt fraction, melt forms an interconnected network in
the presence of both olivine and opx. As the melt fraction decreases, the melt network
begins to lose connectivity around opx grains, disconnecting them from their
chemical supply.

There is evidence of a tradeoff between melt-assisted diffusion and grain-
boundary diffusion in our samples (Fig. 4.12). Below the percolation threshold, opx
grains grow via grain-boundary diffusion. Olivine grains, however, which form a
dihedral angle of ~35° (Waff and Bulau, 1982) with basaltic melt, will maintain
contact with the melt network at all melt fractions. Therefore, olivine grain growth

should be relatively insensitive to melt fraction.

4.5 Conclusion

We used high-resolution X-ray p-CT to image the 3-D microstructure of
partially molten harzburgites that contain a range of melt fractions. A novel
methodology was applied to resolve the density contrast at olivine-basalt, opx-basalt,
and olivine-opx interfaces. We computed local melt fraction distributions for olivine
and opx grains by fitting ellipsoidal envelopes to each grain. We found that melt
partitions in about a 1.1 to 1.5 ratio between olivine and opx for total nominal melt
fractions 0.02 to 0.20, which we attribute to spatial variations in surface energy
associated with low surface energy density olivine interfaces and high surface energy

density opx interfaces. The measurable melt partitioning in harzburgitic systems
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warrants a microstructural evaluation of transport properties permeability and
electrical conductivity as well as numerical modeling of larger magmatic systems

composed of substantial proportions of olivine and opx.
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Chapter 5: Permeability and electrical conductivity of partially molten

harzburgite

Abstract

Modeling melt transport and correctly interpreting electromagnetic data of the
upper mantle beneath mid-ocean ridges require robust, microstructure-based
constraints on the constitutive equations that relate permeability and electrical
conductivity to melt fraction, respectively. Differences in the wetting properties of
minerals are thought to alter transport properties of partially molten mantle rock. The
presence of orthopyroxene, for example, is thought to decrease the connectivity of the
melt network if the local melt fraction dips below the melt fraction required for
maintaining an interconnected network. Since opx is a primary constituent of the
upper mantle, any relation between transport properties and melt fraction must
consider its effects.

We examined the effect of opx on the permeability and electrical conductivity
of partially molten rock aggregates composed of olivine, opx, and basaltic melt over a
range of nominal melt fractions (¢, = 0.02 to 0.20). Synthetic olivine-opx-melt
samples were prepared by isostatically hot-pressing powdered mixtures of oxides and
natural, high-alumina basalt at 1.5 GPa and 1350 °C for a minimum of one week.
Experimental charges were cored and imaged using synchrotron-based X-ray micro-
computed tomography. The resulting 3-D images constitute digital rock samples, on
which numerical laminar flow and direct current simulations were conducted.

Permeabilities and electrical conductivities of olivine-opx-melt samples were
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compared to those composed of pure olivine and basaltic melt at similar melt
fractions. We found that all olivine-opx-melt permeability data plot along the
permeability-melt fraction curve for olivine-melt if we compensate for intersample
variations in the mean grain size. Interestingly, we found that the bulk electrical

conductivity of harzburgite is systematically lower than that of dunite.

5.1 Introduction

The capacity of the upper mantle to transport melt at mid-ocean ridges and
conduct electricity largely depends on the interconnectivity of the grain-scale melt
network. For a dihedral angle less than 60°, melt forms an interconnected network at
any melt fraction; otherwise a threshold melt fraction is required to maintain melt
interconnectivity. Since olivine forms a dihedral angle of ~35° (Fig. 5.1) with basaltic
melt (Waff and Bulau, 1982), melt transport in the upper mantle, which is primarily
composed of olivine, is thought to be efficient. However, field observations suggest
the mantle composition is closer to a harzburgite, containing as much as 40 vol. %
orthopyroxene (opx), which forms a dihedral angle of ~75° with basaltic melt (Fig.
5.1) (Toramaru and Fujii, 1986). Therefore, if the threshold melt fraction needed for
melt interconnectivity is not maintained everywhere, opx-rich regions will contain
isolated melt, decreasing the permeability and electrical conductivity of the rock.

Though we know the permeability and electrical conductivity of mantle rock
is some complicated average that depends on the modal proportion and spatial
distribution of olivine and opx (Madden, 1976), the exact influence of opx on the

transport properties of mantle rock is difficult to constrain using conventional rock
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Figure 5.1: Comparison of olivine-olivine-olivine, opx-opx-opx, olivine-olivine-opx, and opx-opx-ol-
ivine triple junctions. Modified from Zhu and Hirth (2003). 6 represents the effective dihedral angle
of the triple junction. Melt in pure olivine aggregate will always form an interconnected network. Melt
in pure opx aggregate will form isolated melt pockets unless a threshold melt fraction is attained. The
presence of opx increases the effective dihedral angle of the triple junction.
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physics experiments. Microscopy analysis of partially molten rocks composed of
olivine, opx, and basaltic melt offer useful information regarding the connectivity of
melt in polymineralic system. For example, Toramaru and Fujii (1986) analyzed the
dihedral angle distributions of synthetic olivine-opx-melt samples. They found that
the number of isolated melt pockets and melt-free triple junctions increases with
increasing opx proportion. They attributed their result to the to the tendency for melt
to form isolated melt pockets when adjacent to high surface energy density phase
boundaries (e.g. opx-melt interfaces). Isolated melt pockets do not facilitate melt
transport and contribute only minorly to electrical conductivity of the aggregate.

The influence of high dihedral angle associated with opx-bearing triple
junctions on permeability was assessed using network permeability models (Zhu and
Hirth, 2003). Assuming melt formed an interconnected network only along triple
junctions, Zhu and Hirth (2003) computed permeabilities for three-phase systems
containing various proportions of olivine, opx, and interstitial basaltic melt. Despite
the ability of opx to reduce melt interconnectivity, they found that a system composed
of 40 vol. % (proportion of opx volume to grain volume) only reduced permeability
by a factor of ~2 relative to an olivine-melt system at melt fraction of 0.01. As the
number of wetted triple junctions required to maintain an interconnected network
approached the percolation threshold (39% triple junctions are wetted) permeability
drops off rapidly with melt fraction: at melt fraction 0.01, 60 vol. % opx results in
over four orders of magnitude reduction in permeability. Network models by Zhu and
Hirth (2003) provide strong motivation to examine synthetic systems composed of

olivine, opx, and basaltic melt.
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An additional influence of opx on the grain-scale distribution of melt — and
potentially the transport properties — is the tendency of melt to localize around low-
energy interfaces. This phenomenon known as lithologic melt partitioning (Jurewicz
and Watson, 1985; Watson, 1999), has been verified in variety analogue systems (e.g.
quartz-clinopyroxene, calcite-fluorite, and quartz-fluorite) (Watson, 1999) and
recently in Chapter 4 of this manuscript for partially molten rocks composed of
olivine and opx. Since transport properties depend on melt fraction, lithologic melt
partitioning may affect the permeability and electrical conductivity on an aggregate
scale, and if coupled with an additional mechanism that forms mineralogical
heterogeneity larger than the grain-scale, lithologic melt partitioning may drastically
modify the efficiency of melt transport in the mantle.

As a first step to understanding how mineralogical heterogeneity affects melt
transport in the upper mantle, we seek to quantify the grain-scale permeability and
electrical conductivity of partially molten harzburgite as a function of melt fraction.
Since permeability and electrical conductivity are technically challenging to measure
experimentally, we adopt a digital rock physics approach. We synthesize partially
molten harzburgites that have various proportions of basalt and a constant olivine to
opx volume ratio. High-resolution, three-dimensional images were taken using
synchrotron-based micro-computed tomography. Virtual fluid flow and direct current
experiments were conducted using the melt geometries to compute permeability and
electrical conductivity. Permeabilities and electrical conductivities of partially molten
harzburgite samples were compared to those computed for olivine (Chapter 2 and 3 of

this manuscript).
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5.2 Methods
5.2.1 Sample preparation of harzburgite samples

Harzburgite samples were prepared by hot, isostatic pressing of oxide-basalt
mixtures in piston-cylinder apparatuses at 1350 °C and 1.5 GPa. The composition of
the primary oxide mixture was based on the chemical composition of a natural
Southwest Indian Ridge harzburgite (Dick, 1989) and adjusted for each melt fraction
so that we achieved a nominally constant 3 to 2 (olivine to opx) volumetric ratio and
melt fraction 0.02, 0.05, 0.10 and 0.20 after sintering. Details of the sample
preparation procedure are discussed in Section 4.2.1. The oxide mixture was
homogenized over ethanol by six six-hour homogenization cycles in an automatic
agate mortar and pestle. Pulverized natural basalt was added in various proportions to
the oxide mixture to attain total nominal melt fractions of 0.02, 0.05, 0.10, and 0.20
under run conditions. Each oxide-basalt mixture was homogenization using the same
procedure as the primary oxide mixture.

Upon completion of the experimental runs, experimental charges were
quenched by turning off the power while maintaining a steady flow of cold water
around the pressure vessel. 1| mm cylindrical cores were drilled from each sample

along the cylindrical sample axis.

5.2.2 Imaging procedure

Following Zhu et al. (2011), cylindrical harzburgite samples were imaged

using a 24.4 keV synchrotron light source at 2BM of the Advanced Photon Source,
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Argonne National Laboratory, Argonne, IL. Image reconstruction was performed
using the software package Tomopy (Giirsoy et al., 2014). Refer to Section 4.2.2 for a

detailed description of the imaging procedure.

5.2.3 Subvolume Selection

Several smaller, computationally manageable data subsets, which we call
“subvolumes,” were cropped from each reconstructed digital sample. Subvolume
sizes and locations were selected so as to avoid long-wavelength variations in the
measured melt fraction and decompression fractures. Wherever possible, we sought
subvolume sizes as large as we could computationally handle (500x500x500 voxels®
for permeability computations and 400x400x400 voxel’ for electrical conductivity
computations). If decompression fractures or the vertical melt anomaly prevented us
from selecting such a larger subvolume, we opted for a smaller subvolume; though

even the smallest subvolume contains greater than 300 grains.

5.2.4 Image segmentation

Avizo® was used to perform image segmentation. In order to characterize the
melt distribution and transport properties, each grayscale subvolume needed to be
converted to a label image, where each grayscale voxel was assigned a value of 1, 2,
or 3 for basaltic glass, olivine, or opx, respectively. We developed a semi-automatic
segmentation workflow that we applied to all subvolumes. First, melt was segmented
using a combination of Avizo’s local thresholding module and tophat global threshold

(Vincent, 1993). Thin decompression fractures were manually removed from the

128



2

Figure 5.2: Subvolume selection for harzburgite suite. (A) Reconstructed tomography slice from
harzburgite sample containing ~ 5 vol. % basaltic glass (quenched melt). Clearly visible is olivine (light
granular phase), opx (dark granular phase), and basaltic glass (dark, interstitial phase). Linear features
are decompression fractures. White streaks are image artifacts from the reconstruction algorithm. Boxes
outlined by red denote locations were subvolumes were cropped. (B) 3-D visualization of harzburgite
subvolume.
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image by overlapping the trial segmentation with a morphological erosion and
dilation of the image, applied sequentially using a 2x2x2 voxel’ ball-shaped kernel.
Subtle contrast and bright imaging artifacts at the grain edges prevented us
from applying the same local threshold technique to differentiate the opx from the
olivine. We used Avizo’s morphological watershed transformation (Beucher and
Meyer, 1992) to separate grains and then handpicked opx grains from the aggregate.
Grains that were incorrectly separated were corrected using a propagating contour
tool. Once all of the opx grains were differentiated from olivine, the watershed basins
were removed by simultaneously dilating the olivine and opx grain images. The
resulting image was smoothed using an isotropic Gaussian kernel to remove the
jaggedness imposed by the morphological watershed transform. The segmented melt
image was superposed on the olivine-opx label image. The result was a very accurate
segmentation of the melt and a slightly less accurate approximation of the olivine-opx

grain boundaries.

5.2.5 Computation of permeability and electrical conductivity

Permeabilities of our partially molten harzburgite subvolumes were obtained
using Avizo’s XLab Hydro Absolute Permeability Experiment Simulation module,
which mimics an actual permeability measurement. The melt geometry was
discretized according to the original voxel spacing (1 voxel = 0.7 pm). Velocity and
pressure fields were obtained by solving the Stokes Equations using the artificial
compressibility method (Chorin, 1967) on a staggered finite-volume grid. Refer to

Section 2.3.5 for a detailed description of the numerical model.
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Permeability was obtained by applying Darcy’s Law to the model output. The
volume-averaged velocity field was used in place of the so-called Darcy velocity
(Whitaker, 1998). Permeability is a function of only the melt geometry; external
quantities, such as the imposed pressure gradient and viscosity, are divided out in the
volume-average step and do not bear on permeability.

Bulk electrical conductivities of each subvolume were computed using Finite-
Difference Electrical Conductivity Calculator (FDECC), which is a Matlab-based
direct current experiment simulator that we built in-house. FDECC is based on the
finite-difference formulation derived by Garboczi (1998). FDECC discretized the
subvolume label image according to the original voxel spacing. Electrical
conductivities were assigned to each voxel. We obtained the electrical potential scalar
field by solving the current continuity equation (Laplace Equation) using the implicit
finite-difference method. The volume-averaged current density was computed from
the electric potential field. The bulk electrical conductivity of the label image was
obtained by applying Ohm’s Law to the model output. Refer to Section 3.2.4 for

details about the direct current simulation.

5.2.6 Characterizing grain size distributions

In addition to melt fraction and melt interconnectivity, permeability depends
on the grain size. Our subvolumes exhibit a significant variation in their mean grain
sizes. In order to fairly evaluate the dependence of permeability on measured melt
fraction, we divided each permeability value by the square of the geometric mean

grain size measured for each subvolume.
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Grain sizes distributions of each subvolume were determined by measuring
the equivalent diameter, which is the diameter of a sphere having the equivalent
volume as the grain. First, a generous opening filter having a “ball-shaped” kernel
was applied to the segmented grain label images. Second, a morphological watershed
algorithm was used to approximate the grain-grain boundaries. The equivalent
diameter was measured for each grain.

The morphological watershed transform is completely automatic, so it is very
useful for analyzing a large number of grains. However, there is a caveat: the
morphological watershed transform often incorrectly approximates grain boundaries.
If grain boundaries were mostly melt-free, the morphological watershed transform

sometimes counted multiple grains as one grain.

5.3 Results
5.3.1 Statement about uncertainty

Melt fraction error bars in Fig. 5.3 and 5.4 do not reflect random, Gaussian
error. Instead, the left and right end of each error bar is the measured melt fraction
after a 1-pixel contraction and dilation of the 3-D melt geometry, respectively.
Therefore, a meaningful comparison of the olivine-melt and olivine-opx-melt
permeability and electrical conductivity datasets must be conducted on their
corresponding minimum and maximum melt fractions. This method of using
morphological contraction / dilation to define minimum and maximum error bars for
measured phase proportions is rather crude, since it likely overestimates the effect

blurring due to instrument error and discretization of the sample geometry; however
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to our knowledge, it is the only method available. In principle, the true error can be
derived from the point-spread function, would require a ground-truth with a higher
resolution 3-D imaging technique.

Since uncertainty in melt fraction is defined by a morphological contraction
and dilation of the melt image, a small error in melt fraction requires grains to have a
large volume to surface area ratio. Olivine-opx-melt subvolumes have a smaller
average grain size than olivine-melt subvolumes and a correspondingly lower volume
to surface area ratio. Therefore, uncertainty on melt fraction measurements is higher

for olivine-opx-melt subvolumes than for olivine-melt subvolumes.

5.3.2 Permeability

Fluid flow simulations were conducted along the z (vertical) axis of each
subvolume. Fig. 5.3 gives the calculated permeabilities of olivine-opx-melt
subvolumes as a function of measured melt fraction for each subvolume. Melt
fractions were measured for each subvolume by voxel counting. Upper and lower
bounds for the uncertainty in the measured melt fraction were computed by applying
a 1-voxel dilation and contraction, respectively, to the melt label image (Fusseis et al.,
2012). Permeability values were divided by the average grain size squared in order
to remove the effect of inter-subvolume grain size variability from permeability. We
performed a linear fit to the log;o transform of our data using the total least squares
algorithm (York et al., 2004) and plotted it as a solid black line in Fig. 5.3. Before the
fit, we applied an ad hoc shift to the measured melt fraction data to compensate for

the asymmetric error bars. Partially molten olivine-melt permeability data (Miller et
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Figure 5.3: Comparison of olivine-melt and olivine-opx-melt subvolume permeabilities. (A) Permea-
bility normalized to the mean equivalent grain diameter plotted as a function of measured melt fraction
in each subvolume. Blue data points denote olivine-melt subvolumes and red data points denote
olivine-opx-melt subvolumes. Thin, solid black lines represent melt fraction measured for the contract-
ed and dilated melt images. Dotted line represents a fit to the olivine-melt data. Insert is a snapshot of
the velocity streamlines, which highlights the efficiency of fluid flow in some conduits (so-called
“critical paths”) and inefficiency of fluid flow in others. (B) Proportion of measured olivine to opx
measured in olivine-opx-melt subvolumes is plotted as a function of measured melt fraction in order to
highlight the discrepancy between the nominal and measured solid phase proportions.
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al., 2014) are plotted in Fig. 5.3 for comparison. After normalizing the permeabilities
by the mean grain size measured in each subvolume, olivine-opx-melt data plot on the
same permeability-melt fraction trend as olivine-melt data, so we conclude the
presence of opx does not appear to affect the permeability-melt fraction curve over

the melt fractions tested.

5.3.3 Electrical conductivity

Direct current simulations were conducted along the z (vertical) axis of each
subvolume. Fig. 5.4 shows the computed bulk electrical conductivities of each
subvolume plotted as a function of measured melt fraction. For all direct current
simulations, the electrical conductivities of melt and granular phases is assumed to be
7.53 S/m (ten Grotenhuis et al., 2005) and 0.009 S/m (Presnall et al., 1972; Yoshino
et al., 2010), respectively. We assumed olivine and opx electrical conductivities are
the same. Bulk electrical conductivities of olivine-opx-melt subvolumes were
compared to those from partially molten olivine-melt (see Chapter 3 for more details).

Archie relations, which are power laws,

T = AT e Prmcausrea )
were fitted to olivine-melt and olivine-opx-melt subvolume data. In Eqn. (1), opux is
the bulk electrical conductivity, omeic is the melt electrical conductivity. 4 and m are
power law parameters that depend on the spatial distribution of melt. We found that
error bounds associated with olivine-opx-melt and the olivine-melt permeabilities
overlap but are systematically lower than the dunite bulk electrical conductivities for

the same measured melt fraction.
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Figure 5.4: Comparison of olivine-melt and olivine-opx-melt subvolume bulk electrical conductivities.
(A) Bulk electrical conductivity plotted as a function of measured melt fraction in each subvolume.
Blue data points denote olivine-melt subvolumes. Red data points denote olivine-opx-melt subvol-
umes. Thin, solid, black lines represent estimates of minimum and maximum melt fraction measured
for the contracted and dilated melt images, respectively. Dotted lines represent a fits to the olivine-melt
(blue) and olivine-opx-melt (red) data. Insert is a snapshot of the electric field streamlines, which
highlights the diffusive flow of electricity and the lack of critical paths. (B) Proportion of measured
olivine to opx measured in olivine-opx-melt subvolumes is plotted as a function of measured melt
fraction in order to highlight the discrepancy between the nominal and measured solid phase propor-
tions.
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5.4 Discussion
5.4.1 Influence of opx on permeability

At 3 to 2 olivine to opx ratio, the network permeability models by Zhu and
Hirth (2003) suggest there is only a slight reduction in the permeability of olivine-
opx-melt subvolumes with respect to olivine-melt subvolumes for all melt fractions.
At ¢ = 0.01, for example, there is only a ~50% reduction in permeability. Though
triple junctions along opx grains are less effective conductors of melt flow than those
along olivine grains, especially at low melt fraction, the relative insensitivity of
permeability to opx (Fig. 5.3A) reflects the tendency for flow to form so-called
“critical pathways” (David, 1993; Martys and Garboczi, 1992) in the presence of
olivine through which the majority of melt mass is transported. We show evidence for
critical pathways in the olivine-melt system in Chapter 2. As opx content increases,
the frequency of effective triple junctions decreases. Melt flow reconfigures in
response, taking advantage of the remaining viable triple junctions. As a result,
permeability decreases only slightly due to the more tortuous pathway (Fig. 5.5A)
that it must take to traverse the melt network.

Though we do not see a significant change in permeability from olivine-melt
to olivine-opx-melt sample suites, we acknowledge the fact that there is a high degree
of variability in the measured olivine to opx volumetric proportions (Fig. 5.3B).
Subvolumes that contained smaller melt fraction also have smaller proportions of
opx. There are several mechanisms that may account for the correlation between melt
and opx proportions, e.g. effects of wetting properties or temperature gradient.

Nevertheless, Fig. 5.3B shows us that the threshold opx fraction required to influence

138



"SUOTJB[NUIIS JUSLINO JOIIP WOIJ PAUTLIqO SPIOT) ANSUIP JuLINDd woy poyndwod
0IOM SON[BA "UOIIOBIJ [ PAINSEIW JO uonounj e se papord A1sonio) opod[y (g) "SUONe[NUIS MO[} Jeurue] WoIJ paureiqo sp[ol sanIoo[eA wolj paynduoo
9IoM SONJBA "UOIORIJ J[OW PAINSeaw Jo uonounj e se payord Asomio) orneipAH (V) "SO1ISOn}io} 3ow-xdo-ouiAl[o pue J[ow-ouIAljo uosiedwo)) 'S 31,1

. . 0 ‘uonoey Yo\ . . ¢ ‘uonoeuy o
N.N—'NO T w—-_ O T .v—._ o T —-_o T mﬁwo T No_O NN.O T w—._.o T .V—'_.o T F._O T wo_.o T No_.o N._v
eif D Og O 1T 1€+
(<]

s ° 1T ° 7't
ool %o @ 1 1 (o] &P 19+ o
5 S, o °© o 3
7] | 1 1L (o) (o] lo-1 ©
.m 9L .o @ 9 _.‘nrNb..
o
= 2h (0] J | 1271 =

8L} ® 1t o 18°1

6 ® ° 14 ® v 16t

Jjow—xdo-sunjo @ m yow-xdo-suino @ )
Jew-aumnio Q Jew-sumjo Q (o)
I . . ! . . . . T I T ! . . . . . . 2

z _ _

139



permeability may not have been attained by the lower melt fraction samples. Network
permeability models suggest that at least a 3 to 2 olivine to opx ratio is necessary to
reduce permeability. Therefore, in order to conclusively determine the effect of opx
on permeability in olivine-opx-melt composite systems, subvolumes having at least 3

to 2 olivine to opx volume ratio and low melt fraction (¢ < 0.02) must be examined.

5.4.2 Implications for trace element partitioning in xenoliths

Mineralogical effects on the permeability of mantle rocks may have important
implications for interpreting trace element partitioning in peridotite xenoliths. The
diffusivity of Li in partially molten mantle rocks is two to three orders of magnitude
larger than other trace elements (Richter et al., 2003), making Li a sensitive indicator
of melt-rock interactions in the mantle. Studies (e.g. Frey and Green, 1974; Rudnick
and Ionov, 2007) observe strong Li disequilibria — both elemental and isotopic —
between peridotite xenoliths and the “normal” mantle, which is consistent with an
event of mantle metasomatism, i.e. grain-boundary infiltration of a Li-rich melt or
fluid (Rudnick and Ionov, 2007). Despite preferential diffusion of Li into
clinopyroxene (cpx) over olivine, as evidenced by measured olivine-cpx partitioning

coefficients ("D =

0.2 to 1.0), refractory harzburgite xenoliths exhibit higher
overall enrichment of Li compared to fertile lherzolite xenoliths (Rudnick and Ionov,
2007). One interpretation of this result invokes the wetting properties of peridotite
mineral components: if the permeability of olivine-rich (pyroxene-poor) peridotite is

higher than olivine-poor peridotite (pyroxene-rich), harzburgite xenoliths will

experience higher flux of Li-rich melt than lherzolite xenoliths and thus, higher Li
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concentrations. The possibility of using Li as an indicator of permeability is strong
motivation for more accurately constraining the permeability of mantle rock at low

melt fraction and higher pyroxene content.

5.4.3 Influence of opx on electrical conductivity

Though the permeability-melt fraction relation appears to be unaffected by the
presence of opx, the bulk electrical conductivities of olivine-opx-melt geometries are
noticeably lower than those of olivine-melt geometries at similar melt fraction (Fig.
5.4A). Contrary to melt percolation, which forms critical pathways due to the high
sensitivity of melt flux to the hydraulic radius, electricity conducts more diffusively
through the partially molten geometry, increasing the number of viable electrical
pathways relative to fluid pathways. Though there are more conduits available for
electrical conduction, these “added” pathways are less effective conductors, due to
their low hydraulic radius, resulting in reduction of bulk electrical conductivity.

Though there is systematic offset in bulk electrical conductivity between the
olivine-melt and olivine-opx-melt suites, we acknowledge there large uncertainties
associated with measuring melt fraction from tomographic image data. To better
constrain the impact of opx on transport properties beyond what is done in this study,
either a better method of characterizing uncertainty associated with measuring phase

proportions or a higher-resolution 3-D imaging technique is needed.

5.5 Conclusion

We demonstrated the effect of opx, a low wettability mineral phase that is
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common in the upper mantle, on the permeability and electrical conductivity of
partially molten mantle rock by conducting numerical simulations of fluid flow and
direct current using real rock microstructures. Harzburgite rock samples containing
nominal melt fractions of 0.02 to 0.20 and 3 to 2 olivine to opx ratio were synthesized
at mantle pressure-temperature conditions. Samples were imaged using X-ray u-CT
and converted to label images to be used as input for numerical computations of
permeability and electrical conductivity. We compared transport properties of olivine-
opx-melt and olivine-melt aggregates. For the melt fractions examined, we found that
harzburgite permeabilities did not deviate from the dunite permeability-melt fraction
curve. However, we found that olivine-opx-melt electrical conductivity is lower than
olivine electrical conductivity for the same melt fraction, which we interpret by
invoking critical pathways for fluid flow. Our data represent the first systematic study
that relates macroscopic transport properties of partially molten mantle rocks

containing more than one mineral phase to rock microstructure.
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Chapter 6: Summary and future work

6.1 Summary of results and conclusions

This dissertation work represents a significant achievement in the linking of
macroscopic material properties of partially molten mantle rock to microstructural
characteristics. Previous attempts to characterize permeability of partially molten
mantle rocks, for the most part, rely on 2-D images of partially molten rocks to infer
permeability, which is intrinsic to the 3-D melt microstructure and are therefore
inadequate. However, recent advances in X-ray imaging technology allow us to
capture, in high-resolution, the 3-D microstructure of partially molten rocks. These
images constitute digital rock samples on which any number of non-destructive
virtual rock physics experiments can be conducted. These so-called digital rock
physics (DRP) simulations are fast, accurate, and repeatable (Andri et al., 2013) and
enable the user to straightforwardly conduct rock physics experiments without having
to devise elaborate experimental systems.

