

ABSTRACT

Title of Document: TRANSPORT PROPERTIES AND MELT

DISTRIBUTION OF PARTIALLY MOLTEN
MANTLE ROCKS: INSIGHTS FROM MICRO-
COMPUTED TOMOGRAPHY AND
VIRTUAL ROCK PHYSICS SIMULATIONS

 Kevin John Miller, Doctor of Philosophy, 2015

Directed By: Associate Professor Wen-lu Zhu

Associate Professor Laurent G.J. Montési
Department of Geology

Mid-ocean ridges are a fundamental component of plate tectonics on Earth.

They are the longest mountain ranges; combined, they stretch over 70,000 km of the

Earth’s surface. They are significant sources of volcanism, producing more than 20

km3 of new oceanic crust each year. The volcanism observed at the ridge axis is

linked to processes that transport and focus melt in the underlying upper mantle.

Typically, upper mantle melt distribution is inferred either through inversion

of geophysical data, such as electromagnetic signals, or through geodynamic

modeling. Both approaches require robust constitutive relationship between on

electrical conductivity, permeability, and porosity. Unfortunately, direct

measurements of transport properties of partially molten rock are technically

challenging due to the extreme conditions required for melting. This work aims to

quantify permeability-porosity and electrical conductivity-porosity relationships of

partially molten monomineralic and polymineralic aggregates by simulating fluid

flow and direct current within experimentally obtained, high-resolution, three-

dimensional (3-D) microstructures of partially molten rocks.

In this study, I synthesized rocks containing various proportions of olivine,

orthopyroxene (opx), and basaltic melt, common components of the upper mantle. I

imaged their 3-D microstructure using high-resolution, synchrotron-based X-ray

micro-computed tomography. The resulting 3-D geometries constitute virtual rock

samples on which pore morphology, permeability, and electrical conductivity were

numerically quantified.

This work yields microstructure-based electrical conductivity-porosity and

permeability-porosity power laws for olivine-melt and olivine-opx-melt aggregates

containing melt fractions of 0.02 to 0.20. By directly comparing the velocity and

electrical fields, which are outputs of the fluid flow and direct current simulations,

respectively, this study provides strong evidence that fluid and electricity travel

through distinctly different pathways within the same rock, due to the stronger

dependence of fluid flux on hydraulic radius. This study also provides the first

quantitative evidence of lithological melt partitioning, where melt fractions spatially

associated with olivine are systematically higher than those with orthopyroxene due

to the relatively low surface energy density of olivine-melt interfaces with respect to

opx-melt interfaces. The results of this study place important, novel constraints on 3-

D melt distribution and transport properties of the partially molten mantle regions

beneath mid-ocean ridges.

TRANSPORT PROPERTIES AND MELT DISTRIBUTION OF PARTIALLY
MOLTEN MANTLE ROCKS: INSIGHTS FROM MICRO-COMPUTED

TOMOGRAPHY AND VIRTUAL ROCK PHYSICS SIMULATIONS

By

Kevin John Miller

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park, in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2015

Advisory Committee:

Associate Professor Wen-lu Zhu, Chair (University of Maryland)
Associate Professor Laurent G.J. Montési, Co-adviser (University of Maryland)
Assistant Professor Vedran Lekic (University of Maryland)
Assistant Professor Nicholas Schmerr (University of Maryland)
Senior Research Scientist Deborah Smith (Woods Hole Oceanographic Institution)
Professor Bryan Eichhorn, Dean’s Representative (University of Maryland)

© Copyright by
Kevin John Miller

2015

 ii

Preface

In this document, the transport properties, e.g. permeability and electrical

conductivity, of monomineralic and polymineralic partially molten rocks are

quantified and linked to volume proportion of melt. Since transport properties of

partially molten rocks are notoriously difficult to measure due to the extreme

pressure-temperature conditions required for melting and high viscosity of basaltic

melt, I take a novel approach: imaging and digitizing synthetic partially molten

mantle rocks using advanced. These 3-D images constitute virtual rock samples on

which digital rock physics (DRP) experiments can be conducted and transport

properties can be quantified. My methodology, results, and implications for

understanding melt transport at mid-ocean ridges are discussed over the next six

chapters.

• Chapter 1: I introduce geological context and outstanding questions

related to melt transport at mid-ocean ridges. The concepts necessary

to understand my research methods and findings are introduced.

• Chapter 2: I quantify the 3-D melt distribution and permeability of

partially molten olivine-basaltic melt as a function of melt fraction.

• Chapter 3: I derive the electrical conductivity of partial melts from

microstructural considerations. I compare my results with previously

conducted experiments in literature.

• Chapter 4: I investigate the role of mineral heterogeneity and surface

energy on melt distribution in samples containing olivine,

 iii

orthopyroxene, and basaltic melt.

• Chapter 5: I compute the permeability and electrical conductivity of

partially molten rock samples composed of olivine, orthopyroxene,

and basaltic melt.

• Chapter 6: Concluding remarks and a preview of future research.

 iv

Acknowledgements

This dissertation would not have been possible without the support from so

many of my family, friends, and colleagues.

I want to thank my parents, brothers, and sister for their unconditional love,

support, and guidance.

To my undergraduate and graduate school buddies, I want to thank you for

your friendship and support. You have made my time at the University of Maryland

the best years of my life. Specifically, I want to thank my friend Aram Vartanyan, a

recent physics Ph.D. graduate, for all your help with learning advanced physics and

numerical modeling concepts, Eric Rosenthal for your friendship and insightful

discussions, and Brian Fields for your friendship and all-night study binges, from

which I learned so much. I also want to thank my friends and colleagues: Harry

Lisabeth for your insightful discussions about rock mechanics concepts, Mark Larson

and Hailong Bai for you expertise on mid-ocean ridge processes, Jesse Wimert and

Justin DeSha-Overcash for your friendship, and Tyler Drombosky who helped me to

understand and internalize the applied math concepts that are included in this

research.

A very special thanks goes out to my friends Ian Winston, Matt Mehlbaum,

Robbie Dinneen, and D.J. Bowes. You are my family, and I will always love you

guys.

Another special thanks goes out to my co-advisers Wenlu Zhu and Laurent

Montési, who introduced me to some of the coolest scientific projects that I could

have hoped to work on. Your patience, guidance, excellent mentorship skills, and

 v

expert opinions have had an immensely positive impact on me. You have taught me

to approach problems with a critical and creative mentality.

I want to thank the researchers at Woods Hole Oceanographic Institution,

specifically my collaborator Glenn Gaetani who mentored me in the experimental

petrology aspects of my research. Also, I want to thank Véronique Le Roux for your

insight, expertise, and generosity with your time and scientific resources. I want to

thank Emily Sarafian for your help troubleshooting the equipment in the experimental

petrology lab and your expertise related to electrical conductivity of partially molten

mantle rock.

I want to thank the researchers at the Advanced Photon Source, specifically

Xianghui Xiao, for your insightful discussions and for giving me the opportunity to

use their beamline, the coolest piece of scientific equipment I have ever worked with.

Also, thank you for introducing me to the research field of image processing.

Thank you to Phil Piccoli who conducted the quantitative chemistry analysis

of our harzburgite samples.

Thank you to NSF and the Ann Wylie Dissertation Fellowship for funding my

research.

Thank you to all of those that I have left out. There are so many people I have

met over the past five years that have made an impact on my science, personality, and

way of thinking.

 vi

Table of Contents
Preface…………………………………………………………………………………ii
Acknowledgements…………………………………………………………………... iv
Table of Contents…………………………………………………………………….. vi
List of Tables………………………………………………………………………… ix
List of Figures………………………………………………………………………… x
Table of Abbreviations……………………………………………………………… xii

Chapter 1: Introduction………………………………………………………………...1

1.1 Melting at mid-ocean ridges…………………………………………………...1
1.2 Melt microstructure…………………………………………………………… 5
1.3 Permeability of the melt microstructure……………………………………… 7

1.3.1 Permeability of idealized geometries………………………………… 7
1.3.2 Experimental constraints on permeability……………………………. 8
1.3.3 Electrical conductivity of partially molten mantle rocks……………. 12
1.3.4 Using electrical conductivity to infer 3-D melt distribution………… 15
1.3.5 3-D melt distribution from X-ray micro-computed tomography……. 15

1.4 Basics of X-ray micro-computed tomography………………………………. 16
1.5 Segmentation of grayscale image…………………………………………….19
1.6 Digital rock physics applied to partially molten rock: an overview………… 20

Chapter 2: Experimental quantification of permeability of partially molten mantle
rocks…………………………………………………………………………………. 21

2.1 Introduction………………………………………………………………….. 22
2.2 Experimental Methods……………………………………………………… 25
 2.2.1 Sample preparation….………………………………………………… 25
2.3 Analytical Methods…………………………………………………………..29
 2.3.1 Synchrotron X-ray micro-computed tomography…………………… 29
 2.3.2 Subvolume selection………………………………………………… 31
 2.3.3 Noise reduction and segmentation techniques……………………… 31
 2.3.4 Quantification of network topology………………………………… 33
 2.3.5 Quantification of permeability……………………………………… 36
2.4 Results ………………………………………………………………...…….. 39
 2.4.1 Grain size results…………………………………………………….. 39

2.4.2 Connectivity of the melt network…………………………………… 40
2.4.3 Permeability results…………………………………………………..43
2.4.4 Permeability anisotropy…..…………………………………………. 45

2.5 Discussion…………………………………………………………………… 47
 2.5.1 Morphology of melt microstructure………………………................. 47
 2.5.2 Interpretation of power law exponent……………………………….. 47
 2.5.3 1-D mantle model…………………………….................................... 49
 2.5.4 Implications for mantle heterogeneities…………………………….. 51
2.6 Conclusion…………………………………………………………………... 53

Chapter 3: Influence of microstructure on electrical conductivity of partially molten
rocks……………….…………………………………………………………………55

 vii

3.1 Introduction………………………………………………………………….. 56
3.2 Methods………………………………………………………………………61
 3.2.1 Sample preparation and imaging……………………………………..61

3.2.2 Subvolume selection………………………………………………… 62
3.2.3 Noise-removal and segmentation…………………………………….62
3.2.4 Direct current simulations…………………………………………… 64
3.2.5 Fluid flow simulations………………………………………………. 68
3.2.6 Computing tortuosity………………………………………………... 69

3.3 Results ………………………………………………………………………. 69
 3.3.1 Electrical conductivity………………………………………………. 69

3.3.2 Permeability…………………………………………………………. 72
3.3.3 Tortuosity……………………………………………………………. 75

3.4 Discussion…………………………………………………………………… 75
 3.4.1 Electrical conductivity and permeability comparison……………….. 75
 3.4.2 Comparison with experimental data………………………………… 76

3.4.3 Melt films……………………………………………………………. 79
3.4.4 H2O in melt………………………………………………………….. 81
3.4.5 H2O in olivine………………………………………………………...82
3.4.6 Chemical heterogeneity………………………………………………84

3.5 Conclusion……………………………………………………………………85

Chapter 4: Experimental evidence for lithologic melt partitioning between olivine and
orthopyroxene in partially molten harzburgite……………………………………… 87

4.1 Introduction………………………………………………………………….. 88
4.2 Methods………………………………………………………………………93

4.2.1 Sample preparation of harzburgite samples…………………………. 93
4.2.2 Imaging Procedure…………………………………………………... 96
4.2.3 Subvolume selection………………………………………………… 98
4.2.4 Image segmentation…………………………………………………101
4.2.5 Quantification of local melt fraction distribution…………………...102
4.2.6 Characterizing grain size distributions…………………………….. 105

4.3 Results ……………………………………………………………………. 106
4.3.1 Visual inspection of melt distribution…………………………….. 106
4.3.2 Local melt fraction distributions………………………………….. 108
4.3.3 Grain size distribution……………………………………………… 111

 4.4 Discussion………………………………………………………………….. 111
4.4.1 Melt concentration due to lithologic melt partitioning…………... 111
4.4.2 Lithologic melt partitioning and transport properties……………… 116
4.4.3 Geological implications for lithologic melt partitioning……………118
4.4.4 Grain size and melt fraction………………………………………... 119

4.5 Conclusion…………………………………………………………………. 120

Chapter 5: Permeability and electrical conductivity of partially molten…………... 122
harzburgite

5.1 Introduction………………………………………………………………… 123
5.2 Methods……………………………………………………………………..127

 viii

5.2.1 Sample preparation of harzburgite samples………………………... 127
5.2.2 Imaging procedure…………………………………………………. 127
5.2.3 Subvolume selection……………………………………………….. 128
5.2.4 Image segmentation………………………………………………... 128
5.2.5 Computation of permeability and electrical conductivity…………. 130
5.2.6 Characterizing grain size distributions…………………………….. 131

5.3 Results ……………………………………………………………………... 132
 5.3.1 Statement about uncertainty……………………………………….. 132

5.3.1 Permeability………………………………………………………... 134
5.3.2 Electrical conductivity……………………………………………... 136

5.4 Discussion………………………………………………………………….. 138
5.4.1 Influence of opx on permeability…………………........................... 138
5.4.2 Implications for trace element partitioning in xenoliths…………… 140
5.4.3 Comparison between permeability and electrical conductivity……. 141

5.5 Conclusion…………………………………………………………………. 141

Chapter 6: Summary and future work……………………………………………… 143
 6.1 Summary of results and conclusions……………………………………….. 143
 6.2 Future research directions………………………………………………….. 145

Appendix A: Supplementary information for microstructure and…………………. 147
permeability quantification
 A.1 Removing noise and anisotropic diffusion filtering………………………. 147
 A.2 Segmenting using watershed transformation………………………………149
 A.3 Determining the size of the representative volume element……………….151
 A.4 Cleaning the skeletonized melt network…………………………………...153
 A.5 Time series experiment…………………………………………………… 154
 A.6 Correcting for skeletonization artifacts…………………………………… 158
 Source code for SkeletonCleaner.m…………………………………………… 160

Appendix B: Supplementary information for electrical……………………………. 191
conductivity quantification
 B.1 Benchmark for bulk conductivity computation…………………………… 191
 Source code for FDECC……………………………………………………….. 192

Appendix C: Summary of experimental charges and methods…………………….. 217
for measuring local melt fraction distribution
 C.1 Summary of harzburgite samples…………………………………………. 217
 C.2 Quantitative chemistry analysis for harzburgite samples………………….. 219
 Source Code for LPAnalyze.m………………………………………………… 223

References………………………………………………………………………….. 236

 ix

List of Tables

Table 2.1: Results summary for microstructural characterization and
 fluid flow simulations conducted on dunite suite……………………….. 28
Table 3.1: Results summary for direct current simulations conducted
 on olivine-basaltic melt suite…..…………………………………………. 70
Table 4.1: Recipe for harzburgite oxide mix………………………………………... 95
Table 4.2: Results summary for grain size and lithologic melt
 partitioning……………………………………………………………… 115
Table 5.1: Results summary for permeability and electrical conductivity
 of harzburgite suite……………………………………………………… 133
Table A.1 Summary of permeability results from olivine-basaltic
 melt suite…..…..…..…..…..…..…..…..…..…..…..…..…..…..…..……. 157
Table A.2 Explanation of ScobaCleaner subroutines…..…..…..…..…..…..…..….. 160
Table C.1 Summary analysis conducted for olivine-opx-
 basaltic melt samples…..…..…..…..…..…..…..…..…..…..…..…..……. 218
Table C.2 Results of quantitative chemistry conducted on
 olivine-opx-basaltic melt samples…..…..…..…..…..…..…..…..…..…... 220

 x

List of Figures

Figure 1.1 Schematic diagram of mid-ocean ridge and melting conditions………… 2
Figure 1.2 Schematic diagram of idealized partially molten grain pack…….……… 4
Figure 1.3 Coordination number histogram for an actual, 3-D melt network………. 6
Figure 1.4 Analogue experiments permeability results…….…….….…….………. 9
Figure 1.5 Permeability experiment on olivine-basaltic melt aggregate…….……...11
Figure 1.6 Interpretations of electrical conductivity mixing models………………. 14
Figure 1.7 Computed tomography part 1: Radiograph…….…….…….…………... 18
Figure 1.8 Computed tomography part 2: Filtered-back-projection…….…………. 18

Figure 2.1 Sample preparation of olivine-basaltic melt samples……..……………. 27
Figure 2.2 Imaging setup for olivine-basaltic melt samples………….……………. 30
Figure 2.3 Determination of representative subvolume for fluid
 low simulations………………………………………………………… 32
Figure 2.4 Volume rendering of melt label images…….…….…….…….….…….. 35
Figure 2.5 Schematic diagram of fluid flow simulation…….…….…….…………. 38
Figure 2.6 Olivine-basaltic melt equivalent diameter distributions…….………….. 42
Figure 2.7 Olivine-basaltic melt coordination number distributions………………. 44
Figure 2.8 Permeability results for olivine-basaltic melt suite…….….….………... 46

Figure 3.1 Schematic diagram of mid-ocean ridge system and porous flow….…… 57
Figure 3.2 Determination of representative subvolume for
 direct current simulations………………………………………………. 63
Figure 3.3 Schematic diagram of direct current simulations…….……..………….. 66
Figure 3.4 Comparison of permeability and electrical conductivity
 of olivine-basaltic melt suite…….…….……………………………….. 71
Figure 3.5 Visual comparison of velocity and current density

fields…….……………………………………………………….……... 73
Figure 3.6 Comparison of fluid and electric tortuosity of olivine-
 basaltic melt suite…….…….…….…….………………………………. 74
Figure 3.7 Comparison of computed electrical conductivity and experiments,

evaluation of water on bulk electrical conductivity, and influence of melt
films on electrical conductivity…….…….…….…….…………………. 77

Figure 4.1 Explanation of lithological melt partitioning and
 minimum-energy melt fraction…….…….…….…………………….… 90
Figure 4.2 Schematic diagram of previous lithologic fluid
 partitioning experiments………………………..………………………. 92
Figure 4.3 Schematic diagram of harzburgite experiment charges ……….………. 94
Figure 4.4 Digital rock physics workflow for olivine-opx-basaltic
 melt suite…….…….……...………………..…………………………... 97
Figure 4.5 Visualization of olivine-opx-basaltic melt µ-CT reconstructions ……... 99
Figure 4.6 Visualization of vertical melt fraction heterogeneity
 in olivine-opx-basaltic melt sample…….…….…….…..……………...100
Figure 4.7 Visualization of 3-D olivine, opx, and basaltic melt

 xi

 label images……………………..………………..…………………… 103
Figure 4.8 Schematic diagram of local melt fraction quantification
 technique…….………………..………………..………………………104
Figure 4.9 Visual confirmation of lithologic melt partitioning
 in olivine-opx-basaltic melt sample……..……………………………..107
Figure 4.10 Quantification of lithologic melt partitioning…….…….…….…….….109
Figure 4.11 Equivalent diameter distributions of olivine-
 opx-basaltic melt subvolumes……………………..………………….. 112
Figure 4.12 Variation of grain size linked to melt fraction…….…….…….……….117

Figure 5.1 Schematic diagram of olivine and opx triple junctions…….…….…… 124
Figure 5.2 Reconstructed tomography slice from harzburgite sample…….……... 129
Figure 5.2 Comparison of olivine-basaltic melt and olivine-
 opx-basaltic melt harzburgite permeability…….…….………………...135
Figure 5.3 Comparison of olivine-basaltic melt and olivine-
 opx-basaltic melt harzburgite electrical conductivity…….…….……...137
Figure 5.4 Comparison of olivine-basaltic melt and olivine-
 opx-basaltic melt fluid and electric tortuosity…….…….…………….. 139

Figure A.1 Demonstration of anisotropic diffusion filter to
 remove noise and image artifacts………………..……………………. 148
Figure A.2 Schematic diagram demonstrating the use of
 the watershed transform to segment the grayscale image…………….. 150
Figure A.3 Selecting a suitable subvolume size based on
 permeability computations………………..…………………………... 152
Figure A.4 Time series equivalent diameter distribution for
 olivine-basaltic melt suite………………..……………………………. 155
Figure A.5 Time series coordination number distribution for
 olivine-basaltic melt suite………………..……………………………. 156
Figure C.1 Visualization of bright dendritic phase……………………………...... 222

 xii

 Table of Abbreviations

Acronym or abbreviation Full spelling
MOR mid-ocean ridge

MORB mid-ocean ridge basalt
µ-CT micro-computed tomography
3-D three-dimensional
opx orthopyroxene
cpx clinopyroxene

DRP digital rock physics
MORB mid-ocean ridge basalt
APES Absolute Permeability Experiment Simulation
APTC Absolute Permeability Tensor Calculation
EDD equivalent diameter distribution
CND coordination number distribution
SEM scanning electron microscope
MT magnetotelluric
EDS electron dispersive spectroscopy

 1

Chapter 1: Introduction

1.1 Melting at mid-ocean ridges

Melting of mantle rock is controlled by environmental conditions, such as

pressure, temperature, and volatile content. For an intraplate region of the upper

mantle far from sources of volcanism, the pressure-temperature conditions are

generally thought to be insufficient to cause melting of the mantle, which is

composed primarily of olivine and pyroxene. At mid-ocean ridges, however,

divergence of the overriding oceanic plates induces a pressure gradient that pulls

upward hot rock sourced deeper in the mantle. The resultant pressure drop, which

occurs faster than thermal equilibration, carries the peridotite across its solidus (Fig.

1.1), inducing partial melting – also known as decompression melting – over a broad

region (Allégre et al., 1973; McKenzie and Bickle, 1988). The pressure and

temperature conditions in the upper mantle, which vary with depth, define a prism-

shaped region of partial melt more or less centered about the ridge axis that extends

laterally for hundreds of kilometers (McKenzie and Bickle, 1988; Oxburgh, 1980).

Seismic (e.g. MELT Seismic Team, 1998; Toomey et al., 1998). Magnetotelluric (e.g.

Evans et al., 1999; Key et al., 2013) surveys of the fast-spreading East Pacific Rise

confirmed this conceptual model of mid-ocean ridge melting. However, the

mechanism for transporting and focusing melt to the ridge axis is still debated.

A number of theories have been proposed to explain the transport of melt

from depth to the ridge, which involves both the ascent of melt and redirection to the

ridge axis (melt focusing). For a long time, it was thought that the same pressure

 2

 3

gradient that induces decompression melting is also responsible for focusing melt

(Phipps-Morgan, 1987; Ribe, 1988; Spiegelman and McKenzie, 1987). However, it

was determined that divergence of the plates alone required unrealistic upper mantle

viscosity values to account for magma ascent rates inferred from uranium-series data.

Advection of trapped melt by means of buoyancy-driven convection (Buck and Su,

1989; Rabinowicz et al., 1984; Scott and Stevenson, 1989) was another popular

theory at that time but required higher melt fractions than are observed by

geophysical methods and a lower permeability than standard estimates.

Current thinking is that melt percolates through the upper mantle via porous

flow along a grain boundary network of interstitial melt. Though porous flow is most

often thought of in in the context of fluid transport in the crust, where overburden

pressures are sufficiently low to maintain interconnected pore space, the

compressibility of melt is low enough to support an intergranular, interconnected

network. The permeability of this network has been a parameter of high interest, since

it relates the percolation velocity of melt on the aggregate-scale to local pressure

gradients.

A number of attempts have been made to determine the permeability of

partially molten rock, including consideration of idealized melt geometries, network

modeling, and direct measurement on analogue systems. However, as will be

discussed in more detail, these methods neither consider the proper three-dimensional

(3-D) pore structure of partially molten rocks nor the correct chemistry.

 4

Three-grain junction
connected melt

tubules

Four-grain junction
isolated melt

pockets

A

B

Figure 1.2: Idealized representation of three-dimensional melt geometry using
isotropic tetrakaidecahedral grain shape. Included are two-dimensional cross-sec-
tions of melt features. (A) Interconnected melt tubules that form at three and
four-grain junctions for ș < 60º. (B) Isolated melt tubules form at four-grain junc-
tions for ș > 60º.

 5

1.2 Melt microstructure

The grain-scale geometry of a partially molten rock is controlled by energy

minimization processes (Bulau et al., 1979). For a melt fraction (ϕ) below the

disaggregation limit (ϕ < 0.25) (Scott and Kohlstedt, 2006), spatial variations in

surface energy associated with interphase boundaries constitute thermodynamic

gradients that drive melt into an equilibrium configuration (Smith, 1964; Waff and

Bulau, 1979). The fluid transport, electrical, and mechanical properties of the rock

depend crucially on the morphology and topology of the interstitial melt network.

A good indicator of the microstructure geometry is the dihedral angle (θ)

(Smith, 1964, 1948), which is the angle that subtends two solid-melt interfaces. In

general, θ varies from grain contact to grain contact, depending on the relative surface

energy densities of the adjacent phase boundaries. However, for two identical,

adjacent, isotropic grains separated by melt, θ is defined by the following relation:

 cos θ
2

⎛
⎝⎜

⎞
⎠⎟ =

γ ss
2γ sm

 (1.1)

where γss and γsl are the surface energy densities of the solid-solid and solid-liquid

phase boundaries, respectively. For θ < 60° and any melt fraction, melt forms an

interconnected network along triple junctions consisting of prismatic melt tubules that

are connected at four-grain junctions (Fig. 1.2A) (von Bargen and Waff, 1986).

Conversely, for θ > 60°, melt forms isolated pockets at grain corners (Fig. 1.2B)

unless a critical melt fraction is exceeded. γss and γsl are fundamental to the chemistry

and mineralogy on either side of the interface. An aggregate composed of olivine,

which is the primary upper mantle mineral component, and basaltic melt exhibits a

median dihedral angle of ~35° (Waff and Bulau, 1982), so an olivine-basaltic melt

 6

 7

aggregate should support an interconnected melt network.

Analysis of 2-D cross-sections (e.g. Cooper and Kohlstedt, 1982; Waff and

Bulau, 1982; Cmíral et al., 1998; Faul and Fitz Gerald, 1999) reveal a range of melt

features. Most those features are prismatic melt tubes that reside at three and four-

grain junctions, which is consistent with the von Bargen and Waff (1986) model.

However, additional melt features, such as melt films and melt pools, also exist due to

the anisotropic surface energy density of olivine-basaltic melt interfaces (Faul, 2000;

Laporte and Provost, 2000). This observation is confirmed by 3-D analysis of the

coordination number distribution (Fig. 1.3), where the coordination number is defined

as the number of melt features that connect at a single point and is a measure of the

melt network topology. Fig. 1.3 highlights the diversity of features present in olivine-

basalt aggregates (e.g. prismatic tubules, melt films, melt pools).

1.3 Permeability of the melt microstructure

1.3.1 Permeability of idealized geometries

 An interconnected, interstitial melt network facilitates melt transport over

distances larger than the grain-scale (Turcotte and Schubert, 2014). A crucial

parameter used for modeling melt transport in mid-ocean ridge systems is

permeability (k), which is a measure of the capacity of the rock to transport melt.

Permeability is a power law function of melt fraction,

 k = φ nd 2

C
 (1.2)

where ϕ is the melt fraction and d is the average grain size [m2]. C and n are power

law parameters that depend on the morphology and topology of the melt network. For

 8

idealized melt network geometries (e.g. Frank, 1968; von Bargen and Waff, 1986),

Eqn. (1.2) can be analytically derived. For example, a network composed of uniform

tetrakaidecahedral grains, i.e. prismatic melt tubules residing at three and connecting

at four-grain junctions, permeability is given by Eqn. (1.2), where n = 2 and C is 1600

(von Bargen and Waff, 1986). Another model (Faul et al., 1994) that assumes

ellipsoidal inclusions, an approximation to a partial melt with wet grain faces, yields a

power law exponent of n = 3. However, melt geometries of real partially molten rocks

are heterogeneous and exhibit a range of melt features at different melt fractions, in

which case Eqn. (1.2) is an empirical relation.

In order to assess the influence of melt network heterogeneity on permeability,

Zhu and Hirth (2003) used a network permeability model to randomly vary the

diameter of melt tubules in a pack of isotropic, tetrakaidecahedral grains. They found

that for a uniform tubule diameter, the permeability-melt fraction power law was the

same as that analytically derived by von Bargen and Waff (1986). Though for

randomly varying melt tubule diameters, computed permeabilities adhered to a power

law exponent n = 3. Though a major step forward from idealized geometries, a

systematic laboratory quantification of partially molten mantle rock permeability is

needed.

1.3.2 Experimental constrains on permeability

Permeability is technically challenging to measure for partially molten

systems because of the extreme pressure-temperature conditions required for melting

and the high viscosity of basaltic melt. Therefore, a number of studies (e.g. Holness

 9

 10

and Graham, 1991; Jurewicz and Watson, 1984; Mibe et al., 1998; Wark and Watson,

1998; Wark et al., 2003; Watson and Brenan, 1987) look to analogue systems that

have wetting properties similar to the olivine-basaltic melt system. For example,

Wark and Watson (1998) measured the permeability of aggregates composed of

quartz plus H2O brine (θ = 32°). They found permeability adheres closely to Eqn.

(1.2), where power law parameters n = 3 and C = 200 (Fig. 1.4). Studies that used

analogue materials provided valuable insight to the grain-scale fluid distribution in

real, heterogeneous porous rocks. However, grain-scale fluid distribution is sensitive

to distribution of surface energy – and therefore mineralogy and fluid chemistry – so

it is unclear if the findings of analogue studies apply to partially molten mantle rocks,

which are composed primarily of olivine. In order to properly constrain the

permeability of partially molten mantle rock, a chemistry and mineralogy that is

representative of the mantle must be used.

Several attempts to measure the permeability of olivine-basalts have been

made. For example, Renner et al. (2003) measured the compaction rate of olivine-

basaltic melt samples, undergoing draining in response to an imposed pressure

gradient. By relating the measured compaction rate to permeability, they found their

results implied a permeability-melt fraction relationship that qualitatively resembled

Wark and Watson (1998) (power law parameters n = 3 and C = 200), but a rigorous

fit to the data was not conducted. Furthermore, permeability is a property of the

instantaneous melt geometry. As the melt fraction and grain-scale melt distribution

changes during compaction, so does the permeability.

An additional experimental constraint on olivine-basaltic melt permeability-

 11

 12

melt fraction relationship was provided by Connolly et al. (2009), who used a high-

temperature, high-pressure centrifuge to mimic compaction-driven flow that occurs

during melt transport under upper mantle conditions. Their samples were spun to

accelerations of 400-700 g, which greatly enhanced the rate of melt flow. Using a

scanning electron microscope (SEM) to measure the porosity profile of their samples

(Fig. 1.5) before and after centrifuging, they were able to back out sample

permeability. Their sample was composed of olivine-basalt and had melt fractions of

0.05. Their data suggested a piece-wise permeability-melt fraction relationship: a

quadratic (n = 2) dependence for low melt fractions and a cubic (n = 3) dependence

on melt fraction for higher melt fractions, which they interpret as indicative of a

change in melt morphology from a tubule-dominant network at low melt fraction to

one that is populated by higher-coordination number connections. They estimated the

geometrical constant C to range between 3 and 27, which is consistent with a highly

heterogeneous grain-scale melt distribution. Though their experiment was a

significant leap forward in linking permeability to the melt microstructure, it is not

straightforward to assess boundary effects of their experimental setup. Therefore, it is

necessary to independently constrain the permeability as a function of melt fraction

using alternative methodology.

1.3.3 Electrical conductivity of partially molten mantle rocks

 The electrical conductivity of partially molten mantle rock can be used as a

tool for probing melt content of the mantle and for inferring the 3-D grain-scale

distribution of melt in partially molten rock samples. The presence of partial melt

 13

increases the electrical conductivity of mantle rock by several orders of magnitude

(e.g. Roberts and Tyburczy, 1999; ten Grotenhuis et al., 2005; Yoshino et al., 2010).

For an olivine-basaltic melt aggregate, the bulk electrical conductivity is an average

of the electrical conductivities of olivine and basaltic melt, which is on the order of

0.01 S/m (Constable, 2006; Yoshino et al., 2010) and 1-10 S/m (Roberts and

Tyburczy, 1999; ten Grotenhuis et al., 2005; Yoshino et al., 2010) for olivine and

basaltic melt, respectively. If melt exists as isolated pockets, i.e. melt fraction is

below the percolation threshold and dihedral angle is greater than 60°, olivine and

melt will conduct in series. As a result to bulk electrical conductivity of the aggregate

be very low. Conversely, if melt forms an interconnected network, bulk electrical

conductivity is high, since melt and olivine conduct electricity in parallel. The bulk

electrical conductivity of an actual partially molten rock will be somewhere between

these two end-member cases.

Much like permeability, bulk electrical conductivity of partially molten rocks

adheres to a power law, specifically Archie’s Law:

 σ bulk = Aσmeltφ
m (1.3)

where A and m are power law parameters, σbulk and σmelt are the electrical

conductivities of the bulk and melt phase, and ϕ is melt fraction. Eqn. (1.3) is an

empirical relation that assumes the mineral phase is a good insulator relative to the

melt phase, which is true for olivine-basaltic melt aggregates.

Note the similarities between Eqn. 1.2 and Eqn. 1.3. Both are power laws that

relate a bulk transport properties to characteristics of the melt microstructure. The fact

that the same pathways that facilitate fluid flow are also available to conduction of

 14

 15

electrical current has garnered significant interest in linking permeability and

electrical conductivity. We address the possibility of using electrical conductivity as a

tool for inferring permeability in Chapter 3.

1.3.4 Using electrical conductivity to infer 3-D melt distribution

It is common practice to infer 3-D melt geometries from measured values if

σbulk. Fig. 1.6 is comparison of an Archie relation for the olivine-basaltic melt system,

obtained by fitting measured bulk electrical conductivity data, and the geometric

mixing models (Fig. 1.6A). Measured values of σbulk for olivine-basaltic melt

aggregates appear to straddle the Hashin-Shtrikman upper bound, which assumes a

non-uniform pack of spherical grains completely wetted by a uniform layer of melt

(Fig. 1.6B). However, this interpretation is inconsistent with microscopy studies that

observe coexisting melt tubules, melt films, and melt pools. A derivation of electrical

conductivity for a real partially molten rock geometry from microstructural

considerations, which is discussed in Chapter 3, is therefore needed to explain the

high bulk electrical conductivities observed in synthetic partial melts.

1.3.5 3-D melt distribution from X-ray micro-computed tomography

Rather than inferring a 3-D melt distribution of olivine-basaltic melt samples

by comparing measured bulk properties to idealized mixing models, the three-

dimensional melt microstructure can be obtained using synchrotron X-ray micro-

computed tomography (µ-CT) (Zhu et al., 2011). µ-CT is a three-dimensional

imaging technology that exploits the difference in relative X-ray absorption

 16

efficiencies of materials. µ-CT has been used for decades to study the pore structure

of crustal rock samples. However, µ-CT has only recently been applied to study the

olivine-basalt partially molten system in part due to the technical challenge associated

with resolving the small density contrast (~400 kg m-3) between olivine and basaltic.

Novel reconstruction algorithms that incorporate diffraction-enhanced tomography

(Fitzgerald, 2000), also known as qualitative phase retrieval, allow one to highlight

grain-basalt interfaces. The resulting high-resolution, 3-D image constitutes a virtual

rock sample on which microstructural analysis or digital rock physics (DRP)

experiments can be conducted.

1.4 Basics of X-ray micro-computed tomography

There are two categories of X-ray µ-CT: absorption-contrast and phase-

contrast tomography. Both are inverse problems that are solved using some

implementation of the filtered-back-projection method (see Kak and Slaney (1988)

for a review of principles).

Absorption-contrast tomography utilizes spatial variations in the density

distribution to image an object. The estimated spatial density distribution can be

computed by inverting a series of projections taken along different ray paths through

the object (Fig. 1.7 & Fig. 8). Each projection contains a record of the proportion of

X-ray attenuation integrated along the ray path. For each X-ray path, the X-ray

intensity I is given by

 I = I0 exp − µ x()dx
−∞

+∞

∫
⎡

⎣
⎢

⎤

⎦
⎥ (1.4)

where I0 is the intensity of the incident X-ray and µ is the absorption coefficient along

 17

the path of the X-ray. Reconstructing the 3-D image amounts to finding the

absorption coefficients µ that relate the known incident X-ray intensity to the

attenuated signal recorded in the projections. Robustly resolving material interfaces

using absorption contrast tomography requires a sufficiently large density contrast

between materials. As was discussed briefly in Section 1.3.4, the density contrast

between olivine and basalt is too low for absorption-contrast alone to be effective at

imaging samples composed of olivine and quenched basaltic melt.

Additional information can be obtained from the diffraction signal embedded

in the X-ray projection. There are two classes of phase-contrast tomography:

“qualitative” phase-contrast tomography (e.g. Fitzgerald (2000)), commonly referred

to as “edge-enhancement,” incorporates information about diffraction of X-rays at the

mineral-mineral or mineral-fluid interface to highlight those interfaces. Qualitative

phase-contrast tomography was successfully applied to monomineralic partially

molten forsterite-basalts (Zhu et al., 2011). However, even edge-enhancement is not

sufficient to resolve polymineralic aggregates that contain olivine-orthopyroxene

(opx) and opx-basalt interfaces, whose density contrast is ~70 kg m-3. Therefore,

quantitative phase-contrast-tomography (e.g. Paganin et al., 2002), which exploits the

spatial distribution of the index refraction, can be used to improve the image quality.

Common quantitative phase retrieval algorithms (Paganin et al., 2002) essentially

perform joint-inversions between absorption-contrast and phase-contrast tomography.

They provide excellent image quality when the density contrast between components

is small.

 18

 19

1.6 Segmentation of grayscale image

The grayscale output of the reconstruction algorithm is not immediately

lendable to automatic quantification and numerical computation of physical

properties. An additional step, often referred to as segmentation, needs to be

conducted to transform the grayscale image to a label image, wherein each voxel is

assigned a non-negative integer identification number. Once “segmented,” a number

of algorithms can be used to quantify the morphology and topology of the mineral

and fluid structure. Label images can be easily discretized and be used as the

computational domain in digital rock physics (DRP) simulations to compute physical

rock properties.

The goal of segmentation is to accurately capture the spatial distribution of

materials based on their grayscale values so that the reconstructed digital rocks are

representative of the real samples. Refer to Fusseis et al. (2014) for a quantitative

comparison of segmentation techniques applied to X-ray µ-CT of geological

materials. For the purpose of this project, it suffices to say that common segmentation

algorithms fall into two categories: global and local. Global segmentation algorithms

involve thresholding the data by a globally defined variable, such as the grayscale

value at the inflection of the grayscale histogram computed for the whole subvolume.

Conversely, local segmentation algorithms assign label identifiers to pixels based on

locally varying quantities. Local segmentation algorithms are better at repressing the

random or speckled noise and the long-wavelength grayscale variations but are

computationally expensive to perform on large volumes.

 20

1.7 Digital rock physics applied to partially molten rock: an overview

The true power of µ-CT comes to light when it is combined with numerical

simulations. The 3-D label images constitute virtual rock samples on which any

virtual rock physics experiment can be conducted and any range of parameters can be

tested with relative ease. With a DRP approach, tweaking an experiment amounts

changing input parameters or boundary conditions. Material properties can be

accurately derived from first principles and directly linked to characteristics of the

rock microstructure.

I used DRP techniques to characterize microstructure and compute

permeability and electrical conductivity of olivine-basalt aggregates (Chapter 2 and 3)

and olivine-opx-basalt (Chapter 4 and 5) aggregates as a function of melt fraction.

Melt morphologies and topologies are quantified on statistically representative

volumes and linked to transport properties. A number of 3-D image processing,

segmentation, and automated quantification tools are also discussed.

 21

Chapter 2: Experimental quantification of permeability of partially molten

mantle rocks

Abstract

Melt percolation in mantle rocks is currently poorly constrained, especially at

low melt fractions. At mid-ocean ridges, for example, geochemical and geophysical

observations produce divergent estimates of how much melt is present in the mantle

and how quickly it moves. Accurate estimates of permeability and grain-scale melt

distribution in mantle rock are necessary to reconcile these observations. We present

three-dimensional (3-D), 700 nm-resolution images of olivine-basalt aggregates,

containing nominal melt fractions (ϕn) between 0.02 and 0.20. Samples were prepared

from a powdered mixture of San Carlos olivine and high-alumina basalt and hot-

pressed in a solid-media piston-cylinder apparatus at 1350 °C and 1.5 GPa. Images

were obtained using synchrotron X-ray micro-computed tomography (µ-CT) from the

Advance Photon Source at Argonne National Laboratory. Stokes flow simulations,

conducted using the digital melt volume as the numerical domain, determine that the

permeabilities of experimental charges range from 2×10-16 to 5×10-13 m2 for ϕn=0.02

to 0.20, respectively. The simulation results are well represented by the power-law

relation between permeability (k) and melt fraction (ϕ), k = ϕn d 2 / C, where n = 2.6 ±

0.2, and assuming a grain size of 35 µm, C =58−22
+36 . These results place important new

constraints on rates of melt migration and melt extraction within partially molten

regions of the mantle.

 22

2.1 Introduction

At mid-ocean ridges, the divergence of lithospheric plates causes an upwelling

of hot mantle. The pressure relief during ascent carries peridotite across its solidus

and induces partial melting. The melt, which is less dense than the surrounding

mantle, separates from the solid and percolates towards the surface via porous and

possibly channelized flow (e.g. Kelemen et al., 1997). The melt extraction rate is

governed by the permeability of the mantle, which is highly influenced by the amount

of melt present as well as the topology and connectivity of the melt network. Despite

its importance for understanding melt transport in the mantle, the permeability of

partially molten mantle rock is poorly constrained. The aim of this study is to provide

better permeability estimates through the quantification of grain-scale melt

distribution.

At textural equilibrium, the relationship between permeability and the grain-

scale melt distribution in a partially molten rock takes the form of a power law

(Cheadle, 1989; Connolly et al., 2009; McKenzie, 1984; Ricard et al., 2001; von

Bargen and Waff, 1986; Wark and Watson, 1998),

 k = φ nd 2

C
 (2.1)

where d is grain size, n is the power law exponent, and C is a geometric factor

influenced by the dihedral angle. For an isotropic system with uniform grain size and

shape, n=2 (McKenzie, 2000; von Bargen and Waff, 1986). However, for more

complex systems, where the effects of crystal anisotropy and grain-scale

heterogeneity are no longer negligible, higher vales of n should be used. For example,

a value of n=3 represents well porous flow through a non-uniform network of packed

 23

tetrakaidekahedral grains (Zhu and Hirth, 2003). These model results have been

corroborated by permeability experiments conducted on analogue systems composed

of quartzite + H2O and calcite + H2O where grain size distribution is non-uniform,

grain shapes are anisotropic, and n~3 (Wark and Watson, 1998).

Mineralogy plays an important role, through its influence on surface free

energy, in determining the minimum-energy configuration of the system. Therefore,

experiments conducted on partial melts with chemistry similar to the mantle must be

considered. Some permeability experiments (Connolly et al., 2009; Renner et al.,

2003) have been conducted for olivine partial melts. They find that the permeability

of partially molten olivine basalt at high melt fractions (ϕ > 0.02) is consistent with a

power law where n~3. However, permeametry of partially molten aggregates in these

experiments is technically challenging. Consequently, the results of such studies are

subject to considerable uncertainty.

Grain-scale melt distribution is typically studied by examining backscattered

electron images from two-dimensional (2-D) cross-sections of isostatically pressed

samples (e.g. Cmíral et al., 1998; Faul and Fitz Gerald, 1999). By assuming a model

about the three-dimensional (3-D) connectivity of the melt network, it is possible to

infer and estimate sample permeability using the 2-D data. However, those estimates

are innately ambiguous, since permeability is an intrinsic property of the 3-D

microstructure (Zhu et al., 2011). Therefore, a fully 3-D approach must be employed

in order to accurately determine sample permeability. Two methods may be employed

for characterizing microstructures in three dimension: serial cross-sectioning (Garapić

 24

et al., 2013; Wark et al., 2003) and synchrotron X-ray micro-computed tomography

(µ-CT) (Watson and Roberts, 2011; Zhu et al., 2011). This study focuses on the latter.

Constraints on mantle permeability come from both geochemical and

geophysical observations. Analyses of uranium-series isotopes in mid-ocean ridge

basalts (MORB) (Lundstrom et al., 1995; McKenzie, 2000, 1985; Sims et al., 2002;

Stracke et al., 2006), have shown a measureable degree of secular disequilibrium

between 238U and its shorter-lived daughter nuclides 230Th and 236Ra. Preservation of

secular disequilibrium at the surface implies a low melt fraction retained by the

mantle, ϕ < 0.01, with a relatively fast upwelling velocity at ~1 m yr-1 (Kelemen et

al., 1997). By contrast, geophysical observations imply considerably higher melt

fraction. For example, seismic and magnetotelluric data (Evans et al., 1999; The

MELT Seismic Team, 1998) from the East Pacific Rise 17°S give evidence that the

melt fraction in the mantle is 0.01 to 0.02, implying that melt extraction is inefficient

at lower melt fractions. In a more recent study, Key et al. (2013) reported a melt

fraction close to 0.10 under the East Pacific Rise 9°N using magnetotelluric

inversions. Accurate estimates of permeability of partially molten rocks are needed to

reconcile the apparent contradiction in melt fraction.