Over the course of this project, we developed a number of tools for
automatically quantifying the microstructure and transport properties of our digital
samples. For example, we were able to quantify, by skeletonizing our melt geometry,
the interconnectivity of melt network as a function of melt fraction and sintering
duration. Though it is not discussed in this document, skeletonized melt networks can
also be used in network models to compute permeability and electrical conductivity.
An automatic grain separation algorithm allowed us to characterize the grain size

distributions of our samples without having to infer a 3-D grain-shape; though there
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were some approximations made about the location of grain-grain boundaries.
Furthermore, we are able to use the 3-D geometry as direct input to numerical models
to compute permeability and electrical conductivity as a function of melt fraction.

Using a combination of experimental petrology, conventional rock physics,
advanced imaging, and numerical modeling, we were able to formulate meaningful
empirical permeability-melt fraction and electrical conductivity-melt fraction
relations. Our permeability-melt fraction relation confirms the rate at which melt
separates from residue, a critical parameter in multiphase flow models of melt
transport at mid-ocean ridges. A simple 1-D model, suggests that, with the new
permeability-melt fraction relation, estimates of melt fraction in the upper mantle
inferred from U-series geochemistry are more or less consistent with those inferred
from geophysical datasets. The electrical conductivity-melt fraction relation we
presented will be used in future studies to guide better interpretation of
electromagnetic data. A side-by-side comparison of fluid flow and direct current on
the same melt geometries determined that fluid and electricity have different
sensitivities to the pathways available to flow. We argued, based on first principles,
that, aside from an empirical similarity, there is no evidence that a rigorous link
between permeability and electrical conductivity exists.

Our DRP approach allowed us to test the influence of opx, a low wettability
mineral that is common in the upper mantle, on transport properties of partially
molten mantle rock. Before this study, the only evidence opx affected transport
properties came from synthetic datasets (Zhu and Hirth, 2003) and 2-D microscopy

analysis of synthetic samples composed of olivine and basalt. Using the tools
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described in this thesis, we confirmed that spatial variations in the surface energy
distribution, related to the presence of opx, caused lithologic melt partitioning.
Lithologic melt partitioning did not appear to alter the permeability of our samples
over the melt fractions tested. However, if combined with another mechanism that
creates a parallel mineralogical structure, such as the reaction infiltration instability,
lithologic melt partitioning may increase the efficiency of melt transport in the upper

mantle.

6.2 Future research directions

We have just scratched the surface in what we can do with DRP. Potential
future directions include experiments with deformed samples, eigenfrequency
analysis of electrical conductivity, and evaluation of seismic properties of partially
molten rocks.

The upper mantle is a dynamic system (Turcotte and Schubert, 2014).
Experiments and models suggest that there is a coupling between shear deformation
and porous flow that give rise to high-melt fraction bands (Daines and Kohlstedt,
1997; Holtzman and Kohlstedt, 2007; Holtzman et al., 2003; King et al., 2011a; King
et al., 2011b; Qi et al., 2014; Zimmerman et al., 1999). These bands may play an
important role in melt transport and melt focusing at mid-ocean ridges. In order for
permeabilities derived from synthetic partially molten rocks to be directly applicable
to the upper mantle, sheared samples must be considered.

Experimental determination of electrical conductivity through impedance

spectroscopy is technically challenging because there may be different conduction
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mechanism, e.g. conduction through the sample, conduction through the pressure
vessel, conduction through some surface layer, that operate at the same frequency
spectrum (Nover, 2005; Yoshino, 2010). A numerical impedance spectroscopy
analysis of our images can be used to deconvolute those various processes and help to
interpret experimental results. Specifically, a comparison between numerical and
experimental impedance spectroscopy can be used to test the hypothesis that there is
surface conduction through an electrical double layer at the grain-melt interface that
contributes to the bulk conductivity of the aggregate. However, the fairest comparison
between experiments and digital rock physics simulations would involve imaging the
samples that were used in actual impedance spectroscopy experiments.

It would be of tremendous value to the seismology community studying
seismic wave propagation at mid-ocean ridges or subduction zones to use DRP
techniques to constrain the bulk modulus of partially molten rock as a function of
melt fraction. As a first approach, static loading models conducted on the 3-D melt
geometries to reduce the error of 2-D models (e.g. Hammond and Humphreys, 2000).
Though software needs to be developed to handle many degrees of freedom
associated with static loading models on large subvolumes. Eventually, wave-
propagation codes, similar to Saenger and Bohlen (2004), can be used to determine
frequency dependence of partially molten mantle rock; though significant advances
need to be made in the modeling of grain boundary slide as a mechanism for energy

dissipation.
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Appendix A: Supplementary information for microstructure and permeability

quantification

A.1 Removing noise using anisotropic diffusion filtering

We used an edge-preserving smoothing filter to remove noise from our
tomography data. This particular algorithm is an implementation of anisotropic
diffusion (Weickert et al., 1998) and is provided as part of the Avizo image filter
library. Anisotropic diffusion is a class of smoothing filters that reduces noise by
numerically solving the three-dimensional diffusion equation,

alg);,t) _ V-[D(WI(X’ t)|2) VI(X,t)}

where [ is the position (x) and time (#) dependent scalar field representing the
grayscale pixel intensity and D is the diffusivity tensor, which is a function of the
local intensity gradient squared. Stepping in time, each image is given as a
convolution of the previous image and a diffusivity kernel.

For a constant diffusivity, Eqn. (A1) is linear, and the problem is equivalent to
a Gaussian blur. Linear diffusion filters are effective at removing random noise from
the tomography data; however, diffusion occurs without any a priori information
about the image, often costing edge resolution. In our samples, where the phase
contrast is low, edges are often the only distinguishing feature in the data. Therefore,
it is vital that we preserve fine details in the tomography images, such as phase
boundaries.

We employ an anisotropic diffusion filter (Fig. A.1). Anisotropic diffusion

uses information about the local grayscale intensity gradient, which is known a priori,
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Figure Al: Removing noise from 200x200%200 um? scoba-5 (melt fraction = 0.20) subvolume by
implementing an anisotropic diffusion filter. A) Original (noisy) image. B) Filtered (denoised) image.
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from 0 to 125 in A) (solid curve) and B) (dashed curve). Parameters for anisotropic diffusion were 25s
for the total diffusion time, 1s for the time interval, and 65 for the diffusion threshold.
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to prevent diffusion across edges. This is accomplished by defining a threshold value
¢ in the formulation of an anisotropic diffusivity kernel that limits diffusion between
pixels whose intensities differ by /c. Correctly calibrating /¢ ensures that diffusion
does not occur over edges, leaving well-defined phase boundaries.

Other parameters of the anisotropic diffusion filter include the total diffusion
time and time step. As a general rule, the shorter the time step, the more accurately
the diffusion equation is solved. However, shortening the time step necessitates a
longer computation and may cause issues of solver stability. For our purposes, a total
diffusion time of 25s and time step of Is yields good results within an acceptable
timeframe. Regarding the threshold, values of /¢ typically range between 35 and 75
when range of grayscale values over the whole image is -500 to 500.

Fig. A.1 illustrates one application of the anisotropic diffusion filter to a
200x200x200pm’ subvolume. The application of anisotropic diffusion results in a
smoother, less noisy image than the original that is largely free of artifacts, such as
streaks. The resulting image is also better conditioned for global thresholding than the

original image.

A.2 Segmenting using watershed transformation

The Avizo® watershed transformation algorithm was implemented for
segmenting data with small phase contrast. We start with a grayscale image processed
by the anisotropic diffusion filter described above (Fig. A.2A) and compute the
gradient magnitude of pixel intensity. Due to the edge-enhanced imaging technique,

the highest gradients in our olivine-basalt samples occur at grain edges (Fig. A.2B). A
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global threshold was then applied to the gradient magnitude image to record the
positions of pixels located within the phase transition regions. This is called the
gradient mask (Fig A.2C). Next, an initial inundation is marked using a global
threshold where phases are unambiguously defined (Fig. A.2D). The watershed
transform is then applied. Flooding begins from the initial inundation and continues
until meeting the gradient mask (Fig. A.2E). The gradient mask acts as an
impermeable barrier through which different flooding regions cannot spill into one
another. The watershed transformation is analogous to flooding drainage basins in
natural watershed systems, hence the name of the algorithm. The labeled basins were
then dilated to fill the defined gradient mask (Fig. A.2F). Once segmented, a 3-D
opening filter was applied to the binary data, which removed small details at
boundaries and opened passages separated by only two pixels (Fig. A.2G). Some
small manual adjustments (e.g. hole filling) were often needed to produce accurate
segmentations. The final result after the watershed transformation is a high-quality,
binary image where phase boundaries are defined exactly at grayscale inflections

(Fig. A.2H).

A.3 Determining the size of the representative volume element

Because of heterogeneity in melt distribution, permeability may depend on the
size of the subvolume. In order to determine the minimum subvolume size that
represents a statistically significant portion of the sample, we computed the
permeability of several subvolumes cropped from scoba-12 (¢, = 0.05) ranging in size

from 140x140x140 um’ to 350x350x350 pm’. The APES module was used for
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Figure A3: (A) Cross-section of scoba-12 (melt fraction is 0.05) as seen in the reconstructed tomography data
taken perpendicular to the long axis of the cylindrical sample. Permeability was calculated for several subvolumes
of various sizes (colored circles) and plotted against subvolume volume in order to determine the minimum
subvolume size that is adequately representative of the whole sample. Also plotted are the average permeabilities
pertaining to each size category of subvolumes (black, unfilled circles). Bars represent the 1o standard deviation
and are present to visualize the spread in the data. Boxes in the grayscale image represent cubic sample regions
where permeability computations were performed. The color of the box is indicative of its size, e.g.
blue--350x350x350 um?, red--280%280x280 pm?, yellow--210x210x210 um?, and green--140x140x140 pm?.
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permeability computations (Fig. A.3A). We plot their permeability as a function of
subvolume volume (Fig. A.3). Permeability values of different subvolumes of similar
size are consistent within a factor of 4. The average permeability of each subvolume
group and the standard deviation (lo) are reported in Fig. A.3. Compared to the
spread in permeability values, which are a result of region-to-region variation, the
size of the simulation domain has little effect on simulation results (Table A.1). Based
on these results, we consider the permeability calculations performed in this study to
be representative of the bulk sample from which they were cropped. To guarantee that
our results are representative of the sample, we only report in the main text

permeability calculated on the largest possible subvolume size (350x350x350 pm?).

A.4 Cleaning the skeletonized melt network

Much like segmentation, there are artifacts that arise from the thinning
algorithm during the skeletonization of the melt network. Some of these artifacts
include clusters of nodes and short channels where there should be a single junction.
These artifacts typically occur at large melt pools or at wetted grain boundaries. In
histograms of connectivity, these artifacts manifest as anomalously high numbers of
the coordination number 3 nodes, where coordination number refers to the number of
edge connections possessed by a node.

A Matlab® script, called ScobaCleaner.m, was written for automatically
removing artifacts in the skeleton network. Four types of artifacts exist. They are

denoted loops, sublinks, twins, and short-links (Table A2). Inevitably, there will be
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some short-links that should not be merged, sometimes resulting in the formation of a

artificial high-connectivity junction (Zhu et al., 2011).

A.5 Time series experiment

In order to evaluate the time necessary to achieve textural equilibrium, we
created a time series of charges. The nominal melt fraction is 0.05 for those charges,
and the sintering durations are 42 hours (scoba-13), 84 hours (scoba-14), 168 hours
(scoba-12), and 336 hours (scoba-15), respectively. A low nominal melt fraction was
chosen for the time series experiments because low melt fraction samples take longer
to equilibrate than higher melt fraction ones (Cmiral et al., 1998), which gives us a
maximum estimate for the time required for our samples to reach textural
equilibrium. A melt faction 0.05 is best choice given the current resolution limitation
of u-CT.

Equivalent diameter distributions (EDD) were computed for 350x350%350
urn3 subvolumes from scoba-13-500-2, scoba-14-500-1, scoba-12-500-1, and scoba-
15-500-1 (Fig. A.4). The EDD’s of scoba-13-500-2 and scoba-14-500-1 (Figs. A.4A
and A.4B), which are shorter duration experiments, differ substantially from scoba-
12-500-1 and scoba-15-500-1. The longer duration charges scoba-12 and scoba-15
have nearly identical EDDs (Figs A.4C and A.4D), suggesting that grain size
evolution has reached an essentially steady state. The similarity between the two
longer duration experiments suggests that textural equilibrium (Wark and Watson,
1998) is reached approximately some time between 84 and 168 hours for olivine-

basalt aggregates with a nominal melt fraction of 0.05. The similarity between the
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mean equivalent diameters suggests that grain growth was probably very slow after
42 hours.

Coordination number distributions (CND) were also computed for
350x350%350 um3 subvolumes from scoba-13-500-2, scoba-14-500-1, scoba-12-500-
1 and scoba-15-500-1 (Fig. A.5). Comparison of the CNDs of these samples reveals
that the number of dead-end nodes with coordination number of 1 decrease with
increasing sintering time. Nodes with coordination number of 3 are mostly associated
with regions where melt pooling or grain boundary wetting is occurring. We observe
an inversion between the frequency coordination number 3 and 4 nodes, indicating a
migration of the melt from grain boundaries to tubules. In subvolume cubes scoba-12-
500-1 and scoba-15-500-1, nodes with coordination number of 4 are the most
abundant, which is consistent with the idealized model of an isotropic system at
textural equilibrium (von Bargen and Waff, 1986). Though there is a small increase in
the relative abundance of coordination number 4 nodes from 168 hours to 336 hours,

the melt network appears to have reached an approximately steady state by 168 hours.

A.6 Correcting for skeletonization artifacts

Main artifacts during skeletonization and corrections. The skeleton network is
a simplified representation of the complex melt microstructure. Included in the table
are visualizations of the skeleton artifacts. Edges and nodes in question are
highlighted in yellow. All other edges and nodes are colored gray and red,
respectively. Actions taken by ScobaCleaner for simplifying the skeletonized melt

network and the effect on the coordination number distribution are summarized.
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function [Edge, Node] = Skeletonwrapper(directory, fname, dim, 1t, varargin)

SRR R R 3R 3NN VR R 3R 3R 3R 3R R R ¥ R

SRR R N3N 3RV 3R 3R 3R 3R 3R 3R 3R 3R 3R 3R 3R 3R 3R 3R 3R 3R 3R 3R 3R 3R 3R 3R 3R 3R 3R ¥ R

This is the wrapper script for pruning skeletonized tomography data.
Several artifacts, which often arise from skeletonization but are not
real features that appear in the binary image data, are removed with this
algorithm. They are:

1) Loops -- Edges that form a Toop

2) Sublinks -- two edges with one node connecting them where that
node does not have any other connections.

3) Short Edges -- edges whose length is less than the input 1t

4) Islands -- Nodes that do not have any connecting edges or single
edges that are not connected to the rest of the network.
that are not connected to the rest

5) Twins -- twin edges that share the same node endings

More info about how these artifacts are_removed from the skeleton network
is given in the online supplement of Miller et al. (2014) in Earth and
Planetary Science Letters and zhu et al. (2011) in Science.

Miller, K.J., Zhu, W., Montési, L.G.J., Gaetani, G. A., 2014.
Experimental quantification of permeability of partially molten mantle
rock. Earth Planet. Sci. Lett. 388, 273-282.

zhu, w., Gaetani, G.A., Fusseis, F., Montési, L.G.J., De Carlo, F., 2011.
Microtomography of partially molten rocks: three-dimensional melt
distribution in mantle peridotite. Science 332, 88-91.

Inputs:

'directory' --> (string) directory where skeleton text file is
Tocated

'fname' --> (string) name of skeleton text file

"dim' --> (number of any precision) vector specifying the x,
y, and z dimensions of the skeleton

"t --> (number of any precision) desired maximum Tength of
edges. Edges whose Tength is Tower than 1t are
preserved, while those Targer than 1t are pruned

'varargin' --> (cell) variable input parameter that contains the
following 1inputs.

'Print' --> (string) Prints inital and pruned results to pdf
file specified by the string immediately following
'Plot'. warning: Case-sensitive!

'Save' --> (string) Saves the pruned resluts 'Node' and 'Edge'
to .mat files specified by string immediately
following 'Save'. warning: Case-sensitive. '-Edge'
and '-Node' are appended to the ends of file name.

outputs:

'Edge’ --> (structure) Structure that contains position,
connectivity, and thickness information associated
with edges.

'Node' --> (structure) Structure that contains position and
connectivity information about nodes, where edges
are connected.

Example:
Run cleaning algorithm for skeleton 'sample_1_skeleton.txt'
Removes edges longer than than 10 Tength units. Saves and prints those
results. sSkelton data is stored as text file, which is outputted by
Avizo.

[Edge, Node] = Skeletonwrapper(
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'~/Desktop/skeleton_files/',
'sample_1_skeleton.txt',
10, ...
'Save', .
'Print');
Authors: Kevin J. Miller and Laurent G.J. Montési
$Author: Kevin J. Miller and Laurent G.J. Montési$ $Date: 07-3Jul-2015

15:12:00 $ $Revision: 1.0 $
Copyright: Kevin J. Miller and Laurent G.J. Montési 2015

R 3R W 3R 3R 3R R R 3R 3:R® 3R R

tic;

if ~isempty(varargin)
save_switch = ~isempty(find(strcmp('Save', varargin), 1));
: print_switch = ~isempty(find(strcmp('Print', varargin), 1));
else
save_switch = 0;
print_switch = 0;
end

dotInd = strfind(fname, '.');

% Reading the text file into the workspace
[Edge, Node] = SkeletonReader(directory, fname);

% Checking the initial volume of the skeleton

vtotall = VolumeChecker(Edge);

vol_fractionl = vtotall/(dim(1)*dim(2)*dim(3));

fprintf( ...
'\nPre-cleaned volume fraction of skeleton = %.4f%%\n',
vol_fractionl*100);

% Checking to see if there are any zero-length edges removing them.
iZeroLength = find([Edge.length] == 0);
if ~isempty(izeroLength)
for ize = 1 : numel(izeroLength)
[Edge, Node] = RemoveDeleted(Edge,
Node, ...
izeroLength(ize), ...
unique(Edge(izeroLength(ize)).endID),
'RemovezeroEdge');
end
end

% connectivity histogram before cleanup
HistA11(Edge, Node, dim(3), fname(l:dotInd-1), 'Initial');

mtit(sprintf('%s - Pre Cleanup', fname(l:dotInd-1)),
'FontSize', 20, ...
'color', [0 O O],

'xoff', 0, ...
'yoff', .025, ...
'Interpreter’', 'None');

nPtIterp = 4;

% Interpolating edges that have less than 4 points
[Edge, Node] = IntialInterp(Edge, Node, nPtIterp);

fprintf('\n iter | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10
| tha1\n');

Fprintf( -=2---|----- |----- |----- |----- |----- |----- |----- |- | ----- | -----
[----- I\n");

[nc, ~] = hist([Node.connectivity], 1:10);

% Printing initial connectivity to command window.
forintf("%s %57 19%51 1957 1%57 %57 %51 %51 %51 %51 [%51 [%5i [\n"', 'intial',
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nc(l),
nc(2),
nc(3),
nc(4),
nc(5),
nc(6),
nc(7),
nc(8),
nc(9),
nc(lO) ..
1ength(Node)

% removing island edges from model, since these do not conduct flow
[Edge, Node] = RemoveIslands(Edge, Node);

% Pr1nt1ng conntivity after removal of island edges and nodes
[nc, ~] = hist([Node.connectivity], 1:10);
fpr1nt€(3%s|?51|AS1I/51|%51|AS1IV51|%51|/51|%51|AS1|/51|\n ' RI ',

nc(l

nc(2),

nc(3),

nc(4),

nc(5),

nc(6),

nc(7),

nc(8),

nc(9),

nc(lO) .

1ength(Node))

% main Toop that removes loops, sublinks, and twin edges
[Edge, Node, ~] = MainLoop(Edge, Node);

[nc, ~] = hist([Node.connectivity], 1:10);
fpr1nt€§3%s|?51|AS1I/51|%51|AS1IV51|%51|/51|%51|AS1|/51|\n ' ML ',

nc .

nc(2),

nc(3),

nc(4),

nc(5),

nc(6),

nc(7),

nc(8),

nc(9),

nc(lO) ..

1ength(Node)

fprintf('------ [ el e e e e e e e
|----- \n*);

vt_vec = [];

% removes short edges by absorbing their volume into neighboring edges
[Edge, Node, ~] = MergeShort(Edge, Node, 1t, vt_vec);

% removing resulting loops, sublinks, and twin edges
[Edge, Node] = MainLoop(Edge, Node);

fprintf('------ |----- |----- |----- [----- |----- |----- e e e
|----- \n*);

[nc, ~] = hist([Node.connectivity], 1:10);
fpr1ntf('%s|V51|AS1I/51|%51|AS1IV51|%51|/51|%51|AS1|/51|\n ' ML ',

nc(l),

nc(2),

nc(3),

nc(4),

nc(5),

nc(6),

nc(7),
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nc(8),
nc(9),
nc(lO) ..
;ength(Node)

% checking volume after cleanup process
vtotal2 = volumeChecker(Edge);

vol_fraction2 = vtotal2/(dim(1)*dim(2)*dim(3));

fprintf( ...
'\nPost-cleaned volume fraction of skeleton = %.4f%%\n',
vol_fraction2*100);

HistA11(Edge, Node, dim(3), fname(l:dotInd-1), 'After');

mt1t(spr1ntf('%s - Post C1eanup - LT = %i', fname(l:dotInd-1),

'FontSize', 20,

'color' [O 0 0],
'xoff', 0, yoff' .025,
'Interpreter', None');

% saving data
if save_switch
save(sprintf('%s%s_LT%i-Edge.mat',
directory, .
Tname(l dotInd 1,
t ...

),

'Edge’

);

save( ...

sprintf( ...
'%s%s_LT%i-Node.mat',
directory, ...
Tname(l:dotlnd—l),
Tt ...

),
'Node'

end

% printing data
if print_switch
print(l, '-dpdf',
sprintf( ...

'%s%s_LT-%i_pre-cleanup',
directory, ...
fname(l:end-4),
1t ...
)

)
print(2, '-dpdf',

sprintf( ...
'%s%s_LT-%i_post-cleanup',
directory, ...
fname(l:end-4),
1t ...
)

Js

end

fprintf('\n');
toc;
fprintf('\n');

end

function [Edge, Node] = SkeletonReader(directory, fname)
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% Reads the text file into structures

% fileInd = strfind(fname, 'rec');
fprintf('\nReading %s into structures...
% disp(sprintf('Read

A}

, fname);

fid=fopen([directory, fname]);

for i=1:3;
fgetl1(fid);
end %Skip header

% Read file parameters
nvertex:stanum(fscanf(fid,'%*s %*s % ,[1,11));
nedge=str2num(fscanf(fid, '%*s %*s %s [l ]))
npﬁ1nt str2num(fscanf(f1d '%*s %*s /s [1 1]))
iskip = 6;
for i=1: 1sk1p fgetl1(fid);end %sSkip transition
Goon=1; 1id=0;
while GoOn
A=fget1(fid);
GoOon=~isempty(A);
if Goon;
id=1d+1;
category=textscan(A, '%s');
Connect(id) .metadata.object=category{1}(1);
Connect(id) .metadata.type=category{1}(3);
Connect(id) .metadata.info=category{1}(4);
Cconnect(id) .metadata.tag=category{1}(6);
switch char(Connect(id).metadata.object);
case 'POINT'
Connect(id) .metadata.ndata=npoint;
case 'EDGE'
Connect(id) .metadata.ndata=nedge;
case 'VERTEX'

g connect(id) .metadata.ndata=nvertex;
en
nd=str2doubTle(Connect(id).metadata.type{l}(end-1));
if isnan(nd);

connect(id) .metadata.ndim=1;
else

connect(id) .metadata.ndim=nd;
end

end
end

for id=1:numel(Connect)
GoOn=1;
while GooOn;
A=fget1(fid);
if ~isempty(A);
Goon=~strcmp(A(1l),'@");
end
end
[connect(id) .metadata.ndim,Connect(id) .metadata.ndata];
Connect(id).data=
fscanf(fid, '%g"',
q [connect(id) .metadata.ndim,Connect(id) .metadata.ndata]);
en
fclose(fid);
Cconnect(2) .data=Connect(2) .data+1;

% prepare connections
startedge=cumsum([0,Connect(3).data]);
vtvolume=0; %default volume;
for ie=1l:nedge;
Edge(ie).xdata= ...
Connect(4).data(l, [startedge(ie)+1l:startedge(ie+1)]);
Edge(ie).ydata= ...
Connect(4).data(2, [startedge(ie)+1l:startedge(ie+1)]);
Edge(ie).zdata=
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Connect(4).data(3, [startedge(ie)+1l:startedge(ie+1)]);
Edge(ie).Tlinklength=
(diff(Edge(ie).xdata) .A2+
diff(Edge(ie).ydata) .A2+
diff(Edge(ie).zdata) .A2).A(1/2);
Edge(ie).length=
sum(Edge(ie).linklength);
Edge(ie).endID=
Connect(2).data(:,ie);
Edge(ie).radius=
q Connect(5).data(startedge(ie)+1l:startedge(ie+1));
en
for jv=1:nvertex;
Node (iv) .xdata=Connect(1l).data(l,iv);
Node(iv) .ydata=Connect(l) .data(2,iv);
Node (iv).zdata=Connect(1l).data(3,iv);
Node(iv).1linkID=
find((Connect(2).data(2, :)==1v) | (Connect(2).data(l, :)==1v));
q Node(iv).connectivity = numel(Node(iv).1inkID);
en

% Storing the initial structures
Network = struct('Edge', {},

'"Node', {}, ...