In this study, we utilize high-resolution µ-CT to digitally capture the 3-D melt

distributions of olivine-basalt aggregates isostatically pressed in a piston-cylinder

apparatus at 1350 °C and 1.5 GPa. Nominal melt fractions (ϕn) of samples

systematically ranged from 0.2 to 0.20 (Zhu et al., 2011). To demonstrate textual

equilibrium of these experimental charges, we also conducted time series experiments

at nominal melt fraction of 0.05 (refer to Appendix A). For each sample, we selected

 25

several representative subvolumes and characterized their permeability, grain size

distribution, and melt interconnectivity. The permeability of each subvolume was

calculated by numerically solving the Stokes fluid questions for the velocity and

pressure fields within the digital melt microstructure. Permeability was plotted as a

function of the measured melt fraction (ϕm) in the corresponding subvolume and an

empirical relation between permeability and melt fraction was obtained. Our results

provide new experimental constraints on the permeability and melt distribution of

partially molten rocks.

2.2 Experimental Methods

2.2.1 Sample Preparation

 Experimental charges were prepared from a powder mixture of natural, high-

alumina basalt (Mg #=0.705) and San Carlos olivine (~Fo90) (Zhu et al., 2011).

Olivine grains were sorted using a sieve to a maximum grain size of 10 µm. The

nominal melt fraction desired for each sample was obtained by varying the basalt

content of the mixture, which was then homogenized with ethanol for six hour-long

cycles in an automatic agate mortar and pestle. The homogenized mixtures were

pressed into cylindrical pellets under a 1-ton press, placed into graphite capsules (Fig.

2.1A), and dried overnight at 400 °C to remove water. The whole assembly was

centered in a straight-walled graphite furnace using crushable MgO spacers. The

pressure medium for all experiments consisted of a CaF2 sleeve.

Experiments were conducted using 1.27 cm assemblies (Boyd and England,

1960). Pressure was initially applied using the cold piston-in technique (Johannes et

 26

al., 1971). The friction correction for the assemblies was calibrated against the Ca-

tschermakite breakdown reaction at 1.2 to 1.4 GPa and 1300 °C (Hays, 1966) and

determined to be less than the pressure uncertainty of the pressure gauge, so no

correction has been applied to the reported pressures. Temperature was measured and

controlled using a W3Re97/W25Re75 thermocouple; no correction for the effect of

pressure on thermocouple EMF has been applied to the reported temperatures. N2 was

flowed over the thermocouple wires to minimize thermocouple oxidation over the

course of an experiment. Temperatures are estimated to be accurate to ±10°C and

pressures to ±50 MPa. The temperature difference over the capsule was determined to

be less than 5 °C using offset thermocouples. Experiments were terminated by

shutting off the power. Upon completing each experimental run, the graphite capsule

was sawed open to expose the surface of the experimental charge (Fig. 2.1B). The

exposed surface was polished and reflected light photomicrographs were taken. A

cylindrical ~0.9mm diameter cylindrical samples was then cored from each charge to

be used for µ-CT analysis (Fig. 2.1C).

Two suites of experiments were conducted (Table 2.1). The first suite was a

time series, which was conducted to determine the minimum time required for a

sample to reach textural equilibrium. All of the time series samples have a nominal

melt fraction of 0.05 and the sintering time varied systematically from 42 to 336

hours (see Appendix A). The second suite of samples consisted of nominal melt

fractions of 0.02, 0.05, 0.10, and 0.20. The sintering time for each sample was

sufficiently long to ensure textural equilibrium (Zhu et al., 2011).

 27

 28

Sa
m

pl
e

ID

N
om

in
al

 M
el

t
Fr

ac
tio

n,
 ϕ

n

Si
nt

er
in

g
Ti

m
e

[h
ou

rs
]

M
ea

su
re

d
M

el
t

Fr
ac

tio
na , ϕ

m

G
ra

in
 S

iz
eb , d

[µ

m
]

Pe
rm

ea
bi

lit
yc , k

 [m
2]

sc
ob

a-
5

0.
20

26

5
0.

18
 ±

 0
.0

2
40

 (-
17

 /
+2

8)

2.
3

(-
0.

4
/ +

0.
4)

 ×
 1

0-1
3

sc
ob

a-
6

0.
10

24

0
0.

07
9

±
0.

00
9

37
 (-

14
 /

+2
2)

1.

9
(-

0.
5

/ +
0.

6)
 ×

 1
0-1

4
sc

ob
a-

9
0.

02

33
6

0.
01

5
±

0.
00

3
42

 (-
20

 /
+3

9)

4.
1

(-
0.

7
/ +

0.
8)

 ×
 1

0-1
6

sc
ob

a-
12

d
0.

05

16
8

0.
04

8
±

0.
00

4
32

 (-
12

 /
+1

8)

5.
2

(-
1.

1
/ +

1.
3)

 ×
 1

0-1
5

sc
ob

a-
13

d
0.

05

42

N
/A

N

/A

N
/A

sc

ob
a-

14
d

0.
05

84

N

/A

N
/A

N

/A

sc
ob

a-
15

d,
e

0.
05

33

6
0.

05
70

29

.6

7.
7
×

10
-1

5
Ta

bl
e

2.
1:

 a ϕ
m

 a
re

 a
rit

hm
et

ic
 a

ve
ra

ge
 m

ea
su

re
d

m
el

t f
ra

ct
io

ns
 a

nd
 1
σ

st
an

da
rd

 d
ev

ia
tio

ns
 c

om
pu

te
d

ov
er

 ra
ng

e
of

 s
ub

vo
lu

m
es

pe

r s
am

pl
e.

 b d
ar

e
ge

om
et

ric
 a

ve
ra

ge
 e

qu
iv

al
en

t d
ia

m
et

er
s

w
ith

 1
σ

st
an

da
rd

 d
ev

ia
tio

ns
 c

om
pu

te
d

fo
r E

D
D

 o
f t

he
 a

gg
re

ga
te

d
su

bv
ol

um
es

.
c k

ar
e

ge
om

et
ric

 a
ve

ra
ge

 p
er

m
ea

bi
lit

ie
s

w
ith

 1
σ

ge
om

et
ric

 s
ta

nd
ar

d
de

vi
at

io
ns

 c
om

pu
te

d
ov

er
 r

an
ge

 o
f

su
bv

ol
um

es
 p

er
 s

am
pl

e.
 d Ti

m
e

se
rie

s
ex

pe
rim

en
ts

: n
o

ph
ys

ic
al

 p
ro

pe
rti

es
 c

al
cu

la
te

d
on

 s
am

pl
es

 th
at

 h
av

e
no

t y
et

 a
ch

ie
ve

d
te

xt
ur

al
 e

qu
ili

br
iu

m
. e Th

e
va

lu
es

 fo
r s

co
ba

-1
5

w
er

e
ca

lc
ul

at
ed

 fr
om

 o
nl

y
on

e
35

0×
35

0×
35

0
µm

3
su

bv
ol

um
e.

 29

2.3 Analytical Methods

2.3.1 Synchrotron X-ray micro-computed tomography

Microtomography was conducted at 2-BM of the Advanced Photon Source at

Argonne National Laboratory, Argonne, IL. A multi-layer monochrometer was used

to select a narrow band (27 keV) of X-rays. Those photons were then passed through

the olivine-basalt sample (Fig. 2.2). On the opposite side of the sample, the X-rays

were transmitted to a LuAg:Ce scintillator, converting them into visible light. A CCD

camera was used to detect the visible light, and the light intensity was recorded. The

sample was rotated 180° in 0.12° increments to build a digital volumetric

representation of the sample in about 20 minutes (Fig. 2.2). For each sample, the raw

intensity data was processed using GidRec (Dowd et al., 1999) into a stack of image

slices. Each slice is a grayscale image whose constituent pixels have values that are

functions of X-ray attenuation, which is in turn, a function of material density. In this

way, µ-CT is used to differentiate phases, so long as the density contrast between the

phases is substantial.

Silicate melt samples pose a unique problem in that the density contrast

between olivine and basalt is not sufficient to differentiate the phases using standard

phase contrast techniques. To circumvent this issue, we employed diffraction-

enhanced imaging (Fitzgerald, 2000) to improve the contrast between olivine and

basalt (Zhu et al., 2011). Diffraction-enhanced imaging utilizes the interference

pattern, which occurs in the near-field Fresnel diffraction regime, to highlight the

olivine-basalt interfaces and produce high-resolution 3-D microstructure of olivine-

basalt systems.

 30

 31

2.3.2 Subvolume selection

 Due to limited computation power, we selected only a few cubic subvolumes

per sample for analysis. The size of those subvolumes ranged from 140×140×140

µm3 (i.e. 100×100×100 pixel3) to 350×350×350 µm3 (i.e. the 500×500×500 pixel3)

(Fig. 2.3). We determined through a series of permeability analyses on progressively

larger subvolumes that a 350×350×350 µm3 subvolume is sufficiently representative

of the sample microstructure. Refer to Appendix A.1 for details.

Several 350×350×350 µm3 subvolumes from each sample were analyzed.

Although each subvolume is susceptible to local heterogeneities in the melt

microstructure, taken together, these subvolumes adequately represent the melt

microstructure of the entire sample. Analyses of sample permeability, grain size, and

interconnectivity were conducted using a combination of Avizo® and Matlab®

software.

2.3.3 Noise reduction and segmentation techniques

To reduce noise and suppress artifacts that remain from the imaging process,

we employed a non-local means filter (Buades et al., 2005) and an anisotropic

diffusion filter (Weickert et al., 1998) (Fig. A.1). Once we reduced the noise to an

acceptable level, we implemented a series of algorithms to segment the grayscale

data. Segmentation is a procedure by which we transform grayscale data into a binary

label file required for our quantitative analyses of the microstructure (Fig. A.2). Two

techniques were used for segmenting the grayscale data: a marker-based watershed

transformation and a top-hat threshold.

 32

 33

The watershed transformation (Beucher, 1992) is based on the idea of

redefining grayscale pixel value as topographic relief. First, interphase boundaries are

highlighted by thresholding the grayscale gradient of the denoised image. Then a

global threshold is employed to make an initial try at segmenting the denoised data.

The image is then inundated starting from the initial segmentation. The regions

defined by the thresholded gradient act as impermeable barriers to the rising virtual

fluid, preventing the merging of distinctly different phases. The result, after the

watershed transformation, is a high-quality, segmented binary image where phase

boundaries are defined exactly at grayscale inflections.

The watershed transform is suitable for accurately segmenting larger features

in the data; however, it tends to miss very thin melt conduits. To capture these finer

details, a top-hat filter (Vincent, 1993) is applied and then a global threshold is

utilized to select those details. The size of the kernel is selected based on the size of

those features. An opening filter is then applied to the inverse of the image in order to

smooth out the boundaries of the image. Some user-controlled refinements of the

binary image were typically needed. The size of the features that top-hat segmenting

is able to recognize is limited by the kernel size. Avizo limits the size of the kernel to

twenty pixels, so a watershed transform is still needed if there are features in the 2-D

slice that are larger than the kernel size. Examples of the final 3-D binary images for

four charges of different nominal melt fractions are show in Fig. 2.4.

2.3.4 Quantification of network topology

We performed a series of systematic analyses on subvolumes of the 3-D

 34

binary image of our olivine-basalt samples. We quantify the melt fraction, grain size

distribution, network interconnectivity, and permeability for each subvolume (Table

A.1). The melt fraction (ϕm) of each subvolume is measured by calculating fraction of

voxels, the three-dimensional image unit, assigned to the melt phase in the segmented

image. The measured melt fraction of a subvolume may vary from the nominal melt

fraction (ϕn) because of sample heterogeneity and possible melt-rock interactions.

Uncertainty on the measured melt fraction was estimated by contracting (low bound)

and dilating (upper bound) the binary melt image by one pixel (Fusseis et al., 2012).

For this reason, error bars are asymmetric.

Grain size distribution was quantified using Avizo’s Separate Objects module.

The module takes the binary label image as input and performs a series of high-level

algorithms, including a watershed transform, distance transform, and numerical

reconstructions, to separate individual grains by a 1-pixel boundary. We report the

grain size distribution for every subvolume as the distribution of equivalent

diameters. Separation of individual grains is difficult when melt fraction is low, since

the only thing that separates grains are melt channels. Therefore large uncertainties in

the equivalent diameter distributions are expected for the scoba-9 (ϕn=0.02) sample.

Quantification of the melt network connectivity was accomplished using

Avizo’s skeletonization module. Skeletonization is the process by which the general

melt microstructure is simplified to an interconnected skeleton network. The skeleton

is used to assess the topology of the melt network. First, a distance map is calculated.

Second, a thinning algorithm is applied to the binary image that removes pixel-by-

pixel the outer layers of melt channels until only a string of pixels remain. The

 35

A B

D

140ȝm

C

Figure 2.4: Volume renderings of the melt distribution for olivine–basalt containing nominal melt fractions of
(A) 0.02, (B) 0.05, (C) 0.10, and (D) 0.20. The dimensions of each subvolume are 140×140×140 µm3. Gray
represents the melt phase, empty spaces are olivine grains, and red highlights the intersection of melt and the
bounding box.

 36

algorithm is calibrated so as to preserve small features of the melt microstructure.

Finally, the mean thicknesses of the melt conduits are retrieved from the distance

map. A Matlab® script, called ScobaCleaner.m, was written to automatically remove

spurious features from the skeletonized melt network (see supplementary material and

Zhu et al. 2011).

2.3.5 Quantification of permeability

Permeability calculations were performed using Avizo’s XLab Hydro module.

Two different computational modules were used: the Absolute Permeability

Experiment Simulation (APES), which computes a scalar estimate of the

permeability, and the Absolute Permeability Tensor Calculation (APTC), which

computes the 3×3 permeability tensor for the subvolume. Both APES and APTC

implement the finite volume method (Harlow and Welch, 1965) to solve the Stokes

Equations for the velocity and pressure fields. The Stokes Equations are given by

 (2.2)

where p is the pressure [Pa], µ is the viscosity [Pa s] of the simulated fluid, and u is

the velocity [m s-1].

For APES, flow in the digital melt domain is driven by a pressure differential

(ΔP) imposed across the subvolume (Fig. 2.5). A 1-pixel-wide impermeable layer is

added to the sides of the sample domain parallel to the flow in order to prevent loss of

fluid through the adjacent faces. Accommodation zones are added to the inflow and

outflow faces of the subvolume to ensure that there is a self-consistent pressure field

over the faces. The APES module then solves for the velocity field in the melt domain

∇⋅u = 0
µ∇2u −∇p = 0

⎧
⎨
⎩

 37

(Fig. 2.5). Each APES fluid flow simulation was conducted along the z-direction,

parallel to the cylindrical sample axis. During post-processing, the volumetric flux Q

[m3
 s-1] across the sample end faces is computed, and an application of Darcy’s Law

yields the permeability k [m2].

 (2.3)

where A is the cross-sectional area [m2] and L [m] is the length of the computational

domain.

Contrary to the APES, APTC simulates fluid flow by solving a modified,

volume-averaged form of the Stokes Equations (Gray, 1975)

 (2.4)

where D is a tensorial representation of the spatial deviation of the velocity [s-1], d is

a vectorial representation of the spatial deviation of the pressure [Pa s m1], and I is

the 3×3 identity matrix. Rather than invoking Darcy’s Law, the permeability tensor K

is computed by volume-averaging D over the whole computational domain V.

 (2.5)

Equation systems 2.2 and 2.4 do not lend themselves immediately to solving

through implicit methods, since matricies of this form are singular. Therefore, an

artificial compressibility coefficient (Chorin, 1967) is incorporated in the discretized

forms of Eqn. 2.2 and 2.4.

Differing from the APES module, which imposes a pressure gradient to

induce fluid flow, the APTC module supplies mass to the system via a volumetric

k = −Q µ
ΔP

L
A

∇⋅D = 0
µ∇2D −∇d = I

⎧
⎨
⎩

K = 1
V
DdV

V
∫

 38

 39

source term in the discretized formulation of Eqn. 2.4. Accommodation zones are

defined on all six faces of the subvolume to impose periodic boundary conditions

between parallel faces. One major drawback of the APTC module is computational

cost of the calculation. Moreover, significant permeability anisotropy is not expected

in our isostatically pressed samples. The APES module, in contrast, is a relatively

quick computation capable of calculating the scalar permeability for a given

subvolume, provided the permeability is not significantly anisotropic. For our study,

APES is the preferred module for calculating sample permeability. APTC is only

used to verify the absence of significant permeability anisotropy.

2.4 Results

The analyses mentioned above were performed on all 350×350×350µm3

subvolumes for nominal melt fractions ranging from 0.02 to 0.20. Refer to the Table

A.1 of the online supplement for a complete list of results. From now on, subvolumes

will be referred to using the notation “scoba-a-b-c”, where the placeholders a, b, and

c refer to the sample number, subvolume dimension in pixels, and the subvolume

identification number, respectively (Table A.1).

2.4.1 Grain size results

Results from our time series experiments (Appendix A) indicate that the

olivine-basalt samples with ϕn of 0.02, 0.05, 0.10, and 0.20 have equilibrium textures.

The olivine-basalt aggregates with ϕn from 0.05 to 0.2 exhibit lognormal

Equivalent Diameter Distributions (EDD). However, the scoba-9 sample (ϕn=0.02)

 40

has an EDD that differs significantly from the others, which likely results from a

failure of the Separate Objects module to accurately segment individual grains at

small melt fractions. For melt fractions as low as 0.02, many of the melt channels are

below the resolution of µ-CT (Zhu et al., 2011). When this is the case, two or more

adjacent grains may be misrepresented as a single large grain. This may explain why

the mean EDD reported for scoba-9 is much larger than the others, and it may also

explain why the EDD exhibits a long tail for equivalent diameters larger than 80µm.

These larger grains cannot be remnants of the pre-sintered samples, since the

maximum grain size of the pre-sintered experimental charge is 10 µm.

The mean equivalent diameters for scoba-9 (ϕn=0.02), scoba-12 (ϕn=0.05),

scoba-6 (ϕn=0.10), and scoba-5 (ϕn=0.20) are 42−20
+38 µm, 34−12

+18 µm, 38−13
+21 µm, and

41−15
+24 µm, respectively (Fig. 2.6). Errors are asymmetric because equivalent diameter

distributions are characteristically lognormal.

2.4.2 Connectivity of melt network

Results from connectivity analyses are conveyed as Coordination Number

Distributions (CND) in Fig. 2.7. The skeletonization analysis replaces melt-filled

triple junctions with tubules whose widths vary along their axes. The intersections

between melt tubules are designated “nodes.” Connectivity is defined as the number

of melt tubules connected to each node. The connectivity of an ideal melt network is

predicted to be 4 (von Bargen and Waff, 1986), but it varies in natural systems like

our samples (Zhu et al., 2011). We determine the CND of one 350×350×350µm3

subvolume from each sample.

 41

To describe the CND in a physical context, nodes with a coordination number

of 1 represent dead-end melt channels. Nodes with a coordination number of 2 are

removed from the skeleton, since two connected melt conduits effectively act as one

single conduit. Nodes with a coordination number of 3 are mostly associated with

regions where melt pooling or grain boundary wetting is occurring. A node with a

coordination number of 4 indicates a four-grain junction. Nodes with a coordination

number of 5 or higher are either representative of physical junctions in which more

than four grains are present, or artifacts from the ScobaCleaner.m algorithm when the

connections from short tubules get merged (Table A.2).

The CNDs of scoba-5 (ϕn=0.20), scoba-6 (ϕn=0.10), scoba-12 (ϕn=0.05), and

scoba-9 (ϕn=0.02) indicate that the frequency of coordination number 4 nodes

decreases as melt fraction increases (Fig. 2.7). This represents a decrease in the

number of melt junctions connected to four melt tubules. Conversely, the frequency

of coordination number 3 increases over the same range, representing an increase in

melt grain boundary wetting. The higher connectivity nodes, e.g. 5-8, have more or

less the same frequency across scoba-12, scoba-6, and scoba-5.

Scoba-9 (ϕn=0.02) appears to contradict the progression towards a

coordination number 4 dominated melt microstructure, since coordination number 3

nodes represent a clear majority of the nodes in the network. However, many thin

melt tubules in scoba-9 appear broken and register as nodes having a connectivity of

1. This artifact is a result of the µ-CT resolution limits. A node having four connected

tubules might register as a node that has only three connecting tubules if one of those

tubules is removed during cleaning or data processing. This would account for the

 42

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Fr
eq

ue
nc

y

0 20 40 60 80 100 120 0 20 40 60 80 100 120
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Frequency

0 20 40 60 80 100 120
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Fr
eq

ue
nc

y

0 20 40 60 80 100 120
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Frequency

A B

C D

Mean: 42 µm
ı� ��í����������µm
of Grains = 109

0HDQ�����µm
ı� ��í����������µm
��RI�*UDLQV� ����

0HDQ����µm
ı� ��í����������µm
of Grains = 221

Mean: 41 µm
ı� ��í����������µm
��RI�*UDLQV� ����

Figure 2.6: Equivalent diameter distributions from 350 × 350 × 350 µm3�VXEYROXPHV�RI��$��VFRED�� n = 0.02), (B)ࢥ���������
VFRED�����������ࢥn� ���������&��VFRED����������ࢥn� �������DQG��'��VFRED����������ࢥn =0.20). The geometric mean, geomet-
ULF�VWDQGDUG�GHYLDWLRQ��ı���DQG�QXPEHU�RI�JUDLQV�FRQWDLQHG�ZLWKLQ�HDFK�VDPSOH�DUH�UHSRUWHG��+LVWRJUDPV�DUH�FDOFXODWHG�ZLWK�
���ELQV��'DVKHG�OLQHV�UHSUHVHQW�WKH�EHVW�ILW�ORJQRUPDO�GLVWULEXWLRQV�WR�WKH�HTXLYDOHQW�GLDPHWHU�GDWD�

 43

anomalously high abundance of dead-end tubules as well as the less-than-expected

frequency of coordination number 4 nodes. Notwithstanding these resolution limits, it

is clear that the melt network remains well connected even when the nominal melt

fraction is 0.02 and the measured melt fraction of representative subvolumes

approaches 0.0121−0.005
+0.006 . Therefore, even at low melt fractions our subvolumes

support fluid flow.

2.4.3 Permeability results

Permeability was computed for three to five 350×350×350 µm3 subvolumes

per sample (Fig. 2.3). Fig. 2.8 shows the calculated permeability as a function of the

measured melt fraction of each subvolume. We performed a linear fit on the data

using the total least squares algorithm based on York et al. (2004), including the

standard error on measured melt fraction. Since permeability values were calculation

results, no uncertainty was reported. Uncertainty of melt fractions came from the

ambiguity in the location of the olivine-basalt phase interface. The upper and lower

bounds of melt fractions were estimated by expanding and shrinking the melt phase

by 1 pixel at the olivine-melt interface (Fusseis et al., 2012). When fitting the data,

we shift the porosity value to halfway between the upper and lower bounds of melt

fraction. We find that fluid flow in our olivine-basalt samples is well characterized by

a power-law relationship between permeability and melt fraction (Eqn. 2.1), where

the power law exponent is n = 2.6 ± 0.2(1σ), and, assuming a grain size of 35 µm in

our samples, the geometric constant is C = 58−22
+36 (1σ).

 44

316

0

203

103

11 2 0 0

276

0

543

271

94
38

10 6

Coordination #

1 2 3 4 5 6 7 8

R
el

at
iv

e
Fr

eq
ue

nc
y

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

0.5
0.55

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

0.5
0.55

0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5
0.55
0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5
0.55

Coordination #

R
el

at
iv

e
Fr

eq
ue

nc
y

R
elative Frequency

R
elative Frequency

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

B

C D

A

452

0

1014

1242

439

189
53 18

340

0

677

486

144

32 8 1

Figure 2.7: Coordination number distribution of melt fraction series experiments. Relative frequency of coordination numbers
of 350×350×350 µm3�VXEYROXPHV�RI��$��VFRED��� nࢥ����������&��VFRED��������� �nࢥ�����������%��VFRED��������� �nࢥ��������
 �������� DQG� �'�� VFRED��������� n = 0.20). Total counts of each coordination number are reported above each bar. Theࢥ�
network skeleton of a representative 105×105×105 µm3 is included as an insert for each sample. The nodes in the skeleton are
color-coded according to their coordination number, e.g.1–black, 3–red, 4–green, 5–blue, 6–magenta, and > 6 – yellow. The
radius of the melt tubules in the skeleton visualized in the inserts are proportional to melt conduit thickness in the original,
pre-skeletonized melt microstructure.

 45

2.4.4 Permeability Anisotropy

We computed the permeability tensor K for the scoba-12-500-4 subvolume

(φn=0.05) using the APTC module, yielding

 (2.6)

The eigenvalues of K, called the principal permeabilities, are 2.02×10-15 m2, 1.88×10-

15 m2, and 1.81×10-15 m2. The coefficient of variation of these values is ~6%, which is

negligible compared to modeling uncertainty. Therefore, we conclude that the melt

microstructure of our sample is isotropic at the scale of this 350×350×350µm3

subvolume. Since the microstructures are isotropic, we conclude that isostatically

pressing the samples produces an isotropic permeability structure, so the APES

module is sufficient for computing the permeabilities of our subvolumes.

The permeability of this subvolume determined by the APES module is 4.6×10-15 m2,

which is about a factor of 2 larger than the determination from APTC. The

discrepancy is likely due to the different formulation of the permeability

determination problem. The formulation used by APES is closest to the original

definition of permeability and is therefore preferred here. We also artificially rotated

the subvolume and recalculated the permeability by APES in three mutually

perpendicular directions. We find the permeabilities to be 5.4×10-15 m2, 4.7×10-15 m2,

and 4.6×10-15 m2 for kx, ky, and kz, respectively. Permeability values are similar within

~3.9% relative variance, which confirms that the permeability in our samples is

essentially isotropic.

K =
1.86 2 ×10−3 −6 ×10−2

2 ×10−3 1.90 8×10−2

−6 ×10−2 8×10−2 1.94

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

×10−15m2

 46

Figure 2.8: Permeability calculated for 350 × 350 × 350 µm3 subvolumes plotted as a function of the
measured melt fraction on log–log axes. Different samples are represented by different colors, with
sample number and nominal melt content indicated in the legend. The dashed line represents the best-
fit line for log10(k) = n log10(ϕm) + log10(d2/C), where geometric constant C =𝟓𝟖!𝟐𝟐!𝟑𝟔 and power law
exponent n =2.6 ± 0.2. For fit, d is assumed to be 35 µm, a value we chose because it is within the
range of grain sizes measured from all subvolumes.

 47

2.5 Discussion

2.5.1 Morphology of melt microstructure

Visual inspection of our melt microstructures reveals that, for low melt

fractions the network topology resembles the ideal model proposed by von Bargen

and Waff (1986), where melt preferentially reside to three and four-grain junctions.

As the nominal melt fraction increases to 0.05, we visually observe the onset of grain

boundary wetting, though melt tubules continue to be the dominant feature of the melt

microstructure. At ϕn=0.10, there is an inversion from a tube-dominated network to

one in which the melt films and pools are the most prominent features. Finally, for

ϕn=0.20, grain boundaries are almost completely wetted, as the sample is approaching

its theoretical disaggregation limit, ϕn≥0.20 (Hier-Majumder et al., 2006; McKenzie,

1984).

2.5.2 Interpretation of power law exponent

The permeability of an ideal melt network, in which grain size is uniform,

depends on the square of melt fraction, i.e., n=2 when melt resides at triple junction

(von Bargen and Waff, 1986) and on the cube of melt fraction, i.e. n=3, as higher

melt fraction (Wark et al., 2003). This transition may correspond the two

morphological regimes observed here, i.e. a tubule-dominated at low melt fractions

(n=2) versus pool and film-dominated at higher melt fractions (n=3). Considerations

of grain-scale heterogeneity would also produce n=3 (Zhu and Hirth, 2003).

However, the data from this study are captured adequately by a single relation with n

= 2.6 ± 0.2 and C = 58−22
+36 . More complex relations are not justified by the data,

 48

considering the uncertainty of our porosity and permeability estimates.

The experimental results of Renner et al. (2003) and Connolly et al. (2009) are

compatible with n=3, which, considering that these experiments infer permeability

indirectly from the compaction rate of olivine-basalts aggregate, present an

encouraging agreement with our study. Therefore, microstructure readjustment during

quenching appears to be minor in our experiments and our permeability–porosity

relation can probably be used to describe olivine-basalt aggregates at mantle

conditions. For extrapolation to higher temperatures and pressures, we may need to

consider an increased importance of melt film grain faces, as the dihedral angle

appears to decrease as temperature and pressure increase (Yoshino et al., 2009b).

However, melt films observed at high melt fraction in our sample do not have a

marked effect on our permeability–porosity relation. Future work would need to

address their contribution to permeability at low melt fraction, high pressure, and high

temperature.

Given the various melt geometries present in our datasets, a value of n=2.6,

between 2 and 3, is not surprising. Consider a mixture of subvolumes consisting of

end member melt distributions, one end member is entirely made up of melt tubules

along triple junctions (n=2) while the other contains only wet grain boundaries and

melt pools (n=3). The overall permeability of the system is the mixing of the

individual subvolume permeabilities and, in the absence of a large-scale order

between these subvolumes, will converge to the geometric mean permeability as the

number of subvolumes increases (Madden, 1976). If the permeability of each

subvolume Vi is given by the empirical relation ki = Ciφ
ni , the geometric mixing leads

 49

to an equation for the total permeability kT

 kT = C1…CN()
1
N φ

n1+ … +nN
N (2.7)

where N is the total number of subvolumes. Eqn. 2.7 is, in its own right, a power law,

the same as Eqn. 2.1. In our case, our end member distributions have n=2 and n=3, so

Eqn. 2.7 leads to a new power law exponent of 2.5, which is very much consistent

with the value of n = 2.6 ± 0.2 obtained by our fit. A value of n between 2 and 3 can

be though of as representing a mixing of melt geometries.

2.5.3 1-D mantle model

Given the new empirical relation between permeability and the melt fraction,

we make a simple model of melt transport in the mantle. If 230Th disequilibrium

observed is produced at 60 to 75 km depths, melt transport must have occurred at a

velocity w of order of 1 m yr-1 (3×10-8 m/s). Darcy’s law implies

 φw = k0
µ
φ nΔρg (2.8)

where k0= is the permeability coefficient, φ is the porosity, Δρ is the density

contrast between melt and solid mantle, µ=10 Pa s is the melt viscosity (Ryan and

Blevins, 1987) and g~10 m/s is the acceleration of gravity.

Assuming a grain size of 3 mm (Toramaru and Fujii, 1986), we estimate

k0~1.55×10-7 m2. If ρs=3300 kg m-3, ρf=2700 kg m-3 (Stolper et al., 1981), Δρ=600 kg

m-3. From Eqn. 2.8, the porosity needed to sustain a melt velocity w is given by

 φ = w β()
1
n−1 (2.9)

where β = k0Δρg/µ = 9.3×10-5 m s-1. Therefore, preserving 230Th disequilibrium

d 2 C

 50

produced at depth requires a porosity of at least 0.0068. This number is comparable

with estimates from seismic studies (The MELT Seismic Team, 1998), although at

the low end of the observational constraints. Higher porosity results in faster melt

velocity, which is more easily reconciled with 230Th excess in MORB.

 An alternative estimate of mantle porosity can be obtained from a mass

balance between melt produced by decompression of a mantle column at velocity W

(Ribe, 1985; Spiegelman and Elliott, 1993):

 (2.10)

where F is degree of melting, which increases with height above the level where melt

starts. By combining Eqns. 2.8 and 2.10, the mean melt fraction retained by our

model mantle is estimated at.

 φ = ρs

ρ f

FW
β

⎛

⎝⎜
⎞

⎠⎟

1
n

 (2.11)

Remarkably, the permeability in this model does not depend on porosity but only on

geodynamical parameters

 k = ρs

ρ f

µFW
Δρg

 (2.12)

 Assuming F=0.20 at the top of the melting column (Asimow et al., 1995) W=5

cm yr-1 (1.7×10-9 m s-1) (Spiegelman and Elliott, 1993), we obtain a melt fraction

ϕ=0.0085, and, according to Eqn. 2.8, a melt velocity of 5.0×10-8 m s-1 (~1.6 m yr-1).

If this velocity were valid for the entire melting column, the transit time

through the melting column zM would be

ρfφw = ρsFW

 51

 tU = zM
w

= ρs
ρf
FMW

⎛
⎝⎜

⎞
⎠⎟

1−n
n
β −1/nzM (2.13)

where FM is the degree of melting in the column. However, the degree of melting

increases upward in the column. Assuming a linear increase of F from 0 to FM

through a column of height zM, we obtain

 tT = ntU (2.14)

For FM=0.2 and zM=75 km, tT~136 kyrs. This value is in the high end of what

is permissible to preserve 230Th excesses, especially considering that chromatographic

effect will reduce the velocity of isotopes (Spiegelman and Elliott, 1993). However,

the transit time depends on grain size to the power -2/n through the β coefficient.

Increasing the grain size to 1 cm reduces the melt transit time to 54 kyrs, although a

melt fraction of 0.0034 which is harder to reconcile with geophysical estimates of

melt content underneath mid-ocean ridges.

A larger melt fraction would be compatible with 230Th constraints but could

not be sustained by melting of an upwelling mantle column. However, these

calculations assume a very simple system, i.e. 1-D melt percolation through a uniform

network in steady state. They do not give any consideration heterogeneities in the

melt distribution larger than the grain-scale. It may be possible to reconcile uranium-

series disequilibrium and geophysical observations if the mantle is heterogeneous,

with high porosity channels.

2.5.4 Implications for mantle heterogeneities

High melt fraction dunite conduits have been observed in ophiolites and

 52

appear necessary to explain chemical disequilibrium between mid-ocean ridge basalts

and the mantle residuum (Dick, 1977; Johnson and Dick, 1992; Kelemen et al., 1992;

Quick, 1982; Spiegelman and Kelemen, 2003). Dunite conduits form as a buoyant

melt, which is saturated in olivine but under-saturated in orthopyroxene (Ortoleva et

al., 1987), reacts with pyroxene-bearing peridotite, simultaneously dissolving the

orthopyroxene and precipitating olivine (Kelemen et al., 1997, 1995a, 1995b). The

dissolution of pyroxene is an incongruent melting reaction: more melt is produced by

volume than is removed from the system by the precipitation of olivine (Kelemen et

al., 1995b), and increases both melt fraction and permeability. Naturally, the rate of

dissolution is enhanced in regions where permeability is increased, which, in turn

continues to enhance permeability. Thus, a positive feedback, known as the reactive

infiltration instability (RII), is established between the opx dissolution and

permeability enhancement. Numerical models (Aharonov et al., 1995; Kelemen et al.,

1997; Spiegelman et al., 2001; Spiegelman and Kelemen, 2003) have shown that the

RII is capable of producing banded dunite structures similar to those found in nature.

Our results have direct implications for melt transport within these conduits.

At the grain-scale, permeability is largely controlled by the local melt distribution,

which is determined by local variations in the free surface energy of the system. Free

surface energy is an intrinsic property of the system composition, i.e. the mineral

phases present and the composition of the melt. Since the compositions of our

samples are similar to those of partially molten dunite, it stands to reason that melt

transport within these dunite conduits adheres to the power-law relationship between

permeability and melt fraction that we constrain here. Due to the RII, the melt

 53

fraction within dunite conduits is four times the overall mantle melt content

(Spiegelman et al., 2001). Therefore, the permeability of these conduits is about 37

times larger than for a homogeneous mantle. Neglecting melt production by RII, the

channels would occupy 25% of the mantle, so that channelization would increase the

velocity by approximately a factor of 10, making it easier to preserve 230Th

disequilibrium while verifying the mass balance considerations described in the

previous section.

The permeability of dunite conduits may further increase if the difference in

surface energy between olivine and opx is sufficient to preferentially partition melt to

olivine-rich areas (Watson, 1999), increasing melt content in dunite conduit beyond

the product of incongruent melting. Lithological melt partitioning has been proposed

to occur in mantle systems where olivine and opx are present. However, experimental

evidence for melt partitioning in systems with mineralogies similar to the mantle is

lacking. Although more research is needed to establish the extent to which the RII

and lithological partitioning modify the permeability structure of the mantle, dunite

conduits are good candidates for enhancing overall melt transport within the partially

molten region of the mantle beneath mid-ocean ridges.

2.6 Conclusion

This study is the first to use a 3-D imaging technique on synthetic partially

molten peridotites to estimate sample permeability. Visual inspection of the digital

microstructures shows that for melt fractions as low as 0.02, interconnected melt

channels residing along grain edges are the dominant features of the melt network.

 54

For melt fractions greater than 0.05, considerable melt pooling and grain boundary

wetting are observed in addition to melt channels. Measured connectivity

distributions confirm the increased contribution of grain boundary wetting as melt

content increases.

The permeability of our samples was computed numerically for sufficiently

large representative subvolumes and ranged from 4×10-16 to 2×10-13 m2 for melt

fractions ranging from 0.02 to 0.20. The relationship between permeability and local

melt fraction is adequately represented by a power law k=d2φn/C, with d the grain size

(approximately 35 µm in our samples), the exponent n = 2.6 ± 0.2, and the geometric

constant C = 58−22
+36 . A first-order calculation, based on mass balance in a 1-D melting

column, show that our empirical relation implies a melt fractions of order 1% under

mid-ocean ridges with upwelling velocities of order 1 m yr-1 leading to transit times

through the melting column that are consistent with those constrained by uranium-

series analyses. Combined with numerical computation, µ-CT has proven to be a

useful tool for characterizing the microstructure of partially molten peridotites and

computing their material properties. The results of this study place important new

constraints on melt transport beneath mid-ocean ridges, where partial melting occurs.

 55

Chapter 3: Influence of microstructure on electrical conductivity of partially

molten rocks

Abstract

 Estimates of melt content beneath fast-spreading mid-ocean ridges inferred

from magnetotelluric tomography (MT) vary between 0.01 and 0.10. Much of this

variation may stem from a lack of understanding of how the grain-scale melt

geometry influences the bulk electrical conductivity of a partially molten rock,

especially at low melt fraction. We compute bulk electrical conductivity of olivine-

basalt aggregates over 0.02 to 0.20 melt fraction by simulating electric current in

experimentally obtained partially molten geometries. Olivine-basalt aggregates were

synthesized by hot-pressing San Carlos olivine and high-alumina basalt in a solid-

medium piston-cylinder apparatus. Run conditions for experimental charges were 1.5

GPa and 1350 °C. Upon completion, charges were quenched and cored. Samples

were imaged using synchrotron X-ray micro-computed tomography (µ-CT). The

resulting high-resolution three-dimensional (3-D) image of the melt distribution

constitutes a digital rock sample, on which numerical simulations can be conducted to

estimate material properties. To compute bulk electrical conductivity, we simulated a

direct current measurement by solving the current continuity equation, assuming

electrical conductivities for olivine and melt. An application of Ohm’s Law yields the

bulk electrical conductivity of the partially molten region. The bulk electrical

conductivity values for nominally dry materials follow a power-law relationship σbulk

= Aσmeltϕm with fit parameters m = 1.3 ± 0.3 and A = 0.66 ± 0.06. Laminar fluid flow

 56

simulations were conducted on the same partially molten geometries to obtain

permeability, and the respective pathways for electrical current and fluid flow over

the same melt geometry were compared. Our results indicate that the pathways for

flow fluid can be different from those for electric currents. The tortuosity of direct

current pathways is lower than that of fluid flow pathways. The simulation results are

compared to existing experimental data, and the potential influence of volatiles and

melt films on electrical conductivity of partially molten rocks are discussed.

3.1 Introduction

At mid-ocean ridges, melt is thought to percolate over a broad, partially

molten region through a grain-scale network of interconnected melt (Fig. 3.1). The

capacity of the upper mantle to transport melt, which is ultimately responsible for the

production of oceanic crust, strongly depends on the spatial distribution of melt in the

mantle. The magnetotelluric (MT) method, which exploits the high conductivity of

partially molten rock, is a valuable tool used to probe the melt content of the upper

mantle. Though MT measurements are consistent with the presence of partial melt at

mid-ocean ridges, they disagree on the shape of the melting region and on the local

melt fraction, with estimates in the literature varying from as low as 0.01-0.03 (Evans

et al., 1999) to as much as 0.10 (Key et al., 2013). The first step towards reconciling

MT survey estimates is to robustly link electrical conductivity of partially molten

mantle rocks to the grain-scale morphology and interconnectivity of melt. A

microstructure-based approach to constraining electrical conductivity as a function of

melt fraction will provide a baseline for extrapolate laboratory measurement to

 57

 58

natural conditions and to assess the potential contributions of volatiles and melt

anisotropy to bulk electrical conductivity.

Bulk electrical conductivity of partially molten rock strongly depends on

interconnectivity of the highly conductive melt phase. For a monomineralic system,

under hydrostatic melting conditions, melt settles into an equilibrium configuration

that minimizes the total surface energy of the system. The degree of interconnectivity

can be assessed by the dihedral angle associated with its constituent solid-liquid phase

boundaries (Bulau et al., 1979; Waff and Bulau, 1979). For a dihedral angle greater

than 60°, melt forms isolated pockets. In this case, the melt and solid phases are

connected in series and the bulk electrical conductivity of the mixture is only

marginally greater than that of the solid. However, for a dihedral angle less than 60°,

as is the case for a partially molten olivine-basalt (Cmíral et al., 1998; Cooper and

Kohlstedt, 1984; Jurewicz and Jurewicz, 1986; Toramaru and Fujii, 1986; Waff and

Bulau, 1982), melt forms an interconnected network along grain edges (von Bargen

and Waff, 1986). As such, the melt conducts electricity in parallel with olivine and

the bulk electrical conductivity for melt fractions greater than 0.01 increases by at

least one order of magnitude (Roberts and Tyburczy, 1999; ten Grotenhuis et al.,

2005; Yoshino et al., 2010).

Since the electrical conductivity of rock strongly depends on the melt

geometry, bulk conductivity versus melt fraction relationships have been derived for a

number of idealized melt geometries: cube pack (Waff, 1974), tube lattice

(Schmeling, 1986), and hard sphere pack (Hashin and Shtrikman, 1963; Waff, 1974).

Though these end-member cases are useful for conceptualizing melt configurations,

 59

partially molten mantle rocks are heterogeneous and exhibit a range of melt features

(Faul, 2000; Laporte and Provost, 2000; Miller et al., 2014; Wark et al., 2003)

depending on the melt fraction present. At melt fraction larger than ~0.01, melt

mostly resides in triple junctions connected at four-grain junctions (Miller et al.,

2014; Toramaru and Fujii, 1986; Waff and Bulau, 1982, 1979; Zhu et al., 2011)

though melt films that wet two-grain boundaries have also been observed at low melt

fraction (Cmíral et al., 1998; Faul, 2000; Garapić et al., 2013). Melt pools exist with

increasing frequency as melt fraction increases, leading to an increased degree of

grain boundary wetting or spillover from triple junctions (e.g., Zhu et al., 2011). At

melt fraction of 0.2, melt pools are the dominant feature of the melt network (Miller

et al., 2014; Zhu et al., 2011). The coexistence of multiple geometries for a given melt

fraction highlights the importance to consider realistic, three-dimensional (3-D) melt

geometries when computing material properties like electrical conductivity.

Experiments conducted on partially molten olivine-basalts find that bulk

electrical conductivity varies as a power law with melt fraction (i.e., Archie’s Law):

 σbulk=Aσmeltϕm (3.1)

where σbulk is bulk conductivity, σmelt is melt conductivity, and ϕ is melt fraction. A

and m are power law parameters that depend on the melt morphology and

interconnectivity. Values m=0.89 to 1.30 and A=0.73 to 1.47 have been reported for

olivine-basalt partial melts (Roberts and Tyburczy, 1999; ten Grotenhuis et al., 2005;

Yoshino et al., 2010). These studies do not directly link electrical conductivity with

the melt network morphology.

Most studies find that the data on partially molten samples overlap the upper

 60

Hashin-Shtrikman bound linking the conductivities of pure olivine and melt end-

members, However, the upper Hashin-Shtrikman bound is intended to represent a

loose pack of uniformly wetted spheres. We argue that this interpretation is

inconsistent with microstructural observations of texturally equilibrated rocks (e.g.

Cmíral et al., 1998; Cooper and Kohlstedt, 1984; Jurewicz and Jurewicz, 1986;

Toramaru and Fujii, 1986; Waff and Bulau, 1982). Also, end-member conductivities

were not always directly measured as part of the experiments. While experimental

constraints on the electrical conductivity of partially molten rock as a function of melt

fraction are essential to interpret MT data, a direct link between electrical properties

and melt geometry is still missing.

In addition, the use of electrical conductivity to infer permeability of systems

where direct permeability measurements could be challenging, such as partially

molten rocks, has garnered significant interest. With the assumptions that pathways

for both conductivity and permeability are linked to the microstructure of the rock,

several studies have discussed the apparent formation factor, defined as the σbulk/σmelt

and its relation to microstructure in various porous media (Avellaneda and Torquato,

1991; Johnson et al., 1986; Katz and Thompson, 1987). A self-consistent analysis of

permeability and electrical conductivity using network (David, 1993) and laminar

flow models on periodic pore spaces (Martys and Garboczi, 1992; Schwartz et al.,

1993) conclude that these approaches produce comparable results in terms of

extrapolating permeability from electrical conductivity. However, considering the

fundamental differences in the physics of electrical conduction and fluid flow, it is

important to examine the link between electrical conductivity and permeability based

 61

on microstructure.

In this study, we compute the bulk electrical conductivity and permeability of

digital rocks that represent the real 3-D distribution of melt in olivine-basalt samples

synthesized at mantle pressure-temperature conditions. Each sample was digitized by

high-resolution, 3-D imaging using synchrotron-based X-ray micro-computed

tomography (µ-CT) (Zhu et al., 2011). The resulting 3-D images constitute digital

rocks, on which direct current and fluid flow simulations were conducted. The

potential influence of melt films at two-grain boundaries, which have been observed

with high-resolution microscopy, on electrical conductivity and permeability is

evaluated. We separately assess the influence of H2O in melt and olivine by adjusting

the electrical conductivity of olivine and melt.

3.2 Methods

3.2.1 Sample preparation and imaging

 The samples considered in this study are synthetic olivine-basalts aggregates

representing partially molten rocks (Miller et al., 2014; Zhu et al., 2011).

Experimental charges were prepared from a powered mixture of San Carlos olivine

and natural, Fo90, high-alumina basalt (Mg #=0.0705) mixed in proportion to achieve

nominal melt fractions 0.02, 0.05, 0.10, and 0.20. Charges were isostatically hot-

pressed under simulated mantle pressure-temperature conditions (1.5 GPa and 1350

°C) in a solid-medium piston-cylinder apparatus for a minimum of 1 week to achieve

textural equilibrium. Upon completion, charges were quenched, turning the molten

basalt to glass, and ~1 mm cores were drilled from the samples. Cores were imaged

 62

using a combination of absorption-contrast and phase-contrast X-ray µ-CT at 27 keV

to resolve the small density contrast between olivine and basaltic glass. Projections of

the integrated X-ray absorption and phase shift were recorded over 180° at 0.12°

increments and reconstructed into 3-D grayscale datasets using GridRec (Dowd et al.,

1999). Voxel (3-D pixel) values in the reconstructed images roughly correspond to

material density. Cubic voxels are 700 nm in length, measured along the voxel edge.

3.2.2 Subvolume selection

Sample cores often exhibit significant decompression cracking. These cracks

are voids that are not present at elevated pressure and temperature. To circumvent

decompression cracks – and to reduce the size of the computational domain – we

consider smaller subsets, or subvolumes, that are cropped from the whole-sample

images (Miller et al., 2014). All the subvolumes used in direct current simulations,

with the exception of those we used to assess the potential influence of H2O, have

dimensions 280 µm × 280 µm × 280 µm, which was determined to be representative

of the bulk based on an electrical conductivity convergence analysis conducted on

progressively larger, nested subvolumes (Fig. 3.2). At least three statistically

representative subvolumes were cropped from each sample.

3.2.3 Noise-removal and segmentation

Grayscale subvolumes were processed using an edge-preserving anisotropic

diffusion filter (Weickert et al., 1998) to remove noise and artifacts, improving the

 63

 64

efficacy of automatic segmentation algorithms. In order to setup a numerical domain

for computation, grayscale subvolume data were transformed into label images using

a variety of semi-automatic segmentation techniques: watershed transform (Beucher

and Meyer, 1992; Beucher, 1992) for high melt fraction and a bottom-hat global

threshold (Vincent, 1993) for low melt fraction. Refer to Miller et al. (2014) for more

details in data processing.

The melt fraction of each subvolume was calculated by counting the number

of cubic, uniform voxels labeled as basalt. A robust uncertainty analysis of the

measured melt fraction requires access to the point-spread function of the image data,

which is difficult to obtain. As an alternative, following Fusseis et al. (2012), we

estimate lower and upper bounds for the melt fraction by measuring the melt fraction

associated with the contracted and dilated melt image, respectively. Contractions and

dilations were conducted along all three orthogonal directions of the cubic

subvolume.

3.2.4 Direct current simulations

Though the electrical response of a partially molten rock is controlled by the

variable mobility of charge carriers to an alternating electric field – either by ambient

electromagnetic waves in the Earth or an alternating current source in the laboratory –

we chose to simulate direct current only to obtain bulk electrical conductivity. Bulk

electrical conductivity should not depend on the type of electrical source, whether it is

inferred from the frequency-dependence of alternating current measurements or the

direct current simulations. We focus on modeling charge transport by solving the

 65

current continuity equation and do not explicitly consider the mobility of charge

carriers.

Our model is based on the formulations proposed by Garboczi (1998) and

Zhan et al. (2010). Each segmented label image is considered the computational

domain in a direct current simulation. We solve the current continuity equation,

which is the Laplace Equation

 (3.2)

where σ is the local electrical conductivity [S m-1] of voxels associated with each

conductive material and ψ is the local scalar electric potential [V] defined at voxel

centers. Electric current is driven by an imposed electric potential differential (ΔΨ)

across the subvolume, between the inlet and outlet faces. A no-flux condition is

imposed at the four faces parallel to the global electric potential gradient to ensure

current is conserved (Fig. 3.3). Using a second-order centered finite-difference

formulation, Eqn. (3.2) at each voxel becomes

 (3.3)

where n is the number of connecting voxels and κij is the electrical conductance of the

bond connecting voxels i and j. The distinction between electrical conductance and

electrical conductivity is a geometric factor, which is unity for bonds connecting

voxels in a uniform cubic grid. Voxels i and j are restricted to adjoining elements.

With consideration of the no-flux and inlet/outlet conditions, Eqn. (3.3) is

reformulated into a matrix equation

 κ lmψ m = bm (3.4)

∇⋅ σ ∇ψ() = 0

κ ij ψ j −ψ i() = 0
j=1

n

∑

 66

 67

where bm is a vector that contains the influence of the boundary conditions on interior

voxels and κlm is a positive definite, symmetric matrix that contains the electrical

conductances of the bonds connecting each voxel. Elements are summed over m

indices. An additional constraint on the system comes from current continuity, which

states that the conductance of each bond must satisfy

 κ lm = 2σ lσm

σ l +σm

 (3.5)

If voxels l and m belong to the same material, the conductance of the connecting bond

is just the electrical conductivity of that material. Conductance between voxels that

are not neighbors equals zero. Eqn. (3.4) is solved using the conjugate gradient

method to a tolerance of 1×10-5. An incomplete Cholesky factorization (Meijerink

and van der Vorst, 1977) was used as a preconditioner to improve convergence rate of

the conjugate gradient solver. Each simulation was set-up, discretized, and solved

using custom, Matlab-based finite-difference software.

Evaluating the effect of melt films along grain boundaries requires a special

procedure since the resolution of µ-CT is not sufficient to observe possible nanometer

scale melt films. We employ an upper bound approach. First we use Avizo’s Separate

Objects module, based on the morphological watershed transform, to define likely

olivine-olivine grain boundaries. Assuming all the interfaces are covered by melt

films, each voxel at grain boundaries thus consists of both olivine and melt. We

assign to these voxels an electrical conductivity that is the parallel average of the

olivine and basalt conductivities,

 (3.6)

where χ is the proportion of the voxel that is occupied by melt. Assuming a melt film

σ film =σmeltχ +σ olivine 1− χ()

 68

thickness of 100 nm, the maximum value reported in the literature (Cmíral et al.,

1998), and considering that our voxels have a uniform thickness of 700 nm, χ=1/7.

This approach is similar to that taken by Zhan et al. (2010) to model the effect of an

electric double layer on bulk electrical conductivity of sandstone. This approach

overestimates the effects of melt films along olivine-olivine grain boundary as the

effective conductivity of the voxels should be anisotropic and Eq. 6 should only be

valid in the grain-parallel direction. We are able to bracket the effect of the melt films

by comparing simulations with χ=0 and χ=1/7.

3.2.5 Fluid flow simulations

 Permeability simulations were conducted using Avizo XLab Hydro following

Miller et al. (2014). In these simulations, accommodation zones, where fluid spreads

evenly over the inlet and outlet faces, were appended to the sample subvolumes. The

Stokes Equations, which assume steady-state laminar flow, were solved on a

staggered finite-volume grid (Harlow and Welch, 1965). Flow was induced by

imposing pressure drop ΔP across the input and output faces. A no-flux condition was

imposed at the material interface and the intersection of the melt geometry with the

bounding box. As XLab Hydro cannot consider variations in material properties we

could not evaluate the effects of melt films using a similar strategy as in the direct

current simulations. Instead, we assigned a 1-voxel thick surface along the olivine-

olivine boundaries as melt. This approach grossly exaggerates the effect of melt films,

which are no more than 1/7 voxel thick. An alternative approach would have been to

resample the melt geometry to a voxel size that is comparable to the actual melt film

 69

thickness (tens of nanometers). However, this approach would increase the number of

degrees of freedom in our system to an unmanageable size, and as shown later, the

exaggerated melt films, as handled by our simplified approach, alter both the

permeability and the porosity in the simulations, with negligible effect on the

porosity-permeability relationship of partially molten rocks.

3.2.6 Computing tortuosity

 Since we solve for the velocity and electrical fields, it is straightforward to

compute the tortuosity of each simulation. Tortuosity is defined as the ratio of length

of the path a parcel of fluid – or electron for direct current simulations – would travel

through the geometry to the length of that geometry in the direction parallel to flow.

The tortuosity can be recovered by computing the path length of streamlines, since

streamlines are also pathlines for laminar flow. The streamlines can be weighted by

its associated mass flux (Matyka et al., 2008). If we take the limit as the spacing

between the streamline seeds goes to zero, as would be the case in a continuum, the

tortuosity can be calculated using,

 (3.7)

where umag is the velocity magnitude and uz is the z-component of the velocity,

assuming z is the direction of flow (Duda et al., 2011).

3.3 Results

3.3.1 Electrical conductivity

Bulk electrical conductivity was computed for each subvolume label image

τ =
umag
uz

 70

N
om

in
al

 M
el

t
Fr

ac
tio

n
Su

bv
ol

um
e

ID

M
ea

su
re

d
M

el
t F

ra
ct

io
n,

 ϕ

σ b
ul

k [
S

m
-1

]
Pe

rm
ea

bi
lit

y,
 k

 [m
2]

0.
2

2
0.

15
01

 (-
0.

02
85

 /
+0

.0
29

7)

3.
90
×1

0-1

1.
45
×1

0-1
3

0.
2

3
0.

19
80

 (-
0.

02
85

 /
+0

.0
29

1)

5.
25
×1

0-1

2.
48
×1

0-1
3

0.
2

4
0.

19
60

 (-
0.

02
96

 /
+0

.0
30

2)

5.
63
×1

0-1

2.
85
×1

0-1
3

0.
05

2

0.
05

39
 (-

0.
02

56
 /

+0
.0

29
8)

1.

01
×1

0-1

7.
00
×1

0-1
5

0.
05

3

0.
04

38
 (-

0.
02

12
 /

+0
.0

25
5)

6.

13
×1

0-2

4.
02
×1

0-1
5

0.
05

4

0.
04

39
 (-

0.
02

07
 /

+0
.0

24
5)

6.

30
×1

0-2

3.
69
×1

0-1
5

0.
05

5

0.
04

65
 (-

0.
02

21
 /

+0
.0

26
1)

7.

29
×1

0-2

4.
25
×1

0-1
5

0.
05

1

0.
05

62
 (-

0.
02

82
 /

+0
.0

32
2)

1.

05
×1

0-1

7.
29
×1

0-1
5

0.
2

1
0.

18
24

 (-
0.

02
96

 /
+0

.0
30

5)

5.
05
×1

0-1

2.
47
×1

0-1
3

0.
05

1

0.
04

85
 (-

0.
02

49
 /

+0
.0

29
9)

7.

50
×1

0-2

4.
70
×1

0-1
5

0.
1

2
0.

08
55

 (-
0.

02
67

 /
+0

.0
28

9)

1.
55
×1

0-1

2.
15
×1

0-1
4

0.
1

3
0.

08
45

 (-
0.

02
56

 /
+0

.0
27

7)

1.
62
×1

0-1

2.
32
×1

0-1
4

0.
1

4
0.

07
70

 (-
0.

02
44

 /
+0

.0
26

6)

1.
29
×1

0-1

1.
56
×1

0-1
4

0.
02

2

0.
01

64
 (-

0.
00

9
/ +

0.
01

11
)

1.
47
×1

0-2

3.
24
×1

0-1
6

0.
02

3

0.
01

40
 (-

0.
00

77
 /

+0
.0

09
7)

1.

35
×1

0-2

N
/A

0.

02

4
0.

01
15

 (-
0.

00
61

 /
+0

.0
07

6)

1.
38
×1

0-2

N
/A

0.

2
5

0.
19

86
 (-

0.
02

96
 /

+0
.0

30
2)

5.

69
×1

0-
1

2.
66
×1

0-1
3

Ta
bl

e
3.

1:
 D

ire
ct

 c
ur

re
nt

 (
us

in
g
σ m

el
t =

 7
.5

3
S

m
-1

 a
nd

 σ
ol

iv
in

e
=

0.
00

9)
 a

nd
 f

lu
id

 f
lo

w
 s

im
ul

at
io

ns
 r

es
ul

ts
, i

nc
lu

di
ng

 m
ea

su
re

d
m

el
t

fr
ac

tio
ns

, b
ul

k
el

ec
tri

ca
l c

on
du

ct
iv

ity
, a

nd
 p

er
m

ea
bi

lit
y.

 71

 72

(280 µm)3, assuming conductivities of 7.53 S m-1 (ten Grotenhuis et al., 2005) and

0.009 S m-1 (Constable, 2006) for nominally dry melt and olivine, respectively.

Summary of results are listed in Table 3.1. Simulation results are reported as a

function of the measured melt fraction (Fig. 3.4). A linear fit to the simulations results

on a log-log scale, assuming that our data lie at the midpoint between our error bars

(York et al., 2004), give Archie parameters m=1.3±0.3 and A=0.66±0.06 (Fig. 3.4).

The value for our power-law exponent m agrees, within uncertainty, with data from

Roberts and Tyburczy (1999) and ten Grotenhuis et al. (2005). Most of the

differences in A between Roberts and Tyburczy (1999) and ten Grotenhuis et al.

(2005) can be attributed to the different experimental condition.

3.3.2 Permeability

Laminar flow simulations were conducted on the same subvolumes as the

direct current simulations. Permeabilities are plotted as a function of melt fraction and

compared to bulk electrical conductivities (Fig. 3.4). A fit to the permeability data in

log-log space gives power law exponent n=2.7±0.7, consistent with Miller et al.

(2014). There is a clear difference in the power law curves between electrical

conductivity and permeability. Fig. 3.5 shows that electricity flows more uniformly

through the pore network and is less sensitive to pore diameters than fluid flow,

which is consistent with the results of David (1993) and Martys and Garboczi (1992).

Fluid flow, on the other hand, is dominated by a few major flow pathways, through

which most of the mass is transported.

 73

 74

 75

3.3.3 Tortuosity

The tortuosity of our Stokes flow simulations, as computed by Eqn. (3.5) (Fig.

3.6), is consistently higher than direct current simulations, which provides

quantitative evidence that electricity flows diffusively though the entire melt network,

whereas fluid flow focuses along specific pathways. As fluid travels through

distinctly different pathways through the melt network than does electricity, linking

permeability to electrical conductivity is strictly empirical, with no microstructural

justification. It should be noted that the high tortuosity of direct current and fluid flow

simulations conducted at ϕ=0.02 relative to those pertaining to higher melt fractions

are likely due to low interconnectivity of the digital geometries ϕ≤0.02.

3.4 Discussion

3.4.1 Electrical conductivity and permeability comparison

Differences between the permeability and electrical conductivity of an

aggregate can be attributed to the differences in the radius dependence between the

fluid and electric fluxes. Consider a simple network of interconnected tubes of

various widths. For each tube, there is an analytical expression for the fluid and

electric fluxes. The fluid flux (Q) is given by

 Q = πb4

8µ
ΔP
L

 (3.8)

where b is the radius of the tube, µ is the viscosity of the fluid, ΔP is the pressure

difference from one end of the tube to the other, and L is the tube length. The electric

flux (Φ) is given by

 76

 Φ = πb2 ΔΨ
L

 (3.9)

where ΔΨ is the difference in electric potential from one end of the tube to the other.

The strong dependence of the fluid flux on the radius of the tube causes fluid flow to

be far more sensitive to the pathways available to flow. Since mass and current are

both conserved quantities, the strong radius dependence of fluid flux results in the

formation of a so-called “critical pathway” (David, 1993) through which most of the

material is transported. The fact that tortuosity for laminar flow simulations is

consistently higher than direct current simulations is evidence of these critical

pathways.

3.4.2 Comparison with experimental data

Our simulations results on electrical conductivity are compared to mixing

models (Fig. 3.7A) that assume idealized melt geometries and electrical

conductivities for each material. Five different idealized melt geometries are

considered: parallel and series bounds, upper and lower Hashin-Shtrikman bounds

(Hashin and Shtrikman, 1963), and a geometric average model. The parallel

composite model, which assumes melt is organized into a series of pipes that extend,

with zero tortuosity, through an insulating secondary phase, constitutes an absolute

upper bound for the bulk electrical conductivity. The series model is the parallel

model rotated 90°, so that current must pass through both olivine and melt. It is the

absolute lower bound for the electrical conductivity of a composite material. Hashin-

Shtrikman bounds are conceptually similar to the parallel and series bounds, except

they assume a system composed of loosely packed spheres surrounded by a uniform

 77

 78

layer of melt. The geometric mean model (Madden, 1976) considers a larger

composite that consists of series and parallel sub-composites.

Fit to our simulation results yields power law parameters m=1.3±0.3 and

C=0.66±0.06, which is between the Hashin-Shtrikman bounds, assuming

σolivine=0.009 S m-1 and σmelt=7.53 S m-1. This is consistent with a heterogeneous melt

distribution like those observed in microscopy studies (e.g. Cmíral et al., 1998;

Cooper and Kohlstedt, 1982; Faul and Fitz Gerald, 1999; Garapić et al., 2013; Miller

et al., 2014).

Our results are systematically offset from the Hashin-Shtrikman upper

boundary by a factor of 2 to 3. However, experimentally measured partially molten

olivine-basalt electrical conductivities are often shown to overlap with the upper

Hashin-Shtrikman bound (ten Grotenhuis et al, 2005; Yoshino et al, 2010). Although

we do not have access to the actual samples from these studies, the chemistry,

mineralogy, and preparation procedures are nominally the same as our own,

suggesting that there is an additional contribution to the bulk conductivity that cannot

be accounted for by separately considering the electrical conductivity of olivine and

melt.

Recently, Zhang et al. (2014) measured the electrical conductivity of partially

molten peridotite as a function of strain in simple shear. They separately measured the

electrical conductivity of their melt and partially molten aggregates before and after

deformation and found the electrical conductivity of their undeformed aggregate to be

between the Hashin-Shtrikman lower and upper bounds, consistent with our study.

Interestingly, the electrical conductivity of the deformed sample, measured in the

 79

shear direction, overlapped the upper Hashin-Shtrikman bound. The change in

conductivity before and after deformation may result from either a change in melt

distribution or a reaction taking place during the experiment, which produces high

conductivity phases. Similar effects may be present in other experimental studies in

which measured values of electrical conductivity of partially molten samples are in

agreement with the Hashin-Shtrikman upper bound.

Our study provides a rigorous link between melt distribution geometry and

electrical conductivity. Direct current simulations on synthetic datasets of straight and

parallel tubes are in good agreement with analytical solutions to the Laplace equation.

Due to limitations in current imaging techniques, it is conceivable that some

connections of the melt network are missing from the melt distribution obtained for

samples with low melt fractions. However, the missing connections could not explain

the discrepancy between our simulation results and the experimental data because

simulations conducted on subvolumes containing nominal melt fractions 0.10 and

0.20, in which melt channels are completely interconnected, still yield electrical

conductivity values less than experimental measurements. However, melt films,

which are too thin to resolve with µ-CT, and the presence of H2O in melt and olivine

during electrical conductivity measurements, may play an important role. We

describe below what the effect of these features would be.

3.4.3 Melt films

In addition to melt tubules and pools, a number of high-resolution studies

(Cmíral et al., 1998; Faul, 2000; Faul et al., 1994; Garapić et al., 2013; Waff and

 80

Faul, 1992; Wirth et al, 1996) document thin films of melt at some two-grain

junctions. The thickness of melt films ranges between 3 nm and 100 nm. It has been

suggested that thin films control melt transport at low melt fraction (Faul, 1997). We

apply our direct current and Stokes flow models to quantifying the influence of melt

films on bulk electrical conductivity and permeability using the approximations to

melt films described in Section 3.2.2. By assuming all grain-grain boundaries are

wetted by melt – i.e. the anisotropy of grain boundary surface energy is neglected–

our approach gives an upper bound for the influence of melt films. Fluid flow

simulations are conducted assuming that a full, 1-voxel fluid layer wets grain-grain

boundaries.

Results are plotted in Fig. 3.7B. Artificially imposing melt films in our

olivine-basalt geometry increases sample conductivity and has a similar effect on the

bulk conductivity as increasing olivine electrical conductivity. This is because the

voxels at grain boundaries are now considered an average of olivine and melt

electrical conductivities, whereas these voxels were considered olivine only in the

previous series of simulations. Bulk electrical conductivity increases substantially at

low melt fraction and less so for higher melt fraction. The large error bounds on our

melt fraction suggest that this change for ϕ>0.02 is within uncertainty. Nevertheless,

the inclusion of melt films alone cannot account for the high electrical conductivities

observed in experiments, even though their effect is grossly exaggerated in our

simulations.

Including melt films substantially increases the permeability of our partial

melt geometries. At the same time, the presence of melt films also substantially

 81

increase melt fraction. The resulting porosity-permeability relationship does not differ

significantly from that of Miller et al. (2014) without melt films. Actually, the

permeability of a subvolume that includes melt films is systematically lower than

permeability of a subvolume of similar porosity that does not include melt films.

Although the difference is minimal and likely insignificant, melt films reduce

permeability for a given porosity.

The larger effect of the melt films on bulk electrical conductivity relative to

permeability is consistent with the concept of a critical pathway. In permeability

computations, melt films contribute little to the critical pathways because fluid flux’s

strong dependence on hydraulic radius. In contrast, electrical conductivity flows more

diffusively and uses melt films as viable pathways for electric transport. Thus melt

films may be important contributors to the electrical properties of partially molten

rocks, especially if their chemistry is distinct from the chemistry of the melt (Wirth,

1996). However, their contribution to the bulk electrical conductivity is not sufficient

to account for the apparent discrepancy between the simulated and measured bulk

electrical conductivities.

3.4.4 H2O in melt

The presence of volatiles, specifically H2O and CO2, in melt is an excellent

candidate for enhancing bulk electrical conductivity at high melt fraction. An addition

of ~1 wt. % H2O to an otherwise dry basaltic melt can increase the electrical

conductivity by a factor of 3 (Ni et al., 2011). CO2 has an even stronger effect on the

melt electrical conductivity (Sifré et al., 2014; Yoshino et al., 2010) but is not

 82

explicitly addressed here. To assess the effect of H2O on the bulk electrical

conductivity of partial molten rocks, we run direct current simulations for various

melt conductivities and convert to H2O concentration for the melt using

 (3.10)

where is the concentration of H2O in the melt and T is temperature. Starting

values for melt electrical conductivity were adopted from measured values (ten

Grotenhuis et al., 2005). Though different degrees of melting will likely produce

subsequently different H2O concentrations – since H2O will partition form olivine to

the melt – we assume a uniform increase in the melt conductivity.

Our results are presented in Fig. 3.7C. A H2O concentration of 1.7 wt. % is

sufficient to explain the high conductivities for high melt fraction in ten Grotenhuis et

al. (2005) but underestimates the conductivity at lower melt fraction. Therefore, the

electrical conductivity-melt fraction power-law does not match their experimental

results at lower melt fraction. As melt fraction decreases, the electrical conductivity

of olivine will have a stronger influence on the bulk electrical conductivity.

3.4.5 H2O in olivine

Under hot, “dry” conditions, the electrical conductivity of olivine, which is

controlled by polaron electron hopping (Constable, 2006; Dai et al., 2010; Schock et

al., 1989; Wanamaker and Duba, 1993; Xu et al., 2000; Yoshino et al., 2009a), is

three to four orders of magnitude less than that of basaltic melt and should contribute

insignificantly to the bulk electrical conductivity. Under “wet” conditions, however,

olivine electrical conductivity can increase significantly (e.g. Wang et al., 2006;

log σmelt = 2.172 −
860.82 − 204.46 CH2O

T −1146.8

CH2O

 83

Yoshino et al., 2006, 2009; Poe et al., 2010; Jones et al., 2012; Dai and Karato,

2014a, 2014b; Gardés et al., 2014) though the magnitude of its influence on the bulk

electrical conductivity of olivine is debated (Gardés et al., 2014). To explore the

effect of an increased olivine electrical conductivity, we run direct current simulations

using a range of higher olivine conductivities.

The conductivity of olivine with some fraction of water is estimated according

to the model of Gardés et al. (2014). They consider three superposed conduction

mechanisms. The first two, diffusion of cation vacancies and polaron hopping,

operate under anhydrous conditions at high and low temperatures, respectively

(Constable, 2006; Dai et al., 2010; Schock et al., 1989; Wanamaker and Duba, 1993;

Xu et al., 2000; Yoshino et al., 2009a), while the third mechanism is related to the

presence of hydrogen in olivine.

 (3.11)

where ΔH are the activation enthalpies for the mechanisms, is the weight

concentration of H2O in the olivine, α corrects for the decrease in the activation

enthalpy for increasing H2O concentration, R is the ideal gas constant, and T is

temperature.

Results are plotted in Fig. 3.7D. We find that increasing olivine conductivity

noticeably enhances the bulk conductivity at low melt fraction and changes the shape

of the bulk electrical conductivity-melt fraction power-law. If we assume wet

conditions for both olivine and melt, we find that σmelt=15.60 S/m and σolivine=0.045

S/m explains experimental data by ten Grotenhuis (2005). An olivine electrical

conductivity of 0.045 S/m at 1475 °C translates to ~145 ppm. Given, the solubility of

σ =σ 0
vacancye

−ΔH
vacancy

RT +σ 0
polarone

−ΔH
polaron

RT +σ 0
hydrousCH2Oe

−
ΔH hydrous−αCH2O

1/3

RT

CH2O

 84

H2O in olivine ~90 ppm (Gaetani et al., 2014), measured at 1200 °C, it is difficult to

justify 145 ppm H2O concentration in olivine. However, without solubility data

measured at higher melt temperature, it is unclear whether the solubility of H2O in

olivine at 1200 °C can be extrapolated to 1475 °C.

The trend of the data from laboratory measurements (e.g., ten Grotenhuis et

al., 2005) may reflect water in the aggregates, with the combined effect of water in

olivine and melt films dominant at low melt fraction and water in the melt dominant

at high melt fraction. Neither effect is expected to significantly affect the relation

between permeability and melt fraction.

3.4.6 Chemical heterogeneity

We speculate the existence of a thin, electrochemically distinct layer at the

olivine-melt interface that might account for the apparent discrepancy between the

bulk electrical conductivities measured and those we computed using real partial melt

geometries. Electrolytic conduction by Na+ ions dissolved in the fluid is the primary

mode of electrical transport in porous sedimentary rocks (Nover, 2005). High

concentration of Na+ ions at the mineral-fluid interface would provide an additional

pathway for electrical conduction. In crustal rocks, lattice deficiencies at the surface

of clay minerals result in a locally negative charge that attracts Na+ (Nover, 2005),

coating the mineral-fluid interface with a thin, highly conductive layer, often called

the electric double layer (EDL). The thickness of the EDL is roughly the Debye

length (Debye and Hückel, 1923; Morgan et al., 1989), which depends on physical

parameters of the fluid phase, such as the molarity and permittivity of solution. For

 85

reference, the Debye length of the clay-water interface is on the order of a few to tens

of nanometers (Tombácz and Szekeres, 2006; Wan and Tokunaga, 2002). Though the

thickness of the EDL is quite small compared to the diameter of the melt conduits, the

local electrical conductivity of the EDL would be greater than that of the fluid, and

since it forms an interconnected pathway, will conduct in parallel with the fluid.

Therefore, electrical conduction near the mineral-fluid interface may be a separate

and important conduction mechanism to consider, especially at low fluid fraction.

The existence of EDLs in partially molten olivine-basalts is currently not

considered, since the chemistry of olivine-melt interface is intrinsically different from

the clay-water interface. The formation of an EDL on an olivine-melt interface would

require a local charge imbalance, possibly due to concentration of impurities.

Gurmani et al. (2011) and Wirth (1996) have proposed chemical variations in the

presence of melt films but not for every olivine-melt interface. Nevertheless, the

presence of EDLs – or more generally a spatial heterogeneity of the primary charge

carriers – is a convenient mechanism to reconcile our model results and laboratory

measurements. Furthermore, the influence of EDL on the bulk conductivity may be

invisible to impedance spectroscopy if electrical conduction through EDLs operates

in the same frequency spectrum as electrolytic conduction. Unfortunately, modeling

the influence of the EDL on bulk conductivity requires a priori knowledge of the

Debye length and EDL electrical conductivity. These variables, to our knowledge,

have not been constrained for the partially molten olivine-basalt system.

3.5 Conclusion

 86

We modeled direct current on experimentally obtained olivine-basalt partial

melt geometries in order to link microstructural properties to bulk electrical

conductivity and deconvolute the role of melt geometry from other processes, e.g.

volatile content, that may affect electrical properties. Our digital rock physics

approach for determining the bulk electrical conductivity of partially molten rocks

has the benefit of having fine control on the physics and material properties of the

system, while still adhering to a real melt geometry. Rather than having to rely on an

idealized melt geometry from measured electrical properties of the system, we are

able to compute electrical properties directly from the melt microstructure.

We found that the high bulk electrical conductivities observed in experiments

cannot be accounted for by considering only a two-phase olivine-melt model unless

there is significant enhancement of the melt electrical conductivity by volatiles. The

trends observed in laboratory measurements may reflect water in the aggregates, with

the combined effect of water in olivine and melt films dominant at low melt fraction,

and water in the melt dominant at high melt fraction. Neither effect is expected to

significantly affect the relation between permeability and melt fraction. We speculate

that a high electrical conductivity, chemically distinct electrochemical layer on the

grain-melt interface may also affect laboratory measurements. Such layers have been

well characterized in rocks that contain clay minerals but have not been discussed in

the context of partially molten mantle rocks.

 87

Chapter 4: Experimental evidence for lithologic melt partitioning between

olivine and orthopyroxene in partially molten harzburgite

Abstract

The grain-scale distribution of melt in partially molten aggregates under

isostatic stress is controlled by gradients in surface energy associated with the grain-

grain and grain-melt boundaries. For a monomineralic aggregate, e.g. olivine-basaltic

melt composed of idealized isotropic grains, melt is more or less equally distributed

among grains. However, in a polymineralic aggregate, e.g. olivine-orthopyroxene

(opx)-basaltic melt, spatial variations in surface energy cause melt to partition

unevenly among the mineral components in favor of a lower energy configuration. In

an aggregate that has substantial mineralogical variability, this phenomenon, known

as lithologic fluid partitioning, can act as a mechanism for concentrating melt and

possibly modify permeability and electrical conductivity of the rock.

Experimental studies that examine analogue systems, e.g. calcite-fluorite-

H2O, observe strong fluid partitioning among the constituent minerals. However,

experimental evidence for melt partitioning between olivine and opx, the two most

relevant minerals to the upper mantle, is lacking. We present experimental results that

elucidate the degree of melt partitioning between olivine and opx in partially molten

harzburgites.

Samples were prepared by mixing powdered oxides and natural, high-alumina

basalt in various proportions to test for lithologic melt partitioning across a range of

melt fractions. Bulk composition was such that a 3 to 2 olivine to opx ratio was

 88

maintained over all samples; though the measured olivine to opx ratio for subvolumes

varies widely 1.2 and 4.3 between subvolumes. Samples were cored and imaged

using synchrotron-based X-ray micro-computed tomography, producing a high-

quality three-dimensional digital sample. Representative subvolumes were cropped

from the digital samples, avoiding decompression fractures where possible. Grayscale

subvolumes were transformed into label images whereby each voxel is assigned a

phase identification number, e.g. 1 for melt, 2 for olivine, and 3 for opx. Local melt

fraction distributions for olivine and opx were automatically characterized for each

subvolume by counting voxels inside ellipsoidal envelopes that were fitted to each

olivine and opx grain, respectively.

We find that melt partitions in a 1.1 to 1.5 ratio between olivine and opx,

respectively, across all subvolumes. We present lithologic melt partitioning as a

mechanism for focusing melt in the mantle that could potentially enhance average

melt ascent velocities.

4.1 Introduction

Melt transport at mid-ocean ridges is thought to operate via porous flow along

an interconnected, intergranular network (Turcotte and Schubert, 2014). Geochemical

data collected from mid-ocean ridge basalt suggest melt flux is likely dominated by

melt fraction heterogeneities that are larger than the grain size. For example, secular

disequilibrium of uranium-series nuclides (Condomines et al., 1981; Iwamori, 1994;

Newman et al., 1983; Volpe and Hammond, 1991) and the undersaturation of opx

with respect to olivine (Kelemen et al., 1997) are indirect evidence of high-melt

 89

fraction, high-permeability conduits. Two mechanisms of interest have been proposed

to organize melt on length scales comparable to the compaction length – a natural

length scale that depends only on the material properties of the partially molten

mantle rock: the reaction infiltration instability (RII) (e.g. Aharonov et al., 1995;

Daines and Kohlstedt, 1994; Kelemen et al., 1995a; Spiegelman et al., 2001) and

deformation-induced melt segregation (e.g. Holtzman and Kohlstedt, 2007). The

former is a consequence of the positive feedback between melt flux and opx

dissolution, and the later results from the anisotropic viscosity of partially molten

rock (Qi et al., 2014; Allwright and Katz, 2014). We propose an additional

mechanism that can concentrate and organize melt: lithologic melt partitioning, which

is a consequence of the thermodynamic gradient caused by spatial variations in

mineralogy.

At equilibrium, melt distributes into a configuration that minimizes the total

surface energy of the system. An idealized system composed of uniform, isotropic

olivine grains, the minimum-energy configuration is one in which the melt fraction is

the same around every grain (Fig. 4.1A). However, the presence of secondary

mineral, such as orthopyroxene (opx), which has a higher solid-melt surface energy

density than olivine, will perturb the uniform surface energy distribution, causing

melt to concentrate in olivine-rich regions. This phenomenon, known as lithologic

melt partitioning, where melt partitions unevenly between olivine and opx, results in a

locally high melt fraction in olivine-rich regions and a locally low melt fraction opx-

rich regions.

An alternative – but equivalent – pedagogical model for understanding

 90

 91

lithologic melt partitioning uses the concept of the minimum-energy melt fraction.

For a given dihedral angle (Eqn. 1.1), there is a melt fraction, called the minimum-

energy melt fraction (Fig. 4.1C), that minimizes the total interfacial energy of the

system. Consider a simple system consisting of a monomineralic aggregate that is

open to a melt reservoir. The aggregate will draw melt from the reservoir via capillary

action until the minimum energy melt fraction is attained. However, in the upper

mantle, olivine and opx grains coexist. In this more realistic scenario, melt will

partition unevenly between olivine and opx but will not attain their nominal

minimum-energy melt fractions for the given dihedral angle.

Lithologic melt partitioning was observed in analogue systems that consisted

of two juxtaposed mineral aggregates and interstitial H2O. For example, piston-

cylinder experiments (Watson, 1999) showed that H2O partitions in a 5 to 2 ratio

between fluorite and quartz, respectively, and in a 3 to 1 ratio between clinopyroxene

and quartz (Fig. 4.2), respectively. In the same study, lithologic melt partitioning was

examined using juxtaposed olivine and opx aggregates containing the same initial

proportions of basaltic melt. Since the surface energy density of the olivine-basaltic

melt interface is markedly lower than that of the opx-basaltic melt interface, it is

surprising that the sample exhibited no measurable melt partitioning. Watson

concluded that the distance separating the olivine and opx-rich regions was too large

(a few milometers) and viscosity of basaltic melt was too high for lithologic melt

partitioning to occur in the timeframe of the experiment (~6 days).

We approach measuring lithologic melt partitioning in partially molten

harzburgitic rocks using a novel approach. Experimental charges, composed of

 92

 93

various proportions of olivine, opx, and basaltic melt, were synthesized in solid-

media piston-cylinders apparatuses. Olivine and opx grains were homogeneously

mixed, which reduced the length-scale of partitioning three orders of magnitude.

Cores were drilled from the samples and imaged in three-dimensions (3-D) using

synchrotron-based X-ray micro-computed tomography (µ-CT). Statistically

representative volumes were cropped from each sample and local melt distributions

were obtained for olivine and opx by systematically measuring the proportion of melt

in each olivine and opx-rich region.

4.2 Methods

4.2.1 Sample preparation of harzburgite samples

Harzburgite samples were prepared by hot, isostatic pressing of a mixture

containing oxides and natural, high-alumina basalt. The oxide mixture was prepared

by homogenizing oxides mixed in proportion such that olivine (forsterite) and opx

(enstatite) crystals would have the same chemistry as those found in a natural

harzburgite collected from the Southwest Indian Ridge (Dick, 1989). For each melt

fraction, the oxide proportions were adjusted to maintain a nominal 3 to 2 (olivine to

opx) ratio. The ingredients and chemical proportions used in making the oxide

mixtures are reported in Table 4.1.

Not all of the elements could be added to the mix as oxides. Calcium, for

example, was added in carbonate form (CaCO3). The mix was homogenized for six

one-hour cycles using an automatic agate mortar and pestle. Upon completion, we

applied a decarbonation procedure to transform the carbonates to oxides. To

 94

 95

 96

decarbonate the mixture, it was placed in a furnace at 300 °C and heated to 850 °C at

100 °C/hr. The mix was held at 850 °C for a minimum of 24 hours. Pulverized natural

basalt was added in various proportions to the oxide mix to attain total melt fractions

of 0.02, 0.05, 0.10, and 0.20 when melted. The same homogenization procedure was

repeated for every oxide-basalt mixture.

For each melt fraction, ~36 mg of the oxide-basalt mixture was cold-pressed

into a cylindrical pellet using a 1-ton press and placed into a graphite capsule (Fig.

4.3). Capsules were dried overnight at 400 °C to remove surface H2O from the

experimental charges. Charges were placed in solid-medium piston-cylinder

apparatuses and brought up to 1.5 GPa and 1350 °C using the cold piston-in

technique (Johannes et al., 1971). Details about the uncertainty in pressure and

temperature can be found in Chapter 2.2 and Appendix A.

Upon completion of the piston-cylinder runs, experimental charges were

quenched by turning off the heating source while maintaining a steady flow of cold

water through the space surrounding the pressure vessel. Cylindrical 1-mm cores

were drilled from each sample along the cylindrical sample axis (Fig. 4.3).

4.2.2 Imaging procedure

The image acquisition, pre-processing, and data reduction procedures are

outlined in Fig. 4.4.

Cylindrical harzburgite samples were imaged using a synchrotron light source

at beamline station 2BM-a of the Advanced Photon Source, Argonne National

Laboratory. The very small density contrasts at olivine-opx and olivine-basalt

 97

 98

boundaries warranted a novel imaging procedure, which involved a combination of

absorption-contrast and phase-contrast imaging techniques. A monochrometer was

used to select a narrow energy spectrum around 24.4 keV. The sample was rotated

180° through the X-ray beam, and at every 0.12° increment, we recorded a snapshot

of the X-ray projection using a CCD camera. Each projection contains information

about the X-ray absorption and phase integrated along the trajectory of the X-ray.

Prior to reconstruction, the background illumination was removed from each

projection.

The open source, Python-based software Tomopy (Gürsoy et al., 2014), which

was developed by the beamline scientists at Advanced Photon Source, was used to

perform the image reconstruction. First, a stripe-removal algorithm based on Münch

et al. (2009) was applied. A quantitative phase retrieval algorithm, which was based

on Paganin et al. (2002) was used to simultaneously recover the X-ray absorption and

diffraction signal. Finally, GridRec (Dowd et al., 1999) was used to perform the

tomographic reconstruction. In the resulting grayscale image (Fig. 4.5, olivine

(lightest granular phase), opx (darkest granular phase), and quenched basaltic melt

(dark interstitial phase) are clearly distinguishable.

4.2.3 Subvolume Selection

A visual inspection of the whole sample reconstruction reveals strong melt

fraction heterogeneity along the cylindrical axis of each sample (Fig. 4.6). The melt

fraction is at a minimum at the bottom of sample and a maximum at the top of the

sample. We interpret this long-wavelength heterogeneity to be caused by melt

 99

 100

 101

buoyancy. Over the course an experiment, melt which is less dense than the

surrounding olivine or opx, will rise to the top of the sample. As the melt rises, the

loss of mass towards the bottom of the sample is compensated by compaction of the

granular matrix. As melt fraction decreases at the bottom of the sample, surface

tension and compaction forces reach mechanical equilibrium with buoyancy.

Following Miller et al. (2014) and Watson and Roberts (1999), smaller

subsets of data, which we call subvolumes, were cropped from each reconstructed 3-

D image at locations of relatively constant melt fraction. Decompression fractures

(Fig. 4.5A) and long-wave-length melt fraction heterogeneity (e.g. Fig. 4.6B between

280 and 560 µm) were avoided.

4.2.4 Image segmentation

In order to characterize the melt distribution, each grayscale subvolume was

converted to a label image: grayscale voxels were assigned values 1, 2, or 3 for

basaltic glass, olivine, or opx, respectively. We developed a semi-automatic

segmentation workflow. First, a trial segmentation of the melt is performed using a

combination of Avizo’s local thresholding module and tophat global threshold. Thin

decompression fractures are manually removed from the image by overlapping the

trial segmentation with a morphological erosion and dilation of the image using a

2×2×2 voxel3 ball-shaped kernel. Avizo’s morphological filter toolbox was used.

 Subtle contrast at the olivine-opx interfaces and bright imaging artifacts at the

grain edges prevented us from applying the same local threshold technique to

differentiate the opx from the olivine. We used a morphological watershed

 102

transformation to separate grains and then handpicked opx grains from the aggregate.

Grains that were incorrectly separated were corrected using Avizo’s propagating

contour tool. Once all of the opx grains were differentiated from olivine, the

watershed basins were removed by a simultaneous dilation of the olivine and opx

images. To remove jagged edges, which are artifacts of the morphological watershed

tool, the resulting image was smoothed using an 3×3×3 voxel3 Gaussian kernel. The

segmented melt image is superposed on the olivine-opx segmented image. The result

is a very accurate segmentation of the melt and a slightly less accurate approximation

of the olivine-opx grain boundaries. Accurately estimating the location of the olivine-

melt and opx-melt interfaces is far more important than the olivine-opx interface

since we are most interested in the local melt fraction around each grain. 3-D volume

renderings of the label images are given in Fig. 4.7.

In some samples, a bright, dendritic phase, which we think is partially

recrystallized melt, appears in the melt near the olivine-melt interface. Partially

recrystallization of the melt is usually indicative of an imperfect quench. Since they

are not present melt prior to quenching, voxels associated with these dendritic

features are assigned to melt in the segmentation procedure. Refer to Appendix C,

Fig. C.1) for an image of the bight dendritic phase.

4.2.5 Quantification of local melt fraction distribution

Though a homogeneous mixture of olivine and opx reduces the amount of

time required to reach a steady state microstructure, it complicates evaluation of the

characteristic melt fraction associated with each mineral phase. Therefore, we

 103

 104

 105

adopted a dynamic measuring technique, in which a local melt fraction is measured

for each grain and then plotted in a distribution. Each local melt fraction measurement

was performed by counting melt voxels contained within an ellipsoidal envelope

surrounding each grain. First, an ellipsoid was fitted to each grain (Fig. 4.8) using

ellipsoid_fit.m, which is a freely available software on Matlab Central and is also

included in Appendix C. The principle lengths and orientations of the ellipsoid are

eigenvalues and eigenvectors, respectively, of the ellipsoid fit parameters. Next, we

dilated the fitted ellipsoid by multiplication with a growth parameter p. Phase

proportions were calculated by voxel counting within each ellipsoidal envelope. We

looped through all grains in each subvolume and plotted them as a distribution.

Clearly, local melt fractions depend on p, so we calibrated our algorithm by

computing the local melt fraction distributions for various values of p (Fig. 4.8).

Values for p ranged from 1 (original fit to grain) to 4 (includes many grains). We

wanted an ellipsoid envelop that enclosed only melt adjacent to each grain, which

occurs for values of p = 1 to 1.4.

4.2.6 Characterizing grain size distributions

The grain size distribution of each subvolume was determined by estimating

the equivalent diameter, which is defined as the diameter of a sphere having the

equivalent volume as the grain, of each grain. First, an opening filter having a “ball-

shaped” kernel was applied to the segmented grain label images. Second, a

morphological watershed algorithm was used to approximate the solid-solid

boundaries. The equivalent diameter was then measured for each grain.

 106

The morphological watershed transform is completely automatic; however,

there is a caveat: it sometimes incorrectly approximates grain boundaries. If grain

boundaries are mostly melt-free, the morphological watershed transform can count

multiple grains as a single grain. Aside from manually drawing grain boundaries, we

do not have a method to correct for erroneous grain boundaries.

4.3 Results

4.3.1 Visual inspection of melt distribution

A visual inspection of a clump of opx grains (Fig. 4.9) near the bottom of hzb-

14 (ϕn = 0.20) qualitatively demonstrates lithological melt partitioning in a sample

composed of olivine, opx, and basaltic melt. Mineral clumping occurs in higher

frequency near the bottom of the sample where the melt fraction is much lower (ϕ ~

0.04) than the top. As pointed out in the figure – and holds true across all samples –

olivine-rich regions are abundant sources of melt with respect to the opx-regions,

which are nearly melt free for low melt fraction.

The presence of a reduced melt fraction that spans several or more grains has

important implications for transport properties of the upper mantle. If present in the

upper mantle, melt rich – or olivine rich because of lithologic melt partitioning –

conduits may increase melt transport efficiency.