'stage', {});
Network(1l) .Edge = Edge;
Network(1l) .Node = Node;

Network(1l) .Stage = 1;
%
fprintf('Done!\n');

end

function [vtotal] = VvolumeChecker(Edge)
vvec = nan(length(Edge), 1);

for ie = 1 : length(Edge)
[Tv, v] = Edgevolume(Edge(ie), 1);
q vvec(ie) = v;
en

vtotal = sum(vvec);

end

function [Edge, Node] = RemoveDeleted(Edge, Node, ModEdgeID, ModNodeID,
varargin)

cleaner_type = varargin{l};

switch cleaner_type
case 'RemoveLoops'
edge_delete = ModEdgeID;
mod_vec = [ModEdgeID; length(Edge) + 1];
Edge(edge_delete) = []; %translating the edges

[cTinks, tf] = padcat(Node.1inkID);
for ied = 1 : numel(mod_vec) - 1
%positions of 1links in cTlinks matrix
tp = clinks > mod_vec(ied) & clinks < mod_vec(ied+1);
1t = clinks(tp) - 1ied;
clinks(tp) = 1t;
end

for in = 1 : size(clinks, 1)
1inkID = clinks(in,:);
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Node(in).T1inkID = TinkID(tf(in,:));

end

case 'CollapseLoops'
E_old = Edge;
N_old = Node;

mod_vec = ModEdgelID;
nmod = numel(mod_vec);
nn = length(N_old);

E_new
N_new

= E_old;
= N_old;
for im = 1 : nmod
edgeID = mod_vec(im);
endID = E_old(edgelD).endID;
edge_end_pos = [ ...
E_old(edgeID).xdata(1l), E_old(edgeID).xdata(end);
E_old(edgeID).ydata(1l), E_old(edgeID).ydata(end);
E_old(edgeID).zdata(l), E_old(edgeID).zdata(end)];
node_pos = ...
[N_old(endID).xdata;
N_old(endID) .ydata;
N_old(endID).zdata];
for ii =1 : 2
if node_pos(1l) ~= edge_end_pos(l,ii) && ...
node_pos(2) ~= edge_end_pos(2,ii) && ...
node_pos(2) ~= edge_end_pos(2,ii)

new_node_pos = edge_end_pos(:,ii);

N_new(nn+im) .xdata new_node_pos(1);
N_new(nn+im) .ydata new_node_pos(2);
N_new(nn+im) .zdata new_node_pos(3);

N_new(nn+im) .1inkID = edgelID;
N_new(nn+im) .connectivity = 1;

dE_new(edgeID).endID = [E_old(edgeID).endID; (nn + im)];
en

end
end

Edge
Node

E_new;
N_new;

case {'Removesublinks', 'MergesShort', 'RemoveIslandEdges'}

mod_vec = sort([ModEdgeID; length(Edge) + 1]);
edge_delete = ModEdgeID;

%translating the edges
Edge(edge_delete) = [];

%concatenateing the structure elements containing the TinkIDs
[cTinks, tf] = padcat(Node.1inkID);
for ied = 1 : numel(mod_vec) - 1
%positions of 1inks in clinks matrix
tp = clinks > mod_vec(ied) & clinks < mod_vec(ied+1);
1t = clinks(tp) - 1ied;
clinks(tp) = 1t;
end

% converting the array of 1inkID into the Node structure field
for in = 1 : size(clinks, 1)
1inkID = clinks(in,:);
g Node(in).T1inkID = TinkID(tf(in,:));
en

node_trans = sort([ModNodeID; length(Node) + 1]);

node_delete = ModNodelID;
Node(node_delete) = [];
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case

case

cnodes = [Edge.endID]';
for ind = 1 : numel(node_trans) - 1
%positions of nodes in cnodes
tp = cnodes > node_trans(ind) & cnodes < node_trans(ind+1);
1t = cnodes(tp) - ind;
cnodes(tp) = I1t;
end

% converting the array of 1inkID into the Edge structure field
for ie = 1 : size(cnodes, 1)

endID = cnodes(ie,:);

Edge(ie).endID = endID';
end

'RemoveTwins'
mod_vec = sort([ModEdgeID, length(Edge) + 11);
edge_delete = ModEdgeID;

Edge(edge_delete) = []; % translating the edges

% updating the 1inkID entries of the Node structure after the edges
% were translated in the Tast loop
[cTinks, tf] = padcat(Node.1inkID);
for ied = 1 : numel(mod_vec) - 1
%positions of links in cTlinks matrix
tp = clinks > mod_vec(ied) & clinks < mod_vec(ied+1);
1t = clinks(tp) - 1ied;
clinks(tp) = 1t;
end

% converting the array of 1inkID into the Node structure field
for in = 1 : size(clinks, 1)
1inkID = clinks(in,:);
g Node(in).T1inkID = TinkID(tf(in,:));
en

'RemoveIslandNodes'
node_delete = ModNodelID;
node_trans = sort([ModNodeID; length(Node) + 1]);

Node (node_delete) = [];

cnodes = [Edge.endID]';
for ind = 1 : numel(node_trans) - 1
%positions of nodes in cnodes
tp = cnodes > node_trans(ind) & cnodes < node_trans(ind+1);
1t = cnodes(tp) - ind;
cnodes(tp) = I1t;
end

% converting the array of 1inkID into the Edge structure field
for ie = 1 : size(cnodes, 1)

endID = cnodes(ie,:);

Edge(ie).endID = endID';
end

case 'RemovezeroEdge'

mod_vec = sort([ModEdgeID, length(Edge) + 11);
edge_delete = ModEdgeID;

Edge(edge_delete) = []; % translating the edges
Node (ModNodeID).1inkID(Node(ModNodeID).1inkID == ModEdgeID) = [];
Node (ModNodeID) .connectivity = Node(ModNodeID).connectivity - 1;

% updating the 1inkID entries of the Node structure after the edges
% were translated in the Tast loop
[cTinks, tf] = padcat(Node.1inkID);
for ied = 1 : numel(mod_vec) - 1
%positions of 1links in cTlinks matrix
tp = clinks > mod_vec(ied) & clinks < mod_vec(ied+1);
1t = clinks(tp) - 1ied;
clinks(tp) = 1t;
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end

% converting the array of 1inkID into the Node structure field
for in = 1 : size(clinks, 1)
1inkID = clinks(in, )
g Node(in).T1inkID = 11nkID(tf(1n D)),
en

function HistAl11(Edge, Node, dim, varargin)
varargin_on = isempty(varargin);

if varargin_on ==

initial_switch =

abs(1sempty(f1nd(strcmp( Initial', varargin), 1)) - 1);

: after_switch = abs(isempty(find(strcmp('After', varargin), 1)) - 1);
else

initial_switch = 0;

after_switch = 0;
end

%% Buffer

%Dbeclaring a buffer zone so that the nodes with connectivity 1 do not
%overwhelm the histogram

bd = 30; %buffer distance

% Buffer = struct('x1lim', {}, 'ylim', {}, 'zTlim', {});

Buffer.x1im = [bd, dim - bd];

Buffer.ylim = [bd, dim - bd];

Buffer.zlim = [bd, dim - bd];

it = 1;

NodeFit = struct('xdata', {},
'ydata', {},
'zdata', {}, ...
'"TinkID', {3},

'connectivity', {});

for in = 1 : length(Node)
node_position = [Node(in).xdata; Node(in).ydata; Node(in).zdata]l;
if node_position(l) > ...
Buffer.x1im(1l) ...
&& node_position(l) ...
< Buffer.x1im(2) && ...
node_position(2) > ...
Buffer.ylim(1l) && ...
node_position(2) < ...
Buffer.ylim(2) && ...
node_position(3) > ..
Buffer.zlim(1l) && node position(3) < Buffer.zlim(2)
NodeFit(it) = Node(in);
it =it + 1;
end
end

if initial_switch ==
figure(1l); cl1f; hold on;

end

if after_switch ==
figure(2); cl1f; hold on;

end

CLimit = max([NodeFit.connectivity]);
% CLimit = 8;
subplot 221

= [NodeFit.connectivity];
% [n, xout] = hist(c, [1l:max(c)]);
[n, xout] = hist(c, 1l:1:CLimit);
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nnorm = n./sum(n);
hl = bar(xout, nnorm);
set(hl, 'Facecolor', [1 1 1]1*.6);
axis([0, max(xout) + 1, 0, max(nnorm) + .1]1);
for b = 1 : numel(xout)
text(xout(b), nnorm(b)+.03, num2str(n(b)),
'FontSize', 12, .

'Horizonta1A1ignméﬁt', 'center');
end
xlabel('Coordination #', 'FontSize', 12);
ylabel('Frequency', 'FontSize', 12);

title('Connectivity', 'FontSize', 12);
% xticklabel = get(gca, 'XTickLabel');
% XTickvar = get(gca, 'XTickLabel');

% set(gca, 'XTickLabel', XTickvar*100);

subpTlot 222

[n, xout] = hist([Edge.radius], 20);

nnorm = n./sum(n);

h2 = bar(xout, nnorm);

set(h2, 'Facecolor', [1 1 1]1*.6);

axis([0, max(xout) + 1, 0, max(nnorm) + .11);

xlabel('Length', 'FontSize', 12);
ylabel('Frequency', 'FontSize', 12);
title('Link Radius', 'FontSize', 12);

subplot 223

[n, xout] = hist([Edge.length], 20);

nnorm = n./sum(n);

h3 = bar(xout, nnorm);

set(h3, 'Facecolor', [1 1 1]1*.6);

axis([0, max(xout) + 1, 0, max(nnorm) + .1]1);

xlabel('Length', 'FontSize', 12);
ylabel('Frequency', 'FontSize', 12);
title('Link Length', 'FontSize', 12);

subplot 224

[n, xout] = hist(1ogl0([Edge.length]), 20);
nnorm = n./sum(n);

h4 = bar(xout, nnorm);

set(h4, 'Facecolor', [1 1 1]1*.6);

axis([0, max(xout) + .1, 0, max(Cnnorm) + .025]);

xlabel('Length', 'FontSize', 12);
ylabel('Frequency', 'FontSize', 12);
title('Log Link Length', 'FontSize', 12);

end

function [Edge, Node] = IntialInterp(Edge, Node, ninterp)

% Many of the subroutines in this package require that edges be composed
% less than 4 points. So we add points to edges based on ?inear

% interpolation.

% ninterp = 4; %all edges will have a minimum of 4 points
fprintf('\nInterpolating edges that contain < %i points...', ninterp);
nptsmod = 0;
for ie = 1 : length(Edge)
xyz = [Edge(ie).xdata; Edge(ie).ydata; Edge(ie).zdata];
npoints = size(xyz, 2);
X.position = xyz;
x.radius = Edge(ie).radius;
if npoints < ninterp
[~, volumeO] = Edgevolume(Edge(ie), 1);
[xi, yi, zi, ri] = EdgeInterp(x, ninterp);
Edge(ie).xdata =

= Xi;
Edge(ie).ydata = yi;
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Edge(ie).zdata = zi;

Edge(ie).Tlinklength = sum(diff([xi; yi; zil, [1, 2).A2, 1).A(1/2);

Edge(ie).length = sum(Edge(ie).linklength);
Edge(ie).radius = ri;

nptsmod = nptsmod + 1;
end
end

fprintf('\n %i edges were modified\n', nptsmod);

end

function [linkvolume, volume] = Edgevolume(edge, 1scale)

x = [0 cumsum(edge.linklength)]*1scale;

f = p1*(edge radius*Tscale) .A2;

vol = .5*diff(x).*(f(1l:end-1) + f(2:end));
Tinkvolume = vol;

volume = sum(vol);

end

function [xi, yi, zi, ri] = EdgeInterp(x, n)

edge_position = [x(end). pos1t1on(1 DY,
x(end) .position(2,:)"
x(end) .position(3,:)"' ];

InterpStruct0.distance =

cat(l, O, cumsum(sqrt(sum(d1ff(edge position, [], 1).A2, 2))));
InterpStructO radius = .

cat(2,0, cumsum(sqrt(sum(d1ff(x(end) radius,[],2).A2, 1))))';
InterpStructl position = ..

interpl(InterpStructO. d1stance edge_position, ..

Tinspace(0, InterpStructO. d1stance(end) n), "1inear" );
InterpStructl. distance =

cat(l, O, cumsum(sqrt(sum(d1ff(InterpStructl position, [], 1).A2, 2)...

D))
e = le-4;
InterpStructl.radius = ..

1nterpl(round(InterpStructO d1stance/e) e, x(end).radius"',
round(InterpStructl.distance/e)*e, '11near )

xi = InterpStructl.position(:,1)"';
yi = InterpStructl.position(:,2)"';
zi = InterpStructl.position(:,3)"';
ri = InterpStructl.radius;

end

function [Edge, Node] = RemoveIslands(Edge, Node)
% Rmoves island nodes and island edges whose end nodes have connectivity
% equal to 1.

% Removing island nodes

cleaner_type = 'RemoveIsTlandNodes';
island_node = find([Node.connectivity] == 0);
if isempty(island_node) == 0

[Edge, Node] = RemoveDeleted(Edge, Node, island_node, [],
q cleaner_type);
en
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% Removing island edges
cleaner_type = 'RemoveIslandEdges';
island_edge = [];
ModNodeID = [];
for ie = 1 : length(Edge)
endID = Edge(ie).endID;
connectivity = [Node(endID).connectivity];
if disequal(connectivity, [1 1])
island_edge = [island_edge; ie];
ModNodeID = [ModNodeID; endID];
end
end

ModEdgeID = island_edge;

[Edge, Node] = RemoveDeleted(Edge, Node, ModEdgeID, ModNodeID,
cleaner_type);

function [Edge, Node, hist_log] = MainLoop(Edge, Node, varargin)

[v)

This is the wrapper script for removing sublinks, twins, and loops.
Mainloop.m iterates through 'Edge' and 'Node' until all sublinks, twins,
and loops are removed.

Inputs:

Edge --> Input 'Edge' structure
Node --> Input 'Node' structure

3R 3R R 3R R 3R 3R 3R R R 3R ;¥ R

varargin_on = isempty(varargin);
if varargin_on == 0
: merge_switch = ~isempty(find(strcmp('mMerge', varargin), 1));
else
merge_switch = 0;
end

Connectivity = [Node.connectivity];
[nc, ~] = hist(Connectivity, 1:10);
hist_log(1,:) = nc;

iLim = 1;
dc_sum = 1;

while dc_sum > 0
iLim = iLim + 1;
[Edge, Node] = ModifyLoops(Edge, Node, 15);
if ~merge_switch

d [Edge, Node] = RemoveSublinks(Edge, Node);

en
[Edge, Node] = RemoveTwins(Edge, Node);
Connectivity = [Node.connectivity];
nc = hist(Connectivity, 1:10);
hist_log(iLim,:) = nc;
dc = diff(hist_log(end-1l:end,:), [], 1);
dc_sum = sum(abs(dc));

end
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function [Edge, Node] = ModifyLoops(Edge, Node, vthreshold)

Plotskeleton.m modifies the input skeleton network by removing loops,
i.e. edges with only one connected node.

Inputs:
'Edge’ --> Input 'Edge' structure
'Node' --> Input 'Node' structure .
'vthreshold' --> volume threshold for totaly removing Toop
'"Edge’ --> Output 'Edge' structure
'Node' --> Ooutput 'Node' structure

NN N - S NN N N S -

% Romoving loops below the threshold Tength
ToopInd = find(diff([Edge.endID]) == 0);
Tvolume = nan(numel(loopInd), 1);

for i1 = 1 : numel(loopInd)
[~, voTlume] EdgeVo]ume(Edge(]oopInd(i1)), 1;
Tvolume(il) volume;

end

% vthreshold = 15; %volume threshold
removeInd = loopInd(lvolume <= vthreshold);
nremove = numel(removeInd);

cleaner_type = 'RemoveLoops';
ModNodeID = [];

ModEdgeID = nan(floor(length(Node)*.2), 1);
ime = 1;

for i1 = 1 : nremove
mod_node = Edge(removeInd(il)).endID(1);
iedge_delete = removeInd(il);

ModEdgeID(ime) = iedge_delete;
ime = ime + 1;

% removing the loop edge from the 1inkID entry of the Node
% structure
Node (mod_node) .TinkID = ...
Node (mod_node) . TinkID(Node (mod_node) .1inkID ~= removeInd(il));
q Node(mod_node) .connectivity = Node(mod_node).connectivity - 1;
en

ModEdgeID(isnan(ModeEdgeID)) = [];

[Edge, Node] = RemoveDeleted( ...
Edge, Node, ModEdgeID, ModNodeID, cleaner_type);

% Collapsing Toops into single edges
ToopInd = find(diff([Edge.endID]) == 0);
Tvolume = nan(numel(loopInd), 1);

for i1 = 1 : numel(loopInd)
[~, volume] = Edgevolume(Edge(loopInd(il)), 1);
q Tvolume(il) = volume;
en
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collapselInd
ncollapse =

= ToopInd(Tvolume > vthreshold);
numel(collapseInd);

for i1 = 1 : ncollapse

disp(il);
edgeID = collapseInd(il);
nodeID = unique(Edge(edgeID).endID);

Tink_pos =
[Edge(edgeID) xdata; Edge(edgeID).ydata; Edge(edgeID).zdata];
[~, Toop_volume] = EdgeVo]ume(Edge(edgeID), 1;

UE = le-6;

nuniqueLinkPos =
s1ze(un1que(round(11nk pos(:,2:end-1)"'./uE)*uE, 'rows')', 2);
if nuniqueLinkPos == 1 % adhoc modification for Maddy's research
fprintf('\nwarning: Found Tinear Toops at edge %i\n\n', edgelD);
Edge(edgeID).xdata Edge(edgeID).xdata(l:2);
Edge(edgeID).ydata Edge(edgeID).ydata(l:2);
Edge(edgeID).zdata Edge(edgeID).zdata(1l:2);
Edge(edge1D).linklength = Edge(edgeID).linklength(1);

Edge(edgeID).length = Edge(edgeID).linklength(l);
Edge(edgeID).radius = Edge(edgeID).radius(2:end-1);

= length(Node);
edge_position = [Edge(edgelD).xdata;
Edge (edgeID) .ydata;
Edge(edgeID).zdata];
node_position = [Node(nodeID).xdata;
Node(nodelID) .ydata;
Node (nodeID).zdata];
node_position = node_position(:, ones(l,size(edge_position, 2)));

= le-3;
ipos = find(sum(edge_position<=node pos1t1on+e & ...
edge_position>=node_position-e) == 3);
if ipos == 1
nnode_position = edge_position(:,end);
else

nnode_position

edge_position(:,1);
end

Node (nn+1) .xdata nnode_position(1l);

Node(nn+1) .ydata nnode_position(2);

Node(nn+1) .zdata nnode_position(3);
Node(nn+1).1inkID = edgelD;

Node(nn+1) .connectivity = numel(Node(nn+1).1inkID);

Edge(edgeID).endID = [nodeID; nn + 1];
else

% finding the index of the value that is half the distance along
% the Toop
halfway = Edge(edgelD).length/2;
edge_dist_vec = cumsum(Edge(edgeID).1inklength);
imax = find(diff(sign(edge_dist_vec - halfway)));
if imax == 1 % adhoc modification for Maddy's research
imax = imax + 1;
end
npts_tot = size(link_pos, 2); %# of points that make up the edge

% splitting the original edge into 2 edges, essentially turning the
% Toop into a twin
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nptsl = imax - 1; % # of points in the 1lst new edge

% position data of the 1st new edge
edge (1) .position = Tink_pos(:,l:nptsl);
edge (1) .radius = Edge(edgeID).radius(l:nptsl);

% position data of the 2nd new edge
edge(2).position = fliplr(link_pos(:,nptsl:npts_tot));
edge(2).radius = fliplr(Edge(edgeID).radius(nptsl:npts_tot));

[~, minptID] = min([size(edge(l).position, 2),
size(edge(2).position, 2)1);

[cmaxpt, maxptID] = max([size(edge(l).position, 2),
size(edge(2).position, 2)1);

% this will happen if the two new edges coincidentally have
% the same number of points

if minptID == maxptID
minptID = 1;
maxptID = 2;
g cmaxpt = size(edge(maxptID).position, 2);
en

[xmin, ymin, zmin, rmin] = EdgeInterp(edge, cmaxpt);

LoopInterp = struct('xdata', {3},

'ydata', {}, ...

'zdata', {}, ...

'radius', {});
LoopInterp(minptID).xdata = xmin;
LoopInterp(minptID).ydata = ymin;
LoopInterp(minptID).zdata = zmin;

LoopInterp(minptID).radius = rmin;

LoopInterp(maxptID).xdata edge(maxptID).position(l,:);
LoopInterp(maxptID).ydata edge(maxptID).position(2,:);
LoopInterp(maxptID).zdata edge(maxptID).position(3,:);
LoopInterp(maxptID).radius = edge(maxptIiD).radius;

xd = cat(l, LoopInterp(l).xdata, LoopInterp(2).xdata);
yd = cat(l, LoopInterp(l).ydata, LoopInterp(2).ydata);
zd = cat(l, LoopInterp(l).zdata, LoopInterp(2).zdata);
rd = cat(l, LoopInterp(l).radius, LoopInterp(2).radius);
ad = pi*rd.A2;

a = sum(ad);

xi = sum(xd.*ad)./a; %area-weighted average;
yi = sum(yd.*ad)./a; %area-weighted average;
zi = sum(zd.*ad)./a; %area-weighted average;
ri = sqrt(a/pi); %area-weighted average

% smoothing the new edge

Xs = smooth(xi', .3);
ys = smooth(yi', .3);
zs = smooth(zi', .3);

% calculating the Tink 1en9ths
Tinklengthi = sum(diff([xs'; ys'; zs'], [1, 2).A2, 1).A(1/2);

% calculating the length of the new edge
Tengthi = sum(linklengthi);

% updating the Edge structure
Edge(edgeID).xdata xs';
Edge(edgeID).ydata ys
Edge(edgeID).zdata
Edge (edgelD). 11nk1ength Tinklengthi;
Edge(edgeID).length = 1engthi;
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= length(Node);
edge_position = [Edge(edgelD).xdata;
Edge (edgeID) .ydata;
Edge(edgeID).zdata];
node_position = [Node(nodeID).xdata;
Node(nodeID).ydata;
Node (nodeID).zdata];
node_position = node_position(:, ones(l,size(edge_position, 2)));

= le-3;
ipos = find(sum(edge_position<=node pos1t1on+e & ...
edge_position>=node_position-e) == 3);
if ipos ==
nnode_position = edge_position(:,end);
else
nnode_position = edge_position(:,1);

end

nnode_position(1l);

Node(nn+1) .ydata nnode_position(2);

Node(nn+1) .zdata nnode_position(3);
Node(nn+1).1inkID = edgelD;

Node(nn+1) .connectivity = numel(Node(nn+1).1inkID);

Node (nn+1) .xdata

Edge(edgeID).endID = [nodeID; nn + 1];
Edge(edgelD).radius = ri;

% calculating the volume of the new edge
[~, volume] = Edgevolume(Edge(edgeiD), 1);

% growing the 1links to conserve the volume of the original twins
% added together

vrat = loop_volume/volume;

Edge(edgeID).radius = Edge(edgelD).radius.*sqrt(vrat);

function [Edge, Node] = RemoveSublinks(Edge, Node)
cleaner_type = 'RemoveSublinks';

% narrow1ng the number of nodes to the ones with coordination # of 2
coord2 = find([Node.connectivity] == 2);
nc2 = numel(coord2);

for ic2 1 : nc2

noi coord2(ic2);

eoi = Node(noi).1inkID;

endID = [Edge(eoi).endID];

opp_ends = endID(endID ~= coord2(ic2))';

unique_nodes = unique(opp_ends);

if numel(unique_nodes) > 1 %erogo there is a sublink
iedge_keep = min(eoi);
iedge_delete = eo1(eo1 ~= iedge_keep);
inode_delete = noi;

% position matricies of the first and second connecting edges
elp = [Edge(eoi (1)) .xdata;

Edge(eoi (1)) .ydata;

Edge(eoi (1)) .zdata]l;
e2p = [Edge(eoi(2)).xdata;

Edge(eoi(2)).ydata;

Edge(eoi(2)).zdata];
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% radius of the first and second connecting edges
elr Edge(eoi (1)) .radius;
e2r Edge(eoi(2)).radius;

% determining the index and flipping order
[flip_switch, iflip, oflip] = FlipSwitch(elp, e2p, cleaner_type);

MultiEdge = struct('position', {}, 'radius', {});
MultiEdge(l) .position = [elp(1,:); elp(2,:); elp(3,:)];
MultiEdge(2).position = [e2p(1,:); e2p(2,:); e2p(3,:)];
MultiEdge(l).radius = elr;

MultiEdge(2).radius = e2r;

presort = struct('position', {}, 'radius', {});
postsort = struct('position', {}, 'radius', {});

switch flip_switch
case 1

presort(oflip(oflip ~= iflip)).position = ...
MultiEdge(oflip(oflip~=iflip)).position;

presort(iflip).position = ..
fliplr(Multiedge(iflip). pos1t1on)

presort(oflip(oflip ~= iflip)).radius = ..
MultieEdge(oflip(oflip ~= iflip)). rad1us

presort(iflip).radius = .
f11p1r(Mu1t1Edge(1f11p) radius);

postsort(l)
postsort(2)
postsort(l)
postsort(2)

.position = presort(oflip(l)).position;
.position = presort(oflip(2)).position;
.radius = presort(oflip(1)).radius;
.radius = presort(oflip(2)).radius;

case 0
postsort(oflip(1))
postsort(oflip(2))
postsort(oflip(1))
postsort(oflip(2))

.position
.position
.radius =
.radius =

MultiEdge(l) .position;
MultiEdge(2).position;
MultiEdge(1l).radius;
MultiEdge(2).radius;

end

postsort(2).position(:,1) = [];
postsort(2).radius(l) = [];

% appended positions of the edge
append_position = [[postsort(l).position], [postsort(2).position]];
append_radius = [[postsort(l).radius], [postsort(2).radius]];

% positions of the nodes
node_positions = .

noi);

[Node(opp_ends(l)) xdata,
Node(opp_ends (1)) .ydata,

Node(opp_ends(l)).zdata,

% flipping the edge if neccessary
[append_position, append_radius] =

F1ipEdge(append_position,

'Radius', append_radius);
% updating the edge structure
Edge(iedge_keep) .xdata = append_posi
Edge(iedge_keep).ydata = append_posi
Edge(iedge_keep) .zdata = append_posi
Edge(iedge_keep) .1linklength =
sum(diff(append_ pos1t1on
Edge(iedge_keep).length = sum(Edge(i
Edge(iedge_keep) .endID = opp_ends';
Edge(iedge_keep).radius = append_rad

other_node = ...
Edge(iedge_delete) .endID

old_loc = Node(other_node).1inkID ==
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Node(opp_ends(2)) .xdata;
Node(opp_ends(2)) .ydata;
Node(opp_ends(2)).zdata];

node_positions,

tion(l,:);
tion(2,:);
tion(3,:);

[1, 2).A2).A(1/2);
edge_keep).11nk1ength);

jus;

(Edge(iedge_delete) .endID ~=

iedge_delete;



Node (other_node) .TinkID(old_Toc) = iedge_keep;
[Edge, Node] = ...
RemoveDeleted(...
Edge, Node, iedge_delete, inode_delete, cleaner_type);

coord2(ic2+1:end) = coord2(ic2+1l:end) - 1;

function [Edge, Node] = RemoveTwins(Edge, Node)

cleaner_type = 'RemoveTwins';
E = Edge;

N = Node;

ne = length(Edge);

nn = length(Node);

nan(l, floor(ne*.2))
nan(l, floor(nn*.2))

idelete_edge
idelete_node

ide = 1;

for in =1 : nn
%IDs of the egdes that are connected to Node in
1inkIDs = N(in).1inkID;

%1Ds of the nodes that are connected to the connecting edges [in;
%new_node]
endID = [E(1inkIDs).endID];

%node IDs that ~= in but are connected to the connecting edges
%[new_nodes]

cnodes = endID(endID ~= in)';

unique_nodes = Uniqueval(cnodes);

%ergo there is a twin present
if numel(unique_nodes) < numel(cnodes)

if numel(unique_nodes) == 1
nrep = numel(cnodes);
else
g nrep = hist(cnodes, unique_nodes);
en

rep_nodes = unique_nodes(nrep > 1);
for ir = 1 : numel(rep_nodes) %loops through repeating indicies
%1ist of nodes that are shared by the twins

noi = [in; rep_nodes(ir)];
%1ist of edges that comprise the twins
eoi = 1linkIDs(cnodes == rep_nodes(ir));
twin = struct('xdata', {},

'ydata', {},

'zdata', {}, .