In our samples, olivine- and opx-rich regions are mixed more or less

homogeneously in the sample and do not extend through the entire sample. Therefore,

olivine-rich and opx-rich regions cannot conduct fluid flow in parallel. In the mantle,

however, the reactive-infiltration instability is thought to juxtapose olivine with

 107

 108

harzburgite (Kelemen et al., 1995a), which may allow the high melt fraction, high

permeability olivine-rich region to transport melt in parallel with the low melt

fraction, low permeability opx-rich region and increase the transport efficacy of the

mantle.

4.3.2 Local melt fraction distributions

Local melt fraction distributions were computed for each subvolume. Use of p

as a scaling factor for the ellipsoidal envelope assumes that the size of melt features

scales with grain size. The difference between the median local melt fraction for

olivine and opx are plotted as a function of growth parameter p (Fig. 4.10). As

expected, the local melt fraction tends to the total measured melt fraction of the

subvolume for very large values of p.

We report the minimum energy melt fraction for olivine and opx grains at

poptimal , which is the value of p that maximizes the difference between the median

local melt fractions. We can see from Fig. 4.10, that the maximum difference in the

median local melt fractions occurs between poptimal = 1.0 and 1.4. For values less than

poptimal, voxels associated with adjacent melt features are missed. For poptimal,

neighboring grains dilute the measured local melt fraction.

We quantify the degree of melt partitioning by a parameter R, which is the

median olivine local melt fraction divided by the median opx local melt fraction. We

find that for all subvolumes, R > 1. Therefore, there is a higher local melt fraction

associated with olivine grains than with opx grains. The difference between the

median olivine and opx local melt fraction appears to increase with increasing melt

 109

 110

 111

fraction. Results are summarized in Table 4.2.

4.3.3 Grain size distributions

We compute equivalent diameter distributions for olivine and opx (Fig. 4.11).

Equivalent diameter data appear to follow lognormal distributions. Correspondingly,

we report the geometric mean and standard deviation as the mean grain size and

width of grain size distribution. As expected, subvolumes containing order of 1000

grains have narrower distributions. As noted in Miller et al. (2014), the automated

watershed transform that was used to separate 3-D grain data produces a more

accurate grain size distribution when the melt fraction is higher, since grain

boundaries are more easily distinguished if they are coated by melt. Melt-free triple

junctions and dry grain-grain boundaries occur with increasing frequency as the melt

fraction decreases.

In order to understand the kinetics of grain growth in our polymineralic

aggregate and to evaluate the efficiency of grain growth via chemical diffusion

through the interconnected melt network, we plot mean grain size of olivine and opx

as a function of melt fraction (Fig. 4.12). Though there is significant overlap of the

grain size distributions, the median opx grain size increases systematically with melt

fraction while the median olivine grain size is insensitive to changes in melt fraction.

Interestingly we do not see evidence of grain pinning in the olivine grain size data.

4.4 Discussion

4.4.1 Melt concentration due to lithologic melt partitioning

 112

 113

 114

 115

 116

Our results are strong evidence that spatial variations in mineralogy cause

lithologic melt partitioning in partially molten harzburgite. However, the length scale

over which spatial gradients in surface energy can segregate melt is not currently

constrained. If the effect of lithologic melt partitioning is short-range, i.e. can only

cause melt fraction heterogeneity in the immediate proximity of low-surface energy

grain surfaces, the permeability structure of the upper mantle should adhere closely to

the mineralogical structure of the geological formation. However, if the range of

lithologic melt partitioning reaches beyond the proximity of adjacent grains, it may

enhance the melt transport capabilities of the upper mantle.

The sharp contrast in melt fraction in close proximity to opx-rich regions

suggests that lithologic melt partitioning is short-range. However, in a closed system

with a finite melt fraction, conservation of mass necessitates that even a tiny

enhancement of the local melt fraction be compensated by a decrease in melt fraction

elsewhere in the sample.

4.4.2 Lithologic melt partitioning and transport properties

Lithologic melt partitioning has the potential to enhance the permeability of

partially molten harzburgite. For a monomineralic system, permeability depends only

on the spatial distribution of melt in the volume. The presence of a low wettability

mineral phase will perturb the otherwise uniform melt distribution, in which case the

effective permeability is some complicated mixing between the permeability of two

end-member mineralogies. Unfortunately, determining the actual mixing relation for

harzburgite effective permeability requires computing permeabilities of both partially

 117

 118

molten pure olivine-basaltic melts and opx-basaltic melts for various melt fractions,

which we do not have. Nevertheless, percolation theory suggests the effective

permeability of a homogeneously mixed olivine-opx aggregate approaches the

geometric mean of the individual partially molten dunite and pyroxenite end-

members (Madden, 1976). However, if olivine and opx-rich regions are for some

reason organized into conduits, the two regions will conduct fluid flow in parallel,

and the olivine-rich regions will dominate fluid flow. Conversely, if olivine- and opx-

rich regions are overlaid as layers that are oriented perpendicular to the flow

direction, the lower permeability region will determine the effective permeability.

4.4.3 Geological implications for lithologic melt partitioning

There is no evidence that lithologic melt partitioning can create a

mineralogical heterogeneity; an initial mineralogical heterogeneity needs to be

present. The reaction infiltration instability (RII) is a good candidate for establishing

an initial mineralogical heterogeneity. The RII is a positive feedback processes in

which dissolution of opx in a harzburgitic mantle by a melt that is undersaturated with

respect to opx leads to an increase in melt flux that further promotes opx dissolution

(Daines and Kohlstedt, 1994; Kelemen et al., 1997, 1995a). Numerical modeling

using multiphase flow theory has shown that the RII is capable of forming high melt

fraction dunite conduits whose thicknesses range from tens to thousands of meters

(Aharonov et al., 1995; Kelemen et al., 1995a; Spiegelman et al., 2001). More

recently, the RII has been confirmed to produce high melt fraction dunite conduits in

laboratory experiments (Pec et al., 2015). If these dunite conduits are present in the

 119

upper mantle, they may constitute a thermodynamic gradient that further segregates

melt in the upper mantle.

Lithologic melt partitioning may help to stabilize the formation of high-melt

fraction conduits that form as a result of the RII. Spiegelman et al. (2001) suggests

that once the opx supply has been depleted, the melt fraction will continue to eat

away at the side of the conduits so as to replenish the melt fraction in the conduits lost

to buoyancy. This is an unstable process that causes opx dissolution to progress until

olivine is the sole mineral component of the upper mantle. However, field

observations of banded dunite-harzburgite formations in the Oman ophiolite

(Kelemen et al., 1995a) suggest that dunite conduits are persistent features of the

upper mantle if we assume a steady-state mid-ocean system. Therefore, an additional

mechanism is required to sustain high melt fraction in the dunite conduits. The

observed lithologic melt partitioning in our harzburgite samples may provide a

mechanism for driving melt into the dunite channels, replenishing the melt supply in

the high-melt fraction dunites.

4.4.4 Grain size and melt fraction

We attribute the increase in mean opx grain size with melt fraction (Fig. 4.12)

and the insensitivity of olivine to melt fraction to differences in wetting properties of

the mineral components. Chemical diffusion through an interconnected melt network

is a more efficient means of growing grains than grain boundary diffusion (Watson,

1999). If the dihedral angle associated with a phase boundary is greater than 60°, a

threshold melt fraction is required to maintain interconnectivity of the melt network;

 120

otherwise melt forms isolated pockets at grain corners. For this scenario, grain

boundary diffusion is the sole mode of transport for the material required to grow

grains. Conversely, for high melt fraction, melt forms an interconnected network in

the presence of both olivine and opx. As the melt fraction decreases, the melt network

begins to lose connectivity around opx grains, disconnecting them from their

chemical supply.

There is evidence of a tradeoff between melt-assisted diffusion and grain-

boundary diffusion in our samples (Fig. 4.12). Below the percolation threshold, opx

grains grow via grain-boundary diffusion. Olivine grains, however, which form a

dihedral angle of ~35° (Waff and Bulau, 1982) with basaltic melt, will maintain

contact with the melt network at all melt fractions. Therefore, olivine grain growth

should be relatively insensitive to melt fraction.

4.5 Conclusion

We used high-resolution X-ray µ-CT to image the 3-D microstructure of

partially molten harzburgites that contain a range of melt fractions. A novel

methodology was applied to resolve the density contrast at olivine-basalt, opx-basalt,

and olivine-opx interfaces. We computed local melt fraction distributions for olivine

and opx grains by fitting ellipsoidal envelopes to each grain. We found that melt

partitions in about a 1.1 to 1.5 ratio between olivine and opx for total nominal melt

fractions 0.02 to 0.20, which we attribute to spatial variations in surface energy

associated with low surface energy density olivine interfaces and high surface energy

density opx interfaces. The measurable melt partitioning in harzburgitic systems

 121

warrants a microstructural evaluation of transport properties permeability and

electrical conductivity as well as numerical modeling of larger magmatic systems

composed of substantial proportions of olivine and opx.

 122

Chapter 5: Permeability and electrical conductivity of partially molten

harzburgite

Abstract

Modeling melt transport and correctly interpreting electromagnetic data of the

upper mantle beneath mid-ocean ridges require robust, microstructure-based

constraints on the constitutive equations that relate permeability and electrical

conductivity to melt fraction, respectively. Differences in the wetting properties of

minerals are thought to alter transport properties of partially molten mantle rock. The

presence of orthopyroxene, for example, is thought to decrease the connectivity of the

melt network if the local melt fraction dips below the melt fraction required for

maintaining an interconnected network. Since opx is a primary constituent of the

upper mantle, any relation between transport properties and melt fraction must

consider its effects.

We examined the effect of opx on the permeability and electrical conductivity

of partially molten rock aggregates composed of olivine, opx, and basaltic melt over a

range of nominal melt fractions (ϕn = 0.02 to 0.20). Synthetic olivine-opx-melt

samples were prepared by isostatically hot-pressing powdered mixtures of oxides and

natural, high-alumina basalt at 1.5 GPa and 1350 °C for a minimum of one week.

Experimental charges were cored and imaged using synchrotron-based X-ray micro-

computed tomography. The resulting 3-D images constitute digital rock samples, on

which numerical laminar flow and direct current simulations were conducted.

Permeabilities and electrical conductivities of olivine-opx-melt samples were

 123

compared to those composed of pure olivine and basaltic melt at similar melt

fractions. We found that all olivine-opx-melt permeability data plot along the

permeability-melt fraction curve for olivine-melt if we compensate for intersample

variations in the mean grain size. Interestingly, we found that the bulk electrical

conductivity of harzburgite is systematically lower than that of dunite.

5.1 Introduction

The capacity of the upper mantle to transport melt at mid-ocean ridges and

conduct electricity largely depends on the interconnectivity of the grain-scale melt

network. For a dihedral angle less than 60°, melt forms an interconnected network at

any melt fraction; otherwise a threshold melt fraction is required to maintain melt

interconnectivity. Since olivine forms a dihedral angle of ~35° (Fig. 5.1) with basaltic

melt (Waff and Bulau, 1982), melt transport in the upper mantle, which is primarily

composed of olivine, is thought to be efficient. However, field observations suggest

the mantle composition is closer to a harzburgite, containing as much as 40 vol. %

orthopyroxene (opx), which forms a dihedral angle of ~75° with basaltic melt (Fig.

5.1) (Toramaru and Fujii, 1986). Therefore, if the threshold melt fraction needed for

melt interconnectivity is not maintained everywhere, opx-rich regions will contain

isolated melt, decreasing the permeability and electrical conductivity of the rock.

Though we know the permeability and electrical conductivity of mantle rock

is some complicated average that depends on the modal proportion and spatial

distribution of olivine and opx (Madden, 1976), the exact influence of opx on the

transport properties of mantle rock is difficult to constrain using conventional rock

 124

 125

physics experiments. Microscopy analysis of partially molten rocks composed of

olivine, opx, and basaltic melt offer useful information regarding the connectivity of

melt in polymineralic system. For example, Toramaru and Fujii (1986) analyzed the

dihedral angle distributions of synthetic olivine-opx-melt samples. They found that

the number of isolated melt pockets and melt-free triple junctions increases with

increasing opx proportion. They attributed their result to the to the tendency for melt

to form isolated melt pockets when adjacent to high surface energy density phase

boundaries (e.g. opx-melt interfaces). Isolated melt pockets do not facilitate melt

transport and contribute only minorly to electrical conductivity of the aggregate.

The influence of high dihedral angle associated with opx-bearing triple

junctions on permeability was assessed using network permeability models (Zhu and

Hirth, 2003). Assuming melt formed an interconnected network only along triple

junctions, Zhu and Hirth (2003) computed permeabilities for three-phase systems

containing various proportions of olivine, opx, and interstitial basaltic melt. Despite

the ability of opx to reduce melt interconnectivity, they found that a system composed

of 40 vol. % (proportion of opx volume to grain volume) only reduced permeability

by a factor of ~2 relative to an olivine-melt system at melt fraction of 0.01. As the

number of wetted triple junctions required to maintain an interconnected network

approached the percolation threshold (39% triple junctions are wetted) permeability

drops off rapidly with melt fraction: at melt fraction 0.01, 60 vol. % opx results in

over four orders of magnitude reduction in permeability. Network models by Zhu and

Hirth (2003) provide strong motivation to examine synthetic systems composed of

olivine, opx, and basaltic melt.

 126

An additional influence of opx on the grain-scale distribution of melt – and

potentially the transport properties – is the tendency of melt to localize around low-

energy interfaces. This phenomenon known as lithologic melt partitioning (Jurewicz

and Watson, 1985; Watson, 1999), has been verified in variety analogue systems (e.g.

quartz-clinopyroxene, calcite-fluorite, and quartz-fluorite) (Watson, 1999) and

recently in Chapter 4 of this manuscript for partially molten rocks composed of

olivine and opx. Since transport properties depend on melt fraction, lithologic melt

partitioning may affect the permeability and electrical conductivity on an aggregate

scale, and if coupled with an additional mechanism that forms mineralogical

heterogeneity larger than the grain-scale, lithologic melt partitioning may drastically

modify the efficiency of melt transport in the mantle.

As a first step to understanding how mineralogical heterogeneity affects melt

transport in the upper mantle, we seek to quantify the grain-scale permeability and

electrical conductivity of partially molten harzburgite as a function of melt fraction.

Since permeability and electrical conductivity are technically challenging to measure

experimentally, we adopt a digital rock physics approach. We synthesize partially

molten harzburgites that have various proportions of basalt and a constant olivine to

opx volume ratio. High-resolution, three-dimensional images were taken using

synchrotron-based micro-computed tomography. Virtual fluid flow and direct current

experiments were conducted using the melt geometries to compute permeability and

electrical conductivity. Permeabilities and electrical conductivities of partially molten

harzburgite samples were compared to those computed for olivine (Chapter 2 and 3 of

this manuscript).

 127

5.2 Methods

5.2.1 Sample preparation of harzburgite samples

 Harzburgite samples were prepared by hot, isostatic pressing of oxide-basalt

mixtures in piston-cylinder apparatuses at 1350 °C and 1.5 GPa. The composition of

the primary oxide mixture was based on the chemical composition of a natural

Southwest Indian Ridge harzburgite (Dick, 1989) and adjusted for each melt fraction

so that we achieved a nominally constant 3 to 2 (olivine to opx) volumetric ratio and

melt fraction 0.02, 0.05, 0.10 and 0.20 after sintering. Details of the sample

preparation procedure are discussed in Section 4.2.1. The oxide mixture was

homogenized over ethanol by six six-hour homogenization cycles in an automatic

agate mortar and pestle. Pulverized natural basalt was added in various proportions to

the oxide mixture to attain total nominal melt fractions of 0.02, 0.05, 0.10, and 0.20

under run conditions. Each oxide-basalt mixture was homogenization using the same

procedure as the primary oxide mixture.

Upon completion of the experimental runs, experimental charges were

quenched by turning off the power while maintaining a steady flow of cold water

around the pressure vessel. 1 mm cylindrical cores were drilled from each sample

along the cylindrical sample axis.

5.2.2 Imaging procedure

Following Zhu et al. (2011), cylindrical harzburgite samples were imaged

using a 24.4 keV synchrotron light source at 2BM of the Advanced Photon Source,

 128

Argonne National Laboratory, Argonne, IL. Image reconstruction was performed

using the software package Tomopy (Gürsoy et al., 2014). Refer to Section 4.2.2 for a

detailed description of the imaging procedure.

5.2.3 Subvolume Selection

 Several smaller, computationally manageable data subsets, which we call

“subvolumes,” were cropped from each reconstructed digital sample. Subvolume

sizes and locations were selected so as to avoid long-wavelength variations in the

measured melt fraction and decompression fractures. Wherever possible, we sought

subvolume sizes as large as we could computationally handle (500×500×500 voxels3

for permeability computations and 400×400×400 voxel3 for electrical conductivity

computations). If decompression fractures or the vertical melt anomaly prevented us

from selecting such a larger subvolume, we opted for a smaller subvolume; though

even the smallest subvolume contains greater than 300 grains.

5.2.4 Image segmentation

Avizo® was used to perform image segmentation. In order to characterize the

melt distribution and transport properties, each grayscale subvolume needed to be

converted to a label image, where each grayscale voxel was assigned a value of 1, 2,

or 3 for basaltic glass, olivine, or opx, respectively. We developed a semi-automatic

segmentation workflow that we applied to all subvolumes. First, melt was segmented

using a combination of Avizo’s local thresholding module and tophat global threshold

(Vincent, 1993). Thin decompression fractures were manually removed from the

 129

 130

image by overlapping the trial segmentation with a morphological erosion and

dilation of the image, applied sequentially using a 2×2×2 voxel3 ball-shaped kernel.

Subtle contrast and bright imaging artifacts at the grain edges prevented us

from applying the same local threshold technique to differentiate the opx from the

olivine. We used Avizo’s morphological watershed transformation (Beucher and

Meyer, 1992) to separate grains and then handpicked opx grains from the aggregate.

Grains that were incorrectly separated were corrected using a propagating contour

tool. Once all of the opx grains were differentiated from olivine, the watershed basins

were removed by simultaneously dilating the olivine and opx grain images. The

resulting image was smoothed using an isotropic Gaussian kernel to remove the

jaggedness imposed by the morphological watershed transform. The segmented melt

image was superposed on the olivine-opx label image. The result was a very accurate

segmentation of the melt and a slightly less accurate approximation of the olivine-opx

grain boundaries.

5.2.5 Computation of permeability and electrical conductivity

Permeabilities of our partially molten harzburgite subvolumes were obtained

using Avizo’s XLab Hydro Absolute Permeability Experiment Simulation module,

which mimics an actual permeability measurement. The melt geometry was

discretized according to the original voxel spacing (1 voxel = 0.7 µm). Velocity and

pressure fields were obtained by solving the Stokes Equations using the artificial

compressibility method (Chorin, 1967) on a staggered finite-volume grid. Refer to

Section 2.3.5 for a detailed description of the numerical model.

 131

Permeability was obtained by applying Darcy’s Law to the model output. The

volume-averaged velocity field was used in place of the so-called Darcy velocity

(Whitaker, 1998). Permeability is a function of only the melt geometry; external

quantities, such as the imposed pressure gradient and viscosity, are divided out in the

volume-average step and do not bear on permeability.

Bulk electrical conductivities of each subvolume were computed using Finite-

Difference Electrical Conductivity Calculator (FDECC), which is a Matlab-based

direct current experiment simulator that we built in-house. FDECC is based on the

finite-difference formulation derived by Garboczi (1998). FDECC discretized the

subvolume label image according to the original voxel spacing. Electrical

conductivities were assigned to each voxel. We obtained the electrical potential scalar

field by solving the current continuity equation (Laplace Equation) using the implicit

finite-difference method. The volume-averaged current density was computed from

the electric potential field. The bulk electrical conductivity of the label image was

obtained by applying Ohm’s Law to the model output. Refer to Section 3.2.4 for

details about the direct current simulation.

5.2.6 Characterizing grain size distributions

In addition to melt fraction and melt interconnectivity, permeability depends

on the grain size. Our subvolumes exhibit a significant variation in their mean grain

sizes. In order to fairly evaluate the dependence of permeability on measured melt

fraction, we divided each permeability value by the square of the geometric mean

grain size measured for each subvolume.

 132

Grain sizes distributions of each subvolume were determined by measuring

the equivalent diameter, which is the diameter of a sphere having the equivalent

volume as the grain. First, a generous opening filter having a “ball-shaped” kernel

was applied to the segmented grain label images. Second, a morphological watershed

algorithm was used to approximate the grain-grain boundaries. The equivalent

diameter was measured for each grain.

The morphological watershed transform is completely automatic, so it is very

useful for analyzing a large number of grains. However, there is a caveat: the

morphological watershed transform often incorrectly approximates grain boundaries.

If grain boundaries were mostly melt-free, the morphological watershed transform

sometimes counted multiple grains as one grain.

5.3 Results

5.3.1 Statement about uncertainty

Melt fraction error bars in Fig. 5.3 and 5.4 do not reflect random, Gaussian

error. Instead, the left and right end of each error bar is the measured melt fraction

after a 1-pixel contraction and dilation of the 3-D melt geometry, respectively.

Therefore, a meaningful comparison of the olivine-melt and olivine-opx-melt

permeability and electrical conductivity datasets must be conducted on their

corresponding minimum and maximum melt fractions. This method of using

morphological contraction / dilation to define minimum and maximum error bars for

measured phase proportions is rather crude, since it likely overestimates the effect

blurring due to instrument error and discretization of the sample geometry; however

 133

66

1

 134

to our knowledge, it is the only method available. In principle, the true error can be

derived from the point-spread function, would require a ground-truth with a higher

resolution 3-D imaging technique.

Since uncertainty in melt fraction is defined by a morphological contraction

and dilation of the melt image, a small error in melt fraction requires grains to have a

large volume to surface area ratio. Olivine-opx-melt subvolumes have a smaller

average grain size than olivine-melt subvolumes and a correspondingly lower volume

to surface area ratio. Therefore, uncertainty on melt fraction measurements is higher

for olivine-opx-melt subvolumes than for olivine-melt subvolumes.

5.3.2 Permeability

Fluid flow simulations were conducted along the z (vertical) axis of each

subvolume. Fig. 5.3 gives the calculated permeabilities of olivine-opx-melt

subvolumes as a function of measured melt fraction for each subvolume. Melt

fractions were measured for each subvolume by voxel counting. Upper and lower

bounds for the uncertainty in the measured melt fraction were computed by applying

a 1-voxel dilation and contraction, respectively, to the melt label image (Fusseis et al.,

2012). Permeability values were divided by the average grain size squared in order

to remove the effect of inter-subvolume grain size variability from permeability. We

performed a linear fit to the log10 transform of our data using the total least squares

algorithm (York et al., 2004) and plotted it as a solid black line in Fig. 5.3. Before the

fit, we applied an ad hoc shift to the measured melt fraction data to compensate for

the asymmetric error bars. Partially molten olivine-melt permeability data (Miller et

 135

 136

al., 2014) are plotted in Fig. 5.3 for comparison. After normalizing the permeabilities

by the mean grain size measured in each subvolume, olivine-opx-melt data plot on the

same permeability-melt fraction trend as olivine-melt data, so we conclude the

presence of opx does not appear to affect the permeability-melt fraction curve over

the melt fractions tested.

5.3.3 Electrical conductivity

Direct current simulations were conducted along the z (vertical) axis of each

subvolume. Fig. 5.4 shows the computed bulk electrical conductivities of each

subvolume plotted as a function of measured melt fraction. For all direct current

simulations, the electrical conductivities of melt and granular phases is assumed to be

7.53 S/m (ten Grotenhuis et al., 2005) and 0.009 S/m (Presnall et al., 1972; Yoshino

et al., 2010), respectively. We assumed olivine and opx electrical conductivities are

the same. Bulk electrical conductivities of olivine-opx-melt subvolumes were

compared to those from partially molten olivine-melt (see Chapter 3 for more details).

Archie relations, which are power laws,

 σ bulk = Aσmeltφmeausred
m (1)

were fitted to olivine-melt and olivine-opx-melt subvolume data. In Eqn. (1), σbulk is

the bulk electrical conductivity, σmelt is the melt electrical conductivity. A and m are

power law parameters that depend on the spatial distribution of melt. We found that

error bounds associated with olivine-opx-melt and the olivine-melt permeabilities

overlap but are systematically lower than the dunite bulk electrical conductivities for

the same measured melt fraction.

 137

 138

5.4 Discussion

5.4.1 Influence of opx on permeability

At 3 to 2 olivine to opx ratio, the network permeability models by Zhu and

Hirth (2003) suggest there is only a slight reduction in the permeability of olivine-

opx-melt subvolumes with respect to olivine-melt subvolumes for all melt fractions.

At ϕ = 0.01, for example, there is only a ~50% reduction in permeability. Though

triple junctions along opx grains are less effective conductors of melt flow than those

along olivine grains, especially at low melt fraction, the relative insensitivity of

permeability to opx (Fig. 5.3A) reflects the tendency for flow to form so-called

“critical pathways” (David, 1993; Martys and Garboczi, 1992) in the presence of

olivine through which the majority of melt mass is transported. We show evidence for

critical pathways in the olivine-melt system in Chapter 2. As opx content increases,

the frequency of effective triple junctions decreases. Melt flow reconfigures in

response, taking advantage of the remaining viable triple junctions. As a result,

permeability decreases only slightly due to the more tortuous pathway (Fig. 5.5A)

that it must take to traverse the melt network.

Though we do not see a significant change in permeability from olivine-melt

to olivine-opx-melt sample suites, we acknowledge the fact that there is a high degree

of variability in the measured olivine to opx volumetric proportions (Fig. 5.3B).

Subvolumes that contained smaller melt fraction also have smaller proportions of

opx. There are several mechanisms that may account for the correlation between melt

and opx proportions, e.g. effects of wetting properties or temperature gradient.

Nevertheless, Fig. 5.3B shows us that the threshold opx fraction required to influence

 139

 140

permeability may not have been attained by the lower melt fraction samples. Network

permeability models suggest that at least a 3 to 2 olivine to opx ratio is necessary to

reduce permeability. Therefore, in order to conclusively determine the effect of opx

on permeability in olivine-opx-melt composite systems, subvolumes having at least 3

to 2 olivine to opx volume ratio and low melt fraction (ϕ < 0.02) must be examined.

5.4.2 Implications for trace element partitioning in xenoliths

Mineralogical effects on the permeability of mantle rocks may have important

implications for interpreting trace element partitioning in peridotite xenoliths. The

diffusivity of Li in partially molten mantle rocks is two to three orders of magnitude

larger than other trace elements (Richter et al., 2003), making Li a sensitive indicator

of melt-rock interactions in the mantle. Studies (e.g. Frey and Green, 1974; Rudnick

and Ionov, 2007) observe strong Li disequilibria – both elemental and isotopic –

between peridotite xenoliths and the “normal” mantle, which is consistent with an

event of mantle metasomatism, i.e. grain-boundary infiltration of a Li-rich melt or

fluid (Rudnick and Ionov, 2007). Despite preferential diffusion of Li into

clinopyroxene (cpx) over olivine, as evidenced by measured olivine-cpx partitioning

coefficients (olivine-cpxD = 0.2 to 1.0), refractory harzburgite xenoliths exhibit higher

overall enrichment of Li compared to fertile lherzolite xenoliths (Rudnick and Ionov,

2007). One interpretation of this result invokes the wetting properties of peridotite

mineral components: if the permeability of olivine-rich (pyroxene-poor) peridotite is

higher than olivine-poor peridotite (pyroxene-rich), harzburgite xenoliths will

experience higher flux of Li-rich melt than lherzolite xenoliths and thus, higher Li

 141

concentrations. The possibility of using Li as an indicator of permeability is strong

motivation for more accurately constraining the permeability of mantle rock at low

melt fraction and higher pyroxene content.

5.4.3 Influence of opx on electrical conductivity

Though the permeability-melt fraction relation appears to be unaffected by the

presence of opx, the bulk electrical conductivities of olivine-opx-melt geometries are

noticeably lower than those of olivine-melt geometries at similar melt fraction (Fig.

5.4A). Contrary to melt percolation, which forms critical pathways due to the high

sensitivity of melt flux to the hydraulic radius, electricity conducts more diffusively

through the partially molten geometry, increasing the number of viable electrical

pathways relative to fluid pathways. Though there are more conduits available for

electrical conduction, these “added” pathways are less effective conductors, due to

their low hydraulic radius, resulting in reduction of bulk electrical conductivity.

Though there is systematic offset in bulk electrical conductivity between the

olivine-melt and olivine-opx-melt suites, we acknowledge there large uncertainties

associated with measuring melt fraction from tomographic image data. To better

constrain the impact of opx on transport properties beyond what is done in this study,

either a better method of characterizing uncertainty associated with measuring phase

proportions or a higher-resolution 3-D imaging technique is needed.

5.5 Conclusion

 We demonstrated the effect of opx, a low wettability mineral phase that is

 142

common in the upper mantle, on the permeability and electrical conductivity of

partially molten mantle rock by conducting numerical simulations of fluid flow and

direct current using real rock microstructures. Harzburgite rock samples containing

nominal melt fractions of 0.02 to 0.20 and 3 to 2 olivine to opx ratio were synthesized

at mantle pressure-temperature conditions. Samples were imaged using X-ray µ-CT

and converted to label images to be used as input for numerical computations of

permeability and electrical conductivity. We compared transport properties of olivine-

opx-melt and olivine-melt aggregates. For the melt fractions examined, we found that

harzburgite permeabilities did not deviate from the dunite permeability-melt fraction

curve. However, we found that olivine-opx-melt electrical conductivity is lower than

olivine electrical conductivity for the same melt fraction, which we interpret by

invoking critical pathways for fluid flow. Our data represent the first systematic study

that relates macroscopic transport properties of partially molten mantle rocks

containing more than one mineral phase to rock microstructure.

 143

Chapter 6: Summary and future work

6.1 Summary of results and conclusions

This dissertation work represents a significant achievement in the linking of

macroscopic material properties of partially molten mantle rock to microstructural

characteristics. Previous attempts to characterize permeability of partially molten

mantle rocks, for the most part, rely on 2-D images of partially molten rocks to infer

permeability, which is intrinsic to the 3-D melt microstructure and are therefore

inadequate. However, recent advances in X-ray imaging technology allow us to

capture, in high-resolution, the 3-D microstructure of partially molten rocks. These

images constitute digital rock samples on which any number of non-destructive

virtual rock physics experiments can be conducted. These so-called digital rock

physics (DRP) simulations are fast, accurate, and repeatable (Andrä et al., 2013) and

enable the user to straightforwardly conduct rock physics experiments without having

to devise elaborate experimental systems.

Over the course of this project, we developed a number of tools for

automatically quantifying the microstructure and transport properties of our digital

samples. For example, we were able to quantify, by skeletonizing our melt geometry,

the interconnectivity of melt network as a function of melt fraction and sintering

duration. Though it is not discussed in this document, skeletonized melt networks can

also be used in network models to compute permeability and electrical conductivity.

An automatic grain separation algorithm allowed us to characterize the grain size

distributions of our samples without having to infer a 3-D grain-shape; though there

 144

were some approximations made about the location of grain-grain boundaries.

Furthermore, we are able to use the 3-D geometry as direct input to numerical models

to compute permeability and electrical conductivity as a function of melt fraction.

Using a combination of experimental petrology, conventional rock physics,

advanced imaging, and numerical modeling, we were able to formulate meaningful

empirical permeability-melt fraction and electrical conductivity-melt fraction

relations. Our permeability-melt fraction relation confirms the rate at which melt

separates from residue, a critical parameter in multiphase flow models of melt

transport at mid-ocean ridges. A simple 1-D model, suggests that, with the new

permeability-melt fraction relation, estimates of melt fraction in the upper mantle

inferred from U-series geochemistry are more or less consistent with those inferred

from geophysical datasets. The electrical conductivity-melt fraction relation we

presented will be used in future studies to guide better interpretation of

electromagnetic data. A side-by-side comparison of fluid flow and direct current on

the same melt geometries determined that fluid and electricity have different

sensitivities to the pathways available to flow. We argued, based on first principles,

that, aside from an empirical similarity, there is no evidence that a rigorous link

between permeability and electrical conductivity exists.

Our DRP approach allowed us to test the influence of opx, a low wettability

mineral that is common in the upper mantle, on transport properties of partially

molten mantle rock. Before this study, the only evidence opx affected transport

properties came from synthetic datasets (Zhu and Hirth, 2003) and 2-D microscopy

analysis of synthetic samples composed of olivine and basalt. Using the tools

 145

described in this thesis, we confirmed that spatial variations in the surface energy

distribution, related to the presence of opx, caused lithologic melt partitioning.

Lithologic melt partitioning did not appear to alter the permeability of our samples

over the melt fractions tested. However, if combined with another mechanism that

creates a parallel mineralogical structure, such as the reaction infiltration instability,

lithologic melt partitioning may increase the efficiency of melt transport in the upper

mantle.

6.2 Future research directions

We have just scratched the surface in what we can do with DRP. Potential

future directions include experiments with deformed samples, eigenfrequency

analysis of electrical conductivity, and evaluation of seismic properties of partially

molten rocks.

The upper mantle is a dynamic system (Turcotte and Schubert, 2014).

Experiments and models suggest that there is a coupling between shear deformation

and porous flow that give rise to high-melt fraction bands (Daines and Kohlstedt,

1997; Holtzman and Kohlstedt, 2007; Holtzman et al., 2003; King et al., 2011a; King

et al., 2011b; Qi et al., 2014; Zimmerman et al., 1999). These bands may play an

important role in melt transport and melt focusing at mid-ocean ridges. In order for

permeabilities derived from synthetic partially molten rocks to be directly applicable

to the upper mantle, sheared samples must be considered.

Experimental determination of electrical conductivity through impedance

spectroscopy is technically challenging because there may be different conduction

 146

mechanism, e.g. conduction through the sample, conduction through the pressure

vessel, conduction through some surface layer, that operate at the same frequency

spectrum (Nover, 2005; Yoshino, 2010). A numerical impedance spectroscopy

analysis of our images can be used to deconvolute those various processes and help to

interpret experimental results. Specifically, a comparison between numerical and

experimental impedance spectroscopy can be used to test the hypothesis that there is

surface conduction through an electrical double layer at the grain-melt interface that

contributes to the bulk conductivity of the aggregate. However, the fairest comparison

between experiments and digital rock physics simulations would involve imaging the

samples that were used in actual impedance spectroscopy experiments.

It would be of tremendous value to the seismology community studying

seismic wave propagation at mid-ocean ridges or subduction zones to use DRP

techniques to constrain the bulk modulus of partially molten rock as a function of

melt fraction. As a first approach, static loading models conducted on the 3-D melt

geometries to reduce the error of 2-D models (e.g. Hammond and Humphreys, 2000).

Though software needs to be developed to handle many degrees of freedom

associated with static loading models on large subvolumes. Eventually, wave-

propagation codes, similar to Saenger and Bohlen (2004), can be used to determine

frequency dependence of partially molten mantle rock; though significant advances

need to be made in the modeling of grain boundary slide as a mechanism for energy

dissipation.

 147

Appendix A: Supplementary information for microstructure and permeability

quantification

A.1 Removing noise using anisotropic diffusion filtering

We used an edge-preserving smoothing filter to remove noise from our

tomography data. This particular algorithm is an implementation of anisotropic

diffusion (Weickert et al., 1998) and is provided as part of the Avizo image filter

library. Anisotropic diffusion is a class of smoothing filters that reduces noise by

numerically solving the three-dimensional diffusion equation,

 (A1)

where I is the position (x) and time (t) dependent scalar field representing the

grayscale pixel intensity and D is the diffusivity tensor, which is a function of the

local intensity gradient squared. Stepping in time, each image is given as a

convolution of the previous image and a diffusivity kernel.

For a constant diffusivity, Eqn. (A1) is linear, and the problem is equivalent to

a Gaussian blur. Linear diffusion filters are effective at removing random noise from

the tomography data; however, diffusion occurs without any a priori information

about the image, often costing edge resolution. In our samples, where the phase

contrast is low, edges are often the only distinguishing feature in the data. Therefore,

it is vital that we preserve fine details in the tomography images, such as phase

boundaries.

We employ an anisotropic diffusion filter (Fig. A.1). Anisotropic diffusion

uses information about the local grayscale intensity gradient, which is known a priori,

∂I x, t()
∂t

= ∇⋅ D ∇I x, t() 2() ∇I x, t()⎡
⎣⎢

⎤
⎦⎥

 148

 149

to prevent diffusion across edges. This is accomplished by defining a threshold value

c in the formulation of an anisotropic diffusivity kernel that limits diffusion between

pixels whose intensities differ by IC. Correctly calibrating IC ensures that diffusion

does not occur over edges, leaving well-defined phase boundaries.

Other parameters of the anisotropic diffusion filter include the total diffusion

time and time step. As a general rule, the shorter the time step, the more accurately

the diffusion equation is solved. However, shortening the time step necessitates a

longer computation and may cause issues of solver stability. For our purposes, a total

diffusion time of 25s and time step of 1s yields good results within an acceptable

timeframe. Regarding the threshold, values of IC typically range between 35 and 75

when range of grayscale values over the whole image is -500 to 500.

Fig. A.1 illustrates one application of the anisotropic diffusion filter to a

200×200×200µm3 subvolume. The application of anisotropic diffusion results in a

smoother, less noisy image than the original that is largely free of artifacts, such as

streaks. The resulting image is also better conditioned for global thresholding than the

original image.

A.2 Segmenting using watershed transformation

The Avizo® watershed transformation algorithm was implemented for

segmenting data with small phase contrast. We start with a grayscale image processed

by the anisotropic diffusion filter described above (Fig. A.2A) and compute the

gradient magnitude of pixel intensity. Due to the edge-enhanced imaging technique,

the highest gradients in our olivine-basalt samples occur at grain edges (Fig. A.2B). A

 150

 151

global threshold was then applied to the gradient magnitude image to record the

positions of pixels located within the phase transition regions. This is called the

gradient mask (Fig A.2C). Next, an initial inundation is marked using a global

threshold where phases are unambiguously defined (Fig. A.2D). The watershed

transform is then applied. Flooding begins from the initial inundation and continues

until meeting the gradient mask (Fig. A.2E). The gradient mask acts as an

impermeable barrier through which different flooding regions cannot spill into one

another. The watershed transformation is analogous to flooding drainage basins in

natural watershed systems, hence the name of the algorithm. The labeled basins were

then dilated to fill the defined gradient mask (Fig. A.2F). Once segmented, a 3-D

opening filter was applied to the binary data, which removed small details at

boundaries and opened passages separated by only two pixels (Fig. A.2G). Some

small manual adjustments (e.g. hole filling) were often needed to produce accurate

segmentations. The final result after the watershed transformation is a high-quality,

binary image where phase boundaries are defined exactly at grayscale inflections

(Fig. A.2H).

A.3 Determining the size of the representative volume element

Because of heterogeneity in melt distribution, permeability may depend on the

size of the subvolume. In order to determine the minimum subvolume size that

represents a statistically significant portion of the sample, we computed the

permeability of several subvolumes cropped from scoba-12 (ϕn = 0.05) ranging in size

from 140×140×140 µm3 to 350×350×350 µm3. The APES module was used for

 152

 153

permeability computations (Fig. A.3A). We plot their permeability as a function of

subvolume volume (Fig. A.3). Permeability values of different subvolumes of similar

size are consistent within a factor of 4. The average permeability of each subvolume

group and the standard deviation (1σ) are reported in Fig. A.3. Compared to the

spread in permeability values, which are a result of region-to-region variation, the

size of the simulation domain has little effect on simulation results (Table A.1). Based

on these results, we consider the permeability calculations performed in this study to

be representative of the bulk sample from which they were cropped. To guarantee that

our results are representative of the sample, we only report in the main text

permeability calculated on the largest possible subvolume size (350×350×350 µm3).

A.4 Cleaning the skeletonized melt network

Much like segmentation, there are artifacts that arise from the thinning

algorithm during the skeletonization of the melt network. Some of these artifacts

include clusters of nodes and short channels where there should be a single junction.

These artifacts typically occur at large melt pools or at wetted grain boundaries. In

histograms of connectivity, these artifacts manifest as anomalously high numbers of

the coordination number 3 nodes, where coordination number refers to the number of

edge connections possessed by a node.

A Matlab® script, called ScobaCleaner.m, was written for automatically

removing artifacts in the skeleton network. Four types of artifacts exist. They are

denoted loops, sublinks, twins, and short-links (Table A2). Inevitably, there will be

 154

some short-links that should not be merged, sometimes resulting in the formation of a

artificial high-connectivity junction (Zhu et al., 2011).

A.5 Time series experiment

In order to evaluate the time necessary to achieve textural equilibrium, we

created a time series of charges. The nominal melt fraction is 0.05 for those charges,

and the sintering durations are 42 hours (scoba-13), 84 hours (scoba-14), 168 hours

(scoba-12), and 336 hours (scoba-15), respectively. A low nominal melt fraction was

chosen for the time series experiments because low melt fraction samples take longer

to equilibrate than higher melt fraction ones (Cmíral et al., 1998), which gives us a

maximum estimate for the time required for our samples to reach textural

equilibrium. A melt faction 0.05 is best choice given the current resolution limitation

of µ-CT.

Equivalent diameter distributions (EDD) were computed for 350×350×350

µm3 subvolumes from scoba-13-500-2, scoba-14-500-1, scoba-12-500-1, and scoba-

15-500-1 (Fig. A.4). The EDD’s of scoba-13-500-2 and scoba-14-500-1 (Figs. A.4A

and A.4B), which are shorter duration experiments, differ substantially from scoba-

12-500-1 and scoba-15-500-1. The longer duration charges scoba-12 and scoba-15

have nearly identical EDDs (Figs A.4C and A.4D), suggesting that grain size

evolution has reached an essentially steady state. The similarity between the two

longer duration experiments suggests that textural equilibrium (Wark and Watson,

1998) is reached approximately some time between 84 and 168 hours for olivine-

basalt aggregates with a nominal melt fraction of 0.05. The similarity between the

 155

 156

 157

 158

mean equivalent diameters suggests that grain growth was probably very slow after

42 hours.

Coordination number distributions (CND) were also computed for

350×350×350 µm3 subvolumes from scoba-13-500-2, scoba-14-500-1, scoba-12-500-

1 and scoba-15-500-1 (Fig. A.5). Comparison of the CNDs of these samples reveals

that the number of dead-end nodes with coordination number of 1 decrease with

increasing sintering time. Nodes with coordination number of 3 are mostly associated

with regions where melt pooling or grain boundary wetting is occurring. We observe

an inversion between the frequency coordination number 3 and 4 nodes, indicating a

migration of the melt from grain boundaries to tubules. In subvolume cubes scoba-12-

500-1 and scoba-15-500-1, nodes with coordination number of 4 are the most

abundant, which is consistent with the idealized model of an isotropic system at

textural equilibrium (von Bargen and Waff, 1986). Though there is a small increase in

the relative abundance of coordination number 4 nodes from 168 hours to 336 hours,

the melt network appears to have reached an approximately steady state by 168 hours.

A.6 Correcting for skeletonization artifacts

Main artifacts during skeletonization and corrections. The skeleton network is

a simplified representation of the complex melt microstructure. Included in the table

are visualizations of the skeleton artifacts. Edges and nodes in question are

highlighted in yellow. All other edges and nodes are colored gray and red,

respectively. Actions taken by ScobaCleaner for simplifying the skeletonized melt

network and the effect on the coordination number distribution are summarized.

 159

 160

% -- %

function [Edge, Node] = SkeletonWrapper(directory, fname, dim, lt, varargin)

%
% --
%
% This is the wrapper script for pruning skeletonized tomography data.
% Several artifacts, which often arise from skeletonization but are not
% real features that appear in the binary image data, are removed with this
% algorithm. They are:
%
% 1) Loops -- Edges that form a loop
% 2) Sublinks -- two edges with one node connecting them where that
% node does not have any other connections.
% 3) Short Edges -- edges whose length is less than the input lt
% 4) Islands -- Nodes that do not have any connecting edges or single
% edges that are not connected to the rest of the network.
% that are not connected to the rest
% 5) Twins -- twin edges that share the same node endings
%
% More info about how these artifacts are removed from the skeleton network
% is given in the online supplement of Miller et al. (2014) in Earth and
% Planetary Science Letters and Zhu et al. (2011) in Science.

% Miller, K.J., Zhu, W., Montési, L.G.J., Gaetani, G. A., 2014.
% Experimental quantification of permeability of partially molten mantle
% rock. Earth Planet. Sci. Lett. 388, 273-282.
%
% Zhu, W., Gaetani, G.A., Fusseis, F., Montési, L.G.J., De Carlo, F., 2011.
% Microtomography of partially molten rocks: three-dimensional melt
% distribution in mantle peridotite. Science 332, 88-91.
%
% Inputs:
%
% 'directory' --> (string) directory where skeleton text file is
% located
% 'fname' --> (string) name of skeleton text file
% 'dim' --> (number of any precision) vector specifying the x,
% y, and z dimensions of the skeleton
% 'lt' --> (number of any precision) desired maximum length of
% edges. Edges whose length is lower than lt are
% preserved, while those larger than lt are pruned
% 'varargin' --> (cell) variable input parameter that contains the
% following inputs.
% 'Print' --> (string) Prints inital and pruned results to pdf
% file specified by the string immediately following
% 'Plot'. Warning: Case-sensitive!
% 'Save' --> (string) Saves the pruned resluts 'Node' and 'Edge'
% to .mat files specified by string immediately
% following 'Save'. Warning: Case-sensitive. '-Edge'
% and '-Node' are appended to the ends of file name.
%
% Outputs:
%
% 'Edge' --> (structure) Structure that contains position,
% connectivity, and thickness information associated
% with edges.
% 'Node' --> (structure) Structure that contains position and
% connectivity information about nodes, where edges
% are connected.
%
% Example:
%
% Run cleaning algorithm for skeleton 'sample_1_skeleton.txt'
% Removes edges longer than than 10 length units. Saves and prints those
% results. Skelton data is stored as text file, which is outputted by
% Avizo.
%
% [Edge, Node] = SkeletonWrapper(...

 161

% '~/Desktop/skeleton_files/', ...
% 'sample_1_skeleton.txt', ...
% 10, ...
% 'Save', ...
% 'Print');
%
% Authors: Kevin J. Miller and Laurent G.J. Montési
% $Author: Kevin J. Miller and Laurent G.J. Montési$ $Date: 07-Jul-2015
% 15:12:00 $ $Revision: 1.0 $
% Copyright: Kevin J. Miller and Laurent G.J. Montési 2015
%
% --
%

tic;

if ~isempty(varargin)
 save_switch = ~isempty(find(strcmp('Save', varargin), 1));
 print_switch = ~isempty(find(strcmp('Print', varargin), 1));
else
 save_switch = 0;
 print_switch = 0;
end

dotInd = strfind(fname, '.');

% Reading the text file into the workspace
[Edge, Node] = SkeletonReader(directory, fname);

% Checking the initial volume of the skeleton
vtotal1 = VolumeChecker(Edge);
vol_fraction1 = vtotal1/(dim(1)*dim(2)*dim(3));
fprintf(...
 '\nPre-cleaned volume fraction of skeleton = %.4f%%\n', ...
 vol_fraction1*100);

% Checking to see if there are any zero-length edges removing them.
iZeroLength = find([Edge.length] == 0);
if ~isempty(iZeroLength)
 for ize = 1 : numel(iZeroLength)
 [Edge, Node] = RemoveDeleted(Edge, ...
 Node, ...
 iZeroLength(ize), ...
 unique(Edge(iZeroLength(ize)).endID), ...
 'RemoveZeroEdge');
 end
end

% connectivity histogram before cleanup
HistAll(Edge, Node, dim(3), fname(1:dotInd-1), 'Initial');

mtit(sprintf('%s - Pre Cleanup', fname(1:dotInd-1)), ...
 'FontSize', 20, ...
 'Color', [0 0 0], ...
 'xoff', 0, ...
 'yoff', .025, ...
 'Interpreter', 'None');

nPtIterp = 4;

% Interpolating edges that have less than 4 points
[Edge, Node] = IntialInterp(Edge, Node, nPtIterp);

fprintf('\n iter | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10
| Total\n');
fprintf('------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----
|-----|\n');

[nc, ~] = hist([Node.connectivity], 1:10);

% Printing initial connectivity to command window.
fprintf('%s|%5i|%5i|%5i|%5i|%5i|%5i|%5i|%5i|%5i|%5i|%5i|\n', 'intial', ...

 162

 nc(1), ...
 nc(2), ...
 nc(3), ...
 nc(4), ...
 nc(5), ...
 nc(6), ...
 nc(7), ...
 nc(8), ...
 nc(9), ...
 nc(10), ...
 length(Node) ...
);

% removing island edges from model, since these do not conduct flow
[Edge, Node] = RemoveIslands(Edge, Node);

% Printing conntivity after removal of island edges and nodes
[nc, ~] = hist([Node.connectivity], 1:10);
fprintf('%s|%5i|%5i|%5i|%5i|%5i|%5i|%5i|%5i|%5i|%5i|%5i|\n', ' RI ', ...
 nc(1), ...
 nc(2), ...
 nc(3), ...
 nc(4), ...
 nc(5), ...
 nc(6), ...
 nc(7), ...
 nc(8), ...
 nc(9), ...
 nc(10), ...
 length(Node));

% main loop that removes loops, sublinks, and twin edges
[Edge, Node, ~] = MainLoop(Edge, Node);

[nc, ~] = hist([Node.connectivity], 1:10);
fprintf('%s|%5i|%5i|%5i|%5i|%5i|%5i|%5i|%5i|%5i|%5i|%5i|\n', ' ML ', ...
 nc(1), ...
 nc(2), ...
 nc(3), ...
 nc(4), ...
 nc(5), ...
 nc(6), ...
 nc(7), ...
 nc(8), ...
 nc(9), ...
 nc(10), ...
 length(Node) ...
);

fprintf('------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----
|-----|\n');

vt_vec = [];

% removes short edges by absorbing their volume into neighboring edges
[Edge, Node, ~] = MergeShort(Edge, Node, lt, vt_vec);

% removing resulting loops, sublinks, and twin edges
[Edge, Node] = MainLoop(Edge, Node);

fprintf('------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----
|-----|\n');

[nc, ~] = hist([Node.connectivity], 1:10);
fprintf('%s|%5i|%5i|%5i|%5i|%5i|%5i|%5i|%5i|%5i|%5i|%5i|\n', ' ML ', ...
 nc(1), ...
 nc(2), ...
 nc(3), ...
 nc(4), ...
 nc(5), ...
 nc(6), ...
 nc(7), ...

 163

 nc(8), ...
 nc(9), ...
 nc(10), ...
 length(Node) ...
);

% checking volume after cleanup process
vtotal2 = VolumeChecker(Edge);

vol_fraction2 = vtotal2/(dim(1)*dim(2)*dim(3));

fprintf(...
 '\nPost-cleaned volume fraction of skeleton = %.4f%%\n', ...
 vol_fraction2*100);

HistAll(Edge, Node, dim(3), fname(1:dotInd-1), 'After');

mtit(sprintf('%s - Post Cleanup - LT = %i', fname(1:dotInd-1), lt),...
 'FontSize', 20, ...
 'Color', [0 0 0], ...
 'xoff', 0, 'yoff',.025, ...
 'Interpreter', 'None');

% saving data
if save_switch
 save(sprintf('%s%s_LT%i-Edge.mat', ...
 directory, ...
 fname(1:dotInd-1), ...
 lt ...
), ...
 'Edge' ...
);
 save(...
 sprintf(...
 '%s%s_LT%i-Node.mat', ...
 directory, ...
 fname(1:dotInd-1), ...
 lt ...
), ...
 'Node' ...
);
end

% printing data
if print_switch
 print(1, '-dpdf', ...
 sprintf(...
 '%s%s_LT-%i_pre-cleanup', ...
 directory, ...
 fname(1:end-4), ...
 lt ...
) ...
);
 print(2, '-dpdf', ...
 sprintf(...
 '%s%s_LT-%i_post-cleanup', ...
 directory, ...
 fname(1:end-4), ...
 lt ...
) ...
);
end

fprintf('\n');
toc;
fprintf('\n');

end

% -- %

function [Edge, Node] = SkeletonReader(directory, fname)

 164

% Reads the text file into structures

% fileInd = strfind(fname, 'rec');
fprintf('\nReading %s into structures...', fname);
% disp(sprintf('Read

fid=fopen([directory, fname]);

for i=1:3;
 fgetl(fid);
end %Skip header

% Read file parameters
nvertex=str2num(fscanf(fid,'%*s %*s %s',[1,1]));
nedge=str2num(fscanf(fid,'%*s %*s %s',[1,1]));
npoint=str2num(fscanf(fid,'%*s %*s %s',[1,1]));
iskip = 6;
for i=1:iskip;fgetl(fid);end %Skip transition
GoOn=1; id=0;
while GoOn;
 A=fgetl(fid);
 GoOn=~isempty(A);
 if GoOn;
 id=id+1;
 category=textscan(A,'%s');
 Connect(id).metadata.object=category{1}(1);
 Connect(id).metadata.type=category{1}(3);
 Connect(id).metadata.info=category{1}(4);
 Connect(id).metadata.tag=category{1}(6);
 switch char(Connect(id).metadata.object);
 case 'POINT'
 Connect(id).metadata.ndata=npoint;
 case 'EDGE'
 Connect(id).metadata.ndata=nedge;
 case 'VERTEX'
 Connect(id).metadata.ndata=nvertex;
 end
 nd=str2double(Connect(id).metadata.type{1}(end-1));
 if isnan(nd);
 Connect(id).metadata.ndim=1;
 else
 Connect(id).metadata.ndim=nd;
 end

 end
end

for id=1:numel(Connect)
 GoOn=1;
 while GoOn;
 A=fgetl(fid);
 if ~isempty(A);
 GoOn=~strcmp(A(1),'@');
 end
 end
 [Connect(id).metadata.ndim,Connect(id).metadata.ndata];
 Connect(id).data=
 fscanf(fid,'%g',
 [Connect(id).metadata.ndim,Connect(id).metadata.ndata]);
end
fclose(fid);
Connect(2).data=Connect(2).data+1;

% prepare connections
startedge=cumsum([0,Connect(3).data]);
vtvolume=0; %default volume;
for ie=1:nedge;
 Edge(ie).xdata= ...
 Connect(4).data(1,[startedge(ie)+1:startedge(ie+1)]);
 Edge(ie).ydata= ...
 Connect(4).data(2,[startedge(ie)+1:startedge(ie+1)]);
 Edge(ie).zdata=

 165

 Connect(4).data(3,[startedge(ie)+1:startedge(ie+1)]);
 Edge(ie).linklength=
 (diff(Edge(ie).xdata).^2+
 diff(Edge(ie).ydata).^2+
 diff(Edge(ie).zdata).^2).^(1/2);
 Edge(ie).length=
 sum(Edge(ie).linklength);
 Edge(ie).endID=
 Connect(2).data(:,ie);
 Edge(ie).radius=
 Connect(5).data(startedge(ie)+1:startedge(ie+1));
end
for iv=1:nvertex;
 Node(iv).xdata=Connect(1).data(1,iv);
 Node(iv).ydata=Connect(1).data(2,iv);
 Node(iv).zdata=Connect(1).data(3,iv);
 Node(iv).linkID=
 find((Connect(2).data(2,:)==iv)|(Connect(2).data(1,:)==iv));
 Node(iv).connectivity = numel(Node(iv).linkID);
end

% Storing the initial structures
Network = struct('Edge', {}, ...
 'Node', {}, ...
 'Stage', {});

Network(1).Edge = Edge;
Network(1).Node = Node;
Network(1).Stage = 1;
%
fprintf('Done!\n');

end

% -- %

function [vtotal] = VolumeChecker(Edge)

vvec = nan(length(Edge), 1);

for ie = 1 : length(Edge)
 [lv, v] = EdgeVolume(Edge(ie), 1);
 vvec(ie) = v;
end

vtotal = sum(vvec);

end

% -- %

function [Edge, Node] = RemoveDeleted(Edge, Node, ModEdgeID, ModNodeID,
varargin)

cleaner_type = varargin{1};

switch cleaner_type
 case 'RemoveLoops'
 edge_delete = ModEdgeID;
 mod_vec = [ModEdgeID; length(Edge) + 1];
 Edge(edge_delete) = []; %translating the edges

 [clinks, tf] = padcat(Node.linkID);
 for ied = 1 : numel(mod_vec) - 1
 %positions of links in clinks matrix
 tp = clinks > mod_vec(ied) & clinks < mod_vec(ied+1);
 lt = clinks(tp) - ied;
 clinks(tp) = lt;
 end

 for in = 1 : size(clinks, 1)
 linkID = clinks(in,:);

 166

 Node(in).linkID = linkID(tf(in,:));
 end

 case 'CollapseLoops'
 E_old = Edge;
 N_old = Node;

 mod_vec = ModEdgeID;
 nmod = numel(mod_vec);
 nn = length(N_old);

 E_new = E_old;
 N_new = N_old;

 for im = 1 : nmod
 edgeID = mod_vec(im);
 endID = E_old(edgeID).endID;
 edge_end_pos = [...
 E_old(edgeID).xdata(1), E_old(edgeID).xdata(end); ...
 E_old(edgeID).ydata(1), E_old(edgeID).ydata(end); ...
 E_old(edgeID).zdata(1), E_old(edgeID).zdata(end)];
 node_pos = ...
 [N_old(endID).xdata; ...
 N_old(endID).ydata; ...
 N_old(endID).zdata];
 for ii = 1 : 2
 if node_pos(1) ~= edge_end_pos(1,ii) && ...
 node_pos(2) ~= edge_end_pos(2,ii) && ...
 node_pos(2) ~= edge_end_pos(2,ii)

 new_node_pos = edge_end_pos(:,ii);
 N_new(nn+im).xdata = new_node_pos(1);
 N_new(nn+im).ydata = new_node_pos(2);
 N_new(nn+im).zdata = new_node_pos(3);
 N_new(nn+im).linkID = edgeID;
 N_new(nn+im).connectivity = 1;

 E_new(edgeID).endID = [E_old(edgeID).endID; (nn + im)];
 end
 end
 end

 Edge = E_new;
 Node = N_new;

 case {'RemoveSublinks', 'MergeShort', 'RemoveIslandEdges'}
%
 mod_vec = sort([ModEdgeID; length(Edge) + 1]);
 edge_delete = ModEdgeID;

 %translating the edges
 Edge(edge_delete) = [];

 %concatenateing the structure elements containing the linkIDs
 [clinks, tf] = padcat(Node.linkID);
 for ied = 1 : numel(mod_vec) - 1
 %positions of links in clinks matrix
 tp = clinks > mod_vec(ied) & clinks < mod_vec(ied+1);
 lt = clinks(tp) - ied;
 clinks(tp) = lt;
 end

 % converting the array of linkID into the Node structure field
 for in = 1 : size(clinks, 1)
 linkID = clinks(in,:);
 Node(in).linkID = linkID(tf(in,:));
 end

 node_trans = sort([ModNodeID; length(Node) + 1]);
 node_delete = ModNodeID;
 Node(node_delete) = [];

 167

 cnodes = [Edge.endID]';
 for ind = 1 : numel(node_trans) - 1
 %positions of nodes in cnodes
 tp = cnodes > node_trans(ind) & cnodes < node_trans(ind+1);
 lt = cnodes(tp) - ind;
 cnodes(tp) = lt;
 end

 % converting the array of linkID into the Edge structure field
 for ie = 1 : size(cnodes, 1)
 endID = cnodes(ie,:);
 Edge(ie).endID = endID';
 end

 case 'RemoveTwins'
 mod_vec = sort([ModEdgeID, length(Edge) + 1]);
 edge_delete = ModEdgeID;

 Edge(edge_delete) = []; % translating the edges

 % updating the linkID entries of the Node structure after the edges
 % were translated in the last loop
 [clinks, tf] = padcat(Node.linkID);
 for ied = 1 : numel(mod_vec) - 1
 %positions of links in clinks matrix
 tp = clinks > mod_vec(ied) & clinks < mod_vec(ied+1);
 lt = clinks(tp) - ied;
 clinks(tp) = lt;
 end

 % converting the array of linkID into the Node structure field
 for in = 1 : size(clinks, 1)
 linkID = clinks(in,:);
 Node(in).linkID = linkID(tf(in,:));
 end

 case 'RemoveIslandNodes'
 node_delete = ModNodeID;
 node_trans = sort([ModNodeID; length(Node) + 1]);

 Node(node_delete) = [];

 cnodes = [Edge.endID]';
 for ind = 1 : numel(node_trans) - 1
 %positions of nodes in cnodes
 tp = cnodes > node_trans(ind) & cnodes < node_trans(ind+1);
 lt = cnodes(tp) - ind;
 cnodes(tp) = lt;
 end

 % converting the array of linkID into the Edge structure field
 for ie = 1 : size(cnodes, 1)
 endID = cnodes(ie,:);
 Edge(ie).endID = endID';
 end

 case 'RemoveZeroEdge'
 mod_vec = sort([ModEdgeID, length(Edge) + 1]);
 edge_delete = ModEdgeID;

 Edge(edge_delete) = []; % translating the edges
 Node(ModNodeID).linkID(Node(ModNodeID).linkID == ModEdgeID) = [];
 Node(ModNodeID).connectivity = Node(ModNodeID).connectivity - 1;

 % updating the linkID entries of the Node structure after the edges
 % were translated in the last loop
 [clinks, tf] = padcat(Node.linkID);
 for ied = 1 : numel(mod_vec) - 1
 %positions of links in clinks matrix
 tp = clinks > mod_vec(ied) & clinks < mod_vec(ied+1);
 lt = clinks(tp) - ied;
 clinks(tp) = lt;

 168

 end

 % converting the array of linkID into the Node structure field
 for in = 1 : size(clinks, 1)
 linkID = clinks(in,:);
 Node(in).linkID = linkID(tf(in,:));
 end
end

end

% -- %

function HistAll(Edge, Node, dim, varargin)
varargin_on = isempty(varargin);

if varargin_on == 0
 initial_switch = ...
 abs(isempty(find(strcmp('Initial', varargin), 1)) - 1);
 after_switch = abs(isempty(find(strcmp('After', varargin), 1)) - 1);
else
 initial_switch = 0;
 after_switch = 0;
end

%% Buffer
%Declaring a buffer zone so that the nodes with connectivity 1 do not
%overwhelm the histogram
bd = 30; %buffer distance
% Buffer = struct('xlim', {}, 'ylim', {}, 'zlim', {});
Buffer.xlim = [bd, dim - bd];
Buffer.ylim = [bd, dim - bd];
Buffer.zlim = [bd, dim - bd];

it = 1;
NodeFit = struct('xdata', {}, ...
 'ydata', {}, ...
 'zdata', {}, ...
 'linkID', {}, ...
 'connectivity', {});

for in = 1 : length(Node)
 node_position = [Node(in).xdata; Node(in).ydata; Node(in).zdata];
 if node_position(1) > ...
 Buffer.xlim(1) ...
 && node_position(1) ...
 < Buffer.xlim(2) && ...
 node_position(2) > ...
 Buffer.ylim(1) && ...
 node_position(2) < ...
 Buffer.ylim(2) && ...
 node_position(3) > ...
 Buffer.zlim(1) && node_position(3) < Buffer.zlim(2)
 NodeFit(it) = Node(in);
 it = it + 1;
 end
end

if initial_switch == 1
 figure(1); clf; hold on;
end
if after_switch == 1
 figure(2); clf; hold on;
end

CLimit = max([NodeFit.connectivity]);
% CLimit = 8;
subplot 221
c = [NodeFit.connectivity];
% [n, xout] = hist(c, [1:max(c)]);
[n, xout] = hist(c, 1:1:CLimit);

 169

nnorm = n./sum(n);
h1 = bar(xout, nnorm);
set(h1, 'FaceColor', [1 1 1]*.6);
axis([0, max(xout) + 1, 0, max(nnorm) + .1]);
for b = 1 : numel(xout)
 text(xout(b), nnorm(b)+.03, num2str(n(b)), ...
 'FontSize', 12, ...
 'HorizontalAlignment', 'center');
end

xlabel('Coordination #', 'FontSize', 12);
ylabel('Frequency', 'FontSize', 12);
title('Connectivity', 'FontSize', 12);
% xticklabel = get(gca, 'XTickLabel');
% XTickVar = get(gca, 'XTickLabel');
% set(gca, 'XTickLabel', XTickVar*100);

subplot 222
[n, xout] = hist([Edge.radius], 20);
nnorm = n./sum(n);
h2 = bar(xout, nnorm);
set(h2, 'FaceColor', [1 1 1]*.6);
axis([0, max(xout) + 1, 0, max(nnorm) + .1]);

xlabel('Length', 'FontSize', 12);
ylabel('Frequency', 'FontSize', 12);
title('Link Radius', 'FontSize', 12);

subplot 223
[n, xout] = hist([Edge.length], 20);
nnorm = n./sum(n);
h3 = bar(xout, nnorm);
set(h3, 'FaceColor', [1 1 1]*.6);
axis([0, max(xout) + 1, 0, max(nnorm) + .1]);

xlabel('Length', 'FontSize', 12);
ylabel('Frequency', 'FontSize', 12);
title('Link Length', 'FontSize', 12);

subplot 224
[n, xout] = hist(log10([Edge.length]), 20);
nnorm = n./sum(n);
h4 = bar(xout, nnorm);
set(h4, 'FaceColor', [1 1 1]*.6);
axis([0, max(xout) + .1, 0, max(nnorm) + .025]);

xlabel('Length', 'FontSize', 12);
ylabel('Frequency', 'FontSize', 12);
title('Log Link Length', 'FontSize', 12);

end

% -- %

function [Edge, Node] = IntialInterp(Edge, Node, ninterp)
% Many of the subroutines in this package require that edges be composed of
% less than 4 points. So we add points to edges based on linear
% interpolation.

% ninterp = 4; %all edges will have a minimum of 4 points
fprintf('\nInterpolating edges that contain < %i points...', ninterp);
nptsmod = 0;
for ie = 1 : length(Edge)
 xyz = [Edge(ie).xdata; Edge(ie).ydata; Edge(ie).zdata];
 npoints = size(xyz, 2);
 x.position = xyz;
 x.radius = Edge(ie).radius;
 if npoints < ninterp
 [~, volume0] = EdgeVolume(Edge(ie), 1);
 [xi, yi, zi, ri] = EdgeInterp(x, ninterp);
 Edge(ie).xdata = xi;
 Edge(ie).ydata = yi;

 170

 Edge(ie).zdata = zi;
 Edge(ie).linklength = sum(diff([xi; yi; zi], [], 2).^2, 1).^(1/2);
 Edge(ie).length = sum(Edge(ie).linklength);
 Edge(ie).radius = ri;

 nptsmod = nptsmod + 1;
 end
end

fprintf('\n %i edges were modified\n', nptsmod);

end

% -- %

function [linkvolume, volume] = EdgeVolume(edge, lscale)

x = [0 cumsum(edge.linklength)]*lscale;
f = pi*(edge.radius*lscale).^2;
vol = .5*diff(x).*(f(1:end-1) + f(2:end));
linkvolume = vol;
volume = sum(vol);

end

% -- %

function [xi, yi, zi, ri] = EdgeInterp(x, n)

edge_position = [x(end).position(1,:)', ...
 x(end).position(2,:)', ...
 x(end).position(3,:)'];

InterpStruct0.distance = ...
 cat(1, 0, cumsum(sqrt(sum(diff(edge_position, [], 1).^2, 2))));
InterpStruct0.radius = ...
 cat(2,0,cumsum(sqrt(sum(diff(x(end).radius,[],2).^2, 1))))';
InterpStruct1.position = ...
 interp1(InterpStruct0.distance, edge_position, ...
 linspace(0, InterpStruct0.distance(end), n), 'linear');
InterpStruct1.distance = ...
 cat(1, 0, cumsum(sqrt(sum(diff(InterpStruct1.position, [], 1).^2, 2)...
)));

e = 1e-4;

InterpStruct1.radius = ...
 interp1(round(InterpStruct0.distance/e)*e, x(end).radius', ...
 round(InterpStruct1.distance/e)*e, 'linear')';

xi = InterpStruct1.position(:,1)';
yi = InterpStruct1.position(:,2)';
zi = InterpStruct1.position(:,3)';

ri = InterpStruct1.radius;

end

% -- %

function [Edge, Node] = RemoveIslands(Edge, Node)
% Rmoves island nodes and island edges whose end nodes have connectivity
% equal to 1.

% Removing island nodes
cleaner_type = 'RemoveIslandNodes';
island_node = find([Node.connectivity] == 0);
if isempty(island_node) == 0
 [Edge, Node] = RemoveDeleted(Edge, Node, island_node, [], ...
 cleaner_type);
end

 171

% Removing island edges
cleaner_type = 'RemoveIslandEdges';
island_edge = [];
ModNodeID = [];
for ie = 1 : length(Edge)
 endID = Edge(ie).endID;
 connectivity = [Node(endID).connectivity];
 if isequal(connectivity, [1 1])
 island_edge = [island_edge; ie];
 ModNodeID = [ModNodeID; endID];
 end
end

ModEdgeID = island_edge;

[Edge, Node] = RemoveDeleted(Edge, Node, ModEdgeID, ModNodeID, ...
 cleaner_type);

end

% -- %

function [Edge, Node, hist_log] = MainLoop(Edge, Node, varargin)
%
% --
%
% This is the wrapper script for removing sublinks, twins, and loops.
% Mainloop.m iterates through 'Edge' and 'Node' until all sublinks, twins,
% and loops are removed.
%
% Inputs:
%
% Edge --> Input 'Edge' structure
% Node --> Input 'Node' structure
%
% --

varargin_on = isempty(varargin);
if varargin_on == 0
 merge_switch = ~isempty(find(strcmp('Merge', varargin), 1));
else
 merge_switch = 0;
end

Connectivity = [Node.connectivity];
[nc, ~] = hist(Connectivity, 1:10);
hist_log(1,:) = nc;

iLim = 1;
dc_sum = 1;

while dc_sum > 0

 iLim = iLim + 1;

 [Edge, Node] = ModifyLoops(Edge, Node, 15);

 if ~merge_switch
 [Edge, Node] = RemoveSublinks(Edge, Node);
 end

 [Edge, Node] = RemoveTwins(Edge, Node);

 Connectivity = [Node.connectivity];
 nc = hist(Connectivity, 1:10);
 hist_log(iLim,:) = nc;

 dc = diff(hist_log(end-1:end,:), [], 1);

 dc_sum = sum(abs(dc));

end

 172

end

% -- %

function [Edge, Node] = ModifyLoops(Edge, Node, vthreshold)
%
% --
%
% PlotSkeleton.m modifies the input skeleton network by removing loops,
% i.e. edges with only one connected node.
%
% Inputs:
%
% 'Edge' --> Input 'Edge' structure
% 'Node' --> Input 'Node' structure
% 'vthreshold' --> volume threshold for totaly removing loop
%
% 'Edge' --> Output 'Edge' structure
% 'Node' --> Output 'Node' structure
%
% --
%

% Romoving loops below the threshold length
loopInd = find(diff([Edge.endID]) == 0);
lvolume = nan(numel(loopInd), 1);

for il = 1 : numel(loopInd)
 [~, volume] = EdgeVolume(Edge(loopInd(il)), 1);
 lvolume(il) = volume;
end

% vthreshold = 15; %volume threshold
removeInd = loopInd(lvolume <= vthreshold);
nremove = numel(removeInd);

cleaner_type = 'RemoveLoops';

ModNodeID = [];

ModEdgeID = nan(floor(length(Node)*.2), 1);
ime = 1;

for il = 1 : nremove
 mod_node = Edge(removeInd(il)).endID(1);
 iedge_delete = removeInd(il);

 ModEdgeID(ime) = iedge_delete;
 ime = ime + 1;

 % removing the loop edge from the linkID entry of the Node
 % structure
 Node(mod_node).linkID = ...
 Node(mod_node).linkID(Node(mod_node).linkID ~= removeInd(il));
 Node(mod_node).connectivity = Node(mod_node).connectivity - 1;
end

ModEdgeID(isnan(ModEdgeID)) = [];

[Edge, Node] = RemoveDeleted(...
 Edge, Node, ModEdgeID, ModNodeID, cleaner_type);

% Collapsing loops into single edges
loopInd = find(diff([Edge.endID]) == 0);
lvolume = nan(numel(loopInd), 1);

for il = 1 : numel(loopInd)
 [~, volume] = EdgeVolume(Edge(loopInd(il)), 1);
 lvolume(il) = volume;
end

 173

collapseInd = loopInd(lvolume > vthreshold);
ncollapse = numel(collapseInd);

for il = 1 : ncollapse

% disp(il);

 edgeID = collapseInd(il);
 nodeID = unique(Edge(edgeID).endID);

 link_pos = ...
 [Edge(edgeID).xdata; Edge(edgeID).ydata; Edge(edgeID).zdata];
 [~, loop_volume] = EdgeVolume(Edge(edgeID), 1);

 uE = 1e-6;

 nUniqueLinkPos = ...
 size(unique(round(link_pos(:,2:end-1)'./uE)*uE, 'rows')', 2);

 if nUniqueLinkPos == 1 % adhoc modification for Maddy's research

 fprintf('\nWarning: Found linear loops at edge %i\n\n', edgeID);

 Edge(edgeID).xdata = Edge(edgeID).xdata(1:2);
 Edge(edgeID).ydata = Edge(edgeID).ydata(1:2);
 Edge(edgeID).zdata = Edge(edgeID).zdata(1:2);
 Edge(edgeID).linklength = Edge(edgeID).linklength(1);
 Edge(edgeID).length = Edge(edgeID).linklength(1);
 Edge(edgeID).radius = Edge(edgeID).radius(2:end-1);

 nn = length(Node);
 edge_position = [Edge(edgeID).xdata; ...
 Edge(edgeID).ydata; ...
 Edge(edgeID).zdata];
 node_position = [Node(nodeID).xdata; ...
 Node(nodeID).ydata; ...
 Node(nodeID).zdata];
 node_position = node_position(:, ones(1,size(edge_position, 2)));

 e = 1e-3;

 ipos = find(sum(edge_position<=node_position+e & ...
 edge_position>=node_position-e) == 3);

 if ipos == 1
 nnode_position = edge_position(:,end);
 else
 nnode_position = edge_position(:,1);
 end

 Node(nn+1).xdata = nnode_position(1);
 Node(nn+1).ydata = nnode_position(2);
 Node(nn+1).zdata = nnode_position(3);
 Node(nn+1).linkID = edgeID;
 Node(nn+1).connectivity = numel(Node(nn+1).linkID);

 Edge(edgeID).endID = [nodeID; nn + 1];

 else

 % finding the index of the value that is half the distance along
 % the loop
 halfway = Edge(edgeID).length/2;
 edge_dist_vec = cumsum(Edge(edgeID).linklength);
 imax = find(diff(sign(edge_dist_vec - halfway)));
 if imax == 1 % adhoc modification for Maddy's research
 imax = imax + 1;
 end
 npts_tot = size(link_pos, 2); %# of points that make up the edge

 % splitting the original edge into 2 edges, essentially turning the
 % loop into a twin

 174

 npts1 = imax - 1; % # of points in the 1st new edge

 % position data of the 1st new edge
 edge(1).position = link_pos(:,1:npts1);
 edge(1).radius = Edge(edgeID).radius(1:npts1);

 % position data of the 2nd new edge
 edge(2).position = fliplr(link_pos(:,npts1:npts_tot));
 edge(2).radius = fliplr(Edge(edgeID).radius(npts1:npts_tot));

 [~, minptID] = min([size(edge(1).position, 2), ...
 size(edge(2).position, 2)]);
 [cmaxpt, maxptID] = max([size(edge(1).position, 2), ...
 size(edge(2).position, 2)]);

 % this will happen if the two new edges coincidentally have
 % the same number of points
 if minptID == maxptID
 minptID = 1;
 maxptID = 2;
 cmaxpt = size(edge(maxptID).position, 2);
 end

 [xmin, ymin, zmin, rmin] = EdgeInterp(edge, cmaxpt);

 LoopInterp = struct('xdata', {}, ...
 'ydata', {}, ...
 'zdata', {}, ...
 'radius', {});

 LoopInterp(minptID).xdata = xmin;
 LoopInterp(minptID).ydata = ymin;
 LoopInterp(minptID).zdata = zmin;
 LoopInterp(minptID).radius = rmin;

 LoopInterp(maxptID).xdata = edge(maxptID).position(1,:);
 LoopInterp(maxptID).ydata = edge(maxptID).position(2,:);
 LoopInterp(maxptID).zdata = edge(maxptID).position(3,:);
 LoopInterp(maxptID).radius = edge(maxptID).radius;

 xd = cat(1, LoopInterp(1).xdata, LoopInterp(2).xdata);
 yd = cat(1, LoopInterp(1).ydata, LoopInterp(2).ydata);
 zd = cat(1, LoopInterp(1).zdata, LoopInterp(2).zdata);
 rd = cat(1, LoopInterp(1).radius, LoopInterp(2).radius);

 ad = pi*rd.^2;
 a = sum(ad);

 xi = sum(xd.*ad)./a; %area-weighted average;
 yi = sum(yd.*ad)./a; %area-weighted average;
 zi = sum(zd.*ad)./a; %area-weighted average;

 ri = sqrt(a/pi); %area-weighted average

 % smoothing the new edge
 xs = smooth(xi', .3);
 ys = smooth(yi', .3);
 zs = smooth(zi', .3);

 % calculating the link lengths
 linklengthi = sum(diff([xs'; ys'; zs'], [], 2).^2, 1).^(1/2);

 % calculating the length of the new edge
 lengthi = sum(linklengthi);

 % updating the Edge structure
 Edge(edgeID).xdata = xs';
 Edge(edgeID).ydata = ys';
 Edge(edgeID).zdata = zs';
 Edge(edgeID).linklength = linklengthi;
 Edge(edgeID).length = lengthi;

 175

 nn = length(Node);
 edge_position = [Edge(edgeID).xdata; ...
 Edge(edgeID).ydata; ...
 Edge(edgeID).zdata];
 node_position = [Node(nodeID).xdata; ...
 Node(nodeID).ydata; ...
 Node(nodeID).zdata];
 node_position = node_position(:, ones(1,size(edge_position, 2)));

 e = 1e-3;

 ipos = find(sum(edge_position<=node_position+e & ...
 edge_position>=node_position-e) == 3);

 if ipos == 1
 nnode_position = edge_position(:,end);
 else
 nnode_position = edge_position(:,1);
 end

 Node(nn+1).xdata = nnode_position(1);
 Node(nn+1).ydata = nnode_position(2);
 Node(nn+1).zdata = nnode_position(3);
 Node(nn+1).linkID = edgeID;
 Node(nn+1).connectivity = numel(Node(nn+1).linkID);

 Edge(edgeID).endID = [nodeID; nn + 1];
 Edge(edgeID).radius = ri;

 % calculating the volume of the new edge
 [~, volume] = EdgeVolume(Edge(edgeID), 1);

 % growing the links to conserve the volume of the original twins
 % added together
 vrat = loop_volume/volume;
 Edge(edgeID).radius = Edge(edgeID).radius.*sqrt(vrat);

 end

end

end

% -- %

function [Edge, Node] = RemoveSublinks(Edge, Node)

cleaner_type = 'RemoveSublinks';

% narrowing the number of nodes to the ones with coordination # of 2
coord2 = find([Node.connectivity] == 2);
nc2 = numel(coord2);

for ic2 = 1 : nc2
 noi = coord2(ic2);
 eoi = Node(noi).linkID;
 endID = [Edge(eoi).endID];
 opp_ends = endID(endID ~= coord2(ic2))';
 unique_nodes = unique(opp_ends);
 if numel(unique_nodes) > 1 %erogo there is a sublink
 iedge_keep = min(eoi);
 iedge_delete = eoi(eoi ~= iedge_keep);
 inode_delete = noi;

 % position matricies of the first and second connecting edges
 e1p = [Edge(eoi(1)).xdata; ...
 Edge(eoi(1)).ydata; ...
 Edge(eoi(1)).zdata];
 e2p = [Edge(eoi(2)).xdata; ...
 Edge(eoi(2)).ydata; ...
 Edge(eoi(2)).zdata];

 176

 % radius of the first and second connecting edges
 e1r = Edge(eoi(1)).radius;
 e2r = Edge(eoi(2)).radius;

 % determining the index and flipping order
 [flip_switch, iflip, oflip] = FlipSwitch(e1p, e2p, cleaner_type);

 MultiEdge = struct('position', {}, 'radius', {});

 MultiEdge(1).position = [e1p(1,:); e1p(2,:); e1p(3,:)];
 MultiEdge(2).position = [e2p(1,:); e2p(2,:); e2p(3,:)];
 MultiEdge(1).radius = e1r;
 MultiEdge(2).radius = e2r;

 presort = struct('position', {}, 'radius', {});
 postsort = struct('position', {}, 'radius', {});

 switch flip_switch
 case 1
 presort(oflip(oflip ~= iflip)).position = ...
 MultiEdge(oflip(oflip~=iflip)).position;
 presort(iflip).position = ...
 fliplr(MultiEdge(iflip).position);
 presort(oflip(oflip ~= iflip)).radius = ...
 MultiEdge(oflip(oflip ~= iflip)).radius;
 presort(iflip).radius = ...
 fliplr(MultiEdge(iflip).radius);

 postsort(1).position = presort(oflip(1)).position;
 postsort(2).position = presort(oflip(2)).position;
 postsort(1).radius = presort(oflip(1)).radius;
 postsort(2).radius = presort(oflip(2)).radius;

 case 0
 postsort(oflip(1)).position = MultiEdge(1).position;
 postsort(oflip(2)).position = MultiEdge(2).position;
 postsort(oflip(1)).radius = MultiEdge(1).radius;
 postsort(oflip(2)).radius = MultiEdge(2).radius;
 end

 postsort(2).position(:,1) = [];
 postsort(2).radius(1) = [];

 % appended positions of the edge
 append_position = [[postsort(1).position], [postsort(2).position]];
 append_radius = [[postsort(1).radius], [postsort(2).radius]];

 % positions of the nodes
 node_positions = ...
 [Node(opp_ends(1)).xdata, Node(opp_ends(2)).xdata; ...
 Node(opp_ends(1)).ydata, Node(opp_ends(2)).ydata; ...
 Node(opp_ends(1)).zdata, Node(opp_ends(2)).zdata];

 % flipping the edge if neccessary
 [append_position, append_radius] = ...
 FlipEdge(append_position, node_positions, ...
 'Radius', append_radius);

 % updating the edge structure
 Edge(iedge_keep).xdata = append_position(1,:);
 Edge(iedge_keep).ydata = append_position(2,:);
 Edge(iedge_keep).zdata = append_position(3,:);
 Edge(iedge_keep).linklength = ...
 sum(diff(append_position, [], 2).^2).^(1/2);
 Edge(iedge_keep).length = sum(Edge(iedge_keep).linklength);
 Edge(iedge_keep).endID = opp_ends';
 Edge(iedge_keep).radius = append_radius;

 other_node = ...
 Edge(iedge_delete).endID(Edge(iedge_delete).endID ~=
noi);
 old_loc = Node(other_node).linkID == iedge_delete;

 177

 Node(other_node).linkID(old_loc) = iedge_keep;

 [Edge, Node] = ...
 RemoveDeleted(...
 Edge, Node, iedge_delete, inode_delete, cleaner_type);

 coord2(ic2+1:end) = coord2(ic2+1:end) - 1;

 end
end

end

% -- %

function [Edge, Node] = RemoveTwins(Edge, Node)

cleaner_type = 'RemoveTwins';

E = Edge;
N = Node;
ne = length(Edge);
nn = length(Node);

idelete_edge = nan(1, floor(ne*.2));
idelete_node = nan(1, floor(nn*.2));

ide = 1;

for in = 1 : nn
 %IDs of the egdes that are connected to Node in
 linkIDs = N(in).linkID;

 %IDs of the nodes that are connected to the connecting edges [in;
 %new_node]
 endID = [E(linkIDs).endID];

 %node IDs that ~= in but are connected to the connecting edges
 %[new_nodes]
 cnodes = endID(endID ~= in)';
 unique_nodes = UniqueVal(cnodes);

 %ergo there is a twin present
 if numel(unique_nodes) < numel(cnodes)
 if numel(unique_nodes) == 1
 nrep = numel(cnodes);
 else
 nrep = hist(cnodes, unique_nodes);
 end
 rep_nodes = unique_nodes(nrep > 1);
 for ir = 1 : numel(rep_nodes) %loops through repeating indicies
 %list of nodes that are shared by the twins
 noi = [in; rep_nodes(ir)];
 %list of edges that comprise the twins
 eoi = linkIDs(cnodes == rep_nodes(ir));
 twin = struct('xdata', {}, ...
 'ydata', {}, ...
 'zdata', {}, ...
 'radius', {}, ...
 'endID', {});
 npts = nan(numel(eoi), 1);
 for it = 1 : numel(eoi) %looping through the twin edges
 if isequal(E(eoi(it)).endID, noi) == 1 || ...
 isequal(flipud(E(eoi(it)).endID), noi) == 1
 twin(it).xdata = E(eoi(it)).xdata;
 twin(it).ydata = E(eoi(it)).ydata;
 twin(it).zdata = E(eoi(it)).zdata;
 twin(it).radius = E(eoi(it)).radius;
 twin(it).linklength = E(eoi(it)).linklength;
 twin(it).length = E(eoi(it)).length;
 twin(it).endID = E(eoi(it)).endID;
 twin(it).radius = E(eoi(it)).radius;

 178

 npts(it) = numel(twin(it).xdata);
 [~, tv] = EdgeVolume(twin(it), 1);
 twin(it).volume = tv;
 end
 end

 % in case the twins have the same number of points
 [tmax, tmaxInd] = max(npts);

 index_vec = 1:length(twin);

 other_index = index_vec(index_vec ~= tmaxInd);

 e1p = [twin(tmaxInd).xdata; ...
 twin(tmaxInd).ydata; ...
 twin(tmaxInd).zdata];

 e1r = twin(tmaxInd).radius;

 xd = nan(numel(npts), tmax);
 yd = nan(numel(npts), tmax);
 zd = nan(numel(npts), tmax);
 rd = nan(numel(npts), tmax);

 xd(1,:) = e1p(1,:);
 yd(1,:) = e1p(2,:);
 zd(1,:) = e1p(3,:);

 rd(1,:) = e1r;

 for it = 1 : length(other_index)
 e2p = [twin(other_index(it)).xdata; ...
 twin(other_index(it)).ydata; ...
 twin(other_index(it)).zdata];

 e2r = twin(other_index(it)).radius;

 [flip_switch, ~, ~] = FlipSwitch(e1p, e2p, cleaner_type);

 switch flip_switch
 case 0
 MultiEdge(1).position = ...
 [e1p(1,:); e1p(2,:); e1p(3,:)];
 MultiEdge(2).position = ...
 [e2p(1,:); e2p(2,:); e2p(3,:)];

 MultiEdge(1).radius = e1r;
 MultiEdge(2).radius = e2r;
 case 1
 MultiEdge(1).position = e1p;
 MultiEdge(2).position = fliplr(e2p);

 MultiEdge(1).radius = e1r;
 MultiEdge(2).radius = fliplr(e2r);
 end

 [xi, yi, zi, ri] = EdgeInterp(MultiEdge, tmax);

 xd(it+1,:) = xi;
 yd(it+1,:) = yi;
 zd(it+1,:) = zi;

 rd(it+1,:) = ri;

 end

 % calculating the cross-sectional area at each point in the
 % edge
 ad = pi*rd.^2;
 a = sum(ad);

 179

 xa = sum(xd.*ad)./a; %area-weighted average;
 ya = sum(yd.*ad)./a; %area-weighted average;
 za = sum(zd.*ad)./a; %area-weighted average;

 ri = nan(1, size(ad, 2));
 ri(1) = rd(1,1);
 ri(end) = rd(1,end);

 ri(2:end-1) = sqrt(a(2:end-1)/pi); %area-weighted average

 % smoothing the new edge
 xs = smooth(xa', .3);
 ys = smooth(ya', .3);
 zs = smooth(za', .3);

 xs(1) = xi(1); xs(end) = xi(end);
 ys(1) = yi(1); ys(end) = yi(end);
 zs(1) = zi(1); zs(end) = zi(end);

 position_check = [xs'; ys'; zs'];

 node_positions = [Node(noi(1)).xdata, Node(noi(2)).xdata; ...
 Node(noi(1)).ydata, Node(noi(2)).ydata; ...
 Node(noi(1)).zdata, Node(noi(2)).zdata];

 % flipping the edge if neccessary
 [position_check, ri] = ...
 FlipEdge(...
 position_check, node_positions, 'Radius', ri);

 % calculating the link lengths
 linklengthi = sum(diff(position_check, [], 2).^2, 1).^(1/2);

 % calculating the length of the new edge
 lengthi = sum(linklengthi);

 % storing the edge ID to be kept
 % isave_edge = eoi(tmaxInd);
 isave_edge = min(eoi);

 % storing the new values in the Edge structure
 E(isave_edge).xdata = position_check(1,:);
 E(isave_edge).ydata = position_check(2,:);
 E(isave_edge).zdata = position_check(3,:);
 E(isave_edge).linklength = linklengthi;
 E(isave_edge).length = lengthi;
 E(isave_edge).endID = noi;
 E(isave_edge).radius = ri;

 % calculating the volume of the edge
 [~, volume] = EdgeVolume(E(isave_edge), 1);

 % growing the links to conserve the volume of the
 % original twins added together
 vrat = sum([twin.volume])/volume;
 E(isave_edge).radius = E(isave_edge).radius.*sqrt(vrat);

 % storing the IDs of the edges to be deleted
 EdeleteID = eoi(eoi ~= isave_edge);
 ndt = numel(EdeleteID);
 idelete_edge(ide:(ide+ndt-1)) = EdeleteID;

 ide = ide + ndt;

 % updating the Node structure
 %updating the linkIDs
 N(noi(1)).linkID = ...
 N(noi(1)).linkID(~ismember(...
 N(noi(1)).linkID, eoi(eoi ~=isave_edge)));
 %updating the connectivity
 N(noi(1)).connectivity = ...
 N(noi(1)).connectivity - (length(twin) - 1);

 180

 N(noi(2)).linkID = ...
 N(noi(2)).linkID(~ismember(...
 N(noi(2)).linkID, eoi(eoi ~=isave_edge)));
 N(noi(2)).connectivity = ...
 N(noi(2)).connectivity - (length(twin) - 1);

 end
 end

end

idelete_edge = idelete_edge(~isnan(idelete_edge));

[Edge, Node] = RemoveDeleted(E, N, idelete_edge, idelete_node, ...
 cleaner_type);

end

% -- %

function [Edge, Node, vt_vec] = MergeShort(Edge, Node, lt, vt_vec)
%
% --
%
% Removes edges shorter than 'lt' by merging connected edges. Total volume
% is preserved in this process.
%
% --

cleaner_type = 'MergeShort';

shortID = find([Edge.length] < lt, 1); %ID of edge that could be too short

GoShort = 1;
it = 0;

while GoShort > 0

 it = it + 1;