'radius’', {},

'endIiD', {});

npts = nan(numel(eoi), 1);
for it = 1 : numel(eoi) %looping through the twin edges
if isequal(E(eoi(it)).endID, noi) == 1 || ...
isequal (flipud(E(Ceoi(it)) .endID), noi) ==

twin(it).xdata E(eoi(it)).xdata;
twin(it).ydata E(eoi(it)).ydata;
twin(it).zdata E(eoi(it)).zdata;
twin(it).radius = E(eoi(it)).radius;
twin(it).linklength = E(eoi(it)).linklength;
twin(it).length = E(eoi(it)).length;
twin(it).endID = E(eoi(it)).endID;
twin(it).radius = E(eoi(it)).radius;
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npts(it) = numel(twin(it).xdata);
[~, tv] = Edgevolume(twin(it), 1);
twin(it).volume = tv;
end
end

% in case the twins have the same number of points
[tmax, tmaxInd] = max(npts);

index_vec = 1l:length(twin);
other_index = index_vec(index_vec ~= tmaxInd);
elp = [twin(tmaxInd).xdata;

twin(tmaxInd) .ydata;

twin(tmaxInd).zdata];

elr = twin(tmaxInd).radius;

xd = nan(numel(npts), tmax);
yd = nan(numel(npts), tmax);
zd = nan(numel(npts), tmax);
rd = nan(numel(npts), tmax);
xd(1,:) = elp(l,:);
yd(1,:) = elp(2,:);
zd(1,:) = elp(3,:);

rd(1,:) = elr;

for it = 1 : length(other_index)
e2p = [twin(other_index(it)).xdata;
twin(other_index(it)).ydata;
twin(other_index(it)).zdata];

e2r = twin(other_index(it)).radius;
[flip_switch, ~, ~] = FlipSwitch(elp, e2p, cleaner_type);

switch flip_switch
case 0
Multiedge (1) .position -
[elp(1,:); elp(2,:); elp(3,:)];
Multiedge(2).position e
[e2p(1,:); e2p(2,:); e2p(3,:)];

Multiedge(1).radius
Multiedge(2).radius
case 1
Multiedge (1) .position
Multiedge(2).position

I~

elr;
ezr;

elp;
fliplr(e2p);
MultiEdge(l).radius = elr;
d Multiedge(2).radius = fliplr(e2r);
en

[xi, yi, zi, ri] = EdgeInterp(MultiEdge, tmax);

xd(it+l,:) = xi;
yd(it+l,:) = yi;
zd(it+l,:) = zi;
rd(it+l,:) = ri;

end

% calculating the cross-sectional area at each point in the
% edge

ad = pi*rd.A2;

a = sum(ad);
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xa = sum(xd.*ad)./a; %area-weighted average;
ya = sum(yd.*ad)./a; %area-weighted average;
za = sum(zd.*ad)./a; %area-weighted average;

ri = nan(l, size(ad, 2));

r1(1) = rd(l 1;

ri(end) = rd(l end);

ri(2:end-1) = sqrt(a(2:end-1)/pi); %area-weighted average

% smoothing the new edge

xs = smooth(xa', .3);
ys = smooth(ya', .3);
zs = smooth(za', .3);
xs(1) = xi(1l); xs(end) = xi(end);
ys(l) = yi(1); ys(end) = yi(end);
zs(1) = zi(1); zs(end) = zi(end);

position_check [xs'; ys'; zs'];

node_positions = [Node(noi(l)).xdata, Node(noi(2)).xdata;
Node(noi (1)) .ydata, Node(noi(2)).ydata;
Node(noi (1)) .zdata, Node(noi(2)).zdata]l;

% flipping the edge if neccessary
[position_check, ri] =
F11pEdge(
position_ check, node_positions, 'Radius', ri);

% calculating the Tink lengths
Tinklengthi = sum(diff(position_check, [], 2).A2, 1).A(1/2);

% calculating the Tength of the new edge
Tengthi = sum(linklengthi);

% storing the edge ID to be kept
% isave_edge = eoi(tmaxInd);
isave_edge = min(eoi);

% storing the new values in the Edge structure
E(isave_edge) .xdata position_check(l,:);
E(isave_edge) .ydata position_check(2,:);
E(isave_edge) .zdata position_check(3,:);
E(isave_edge).linklength = Tinklengthi;
E(isave_edge).length = lengthi;
E(isave_edge).endID = noi;
E(isave_edge).radius = ri;

% calculating the volume of the edge
[~, volume] = Edgevolume(E(isave_edge), 1);

% growing the links to conserve the volume of the

% original twins added together

vrat = sum([twin.volume])/volume;

E(isave_edge) .radius = E(isave_edge).radius.*sqrt(vrat);

% storing the IDs of the edges to be deleted
EdeleteID = eoi(eoi ~= isave_edge);

ndt = numel(EdeTleteID);

idelete_edge(ide: (ide+ndt-1)) = EdeletelD;

ide = ide + ndt;

% updating the Node structure
%updating the 1inkIDs
N(noi(1)).T1inkID = ..
N(no1(l)) 1inkID(~ismember( ..
N(no1(l)) 1inkID, eoi(eoi ~=1save _edge)));
%updating the connect1v1ty
N(noi(1l)).connectivity =
N(no1(l)) connect1v1ty - (Tength(twin) - 1);
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N(noi(2)).T1inkID = ...
N(noi(2)).1inkID(~ismember( ...
N(noi(2)).1inkID, eoi(eoi ~=isave_edge)));
N(noi(2)).connectivity = ...
N(noi(2)).connectivity - (length(twin) - 1);

end
end

end

idelete_edge

idelete_edge(~isnan(idelete_edge));

[Edge, Node] = RemoveDeleted(E, N, idelete_edge, idelete_node,

cleaner_type);

function [Edge, Node, vt_vec] = MergeShort(Edge, Node, 1t, vt_vec)

[v)

R R R R R X R

Removes edges shorter than '1t' by merging connected edges. Total volume
is preserved in this process.

cleaner_type = 'MergeShort';

shortID = find([Edge.length] < 1t, 1); %ID of edge that could be too short

GoShort = 1;
it = 0;

while GoShort > 0

it = it + 1;

% In case, the shortID is an island edge
IE_endID = Edge(shortiD).endID;
IE_connectivity = [Node(IE_endID).connectivity];
if isequal(IE_connectivity, [1 1])
[Edge, Node] = RemoveDeleted(Edge, Node, shortiD, IE_endID,

'RemoveIslandeEdges');

else
cnodes = [Edge(shortID).endID];
inode_keep = min(cnodes);
inode_delete = chodes(cnodes ~= inode_keep);
iedge_delete = shortID;
clinks = padcat(Node(cnodes).TinkID);

% finding the point on the connecting edges corresponding to a

Tength

% "BoundStruct(l).length" or "right_length" away from the node. This
will be the

% point that will be connected to the straight Tine connecting the
COoM

% of the short edge to the connecting edge.
EdgeUpdate = struct('xdata', {3},

'ydata', {},
'zdata', {}, ...
'"linklength', {1},
"length', {}, ...
'endiD', {}, ...
'radius', {});

connectivity = [Node(cnodes).connectivity];
offshoot = cnodes(connectivity == 1);

if ~isempty(offshoot) %pruning short offshoots
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straighten_switch = 0;
[~, shortvolumeO] Edgevolume(Edge(shortiD), 1);
clinks_copy = clinks;
clinks_copy(isnan(clinks_copy)) = 0;
sum_clinks = sum(clinks_copy, 2);
ibranch = find(sum_clinks ~= clinks_copy(:,1), 1);
branch_1links = cTlinks_copy(ibranch,:); branch_Tinks =
branch_1links(branch_1inks ~= shortiID);
nbTinks = numel(branch_1inks);
vdiv = shortvolumeO/nbl1inks;
for ib1 = 1 : nblinks
[~, bvolumeO] = Edgevolume(Edge(branch_1links(ib1)), 1);
new_bvolume = bvolumeO + vdiv;
vrat = new_bvoTlume/bvolume0;
% vrat = bvolumeO/new_bvolume;

Teu = Tength(Edgeupdate) + 1;

Edge(branch_Tinks(ib1)) .xdata;
EdgeUpdate(leu) .ydata Edge(branch_Tinks(ib1)) .ydata;
EdgeUpdate(leu).zdata Edge(branch_Tinks(ib1)).zdata;
Edgeupdate(leu).linklength =

Edge(branch_Tinks(ib1)).1inklength;

EdgeUpdate(leu).length = Edge(branch_Tinks(ib1)).length;
EdgeUpdate(leu).endID = Edge(branch_Tinks(ib1)).endID;
Edgeupdate(leu).radius =

Edge(branch_]igks(1b1)).radius*sqrt(vrat);

en

inode_delete = offshoot;

inode_keep = cnodes(cnodes ~= offshoot);

new_node_pos = [Node(inode_keep) .xdata;
Node(inode_keep) .ydata;
Node(inode_keep) .zdata];

EdgeUpdate(leu) .xdata

else

% creating a temporary straight edge from the short edge

straighten_switch =

npts = nume1(Edge(shortID) xdata) ;

cnodes_pos = [Node(cnodes).xdata; Node(cnodes).ydata;
Node(cnodes) .zdata]; %positions of the endIDs

node_dist_vec = [0 cumsum(sum(diff(cnodes_pos, [],
2).A2) A(L/2))];

straight_pos = 1nterp1(node_dist_vec', cnodes_pos', linspace(0,
node_dist_vec(end), npts))'

StraightEdge = struct( xdata', {},

'ydata',

'zdata' {} e
'1ink1ength', {1,
'"length', {}, ...
'endiD', {}, ...
'radius', {});

StraightEdge (1) .xdata straight_pos(1,:);
StraightEdge (1) .ydata straight_pos(2,:);
StraightEdge(1l) .zdata = straight_pos(3,:);
StraighteEdge(1).1linklength = sum((d1ff(straight_pos, [1, 2).A2),

1.A1/2);
StraighteEdge(1l) .length = sum(StraightEdge.linklength);
StraightEdge(1l) .endID = cnodes;
StraightEdge(1).radius = Edge(shortID).radius; %radius data of
the old, curved 1ink

d % growing the 1link radii to conserve the volume of the original
edge.
[~, old_volume] = Edgevolume(Edge(shortiD), 1); %volume of the
old short edge
% new_volume] = Edgevolume(StraightEdge, 1); %volume of the
straight edge with the same radius but different Tengths
% vrat = new_volume/old_volume;
vrat = old_volume/new_volume;
StraightEdge(1l).radius = StraightEdge.radius*sqrt(vrat);
[vlinks_mod, v_mod] = Edgevolume(StraightEdge, 1);

% Finding the center of mass of the straightened edge
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midpts = straight_pos(:,l:end-1)+diff(straight_pos, [1, 2)/2;
vw = midpts.*repmat(vlinks_mod, 3, 1);
COM = sum(vw, 2)./v_mod;

between_vec = nan(l, 3);

% locating the index where I want to split the straight segment
between_vec (1) inbetween(straight_pos(1l,:), com(l));
between_vec(2) inbetween(straight_pos(2,:), CoM(2));
between_vec(3) inbetween(straight_pos(3,:), com(3));

inan = isnan(between_vec);
if ~isempty(find(inan, 1))

J between_vec(inan) = unique(between_vec(~inan));
en

iCOM = unique(between_vec);
if icoM == 1
iCOM = 2;
end
if iCoM == size(straight_pos, 2);
J iCOM = size(straight_pos, 2) - 1;
en

% If the straight edge only contains 3 coordinates, the COM is
% automatically assigned to be the median of the points.
if size(straight_pos, 2) == 3
iCOM = 2;
end

new_node_pos = straight_pos(:,iCOM);

% finding the distance from the CcoM to the left and right
connecting
% nodes
left_node_pos = [Node(cnodes(1l)).xdata;
Node(cnodes (1)) .ydata;
Node(cnodes (1)) .zdata];
right_node_pos = [Node(cnodes(2)) .xdata;
Node(cnodes(2)) .ydata;
Node(cnodes(2)).zdata];

BoundStruct = struct('length', {},
'pts’, y e
'radius', {});

% 1 --> Teft bound; 2 --> right bound

Boundstruct(l).length = sum(diff([com, left_node_pos], [],
2) .72, 1).A(1/2);

Boundstruct(2).length = sum(diff([coM, right_node_pos], [],
2).A2, 1).A(1/2);

%the center of mass pt is shared
BoundStruct(l).pts = straight_pos(:,1l:iCOM);

BoundStruct(2).pts = straight_pos(:,iCOM:end);
BoundStruct(l).radius

Edge(shortiID).radius(1l:icom);
BoundStruct(2).radius

Edge(shortiID).radius(iCcoM:end);

% calculating the volumes of the individual segments on either
side of

% COM

left_volume = sum(vlinks_mod(1l:icoMm));

right_volume = sum(vlinks_mod(iCcoM+1l:end));

BoundStruct(l) .volume
BoundStruct(2).volume

= Teft_volume;
= right_volume;
for ii =1 : 2
noi = cnodes(ii);
node_pos = [Node(noi).xdata; Node(noi).ydata;
Node(noi).zdata];

182



clinksl clinks(ii,:);
clinksl clinks1l(clinksl ~= shortID);
nclinksl = numel(clinksl(isnan(clinksl) ~= 1));
vdiv = BoundStruct(ii).volume/nclinksl;
for i1 = 1 : numel(clinksl(isnan(clinksl) ~= 1))
edge_pos = [Edge(clinks1(il)).xdata;
Edge(clinks1(il1)).ydata;
Edge(clinks1(il1)).zdata];
endind = find(sum([round(edge_pos(1l,:)*1le4)/led ==
round(node_pos(1)*1e4d)/le4; ..
round(edge pos(2,:)*1led4)/1e4d
round(node_pos(2)*1led4)/led; ..
round(edge pos(3 :)*1led4) /led
round(node_pos(3)*1e4)/le4], 1) == 3,
if endInd == s1ze(edge pos, 2)
edge_pos = fliplr(edge_pos); %needs to be flipped
: Tradius = fliplr(Edge(clinks1(iT1)).radius);
else
d Tradius = Edge(clinks1(iT1)).radius;
en

edge_dist_vec = [0 cumsum(sum(diff(edge_pos, [],
2).A2) A(L/2))];
if edge_dist_vec(end) > BoundStruct(ii).length
[~, imin] = min(abs(edge_dist_vec -
BoundsStruct(ii).length));
if imin >= numel(edge_dist_vec)
iattach = numel(edge_dist_vec) - 1;
else
iattach = imin;
end
else
iattach = numel(edge_dist_vec) - 1; %for connecting
edges that are shorterdthan the shortiIDs
en

” % Creating temporary edge that appends the appropriate
side
% of the short-side with the connecting nodes. This edge
% will be called etempl
elp = BoundStruct(ii).pts;
e2p = [edge_pos(1l,1l:iattach);
edge_pos(2,1:iattach); .
edge_pos(3,1:iattach)];
elr = BoundStruct(ii).radius;
e2r = lradius(l:iattach);

[flip_switch, iflip, oflip] = Flipswitch(elp, e2p,
cleaner_type);

MultiEdge = struct('position', {}, 'radius', {});

MultiEdge(1l) .position
MultiEdge(2).position

= elp;
= e2p;
MultiEdge(1l).radius
MultiEdge(2).radius

elr;
ez2r;

presort = struct('position', {}, 'radius', {}
postsort = struct('position', {}, 'radius', {

);
s
append_position = [];

append_radius = [];

switch flip_switch
case 1

presort(oflip(oflip ~= iflip)).position =
MultiEdge(oflip(oflip~=iflip)).position;

presort(iflip).position =
fliplr(Multiedge(iflip).position);

presort(oflip(oflip ~= iflip)).radius =
MultiEdge(oflip(oflip ~= iflip)).radius;
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presort(iflip).radius =
fliplr(Multiedge(iflip).radius);

postsort(l).position
presort(oflip(1l)).position;

postsort(2).position
presort(oflip(2)).position;

postsort(1l).radius

postsort(2).radius

= presort(oflip(l)).radius;
= presort(oflip(2)).radius;
postsort(2).position(:,1) = [];
postsort(2).radius(l) = [];

append_position = [[postsort(l).position],
[postsort(2).position]];

append_radius = [[postsort(l).radius],
[postsort(2).radius]];

% flipping the edge id neccessary
[append_position, append_radius] =
F1ipEdge(append_position, node_pos, ...
'Radius', append_radius);

case 0
postsort(oflip(1)).position =
MultiEdge(1l) .position;
postsort(oflip(2)).position =
MultiEdge(2) .position;
postsort(oflip(1)).radius
postsort(oflip(2)).radius

Multiedge(l).radius;
Multiedge(2).radius;

postsort(2).position(:,1)
postsort(2).radius(l) = [];

append_position = [[postsort(l).position],
[postsort(2).position]];

append_radius = [[postsort(l).radius],
[postsort(2).radius]];

% flipping the edge id neccessary
[append_position, append_radius] =
F1ipEdge(append_position, node_pos,
d 'Radius', append_radius);
en

temp_posl = append_position;

% Creating temporary edge that extends from the com

% point to iattach on the connecting edge

pt_pos = [straight_pos(1l,icoM), edge_pos(l,iattach);
straight_pos(2,icom), edge_pos(2,iattach);
straight_pos(3,icom), edge_pos(3,iattach)];

npts = numel(temp_posl(l,:));

pt_dist_vec = [0 cumsum(sum(diff(pt_pos, [],

2).A2) .A1/2))1; _ _

temp_pos2 = interpl(pt_dist_vec', pt_pos',

Tinspace(0, pt_dist_vec(end), npts))';

[flip_switch, ~, ~] = FlipSwitch(temp_posl, temp_pos2,
'RemoveTwins');

MultiEdge = struct('position', {}, 'radius', {});

switch flip_switch
case 0
MultiEdge(1l) .position
MultiEdge(2).position

= temp_posl;
= temp_pos2;
MultiEdge(l).radius
MultiEdge(2).radius
case 1

append_radius;
append_radius;
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iattach

edge_extra,

MultiEdge(1l) .position
MultiEdge(2).position

temp_posl;
flipTr(temp_pos2);

MultiEdge(l).radius
MultiEdge(2).radius

append_radius;
fliplr(append_radius);

end -

nme = length(MultiEdge);

xd = nan(nme, size(MultiEdge(l).position, 2));
yd = nan(nme, size(MultiEdge(l).position, 2));
zd = nan(nme, size(MultiEdge(l).position, 2));
rd = nan(nme, size(MultiEdge(l).position, 2));
for ime = 1 : nme
xd(ime,:) = MultiEdge(ime).position(l,:);
yd(ime,:) = MultiEdge(ime).position(2,:);
zd(ime,:) = MultiEdge(ime).position(3,:);
rd(ime,:) = MultiEdge(ime).radius;

end

% Averaging the temporary edges to make one edge
ad = pi*rd.A2;
a = sum(ad);

xa = sum(xd.*ad)./a; %area-weighted average;

ya = sum(yd.*ad)./a; %area-weighted average;

za = sum(zd.*ad)./a; %area-weighted average;

xa(l) = xd(1,1); xa(end) = xd(1,end);

ya(l) = yd(1,1); ya(end) = yd(1l,end);

za(l) = zd(1,1); za(end) = zd(1,end);

% ri = sqrt(a/pi); %area-weighted average

ri = append_radius;

% concatenating the position vectors
npos = [xa; ya; zal;

% appending the data from the first temp edge above the
% index

edge_extra = edge_pos(:,iattach:end);

radius_extra = lradius(:,iattach:end);

[flip_switch, iflip, oflip] = FlipSwitch(npos,
'MergesShort');

MultiEdge = struct('position', {}, 'radius', {});

MultiEdge(1l) .position
MultiEdge(2).position

= npos;
= edge_extra;
MultiEdge(1l).radius
MultiEdge(2).radius

=ri;

= radius_extra;

presort = struct('position', {}, 'radius', {});
postsort = struct('position', {}, 'radius', {});
append_position = [];

append_radius = [];

switch flip_switch
case 1
presort(oflip(oflip ~= iflip)).position =

MultiEdge(oflip(oflip~=iflip)).position;

presort(iflip).position =

fliplr(Multiedge(iflip).position);

presort(oflip(oflip ~= iflip)).radius =

MultiEdge(oflip(oflip ~= iflip)).radius;

presort(iflip).radius =

fliplr(Multiedge(iflip).radius);
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postsort(l).position =
presort(oflip(1l)).position;

postsort(2).position =
presort(oflip(2)).position;

postsort(l).radius = presort(oflip(1l)).radius;

postsort(2).radius = presort(oflip(2)).radius;

postsort(2).position(:,1) = [];

postsort(2).radius(1l) = [];

append_position

[postsort(2).position]];
append_radius
[postsort(2).radius]];

[[postsort(1l).position],

[[postsort(1l).radius],

% flipping the edge id neccessary
[append_position, append_radius] =

F1ipEdge(append_position, new_node_pos,
'Radius’',

case 0

postsort(oflip(1l)).

MultiEdge(1l) .position;

postsort(oflip(2)).