 % In case, the shortID is an island edge
 IE_endID = Edge(shortID).endID;
 IE_connectivity = [Node(IE_endID).connectivity];
 if isequal(IE_connectivity, [1 1])
 [Edge, Node] = RemoveDeleted(Edge, Node, shortID, IE_endID,
'RemoveIslandEdges');
 else
 cnodes = [Edge(shortID).endID];
 inode_keep = min(cnodes);
 inode_delete = cnodes(cnodes ~= inode_keep);
 iedge_delete = shortID;
 clinks = padcat(Node(cnodes).linkID);

 % finding the point on the connecting edges corresponding to a
length
 % "BoundStruct(1).length" or "right_length" away from the node. This
will be the
 % point that will be connected to the straight line connecting the
COM
 % of the short edge to the connecting edge.
 EdgeUpdate = struct('xdata', {}, ...
 'ydata', {}, ...
 'zdata', {}, ...
 'linklength', {}, ...
 'length', {}, ...
 'endID', {}, ...
 'radius', {});

 connectivity = [Node(cnodes).connectivity];
 offshoot = cnodes(connectivity == 1);

 if ~isempty(offshoot) %pruning short offshoots

 181

 straighten_switch = 0;
 [~, shortvolume0] = EdgeVolume(Edge(shortID), 1);
 clinks_copy = clinks;
 clinks_copy(isnan(clinks_copy)) = 0;
 sum_clinks = sum(clinks_copy, 2);
 ibranch = find(sum_clinks ~= clinks_copy(:,1), 1);
 branch_links = clinks_copy(ibranch,:); branch_links =
branch_links(branch_links ~= shortID);
 nblinks = numel(branch_links);
 vdiv = shortvolume0/nblinks;
 for ibl = 1 : nblinks
 [~, bvolume0] = EdgeVolume(Edge(branch_links(ibl)), 1);
 new_bvolume = bvolume0 + vdiv;
 vrat = new_bvolume/bvolume0;
% vrat = bvolume0/new_bvolume;

 leu = length(EdgeUpdate) + 1;

 EdgeUpdate(leu).xdata = Edge(branch_links(ibl)).xdata;
 EdgeUpdate(leu).ydata = Edge(branch_links(ibl)).ydata;
 EdgeUpdate(leu).zdata = Edge(branch_links(ibl)).zdata;
 EdgeUpdate(leu).linklength =
Edge(branch_links(ibl)).linklength;
 EdgeUpdate(leu).length = Edge(branch_links(ibl)).length;
 EdgeUpdate(leu).endID = Edge(branch_links(ibl)).endID;
 EdgeUpdate(leu).radius =
Edge(branch_links(ibl)).radius*sqrt(vrat);
 end
 inode_delete = offshoot;
 inode_keep = cnodes(cnodes ~= offshoot);
 new_node_pos = [Node(inode_keep).xdata; ...
 Node(inode_keep).ydata; ...
 Node(inode_keep).zdata];
 else
 % creating a temporary straight edge from the short edge
 straighten_switch = 1;
 npts = numel(Edge(shortID).xdata);
 cnodes_pos = [Node(cnodes).xdata; Node(cnodes).ydata;
Node(cnodes).zdata]; %positions of the endIDs
 node_dist_vec = [0 cumsum(sum(diff(cnodes_pos, [],
2).^2).^(1/2))];
 straight_pos = interp1(node_dist_vec', cnodes_pos', linspace(0,
node_dist_vec(end), npts))';
 StraightEdge = struct('xdata', {}, ...
 'ydata', {}, ...
 'zdata', {}, ...
 'linklength', {}, ...
 'length', {}, ...
 'endID', {}, ...
 'radius', {});
 StraightEdge(1).xdata = straight_pos(1,:);
 StraightEdge(1).ydata = straight_pos(2,:);
 StraightEdge(1).zdata = straight_pos(3,:);
 StraightEdge(1).linklength = sum((diff(straight_pos, [], 2).^2),
1).^(1/2);
 StraightEdge(1).length = sum(StraightEdge.linklength);
 StraightEdge(1).endID = cnodes;
 StraightEdge(1).radius = Edge(shortID).radius; %radius data of
the old, curved link

 % growing the link radii to conserve the volume of the original
edge.
 [~, old_volume] = EdgeVolume(Edge(shortID), 1); %volume of the
old short edge
 [~, new_volume] = EdgeVolume(StraightEdge, 1); %volume of the
straight edge with the same radius but different lengths
% vrat = new_volume/old_volume;
 vrat = old_volume/new_volume;
 StraightEdge(1).radius = StraightEdge.radius*sqrt(vrat);
 [vlinks_mod, v_mod] = EdgeVolume(StraightEdge, 1);

 % Finding the center of mass of the straightened edge

 182

 midpts = straight_pos(:,1:end-1)+diff(straight_pos, [], 2)/2;
 vw = midpts.*repmat(vlinks_mod, 3, 1);
 COM = sum(vw, 2)./v_mod;

 between_vec = nan(1, 3);

 % locating the index where I want to split the straight segment
 between_vec(1) = inbetween(straight_pos(1,:), COM(1));
 between_vec(2) = inbetween(straight_pos(2,:), COM(2));
 between_vec(3) = inbetween(straight_pos(3,:), COM(3));

 inan = isnan(between_vec);
 if ~isempty(find(inan, 1))
 between_vec(inan) = unique(between_vec(~inan));
 end

 iCOM = unique(between_vec);
 if iCOM == 1
 iCOM = 2;
 end
 if iCOM == size(straight_pos, 2);
 iCOM = size(straight_pos, 2) - 1;
 end

 % If the straight edge only contains 3 coordinates, the COM is
 % automatically assigned to be the median of the points.
 if size(straight_pos, 2) == 3
 iCOM = 2;
 end

 new_node_pos = straight_pos(:,iCOM);

 % finding the distance from the COM to the left and right
connecting
 % nodes
 left_node_pos = [Node(cnodes(1)).xdata; ...
 Node(cnodes(1)).ydata; ...
 Node(cnodes(1)).zdata];
 right_node_pos = [Node(cnodes(2)).xdata; ...
 Node(cnodes(2)).ydata; ...
 Node(cnodes(2)).zdata];

 BoundStruct = struct('length', {}, ...
 'pts', {}, ...
 'radius', {});

 % 1 --> left bound; 2 --> right bound
 BoundStruct(1).length = sum(diff([COM, left_node_pos], [],
2).^2, 1).^(1/2);
 BoundStruct(2).length = sum(diff([COM, right_node_pos], [],
2).^2, 1).^(1/2);

 %the center of mass pt is shared
 BoundStruct(1).pts = straight_pos(:,1:iCOM);
 BoundStruct(2).pts = straight_pos(:,iCOM:end);

 BoundStruct(1).radius = Edge(shortID).radius(1:iCOM);
 BoundStruct(2).radius = Edge(shortID).radius(iCOM:end);

 % calculating the volumes of the individual segments on either
side of
 % COM
 left_volume = sum(vlinks_mod(1:iCOM));
 right_volume = sum(vlinks_mod(iCOM+1:end));

 BoundStruct(1).volume = left_volume;
 BoundStruct(2).volume = right_volume;

 for ii = 1 : 2
 noi = cnodes(ii);
 node_pos = [Node(noi).xdata; Node(noi).ydata;
Node(noi).zdata];

 183

 clinks1 = clinks(ii,:);
 clinks1 = clinks1(clinks1 ~= shortID);
 nclinks1 = numel(clinks1(isnan(clinks1) ~= 1));
 vdiv = BoundStruct(ii).volume/nclinks1;
 for il = 1 : numel(clinks1(isnan(clinks1) ~= 1))
 edge_pos = [Edge(clinks1(il)).xdata; ...
 Edge(clinks1(il)).ydata; ...
 Edge(clinks1(il)).zdata];
 endInd = find(sum([round(edge_pos(1,:)*1e4)/1e4 ==
round(node_pos(1)*1e4)/1e4; ...
 round(edge_pos(2,:)*1e4)/1e4 ==
round(node_pos(2)*1e4)/1e4; ...
 round(edge_pos(3,:)*1e4)/1e4 ==
round(node_pos(3)*1e4)/1e4], 1) == 3, 1);
 if endInd == size(edge_pos, 2)
 edge_pos = fliplr(edge_pos); %needs to be flipped
 lradius = fliplr(Edge(clinks1(il)).radius);
 else
 lradius = Edge(clinks1(il)).radius;
 end

 edge_dist_vec = [0 cumsum(sum(diff(edge_pos, [],
2).^2).^(1/2))];
 if edge_dist_vec(end) > BoundStruct(ii).length
 [~, imin] = min(abs(edge_dist_vec -
BoundStruct(ii).length));
 if imin >= numel(edge_dist_vec)
 iattach = numel(edge_dist_vec) - 1;
 else
 iattach = imin;
 end
 else
 iattach = numel(edge_dist_vec) - 1; %for connecting
edges that are shorter than the shortIDs
 end

 % Creating temporary edge that appends the appropriate
side
 % of the short-side with the connecting nodes. This edge
 % will be called etemp1
 e1p = BoundStruct(ii).pts;
 e2p = [edge_pos(1,1:iattach); ...
 edge_pos(2,1:iattach); ...
 edge_pos(3,1:iattach)];
 e1r = BoundStruct(ii).radius;
 e2r = lradius(1:iattach);

 [flip_switch, iflip, oflip] = FlipSwitch(e1p, e2p,
cleaner_type);

 MultiEdge = struct('position', {}, 'radius', {});

 MultiEdge(1).position = e1p;
 MultiEdge(2).position = e2p;

 MultiEdge(1).radius = e1r;
 MultiEdge(2).radius = e2r;

 presort = struct('position', {}, 'radius', {});
 postsort = struct('position', {}, 'radius', {});

 append_position = [];
 append_radius = [];

 switch flip_switch
 case 1
 presort(oflip(oflip ~= iflip)).position =
MultiEdge(oflip(oflip~=iflip)).position;
 presort(iflip).position =
fliplr(MultiEdge(iflip).position);
 presort(oflip(oflip ~= iflip)).radius =
MultiEdge(oflip(oflip ~= iflip)).radius;

 184

 presort(iflip).radius =
fliplr(MultiEdge(iflip).radius);

 postsort(1).position =
presort(oflip(1)).position;
 postsort(2).position =
presort(oflip(2)).position;
 postsort(1).radius = presort(oflip(1)).radius;
 postsort(2).radius = presort(oflip(2)).radius;

 postsort(2).position(:,1) = [];
 postsort(2).radius(1) = [];

 append_position = [[postsort(1).position],
[postsort(2).position]];
 append_radius = [[postsort(1).radius],
[postsort(2).radius]];

 % flipping the edge id neccessary
 [append_position, append_radius] =
FlipEdge(append_position, node_pos, ...
 'Radius', append_radius);

 case 0
 postsort(oflip(1)).position =
MultiEdge(1).position;
 postsort(oflip(2)).position =
MultiEdge(2).position;
 postsort(oflip(1)).radius = MultiEdge(1).radius;
 postsort(oflip(2)).radius = MultiEdge(2).radius;

 postsort(2).position(:,1) = [];
 postsort(2).radius(1) = [];

 append_position = [[postsort(1).position],
[postsort(2).position]];
 append_radius = [[postsort(1).radius],
[postsort(2).radius]];

 % flipping the edge id neccessary
 [append_position, append_radius] =
FlipEdge(append_position, node_pos, ...
 'Radius', append_radius);
 end

 temp_pos1 = append_position;

 % Creating temporary edge that extends from the COM
 % point to iattach on the connecting edge
 pt_pos = [straight_pos(1,iCOM), edge_pos(1,iattach); ...
 straight_pos(2,iCOM), edge_pos(2,iattach); ...
 straight_pos(3,iCOM), edge_pos(3,iattach)];
 %
 npts = numel(temp_pos1(1,:));
 pt_dist_vec = [0 cumsum(sum(diff(pt_pos, [],
2).^2).^(1/2))];
 temp_pos2 = interp1(pt_dist_vec', pt_pos', ...
 linspace(0, pt_dist_vec(end), npts))';

 [flip_switch, ~, ~] = FlipSwitch(temp_pos1, temp_pos2,
'RemoveTwins');

 MultiEdge = struct('position', {}, 'radius', {});

 switch flip_switch
 case 0
 MultiEdge(1).position = temp_pos1;
 MultiEdge(2).position = temp_pos2;

 MultiEdge(1).radius = append_radius;
 MultiEdge(2).radius = append_radius;
 case 1

 185

 MultiEdge(1).position = temp_pos1;
 MultiEdge(2).position = fliplr(temp_pos2);

 MultiEdge(1).radius = append_radius;
 MultiEdge(2).radius = fliplr(append_radius);
 end

 nme = length(MultiEdge);

 xd = nan(nme, size(MultiEdge(1).position, 2));
 yd = nan(nme, size(MultiEdge(1).position, 2));
 zd = nan(nme, size(MultiEdge(1).position, 2));
 rd = nan(nme, size(MultiEdge(1).position, 2));

 for ime = 1 : nme
 xd(ime,:) = MultiEdge(ime).position(1,:);
 yd(ime,:) = MultiEdge(ime).position(2,:);
 zd(ime,:) = MultiEdge(ime).position(3,:);
 rd(ime,:) = MultiEdge(ime).radius;
 end

 % Averaging the temporary edges to make one edge
 ad = pi*rd.^2;
 a = sum(ad);

 xa = sum(xd.*ad)./a; %area-weighted average;
 ya = sum(yd.*ad)./a; %area-weighted average;
 za = sum(zd.*ad)./a; %area-weighted average;

 xa(1) = xd(1,1); xa(end) = xd(1,end);
 ya(1) = yd(1,1); ya(end) = yd(1,end);
 za(1) = zd(1,1); za(end) = zd(1,end);

 % ri = sqrt(a/pi); %area-weighted average
 ri = append_radius;

 % concatenating the position vectors
 npos = [xa; ya; za];

 % appending the data from the first temp edge above the
iattach
 % index
 edge_extra = edge_pos(:,iattach:end);
 radius_extra = lradius(:,iattach:end);

 [flip_switch, iflip, oflip] = FlipSwitch(npos,
edge_extra, 'MergeShort');

 MultiEdge = struct('position', {}, 'radius', {});

 MultiEdge(1).position = npos;
 MultiEdge(2).position = edge_extra;

 MultiEdge(1).radius = ri;
 MultiEdge(2).radius = radius_extra;

 presort = struct('position', {}, 'radius', {});
 postsort = struct('position', {}, 'radius', {});

 append_position = [];
 append_radius = [];

 switch flip_switch
 case 1
 presort(oflip(oflip ~= iflip)).position =
MultiEdge(oflip(oflip~=iflip)).position;
 presort(iflip).position =
fliplr(MultiEdge(iflip).position);
 presort(oflip(oflip ~= iflip)).radius =
MultiEdge(oflip(oflip ~= iflip)).radius;
 presort(iflip).radius =
fliplr(MultiEdge(iflip).radius);

 186

 postsort(1).position =
presort(oflip(1)).position;
 postsort(2).position =
presort(oflip(2)).position;
 postsort(1).radius = presort(oflip(1)).radius;
 postsort(2).radius = presort(oflip(2)).radius;

 postsort(2).position(:,1) = [];
 postsort(2).radius(1) = [];

 append_position = [[postsort(1).position],
[postsort(2).position]];
 append_radius = [[postsort(1).radius],
[postsort(2).radius]];

 % flipping the edge id neccessary
 [append_position, append_radius] =
FlipEdge(append_position, new_node_pos, ...
 'Radius', append_radius);

 case 0
 postsort(oflip(1)).position =
MultiEdge(1).position;
 postsort(oflip(2)).position =
MultiEdge(2).position;
 postsort(oflip(1)).radius = MultiEdge(1).radius;
 postsort(oflip(2)).radius = MultiEdge(2).radius;

 postsort(2).position(:,1) = [];
 postsort(2).radius(1) = [];

 append_position = [[postsort(1).position],
[postsort(2).position]];
 append_radius = [[postsort(1).radius],
[postsort(2).radius]];

 % flipping the edge id neccessary
 [append_position, append_radius] =
FlipEdge(append_position, new_node_pos, ...
 'Radius', append_radius);
 end

 new_endID = Edge(clinks1(il)).endID;
 inew_endID = Edge(clinks1(il)).endID == noi;
 new_endID(inew_endID) = inode_keep;

 leu = length(EdgeUpdate) + 1;

 EdgeUpdate(leu).xdata = append_position(1,:);
 EdgeUpdate(leu).ydata = append_position(2,:);
 EdgeUpdate(leu).zdata = append_position(3,:);
 EdgeUpdate(leu).linklength = sum((diff(append_position,
[], 2).^2), 1).^(1/2);
 EdgeUpdate(leu).length =
sum(EdgeUpdate(leu).linklength);
 EdgeUpdate(leu).endID = new_endID;
 EdgeUpdate(leu).radius = append_radius;

 [~, volume0] = EdgeVolume(EdgeUpdate(leu), 1);

 [~, original_clink_v] = EdgeVolume(Edge(clinks1(il)),
1);

 new_volume = original_clink_v + vdiv;

 vrat = new_volume/volume0;

 EdgeUpdate(leu).radius =
EdgeUpdate(leu).radius*sqrt(vrat);
 end
 end

 187

 end

 clinks_sorted = [clinks(1,:)'; clinks(2,:)'];

 ul = clinks_sorted(~isnan(clinks_sorted));
 ul = ul(ul ~= shortID);

 Node(inode_keep).xdata = new_node_pos(1);
 Node(inode_keep).ydata = new_node_pos(2);
 Node(inode_keep).zdata = new_node_pos(3);
 Node(inode_keep).linkID = ul';
 Node(inode_keep).connectivity = numel(ul);

 % creating a temporary straight edge out of the short edge
 if straighten_switch == 1
 for iup = 1 : length(EdgeUpdate)
 final_position = [EdgeUpdate(iup).xdata; ...
 EdgeUpdate(iup).ydata; ...
 EdgeUpdate(iup).zdata];
 final_radius = EdgeUpdate(iup).radius;
 node_order = EdgeUpdate(iup).endID == inode_keep;
 if isequal(node_order, [0; 1]) == 1
 EdgeUpdate(iup).endID = flipud(EdgeUpdate(iup).endID);
 end
 Edge(ul(iup)).xdata = final_position(1,:);
 Edge(ul(iup)).ydata = final_position(2,:);
 Edge(ul(iup)).zdata = final_position(3,:);
 Edge(ul(iup)).linklength = sum(diff(final_position, [],
2).^2, 1).^(1/2);
 Edge(ul(iup)).length = sum(Edge(ul(iup)).linklength);
 Edge(ul(iup)).endID = EdgeUpdate(iup).endID;
 Edge(ul(iup)).radius = final_radius;
 end
 else
 for iup = 1 : length(EdgeUpdate)
 final_position = [EdgeUpdate(iup).xdata; ...
 EdgeUpdate(iup).ydata; ...
 EdgeUpdate(iup).zdata];
 final_radius = EdgeUpdate(iup).radius;
 endID = EdgeUpdate(iup).endID;
 v = [Node(endID(1)).xdata, Node(endID(2)).xdata; ...
 Node(endID(1)).ydata, Node(endID(2)).ydata; ...
 Node(endID(1)).zdata, Node(endID(2)).zdata];

 final_position = FlipEdge(final_position, v);

 Edge(ul(iup)).xdata = final_position(1,:);
 Edge(ul(iup)).ydata = final_position(2,:);
 Edge(ul(iup)).zdata = final_position(3,:);
 Edge(ul(iup)).linklength = sum(diff(final_position, [],
2).^2, 1).^(1/2);
 Edge(ul(iup)).length = sum(Edge(ul(iup)).linklength);
 Edge(ul(iup)).endID = EdgeUpdate(iup).endID;
 Edge(ul(iup)).radius = final_radius;
 end
 end

 [Edge, Node] = RemoveDeleted(Edge, Node, iedge_delete, inode_delete,
cleaner_type); %removing the deleted nodes and edges

 % checkin gto make sure that the edge is not an island
 if Node(inode_keep).connectivity == 1 &&
Node(Edge(Node(inode_keep).linkID).endID(Edge(Node(inode_keep).linkID).endID
~= inode_keep)).connectivity == 1

 [Edge, Node] = RemoveDeleted(Edge, Node, iedge_delete,
inode_delete, 'RemoveIslandEdges'); %removing the deleted nodes and edges

 else

 %%%%%%%%%%%%%%%%%%%%%%%%
 % Identifying the edges and nodes immediately surrounding the short

 188

 % edge for speed.
 cn_lvl1 = unique([Edge(Node(inode_keep).linkID).endID]);
 cn_lvl1 = cn_lvl1(cn_lvl1 ~= inode_keep);

 ce_lvl1 = Node(inode_keep).linkID';

 ce_lvl2 = unique([Node(cn_lvl1).linkID]');
 ce_lvl2_loc = ~ismember(ce_lvl2, ce_lvl1);
 ce_lvl2 = ce_lvl2(logical(ce_lvl2_loc));

 cn_lvl2 = unique([Edge(ce_lvl2).endID]);
 cn_lvl2_loc = ~ismember(cn_lvl2, cn_lvl1);
 cn_lvl2 = cn_lvl2(logical(cn_lvl2_loc));

 target_nodes = [inode_keep; cn_lvl1; cn_lvl2];
 target_edges = [ce_lvl1; ce_lvl2];

 % truncating the edges and nodes structures for speed
 TargetNode = Node(target_nodes);
 TargetEdge = Edge(target_edges);

 for itn = 1 : numel(target_nodes)
 TargetNode(itn).GlobalNodeID = target_nodes(itn);
 TargetNode(itn).GlobalLinkID = TargetNode(itn).linkID;
 TargetNode(itn).GlobalConnectivity =
numel(TargetNode(itn).linkID);
 end

 for ite = 1 : numel(target_edges)
 TargetEdge(ite).GlobalEdgeID = target_edges(ite);
 end

 %%%%%%%%%%%%%%%%%%%%%%%%

 % Translating to their local indicies
 GlobalEdgeConnect = [TargetEdge.endID]'; %rows are edges, and
columns are the indicies of the endID's
 LocalEdgeConnect = nan(size(GlobalEdgeConnect));
 unique_nodes = unique(GlobalEdgeConnect);
 for iun = 1 : numel(unique_nodes)
 loc = GlobalEdgeConnect == target_nodes(iun);
 [r, ~] = find(sum(loc, 2));
 LocalEdgeConnect(loc) = iun;
 TargetNode(iun).linkID = sort(r)';
 TargetNode(iun).connectivity = numel(r);
 TargetNode(iun).nodeID = iun;
 end

 for ilocal = 1 : numel(target_edges)
 TargetEdge(ilocal).endID = LocalEdgeConnect(ilocal,:)';
 TargetEdge(ilocal).edgeID = ilocal;
 end

 % Differentiating between the interior and exterior nodes
 local_ext_nodes = nan(1, floor(length(TargetNode)));
 local_int_nodes = nan(1, floor(length(TargetNode)));
 global_int_nodes = nan(1, floor(length(TargetNode)));
 ixn = 1;
 iin = 1;
 for itn = 1 : numel(target_nodes)
 local_tC = TargetNode(itn).connectivity;
 global_tC = TargetNode(itn).GlobalConnectivity;
 if local_tC ~= global_tC || global_tC == 1
 local_ext_nodes(ixn) = itn;
 ixn = ixn + 1;
 else
 local_int_nodes(iin) = itn;
 global_int_nodes(iin) = target_nodes(itn);
 iin = iin + 1;
 end
 end

 189

 local_int_nodes(isnan(local_int_nodes)) = [];
 global_int_nodes(isnan(global_int_nodes)) = [];
 local_ext_nodes(isnan(local_ext_nodes)) = [];

 % Differentiating between the interior and exterior edges
 local_target_edges = 1:numel(target_edges);
 local_ext_edges = [TargetNode(local_ext_nodes).linkID]';
 local_int_edges = local_target_edges(~ismember(local_target_edges,
...
 local_ext_edges));
 global_int_edges = target_edges(local_int_edges);

 % truncating the target edges and nodes even furhter
 TargetEdgeInt = TargetEdge(local_int_edges);
 TargetNodeInt = TargetNode(local_int_nodes);

 % removing exterior nodes from the interior node structure
 for inr = 1 : numel(local_int_nodes)
 linkID = TargetNodeInt(inr).linkID;
 iol = ismember(linkID, local_ext_edges);
 TargetNodeInt(inr).linkID(iol) = [];
 [~, loc] = ismember(TargetNodeInt(inr).linkID, local_int_edges);
 TargetNodeInt(inr).linkID = loc;
 TargetNodeInt(inr).connectivity =
numel(TargetNodeInt(inr).linkID);
 end

 % removing the exterior edges from the interior edge structure
 for ier = 1 : length(TargetEdgeInt)
 [~, loc] = ismember(TargetEdgeInt(ier).endID, local_int_nodes);
 TargetEdgeInt(ier).endID = loc;
 end

 % Running the main clean-up loop for the noi, as well as the nodes
and
 % edges immediately surrounding the noi.
 [TargetEdgeInt, TargetNodeInt] = MainLoop(TargetEdgeInt,
TargetNodeInt, 'Merge');

 %%%%%%%%%%%%%%%%%%%%%%%%

 % Locating the deleted edges/nodes
 old_EdgeIDs = unique([TargetEdgeInt.edgeID]);
 local_emissing = local_int_edges(~ismember(local_int_edges,
old_EdgeIDs));
 local_epresent = local_int_edges(ismember(local_int_edges,
old_EdgeIDs));

 global_emissing = target_edges(local_emissing);
 global_epresent = target_edges(local_epresent);

 old_NodeIDs = unique([TargetNodeInt.nodeID]);
 local_nmissing = local_int_nodes(~ismember(local_int_nodes,
old_NodeIDs));

 global_nmissing = target_nodes(local_nmissing);

 % Converting to global indicies
 global_int_edges(ismember(global_int_edges, global_emissing)) = [];
 local_int_edges(ismember(local_int_edges, local_emissing)) = [];

 for ile = 1 : length(TargetEdgeInt)
 endID_local = local_int_nodes(TargetEdgeInt(ile).endID)';
 [~, loc] = find(ismember(local_int_nodes, endID_local));
 endID_global = global_int_nodes(loc);
 TargetEdgeInt(ile).endID = endID_global';
 end

 for iln = 1 : length(TargetNodeInt)
 linkID_local = local_int_edges(TargetNodeInt(iln).linkID);
 [~, loc] = find(ismember(local_int_edges, linkID_local));
 linkID_global = global_int_edges(loc)';

 190

 TargetNodeInt(iln).linkID = linkID_global;
 after_linkID_vec = TargetNodeInt(iln).linkID;
 before_linkID_vec = TargetNodeInt(iln).GlobalLinkID;
 new_linkID = unique([after_linkID_vec, before_linkID_vec]);
 new_linkID = new_linkID(~ismember(new_linkID, global_emissing));
 TargetNodeInt(iln).linkID = new_linkID;
 TargetNodeInt(iln).connectivity =
numel(TargetNodeInt(iln).linkID);
 end

 TargetEdgeInt = rmfield(TargetEdgeInt, {'GlobalEdgeID', 'edgeID'});
 TargetNodeInt = rmfield(TargetNodeInt, {'GlobalNodeID', 'nodeID',
...
 'GlobalLinkID', 'GlobalConnectivity'});
 %
 Edge(global_int_edges) = TargetEdgeInt;
 Node(global_int_nodes) = TargetNodeInt;

 % Ensuring that the repalced edges are correctly flippped with the
 % appropriate end nodes.
 for ige = 1 : numel(global_epresent)
 eoi = global_epresent(ige);
 noi = Edge(eoi).endID;
 e1p = [Edge(eoi).xdata; ...
 Edge(eoi).ydata; ...
 Edge(eoi).zdata];
 e2p = [Node(noi).xdata; ...
 Node(noi).ydata; ...
 Node(noi).zdata];

 end1p = [e1p(:,1), e1p(:,end)];
 end2p = [e2p(:,1), e2p(:,end)];

 end1p_flip = fliplr(end1p);

 u1 = end1p_flip(:,1);
 u2 = end1p_flip(:,2);
 v1 = end2p(:,1);
 v2 = end2p(:,2);

 e = 0.2;

 if sum(u1<=v1+e & u1>=v1-e) == 3 && ...
 sum(u2<=v2+e & u2>=v2-e) == 3
 e1p = fliplr(e1p);
 Edge(eoi).xdata = e1p(1,:);
 Edge(eoi).ydata = e1p(2,:);
 Edge(eoi).zdata = e1p(3,:);
 end
 end

 [Edge, Node] = RemoveDeleted(Edge, Node, global_emissing,
global_nmissing, cleaner_type);

 end

 end

 Connectivity = [Node.connectivity];
 nc = hist(Connectivity, 1:10);

 fprintf(' %4i|%5i|%5i|%5i|%5i|%5i|%5i|%5i|%5i|%5i|%5i|%5i|\n', it, ...
 nc(1), nc(2), nc(3), nc(4), nc(5), nc(6), nc(7), nc(8), nc(9),
nc(10), length(Node));

 shortID = find([Edge.length] < lt, 1);

 GoShort = ~isempty(shortID);

end

end

 191

Appendix B: Supplementary information for electrical conductivity

quantification

B.1 Benchmark for bulk electrical conductivity computation

 Our finite-difference electrical conductivity calculator (FDECC) finds an

approximate solution to the current continuity (Laplace) equation, given local

conductivities each material. For a set of voxels connected in series, the

approximation is perfectly accurate, but for a curved surface there is discretization

error. We assess that error by computing the bulk electrical conductivity (σbulk) of a

15-pixel radius conductive sphere (σ1 = 0.06 S/m) embedded in a relatively insulative

100×100×100 voxel3 cube (σ2 = 10-5 S/m). The analytical solution for the bulk

electrical conductivity follows the Maxwell-Garnett relation (Markov, 1999, Hughes,

2000), which is

 σ bulk −σ 2

σ bulk + 2σ 2

= φ σ1 −σ 2

σ1 + 2σ 2

 B.1

where ϕ is the phase fraction of the sphere, which is 0.0141 for the sphere and cube

dimensions listed above. This is the same benchmark computation used by Zhan

(2010) to validate their model. According Eqn. B.1, the analytical solution for σbulk is

0.058740 S/m, and σbulk from FDECC is 0.058709 S/m. The small error (0.05%)

between the analytical and numerical solution suggests that FDECC accurately

estimates the bulk electrical conductivity of the input olivine-melt and olivine-opx-

melt geometries.

 192

% --- %
% Wrapper script for FDECC %
% --- %

drName = [pwd, '/test_images/'];
fNameList = { ...
 'crossn.tif'
% 'sphereInABox.tif'
 };

sigmaList = [...
 7.53 0.009
];

% addendum = '_cropped(400)';
addendum = '';

nFile = length(fNameList);
for iSigma = 1 : size(sigmaList, 1)
 sigma = sigmaList(iSigma,:);
 sigmaStr = sprintf('%.3f-', sigma(:)');
 sigmaStr = sigmaStr(1:end-1);
 sigmaBulk = zeros(size(fNameList, 1), 1);
 for iFile = 1 : nFile
 nRand = randsample(1:1e4, 1);
 sRoot = '/Users/kevinmiller/data/dc/results/temp/';
 sDir = sprintf(...
 '%s%s%s/', sRoot, fNameList{iFile}(1:end-4), addendum);
 if exist(sDir, 'dir') == 0
 mkdir(sDir);
 end

 flowDir = 'Z';
 diaryName = sprintf(...
 '%s%s_flow%s_sigma%s_%04i.out', ...
 sDir, ...
 fNameList{iFile}(1:end-4), ...
 flowDir, ...
 sigmaStr, ...
 nRand);

 if exist(diaryName, 'file') > 0
 delete(diaryName);
 end

 diary(diaryName);

 [~, nameComp] = system('hostname');
 fprintf('\n%s', nameComp);

 fprintf('\nLoading %s%s\n', drName, fNameList{iFile});

 G = uint8(...
 Tif3DReader(...
 drName, ...
 fNameList{iFile} ...
) ...
);

% geomLim = 400;
% domainLim = size(G);
% domainOver = domainLim - geomLim;
% if domainOver(1) > 0
% halfOver = floor(domainOver(1) / 2);
% G = G(halfOver:end-halfOver-1,:,:);
% end
% if domainOver(2) > 0
% halfOver = floor(domainOver(2) / 2);
% G = G(:,halfOver:end-halfOver-1,:);
% end
% if domainOver(3) > 0
% halfOver = floor(domainOver(3) / 2);

 193

% G = G(:,:,halfOver:end-halfOver-1);
% end

% if domainLim > geomLim
% sizeOver(1) =
% G(G == 0) = 2;
% G = G(151:350,151:350,151:350);
% G = G(51:450,51:450,51:450);

 if numel(sigma) > 1
 Model = dc3dn(G, flowDir, sigma);
 else
 Model = dc3d(G, flowDir, sigma);
 end

 saveresult(sDir, Model, nRand);
 fprintf('\n');

 diary off;

 sigmaBulk(iFile) = Model.result.sigmaEff;
 end

 if numel(sigmaBulk) > 1
 save(...
 sprintf(...
 'sigma%s_%04i_sigmaBulk.mat', ...
 sigmaStr, ...
 nRand ...
), ...
 'sigmaBulk' ...
);
 end

end

% -- %

function IF = Tif3DReader(Dir, FileTif, varargin)

if ~isempty(varargin)
 if strcmp(varargin{1}, 'Plot')
% cmd = varargin{1};
 islice = varargin{2};
 if ischar(islice) && strcmp(varargin{2}, 'All')
 else
 islice = varargin{2};
 end
 end
end

% FileTif='rec_scoba_12_200x200x200_sample8_pc-melt_final.tif';
InfoImage=imfinfo([Dir, FileTif]);
mImage=InfoImage(1).Width;
nImage=InfoImage(1).Height;
NumberImages=length(InfoImage);
FinalImage=zeros(nImage,mImage,NumberImages,'uint16');

TifLink = Tiff([Dir, FileTif], 'r');
for i=1:NumberImages
 TifLink.setDirectory(i);
 FinalImage(:,:,i)=TifLink.read();
end
TifLink.close();
% FinalImage = double(FinalImage);

% getting the dimensions of the sample
% xloc = strfind(FileTif, 'x');
% xDim = str2num(FileTif(xloc(1)-3:xloc(1)-1));
% yDim = str2num(FileTif(xloc(2)-3:xloc(2)-1));
% zDim = str2num(FileTif(xloc(2)+1:xloc(2)+3));

 194

IF = FinalImage;

% % Imported this section from online code
% % http://people.ece.cornell.edu/land/PROJECTS/Reconstruction/index.html
% %patch smoothing factor
% rfactor = 0.125;
% %isosurface size adjustment
% level = .8;
% %useful string constants
% c2 = 'facecolor';
% c1 = 'edgecolor';
%
% p=patch(isosurface(smooth3(FinalImage==1),level));
% reducepatch(p,rfactor)
% set(p,c2,[1,0,0],c1,'none');
%
% p=patch(isosurface(smooth3(FinalImage==2),level));
% reducepatch(p,rfactor)
% set(p,c2,[0,1,0],c1,'none');
% % spy(FinalImage(:,:,islice));
% [Xi, Yi, Zi] = meshgrid(0:1:xDim-1, 0:1:yDim-1, 0:1:zDim-1);
%
% % Xi = uint8(Xi);
% % Yi = uint8(Yi);
% % Zi = uint8(Zi);
% % fidbl = double(FinalImage);
% % figure(1); clf;
% % ImageData2D = FinalImage(:,:,islice);
% % fv = isosurface(fidbl, Xi, Yi, Zi);
% % slice(FinalImage, Xi, Yi, Zi);
% % colormap(jet);
% % bwi = im2bw(FinalImage(:,:,islice));
% % image(bwi);
% if ~isempty(varargin)
% image(FinalImage(:,:,islice));
% end
% colormap(jet);

end

% -- %

function Model = dc3dn(G, flowAxis, sigma, varargin)
%DC3DN 3-D direct current experiment simulation (for N conductivities).
%
% [MODEL] = dc3dn(X) conducts a direct current experiment on a label
% geometry. The finite difference method is used to solve the discrete
% Laplace equation within a specified binary image. A different electric
% potential is imposed at the inlet and outlet faces of the geometry, and
% a no flux condition is applied to the boundary box faces that are
% perpendicular to the direction of current. dc3dn can handle an
% arbitrary number of materials that have different conductivities.
% Either a direct or iterative approach is taken to solve the system of
% equations. The current density is then calculated using a centered
% difference gradient, volume-averaged, and then the effective electrical
% conductivity of the volume is calculated.
%
% [MODEL] = dc3dn(G, FLOWAXIS, SIGMA) conducts a direct current
% experiment on the 3-D label image G in the direction specified by the
% string FLOWAXIS. Conductivities are given by the vector SIGMA and are
% applied to materials specified by its index. Results are outputted to
% structure MODEL.
%
% Examples:
% drName = pwd;
% fName = 'crossn.tif';
% G = logical(Tif3DReader(drName, fName));
% Model = dc3dn(G, 'X', [1 .01]);
%
% Class support for input G:
% uint8, uint16, single, double

 195

% $Author: Kevin J. Miller $ $Date: 04-Feb-2015 09:25:40 $ $Revision: 1.0 $
% Copyright: Kevin J. Miller 2015

fprintf('\n---');
fprintf('\n Initiating Direct Current Experiment \n');
fprintf('---\n');

tic;
% initiating timer

% ---------------------- Setting parameters ----------------------------- %

fprintf('\n%s\n', datestr(now));
% time-stamps the simulation
fprintf('\nFlow Direction: %s\n', flowAxis);
% printing the flow direction

Model = struct(...
% allocating memory for structure
 'params', [], ...
 'geom', [], ...
 'bids', [],...
 'lids', []);

Model.params = loadparams(Model.params);
% loading parameters from text file

Model.params.flowAxis = flowAxis;
uMat = unique(G); uMat(uMat == 0) = [];
% checking that the number of conductances matches the number of materials
nMat = numel(uMat);
Model.params.nMat = nMat;
if nMat ~= numel(sigma)
 error('Number of conductances does not match the number of materials');
end
Model.params.flowAxis = flowAxis;
Model.params.sigma = sigma;

fprintf('\tConductivities:\t\t(');
fprintf(' %.3e', sigma(:)'); fprintf(') [S/m]');

% ---------------------- Loading the geometry --------------------------- %

switch Model.params.flowAxis
% rotating geometry into position
 case 'Y'
 G = uint8(rotategeom_Gen2(G, Model.params.flowAxis, 1));
 case 'Z'
 G = uint8(rotategeom_Gen2(G, Model.params.flowAxis, 1));
end

Model.geom.G = G;

fprintf(...
 '\n\tDimensions:\t\t%ix%ix%i\n', ...
 size(G, 1), size(G, 2), size(G, 3));

Model = impreprocessn(Model, 'Enclose', 'Refine', Model.params.cres);
% preprocessing image

Model.geom.dim = size(Model.geom.G);
% geometry dimensions (in pixels)
Model.geom.bounds = [
% boundaries of geometry
 1 Model.geom.dim(1), ...
 1 Model.geom.dim(2), ...
 1 Model.geom.dim(3) ...
];
Model.geom.L = Model.geom.dim(1);
% length of geometry
Model.params.ndof = prod(size(Model.geom.G) - 2);
% number of degrees of freedom

 196

% ----------------------------- Begin main block ------------------------ %

Model = discretizen(Model);
% discretizing geometry

[connect, connectBound, connectSigma, Model] = assembleconnectn(Model);
% assembling connectivity matrix

A = assemblematrixn(Model, connect, connectBound, connectSigma);
% building matrix with boundary conditions

Model.lids.inlet = [];
% clearing unnecessary variables from structure
Model.lids.outlet = [];
Model.lids.noFlux = [];

b = assembleloadvectorn(Model, connect, connectBound);
% building load vector with boundary conditions

clear connect connectBound connectSigma;

sideL = size(Model.geom.G, 1) - 2;
x = 1 : sideL;
vExp = (-1 * (Model.params.V_inlet - Model.params.V_outlet) / sideL) * ...
 x + Model.params.V_inlet;
X0 = repmat(...
 vExp', ...
 [1 size(Model.geom.G, 2) - 2 size(Model.geom.G, 3) - 2]);
x0 = X0(:);

solveStruct = struct(...
 'droptol', Model.params.droptol, ...
 'thresh', Model.params.thresh, ...
 'udiag', Model.params.udiag, ...
 'soltype', Model.params.soltype, ...
 'maxiter', Model.params.maxiter, ...
 'reltol', Model.params.reltol, ...
 'x0', x0 ...
);

clear x0 X0;

dumpPath = [pwd, '/dump/'];
% dumping structure to hard disk
if ~exist(dumpPath, 'dir')
 mkdir(dumpPath)
end
save([dumpPath, 'Model.mat'], 'Model', '-v7.3');
clear Model;

x = dcsolvern(A, b, solveStruct);
% solving linear system

load([dumpPath, 'Model.mat']);
% recovering structure from hard disk
delete([dumpPath, 'Model.mat']);

% ----------------------------- End main block ------------------------ %

lidInteriorAll = [];
for iMat = 1 : nMat
 lidInteriorAll = [lidInteriorAll; Model.lids.interior{iMat}];
end
lidInteriorAll = sort(lidInteriorAll);

v = zeros(prod(Model.geom.dim), 1);
v(lidInteriorAll) = x;

for iMat = 1 : nMat
 v(Model.bids.inlet{iMat}) = Model.params.V_inlet;
 v(Model.bids.outlet{iMat}) = Model.params.V_outlet;

 197

end

V = reshape(v, Model.geom.dim(1), Model.geom.dim(2), Model.geom.dim(3));
Model.result.V = V;

clear G A x b lidInteriorAll v V;

Model = postprocessingn(Model);
% conducting the postprocessing

fprintf('\n');
toc;

fprintf('\n---');
fprintf('\n End of Simulattion \n');
fprintf('---\n');

end

% -- %

function A = loadparams(A)

fprintf('\nSeting parameters for model...\n');

% Parameters that modify the input geometry

A.rmspurs = 0;
A.enclose = 1;
A.cres = 1;
A.rmislands = 0;
A.islthresh = 100;
A.addinout = 1;

% Parameters that modify boundary conditions and material properties

A.V_inlet = 2;
A.V_outlet = 1;
A.V_vn = 0;
A.h = 1;
% A.sigma = [10 .009];
% A.nMat = numel(A.sigma);

% Parameters that modify perconditioner options

A.droptol = 1e-3;
A.thresh = 0;
A.udiag = 1;

% Parameters that modify solver options

A.soltype = 'iter';
A.iterkeep = 2;
A.maxiter = 1e4;
A.reltol = 1e-7;

fprintf(sprintf('\n\tRemove Spurs:\t\t %i', A.rmspurs));
fprintf(sprintf('\n\tEnclose geometry:\t %i', A.enclose));
fprintf(sprintf('\n\tRemove Islands (<%i):\t %i', A.islthresh,
A.rmislands));
fprintf(sprintf('\n\tAppend inlet/outlet:\t %i', A.addinout));
fprintf(sprintf('\n\tResample geometry:\t %i\n', A.cres));
fprintf(sprintf('\n\tInlet potential:\t%5i [V]', A.V_inlet));
fprintf(sprintf('\n\tOutlet potential:\t%5i [V]', A.V_outlet));
fprintf(sprintf('\n\tSpacing:\t\t%5g [m]', A.h));
% fprintf(sprintf('\n\n\tConductivities:\t\t%.0e, %.0e [S/m]\n', A.sigma(1),
A.sigma(2)));
fprintf(sprintf('\n\tMaximum iterations:\t%i', A.maxiter));
fprintf(sprintf('\n\tRelative tolerance:\t%.0e\n', A.reltol));

% -- %

 198

function G_rot = rotategeom_Gen2(G, flipAxis, flipDir)

switch flipAxis
 case 'Y'
 switch flipDir
 case 1
 G_rot = flipdim(permute(G, [2 1 3]), 2);
 case -1
 G_rot = permute(flipdim(G, 2), [2 1 3]);
 end
 case 'Z'
 switch flipDir
 case 1
 G_rot = flipdim(permute(G, [3 2 1]), 3);
 case -1
 G_rot = permute(flipdim(G, 3), [3 2 1]);
 end
end

end

% -- %

function Model = impreprocessn(Model, varargin)
% --- %
% This subroutine preprocesses 2D binary image data for running CFD
% simulations.

% if ~isempty(varargin)
% GoRmSpurs = ~isempty(find(strcmp(varargin, 'Remove Spurs'), 1));
% GoRefine = ~isempty(find(strcmp(varargin, 'Refine'), 1));
% GoEnclose = ~isempty(find(strcmp(varargin, 'Enclose'), 1));
% GoRmIslands = ~isempty(find(strcmp(varargin, 'Remove Islands'), 1));
% GoOpenInlets = ~isempty(find(strcmp(varargin, 'Open Inlets'), 1));
% if GoRmSpurs
% rms_loc = find(strcmp('Remove Spurs', varargin), 1);
% tconn = varargin{rms_loc+1};
% end
% if GoRefine
% ref_loc = find(strcmp('Refine', varargin), 1);
% trefine = varargin{ref_loc+1};
% end
% if GoEnclose
% flowInd = find(Model.params.flowVec, 1);
% end
% if GoRmIslands
% islandth_loc = find(strcmp('Remove Islands', varargin), 1);
% islandth = varargin{islandth_loc+1};
% end
% else
% GoRmSpurs = 0;
% GoRefine = 0;
% GoEnclose = 0;
% GoRmIslands = 0;
% GoOpenInlets = 0;
% end

% if Model.params.
% Model.geom.G = OpenInlets(Model.geom.G);
% end
% if GoRmSpurs
% Model.geom.G = RmSpurs(Model.geom.G, tconn);
% end
Model.geom.G0 = Model.geom.G;
if Model.params.cres > 1
 Model.geom.G = imresamplen(Model.geom.G, Model.params.cres);
% Model.geom.G0 = Model.geom.G;
end
if Model.params.addinout
 Model.geom.G = addinout(Model.geom.G);
end
% if Model.params.enclose

 199

% % Model.geom.G0 = Model.geom.G;
% Model.geom.G = dc_ImEnclose3D(Model.geom.G);
% else
% Model.geom.G0 = Model.geom.G;
% end
if Model.params.rmislands
% conn = 8;
 Model.geom.G = rmislands(Model.geom.G,
3*Model.params.cres*Model.params.islthresh);
end

end

% -- %

function G = addinout(G)

G = padarray(G, [1 1 1], 'replicate');

% inletCopy = G(1,:,:);
% outletCopy = G(end,:,:);
%
% G = cat(1, inletCopy, G);
% G = cat(1, G, outletCopy);

end

% -- %

function newG = rmislands(G, thresh)

fprintf('\tRemoving islands(<%i)...', thresh);

CC = bwconncomp(G, 6);
F = zeros(size(G), 'uint16');
iVal = uint16(1);
nIsl = numel(CC.PixelIdxList);
for iIsl = 1 : nIsl
 cIsl = CC.PixelIdxList{iIsl};
 if size(cIsl, 1) > thresh
 F(CC.PixelIdxList{iIsl}) = iVal;
 iVal = iVal + 1;
 end
end

newG = F > 0;

nisl = sum(G(:)) - sum(newG(:));

fprintf('%i pixels modified', nisl);

end

% -- %

function Model = discretizen(Model)

% Discretizes image that consists of an arbitrary number of materials.

fprintf('\nDiscretizing geometry...');

Model.bids = struct(...
% storing binary images and linear ID's in 'Model' structure
 'inlet', [], ...
 'outlet', [], ...
 'solLiq', [], ...
 'noFlux', [], ...
 'interior', [], ...
 'inside', []);

Model.lids = struct(...
% storing binary images and linear ID's in 'Model' structure

 200

 'inlet', [], ...
 'outlet', [], ...
 'solLiq', [], ...
 'noFlux', [], ...
 'interior', []);

nMat = Model.params.nMat;

for iMat = 1 : nMat

 noFlux = Model.geom.G == iMat;
 noFlux(:,2:Model.geom.dim(2)-1,2:Model.geom.dim(3)-1) = 0;

 inside = Model.geom.G == iMat;
% binary image of inside nodes

 inlet = false(...
% allcating memory for binary image of inlet nodes
 Model.geom.bounds(2), ...
 Model.geom.bounds(4), ...
 Model.geom.bounds(6));

 outlet = false(...
% allcating memory for binary image of outlet nodes
 Model.geom.bounds(2), ...
 Model.geom.bounds(4), ...
 Model.geom.bounds(6));

 inlet(1,:,:) = inside(1,:,:);
% binary image of inlet nodes
 outlet(Model.geom.bounds(2),:,:) = inside(Model.geom.bounds(2),:,:);
% binary image of outlet nodes

 inside_test = inside;
 inside_test(:,1,:) = 0;
 inside_test(:,end,:) = 0;
 inside_test(:,:,1) = 0;
 inside_test(:,:,end) = 0;

 solLiqStrel(:,:,1) = [0 0 0; 0 1 0; 0 0 0];
 solLiqStrel(:,:,2) = [0 1 0; 1 1 1; 0 1 0];
 solLiqStrel(:,:,3) = [0 0 0; 0 1 0; 0 0 0];

 solLiq = imdilate(inside_test, solLiqStrel) & ~inside_test;
% binary image of solid-liquid boundary boundary nodes

 inlet = inlet & ~noFlux;
 outlet = outlet & ~noFlux;

 solLiq(1,:,:) = 0;
% removing inlet positions from solLiq
 solLiq(Model.geom.bounds(2),:,:) = 0;
% removing outlet positions from solLiq
 solLiq(:,1,:) = 0;
 solLiq(:,Model.geom.bounds(4),:) = 0;
 solLiq(:,:,1) = 0;
 solLiq(:,:,Model.geom.bounds(6)) = 0;

 interior = inside & ~inlet & ~outlet & ~noFlux;
% removing solLiq, inlet, and outlet nodes from 'inside' binary image

 Model.bids = storestructn(Model.bids, { ...
% storing binary images and linear ID's in 'Model' structure
 'inlet' inlet
 'outlet' outlet
 'solLiq' solLiq
 'noFlux' noFlux
 'interior' interior
 'inside' inside
 });

 201

 Model.lids = storestructn(Model.lids, { ...
% storing binary images and linear ID's in 'Model' structure
 'inlet' find(inlet)
 'outlet' find(outlet)
 'solLiq' find(solLiq)
 'noFlux' find(noFlux)
 'interior' find(interior)
 });

end

end

% -- %

function S = storestructn(S, storeName, varargin)

% if ~isempty(varargin)
% if strcmpi(varargin, 'append')
% appendSwitch = 1;
% else
% appendSwitch = 0;
% end
% else
% appendSwitch = 0;
% end

sizeStruct = structfun(@(x) size(x, 2), S);
uMat = unique(sizeStruct);
if numel(uMat) > 1
 error('Sizes of structure fields are not consistent');
end
cMat = uMat + 1;
nstr = length(storeName);
for istr = 1 : nstr
 S.(storeName{istr,1}){cMat} = storeName{istr,end};
end

end

% -- %

function [connect, connectBound, connectSigma, Model] = ...
 assembleconnectn(Model)

% Subroutine for assembling the connectivity matrix.

fprintf('\n\nAssembling connectivity matrix...');

nMat = Model.params.nMat;

connect = cell(nMat, 1);
connectSigma = cell(1, Model.params.nMat);

sigmaAll = zeros(size(Model.geom.G));
for iMat = 1 : Model.params.nMat
 sigmaAll(Model.bids.inside{iMat}) = Model.params.sigma(iMat);
 sigmaAll(Model.bids.noFlux{iMat}) = Model.params.sigma(iMat);
end

sigmaAll(Model.bids.noFlux{1} | Model.bids.noFlux{2}) = 0;

Model.sigmaAll = sigmaAll;

connectBound = struct(...
 'isInlet', [], ...
 'isOutlet', [], ...
 'isSolLiq', [], ...
 'isNoFlux', [], ...
 'isConnBound', []);

for iMat = 1 : nMat

 202

 [iInBox, jInBox, kInBox] = ind2sub(...
 size(Model.bids.interior{iMat}), ...
 find(Model.bids.interior{iMat} == 1));
% coorinates of the center nodes
 ijkInBox = [iInBox, jInBox, kInBox];

 xMinus = [ijkInBox(:,1) - 1, ijkInBox(:,2), ijkInBox(:,3)];
% coorinates of the west-shifted nodes
 xPlus = [ijkInBox(:,1) + 1, ijkInBox(:,2), ijkInBox(:,3)];
% coorinates of the east-shifted nodes
 yMinus = [ijkInBox(:,1), ijkInBox(:,2) - 1, ijkInBox(:,3)];
% coorinates of the south-shifted nodes
 yPlus = [ijkInBox(:,1), ijkInBox(:,2) + 1, ijkInBox(:,3)];
% coorinates of the north-shifted nodes
 zMinus = [ijkInBox(:,1), ijkInBox(:,2), ijkInBox(:,3) - 1];
% coorinates of the south-shifted nodes
 zPlus = [ijkInBox(:,1), ijkInBox(:,2), ijkInBox(:,3) + 1];
% coorinates of the north-shifted nodesy

 ctrLids = sub2ind(...
 size(Model.bids.interior{iMat}), ...
 ijkInBox(:,1), ...
 ijkInBox(:,2), ...
 ijkInBox(:,3));
% linear indices of the centers nodes

 xMinusLids = sub2ind(...
 size(Model.bids.interior{iMat}), ...
 xMinus(:,1), ...
 xMinus(:,2), ...
 xMinus(:,3)); % linear indices of the
west-shifted nodes
 xPlusLids = sub2ind(...
 size(Model.bids.interior{iMat}), ...
 xPlus(:,1), ...
 xPlus(:,2), ...
 xPlus(:,3)); % linear indices of the
east-shifted nodes
 yMinusLids = sub2ind(...
 size(Model.bids.interior{iMat}), ...
 yMinus(:,1), ...
 yMinus(:,2), ...
 yMinus(:,3)); % linear indices of the
south-shifted nodes
 yPlusLids = sub2ind(...
 size(Model.bids.interior{iMat}), ...
 yPlus(:,1), ...
 yPlus(:,2), ...
 yPlus(:,3)); % linear indices of the
north-shifted nodes
 zMinusLids = sub2ind(...
 size(Model.bids.interior{iMat}), ...
 zMinus(:,1), ...
 zMinus(:,2), ...
 zMinus(:,3)); % linear indices of the
south-shifted nodes
 zPlusLids = sub2ind(...
 size(Model.bids.interior{iMat}), ...
 zPlus(:,1), ...
 zPlus(:,2), ...
 zPlus(:,3)); % linear indices of the
north-shifted nodes

 connect{iMat} = [...
 ctrLids, ...
 xMinusLids, ...
 xPlusLids, ...
 yMinusLids, ...
 yPlusLids, ...
 zMinusLids, ...

 203

 zPlusLids];
% connectivity matrix of interior nodes

 connectIsInlet = ismembc(...
 connect{iMat}, ...
 Model.lids.inlet{iMat}); % logical array showing
connectivities that are located on inlet
 connectIsOutlet = ismembc(...
 connect{iMat}, ...
 Model.lids.outlet{iMat}); % logical array showing
connectivities that are located on outlet
 connectIsSolLiq = ismembc(...
 connect{iMat}, ...
 Model.lids.solLiq{iMat}); % logical array showing
connectivities that are located on solid-pore interface
 connectIsNoFlux = ismembc(...
 connect{iMat}, ...
 Model.lids.noFlux{iMat}); % logical array showing
connectivities that are located on solid-pore interface

 connectIsInlet(connectIsInlet(:,1),:) = 0;
% removing nodes that are part of 'inlet' from connectivity matrix
 connectIsOutlet(connectIsOutlet(:,1),:) = 0;
% removing nodes that are part of 'otlet' from connectivity matrix
 connectIsNoFlux(connectIsNoFlux(:,1),:) = 0;
% removing nodes that are part of 'otlet' from connectivity matrix

 isConnBound = (...
% logical index of nodes that are connected to boundary nodes
 sum(connectIsInlet, 2) ...
 + sum(connectIsOutlet, 2) ...
 + sum(connectIsNoFlux, 2)) > 0;

 connectSigma{iMat} = sigmaAll(connect{iMat});

 connectBound = storestructn(connectBound, { ...
 'isInlet' connectIsInlet
 'isOutlet' connectIsOutlet
 'isSolLiq' connectIsSolLiq
 'isNoFlux' connectIsNoFlux
 'isConnBound' isConnBound
 });

end

Model.sigmaAll = single(Model.sigmaAll);

end

% -- %

function A = assemblematrixn(Model, connect, connectBound, connectSigma)

% Subroutine for assembling the coefficient matrix.

fprintf('\n\nAssembling coefficient matrix...');

sigmaExp = @(s1, s2) (2 * s1 .* s2) ./ (s1 + s2);

nStencilPts = 7;
% size of finite-difference stencil

maxMatBounds = repmat(prod(Model.geom.dim), [1 2]);
% maximum matrix bounds for stiffness matrix
nonZeroMax = nStencilPts*maxMatBounds(1);
% mamimum possible number of non-zero element in stiffness matrix

A = spalloc(maxMatBounds(1), maxMatBounds(2), nonZeroMax);
augList = [];

for iMat = 1 : Model.params.nMat

 204

 sigmaNoFlux = connectSigma{iMat}.*(connectBound.isNoFlux{iMat});
 sumSigmaNoFlux = sum(sigmaNoFlux, 2);
 notC_isNoFlux = ~connectBound.isNoFlux{iMat};

 notC_isInlet = ~connectBound.isInlet{iMat};
 notC_isOutlet = ~connectBound.isOutlet{iMat};

 cCtr = -1 * (...
 sigmaExp(connectSigma{iMat}(:,1), connectSigma{iMat}(:,2)) ...
 + sigmaExp(connectSigma{iMat}(:,1), connectSigma{iMat}(:,3)) ...
 + sigmaExp(connectSigma{iMat}(:,1), connectSigma{iMat}(:,4)) ...
 + sigmaExp(connectSigma{iMat}(:,1), connectSigma{iMat}(:,5)) ...
 + sigmaExp(connectSigma{iMat}(:,1), connectSigma{iMat}(:,6)) ...
 + sigmaExp(connectSigma{iMat}(:,1), connectSigma{iMat}(:,7))) ...
 + sumSigmaNoFlux;

 cWest = sigmaExp(...
 connectSigma{iMat}(:,1) .* notC_isNoFlux(:,1) .* ...
 notC_isInlet(:,1) .* notC_isOutlet(:,1), ...
 connectSigma{iMat}(:,2) .* notC_isNoFlux(:,2) .* ...
 notC_isInlet(:,2) .* notC_isOutlet(:,2) ...
);
 cEast = sigmaExp(...
 connectSigma{iMat}(:,1) .* notC_isNoFlux(:,1) .* ...
 notC_isInlet(:,1) .* notC_isOutlet(:,1), ...
 connectSigma{iMat}(:,3) .* notC_isNoFlux(:,3) .* ...
 notC_isInlet(:,3) .* notC_isOutlet(:,3) ...
);
 cSouth = sigmaExp(...
 connectSigma{iMat}(:,1) .* notC_isNoFlux(:,1), ...
 connectSigma{iMat}(:,4) .* notC_isNoFlux(:,4) ...
);
 cNorth = sigmaExp(...
 connectSigma{iMat}(:,1) .* notC_isNoFlux(:,1), ...
 connectSigma{iMat}(:,5) .* notC_isNoFlux(:,5) ...
);
 cLower = sigmaExp(...
 connectSigma{iMat}(:,1) .* notC_isNoFlux(:,1), ...
 connectSigma{iMat}(:,6) .* notC_isNoFlux(:,6) ...
);
 cUpper = sigmaExp(...
 connectSigma{iMat}(:,1) .* notC_isNoFlux(:,1), ...
 connectSigma{iMat}(:,7) .* notC_isNoFlux(:,7) ...
);

 A = A + sparse(repmat(connect{iMat}(:,1), [7 1]), ...
 [connect{iMat}(:,1); ...
 connect{iMat}(:,2); ...
 connect{iMat}(:,3); ...
 connect{iMat}(:,4); ...
 connect{iMat}(:,5); ...
 connect{iMat}(:,6); ...
 connect{iMat}(:,7)], ...
 [cCtr; cWest; cEast; cSouth; cNorth; cLower; cUpper], ...
 maxMatBounds(1), maxMatBounds(2), nonZeroMax);

 augList = cat(1, augList, ...
 [Model.lids.inlet{iMat}; ...
 Model.lids.outlet{iMat}; ...
 Model.lids.noFlux{iMat}]);

end

allList = 1:prod(Model.geom.dim);
augBidList = ismember(allList, augList);
intList = allList(~augBidList);

A = A(:,intList);
A = A.';
A = A(:,intList);
A = A.';

 205

ndof = size(A, 1);

fprintf('\n\n\tNumber of degrees of freedom: %i\n', ndof);

end

% -- %

function b = assembleloadvectorn(Model, connect, connectBound)

% Subroutine for assemblin gthe load vector

npts = prod(Model.geom.dim);
bKeep = [];

b = spalloc(npts, 1, Model.params.ndof);

for iMat = 1 : Model.params.nMat;

bVals = -1 * Model.params.sigma(iMat) * (...
% applying Dirchlet and Neumann boundary conditions
 Model.params.V_inlet * sum(connectBound.isInlet{iMat}, 2) + ...
 Model.params.V_outlet * sum(connectBound.isOutlet{iMat}, 2));

b = b + sparse(...
% forming sparse load vector
 connect{iMat}(:,1), ...
 ones(size(bVals)), ...
 bVals, ...
 npts, ...
 1, ...
 size(bVals, 1));

bKeep = [bKeep; Model.lids.interior{iMat}];

end

bKeep = sort(bKeep);
b = b(bKeep);
% removing pixels that belong to the boundary or solid material

Model.lids.interior = [];

end

% -- %

function x = dcsolvern(A, b, solveStruct)

% Subroutine for setting up and initializing the preconditioner and solver.

switch solveStruct.soltype

 case 'direct'

 fprintf('\nDirect solver: Matlab %s', '"\"');

 x = A\b;

 case 'iter'

 fprintf('\nPreconditioning matrix...\n');
 fprintf('\n\tPreconditioner: Incomplete Choleski Factorization');

 iluStruct = struct(...
 'type', 'ict', ...
 'droptol', solveStruct.droptol, ...
 'shape', 'lower' ...
);

 L = ichol(-1*A, iluStruct);

 206

 fprintf('\n\tdroptol: %.1e\n', solveStruct.droptol);
 fprintf('\nInitiating solver...\n');
 fprintf('\n\tIterative solver: PCG\n\treltol: %.1e\n', ...
 solveStruct.reltol);

 [x, flag, rr1, iter, relNorm] = pcg(...
 -1*A, ...
 -1*b, ...
 solveStruct.reltol, ...
 solveStruct.maxiter, ...
 L, L', ...
 solveStruct.x0);

 switch flag
 case 0
 fprintf('\n\tPCG converged to the desired tolerance %.1e
within %i iterations.\n', solveStruct.reltol, numel(relNorm));
 case 1
 error('\n\tPCG iterated %i times but did not converge.\n',
solveStruct.maxiter);
 case 2
 error('\n\tPreconditioner was ill-conditioned.\n');
 case 3
 error('\n\tPCG stagnated.\n');
 end

 figure(1); clf;
 plot(1:numel(relNorm), relNorm, '-o');
 set(gca, 'YScale', 'log');
 title('Convergence');
 xlabel('Iterations');
 ylabel('Relative Norm');

end

end

% -- %

function Model = postprocessingn(Model)

% Subroutine for postprocessing the scalar electric potential data to
% obtain the bulk electrical conductivity for the geometry.

fprintf('\nPost-processing...\n');

% Post-processing

E = cell(1, 3);
J = cell(1, 3);

V = Model.result.V(:,2:end-1,2:end-1);
Model.result.V = V;

G = Model.geom.G(:,2:end-1,2:end-1);

gradVXCtr = V(2:end,:,:) - V(1:end-1,:,:);
gradVYCtr = V(:,2:end,:) - V(:,1:end-1,:);
gradVZCtr = V(:,:,2:end) - V(:,:,1:end-1);

ex = gradVXCtr;
ey = gradVYCtr;
ez = gradVZCtr;

ex = -1 * ex;
ey = -1 * ey;
ez = -1 * ez;

sigmaExp = @(s1, s2) (2 * s1 .* s2) ./ (s1 + s2);
sigmaShiftX = sigmaExp(Model.sigmaAll(2:end,2:end-1,2:end-1), ...
 Model.sigmaAll(1:end-1,2:end-1,2:end-1));
sigmaShiftY = sigmaExp(Model.sigmaAll(:,3:end-1,2:end-1), ...

 207

 Model.sigmaAll(:,2:end-2,2:end-1));
sigmaShiftZ = sigmaExp(Model.sigmaAll(:,2:end-1,3:end-1), ...
 Model.sigmaAll(:,2:end-1,2:end-2));

jx = ex .* sigmaShiftX;
jy = ey .* sigmaShiftY;
jz = ez .* sigmaShiftZ;

switch Model.params.flowAxis
 case 'X'

 rotG = Model.geom.G;
 rotG = rotG(:,2:end-1,2:end-1);

 E{1} = ex;
 E{2} = ey;
 E{3} = ez;

 J{1} = jx;
 J{2} = jy;
 J{3} = jz;

 case 'Y'

 rotG = flip(permute(Model.geom.G, [2 1 3]), 1);
 rotG = rotG(2:end-1,:,2:end-1);

 V = flip(permute(V, [2 1 3]), 1);

 E{1} = flip(permute(ey, [2 1 3]), 1);
 E{2} = flip(permute(ex, [2 1 3]), 1);
 E{3} = flip(permute(ez, [2 1 3]), 1);

 J{1} = flip(permute(jy, [2 1 3]), 1);
 J{2} = flip(permute(jx, [2 1 3]), 1);
 J{3} = flip(permute(jz, [2 1 3]), 1);

 case 'Z'

 rotG = flip(permute(Model.geom.G, [3 2 1]), 1);
 rotG = rotG(2:end-1,2:end-1,:);

 V = flip(permute(V, [3 2 1]), 1);

 E{1} = flip(permute(ez, [3 2 1]), 1);
 E{2} = flip(permute(ey, [3 2 1]), 1);
 E{3} = flip(permute(ex, [3 2 1]), 1);

 J{1} = flip(permute(jz, [3 2 1]), 1);
 J{2} = flip(permute(jy, [3 2 1]), 1);
 J{3} = flip(permute(jx, [3 2 1]), 1);

end

dVdL = -1 * (Model.params.V_outlet - Model.params.V_inlet) / ...
 (Model.geom.L - 1);

switch Model.params.flowAxis
 case 'X'
 jxAvg = (1 / prod(size(J{1}))) * sum(sum(sum(J{1})));
 sigmaEff = jxAvg / dVdL;
 case 'Y'
 jyAvg = (1 / prod(size(J{2}))) * sum(sum(sum(J{2})));
 sigmaEff = jyAvg / dVdL;
 case 'Z'
 jzAvg = (1 / prod(size(J{3}))) * sum(sum(sum(J{3})));
 sigmaEff = jzAvg / dVdL;
end

Model.result = storestruct(Model.result, { ...
 'sigmaEff' sigmaEff
 'V' V

 208

 'E' E
 'J' J
 'rotG' rotG
 });

fprintf('\n\tBulk electrical conductivity: %.4e\n', ...
 Model.result.sigmaEff);

end

% -- %

function Model = modifygeom(Model)

fprintf('\nModifying geometry...\n');

% fprintf('\n\n\tDirectory:\t%s', drName);
% fprintf('\n\tFile:\t\t%s', fName);
fprintf('\n\tDimensions:\t%ix%ix%i\n', size(Model.geom.G, 1),
size(Model.geom.G, 2), size(Model.geom.G, 3));

switch Model.params.flowAxis
 case 'Y'
 Model.geom.G = uint8(rotategeom_Gen2(Model.geom.G,
Model.params.flowAxis, 1));
 case 'Z'
 Model.geom.G = uint8(rotategeom_Gen2(Model.geom.G,
Model.params.flowAxis, 1));
end

fprintf('\n\tPreprocessing image\n');

if Model.params.cres > 1
 Model.geom.G = imresample(Model.geom.G, Model.params.cres);
 fprintf('\n');
end
if Model.params.enclose
 Model.geom.G = imenclose(Model.geom.G);
 fprintf('\n');
end
if Model.params.rmislands
 Model.geom.G = rmislands(Model.geom.G,
3*Model.params.cres*Model.params.islthresh);
 fprintf('\n');
end
if Model.params.rmspurs
 Model.geom.G = rmspurs(Model.geom.G);
 fprintf('\n');
end
if Model.params.rminletspurs
 Model.geom.G = rminletspurs(Model.geom.G);
 fprintf('\n');
end

nDim = numel(size(Model.geom.G));
switch nDim
 case 2
 Model.geom.dim = size(Model.geom.G);
% geometry dimensions (in pixels)

 Model.geom.bounds = [...
% boundaries of geometry
 1 Model.geom.dim(1), ...
 1 Model.geom.dim(2) ...
];
 case 3
 Model.geom.dim = size(Model.geom.G);
% geometry dimensions (in pixels)

 Model.geom.bounds = [...
% boundaries of geometry
 1 Model.geom.dim(1), ...

 209

 1 Model.geom.dim(2), ...
 1 Model.geom.dim(3) ...
];
end

Model.geom.L = Model.geom.dim(1);
% length of geometry

end

% -- %

function G3 = imresample(G, trefine)

fprintf('\n\tResampling image to ');

G1 = imresize(G, trefine, 'nearest');
G2 = logical(rotategeom_Gen2(G1, 'Z', 1));
G2 = imresize(G2, [trefine*size(G2, 1) size(G2, 2)], 'nearest');
G3 = logical(flip(permute(G2, [3 2 1]), 1));

fprintf('%ix%ix%i', size(G3, 1), size(G3, 2), size(G3, 3));

end

% -- %

function newG = imenclose(G)

fprintf('\tEnclosing geometry...');

% newG = G;
nDim = numel(size(G));

switch nDim
 case 2
 newG = padarray(G, [0 1]);
 case 3
 newG = padarray(G, [0 1 1]);
end

% newG(:,1,:) = 0;
% newG(:,end,:) = 0;
% newG(:,:,1) = 0;
% newG(:,:,end) = 0;

nMod = abs(sum(G(:)) - sum(newG(:)));

fprintf('%i pixels were modified', nMod);

end

% -- %

function newG = rmislands(G, thresh)

fprintf('\tRemoving islands(<%i)...', thresh);

CC = bwconncomp(G, 6);
F = zeros(size(G), 'uint16');
iVal = uint16(1);
nIsl = numel(CC.PixelIdxList);
for iIsl = 1 : nIsl
 cIsl = CC.PixelIdxList{iIsl};
 if size(cIsl, 1) > thresh
 F(CC.PixelIdxList{iIsl}) = iVal;
 iVal = iVal + 1;
 end
end

newG = F > 0;

 210

nisl = sum(G(:)) - sum(newG(:));

fprintf('%i pixels modified', nisl);

end

% -- %

function G = rmspurs(G)

fprintf('\tRemoving spurs...');

SE(:,:,1) = [0 0 0; 0 1 0; 0 0 0];
SE(:,:,2) = [0 1 0; 1 0 1; 0 1 0];
SE(:,:,3) = [0 0 0; 0 1 0; 0 0 0];

% SE1 = [1 0 1];
% SE2 = [1; 0; 1];
% SE3 = cat(3, 1, 0, 1);

tempG = double(G);

nSpurs = 0;
GoOn = 1;

while GoOn > 0
 C = convn(tempG, SE, 'same');
 C = C.*tempG;
 spurs = (C == 1);
 tempG(spurs) = 0;
 nSpurs_temp = sum(spurs(:));
 if nSpurs_temp == 0
 GoOn = 0;
 end
 nSpurs = nSpurs + nSpurs_temp;
end

G = logical(tempG);

fprintf(sprintf('%i pixels removed.', nSpurs));

end

% -- %

function newG = rminletspurs(G)

notG = ~G;
neighborInletSlice = notG(2,:,:);
neighborOutletSlice = notG(end-1,:,:);
notG(1,:,:) = neighborInletSlice;
notG(end,:,:) = neighborOutletSlice;
newG = ~notG;

end

% -- %

function borderBW = findborder(BW, varargin)

if ~isempty(varargin)
 if strcmpi(varargin{1}, 'Outside') % | 'Outside'
 BW = ~BW;
 end
end

conn = conndef(3,'minimal');
erodeBW = imerode(BW, conn);
borderBW = BW & ~erodeBW;

end

 211

% -- %

function S = storestruct(S, storeName, varargin)

nstr = size(storeName, 1);
for istr = 1 : nstr
 S.(storeName{istr,1}) = storeName{istr,end};
end

end

% -- %

function Model = assembleconn(Model)

fprintf('\n\nAssembling connectivity matrix...');

[iInBox, jInBox, kInBox] = ind2sub(size(Model.geom.G), Model.lids.interior);
% coorinates of the center nodes

xMinus = [iInBox - 1, jInBox, kInBox];
% coorinates of the west-shifted nodes
xPlus = [iInBox + 1, jInBox, kInBox];
% coorinates of the east-shifted nodes
yMinus = [iInBox, jInBox - 1, kInBox];
% coorinates of the south-shifted nodes
yPlus = [iInBox, jInBox + 1, kInBox];
% coorinates of the north-shifted nodesyMinus = [ijInBox(:,1), ijInBox(:,2)
- 1]; % coorinates of the south-shifted
nodes
zMinus = [iInBox, jInBox, kInBox - 1];
% coorinates of the south-shifted nodes
zPlus = [iInBox, jInBox, kInBox + 1]; %
coorinates of the north-shifted nodes

ctrLids = sub2ind(size(Model.geom.G), iInBox, jInBox, kInBox); %
linear indices of the centers nodes

xMinusLids = sub2ind(size(Model.geom.G), xMinus(:,1), xMinus(:,2),
xMinus(:,3)); % linear indices of the west-shifted nodes
xPlusLids = sub2ind(size(Model.geom.G), xPlus(:,1), xPlus(:,2),
xPlus(:,3)); % linear indices of the east-shifted nodes
yMinusLids = sub2ind(size(Model.geom.G), yMinus(:,1), yMinus(:,2),
yMinus(:,3)); % linear indices of the south-shifted nodes
yPlusLids = sub2ind(size(Model.geom.G), yPlus(:,1), yPlus(:,2),
yPlus(:,3)); % linear indices of the north-shifted nodes
zMinusLids = sub2ind(size(Model.geom.G), zMinus(:,1), zMinus(:,2),
zMinus(:,3)); % linear indices of the south-shifted nodes
zPlusLids = sub2ind(size(Model.geom.G), zPlus(:,1), zPlus(:,2),
zPlus(:,3)); % linear indices of the north-shifted nodes

clear xMinus xPlus yMinus yPlus zMinus zPlus;

connect = [ctrLids, xMinusLids, xPlusLids, yMinusLids, yPlusLids,
zMinusLids, zPlusLids]; % connectivity matrix of interior
nodes

clear xMinusLids xPlusLids yMinusLids yPlusLids zMinusLids zPlusLids;

connectIsInlet = ismember(connect, Model.lids.inlet);
% logical array showing connectivities that are located on inlet
connectIsOutlet = ismember(connect, Model.lids.outlet);
% logical array showing connectivities that are located on outlet
connectIsSolLiq = ismember(connect, Model.lids.solLiq);
% logical array showing connectivities that are located on solid-pore
interface

connectIsInlet(connectIsInlet(:,1),:) = 0;
% removing nodes that are part of 'inlet' from connectivity matrix
connectIsOutlet(connectIsOutlet(:,1),:) = 0;
% removing nodes that are part of 'otlet' from connectivity matrix

 212

connectIsSolLiq(connectIsSolLiq(:,1),:) = 0;
% removing nodes that are part of 'solLiq' from connectivity matrix

isConnBound = (...
% logical index of nodes that are connected to boundary nodes
 sum(connectIsInlet, 2) ...
 + sum(connectIsOutlet, 2) ...
 + sum(connectIsSolLiq, 2)) > 0;

connectBound = struct(...
 'isInlet', [], ...
 'isOutlet', [], ...
 'isSolLiq', [], ...
 'isConnBound', []);

connectBound = storestruct(connectBound, { ...
 'isInlet' connectIsInlet
 'isOutlet' connectIsOutlet
 'isSolLiq' connectIsSolLiq
 'isConnBound' isConnBound
 } ...
);

Model.connect = connect;
Model.connectBound = connectBound;

end

% -- %

function A = assemblematrix(Model)

fprintf('\n\nAssembling coefficient matrix...');

nodeList = sort([Model.lids.inlet; Model.lids.outlet; Model.lids.solLiq;
Model.lids.interior]);

nStencilPts = 7;
% size of finite-difference stencil
maxMatBounds = repmat(numel(nodeList), [1 2]); %
maximum matrix bounds for stiffness matrix

nNeighSolLiq = sum(Model.connectBound.isSolLiq, 2);
notC_isSolLiq = ~Model.connectBound.isSolLiq;

enterVals = [...
 -(nStencilPts - 1)*ones(size(Model.connect, 1), 1) + nNeighSolLiq; ...
 notC_isSolLiq(:,2); ...
 notC_isSolLiq(:,3); ...
 notC_isSolLiq(:,4); ...
 notC_isSolLiq(:,5); ...
 notC_isSolLiq(:,6); ...
 notC_isSolLiq(:,7) ...
];

[~, indInt] = sort(nodeList);
indMat = zeros(size(nodeList));
indMat(nodeList) = indInt;

A = sparse(repmat(indMat(Model.connect(:,1)), [7 1]), ...
 [indMat(Model.connect(:,1)); ...
 indMat(Model.connect(:,2)); ...
 indMat(Model.connect(:,3)); ...
 indMat(Model.connect(:,4)); ...
 indMat(Model.connect(:,5)); ...
 indMat(Model.connect(:,6)); ...
 indMat(Model.connect(:,7))], ...
 enterVals, ...
 maxMatBounds(1), maxMatBounds(2), numel(enterVals));

A = A(:,indMat(Model.lids.interior));
A = A.';

 213

A = A(:,indMat(Model.lids.interior));
A = A.';

fprintf('\n\n\tNumber of degrees of freedom: %i\n',
numel(Model.lids.interior));

end

% -- %

function b = assembleloadvector(Model)

% nConnBound = sum(Model.connectBound.isConnBound);
% number of connections pertaining to each node

npts = prod(Model.geom.dim);

% b = spalloc(npts, 1, nConnBound);
% allocating memory for sparse load vector
b = zeros(npts, 1);

% boundSum = -1*(... %
applying Dirchlet and Neumann boundary conditions
% Model.params.V_inlet * sum(Model.connectBound.isInlet, 2) + ...
% Model.params.V_outlet * sum(Model.connectBound.isOutlet, 2) ...
%);
%
% iNonzero = find(boundSum(;
%
% b = sparse

b(Model.connect(:,1)) = -1*(...
% applying Dirchlet and Neumann boundary conditions
 Model.params.V_inlet * sum(Model.connectBound.isInlet, 2) + ...
 Model.params.V_outlet * sum(Model.connectBound.isOutlet, 2) ...
);

b = b(Model.lids.interior);
% removing pixels that belong to the boundary or solid material
b = sparse(b);

end

% -- %

function parentStruct = clearstruct(parentStruct, childStruct)

nstr = size(childStruct, 1);
for istr = 1 : nstr
 parentStruct.(childStruct{istr,1}) = [];
end

end

% -- %

function x = dcsolver(A, b, solveStruct)

switch solveStruct.soltype

 case 'direct'

 fprintf('\nDirect solver: Matlab %s', '"\"');

 x = A\b;

 case 'iter'

 iluStruct = struct(...
 'type', 'ict', ...
 'droptol', solveStruct.droptol, ...
 'shape', 'lower' ...

 214

);

 fprintf('\nPreconditioning matrix...\n');
 fprintf('\n\tPreconditioner: Incomplete Choleski Factorization');
 fprintf('\n\tdroptol: %.1e\n', solveStruct.droptol);
 fprintf('\nInitiating solver...\n');
 fprintf('\n\tIterative solver: PCG\n\treltol: %.1e\n',
solveStruct.reltol);

 L = ichol(-1*A, iluStruct);
 [x, flag, rr1, iter, relNorm] = pcg(-1*A, -1*b, solveStruct.reltol,
solveStruct.maxiter, L, L');

 switch flag
 case 0
 fprintf('\n\tPCG converged to the desired tolerance %.1e
within %i iterations.\n', solveStruct.reltol, numel(relNorm));
 case 1
 error('\n\PCG iterated %i times but did not converge.\n',
solveStruct.maxiter);
 case 2
 error('\n\tPreconditioner was ill-conditioned.\n');
 case 3
 error('\n\PCG stagnated.\n');
 end

% Model.result.flag = flag;
% Model.result.iter = iter;
% Model.result.relNorm = relNorm;
% Model.result.rr1 = rr1;

 figure(1); clf;
 plot(1:numel(relNorm), relNorm, '-o');
 set(gca, 'YScale', 'log');
 title('Convergence');
 xlabel('Iterations');
 ylabel('Relative Norm');

end

% Model.result.potential = x;

end

% -- %

function Model = postprocessing(Model, x)

fprintf('\nPost-processing\n');

% Post-processing

v = zeros(prod(Model.geom.dim), 1);

v(Model.lids.interior) = x;
% remapping solution to 3D geometry
v(Model.lids.inlet) = Model.params.V_inlet;
v(Model.lids.outlet) = Model.params.V_outlet;

V = reshape(v, Model.geom.dim(1), Model.geom.dim(2), Model.geom.dim(3));
V = V(:,2:end-1,2:end-1);

G = Model.geom.G(:,2:end-1,2:end-1);

ex = -1 * (V(2:end,:,:) - V(1:end-1,:,:)) .* G(1:end-1,:,:) .* G(2:end,:,:);
ey = -1 * (V(:,2:end,:) - V(:,1:end-1,:)) .* G(:,1:end-1,:) .* G(:,2:end,:);
ez = -1 * (V(:,:,2:end) - V(:,:,1:end-1)) .* G(:,:,1:end-1) .* G(:,:,2:end);

jx = Model.params.sigma * ex;
jy = Model.params.sigma * ey;
jz = Model.params.sigma * ez;

 215

E = cell(1, 3);
J = cell(1, 3);

switch Model.params.flowAxis
 case 'X'

 rotG = Model.geom.G;

 E{1} = ex;
 E{2} = ey;
 E{3} = ez;

 J{1} = jx;
 J{2} = jy;
 J{3} = jz;

 case 'Y'

 rotG = flip(permute(Model.geom.G, [2 1 3]), 1);

 V = flip(permute(V, [2 1 3]), 1);

 E{1} = flip(permute(ey, [2 1 3]), 1);
 E{2} = flip(permute(ex, [2 1 3]), 1);
 E{3} = flip(permute(ez, [2 1 3]), 1);

 J{1} = flip(permute(jy, [2 1 3]), 1);
 J{2} = flip(permute(jx, [2 1 3]), 1);
 J{3} = flip(permute(jz, [2 1 3]), 1);

 case 'Z'

 rotG = flip(permute(Model.geom.G, [3 2 1]), 1);

 V = flip(permute(V, [3 2 1]), 1);

 E{1} = flip(permute(ez, [3 2 1]), 1);
 E{2} = flip(permute(ey, [3 2 1]), 1);
 E{3} = flip(permute(ex, [3 2 1]), 1);

 J{1} = flip(permute(jz, [3 2 1]), 1);
 J{2} = flip(permute(jy, [3 2 1]), 1);
 J{3} = flip(permute(jx, [3 2 1]), 1);

end

dVdL = -1 * (Model.params.V_outlet - Model.params.V_inlet) / (Model.geom.L -
1);

switch Model.params.flowAxis
 case 'X'
 jxAvg = (1/prod([size(G, 2), size(G, 3)])) *
sum(sum(J{1}(:,:,floor(size(G, 1) / 2))));
 sigmaEff = jxAvg / dVdL;
 case 'Y'
 jyAvg = (1/prod([size(G, 1), size(G, 3)])) *
sum(sum(J{2}(:,:,floor(size(G, 2) / 2))));
 sigmaEff = jyAvg / dVdL;
 case 'Z'
 jzAvg = (1/prod([size(G, 1), size(G, 2)])) *
sum(sum(J{3}(:,:,floor(size(G, 3) / 2))));
 sigmaEff = jzAvg / dVdL;
end

Model.result = [];
Model.result = storestruct(Model.result, { ...
 'sigmaEff' sigmaEff
 'V' V
 'E' E
 'J' J
 'rotG' rotG
 });

 216

fprintf('\nBulk electrical conductivity: %.4e\n', ...
 Model.result.sigmaEff);

End

% -- %

function saveresult(sDir, Model, nRand)

 if ~exist(sDir, 'dir')
 mkdir(sDir);
 end

 V = Model.result.V;

 E = cellfun(@single, Model.result.E, 'UniformOutput', false);
 J = cellfun(@single, Model.result.J, 'UniformOutput', false);

 ex = E{1};
 ey = E{2};
 ez = E{3};

 jx = J{1};
 jy = J{2};
 jz = J{3};

 sigmaStr = sprintf('%.3f-', Model.params.sigma(:)'); sigmaStr =
sigmaStr(1:end-1);

 newDir = sprintf('%sflow%s_sigma%s_%04i/', sDir, Model.params.flowAxis,
sigmaStr, nRand);
 if exist(newDir, 'dir') == 0
 mkdir(newDir);
 end

 print(1, '-dpng', [newDir, 'convergence']);

 save(sprintf('%sstruct', newDir), 'Model', '-v7.3');
 fprintf('\nSaving %sstruct.mat', newDir);
 save(sprintf('%spotential', newDir), 'V', '-v7.3');
 fprintf('\nSaving %spotential.mat', newDir);
 save(sprintf('%selectricField', newDir), 'E', '-v7.3');
 fprintf('\nSaving %selectricField.mat', newDir);
 save(sprintf('%scurrentDensity', newDir), 'J', '-v7.3');
 fprintf('\nSaving %scurrentDensity.mat', newDir);

 fprintf('\n');
% save(sprintf('%s_struct', newDir, newDir, 'ex', '-v7.3');
% fprintf('\nSaving %sflow%s_refine%i_sigma%s_electricFieldX.mat',
newDir);
% save(sprintf('%s_struct', newDir, newDir, 'ey', '-v7.3');
% fprintf('\nSaving %sflow%s_refine%i_sigma%s_electricFieldY.mat',
newDir);
% save(sprintf('%s_struct', newDir, newDir, 'ez', '-v7.3');
% fprintf('\nSaving %sflow%s_refine%i_sigma%s_electricFieldZ.mat',
newDir);

% save(sprintf('%s_struct', newDir, newDir, 'jx', '-v7.3');
% fprintf('\nSaving %s_currentDensityX.mat', newDir);
% save(sprintf('%s_struct', newDir, newDir, 'jy', '-v7.3');
% fprintf('\nSaving %s_currentDensityY.mat', newDir);
% save(sprintf('%s_struct', newDir, newDir, 'jz', '-v7.3');
% fprintf('\nSaving %s_currentDensityZ.mat', newDir);

end

 217

Appendix C: Summary of experimental charges and methods for measuring

local melt fraction distribution

C.1 Summary of harzburgite samples

See next page.

 218

 219

C.2 Quantitative chemistry analysis for harzburgite samples

See next page.

 220

 221

 222

Bright Dendritic
Phase

Figure C.1: Bright dentritic phase appears to be partially crystallized basalt and is
assumed to be melt during segmentation, since they should not be present at run
conditions.