MultiEdge(2) .position;

postsort(oflip(1l)).
postsort(oflip(2)).

postsort(2).position(:,1) =

a

ppend_radius);

position

position
radius

Multiedge(l).radius;
radius

Multiedge(2).radius;
[1;

postsort(2).radius(l) = [];

append_position

[postsort(2).position]];
append_radius

[postsort(2).radius]];

[[postsort(1l).position],

[[postsort(1l).radius],

% flipping the edge id neccessary
[append_position, append_radius] =

F1ipEdge(append_position, new_node_pos,

'Radius', append_radius);

end

new_endID
1new_endID.
new_endID(inew_endID)

Edge(clinks1(il1)).endID;
Edge(cTinks1(i1)).endID == noi;

inode_keep;

Teu = length(Edgeupdate) + 1;

.Xdata
.ydata
.zdata

EdgeUpdate(leu)
EdgeUpdate(leu)
EdgeUpdate(leu)
EdgeUpdate(leu)
[1, 2).A2), 1).A(1/2);
EdgeUpdate(leu)
Tinklength);
EdgeUpdate(leu)
EdgeUpdate(leu).

sum(EdgeUpdate(leu).

append_position(1,:);
append_position(2,:);
append_position(3,:);

.TinkTength = sum((diff(append_position,
.length =

.endID = new_endID;
radius = append_radius;

[~, volumeO] = Edgevolume(Edgeupdate(leu), 1);

[~, original_clink_v]
1;

new_volume

vrat

EdgeUpdate(leu) .radius
EdgeUpdate(1eu).ragius*sqrt(vrat);
en
end

186

Edgevolume(Edge(clinks1(i1)),

original_clink_v + vdiv;

new_volume/volumeO;



end
clinks_sorted = [clinks(1,:)"'; clinks(2,:)'];

ul
ul

clinks_sorted(~isnan(clinks_sorted));
ul(ul ~= shortiD);

Node(inode_keep) .xdata new_node_pos(1);
Node (inode_keep) .ydata = new_node_pos(2);
Node(inode_keep) .zdata new_node_pos(3);
Node(inode_keep) .1inkiID = ul';

Node(inode_keep) .connectivity = numel(ul);

% creating a temporary straight edge out of the short edge
if straighten_switch == 1
for jup = 1 : length(EdgeUpdate)
final_position = [EdgeUpdate(iup).xdata;
EdgeUpdate(iup) .ydata;
EdgeUpdate(iup) .zdata];
final_radius = EdgeUpdate(iup).radius;
node_order = EdgeUpdate(iup).endID == inode_keep;
if isequal(node_order, [0; 1]) == 1
EdgeUpdate(iup) .endID = flipud(EdgeUpdate(iup).endID);

en

Edge(ul(iup)).xdata = final_position(l,:);

Edge(ul(iup)).ydata = final_position(2,:);

Edge(ul(iup)).zdata = final_position(3,:);

Edge(ul(iup)).Tlinklength = sum(diff(final_position, [],

2).A2, 1).A(1/2);
Edge(ul(iup)).length = sum(Edge(ul(iup)).Tinklength);
Edge(ul(iup)) .endID = EdgeUpdate(iup).endID;
J Edge(ul(iup)).radius = final_radius;
en
else
for jup = 1 : length(EdgeUpdate)

final_position = [EdgeUpdate(iup).xdata;
EdgeUpdate(iup) .ydata;
EdgeUpdate(iup) .zdatal;

final_radius = EdgeUpdate(iup).radius;

endID = EdgeuUpdate(iup).endID;

v = [Node(endID(1)) .xdata, Node(endID(2)).xdata;
Node(endID(1)) .ydata, Node(endID(2)).ydata;
Node(endID(1)) .zdata, Node(endID(2)).zdata];

final_position = FlipEdge(final_position, v);

Edge(ul(iup)).xdata = final_position(l,:);
Edge(ul(iup)).ydata = final_position(2,:);
Edge(ul(iup)).zdata = final_position(3,:);
Edge(ul(iup)).Tlinklength = sum(diff(final_position, [],
2).A2, 1).A(1/2);
Edge(ul(iup)).length = sum(Edge(ul(iup)).Tinklength);
Edge(ul(iup)) .endID = EdgeUpdate(iup).endID;
J Edge(ul(iup)).radius = final_radius;
en

end

[Edge, Node] = RemoveDeleted(Edge, Node, iedge_delete, inode_delete,
cleaner_type); %removing the deleted nodes and edges

% checkin gto make sure that the edge is not an island

if Node(inode_keep).connectivity == 1 &&
Node (Edge (Node (inode_keep) . TinkID) .endID(Edge (Node(inode_keep).T1inkID).endID
~= inode_keep)).connectivity ==

[Edge, Node] = RemoveDeleted(Edge, Node, iedge_delete,
inode_delete, 'RemoveIslandEdges'); %removing the deleted nodes and edges

else

%969676%660676%6 %6676 76%6 69676969696 76%%6%6
% Identifying the edges and nodes immediately surrounding the short
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% edge for speed.
cn_1vll = unique([Edge(Node(inode_keep).1inkID).endID]);
cn_1vll = cn_1v11(cn_1v11l ~= inode_keep);

ce_1vll Node(inode_keep).1inkID"';

ce_1v12 = unique([Node(cn_1v11).1inkID]");
ce_1vl2_loc = ~ismember(ce_1vi2, ce_1vll);
ce_1v12 = ce_1v12(logical(ce_1vi2_Toc));

cn_1v12 = unique([Edge(ce_1v12).endID]);
cn_1v12_loc = ~ismember(cn_1v12, cn_1v11l);
cn_1v12 = cn_1v12(logical(cn_Tvi2_Toc));

[inode_keep; cn_1v11l; cn_1v12];

target_nodes
[ce_Tv11l; ce_1v12];

target_edges -
% truncating the edges and nodes structures for speed
TargetNode = Node(target_nodes);
TargetEdge = Edge(target_edges);

for itn = 1 : numel(target_nodes)
TargetNode(itn).GlobalNodeID = target_nodes(itn);
TargetNode(itn).GlobalLinkID = TargetNode(itn).TinkID;
TargetNode(itn).GlobalConnectivity =
nume](TarggtNode(itn).1inkID);
en

for ite = 1 : numel(target_edges)
g TargetkEdge(ite).GlobalEdgeID = target_edges(ite);
en

676760606969676767676)60606969667676)6767606%6

% Translating to their local indicies
GlobalEdgeConnect = [TargetEdge.endID]'; %rows are edges, and
columns are the indicies of the endiD's
LocalEdgeConnect = nan(size(GlobalEdgeConnect));
unique_nodes = unique(GlobalEdgeConnect);
for iun = 1 : numel(unique_nodes)
Toc = GlobalEdgeConnect == target_nodes(iun);
[r, ~]1 = find(sum(loc, 2));
LocalEdgecConnect(loc) = iun;
TargetNode(iun).1inkID = sort(r)';
TargetNode(iun).connectivity = numel(r);
g TargetNode(iun) .nodeID = iun;
en

for ilocal = 1 : numel(target_edges)
TargetEdge(ilocal).endID = LocalEdgeConnect(ilocal,:)";
g Targetedge(ilocal) .edgeID = ilocal;
en

% Differentiating between the interior and exterior nodes
Tocal_ext_nodes = nan(1l, floor(length(TargetNode)));
Tocal_int_nodes = nan(1l, floor(length(TargetNode)));
global_int_nodes = nan(l, floor(length(TargetNode)));
ixn = 1;
iin = 1;
for itn = 1 : numel(target_nodes)
Tocal_tC = TargetNode(itn).connectivity;
global_tC = TargetNode(itn).GlobalConnectivity;
if local_tC ~= global_tC || global_tC ==
Tocal_ext_nodes(ixn) = 1itn;
ixn = ixn + 1;
else
Tocal_int_nodes(iin) = 1itn;
global_int_nodes(iin) = target_nodes(itn);
iin = iin + 1;
end
end
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local_int_nodes(isnan(local_int_nodes)) = [];
?1oba1_1nt_nodes(isnan(g]oba1_int_nodes)) = [1;
ocal_ext_nodes(isnan(local_ext_nodes)) = [];

% Differentiating between the interior and exterior edges
lTocal_target_edges = 1l:numel(target_edges);

Tocal_ext_edges [TargetNode(local_ext_nodes).1inkiD]"';
Tocal_int_edges Tocal_target_edges(~ismember(local_target_edges,

Tocal_ext_edges));
global_int_edges = target_edges(local_int_edges);

% truncating the target edges and nodes even furhter
TargetEdgeInt = TargetEdge(local_int_edges);
TargetNodeInt = TargetNode(local_int_nodes);

% removing exterior nodes from the interior node structure

for inr = 1 : numel(local_int_nodes)
1inkID = TargetNodeInt(inr).T1inkID;
iol = ismember(1inkID, Tlocal_ext_edges);
TargetNodeInt(inr).1linkID(iol) = [];
[~, Toc] = ismember(TargetNodeInt(inr).1linkiID, Tocal_int_edges);
TargetNodeInt(inr).1inkID = loc;
TargetNodeInt(inr).connectivity =

nume](TarggtNodeInt(inr).1inkID);
en

% removing the exterior edges from the interior edge structure
for ier = 1 : length(TargetEdgeInt)
[~, Toc] = ismember(TargetEdgeInt(ier).endID, Tocal_int_nodes);
g TargetEdgeInt(ier).endID = loc;
en

% Running the main clean-up loop for the noi, as well as the nodes
and

% edges immediately surrounding the noi.

[TargetEdgeInt, TargetNodeInt] = MainLoop(TargetEdgelInt,
TargetNodeInt, 'Merge');

676060606967676767676)60606969667676)6760606%6

% Locating the deleted edges/nodes

old_EdgeIDs = unique([TargetEdgeInt.edgelD]);

Tocal_emissing = Tocal_int_edges(~ismember(local_int_edges,
old_EdgelDs));

Tocal_epresent = local_int_edges(ismember(local_int_edges,
old_EdgelDs));

target_edges(local_emissing);

global_emissing
target_edges(local_epresent);

global_epresent -
old_NodeIDs = unique([TargetNodeInt.nodeID]);
Tocal_nmissing = local_int_nodes(~ismember(local_int_nodes,
old_NodeIDs));

global_nmissing = target_nodes(local_nmissing);

% Converting to global indicies
global_int_edges(ismember(global_int_edges, global_emissing)) = [];
Tocal_int_edges(ismember(local_int_edges, local_emissing)) = [];

for ile = 1 : length(TargetEdgeInt)
endID_local = local_int_nodes(TargetEdgeInt(ile).endID)"';
[~, Toc] = find(ismember(local_int_nodes, endID_local));
endID_global = global_int_nodes(loc);
g TargetEdgeInt(ile).endID = endID_global';
en

for iln = 1 : length(TargetNodeInt)
TinkID_local = local_int_edges(TargetNodeInt(iln).1inkID);
[~, Toc] = find(ismember(local_int_edges, TinkID_Tlocal));
Tinkip_global = global_int_edges(loc)';
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TargetNodeInt(iln).1inkID = 1inkID_global;
after_1inkID_vec = TargetNodeInt(iln).TinkID;
before_1inkID_vec = TargetNodeInt(iln).GlobalLinkID;
new_1inkID = unique([after_1linkID_vec, before_1linkID_vec]);
new_1inkID = new_1inkID(~ismember(new_1inkID, global_emissing));
TargetNodeInt(iln).1inkID = new_1inkID;
TargetNodeInt(iln).connectivity =

numel (TargetNodeInt(iln).TinkID);

end
TargetbEdgeInt = rmfield(TargetEdgeInt, {'GlobalEdgeID', 'edgeID'});
TargetNodeInt = rmfield(TargetNodeInt, {'GlobalNodeID', 'nodeID',

'GlobalLinkID', 'GlobalConnectivity'});
%
Edge(global_int_edges)

TargetEdgeInt;
Node(global_int_nodes)

- TargetNodeInt;

% Ensuring that the repalced edges are correctly flippped with the
% appropriate end nodes.

for ige = 1 : numel(global_epresent)

eoi = global_epresent(ige);
noi = Edge(eoi).endID;
elp = [Edge(eoi).xdata;

Edge(eoi) .ydata;
Edge(eoi).zdata]l;

= %Node(noi).xdata;
Node(noi) .ydata;
Node(noi).zdata];

[elp(:,1), elp(:,end)];
[e2p(:,1), e2p(:,end)];

endlp_flip = fliplr(endlp);

ez2p

endlp
end2p

ul = endlp_flip(:,1);
u2 = endlp_flip(:,2);
vl = end2p(:,1);

v2 = end2p(:,2);

e =0.2;

if sum(ul<=vl+e & ul>=vl-e) == 3 && ...
sum(u2<=v2+e & u2>=v2-e) == 3
elp = fliplir(elp);

Edge(eoi) .xdata = elp(1,:);
Edge(eoi) .ydata = elp(2,:);
Edge(eoi) .zdata = elp(3,:);

end
end

[Edge, Node] = RemoveDeleted(Edge, Node, global_emissing,
global_nmissing, cleaner_type);

end
end

Connectivity = [Node.connectivity];
nc = hist(Connectivity, 1:10);

fprintf (" %41 %51 %51 %51 | %51 | %51 %51 | %51 | %51 |%51 | %51 |%5i |\n", it,
nc(1), nc(2), nc(3), nc(4), nc(5), nc(6), nc(7), nc(8), nc(9),
nc(10), length(Node));
shortID = find([Edge.length] < 1t, 1);
GoShort = ~isempty(shortiD);
end

end
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Appendix B: Supplementary information for electrical conductivity

quantification

B.1 Benchmark for bulk electrical conductivity computation

Our finite-difference electrical conductivity calculator (FDECC) finds an
approximate solution to the current continuity (Laplace) equation, given local
conductivities each material. For a set of voxels connected in series, the
approximation is perfectly accurate, but for a curved surface there is discretization
error. We assess that error by computing the bulk electrical conductivity (opux) of a
15-pixel radius conductive sphere (o; = 0.06 S/m) embedded in a relatively insulative
100x100x100 voxel’ cube (5, = 10 S/m). The analytical solution for the bulk
electrical conductivity follows the Maxwell-Garnett relation (Markov, 1999, Hughes,
2000), which is

Obuic = 0> — 0,-0,
Owy t20, 0,+20,

B.1

where ¢ is the phase fraction of the sphere, which is 0.0141 for the sphere and cube
dimensions listed above. This is the same benchmark computation used by Zhan
(2010) to validate their model. According Eqn. B.1, the analytical solution for gy is
0.058740 S/m, and opuk from FDECC is 0.058709 S/m. The small error (0.05%)
between the analytical and numerical solution suggests that FDECC accurately
estimates the bulk electrical conductivity of the input olivine-melt and olivine-opx-

melt geometries.
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drName = [pwd,

fNameL1st = {

crossn tif!
'sphereInABox.tif'

'/test_images/'];

%

sigmaList = [ ...

7.53 0.009

1;
% addendum = '_cropped(400)';
addendum = '';

nFile = Tength(fNameList);

for isigma = 1 : s1ze(s1gmaL1st 1
sigma = sigmaList(iSigma,:);
sigmastr = sprintf('%. 3f° , sigma(:)");

sigmastr sigmastr(l:end-1);
sigmaBulk = zeros(size(fNameList, 1D,
for iFile = 1 : nFile
nRand = randsample(1l:1e4, 1);
sRoot = '/Users/kevinmiller/data/d

sDir = sprintf( ...
'%s%s%s/', sRoot, fNameList{iF
if exist(sDir, 'dir') == 0
mkdir(sbir);
end

flowDir = 'Z2';

diaryName = spr1ntf( ..
'%s%s_f1owdkhs_ s1gma/s %041 .out'
sDir, .
fNameL1st{1F11e}(l end-4),
flowDir,
sigmaStr,
nRand) ;

if exist(diaryName, 'file') > 0
deTete(diaryName) ;

end

diary(diaryName);

[~, nameComp]
fprintf('\n%s

', nameComp) ;

fprintf('\nLoading %s%s\n', drName,

G = uint8( ..
T1f3DReader( -
drName, ..
fNameL1st{1F11e} C
)H '

geomLim = 400;
domainLim = size(G);

if domainover(l) > O
ha1f0ver = floor(domainover(
G(halfover:end-halfover-

end
if domainover(2) > 0

= G(:,halfover:end-halfove
end
if domainover(3) > 0
halfover = floor(domainover(

3R 3R 3R 3R 3R 3R 3R R 3R 3R ¥ R
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1;

c/results/temp/"';
ile}(1l:end-4), addendum);

system('hostname');

fNameList{iFile});

domainover = domainLim - geomLim;

1 /2)
1,:,:);

halfover = floor(domainover(2) / 2);

r-1,:);

3) / 2);



G = G(:,:,halfover:end-halfover-1);

R R

end
% if domainLim > geomLim
% sizeover(l) =
% G(G == 0) = 2;
% G = G(151:350,151:350,151:350);
% G = G(51:450,51:450,51:450);
if numel(sigma) > 1
Model = dc3dn(G, flowDir, sigma);
else
Model = dc3d(G, flowDir, sigma);
end
saveresult(sDir, Model, nRand);
fprintf('\n');
diary off;
sigmaBulk(iFile) = Model.result.sigmaeff;
end
if numel(sigmaBulk) > 1
save( .
sprintf( ...
'sigma¥%s_%041i_sigmaBulk.mat"',
sigmastr,
nrRand ...
'sigméBQik'
end '
end

function IF = Tif3DReader(Dir, FileTif, varargin)

if ~isempty(varargin)
if strcmp(varargin{l}, 'Plot')
% cmd = varargin{l};
islice = varargin{2};
if ischar(islice) && strcmp(varargin{2}, 'A11")
else
islice = varargin{2};
end
end
end

% FileTif="rec_scoba_12_200x200x200_sample8_pc-melt_final.tif"';
InfoImage=imfinfo([Dir, FileTif]);

mImage=InfoImage(l).width;

nImage=InfoImage(l).Height;

NumberImages=length(InfoImage);
FinalImage=zeros(nImage,mImage,NumberImages, 'uintl6');

TifLink = Tiff([Dir, FileTif], 'r');

for i=1:NumberImages
TifLink.setDirectory(i);
FinalImage(:,:,i)=TifLink.readQ);

end

TifLink.cTlose();

% FinalImage = double(FinalImage);

R

getting the dimensions of the sample
xloc = strfind(FileTif, 'x');

R R R R R

xDim - str2num(FileTif(xloc(1)-3:xloc(1)-1));
yDim = str2num(FileTif(xloc(2)-3:x1oc(2)-1));
zDim = str2num(FileTif(xloc(2)+1:xloc(2)+3));

193



IF = FinalImage;

% Imported this section from online code

% http://people.ece.cornell.edu/land/PROJECTS/Reconstruction/index.htm]l
%patch smoothing factor

rfactor = 0.125;

%isosurface size adjustment

Tevel = .8;

%useful string constants

c2 = 'facecolor';

cl = 'edgecolor';

p=patch(isosurface(smooth3(FinalImage==1),level));
reducepatch(p, rfactor)
set(p,c2,[1,0,0],cl, "'none");

p=patch(isosurface(smooth3(FinalImage==2),level));
reducepatch(p, rfactor)

set(p,c2,[0,1,0],cl, "'none");

% spy(F1na1Image( ,islice));

[Xi, Yi, zi] = meshgr1d(0 1:xDim-1, O0:1:yDim-1, 0:1:zDim-1);

% Xi = uint8(Xi);
% Yi = uint8(Yi);
% Z1 = u1nt8(Z1)

% f1db1 = doub1e(F1na1Image)

% f1gure(1) clf;

% ImageDataZD = Fina]Image(:,:,is1ice);

% fv = isosurface(fidbl, Xi, Yi, zi);

% slice(FinalImage, Xi, Yi, zi);

% colormap(jet);

% bwi = im2bw(FinalImage(:,:,islice));

% image(bwi);

if ~isempty(varargin)
image(FinalImage(:,:,islice));

end

colormap(jet);

SRR RN R33N X 3R R 3R 3R 3R 3R 3R 3R 3R 3R 3R 3R 3R 3R 3R 3R 3R 3R 3R R 3R 3R X

end

function Model = dc3dn(G, flowAxis, sigma, varargin)
%DC3DN 3-D direct current experiment simulation (for N conductivities).

[MODEL] = dc3dn(X) conducts a direct current experiment on a label
geometry. The finite difference method is used to solve the discrete
Laplace equation within a specified binary image. A different electric
potential is imposed at the inlet and outlet faces of the geometry, and
a no flux condition is applied to the boundary box faces that are
perpendicular to the direction of current. dc3dn can handle an
arbitrary number of materials that have different conductivities.
Either a direct or iterative approach is taken to solve the system of
equations. The current density is then calculated using a centered
difference gradient, volume-averaged, and then the effective electrical
conductivity of the volume is calculated.

[MODEL] = dc3dn(G, FLOWAXIS, SIGMA) conducts a direct current
experiment on the 3-D Tabel image G in the direction specified by the
string FLOWAXIS. Conductivities are given by the vector SIGMA and are
applied to materials specified by its index. Results are outputted to
structure MODEL.

Examples:
drName = pwd; )
fName = 'crossn.tif';

= logical(Tif3DReader(drName, fName));
Model = dc3dn(G, 'X', [1 .01]1);

Class support for input G:
uint8, uintl6, single, double

R XX R33N X 3R 3R 3R 3R 3R 3R 3R 3R 3R 3R 3R 3R 3R 3R 3 3R R
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% $Author: Kevin J. Miller $ $Date: 04-Feb-2015 09:25:40 $ $Revision: 1.0 §
% Copyright: Kevin J. Miller 2015

fprintf('\n--------- - e s
fprintf('\n Initiating Direct Current Experiment \n');
fprintf('----=--—mmm e e \n');
tic;

% initiating timer
% mmmmmmmmmmmmmm e — o Setting parameters -----------—--—--—-—————————— %

fprintf('\n%s\n', datestr(now));

% time-stamps the simulation
fprintf('\nFlow Direction: %s\n', flowAxis);
% printing the flow direction

Model = struct( ...
% allocating memory for structure
"params', [],

'geom', 1, ...
'bids"', [1,...
"Tids", [1;

Model.params = loadparams(Model.params);
% loading parameters from text file

Model.params.flowAxis = flowAxis;
uMat = unique(G); uMat(uMat == 0) = [];
% checking that the number of conductances matches the number of materials
nMat = numel(umat);
Model.params.nMat = nMat;
if nMat ~= numel(sigma)
q error('Number of conductances does not match the number of materials');
en
Model.params.flowAxis = flowAxis;
Model.params.sigma = sigma;

fprintf('\tConductivities:\t\t(');
fprintf(' %.3e', sigma(:)'); fprintf(' ) [S/m]');

% mmmmmmmmmmmmmm e — o Loading the geometry -----------—--—-—-——~———~————- %

switch Model.params.flowAxis
% rotating geometry into position
case 'Y'
G = uint8(rotategeom_Gen2(G, Model.params.flowAxis, 1));
case 'Z'
G = uint8(rotategeom_Gen2(G, Model.params.flowAxis, 1));
end

Model.geom.G = G;

fprintf(...
"\n\tDimensions:\t\t%ix%ix%i\n', ...
size(G, 1), size(G, 2), size(G, 3));

Model = impreprocessn(Model, 'Enclose', 'Refine', Model.params.cres);
% preprocessing image

Model.geom.dim = size(Model.geom.G);
% geometry dimensions (in pixels)
Model.geom.bounds = [
% boundaries of geometry

1 Model.geom.dim(1),

1 Model.geom.dim(2),

1 Model.geom.dim(3)

Model.geom.L = Model.geom.dim(1);

% length of geometry

Model.params.ndof = prod( size(Model.geom.G) - 2 );
% number of degrees of freedom
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Model = discretizen(Model);
% discretizing geometry

[connect, connectBound, connectSigma, Model] = assembleconnectn(Model);

% assembling connectivity matrix

A = assemblematrixn(Model, connect, connectBound, connectSigma);
% building matrix with boundary conditions

Model.lids.inlet = [];

% clearing unnecessary variables from structure
Model.lids.outlet = [];
Model.lids.noFlux = [];

b = assembleloadvectorn(Model, connect, connectBound);
% building load vector with boundary conditions

clear connect connectBound connectSigma;

sideL = size(Model.geom.G, 1) - 2;
x = 1 : sideL;

VExp = ( -1 * (Model.params.vV_inlet - Model.params.V_outlet) / sideL) *

X + Model.params.v_inlet;
X0 = repmat( .

VEXp', .

[1 s1ze(Mode1 geom.G, 2) - 2 size(Model.geom.G, 3) - 2]1);
x0 = X0(:);

solveStruct = struct( ...

'droptol', Model.params.droptol,
'thresh', Model.params.thresh,
'udiag', Model.params.udiag,
so]type Model.params.soltype,
"maxiter’ Model.params.maxiter,
'reltol’, Model.params.reltol,
'x0"', x0 ...

)
clear x0 X0;

dumpPath = [pwd, '/dump/'];
% dumping structure to hard disk
if ~exist(dumppPath, 'dir')
mkdir(dumpPath)
end
save([dumpPath, 'Model.mat'], 'Model', '-v7.3");
clear Model;

= dcsolvern(A, b, solveStruct);
% solving Tinear system

load([dumpPath, 'Model.mat']);
% recovering structure from hard disk
delete([dumpPath, 'Model.mat']);

Tidinteriorall = [];
for imat = 1 : nMat
q TidInteriorAll = [TidInteriorAll; Model.lids.interior{imMat}];
en
TidInteriorAll = sort(lidInteriorAll);

v = zeros(prod(ModeT. geom dim), 1);
v(11dInter1orA11)

for iMmat = 1 : nMat

v(Model.bids.inTet{iMat}) = Model.params.v_inlet;
v(Model.bids.outTet{iMat}) = Model.params.v_outlet;
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end

V = reshape(v, Model.geom.dim(1l), Model.geom.dim(2), Model.geom.dim(3));
Model.result.v = V;

clear G A x b 1lidInteriorAll v v;

Model = postprocessingn(Model);
% conducting the postprocessing

fprintf('\n');

toc;

fprintf('\n--------- - e e s
fprintf('\n End of Simulattion \n');
fprintf('----=---mmm e e \n');
end

R ettt e e L %

function A = loadparams(A)

fprintf('\nSeting parameters for model...\n');

R

Parameters that modify the input geometry

A.rmspurs = 0;

A.enclose = 1;

A.cres = 1;

A.rmisTands = 0;

A.islthresh = 100;

A.addinout = 1;

% Parameters that modify boundary conditions and material properties
A.v_inlet = 2;

A.V_ out]et = 1;

A.V_vnh = 0;

A.h = 1;

% A.sigma = [10 .009];

% A.nMat = numel(A.sigma);

% Parameters that modify perconditioner options
A.droptol = le-3;

A.thresh = 0;

A.udiag = 1;

% Parameters that modify solver options
A.soltype = 'iter';

A.iterkeep = 2;

A.maxiter = le4;

A.reltol = le-7;

fprintf(sprintf('\n\tRemove Spurs:\t\t %i', A.rmspurs));
fprintf(sprintf('\n\tEnclose geometry:\t %i', A.enclose));
fprintf(sprintf('\n\tRemove Islands (<%i):\t %i', A.islthresh,
A.rmisTands));

fprintf(sprintf('\n\tAppend inlet/outlet:\t %i', A.addinout));
fprintf(sprintf('\n\tResample geometry:\t %i\n', A.cres));
fprintf(sprintf('\n\tln1et potential:\t%5i [V]', A.v_inlet));
fprintf(sprintf('\n\toutlet potential:\t%5i [V]', A.V_outlet));
fprintf(sprintf(’ \n\tSpac1ng \t\t%5g [m]', h));

% fprintf(sprintf('\n\n\tConductivities: \t\tA Oe, %.0e [S/m]J\n', A.sigma(l),
A.sigma(2)));

fprintf(sprintf('\n\tMaximum jterations:\t%i', A.maxiter));
fprintf(sprintf('\n\tRelative tolerance:\t%.0e\n', A.reltol));
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function G_rot = rotategeom_Gen2(G, flipAxis, flipDir)

switch fl1ipAxis
case 'Y'
switch flipDir
case 1
G_rot = flipdim( permute(G, [2 1 3]), 2 );
case -1
G_rot = permute( flipdim(G, 2), [2 1 3] );
end
case 'Z'
switch flipDir
case 1
G_rot
case -1
G_rot

flipdim( permute(G, [3 2 1]), 3 );
permute( flipdim(G, 3), [3 2 1] );

end

This_subroutine preprocesses 2D binary image data for running CFD
simulations.

RN X

if ~isempty(varargin)

GoRmSpurs = ~isempty(find(strcmp(varargin, 'Remove Spurs'), 1));
GoRefine = ~isempty(find(strcmp(varargin, 'Refine'), 1));
GoEnclose = ~isempty(find(strcmp(varargin, 'Enclose'), 1));
GoRmIslands = ~isempty(find(strcmp(varargin, 'Remove Islands'), 1));
GoopenInlets = ~isempty(find(strcmp(varargin, 'Open Inlets'), 1));
if GoRmSpurs

rms_loc = find(strcmp('Remove Spurs', varargin), 1);

tconn = varargin{rms_Toc+1};

end
if GoRefine
ref_loc = find(strcmp('Refine', varargin), 1);
J trefine = varargin{ref_loc+1};
en

if GoEnclose
J flowiInd = find(Model.params.flowvec, 1);

en

if GoRmIsTands
islandth_loc = find(strcmp('Remove Islands', varargin), 1);
islandth = varargin{islandth_Tloc+1};

end

else

GoRmSpurs = 0;

GoRefine = 0;

GoEnclose 0;

GoRmIslands =

s 0
GoOpenInlets =

SRR RV 3N X 3R 3R 3R 3R 3R 3R 3R 3R 3R 3R 3R 3R 3R 3 3 3R R

end

if Model.params.

d Model.geom.G = OpenInlets(Model.geom.G);
en
if GoRmSpurs

J Model.geom.G = RmSpurs(Model.geom.G, tconn);
en
Model.geom.GO = Model.geom.G;
if Model.params.cres > 1

Model.geom.G = imresamplen(Model.geom.G, Model.params.cres);

% Model.geom.GO = Model.geom.G;
end
if Model.params.addinout
Model.geom.G = addinout(Model.geom.G);

R R R R :® R

end
% if Model.params.enclose

198



% % Model.geom.GO = Model.geom.G;

% Model.geom.G = dc_ImEnclose3D(Model.geom.G);
% else

% Model.geom.GO = Model.geom.G;

% end

if Model.params.rmislands

R

conn = 8;
Model.geom.G = rmislands(Model.geom.G,
3*ModeTl.params.cres*Model.params.islthresh);
end

function G = addinout(G)

G = padarray(G, [1 1 1], 'replicate');

% inletCopy = G(1,:,:);

% outletCopy = G(end,:,:);

%

% G = cat(l, inletCopy, G);

% G = cat(l, G, outletCopy);

end

b —mm o - %

function newG = rmislands(G, thresh)
fprintf('\tRemoving islands(<%i)..."', thresh);

CC = bwconncomp(G, 6);
F = zeros(size(G), 'uintl6');
ival = uintl6(1);
nIs1l = numel(CC.PixelIdxList);
for iIs1 = 1 : niIsl
cIs]l = cC.PixelIdxList{iIs1};
if size(cIs1l, 1) > thresh
F(cC.PixelIdxList{iIs1}) = 1ival;
ival = ival + 1;

end
end
newG = F > 0;
nisl = sum(G(:)) - sum(newG(:));

fprintf('%i pixels modified', nisl);

end

function Model = discretizen(Model)
% Discretizes image that consists of an arbitrary number of materials.
fprintf('\nDiscretizing geometry..."');

Model.bids = struct( ...

% storing binary images and Tlinear ID's in 'Model' structure
"inlet', 1, ...
'outTet', [
'solLiq', [
'noFTux', [
'interior', [
"inside', [

[ T S T T}

)3
Model.1lids = struct( ...
% storing binary images and Tlinear ID's in 'Model' structure
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noFlux',
interior',

! (1,
! s (1,
'solLiq', [1,

! 1, ...
! [1);

nMat = Model.params.nMat;

for iMmat = 1 : nMat

R

R

noFlux = Model.geom.G == iMat;
noFlux(:,2:Model.geom.dim(2)-1,2:Model.geom.dim(3)-1) = 0;

inside = Model.geom.G == iMat;
binary image of inside nodes

inlet = false( ..
allcating memory for binary image of inlet nodes
Model.geom.bounds(2),
Model.geom.bounds(4), ...
Model.geom.bounds(6));

outlet = false( ...
allcating memory for binary image of outlet nodes
Model.geom.bounds(2),
Model.geom.bounds(4), ...
Model.geom.bounds(6));

inlet(1,:,:) = inside(1,:,:);
binary image of inlet nodes

outlet(Model.geom.bounds(2),:,:) = inside(Model.geom.bounds(2),:,:);
binary image of outlet nodes

inside_test = inside;
inside_test(:,1,:) = 0;
inside_test(:,end,:) = O0;
inside_test(:,:,1) = 0;
inside_test(:,:,end) = O0;
solLiqstrel(:,:,1) = [0 0 0; 0 10; 00 0];
solLiqstrel(:,:,2) = [010; 111; 01 0];
solLiqstrel(:,:,3) = [0 0 0; 0 10; 00 0];

solLiq = imdilate(inside_test, solLiqStrel) & ~inside_test;
binary image of solid-Tiquid boundary boundary nodes

inlet = inlet & ~noFlux;
outlet = outlet & ~noFlux;

solLiq(l,:,:) = ;
removing inlet positions from solLiq

solLig(Model.geom.bounds(2),:,:) =
removing outlet positions from solLiq

0
0
solLiq(:,1,:) = 0
0
0
0

solLiq(:,Model.geom.bounds(4),:) = ;
solLiq(:,:,1) = ;
solLiq(:,:,Model.geom.bounds(6)) = ;
interior = inside & ~inlet & ~outlet & ~noFlux;
removing solLiq, inlet, and outlet nodes from 'inside' binary image

Model.bids = storestructn(Model.bids, { ...
storing binary images and Tinear ID's in 'Model' structure

"inlet' inlet
'outTet' outlet
'solLiq’ solLiq
"noFlux’ noFlux
"interior' dinterior
'inside’ inside
1)
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Model.1ids = storestructn(Model.lids, { ...
% storing_binary images and linear ID's in 'Model' structure

inlet' ind(inTlet)
'outlet' find(outlet)
'solLiq’ find(solLiq)
'noFTux' find(noFlux)
'interior' find(interior)
1
end
end
D et et e e %

function S = storestructn(S, storeName, varargin)

if ~isempty(varargin)
if strcmpi(varargin, 'append')
appendswitch = 1;
else
appendswitch = 0;
end
else
appendswitch = 0;

R R R R R XWX

end

sizeStruct = structfun(@(x) size(x, 2), S);
uMat = unique(sizeStruct);
if numel(umat) > 1
error('sizes of structure fields are not consistent');

end
cMat = uMat + 1;
nstr = length(storeName);

for istr = 1 : nstr
S.(storeName{istr,1}){cmMat} = storeName{istr,end};
end

function [connect, connectBound, connectSigma, Model] = ...
assembleconnectn(Model)

% Subroutine for assembling the connectivity matrix.
fprintf('\n\nAssembling connectivity matrix..."');
nMat = Model.params.nMat;

connect = cell(nMat, 1);
connectSigma = cell(1l, Model.params.nMat);

sigmaAll zeros(size(Model.geom.G));

for iMat 1 : Model.params.nMat
sigmaAll(Model.bids.inside{imat})
sigmaAll(Model.bids.noFlux{imMat})

Model.params.sigma(iMat);
Model.params.sigma(iMat);

end
sigmaAll(Model.bids.noFlux{1l} | Model.bids.noFlux{2}) = 0;
Model.sigmaAll = sigmaAll;

connectBound = struct( ...
'isIinlet', []
'isoutlet’, []
'issolLiq', []
'"isNoFlux"', []
'isConnBound', []

5.7

for iMmat = 1 : nMat
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[iInBox,

jInBox, kInBox] =

ind2sub(...
size(Model.bids.interior{imat}),

’2) - 11
2) + 1,

find(Model.bids.interior{imat} == 1));

% coorinates of the center nodes

ijkInBox = [iInBox, jInBox, kInBox];

xMinus = [ijkInBox(:,1) - 1, ijkInBox(:,2),
% coorinates of the west-shifted nodes

xPlus = [ijkiInBox(:,1) + 1, ijkInBox(:,2),
% coorinates of the east-shifted nodes

yMinus = [ijkInBox(:,1), ijkInBox(:
% coorinates of the south-shifted nodes

yPlus = [ijkiInBox(:,1), ijkInBox(:
% coorinates of the north-shifted nodes

zMinus = [ijkInBox(:,1), ijkInBox(:,2),
% coorinates of the south-shifted nodes

zPlus = [ijkInBox(:,1), ijkInBox(:,2),

R

coorinates

of the north-shifted nodesy

ctrLids = sub2ind( ...
size(Model.bids.interior{imat}),
ijkInBox(:,1),
ijkInBox(:,2), ...
ijkInBox(:,3));
% linear indices of the centers nodes

xMinusLids = sub2ind( ...
size(Model.bids.interior{imat}),
xMinus(:,1),
xMinus(:,2),
xMinus(:,3));
west-shifted nodes

xPlusLids = sub2ind( ...
size(Model.bids.interior{imat}),
xPlus(:,1),
xPlus(:,2), ...
xPTus(:,3));

east-shifted nodes

yMinusLids = sub2ind( ...
size(Model.bids.interior{imat}),
yMinus(:,1),
yMinus(:,2),

yMinus(:,3));
south-shifted nodes

yPlusLids = sub2ind( ...
size(Model.bids.interior{imat}),
yPlus(:,1),
yPlus(:,2), ...
yPlus(:,3));

north-shifted nodes
zMinusLids = sub2ind( ...
size(Model.bids.interior{imat}),
zMinus(:,1),
zMinus(:,2),
zMinus(:,3));
south-shifted nodes

zPlusLids = sub2ind( ...
size(Model.bids.interior{imat}),
zPlus(:,1),
zPlus(:,2), ...
zPTus(:,3));

north-shifted nodes

connect{imat} = [ ...
ctrLids,
XMinusLids,
xPlusLids,
yMinusLids,
yPlusLids,
zZMinusLids,
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z?1gsL1ds];_ _ _
% connectivity matrix of interior nodes

connectIsInlet = ismembc(
connect{1Mat} ..
Model.Tids. 1n1et{1Mat} ); % logical array showing
connectivities that are Tlocated on inlet
connectIsoutlet = ismembc(...
connect{imat}, ..
Model.Tids. out]et{1Mat}) % logical array showing
connectivities that are located on outlet
connectIsSolLiq = ismembc(
connect{imat}, ..
Model.Tids. so1L1q{1Mat}) % logical array showing
connectivities that are located on solid-pore interface
connectIsNoFTux = ismembc(
connect{imat}, ..
Model.Tids. noF]ux{1Mat}) % logical array showing
connectivities that are located on solid-pore interface

connectIsInlet(connectIsInlet(:,1),:) = 0;

removing nodes that are part of 'inlet' from connectivity matrix
connectIsoutlet(connectIsoutlet(:,1),:) ;

removing nodes that are part of 'otlet' from connectivity matrix
connectIsNoFlux(connectIsNoFlux(:,1),:) = ;

removing nodes that are part of 'otlet' from connectivity matrix

R R R

isconnBound = (
Togical index of nodes that are connected to boundary nodes
sum(connectIsInlet, 2)
+ sum(connectIsOut1et, 2) ...
+ sum(connectIsNoFlux, 2)) > 0;

R

connectSigma{iMat} = sigmaAll(connect{iMat});

connectBound = storestructn(connectBound, {

'isInlet' connectIsInlet
'isoutlet’ connectIsoutlet
'issolLiq’ connectIsSolLiq
'isNoFlux' connectIsNoFTux
;1sConnBound' isConnBound

)

end
Model.sigmaAll = single(Model.sigmaAll);

end

function A = assemblematrixn(Model, connect, connectBound, connectSigma)
% Subroutine for assembling the coefficient matrix.
fprintf('\n\nAssembling coefficient matrix...");

sigmaeExp = @(sl, s2) (2 * s1 .* s2) ./ (sl + s2);

nstencilPts = 7; ]
% size of finite-difference stencil

maxMatBounds = repmat(prod(Model.geom.dim), [1 2]);

% maximum matrix bounds for stiffness matrix

nonZeroMax = nStencilPts*maxMatBounds(l);

% mamimum possible number of non-zero element in stiffness matrix

A = spalloc(maxMatBounds(1l), maxMatBounds(2), nonZeroMax) ;
augList = []1;

for iMat = 1 : Model.params.nMat
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sigmaNoFlux = connectSjgma{iMat}.*
sumSigmaNoFlux = sum(sigmaNoFlux, 2);
notC_isNoFlux = ~connectBound.isNoFlux{iMat};

notC_isInlet = ~connectBound.isInlet{imMat};
notC_isoutlet = ~connectBound.isOutlet{iMat};

cCtr = -1 * ( ..

51gmaExp(connectS1gma{1Mat}(:,1), connectSigma{imat}
+ sigmaexp(connectSigma{iMat}(:,1), connectSigma{iMat}
+ sigmaexp(connectSigma{iMat}(:,1), connectSigma{iMat}
+ sigmaexp(connectSigma{iMat}(:,1), connectSigma{iMat}
+ sigmaexp(connectSigma{iMat}(:,1), connectSigma{iMat}
+ sigmaExp(connectSigma{imMat}(:,1), connectSigma{imat}
+ sumSigmaNoFlux;
cwest = sigmaexp( ..
connect51?ma{1Mat}( ,1) .* notC_isNoFTux(:,1)
notC_isInlet(:,1) .* notC_isoutlet(:,1),
connectS1?ma{1Mat}(:,2) .* notC_isNoFTux(:,2)
90tC_isIn et(: * notC_isoutlet(:,2)
CEast = sigmaexp( ..
connectS1?ma{1Mat}(:,l) .* notC_isNoFTux(:,1)
notC_isInlet(:,1) .* notC_isoutlet(:,1),
connectS1?ma{1Mat}(:,3) .* notC_isNoFTux(:,3)
gotc_isIn et(: * notC_isoutlet(:,3)
cSouth = sigmaexp( ...
connectSigma{imMat}(:,1) .* notC_isNoFlux(:,1),
connectSigma{imMat}(:,4) .* notC_isNoFlux(:,4)
cNorth = sigmaexp( ...
connectSigma{imMat}(:,1) .* notC_isNoFlux(:,1),
connectSigma{imMat}(:,5) .* notC_isNoFlux(:,5)
cLower = sigmaexp( ...
connectSigma{imMat}(:,1) .* notC_isNoFlux(:,1),
connectSigma{imMat}(:,6) .* notC_isNoFlux(:,6)
cUpper = sigmaexp( ...
connectSigma{imMat}(:,1) .* notC_isNoFlux(:,1),
connectSigma{imMat}(:,7) .* notC_isNoFlux(:,7)
A = A + sparse(repmat(connect{imat}(:,1), [7 11),
[connect{imat}(:,1); ...
connect{iMat}(: 2),
connect{1Mat}(:,3);
connect{iMat}(:,4);
connect§1Mat%E ,g%,
connect{iMat ,
connect{imat}(:,7)], ..
[cCtr; cwest; cEast cSouth cNorth; cLower; cuUpper],
maxMatBounds(l), maxMatBounds(Z), nonzeromax) ;
augList = cat(l, augList, ..
[Model.Tids.inlet{imat};
Model.lids.outlet{imat};
Model.1lids.noFlux{imat}]);
end
allList = 1l:prod(Model.geom.dim);
augBidList = ismember(allList, augList);

intList = allList(~augBidList);
A = A(:,intList);

A=A.";

A = A(:,intList);

A=A.";
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ndof = size(A, 1);
fprintf('\n\n\tNumber of degrees of freedom: %i\n', ndof);

end

function b = assembleloadvectorn(Model, connect, connectBound)
% Subroutine for assemblin gthe load vector

npts = prod(mModel.geom.dim);
bkeep = [];

b = spalloc(npts, 1, Model.params.ndof);

for iMat = 1 : Model.params.nMat;

bvals = -1 * Model.params.sigma(iMat) * (

% applying Dirchlet and Neumann boundary conditions
Model.params.v_inlet * sum(connectBound.isInlet{imat}, 2) + ...
Model.params.V_outlet * sum(connectBound.isoutlet{iMat}, 2));

b =b + sparse( ...

% forming sparse load vector
connect{imat}(:,1),
ones(size(bvals)),
bvals,
npts,
s%zéibva]s, 1));

bkeep = [bKeep; Model.lids.interior{imat}];

end

bkeep = sort(bkeep);

= b(bKeep);
% removing pixels that belong to the boundary or solid material
Model.lids.interior = [];

end

function x = dcsolvern(A, b, solveStruct)
% Subroutine for setting up and initializing the preconditioner and solver.
switch solveStruct.soltype
case 'direct'
fprintf('\nDirect solver: Matlab %s', '"\"');
X = A\b;
case 'iter'

fprintf('\nPreconditioning matrix...\n');
fprintf('\n\tPreconditioner: Incomp1ete Cho]esk1 Factorization');

iluStruct = struct( -

"type', ict', ..
"droptol’', solvestruct. droptol,
'shape’', 'lower'

L = ichol(-1*A, iluStruct);
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fprintf('\n\tdroptol: %.1le\n', solveStruct.droptol);

fprintf('\nInitiating solver...\n");

fprintf('\n\tIterative solver: PCG\n\treltol: %.le\n',
solveStruct.reltol);

[x, flag, rrl, iter, relNorm] = pcg(...
-1*A, ...
-1*b, ...
solveStruct.reltol,
solveStruct.maxiter,
L, L', ...
solveStruct.x0);

switch flag
case 0
fprintf('\n\tPCG converged to the desired tolerance %.1le
within %i iterations.\n', solveStruct.reltol, numel(relNorm));
case 1
error('\n\tPCG iterated %i times but did not converge.\n',
solveStruct.maxiter);

case 2
error('\n\tPreconditioner was ill-conditioned.\n');
case 3
error('\n\tPCG stagnated.\n');
end
figure(l); clf;
plot(l:numel(relNorm), relNorm, '-0');

set(gca, 'yvScale', 'log');
title('Convergence');
xTabeT('Iterations');
ylabel('ReTative Norm');

function Model = postprocessingn(Model)

% Subroutine for postprocessing the scalar electric potential data to
% obtain the bulk electrical conductivity for the geometry.

fprintf('\nPost-processing...\n');
% Post-processing

cell(1, 3);
cell(1, 3);

E
J

V = Model.result.v(:,2:end-1,2:end-1);
Model.result.v = V;

G = Model.geom.G(:,2:end-1,2:end-1);

gradvxctr = v(2:end,:,:) - v(l:end-1,:,:);
gradvyctr = v(:,2:end,:) - v(:,1l:end-1,:);
gradvzctr = v(:,:,2:end) - v(:,:,1l:end-1);
ex = gradvxctr;

ey = gradvycCtr;

ez = gradvzCtr;

ex = -1 * ex;

ey = -1 * ey;

ez = -1 * ez;

sigmaeExp = @(sl, s2) (2 * s1 .* s2) ./ (sl + s2);

sigmashiftxXx = sigmaExp(Model.sigmaAll1(2:end,2:end-1,2:end-1),
Model.sigmaAll(l:end-1,2:end-1,2:end-1));

sigmashifty = sigmaExp(Model.sigmaAl1(:,3:end-1,2:end-1),
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Mode1.sigmaA11( 2:end-2,2:end-1));
sigmashiftz = ?maExp(Mode1 .sigmaAll(:,2:end-1,3:end-1),
Model.sigmaAll end-1,2:end-2));

jx = ex .* sigmaShiftX;
jy = ey .* sigmaShifty;
jz = ez .* sigmaShiftz;
switch Model.params.flowAxis
case 'X'
rotG = Model.geom.G
rotG = rotG(:,2: end 1,2:end-1);
E{1} = ex;
E{2} = ey;
E{3} = ez;
{1} = jx;
{2} = Jy;
3{3} = Jz;
case 'Y'
rotG = flip(permute(Model.geom.G, [2 1 3]), 1);
rotG = rotG(2:end-1,:,2:end-1);
= flip(permute(v, [2 1 3]), 1);
E{1} = flip(permuteCey, [2 1 3]), 1);
E{2} = flip(permute(ex, [2 1 3]), 1);
E{3} = flip(permuteCez, [2 1 3]), 1);
{1} = flip(permute(jy, [2 1 3]), 1);
3{2} = flip(permute(jx, [2 1 3]), 1);
1{3} = flip(permute(jz, [2 1 3]), 1);
case 'Z'
rotG = flip(permute(Model.geom.G, [3 2 1]), 1);
rotG = rotG(2:end-1,2:end-1,:);
= flip(permute(v, [3 2 1]), 1);
E{1} = flip(permuteCez, [3 2 1]), 1);
E{2} = flip(permuteCey, [3 2 1]), 1);
E{3} = flip(permute(ex, [3 2 1]), 1);
J{1} = flip(permute(jz, [3 2 1]), 1);
1{2} = flip(permute(jy, [3 2 1]), 1);
1{3} = flip(permute(jx, [3 2 1]), 1);
end

dvdL = -1 * (Model.params.V_outlet - Model.params.v_inlet) / ...

(Mode] geom.L - 1);

switch Model.params.flowAxis
case 'X'
jxAvg = (1 / prod(size(3{1}))) * sum(sum(sum(3{1})));
sigmaeff = jxAvg / dvdL;
case 'Y'
jyAvg = (1 / prod(s1ze(J{2}))) * sum(sum(sum(3{2})));
sigmaeff = jyAvg / dvdL
case 'Z'
jzAvg = (1 / prod(size(3{3}))) * sum(sum(sum(3{3})));
d sigmaeff = jzAvg / dvdL;
en

Model.result = storestruct(Model.result, { ...

'sigmaeff' sigmaeff
'v'v
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'rotG' rotG

fprintf('\n\tBulk electrical conductivity: %.4e\n',
Model.result.sigmaeff);

function Model = modifygeom(Model)
fprintf('\nModifying geometry...\n'");

% fprintf('\n\n\tDirectory:\t%s', drName);

% fprintf('\n\tFile:\t\t%s', fName);
fprintf('\n\tDimensions:\t%ix%ix%i\n', size(Model.geom.G, 1),
size(Model.geom.G, 2), size(Model.geom.G, 3));

switch Model.params.flowAxis
case 'Y'
Model.geom.G = uint8(rotategeom_Gen2(Model.geom.G,
Model.params.flowAxis, 1));
case 'Z'
Model.geom.G = uint8(rotategeom_Gen2(Model.geom.G,
Moﬁe].params.f]owais, 1));
en

fprintf('\n\tPreprocessing image\n');

if Model. params cres > 1

ModeT. %eom = imresample(Model.geom.G, Model.params.cres);
fprintf('\n");
end
if Model. params enclose
ModeT. %eom = imenclose(Model.geom.G);
d fprintf('\n");
en

if Model.params.rmislands
Model.geom.G = rmislands(Model.geom.G,
3*Model. params. cres*Model.params. 1s?thresh);
fprintf('\n");
end
if Model.params.rmspurs
Model.geom.G = rmspurs(Model.geom.G);
fprintf('\n");
end
if Model.params.rminletspurs
Model.geom.G = rminletspurs(Model.geom.G);
q fprintf('\n");
en

nDim = numel(size(Model.geom.G));
switch nDim
case 2
Model.geom.dim = size(Model.geom.G);
geometry dimensions (in pixels)

R

Model.geom.bounds = [ ...
% boundaries of geometry
1 Model.geom.dim(1),
1 Model.geom.dim(2)

R

case 3
Model.geom.dim = size(Model.geom.G);
geometry dimensions (in pixels)

R

Model.geom.bounds = [ ...
% boundaries of geometry
1 Model.geom.dim(1),

R
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1 Model.geom.dim(2),
1 Model.geom.dim(3)

end

Model.geom.L = Model.geom.dim(1);
% length of geometry

end

function G3 = imresample(G, trefine)

fprintf('\n\tResampling image to ');

Gl = imresize(G, trefine, 'nearest');

G2 = logical(rotategeom_Gen2(Gl, 'z', 1));

G2 = imresize(G2, [trefine*size(G2, 1) size(G2, 2)], 'nearest');
G3 = Tlogical(flip(permute(G2, [3 2 1]1), 1));

fprintf("%ix%ix%i', size(G3, 1), size(G3, 2), size(G3, 3));

end

function newG = imenclose(G)
fprintf('\tEnclosing geometry..."');

% newG = G;
nDim = numel(size(G));

switch nDim

case 2
newG = padarray(G, [0 1]);
case 3
newG = padarray(G, [0 1 1]);
end
% newG(:,1,:) = 0;
% newG(:,end,:) = 0;
% newG(:,:,1) = 0;
% newG(:,:,end) = 0;

nMod = abs(sum(G(:)) - sum(newG(:)));
fprintf('%i pixels were modified', nMod);

end

function newG = rmislands(G, thresh)
fprintf('\tRemoving islands(<%i)..."', thresh);

CC = bwconncomp(G, 6);
F = zeros(size(G), 'uintl6e');
ival = uintl6(1);
nIs1l = numel(CC.PixelIdxList);
for iIs1 = 1 : nIsl
cIs]l = cC.PixelIdxList{iIs1};
if size(cIs1l, 1) > thresh
F(cC.PixelIdxList{iIs1}) = 1ival;
ival = ival + 1;
end
end

newG = F > 0;
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nisl = sum(G(:)) - sum(newG(:));
fprintf('%i pixels modified', nisl);

end

SEC:,:,1) = [000; O
SE(:,:,2) =[010; 1
SE(:,:,3) =[000; O
% SE1 [101];

% SE2 = [1; 0; 1];

% SE3 = cat(3, 1, 0, 1);
tempG = double(G);
nspurs = 0;

Goon = 1;

while Goon > 0
C = convn(tempG, SE, 'same');
C = C.*tempG;
spurs = (C == 1);
tempG(spurs) = 0;
nspurs_temp = sum(spurs(:));
if nSpurs_temp == 0
Goon = 0;
end
nSpurs = nSpurs + nSpurs_temp;
end

G = logical(tempG);

fprintf(sprintf('%i pixels removed.', nSpurs));

end

A et e e e e %
function newG = rminletspurs(G)

notG = ~G;

neighborInletSlice = notG(2,:,:);

neighboroutletSlice = notG(end-1,:,:);

notG(l,:,:) = neighborinletSTice;

notG(end,:,:) = neighboroutletSTice;

newG = ~notG;

end

b — e - %

function borderBw = findborder(Bw, varargin)

if ~isempty(varargin)
if strcmpi(varargin{l}, 'outside') % | 'outside'
BW = ~BW;
end
end

conn = conndef(3,'m1nima1');
erodeBwW = imerode(BW, conn);
borderBw = BW & ~erodeBw;

end
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function S = storestruct(S, storeName, varargin)
nstr = size(storeName, 1);
for istr = 1 : nstr

S.(storeName{istr,1}) = storeName{istr,end};
end

function Model = assembleconn(Model)
fprintf('\n\nAssembling connectivity matrix..."');

[iInBox, jInBox, kInBox] = ind2sub(size(Model.geom.G), Model.lids.interior);
% coorinates of the center nodes

XMinus = [iInBox - 1, jInBox, kInBox 1;

% coorinates of the west-shifted nodes

xPlus = [iInBox + 1, jInBox, kInBox 1;

% coorinates of the east-shifted nodes

yMinus = [iInBox, jInBox - 1, kInBox 1;

% coorinates of the south-shifted nodes

yPlus [iInBox, jInBox + 1, kInBox 1;

% coor1nates of the north- sh1fted nodesyMinus = [ijInBox(:,1), ijInBox(:,2)
- 17; % coorinates of the south shifted
nodes

zMinus = [iInBox, jInBox, kInBox - 1];

% coorinates of the south-shifted nodes

zPTlus = [iInBox, jInBox, kInBox + 1]; %

coorinates of the north-shifted nodes

ctrLids = sub2ind(size(Model.geom.G), iInBox, jInBox, kInBox); %
Tinear indices of the centers nodes

XMinusLids = sub2ind(size(Model.geom.G), xMinus(:,1), xMinus(:,2),

xMinus(:,3)); % Tlinear indices of the west-shifted nodes
xPlusLids = sub2ind(size(Model.geom.G), xPlus(:,1), xPlus(:,2),
xPlus(:,3)); % Tinear indices of the east-shifted nodes
yMinusLids = sub2ind(size(Model.geom.G), yMinus(:,1), yMinus(:,2),
yMinus(:,3)); % Tlinear indices of the south-shifted nodes
yPlusLids = sub2ind(size(Model.geom.G), yPlus(:,1), yPlus(:,2),
yPlus(:,3)); % Tinear indices of the north-shifted nodes
zMinusLids = sub2ind(size(Model.geom.G), zMinus(:,1), zMinus(:,2),
zMinus(:,3)); % Tlinear indices of the south-shifted nodes
zPlusLids = sub2ind(size(Model.geom.G), zPlus(:,1), zPlus(:,2),
zPlus(:,3)); % Tinear indices of the north-shifted nodes

clear xMinus xPlus yMinus yPlus zMinus zPlus;

connect = [ctrLids, xMinusLids, xPlusLids, yMinusLids, yPlusLids, )
zMinusLids, zPlusLids]; % connectivity matrix of interior
nodes

clear xMinusLids xPlusLids yMinusLids yPlusLids zMinusLids zPlusLids;

connectIsInlet = ismember(connect, Model.lids.inlet);

% logical array showing connectivities that are Tocated on inlet
connectIsoutlet = ismember(connect, Model.lids.outlet);

% logical array showing connectivities that are Tocated on outlet
connectIsSolLig = ismember(connect, Model.lids.solLiq);

% logical array showing connectivities that are located on solid-pore
interface

connectIsInlet(connectIsInlet(:,1),:) = 0;
% removing nodes that are part of 'inlet' from connectivity matrix
connectIsoutlet(connectIsoutlet(:,1),:) = 0;
% removing nodes that are part of 'otlet' from connectivity matrix
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connectIsSolLig(connectIssolLiq(:,1),:) = 0;
% removing nodes that are part of 'solLiq' from connectivity matrix

isCconnBound = (
% logical index of nodes that are connected to boundary nodes
sum(connectIsInlet, 2)
+ sum(connectIsOut]et, 2) ..
+ sum(connectIsSolLiq, 2)) > 0;

connectBound = struct(

'isInlet' 1,
'1sOut1et [1,
'1sSo1L1q

'1sC0nnBound' []5;-.-

connectBound = storestruct(connectBound, {

'isInlet' connectIsInlet
'isoutlet’ connectIsoutlet
'issolLiq’ connectIsSolLiq
'isConnBound' 1isConnBound
}o...

s

Model.connect = connect;
Model.connectBound = connectBound;

end

function A = assemblematrix(Model)
fprintf('\n\nAssembling coefficient matrix...");

nodeList = sort([Model.Tids.inlet; Model.Tlids.outlet; Model.Tlids.solLiq;
Model.1lids.interior]);

nStencilPts = 7;

% size of finite-difference stencil

maxMatBounds = repmat(numel(nodeList), [1 2]); %
maximum matrix bounds for stiffness matrix

nNeighSolLiq = sum(Model.connectBound.isSolLiq, 2);
notC_isSolLig = ~Model.connectBound.isSolLiq;

entervals = [
—(nStenc11Pts - 1)*ones(size(Model.connect, 1), 1) + nNeighSolLiq;
notC_issolLiq(:,2);
notC_isSo1L1q(:,3);
notC_issolLiq(:,4);
notC_issolLiq(:,5);
notC_issolLiq(:,6);
notC_issolLiq(:,7)

[~, indInt] = sort(nodeList);
indMat = zeros(size(nodeList));
indMat(nodeList) = indInt;

A = sparse(repmat(indMat(Model.connect(:,1)), [7 1]),

[indvat(Model.connect(:,1)); ...
indMat(Model.connect(:,2));
indMat(Model.connect(:,3));
indMat(Model.connect(:,4));
indMat(Model.connect(:,5));
indMat(Model.connect(:,6));
indMat(Model.connect(:,7))],

entervals, ..

maxMatBounds(l) maxMatBounds(2), numel(entervals));

A(:,indMat(Model.lids.interior));
A=A.";
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A A(:,indMat(Model.lids.interior));
A=A.";

fprintf('\n\n\tNumber of degrees of freedom: %i\n',
numel (Model.Tids.interior));

end

function b = assembleloadvector(Model)

% nConnBound = sum(Mode1.conngctBound.isConnBound);
% number of connections pertaining to each node

npts = prod(mModel.geom.dim);
% b = spalloc(npts, 1, nConnBound);

% allocating memory for sparse load vector
b = zeros(npts, 1);

% boundsum = -1*( .. %
applying Dirchlet and Neumann boundary conditions
Model.params.v_inlet * sum(Model.connectBound.isInlet, 2) + ...

Model.params.V_outlet * sum(Model.connectBound.isoutlet, 2)

iNonzero = find(boundsum(;

R R R R R X R

b = sparse
b(Model.connect(:,1)) = -1*( .
% applying Dirchlet and Neumann boundary conditions

Model.params.v_inlet * sum(Model.connectBound.isInlet, 2) + ...
Model.params.V_outlet * sum(Model.connectBound.isoutlet, 2)

)
b = b(Model.Tids.interior);
% removing pixels that belong to the boundary or solid material
b = sparse(b);

end

function parentStruct = clearstruct(parentStruct, childstruct)
nstr = size(childstruct, 1);
for istr = 1 : nstr

d parentStruct. (childstruct{istr,1}) = [];
en

function x = dcsolver(A, b, solveStruct)
switch solveStruct.soltype
case 'direct’
fprintf('\nDirect solver: Matlab %s', '"\"");
X = A\b;
case 'jter'
iluStruct = struct( -
"type', 'ict!

"droptol’', solvestruct. droptol,
'shape’', 'lower'
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);

fprintf('\nPreconditioning matrix...\n');

fprintf('\n\tPreconditioner: Incomplete Choleski Factorization');

fprintf('\n\tdroptol: %.1le\n', solveStruct.droptol);

fprintf('\nInitiating solver...\n");

fprintf('\n\tIterative solver: PCG\n\treltol: %.le\n',
solveStruct.reltol);

L = ichol(-1*A, iluStruct);
[x, flag, rrl, iter, relNorm] = pcg(-1*A, -1*b, solveStruct.reltol,
solveStruct.maxiter, L, L');

switch flag
case 0
fprintf('\n\tPCG converged to the desired tolerance %.1le
within %i iterations.\n', solveStruct.reltol, numel(relNorm));
case 1
error('\n\PCG iterated %i times but did not converge.\n',
solveStruct.maxiter);

case 2
error('\n\tPreconditioner was ill-conditioned.\n');
case 3
error('\n\PCG stagnated.\n');
end
Model.result.flag = flag;
Model.result.iter = 1iter;

Model.result.relNorm = relNorm;
Model.result.rrl = rrl;

figure(l); clf;

plot(l:numel(relNorm), relNorm, '-0');
set(gca, 'yvScale', 'log');
title('Convergence');
xTabel('Iterations');

ylabel('ReTative Norm');

R XXX

end
% Model.result.potential = x;

end

function Model = postprocessing(Model, x)
fprintf('\nPost-processing\n');

% Post-processing

v = zeros(prod(Model.geom.dim), 1);
v(Model.lids.interior) = x;

% remapping solution to 3D geometry

v(Model.Tids.inlet) = Model.params.v_inlet;
v(Model.Tids.outlet) = Model.params.V_outlet;

V = reshape(v, Model.geom.dim(1l), Model.geom.dim(2), Model.geom.dim(3));

V = V(:,2:end-1,2:end-1);

G = Model.geom.G(:,2:end-1,2:end-1);

ex = -1 * (v(2:end,:,:) - v(l:end-1,:,:)) .* G(l:end-1,:,:) .* G(2:end,:,:);
ey = -1 * (v(:,2:end,:) - v(:,1:end-1,:)) .* G(:,1l:end-1,:) .* G(:,2:end,:);
ez = -1 * (v(:,:,2:end) - v(:,:,1:end-1)) .* G(:,:,1l:end-1) .* G(:,:,2:end);
jx = Model.params.sigma * ex;

jy = Model.params.sigma * ey;

jz = Model.params.sigma * ez;
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E = cell(1, 3);
J = cell(1, 3);
switch Model.params.flowAxis
case 'X'
rotG = Model.geom.G;
E{1} = ex;
E{2} = ey;
E{3} = ez;
{1} = jx;
{2} = Jy;
{3} = 3z;
case 'Y'

rotG = flip(permute(Model.geom.G, [2 1 3]), 1);
v = flip(permute(v, [2 1 3]), 1);

E{1} = flip(permuteCey, [2 1 3]), 1);

E{2} = flip(permute(ex, [2 1 3]), 1);

E{3} = flip(permute(Cez, [2 1 3]), 1);

3{1} = flip(permute(jy, [2 1 3]), 1);

3{2} = flip(permute(jx, [2 1 3]), 1);

1{3} = flip(permute(jz, [2 1 3]), 1);
case 'Z'

rotG = flip(permute(Model.geom.G, [3 2 1]), 1);
v = flip(permute(v, [3 2 1]), 1);

E{1} = flip(permuteCez, [3 2 1]), 1);
E{2} = flip(permuteCey, [3 2 1]), 1);
E{3} = flip(permute(ex, [3 2 1]), 1);
3{1} = flip(permute(jz, [3 2 1]), 1);
3{2} = flip(permute(jy, [3 2 1]), 1);
1{3} = flip(permute(jx, [3 2 1]), 1);

end

dvdL = -1 * (Model.params.V_outlet - Model.params.v_inlet) / (Model.geom.L -
1;

switch Model.params.flowAxis
case 'X'
jxAvg = (1/prod([size(G, 2), size(G, 3)])) *
sum(sum(3{1}(:,:,floor(size(G, 1) / 2))));
sigmaeff = jxAvg / dvdL;
case 'Y'
jyAvg = (1/prod([size(G, 1), size(G, 3)])) *
sum(sum(3{2}(:,:,floor(size(G, 2) / 2))));
sigmaeff = jyAvg / dvdL;
case 'Z'
jzAvg = (1/prod([size(G, 1), size(G, 2)])) *
sum(sum(3I{3}(:,:,floor(size(G, 3) / 2))));
q sigmaeff = jzAvg / dvdL;
en

Model.result [1;

Model.result storestruct(Model.result, { ...
'sigmaeff' sigmaeff
'V' v

'rotG' rotG
b;
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fprintf('\nBulk electrical conductivity: %.4e\n',
Model.result.sigmaeff);

function saveresult(sDir, Model, nRand)

if ~exist(sbir, 'dir')
mkdir(sbir);

end

V = Model.result.v;

E = cellfun(@single, Model.result.E, 'Uniformoutput', false);
J = cellfun(@single, Model.result.J, 'Uniformoutput', false);
ex = E{1};

ey = E{2};

ez = E{3};

jx = 31{1};

1y = 3{2};

Jz = 3{3};

sigmastr = sprintf('%.3f-', Model.params.sigma(:)'); sigmastr =
sigmastr(l:end-1);

newDir = sprintf('%sflow%s_sigma%s_%04i/', sDir, Model.params.flowAxis,
sigmastr, nRand);
if exist(newDir, 'dir') == 0
mkdir(newDir);
end

print(l, '-dpng', [newDir, 'convergence']);

save(sprintf('%sstruct', newbir), 'Model', '-v7.3');
fprintf('\nSaving %sstruct.mat', newDir);
save(sprintf('%spotential', newDir), 'V', '-v7.3');
fprintf('\nSaving %spotential.mat', newDir);
save(sprintf('%selectricField', newbir), 'E', '-v7.3"');
fprintf('\nSaving %selectricField.mat', newDir);
save(sprintf('%scurrentbensity', newDir), 'J', '-v7.3');
fprintf('\nSaving %scurrentDensity.mat', newDir);

fprintf('\n");

% save(sprintf('%s_struct', newbDir, newDir, 'ex', '-v7.3");

% fprintf('\nsaving %sflow¥%s_refineX%i_sigma%s_electricFieldx.mat',
newDir) ;

% save(sprintf('%s_struct', newDir, newDir, 'ey', '-v7.3');

% fprintf('\nsaving %sflow%s_refineX%i_sigma%s_electricFieldy.mat',
newDir) ;

% save(sprintf('%s_struct', newbDir, newDir, 'ez', '-v7.3");

% _ fprintf('\nsaving %sflow¥%s_refine%i_sigma%s_electricFieldz.mat',
newDir);

% save(sprintf('%s_struct', newbdir, newbDir, 'jx', '-v7.3"');

% fprintf('\nSaving %s_currentDensityX.mat', newDir);

% save(sprintf('%s_struct', newbdir, newbDir, 'jy', '-v7.3");

% fprintf('\nSaving %s_currentDensityY.mat', newDir);

% save(sprintf('%s_struct', newbdir, newbDir, 'jz', '-v7.3");

%

fprintf('\nSaving %s_currentDensityZ.mat', newDir);

end
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Appendix C: Summary of experimental charges and methods for measuring

local melt fraction distribution

C.1 Summary of harzburgite samples

See next page.
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C.2 Quantitative chemistry analysis for harzburgite samples

See next page.
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y Bright Dendritic
- - Phase’,

Figure C.1: Bright dentritic phase appears to be partially crystallized basalt and is
assumed to be melt during segmentation, since they should not be present at run
conditions.
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function [phiol, phiopx, Stats] = LPAnalyze(inputFile, p, varargin)

% Characterizes the local melt fraction distribution of a label image.
% Requires melt, olivine, and opx Tabel images as input. Also requries
% separated olivine and opx 16-bit grain label images and .txt document
% containing the centers of each grain.

if ~isempty(varargin)
printswitch = ~isempty(find(strcmp('Print', varargin), 1));
writeswitch = ~isempty(find(strcmp('write', varargin), 1));
plotSwitch ~isempty(find(strcmp('Plot', varargin), 1));
saveSwitch ~isempty(find(strcmp('save', varargin), 1));

: plotGrain = ~isempty(find(strcmp('Plot Grain', varargin), 1));

else
printSwitch
writeSwitch
plotSwitch
saveSwitch
plotGrain = 0

end
sttt
% Reading the melt and grain files. Note: Be sure that the input grain

% files have had grains intersecting the bounding box removed.

% ________________________________________________________________________

warning&'off', 'all');

Tistbir = 'C:\Users\kevinmiller\code\LPAnalyze_new\'; % directory for binary
tif images

FileNames = LabelFileReader(listDir, inputFile);

nfile = length(FileNames.DirTif);
for ifile = 1 : nfile

% Loading the binary files

fprintf('\nReading %s...', FileNames.LabelOIName{ifile});

Label01Tif = Tif3DReader(FileNames.DirTif{ifile},
FileNames.LabelOIName{ifile});

fprintf('Completed!\n');

fprintf('Reading %s...', FileNames.BinOIName{ifile});

BinO1Tif = Tif3DReader(FileNames.DirTif{ifile},
FileNames.BinOIName{ifile});

fprintf('Completed!\n');

fprintf('Reading %s...', FileNames.LabelOpxName{ifile});

LabelopxTif = Tif3DReader(FileNames.DirTif{ifile},
FileNames.LabelopxName{ifile});

fprintf('Completed!\n');

fprintf('Reading %s...', FileNames.BinOpxName{ifile});

BinOpxTif = Tif3DReader(FileNames.DirTif{ifile},
FileNames.BinOpxName{ifile});

fprintf('Completed!\n');

fprintf('Reading %s...', FileNames.BinMeltName{ifile});

BinMeltTif = Ti%3DReader(Fi1eNames.DirTif{ifi]e},
FileNames.BinMeltName{ifile});

fprintf('Completed!\n');

% Loading the quantitative grain analyses

DirAnl = 'C:\Users\kevinmiller\datalanalysis\'; % directory for the
quantitative grain analyses

fidol = fopen([DirAnl, FileNames.OTAnIName{ifile}]);

fidopx = fopen([DirAnl, FileNames.OpxAnlName{ifile}]);

GrainAnlol = textscan(fidol, '%d %d %d %d %d', 'HeaderLines', 1);
fprintf('\nReading %s\n', FileNames.OTAnIName{ifile});

GrainAnlopx = textscan(fidopx, '%d %d %d %d %d', 'HeaderLines',6 1);
fprintf('Reading %s\n', FileNames.OpxAnIName{ifile});

fclose(fidol); fclose(fidopx); % closing the file identifiers

noT = max(max(max(Label01Tif))); % number of olivine grains
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nopx = max(max(max(LabelopxTif))); % number of opx grains

olctr = double([GrainAn101{2}, GrainAnl01{3}, GrainAnlol1{4}]) + 1; %
centers of olivine grains

opxCtr = double([GrainAnlopx{2}, GrainAnlopx{3}, GrainAnlopx{4}]) + 1; %
centers of opx grains

% allocating memory for the 1list of Tocal melt fractions for each phase
phiol = nan(nol, 1);
phiopx = nan(nopx, 1);

usInd = strfind(FileNames.BinMeltName{ifile}, '_');

dotInd = strfind(FileNames. B1nMe1tName{1f11e} '.')

)xInd = strfind(FileNames. B1nMe]tName{1f11e}(usInd(3)+1 usIind(4)-1),
"X ;

dim = [ ... % determining the dimensions of the subvolume from the name
of BinMeltName
3 str2double(FileNames.BinMeltName{ifile}(usInd(3)+1l:usInd(3)+xInd(1l)-
1),

str2double(FileNames.BinMeltName{ifile}(usInd(3)+xInd(1)+1:usInd(3)+xInd(2)-
1)),

D)I1;
seriesID = sprintf('%s', FileNames.BinMeltName{ifile}(1l:usInd(1)-1));
sampleID = sprintf('%s',
FileNames. B1nMe]tName{1f11e}(usInd(1)+1 usIind(2)-1));
subvolID = sprintf('%s’'
FileNames. B1nMe]tName{1f11e}(usInd(4)+1 dotInd(1)-1));
anIName = sprintf('%s_%s_%ix%ix%i_%s.LPAnalysis_ pA 2f', seriesID,
sampleID, dim(1), dim(2), dim(3), subvoliID, p);

..str2doub1e(F11eNames.BinMe]tName{ifi1e}(usInd(3)+xInd(2)+1:usInd(4)—

q fprintf('\nSubvolume dimensions: %ix%ix%i pixelsA3\n', dim(1), dim(2),
im(3));

 —m -

fpr1ntf( \nAnalyzing olivine grains\n');
ismore = 1;
for i0l1 = 1 : nol
iolctr = olctr(iol,:);
[ii, jj, kk] = 1nd25ub(s1ze(Labe101T1f) f1nd(Labe101T1f==101)); %
finding the Tocation of each pixel belonging to gra1n i0l
isPlane = nume](un1que(kk)) ==
1f (nume](un1que(11)) =1 || nume1(un1que(Jj)) =1 ||
nume](un1que(kk)) 1
k = convhull(ii, jj, kk); % reducing the number of
points to a s1mp11f1ed convex hull
k = convhull(ii, jj, kk, 'simplify', false); % reducing the
number of points to a simplified convex hull
hullpts = [§j(k(:,2)), iiCk(:,1)), kk(k(:,3))]; % combining the
hull points into an array
0 1] =[100 -iolctr(1l); 0 1 0 -iolctr(2); 0 0 1 -iolctr(3); 0 O

hulTptsO = TO*[hullpts'; ones(1l, sizeChullpts, 1))]; hullpts0O =
hullpts0(1:3,:)"'; % translating the hullpts to the origin
hullptsO = [hullpts0(:,2), hullpts0(:,1), hullpts0(:,3)];

[~, radii0, Pevecs, ~] = ellipsoid_fitChullpts0); % fitting the
convex hull points to an ellipsoid
if any(isnan(radii0))
radii0 = sqrt(-1);
end

else

radii0 = sqrt(-1);
end

224



if disreal(radii0) || ~any(isnan(radii0)) % checking that radii is
real, since ellipsoid_fit can return imaginary values if hullptsO is noisy

radiiONew = p*radiiO; % calculating the new ellipsoid parameters
based on the dialation parameter,

DPNew = diag(radiiONew.A-2); % diagonalizing the principal
Tengths

PNew = Pevecs*DPNew*Pevecs'; % rotating back to the grain's
reference

parsNew = [PNew(1l,1); PNew(2,2); PNew(3,3); PNew(1,2);
PNew(1,3); PNew(2,3)]; % Tist of the new paramters of the dialated ellipsoid

xmin = -sqrt(1l/(sign(parsNew(1l))*parsNew(1)));
xmax = sqrt(l/(sign(parsNew(1l))*parsNew(1)));
ymin = -sqrt(1l/(sign(parsNew(2))*parsNew(2)));
ymax = sqrt(l/(sign(parsNew(2))*parsNew(2)));
zmin = -sqrt(1/(sign(parsNew(3))*parsNew(3)));
zmax = sqrt(1l/(sign(parsNew(3))*parsNew(3)));
ellipBound = [ ... % coordinates for box bounding the ellipsoid

sign(xmin)* (ce11(abs(xm1n)) + 1),
sign(xmax)*(ceil(abs(xmax)) +

sign(ymin)* (ce11(abs(ym1n)) + 1),
sign(ymax)* (ce11(abs(ymax)) +

sign(zmin)* (ce11(abs(zm1n)) + 1),
sign(zmax)* (ce11(abs(zmax)) + DI;

% translating to the center of the grain
1 = [100 1i0lctr(2); 0 1 0 iolctr(1); 0 0 1 iolctr(3); 00 O
’ e111pBoundT = T2*[elTlipBound; ones(1l, 2)]; ellipBoundT =
ellipBoundT(1:3,:);

if ~Cany(elTipBoundT(1l,:) < 1 | ellipBoundT(l,:) > dim(1)) ||
. % exclude grains that intersect the boundary of the subvolume
any(ellipBoundT(2,:) < 1 | ellipBoundT(2,:) > dim(2)) ||

any(ellipBoundT(3,:) < 1 | ellipBoundT(3,:) > dim(3)))

meTltBound = BinMeltTif(ellipBoundT(1l,1) : ellipBoundT(1,2),
ellipBoundT(2,1) : ellipBoundT(2,2), ellipBoundT(3,1) : ellipBoundT(3,2));

o % indexing the binary melt image and translating it to the

origin

[iATT, jA11l, kAl11] = ind2sub(size(meltBound),
find(meltBound==1 | meltBound==0)); % finding the xyz coordinates of all
pixels in the cropped melt image

[imMelt, jmelt, kmelt] = ind2sub(size(meltBound),
find(meltBound==1)); % finding the xyz coordinates of pixels associated with
melt in the cropped melt image

ctrLocal = [floor((max(iAT1) - min(iAl11))/2),
f1oor((max(%A11) - min(jA11))/2), floor((max(kAll) - m1n(kA11))/2)] + 1; %
center of the sample region where the corner is on the origin

T3 = [1 0 0 -ctrLocal(l); 01 0 -ctrLocal(2); 00 1 -
ctrLocal(3); 0 0 0 1]; % assembling translation matrix for translating to
the origin

ijkall = [iA11, jA11, kA11]; % concatenating all pixel
coordinates

ijkATIT = T3*[1jkAl1'; ones(l numel (iA11))]; ijkAllT =
ijkAa11T(1:3,:)"; V trans]at1ng to the or1?

[inptsAll, ~ = inoutElTipGen2(ijkAT1T, parsNew);

ijkmelt = [iMelt, jMelt, kMmelt]; % concatenating melt pixel
coordinates

ijkmel1tT = T3*[ijkmelt'; ones(l, numel(iMelt))]; ijkmeltT =
ijkmeltT(1:3,:)"; % translating back to the original cropped melt indices
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[inptsMelt, ~, ~] = inoutEllipGen2(ijkmeltT, parsNew);

if plotGrain
figure(5); cl1f; hold on;
% plot3(ijkmeltT(ijkmeltT(:,2) >
0,1), ijkmeltT(ijkmeltT(:,2) > 0,2), ijkmeltT(ijkmeltT(:,2) > 0,3), 'or');
%

% plot3Chullpts0(:,1),
hullpts0(:,2), hullpts0(:,3), 'o',

% 'Markersize', 12, ...
% 'MarkerFacecolor', 'b");
plot3Chullpts0(:,1), hullpts0(:,2), hullpts0(:,3), 'o',

'Markersize', 12, ...
'MarkerFacecolor', 'b');
% plot3(inptsMelt(inptsMelt(:,2) >
9,12, inptsMelt(inptsMmelt(:,2) > 0,2), inptsMmelt(inptsmelt(:,2) > 0,3),

% 'Markersize', 12, ...
% 'MarkerFacecolor', 'c');
plot3(inptsMelt(:,1), inptsMelt(:,2), inptsMelt(:,3),

'Markersize', 10, ...
'MarkerFacecolor', 'g');
% F =
Pevecs*diag(radiiONew)*Pevecs';
% [XSs, YS, zS] = sphere(100);
XyYze = F*[XS(:)'"; vs(:)'; zs(:)'];

R

XYze = Xyze(1:3,:)';

R

Xe = reshape(Xxyze(:,1), size(Xs,
1), size(Xs, 2));

R

Ye = reshape(Xxyze(:,2), size(ys,
1), size(ys, 2));

R

Ze = reshape(Xyze(:,3), size(zs,
1), size(zs, 2));

R

deform = (Xe.A2 + Ye.A2 +

Ze.AN2).A.5;
% sl = surf(Xe, Ye, ze, deform);
% set(sl, ...
% 'Facecolor', 'none');
axis equal tight;
box on;
view(-30, 30);
end
nATl = size(inptsAll, 1); % number of pixels bounded by
ellipsoid

nMelt = size(inptsMelt, 1); % number of pixels associated
with melt inside the boundary ellipsoid

iphiol = nMelt/nAl1; % melt fraction for current region
phiol(ismore,1) = iphiol; % storing the Tocal melt fraction
ismore = ismore + 1; % moving on to the next grain
fprintf('\t%i / %i olivine grains analyzed; Local melt
fraction: %.4T\n', iol, nol, iphiol); % printing progress
else
fprintf('\t%i / %i olivine grains analyzed; Local melt
fraction: out of Bounds\n', i01, nol);
end
else
fprintf('\t%i / %i olivine grains analyzed; Local melt fraction:
Radii are imaginary\n', iol, no1);
end
end

 —m -

fprintf('\nAnalyzing opx grains\n');
ismore = 1;
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for iopx = 1 : nOpx
if iopx == 73
disp('");
end

i0pxCtr = 0pthr(10px 1)
[i1, J%, kk] = 1nd25ub(s1ze(Labe10pr1f) find(LabeTlopxTif==i0px));
% finding the location of each pixel belonging to grain i0Opx
if (nume](un1que(11)) == 1 || numelCunique(jj)) == 1 ||
nume](un1que(kk)) 1
k = convhull(ii, jj, kk); % reducing the number of
points to a s1mp11f1ed convex hull
k = convhull(ii, jj, kk, 'simplify', false); % reducing the
number of points to a simplified convex hull
hullpts = [§j(k(:,2)), iiCk(:,1)), kk(k(:,3))]; % combining the
hull points into an array
00 1] =[100 -iopxCtr(1); 0 1 0 -iopxCctr(2); 0 0 1 -iopxctr(3); O

hulTptsO = TO*[hullpts'; ones(1l, sizeChullpts, 1))]; hullpts0O =
hullpts0(1:3,:)"'; % translating the hullpts to the origin
hullptsO = [hullpts0(:,2), hullpts0(:,1), hullpts0(:,3)];

[~, radii0, Pevecs, ~] = ellipsoid_fitChullpts0); % fitting the
convex hull points to an ellipsoid

else
radii0 = sqrt(-1);
end

if isreal(radii0) && ~any(isnan(radii0)) % checking that radii is
real, since ellipsoid_fit can return imaginary values if hullptsO is noisy

radiiONew = p*radiiO; % calculating the new ellipsoid parameters
based on the dialation parameter,

DPNew = diag(radiiONew.A-2); % diagonalizing the principal
Tengths

PNew = Pevecs*DPNew*Pevecs'; % rotating back to the grain's
reference

parsNew = [PNew(1l,1); PNew(2,2); PNew(3,3); PNew(1,2);
PNew(1,3); PNew(2,3)]; % Tist of the new paramters of the dialated ellipsoid

xmin = -sqrt(1l/(sign(parsNew(1l))*parsNew(1)));
xmax = sqrt(l/(sign(parsNew(1l))*parsNew(1)));
ymin = -sqrt(1l/(sign(parsNew(2))*parsNew(2)));
ymax = sqrt(l/(sign(parsNew(2))*parsNew(2)));
zmin = -sqrt(1/(sign(parsNew(3))*parsNew(3)));
zmax = sqrt(1l/(sign(parsNew(3))*parsNew(3)));
ellipBound = [ ... % coordinates for box bounding the ellipsoid

sign(xmin)* (ce11(abs(xm1n)) + 1),
sign(xmax)*(ceil(abs(xmax)) +

sign(ymin)* (ce11(abs(ym1n)) + 1),
sign(ymax)* (ce11(abs(ymax)) +

sign(zmin)* (ce11(abs(zm1n)) + 1),
sign(zmax)* (ce11(abs(zmax)) + DI;

% translating to the center of the grain
] = [1 0 0 iopxCtr(2); 0 1 0 iopxCtr(1); 0 0 1 iopxCtr(3); 00
0 1];
e111pBoundT = T2*[elTlipBound; ones(1l, 2)]; ellipBoundT =
ellipBoundT(1:3,:);

if ~Cany(elTipBoundT(1l,:) < 1 | ellipBoundT(l,:) > dim(1)) ||
. % exclude grains that intersect the boundary of the subvolume
any(ellipBoundT(2,:) < 1 | ellipBoundT(2,:) > dim(2)) ||
any(ellipBoundT(3,:) < 1 | ellipBoundT(3,:) > dim(3)))

meTltBound = BinMeltTif(ellipBoundT(1l,1) : ellipBoundT(1,2),
ellipBoundT(2,1) : ellipBoundT(2,2), ellipBoundT(3,1) : ellipBoundT(3,2));
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o % indexing the binary melt image and translating it to the

origin

[iATT, jA11l, kAl11] = ind2sub(size(meltBound),
find(meltBound==1 | meltBound==0)); % finding the xyz coordinates of all
pixels in the cropped melt image

[imMelt, jmelt, kmelt] = ind2sub(size(meltBound),
find(meltBound==1)); % finding the xyz coordinates of pixels associated with
melt in the cropped melt image

ctrLocal = [floor((max(iAT1) - min(iAl11))/2),
f1oor((max(%A11) - min(jA11))/2), floor((max(kAll) - m1n(kA11))/2)] + 1; %
center of the sample region where the corner is on the origin

T3 = [1 0 0 -ctrLocal(l); 01 0 -ctrLocal(2); 00 1 -
ctrLocal(3); 0 0 0 1]; % assembling translation matrix for translating to
the origin

ijkall = [iA11, jA1l, kall]; % concatenating all pixel
coordinates

ijkATTT = T3*[ijkAl1'; ones(l numel (iA11))]; ijkAllT =
ijkAa11T(1:3,:)"; V trans]at1ng to the or1?

[inptsAll, ~ = inoutElTipGen2(ijkAT1T, parsNew);

ijkmelt = [iMelt, jMelt, kMmelt]; % concatenating melt pixel
coordinates

ijkMmel1tT = T3*[ijkmelt'; ones(l, numel(iMelt))]; ijkmeltT =
ijkmeltT(1:3,:)"; % translating back to the original cropped melt indices

[inptsMelt, ~, ~] = inoutEllipGen2(ijkmeltT, parsNew);

if plotGrain
f1gure(5) cl1f; hold on;
plot3(ijkmeltT(ijkmeltT(:,2) >
0,1), 1JkMe1tT(1jkMe1tT( ,2) > 0,2), ijkmeltT(ijkmeltT(:,2) > 0,3), 'or');
%

plot3Chullpts0(:,1),
hullpts0(:,2), hullpts0(:,3), 'o',
% 'Markersize', 12, ...
% 'MarkerFacecolor', 'b");
plot3Chullpts0(:,1), hullpts0(:,2), hullpts0(:,3), 'o',

'Markersize', 12, .
'MarkerFacecolor’ 'b')
% p1ot3(1nptsMe1t(1nptsMe1t( 2) >
9,12, inptsMelt(inptsMelt(:,2) > 0,2), inptsMelt(inptsMelt(:,2) > 0, 3)

% 'Markersize', 12, ...
% 'MarkerFacecolor', 'c');
plot3(inptsMelt(:,1), inptsMmelt(:,2), inptsMelt(:,3),

'Markersize', 10, ...
'MarkerFacecolor', 'g');
[ E =
Pevecs*diag(radiiONew)*Pevecs';
% [XSs, YS, zS] = sphere(100);
XyYze = F*[XS(:)'"; vs(:)'; zs(:)'];

NS

XYZe = Xyze(1l:3,:)"
1), size(Xs, 2));
1), size(ys, 2));
1), size(zs, 2));

&“

Xe = reshape(Xxyze(:,1), size(Xs,

R

Ye = reshape(Xxyze(:,2), size(Ys,

R

Ze = reshape(Xyze(:,3), size(zs,

R

deform = (Xe.A2 + Ye.A2 +

zZe.N2).A.5;
% sl = surf(Xe, Ye, zZe, deform);
% set(sl
% FaceCo1or 'none');

axis equal tight;

box on;

view(-30, 30);
end
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nATl = size(inptsAll, 1); % number of pixels bounded by
ellipsoid

nMelt = size(inptsMelt, 1); % number of pixels associated
with melt inside the boundary ellipsoid

iphiopx = nMelt/nAl1; % melt fraction for current region
phiopx(ismore,1) = iphiopx; % storing the local melt
fraction
ismore = ismore + 1; % moving on to the next grain
fprintf('\t%i / %i opx grains analyzed; Local melt fraction:
%.4f\n", 'iOpx_i nopx, iphiopx); % printing progress
else
fprintf('\t%i / %i opx grains analyzed; Local melt fraction:
out of Bounds\n', iOpx, noOpx);
end
else
fprintf('\t%i / %i opx grains analyzed; Local melt fraction:
Radii are imaginary\n', i0Opx, nopx);
end
end

% calculating the statistics for both mineral types and dumping to file
% ______________________________________________________________________

phiol(isnan(phiol) | (phiol == 0)) = []; % removing NaN's from phiol
phiopx(isnan(phiopx) | (phiopx == 0)) = []; % removing NaN's from phiopx

saveDir = 'C:\Users\kevinmiller\data\lp\';

if saveSwitch % saving the local melt fractions for eachgrain

if ~exist(saveDir, 'dir')
mkdir(saveDir)
end
olsaveName = sprintf('%s%s_phiol.mat', saveDir, anlName);
fprintf('\n%s', olSaveName);
opxSaveName = sprintf('%s%s_phiopx.mat', saveDir, anlName);
fprintf('\n%s', opxSaveName);
save(olsaveName, 'phiol');
d save(opxSaveName, 'phiopx');
en

totalMeltFraction = sum(BinMeltTif(:))/(size(BinMeltTif,
1L *size(BinMeltTif, 2)*size(BinMeltTif, 3)); % calculating the total melt
fraction of the subvolume region

totalOlFraction = sum(BinO1Tif(:) > 0)/(size(Bin0lTif, 1)*size(BinOlITif,
2)*size(Bin01Tif, 3)); % calculating the total olivine fraction of the
subvolume region

totalopxFraction = sum(BinOpxTif(:) > 0)/(size(BinOpxTif,
1L *size(BinopxTif, 2)*size(BinopxTif, 3)); % calculating the total olivine
fraction of the subvolume region

totalMaterialFraction = totalMeltFraction + totalOlFraction +
totalOpxFraction;

gMeanol = geomean(phiol*100); % geometrix mean melt fraction around
olivine grains

gstdol = exp(sqrt(sum(log(phiol1*100/gMeanol) .A2)/numel(phiol))); %
geometric standard deviation of Tocal melt fraction around olivine gains

gMeanOpx = geomean(phiopx*100); % geometric mean melt fraction around
opx grains

gstdopx = exp(sqrt(sum(log(phiopx*100./gMean0px) .A2)/numel (phiopx))); %
geometric standard deviation of local melt fraction around opx grains

R = gMeanOl/gMeanOpx; % partitioning ratio
orderol = sort(phiol);
medol = median(orderol);

TowHa1fol = orderol(orderol < medol);
medLowHalfol = median(lowHalfol);
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highHalfol = orderol(orderol > medol);
medHighHalfol = medianChighHalfol);

Qlo1l = medLowHalfoTl;
Q201 = medol;
Q301 = medHighHalfol;

orderopx = sort(phiopx);

medOopx = median(orderopx);

TowHalfopx = orderopx(orderopx < medopx);
medLowHalfopx = median(lowHalfopx);
highHalfopx = orderopx(orderopx > medopx);
medHighHalfopx = median(highHalfopx);

Qlopx = medLowHalfopx;
Q20px = medopx;
Q30px = medHighHalfopx;

Stats.TotalMaterial.olivine = totalOlFraction;
Stats.TotalMaterial.opx = totalOpxFraction;
Stats.TotalMaterial.melt = totalMeltFraction;

Stats.Local.olivine.nGrains = nol;
Stats.Local.olivine.mean = gMeanoOl;
Stats.Local.olivine.std = gStdol;
Stats.Local.olivine.median = medoOl;
Stats.Local.olivine.quartiles = [Ql01, Q201, Q301];

Stats.Local.opx.nGrains = nopx;
Stats.Local.opx.mean = gMeanOpx;
Stats.Local.opx.std = gStdopx;
Stats.Local.opx.median = medOpx;
Stats.Local.opx.quartiles = [QlOpx, Q20px, Q30px];

Stats.R = gMeanOpx/gMeanO]l;

% outputting results to text file
sprintf('\nAtempting to write metadata to file\n\t%s%s\n', saveDir,
anIName) ;
isfile = exist(sprintf('%s%s.txt', saveDir, anlName), 'file');
if isfile
sprintf('\nwarning: File %s already exists\n', anlName);
end

if writeSwitch % writing to text file

fid = fopen(sprintf('%s%s.txt', saveDir, anlName), 'wt');

fprintf(fid, 'Sample Name:\n\t%s\n',
FileNames.BinMeltName{ifile}(1l:dotInd(1)-1));

fprintf(fid, '"\nTotal number of grains: %i\n\tOlivine: %i\n\tOpx:
%i\n', nol + nOpx, nol, nopx);

fprintf(fid, '\nNumber of grains used in average: %i\n\tOlivine:
%i\n\topx: %i\n', numel(phiol) + numel(phiopx), numel(phiol),
numeT (phiopx));

fprintf(fid, '\nTotal Material Fractions:\n\tOlivine: %.2f%%\n\toOpx:
%.2T%%\n\tMeTt: %.2f%%\n\tTotal: %.2f%%\n', totalOolFraction*100,
totalopxFraction*100, totalMeltFraction*100, totalMaterialFraction*100);

fprintf(fid, '\nMelt fraction associated with each phase:\n'");

fprintf(fid, '\tolivine: %.2f%% with error (-%.2f%% / +%.2f%%)\n",
gMeanOl, abs(gMeanOl - gMean0l/gstdol), abs(gMean0l - gMeanOpx*gstdol));

fprintf(fid, '\topx: %.2f%% with error (-%.2f%% / +%.2f%%)\n\n",
gMeanOpx, abs(gMeanOpx - gMeanOpx/gStdopx), abs(gMeanOpx -
gMeanOpx*gstdopx)) ;

fprintf(fid, 'Quartiles:\n\tOlivine: [%.2f%%, %.2f%%,
%.2T%%]I\n\topx: [%.2f%%, %.2f%%, %.2f%%]1\n\n', Q101%100, Q201*100, Q301%*100,
Qlopx*100, Q20px*100, Q30px*100);

% fprintf(fid, 'Partitioning ratio:\n\t%.2f +/- %.4f
(0livine to Oopx)\n\n', R, RStd);

fclose(fid);

end

% Printing our results in the command window at the end of run
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fprintf('\nTotal number of grains: %i\n\tolivine: %i\n\topx: %i\n', nol
+ nopx, nol, nopx);

fprintf('\nNumber of grains used in average: %i\n\tOlivine: %i\n\tOpx:
%i\n', numel(phiol) + numel(phiopx), numel(phiol), numel(phiopx));

fprintf('\nTotal Material Fractions:\n\tOlivine: %.2f%%\n\tOpx:
%.2T%%\n\tMeTt: %.2f%%\n\tTotal: %.2f%%\n', totalOlFraction*100,
tota]OpxFract1on*1OO totalMeltFraction*100, tota]Mater1a1Fraction*lOO)'

fprintf('\nMelt fract1on associated w1th each phase:\n');

fprintf('\tolivine: %.2f%% with error (-%.2f%% / +%.2f%%)\n', gMeanoOTl,
abs(gMeanO] - gMeanol/gstdol), abs(gMeanOl - gMeanOpx*gStdol));

printf('\topx: %.2f%% with error (-%.2T%% / +%.2f%%)\n\n', gMeanOpx,
abs(%MeanOpx - gMeanopx/gstdopx), abs(gMeanOpx - gMeanOpx*gStdopx));

printf('Quartiles:\n\tolivine: [%.2f%%, %.2f%%, %.2f%%]\n\tOpx:
[%.2f%%, %.2f%%, %.2f%%]\n\n', Q101*%100, Q201%*100, Q301*100, Qlopx*100,
Q20px*100, Q30px*100);

fprintf('Partitioning ratio: %.2f +/- %.4f\n\n', R);

 —m e -

if plotswitch % if 'Plot' is specified in the variable input
figure(1l); cl1f; subplot(21l)
nedge = 10;
edges = linspace(0, 0.4, nedge);
dataol = histc(phiol, edges);
dataopx = histc(phiopx, edges);
plot(edges, dataol, 'g'); hold on;
plot(edges, dataopx, 'r'); hold off;
xTabel('Local Melt Fraction');
ylabel('# of Grains');

title(sprintf('LP Histograms for %s%s-%s with p = %.1f and nedge =
%i', seriesID, sampleID, subvolID, p, nedge));

Xij
YLim

% text(XLim(2)* yYLim(2)*
sprintf('olivine:\nMean_\\phi: %. 2f//\n\\s1gma \\phi:
% . 2F%%\nopx: \nMean_\\phi: %.2f%%\n\\sigma_\\phi: %.2f%%', gMmeanol, gstdol,
gMeanOpx, gstdopx));

text(XLim(2)*.75, YLim(2)*.6, sprintf('0livine:\nMedian_\\phi:
%.2T%%\nopx :\nMedian_\\phi: %.2f%%', 100%*Q201, 100%*Q20px));

get(gca, 'XLim');
get(gca, 'yLim');

subpTlot(212)
plot(sort(phiol),linspace(0,1,numel(phiol)),'g");
hold on;
plot(sort(phiopx),Tinspace(0,1,numel(phiopx)),'r');
plot([Ql0ol, Qlol], [0 1], '--g');

plot([Q201, Q201], [0 1], '--9');

plot([Q301, Q301], [0 1], '--g");

plot([Qlopx, Qlopx], [0 1], '--r');

plot([Q20px, Q20px], [0 1], '--r');

plot([Q30px, Q30px], [0 1], '--r');

xTabel('Local Melt Fraction');

ylabel('Cumulative frequency');

Tegend('0Olivine', 'oOpx', 'Location', 'Southeast');
set(gca, 'xscale','log");

x1im([0.01,1]);

if printSwitch % Saving the figure
dotLoc = strfind(FileNames.BinMeltName{ifile}, '.');
saveName = sprintf('%s%s_LithPart_p%.2f.pdf', saveDir,

FileNames.BinMeltName{ifile}(1l:dotLoc(1)-1), p);
print(1l, '-dpdf', saveName);
g fprintf('saving file to:\n\t%s\n\n', saveName);
en
end
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function FileNames = LabelFileReader(Dir, fileList)

FileNames = struct( ...
'DirTif', {}, ...
'BinMeltName', {},
'BinOIName', {},
'BinOpxName', {%

'LabelolName', {}
'LabelopxName', {
'olAnIName', {},
'OpxAnIName', {}

fid = fopen(sprintf('%s¥%s', Dir, fileList));
Goon0 = 1;
while GoonO
cline = fgetl(fid);
switch cline
case '# Binary Files Folder'
DirTif = {};
Goonl = 1; next = 1;
nextLine = fgetl(fid);
while Goonl
1T isempty(nextLine) || ~ischar(nextLine); break;
else
DirTif{next,1l} = nextLine;
next = next + 1;
nextLine = fgetl(fid);
end
end
FileNames (1) .DirTif = DirTif;
case '# Melt 8-bit Binary File'
BinMeltName = {};
Goonl = 1; next = 1;
nextLine = fgetl(fid);
while Goonl
1T isempty(nextLine) || ~ischar(nextLine); break;
else
BinMeltName{next,1} = nextLine;
next = next + 1;
nextLine = fgetl(fid);
end
end
FileNames.BinMeltName = BinMeltName;
case '# Olivine 8-bit Binary File'
BinOIName = {};
Goonl = 1; next = 1;
nextLine = fgetl(fid);
while Goonl
1T isempty(nextLine) || ~ischar(nextLine); break;
else
BinOIName{next,1l} = nextLine;
next = next + 1;
nextLine = fgetl(fid);
end
end
FileNames.BinOIName = BinOTName;
case '# Opx 8-bit Binary File'
BinOpxName = {};
Goonl = 1; next = 1;
nextLine = fgetl(fid);
while Goonl
1T isempty(nextLine) || ~ischar(nextLine); break;
else
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BinOpxName{next,1} = nextLine;
next = next + 1;
nextLine = fgetl(fid);
end
end
FileNames.BinOpxName = BinOpxName;
case '# 0Olivine 16-bit Binary File for Interior Grains'
LabelolName = {};
Goonl = 1; next = 1;
nextLine = fgetl(fid);
while Goonl
if isempty(nextLine)
else

|| ~ischar(nextLine); break;

LabeloTIName{next,1} = nextLine;
next = next + 1;

nextLine = fgetl(fid);

end

end
FileNames.LabelOIName = LabelOlName;

case '# Opx 16-bit Binary File for Interior Grains'
LabelopxName = {};
Goonl = 1; next = 1;
nextLine = fgetl(fid);
while Goonl
1T isempty(nextLine) || ~ischar(nextLine); break;
else
LabelopxName{next,1} = nextLine;
next = next + 1;
nextLine = fgetl(fid);
end

end
FileNames.LabelOpxName = LabelOpxName;

case '# Olivine Analysis Files'
OlAnIName = {};
Goonl = 1; next = 1;
nextLine = fgetl(fid);
while Goonl
1T isempty(nextLine) || ~ischar(nextLine); break;
else
OTAnTName{next,1} = nextLine;
next = next + 1;
nextLine = fgetl(fid);
end
end
FileNames.OlAnTName = OlAnIName;
case '# Opx Analysis Files'
OpxAnlIName = {};
Goonl = 1; next = 1;
nextLine = fgetl(fid);
while Goonl
1T isempty(nextLine) || ~ischar(nextLine); break;
else
OpxAnIName{next,1} = nextLine;
next = next + 1;
nextLine = fgetl(fid);

end
end
q FileNames.OpxAnTName = OpxAnlName;
en
if ~ischar(nextLine) && nextLine == -1;
Goon0 = 0;

end
end
end

function FinalImage = Tif3DReader(Dir, FileTif, varargin)
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if ~isempty(varargin)
if strcmp(vararg1n '"Flip');
flipSwitch =
else
flipswitch =
end
if strcmp(varargin{l}, 'Plot')
% cmd = vararg1n{1}
islice = vararg1n{2}
1? ischar(islice) && strcmp(varargin{2}, 'A11")
else
islice = varargin{2};
end
end
else
flipswitch =
end

% FileTif="rec_scoba_12_200x200x200_sample8_pc-melt_final.tif';
InfoImage=imfinfo([Dir, FileTif]);

mImage=InfoImage(l) .width;

nImage=InfoImage(l).Height;

NumberImages=length(InfoImage);
FinalImage=zeros(nImage,mImage,NumberImages, 'uintl6');

TifLink = Tiff([Dir, FileTif], 'r');

for i=1:NumberImages
TifLink.setDirectory(i);
dFina1Image(:,:,1)=TifL1nk.read();

en

TifLink.close(Q);

if flipswitch
for iz = 1 : s1ze(F1na1Image 3)
FinalImage(:,:,iz) = F1na1Image( i)'
end
end
% FinalImage = double(FinalImage);

% getting the dimensions of the sample

% xloc = strfind(FileTif, 'x');

% xDim = str2num(FileTif(xToc(1)-3:xToc(1)-1));
% yDim = str2num(FileTif(xToc(2)-3:xloc(2)-1));
% zDim = str2num(FileTif(xToc(2)+1:xToc(2)+3));

% % Imported this section from online code

% % http://people.ece.cornell.edu/land/PROJECTS/Reconstruction/index.html
% %patch smoothing factor

% rfactor = 0.125;

% A1sosurface size adjustment

% level = .8;

% Ausefu] string constants

% c2 = 'facecolor';

% cl = 'edgecolor';

% p=patch(isosurface(smooth3(FinalImage==1),level));
% reducepatch(p,rfactor)
% set(p,c2,[1,0,0],cl, ' 'none');

% p=patch(isosurface(smooth3(FinalImage==2),level));

% reducepatch(p,rfactor)

% set(p,cZ,[O,l,O],cl none');

% % spy(FinalImage(:, 1s11ce))

% [xi, vi, zi] = meshgr1d(0 1: xD1m—1, 0:1:yDim-1, 0:1:zDim-1);

% % Xi = uint8(Xi);
% % Y1 = uint8(yi);
% % Z1 = u1nt8(Z1)

% % f1db1 = doub]e(F1na1Image)

% % figure(l); clf;

% % ImageDataZD = Fina1Image(:,:,1s11ce);
% % fv = isosurface(fidbl, Xi, Yi, zi);
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% % slice(FinalImage, Xi, Yi, Zzi);

% % co]ormap(get);

% % bwi = im2bw(FinalImage(:,:,islice));
% % image(bwi);

% if ~isempty(varargin)

% image(FinalImage(:,:,islice));
% end

% colormap(jet);

end

Download ellipsoid_fit.m from http://www.mathworks.com/matlabcentral/fileexchange/24693-ellipsoid-
fit/content//ellipsoid_fit.m

function [inpts, outpts, tf] = inoutEllipGen2(x, pars)
P = [pars(1), pars(4), pars(5);
pars(4), pars(2), pars(6);
pars(5), pars(6), pars(3)];

% P = [pars(2), pars(4), pars(5);

% pars(4), pars(l), pars(6);
% pars(5), pars(6), pars(3)];
M1 = P*x';

M2 = sum((x"').*M1, 1);

In M2 <= 1;
out = M2 > 1;

tf = In;

inpts = x(In,:);
outpts = x(out,:);

end
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