 223

% -- %

function [phiOl, phiOpx, Stats] = LPAnalyze(inputFile, p, varargin)
% Characterizes the local melt fraction distribution of a label image.
% Requires melt, olivine, and opx label images as input. Also requries
% separated olivine and opx 16-bit grain label images and .txt document
% containing the centers of each grain.

if ~isempty(varargin)
 printSwitch = ~isempty(find(strcmp('Print', varargin), 1));
 writeSwitch = ~isempty(find(strcmp('Write', varargin), 1));
 plotSwitch = ~isempty(find(strcmp('Plot', varargin), 1));
 saveSwitch = ~isempty(find(strcmp('Save', varargin), 1));
 plotGrain = ~isempty(find(strcmp('Plot Grain', varargin), 1));
else
 printSwitch = 0;
 writeSwitch = 0;
 plotSwitch = 0;
 saveSwitch = 0;
 plotGrain = 0;
end

% --
% Reading the melt and grain files. Note: Be sure that the input grain
% files have had grains intersecting the bounding box removed.
% --
fprintf('---
-----');
warning('off', 'all');

listDir = 'C:\Users\kevinmiller\code\LPAnalyze_new\'; % directory for binary
tif images

FileNames = LabelFileReader(listDir, inputFile);

nfile = length(FileNames.DirTif);
for ifile = 1 : nfile
 % Loading the binary files
 fprintf('\nReading %s...', FileNames.LabelOlName{ifile});
 LabelOlTif = Tif3DReader(FileNames.DirTif{ifile},
FileNames.LabelOlName{ifile});
 fprintf('Completed!\n');
 fprintf('Reading %s...', FileNames.BinOlName{ifile});
 BinOlTif = Tif3DReader(FileNames.DirTif{ifile},
FileNames.BinOlName{ifile});
 fprintf('Completed!\n');
 fprintf('Reading %s...', FileNames.LabelOpxName{ifile});
 LabelOpxTif = Tif3DReader(FileNames.DirTif{ifile},
FileNames.LabelOpxName{ifile});
 fprintf('Completed!\n');
 fprintf('Reading %s...', FileNames.BinOpxName{ifile});
 BinOpxTif = Tif3DReader(FileNames.DirTif{ifile},
FileNames.BinOpxName{ifile});
 fprintf('Completed!\n');
 fprintf('Reading %s...', FileNames.BinMeltName{ifile});
 BinMeltTif = Tif3DReader(FileNames.DirTif{ifile},
FileNames.BinMeltName{ifile});
 fprintf('Completed!\n');

 % Loading the quantitative grain analyses
 DirAnl = 'C:\Users\kevinmiller\data\analysis\'; % directory for the
quantitative grain analyses
 fidOl = fopen([DirAnl, FileNames.OlAnlName{ifile}]);
 fidOpx = fopen([DirAnl, FileNames.OpxAnlName{ifile}]);
 GrainAnlOl = textscan(fidOl, '%d %d %d %d %d', 'HeaderLines', 1);
fprintf('\nReading %s\n', FileNames.OlAnlName{ifile});
 GrainAnlOpx = textscan(fidOpx, '%d %d %d %d %d', 'HeaderLines', 1);
fprintf('Reading %s\n', FileNames.OpxAnlName{ifile});
 fclose(fidOl); fclose(fidOpx); % closing the file identifiers

 nOl = max(max(max(LabelOlTif))); % number of olivine grains

 224

 nOpx = max(max(max(LabelOpxTif))); % number of opx grains

 OlCtr = double([GrainAnlOl{2}, GrainAnlOl{3}, GrainAnlOl{4}]) + 1; %
centers of olivine grains
 OpxCtr = double([GrainAnlOpx{2}, GrainAnlOpx{3}, GrainAnlOpx{4}]) + 1; %
centers of opx grains

 % allocating memory for the list of local melt fractions for each phase
 phiOl = nan(nOl, 1);
 phiOpx = nan(nOpx, 1);

 usInd = strfind(FileNames.BinMeltName{ifile}, '_');
 dotInd = strfind(FileNames.BinMeltName{ifile}, '.');
 xInd = strfind(FileNames.BinMeltName{ifile}(usInd(3)+1:usInd(4)-1),
'x');
 dim = [... % determining the dimensions of the subvolume from the name
of BinMeltName
 str2double(FileNames.BinMeltName{ifile}(usInd(3)+1:usInd(3)+xInd(1)-
1)), ...

str2double(FileNames.BinMeltName{ifile}(usInd(3)+xInd(1)+1:usInd(3)+xInd(2)-
1)), ...
 str2double(FileNames.BinMeltName{ifile}(usInd(3)+xInd(2)+1:usInd(4)-
1))];
 seriesID = sprintf('%s', FileNames.BinMeltName{ifile}(1:usInd(1)-1));
 sampleID = sprintf('%s',
FileNames.BinMeltName{ifile}(usInd(1)+1:usInd(2)-1));
 subvolID = sprintf('%s',
FileNames.BinMeltName{ifile}(usInd(4)+1:dotInd(1)-1));
 anlName = sprintf('%s_%s_%ix%ix%i_%s.LPAnalysis_p%.2f', seriesID,
sampleID, dim(1), dim(2), dim(3), subvolID, p);

 fprintf('\nSubvolume dimensions: %ix%ix%i pixels^3\n', dim(1), dim(2),
dim(3));

 % --
--
 % Doing a loop for olivine grains
 % --
--
 fprintf('\nAnalyzing olivine grains\n');
 ismore = 1;
 for iOl = 1 : nOl
 iOlCtr = OlCtr(iOl,:);
 [ii, jj, kk] = ind2sub(size(LabelOlTif), find(LabelOlTif==iOl)); %
finding the location of each pixel belonging to grain iOl
 % isPlane = numel(unique(kk)) == 1;
 if ~(numel(unique(ii)) == 1 || numel(unique(jj)) == 1 ||
numel(unique(kk)) == 1)
 % k = convhull(ii, jj, kk); % reducing the number of
points to a simplified convex hull
 k = convhull(ii, jj, kk, 'simplify', false); % reducing the
number of points to a simplified convex hull
 hullpts = [jj(k(:,2)), ii(k(:,1)), kk(k(:,3))]; % combining the
hull points into an array
 T0 = [1 0 0 -iOlCtr(1); 0 1 0 -iOlCtr(2); 0 0 1 -iOlCtr(3); 0 0
0 1];
 hullpts0 = T0*[hullpts'; ones(1, size(hullpts, 1))]; hullpts0 =
hullpts0(1:3,:)'; % translating the hullpts to the origin
 hullpts0 = [hullpts0(:,2), hullpts0(:,1), hullpts0(:,3)];

 [~, radii0, Pevecs, ~] = ellipsoid_fit(hullpts0); % fitting the
convex hull points to an ellipsoid
 if any(isnan(radii0))
 radii0 = sqrt(-1);
 end

 else
 radii0 = sqrt(-1);
 end

 225

 if isreal(radii0) || ~any(isnan(radii0)) % checking that radii is
real, since ellipsoid_fit can return imaginary values if hullpts0 is noisy

 radii0New = p*radii0; % calculating the new ellipsoid parameters
based on the dialation parameter, p
 DPNew = diag(radii0New.^-2); % diagonalizing the principal
lengths
 PNew = Pevecs*DPNew*Pevecs'; % rotating back to the grain's
reference

 parsNew = [PNew(1,1); PNew(2,2); PNew(3,3); PNew(1,2);
PNew(1,3); PNew(2,3)]; % list of the new paramters of the dialated ellipsoid

 xmin = -sqrt(1/(sign(parsNew(1))*parsNew(1)));
 xmax = sqrt(1/(sign(parsNew(1))*parsNew(1)));

 ymin = -sqrt(1/(sign(parsNew(2))*parsNew(2)));
 ymax = sqrt(1/(sign(parsNew(2))*parsNew(2)));

 zmin = -sqrt(1/(sign(parsNew(3))*parsNew(3)));
 zmax = sqrt(1/(sign(parsNew(3))*parsNew(3)));

 ellipBound = [... % coordinates for box bounding the ellipsoid
 sign(xmin)*(ceil(abs(xmin)) + 1),
sign(xmax)*(ceil(abs(xmax)) + 1); ...
 sign(ymin)*(ceil(abs(ymin)) + 1),
sign(ymax)*(ceil(abs(ymax)) + 1); ...
 sign(zmin)*(ceil(abs(zmin)) + 1),
sign(zmax)*(ceil(abs(zmax)) + 1)];

 % translating to the center of the grain
 T2 = [1 0 0 iOlCtr(2); 0 1 0 iOlCtr(1); 0 0 1 iOlCtr(3); 0 0 0
1];
 ellipBoundT = T2*[ellipBound; ones(1, 2)]; ellipBoundT =
ellipBoundT(1:3,:);

 if ~(any(ellipBoundT(1,:) < 1 | ellipBoundT(1,:) > dim(1)) ||
... % exclude grains that intersect the boundary of the subvolume
 any(ellipBoundT(2,:) < 1 | ellipBoundT(2,:) > dim(2)) ||
...
 any(ellipBoundT(3,:) < 1 | ellipBoundT(3,:) > dim(3)))

 meltBound = BinMeltTif(ellipBoundT(1,1) : ellipBoundT(1,2),
ellipBoundT(2,1) : ellipBoundT(2,2), ellipBoundT(3,1) : ellipBoundT(3,2));

 % indexing the binary melt image and translating it to the
origin
 [iAll, jAll, kAll] = ind2sub(size(meltBound),
find(meltBound==1 | meltBound==0)); % finding the xyz coordinates of all
pixels in the cropped melt image
 [iMelt, jMelt, kMelt] = ind2sub(size(meltBound),
find(meltBound==1)); % finding the xyz coordinates of pixels associated with
melt in the cropped melt image

 ctrLocal = [floor((max(iAll) - min(iAll))/2),
floor((max(jAll) - min(jAll))/2), floor((max(kAll) - min(kAll))/2)] + 1; %
center of the sample region where the corner is on the origin

 T3 = [1 0 0 -ctrLocal(1); 0 1 0 -ctrLocal(2); 0 0 1 -
ctrLocal(3); 0 0 0 1]; % assembling translation matrix for translating to
the origin

 ijkAll = [iAll, jAll, kAll]; % concatenating all pixel
coordinates
 ijkAllT = T3*[ijkAll'; ones(1, numel(iAll))]; ijkAllT =
ijkAllT(1:3,:)'; % translating to the origin
 [inptsAll, ~, ~] = inoutEllipGen2(ijkAllT, parsNew);

 ijkMelt = [iMelt, jMelt, kMelt]; % concatenating melt pixel
coordinates
 ijkMeltT = T3*[ijkMelt'; ones(1, numel(iMelt))]; ijkMeltT =
ijkMeltT(1:3,:)'; % translating back to the original cropped melt indices

 226

 [inptsMelt, ~, ~] = inoutEllipGen2(ijkMeltT, parsNew);

 if plotGrain
 figure(5); clf; hold on;
 % plot3(ijkMeltT(ijkMeltT(:,2) >
0,1), ijkMeltT(ijkMeltT(:,2) > 0,2), ijkMeltT(ijkMeltT(:,2) > 0,3), 'or');
 % plot3(hullpts0(:,1),
hullpts0(:,2), hullpts0(:,3), 'o', ...
 % 'MarkerSize', 12, ...
 % 'MarkerFaceColor', 'b');
 plot3(hullpts0(:,1), hullpts0(:,2), hullpts0(:,3), 'o',
...
 'MarkerSize', 12, ...
 'MarkerFaceColor', 'b');
 % plot3(inptsMelt(inptsMelt(:,2) >
0,1), inptsMelt(inptsMelt(:,2) > 0,2), inptsMelt(inptsMelt(:,2) > 0,3),
'oc', ...
 % 'MarkerSize', 12, ...
 % 'MarkerFaceColor', 'c');
 plot3(inptsMelt(:,1), inptsMelt(:,2), inptsMelt(:,3),
'o', ...
 'MarkerSize', 10, ...
 'MarkerFaceColor', 'g');
 % F =
Pevecs*diag(radii0New)*Pevecs';
 % [XS, YS, ZS] = sphere(100);
 % XYZe = F*[XS(:)'; YS(:)'; ZS(:)'];
XYZe = XYZe(1:3,:)';
 % Xe = reshape(XYZe(:,1), size(XS,
1), size(XS, 2));
 % Ye = reshape(XYZe(:,2), size(YS,
1), size(YS, 2));
 % Ze = reshape(XYZe(:,3), size(ZS,
1), size(ZS, 2));

 % deform = (Xe.^2 + Ye.^2 +
Ze.^2).^.5;
 % s1 = surf(Xe, Ye, Ze, deform);
 % set(s1, ...
 % 'FaceColor', 'none');
 axis equal tight;
 box on;
 view(-30, 30);
 end

 nAll = size(inptsAll, 1); % number of pixels bounded by
ellipsoid
 nMelt = size(inptsMelt, 1); % number of pixels associated
with melt inside the boundary ellipsoid

 iphiOl = nMelt/nAll; % melt fraction for current region
 phiOl(ismore,1) = iphiOl; % storing the local melt fraction
 ismore = ismore + 1; % moving on to the next grain
 fprintf('\t%i / %i olivine grains analyzed; Local melt
fraction: %.4f\n', iOl, nOl, iphiOl); % printing progress
 else
 fprintf('\t%i / %i olivine grains analyzed; Local melt
fraction: Out of Bounds\n', iOl, nOl);
 end
 else
 fprintf('\t%i / %i olivine grains analyzed; Local melt fraction:
Radii are imaginary\n', iOl, nOl);
 end
 end

 % --
--
 % Doing a loop for opx grains
 % --
--
 fprintf('\nAnalyzing opx grains\n');
 ismore = 1;

 227

 for iOpx = 1 : nOpx
 if iOpx == 73
 disp('');
 end
 iOpxCtr = OpxCtr(iOpx,:);
 [ii, jj, kk] = ind2sub(size(LabelOpxTif), find(LabelOpxTif==iOpx));
% finding the location of each pixel belonging to grain iOpx
 if ~(numel(unique(ii)) == 1 || numel(unique(jj)) == 1 ||
numel(unique(kk)) == 1)
 % k = convhull(ii, jj, kk); % reducing the number of
points to a simplified convex hull
 k = convhull(ii, jj, kk, 'simplify', false); % reducing the
number of points to a simplified convex hull
 hullpts = [jj(k(:,2)), ii(k(:,1)), kk(k(:,3))]; % combining the
hull points into an array
 T0 = [1 0 0 -iOpxCtr(1); 0 1 0 -iOpxCtr(2); 0 0 1 -iOpxCtr(3); 0
0 0 1];
 hullpts0 = T0*[hullpts'; ones(1, size(hullpts, 1))]; hullpts0 =
hullpts0(1:3,:)'; % translating the hullpts to the origin
 hullpts0 = [hullpts0(:,2), hullpts0(:,1), hullpts0(:,3)];

 [~, radii0, Pevecs, ~] = ellipsoid_fit(hullpts0); % fitting the
convex hull points to an ellipsoid

 else
 radii0 = sqrt(-1);
 end

 if isreal(radii0) && ~any(isnan(radii0)) % checking that radii is
real, since ellipsoid_fit can return imaginary values if hullpts0 is noisy

 radii0New = p*radii0; % calculating the new ellipsoid parameters
based on the dialation parameter, p
 DPNew = diag(radii0New.^-2); % diagonalizing the principal
lengths
 PNew = Pevecs*DPNew*Pevecs'; % rotating back to the grain's
reference

 parsNew = [PNew(1,1); PNew(2,2); PNew(3,3); PNew(1,2);
PNew(1,3); PNew(2,3)]; % list of the new paramters of the dialated ellipsoid

 xmin = -sqrt(1/(sign(parsNew(1))*parsNew(1)));
 xmax = sqrt(1/(sign(parsNew(1))*parsNew(1)));

 ymin = -sqrt(1/(sign(parsNew(2))*parsNew(2)));
 ymax = sqrt(1/(sign(parsNew(2))*parsNew(2)));

 zmin = -sqrt(1/(sign(parsNew(3))*parsNew(3)));
 zmax = sqrt(1/(sign(parsNew(3))*parsNew(3)));

 ellipBound = [... % coordinates for box bounding the ellipsoid
 sign(xmin)*(ceil(abs(xmin)) + 1),
sign(xmax)*(ceil(abs(xmax)) + 1); ...
 sign(ymin)*(ceil(abs(ymin)) + 1),
sign(ymax)*(ceil(abs(ymax)) + 1); ...
 sign(zmin)*(ceil(abs(zmin)) + 1),
sign(zmax)*(ceil(abs(zmax)) + 1)];

 % translating to the center of the grain
 T2 = [1 0 0 iOpxCtr(2); 0 1 0 iOpxCtr(1); 0 0 1 iOpxCtr(3); 0 0
0 1];
 ellipBoundT = T2*[ellipBound; ones(1, 2)]; ellipBoundT =
ellipBoundT(1:3,:);

 if ~(any(ellipBoundT(1,:) < 1 | ellipBoundT(1,:) > dim(1)) ||
... % exclude grains that intersect the boundary of the subvolume
 any(ellipBoundT(2,:) < 1 | ellipBoundT(2,:) > dim(2)) ||
...
 any(ellipBoundT(3,:) < 1 | ellipBoundT(3,:) > dim(3)))

 meltBound = BinMeltTif(ellipBoundT(1,1) : ellipBoundT(1,2),
ellipBoundT(2,1) : ellipBoundT(2,2), ellipBoundT(3,1) : ellipBoundT(3,2));

 228

 % indexing the binary melt image and translating it to the
origin
 [iAll, jAll, kAll] = ind2sub(size(meltBound),
find(meltBound==1 | meltBound==0)); % finding the xyz coordinates of all
pixels in the cropped melt image
 [iMelt, jMelt, kMelt] = ind2sub(size(meltBound),
find(meltBound==1)); % finding the xyz coordinates of pixels associated with
melt in the cropped melt image

 ctrLocal = [floor((max(iAll) - min(iAll))/2),
floor((max(jAll) - min(jAll))/2), floor((max(kAll) - min(kAll))/2)] + 1; %
center of the sample region where the corner is on the origin

 T3 = [1 0 0 -ctrLocal(1); 0 1 0 -ctrLocal(2); 0 0 1 -
ctrLocal(3); 0 0 0 1]; % assembling translation matrix for translating to
the origin

 ijkAll = [iAll, jAll, kAll]; % concatenating all pixel
coordinates
 ijkAllT = T3*[ijkAll'; ones(1, numel(iAll))]; ijkAllT =
ijkAllT(1:3,:)'; % translating to the origin
 [inptsAll, ~, ~] = inoutEllipGen2(ijkAllT, parsNew);

 ijkMelt = [iMelt, jMelt, kMelt]; % concatenating melt pixel
coordinates
 ijkMeltT = T3*[ijkMelt'; ones(1, numel(iMelt))]; ijkMeltT =
ijkMeltT(1:3,:)'; % translating back to the original cropped melt indices
 [inptsMelt, ~, ~] = inoutEllipGen2(ijkMeltT, parsNew);

 if plotGrain
 figure(5); clf; hold on;
 % plot3(ijkMeltT(ijkMeltT(:,2) >
0,1), ijkMeltT(ijkMeltT(:,2) > 0,2), ijkMeltT(ijkMeltT(:,2) > 0,3), 'or');
 % plot3(hullpts0(:,1),
hullpts0(:,2), hullpts0(:,3), 'o', ...
 % 'MarkerSize', 12, ...
 % 'MarkerFaceColor', 'b');
 plot3(hullpts0(:,1), hullpts0(:,2), hullpts0(:,3), 'o',
...
 'MarkerSize', 12, ...
 'MarkerFaceColor', 'b');
 % plot3(inptsMelt(inptsMelt(:,2) >
0,1), inptsMelt(inptsMelt(:,2) > 0,2), inptsMelt(inptsMelt(:,2) > 0,3),
'oc', ...
 % 'MarkerSize', 12, ...
 % 'MarkerFaceColor', 'c');
 plot3(inptsMelt(:,1), inptsMelt(:,2), inptsMelt(:,3),
'o', ...
 'MarkerSize', 10, ...
 'MarkerFaceColor', 'g');
 % F =
Pevecs*diag(radii0New)*Pevecs';
 % [XS, YS, ZS] = sphere(100);
 % XYZe = F*[XS(:)'; YS(:)'; ZS(:)'];
XYZe = XYZe(1:3,:)';
 % Xe = reshape(XYZe(:,1), size(XS,
1), size(XS, 2));
 % Ye = reshape(XYZe(:,2), size(YS,
1), size(YS, 2));
 % Ze = reshape(XYZe(:,3), size(ZS,
1), size(ZS, 2));

 % deform = (Xe.^2 + Ye.^2 +
Ze.^2).^.5;
 % s1 = surf(Xe, Ye, Ze, deform);
 % set(s1, ...
 % 'FaceColor', 'none');
 axis equal tight;
 box on;
 view(-30, 30);
 end

 229

 nAll = size(inptsAll, 1); % number of pixels bounded by
ellipsoid
 nMelt = size(inptsMelt, 1); % number of pixels associated
with melt inside the boundary ellipsoid

 iphiOpx = nMelt/nAll; % melt fraction for current region
 phiOpx(ismore,1) = iphiOpx; % storing the local melt
fraction
 ismore = ismore + 1; % moving on to the next grain
 fprintf('\t%i / %i opx grains analyzed; Local melt fraction:
%.4f\n', iOpx, nOpx, iphiOpx); % printing progress
 else
 fprintf('\t%i / %i opx grains analyzed; Local melt fraction:
Out of Bounds\n', iOpx, nOpx);
 end
 else
 fprintf('\t%i / %i opx grains analyzed; Local melt fraction:
Radii are imaginary\n', iOpx, nOpx);
 end
 end

 % --
--
 % Calculating the statistics for both mineral types and dumping to file
 % --
--
 phiOl(isnan(phiOl) | (phiOl == 0)) = []; % removing NaN's from phiOl
 phiOpx(isnan(phiOpx) | (phiOpx == 0)) = []; % removing NaN's from phiOpx

 saveDir = 'C:\Users\kevinmiller\data\lp\';

 if saveSwitch % saving the local melt fractions for eachgrain
 if ~exist(saveDir, 'dir')
 mkdir(saveDir)
 end
 olSaveName = sprintf('%s%s_phiOl.mat', saveDir, anlName);
 fprintf('\n%s', olSaveName);
 opxSaveName = sprintf('%s%s_phiOpx.mat', saveDir, anlName);
 fprintf('\n%s', opxSaveName);
 save(olSaveName, 'phiOl');
 save(opxSaveName, 'phiOpx');
 end

 totalMeltFraction = sum(BinMeltTif(:))/(size(BinMeltTif,
1)*size(BinMeltTif, 2)*size(BinMeltTif, 3)); % calculating the total melt
fraction of the subvolume region
 totalOlFraction = sum(BinOlTif(:) > 0)/(size(BinOlTif, 1)*size(BinOlTif,
2)*size(BinOlTif, 3)); % calculating the total olivine fraction of the
subvolume region
 totalOpxFraction = sum(BinOpxTif(:) > 0)/(size(BinOpxTif,
1)*size(BinOpxTif, 2)*size(BinOpxTif, 3)); % calculating the total olivine
fraction of the subvolume region
 totalMaterialFraction = totalMeltFraction + totalOlFraction +
totalOpxFraction;

 gMeanOl = geomean(phiOl*100); % geometrix mean melt fraction around
olivine grains
 gStdOl = exp(sqrt(sum(log(phiOl*100/gMeanOl).^2)/numel(phiOl))); %
geometric standard deviation of local melt fraction around olivine gains

 gMeanOpx = geomean(phiOpx*100); % geometric mean melt fraction around
opx grains
 gStdOpx = exp(sqrt(sum(log(phiOpx*100./gMeanOpx).^2)/numel(phiOpx))); %
geometric standard deviation of local melt fraction around opx grains

 R = gMeanOl/gMeanOpx; % partitioning ratio

 orderOl = sort(phiOl);
 medOl = median(orderOl);
 lowHalfOl = orderOl(orderOl < medOl);
 medLowHalfOl = median(lowHalfOl);

 230

 highHalfOl = orderOl(orderOl > medOl);
 medHighHalfOl = median(highHalfOl);

 Q1Ol = medLowHalfOl;
 Q2Ol = medOl;
 Q3Ol = medHighHalfOl;

 orderOpx = sort(phiOpx);
 medOpx = median(orderOpx);
 lowHalfOpx = orderOpx(orderOpx < medOpx);
 medLowHalfOpx = median(lowHalfOpx);
 highHalfOpx = orderOpx(orderOpx > medOpx);
 medHighHalfOpx = median(highHalfOpx);

 Q1Opx = medLowHalfOpx;
 Q2Opx = medOpx;
 Q3Opx = medHighHalfOpx;

 Stats.TotalMaterial.olivine = totalOlFraction;
 Stats.TotalMaterial.opx = totalOpxFraction;
 Stats.TotalMaterial.melt = totalMeltFraction;

 Stats.Local.olivine.nGrains = nOl;
 Stats.Local.olivine.mean = gMeanOl;
 Stats.Local.olivine.std = gStdOl;
 Stats.Local.olivine.median = medOl;
 Stats.Local.olivine.quartiles = [Q1Ol, Q2Ol, Q3Ol];

 Stats.Local.opx.nGrains = nOpx;
 Stats.Local.opx.mean = gMeanOpx;
 Stats.Local.opx.std = gStdOpx;
 Stats.Local.opx.median = medOpx;
 Stats.Local.opx.quartiles = [Q1Opx, Q2Opx, Q3Opx];

 Stats.R = gMeanOpx/gMeanOl;

 % Outputting results to text file
 sprintf('\nAtempting to write metadata to file\n\t%s%s\n', saveDir,
anlName);
 isfile = exist(sprintf('%s%s.txt', saveDir, anlName), 'file');
 if isfile
 sprintf('\nWarning: File %s already exists\n', anlName);
 end

 if writeSwitch % writing to text file
 fid = fopen(sprintf('%s%s.txt', saveDir, anlName), 'wt');
 fprintf(fid, 'Sample Name:\n\t%s\n',
FileNames.BinMeltName{ifile}(1:dotInd(1)-1));
 fprintf(fid, '\nTotal number of grains: %i\n\tOlivine: %i\n\tOpx:
%i\n', nOl + nOpx, nOl, nOpx);
 fprintf(fid, '\nNumber of grains used in average: %i\n\tOlivine:
%i\n\tOpx: %i\n', numel(phiOl) + numel(phiOpx), numel(phiOl),
numel(phiOpx));
 fprintf(fid, '\nTotal Material Fractions:\n\tOlivine: %.2f%%\n\tOpx:
%.2f%%\n\tMelt: %.2f%%\n\tTotal: %.2f%%\n', totalOlFraction*100,
totalOpxFraction*100, totalMeltFraction*100, totalMaterialFraction*100);
 fprintf(fid, '\nMelt fraction associated with each phase:\n');
 fprintf(fid, '\tOlivine: %.2f%% with error (-%.2f%% / +%.2f%%)\n',
gMeanOl, abs(gMeanOl - gMeanOl/gStdOl), abs(gMeanOl - gMeanOpx*gStdOl));
 fprintf(fid, '\tOpx: %.2f%% with error (-%.2f%% / +%.2f%%)\n\n',
gMeanOpx, abs(gMeanOpx - gMeanOpx/gStdOpx), abs(gMeanOpx -
gMeanOpx*gStdOpx));
 fprintf(fid, 'Quartiles:\n\tOlivine: [%.2f%%, %.2f%%,
%.2f%%]\n\tOpx: [%.2f%%, %.2f%%, %.2f%%]\n\n', Q1Ol*100, Q2Ol*100, Q3Ol*100,
Q1Opx*100, Q2Opx*100, Q3Opx*100);
 % fprintf(fid, 'Partitioning ratio:\n\t%.2f +/- %.4f
(Olivine to Opx)\n\n', R, RStd);
 fclose(fid);
 end

 % Printing our results in the command window at the end of run

 231

 fprintf('\nTotal number of grains: %i\n\tOlivine: %i\n\tOpx: %i\n', nOl
+ nOpx, nOl, nOpx);
 fprintf('\nNumber of grains used in average: %i\n\tOlivine: %i\n\tOpx:
%i\n', numel(phiOl) + numel(phiOpx), numel(phiOl), numel(phiOpx));
 fprintf('\nTotal Material Fractions:\n\tOlivine: %.2f%%\n\tOpx:
%.2f%%\n\tMelt: %.2f%%\n\tTotal: %.2f%%\n', totalOlFraction*100,
totalOpxFraction*100, totalMeltFraction*100, totalMaterialFraction*100);
 fprintf('\nMelt fraction associated with each phase:\n');
 fprintf('\tOlivine: %.2f%% with error (-%.2f%% / +%.2f%%)\n', gMeanOl,
abs(gMeanOl - gMeanOl/gStdOl), abs(gMeanOl - gMeanOpx*gStdOl));
 fprintf('\tOpx: %.2f%% with error (-%.2f%% / +%.2f%%)\n\n', gMeanOpx,
abs(gMeanOpx - gMeanOpx/gStdOpx), abs(gMeanOpx - gMeanOpx*gStdOpx));
 fprintf('Quartiles:\n\tOlivine: [%.2f%%, %.2f%%, %.2f%%]\n\tOpx:
[%.2f%%, %.2f%%, %.2f%%]\n\n', Q1Ol*100, Q2Ol*100, Q3Ol*100, Q1Opx*100,
Q2Opx*100, Q3Opx*100);
 fprintf('Partitioning ratio: %.2f +/- %.4f\n\n', R);

 % --
--
 % Plotting the results
 % --
--
 if plotSwitch % if 'Plot' is specified in the variable input
 figure(1); clf; subplot(211)
 nedge = 10;
 edges = linspace(0, 0.4, nedge);
 dataOl = histc(phiOl, edges);
 dataOpx = histc(phiOpx, edges);
 plot(edges, dataOl, 'g'); hold on;
 plot(edges, dataOpx, 'r'); hold off;
 xlabel('Local Melt Fraction');
 ylabel('# of Grains');

 title(sprintf('LP Histograms for %s%s-%s with p = %.1f and nedge =
%i', seriesID, sampleID, subvolID, p, nedge));

 XLim = get(gca, 'XLim');
 YLim = get(gca, 'YLim');

 % text(XLim(2)*.75, YLim(2)*.6,
sprintf('Olivine:\nMean_\\phi: %.2f%%\n\\sigma_\\phi:
%.2f%%\nOpx:\nMean_\\phi: %.2f%%\n\\sigma_\\phi: %.2f%%', gMeanOl, gStdOl,
gMeanOpx, gStdOpx));
 text(XLim(2)*.75, YLim(2)*.6, sprintf('Olivine:\nMedian_\\phi:
%.2f%%\nOpx:\nMedian_\\phi: %.2f%%', 100*Q2Ol, 100*Q2Opx));
 subplot(212)
 plot(sort(phiOl),linspace(0,1,numel(phiOl)),'g');
 hold on;
 plot(sort(phiOpx),linspace(0,1,numel(phiOpx)),'r');

 plot([Q1Ol, Q1Ol], [0 1], '--g');
 plot([Q2Ol, Q2Ol], [0 1], '--g');
 plot([Q3Ol, Q3Ol], [0 1], '--g');

 plot([Q1Opx, Q1Opx], [0 1], '--r');
 plot([Q2Opx, Q2Opx], [0 1], '--r');
 plot([Q3Opx, Q3Opx], [0 1], '--r');

 xlabel('Local Melt Fraction');
 ylabel('Cumulative frequency');
 legend('Olivine', 'Opx', 'Location', 'Southeast');
 set(gca,'xscale','log');
 xlim([0.01,1]);

 if printSwitch % Saving the figure
 dotLoc = strfind(FileNames.BinMeltName{ifile}, '.');
 saveName = sprintf('%s%s_LithPart_p%.2f.pdf', saveDir,
FileNames.BinMeltName{ifile}(1:dotLoc(1)-1), p);
 print(1, '-dpdf', saveName);
 fprintf('Saving file to:\n\t%s\n\n', saveName);
 end
 end

 232

end

end

% -- %

function FileNames = LabelFileReader(Dir, fileList)

 FileNames = struct(...
 'DirTif', {}, ...
 'BinMeltName', {}, ...
 'BinOlName', {}, ...
 'BinOpxName', {}, ...
 'LabelOlName', {}, ...
 'LabelOpxName', {}, ...
 'OlAnlName', {}, ...
 'OpxAnlName', {} ...
);

 fid = fopen(sprintf('%s%s', Dir, fileList));
 GoOn0 = 1;
 while GoOn0
 cline = fgetl(fid);
 switch cline
 case '# Binary Files Folder'
 DirTif = {};
 GoOn1 = 1; next = 1;
 nextLine = fgetl(fid);
 while GoOn1
 if isempty(nextLine) || ~ischar(nextLine); break;
 else
 DirTif{next,1} = nextLine;
 next = next + 1;
 nextLine = fgetl(fid);
 end
 end
 FileNames(1).DirTif = DirTif;
 case '# Melt 8-bit Binary File'
 BinMeltName = {};
 GoOn1 = 1; next = 1;
 nextLine = fgetl(fid);
 while GoOn1
 if isempty(nextLine) || ~ischar(nextLine); break;
 else
 BinMeltName{next,1} = nextLine;
 next = next + 1;
 nextLine = fgetl(fid);
 end
 end
 FileNames.BinMeltName = BinMeltName;
 case '# Olivine 8-bit Binary File'
 BinOlName = {};
 GoOn1 = 1; next = 1;
 nextLine = fgetl(fid);
 while GoOn1
 if isempty(nextLine) || ~ischar(nextLine); break;
 else
 BinOlName{next,1} = nextLine;
 next = next + 1;
 nextLine = fgetl(fid);
 end
 end
 FileNames.BinOlName = BinOlName;
 case '# Opx 8-bit Binary File'
 BinOpxName = {};
 GoOn1 = 1; next = 1;
 nextLine = fgetl(fid);
 while GoOn1
 if isempty(nextLine) || ~ischar(nextLine); break;
 else

 233

 BinOpxName{next,1} = nextLine;
 next = next + 1;
 nextLine = fgetl(fid);
 end
 end
 FileNames.BinOpxName = BinOpxName;
 case '# Olivine 16-bit Binary File for Interior Grains'
 LabelOlName = {};
 GoOn1 = 1; next = 1;
 nextLine = fgetl(fid);
 while GoOn1
 if isempty(nextLine) || ~ischar(nextLine); break;
 else
 LabelOlName{next,1} = nextLine;
 next = next + 1;
 nextLine = fgetl(fid);
 end
 end
 FileNames.LabelOlName = LabelOlName;
 case '# Opx 16-bit Binary File for Interior Grains'
 LabelOpxName = {};
 GoOn1 = 1; next = 1;
 nextLine = fgetl(fid);
 while GoOn1
 if isempty(nextLine) || ~ischar(nextLine); break;
 else
 LabelOpxName{next,1} = nextLine;
 next = next + 1;
 nextLine = fgetl(fid);
 end
 end
 FileNames.LabelOpxName = LabelOpxName;
 case '# Olivine Analysis Files'
 OlAnlName = {};
 GoOn1 = 1; next = 1;
 nextLine = fgetl(fid);
 while GoOn1
 if isempty(nextLine) || ~ischar(nextLine); break;
 else
 OlAnlName{next,1} = nextLine;
 next = next + 1;
 nextLine = fgetl(fid);
 end
 end
 FileNames.OlAnlName = OlAnlName;
 case '# Opx Analysis Files'
 OpxAnlName = {};
 GoOn1 = 1; next = 1;
 nextLine = fgetl(fid);
 while GoOn1
 if isempty(nextLine) || ~ischar(nextLine); break;
 else
 OpxAnlName{next,1} = nextLine;
 next = next + 1;
 nextLine = fgetl(fid);
 end
 end
 FileNames.OpxAnlName = OpxAnlName;
 end
 if ~ischar(nextLine) && nextLine == -1;
 GoOn0 = 0;
 end
 end

 end

% -- %

function FinalImage = Tif3DReader(Dir, FileTif, varargin)

 234

 if ~isempty(varargin)
 if strcmp(varargin, 'Flip');
 flipSwitch = 1;
 else
 flipSwitch = 0;
 end
 if strcmp(varargin{1}, 'Plot')
 % cmd = varargin{1};
 islice = varargin{2};
 if ischar(islice) && strcmp(varargin{2}, 'All')
 else
 islice = varargin{2};
 end
 end
 else
 flipSwitch = 0;
 end

 % FileTif='rec_scoba_12_200x200x200_sample8_pc-melt_final.tif';
 InfoImage=imfinfo([Dir, FileTif]);
 mImage=InfoImage(1).Width;
 nImage=InfoImage(1).Height;
 NumberImages=length(InfoImage);
 FinalImage=zeros(nImage,mImage,NumberImages,'uint16');

 TifLink = Tiff([Dir, FileTif], 'r');
 for i=1:NumberImages
 TifLink.setDirectory(i);
 FinalImage(:,:,i)=TifLink.read();
 end
 TifLink.close();

 if flipSwitch
 for iz = 1 : size(FinalImage, 3)
 FinalImage(:,:,iz) = FinalImage(:,:,iz)';
 end
 end
 % FinalImage = double(FinalImage);

 % getting the dimensions of the sample
 % xloc = strfind(FileTif, 'x');
 % xDim = str2num(FileTif(xloc(1)-3:xloc(1)-1));
 % yDim = str2num(FileTif(xloc(2)-3:xloc(2)-1));
 % zDim = str2num(FileTif(xloc(2)+1:xloc(2)+3));

 % % Imported this section from online code
 % % http://people.ece.cornell.edu/land/PROJECTS/Reconstruction/index.html
 % %patch smoothing factor
 % rfactor = 0.125;
 % %isosurface size adjustment
 % level = .8;
 % %useful string constants
 % c2 = 'facecolor';
 % c1 = 'edgecolor';
 %
 % p=patch(isosurface(smooth3(FinalImage==1),level));
 % reducepatch(p,rfactor)
 % set(p,c2,[1,0,0],c1,'none');
 %
 % p=patch(isosurface(smooth3(FinalImage==2),level));
 % reducepatch(p,rfactor)
 % set(p,c2,[0,1,0],c1,'none');
 % % spy(FinalImage(:,:,islice));
 % [Xi, Yi, Zi] = meshgrid(0:1:xDim-1, 0:1:yDim-1, 0:1:zDim-1);
 %
 % % Xi = uint8(Xi);
 % % Yi = uint8(Yi);
 % % Zi = uint8(Zi);
 % % fidbl = double(FinalImage);
 % % figure(1); clf;
 % % ImageData2D = FinalImage(:,:,islice);
 % % fv = isosurface(fidbl, Xi, Yi, Zi);

 235

 % % slice(FinalImage, Xi, Yi, Zi);
 % % colormap(jet);
 % % bwi = im2bw(FinalImage(:,:,islice));
 % % image(bwi);
 % if ~isempty(varargin)
 % image(FinalImage(:,:,islice));
 % end
 % colormap(jet);

 end

% -- %

Download ellipsoid_fit.m from http://www.mathworks.com/matlabcentral/fileexchange/24693-ellipsoid-
fit/content//ellipsoid_fit.m

% -- %

function [inpts, outpts, tf] = inoutEllipGen2(x, pars)

 P = [pars(1), pars(4), pars(5); ...
 pars(4), pars(2), pars(6); ...
 pars(5), pars(6), pars(3)];

 % P = [pars(2), pars(4), pars(5); ...
 % pars(4), pars(1), pars(6); ...
 % pars(5), pars(6), pars(3)];

 M1 = P*x';
 M2 = sum((x').*M1, 1);

 In = M2 <= 1;
 Out = M2 > 1;

 tf = In;

 inpts = x(In,:);
 outpts = x(Out,:);

 end

% -- %

 236

References

Aharonov, E., Whitehead, J.A., Kelemen, P.B., Spiegelman, M., 1995. Channeling

instability of upwelling melt in the mantle. J. Geophys. Res. 100, 20433–20450.
doi:10.1029/95JB01307

Allégre, C.J., Condomines, M., Allègre, C.J., 1982. Basalt genesis and mantle
structure studied through Th-isotope geochemistry. Nature 299.

Allégre, C.J., Montigny, R., Bottinga, Y., 1973. Cortège ophiolitique et cortège
océanique, géochimie comparée et mode de genèse. Bull. Soc. Geol. Fr 15, 7.

Allwright, J., Katz, R., 2014. Pipe Poiseuille flow of viscously anisotropic, partially
molten rock. arXiv Prepr. arXiv1404.6366 1–21.

Andrä, H., Combaret, N., Dvorkin, J., Glatt, E., Han, J., Kabel, M., Keehm, Y.,
Krzikalla, F., Lee, M., Madonna, C., Marsh, M., Mukerji, T., Saenger, E.H., Sain,
R., Saxena, N., Ricker, S., Wiegmann, A., Zhan, X., 2013. Digital rock physics
benchmarks—part II: Computing effective properties. Comput. Geosci. 50, 33–
43. doi:10.1016/j.cageo.2012.09.008

Asimow, P., Hirschmann, M., Ghiorso, M., O’Hara, M., Stolper, E., 1995. The effect
of pressure-induced solid-solid phase transitions on decompression melting of the
mantle. Geochim. Cosmochim. Acta 59, 4489–4506.

Avellaneda, M., Torquato, S., 1991. Rigorous link between fluid permeability,
electrical conductivity, and relaxation times for transport in porous media. Phys.
Fluids A Fluid Dyn. 3, 2529. doi:10.1063/1.858194

Beucher, S., 1992. The watershed transformation applied to image segmentation.
Scanning Microsc. 6, 299–314.

Beucher, S., Meyer, F., 1992. The morphological approach to segmentation: the
watershed transformation, in: Optical Engineering. Marcel Dekker Incorporated,
New York, pp. 433–481.

Bourdon, B., Sims, K., 2003. U-series Constraints on Intraplate Basaltic Magmatism.
Rev. Minerol. Geochemistry 52, 215–254.

Boyd, F.R., England, J.L., 1960. Apparatus for phase-equilibrium measurements at
pressures up to 50 kilobars and temperatures up to 1750°C. J. Geophys. Res. 65,
741–748.

Buades, A., Coll, B., Morel, J., 2005. A non-local algorithm for image denoising.
Comput. Vis. Pattern Recognit. 2, 60–65.

Buck, W.R., Su, W., 1989. Focused mantle upwelling below mid‐ocean ridges due to
feedback between viscosity and melting. Geophys. Res. Lett. 16, 641–644.

Bulau, J.R., Waff, H.S., Tyburczy, J.A., 1979. Mechanical and Thermodynamic
Constraints on Fluid Distribution in Partial Melts. J. Geophys. Res. 84, 6102–
6108. doi:10.1029/JB084iB11p06102

Cheadle, M.J., 1989. Properties of texturally equilibrated two-phase aggregates.
University of Cambridge.

Cheadle, M.J., Elliott, M.T., McKenzie, D., 2004. Percolation threshold and
permeability of crystallizing igneous rocks: The importance of textural
equilibrium. Geology 32, 757. doi:10.1130/G20495.1

Chorin, A.J., 1967. A numerical method for solving incompressible viscous flow
problems. J. Comput. Phys. 2, 12–26.

 237

Cmíral, M., Fitz, J.D., Faul, U.H., Green, D.H., 1998. A close look at dihedral angles
and melt geometry in olivine-basalt aggregates: a TEM study. Contrib. to Mineral.
Petrol. 130, 336–345.

Condomines, M., Morand, P., Allrgre, C.J., 1981. 230Th-238U radioactive
disequilibria in tholeiites from the FAMOUS zone (Mid-Atlantic Ridge, 36°
50’N): Th and Sr isotopic geochemistry. Earth Planet. Sci. Lett. 55, 247–256.

Connolly, J.A.D., Schmidt, M.W., Solferino, G., Bagdassarov, N., 2009. Permeability
of asthenospheric mantle and melt extraction rates at mid-ocean ridges. Nature
462, 209–12. doi:10.1038/nature08517

Constable, S., 2006. SEO3: A new model of olivine electrical conductivity. Geophys.
J. Int. 166, 435–437. doi:10.1111/j.1365-246X.2006.03041.x

Cooper, R.F., Kohlstedt, D.L., 1982. Interfacial energies in the olivine-basalt system,
in: High Pressure Research in Geophysics. Center for Academic Publications, pp.
217–228.

Cooper, R.F., Kohlstedt, D.L., 1984. Sintering of olivine and olivine-basalt
aggregates. Phys. Chem. Miner. 11, 5–16. doi:10.1007/BF00309372

Cooper, R.F., Kohlstedt, D.L., 1984. Solution-precipitation enhanced diffusional
creep of partially molten olivine-basalt aggregates during hot-pressing.
Tectonophysics 107, 207–233.

Dai, L., Karato, S., 2014a. The effect of pressure on the electrical conductivity of
olivine under the hydrogen-rich conditions. Phys. Earth Planet. Inter. 232, 51–56.

Dai, L., Karato, S., 2014b. High and highly anisotropic electrical conductivity of the
asthenosphere due to hydrogen diffusion in olivine. Earth Planet. Sci. Lett. 408,
79–86.

Dai, L., Li, H., Li, C., Hu, H., Shan, S., 2010. The electrical conductivity of dry
polycrystalline olivine compacts at high temperatures and pressures. Mineral.
Mag. 74, 849–857.

Daines, M.J., Kohlstedt, D.L., 1994. The transition from porous to channelized flow
due to melt/rock reaction during melt migration. Geophys. Res. Lett. 21, 145–148.
doi:10.1029/93GL03052

Daines, M.J., Kohlstedt, D.L., 1997. Influence of deformation on melt topology in
peridotites. J. Geophys. Res. 102, 10210–10257.

David, C., 1993. Geometry of flow paths for fluid transport in rocks. J. Geophys. Res.
98, 12267. doi:10.1029/93JB00522

Debye, P., Hückel, E., 1923. De la théorie des électrolytes. i. abaissement du point de
congélation et phénomènes associés. Phys. Zeitschrift 24, 185–206.

Dick, H., 1989. Abyssal peridotites, very slow spreading ridges and ocean ridge
magmatism. Geol. Soc. London, Spec. Publ. 71–105.

Dick, H.J.B., 1977. Evidence of partial melting in the Josephine peridotite. Magma
Genes. 59–62.

Dowd, B.A., Campbell, G.H., Siddons, D.P., Marr, R.B., Nagarkar, V. V, Tipnis, S.
V, Axe, L., 1999. Developments in synchrotron x-ray computed
microtomography at the National Synchrotron Light Source. Proc. SPIE 224–236.

Duda, A., Koza, Z., Matyka, M., 2011. Hydraulic tortuosity in arbitrary porous media
flow. Phys. Rev. E 84.

Evans, R., Tarits, P., Chave, A., White, A., Heinson, G., Filloux, J., Toh, H., Seama,

 238

N., Utada, H., Booker, J., Unsworth, M., 1999. Asymmetric Electrical Structure in
the Mantle Beneath the East Pacific Rise at 17°S. Science 286, 752–756.

Faul, U., Fitz Gerald, J., 1999. Grain misorientations in partially molten olivine
aggregates: an electron backscatter diffraction study. Phys. Chem. Miner. 26,
187–197. doi:10.1007/s002690050176

Faul, U.H., 1997. Permeability of partially molten upper mantle rocks from
experiments and percolation theory. J. Geophys. Res. 102, 10299–10311.
doi:10.1029/96JB03460

Faul, U.H., 2000. Constraints on the melt distribution in anisotropic polycrystalline
aggregates undergoing grain growth, in: Physics and Chemistry of Partially
Molten Rocks. Springer, pp. 67–92.

Faul, U.H., Toomey, D.R., Waff, H.S., 1994. Intergranular basaltic melt is distributed
in thin, elongated inclusions. Geophys. Res. Lett. 21, 29–32.
doi:10.1029/93GL03051

Fitzgerald, R., 2000. Phase-Sensitive X-Ray Imaging. Phys. Today 53, 23–26.
doi:10.1063/1.1292471

Frank, F., 1968. Two-component flow model for convection in the Earth’s upper
mantle. Nature 220, 350–352.

Frey, F.A., Green, D.H., 1974. The mineralogy, geochemistry and origin of Iherzolite
inclusions in Victorian basanites. Geochim. Cosmochim. Acta. doi:10.1016/0016-
7037(74)90003-9

Fusseis, F., Schrank, C., Liu, J., Karrech, A., Llana-Fúnez, S., Xiao, X., Regenauer-
Lieb, K., 2012. Pore formation during dehydration of a polycrystalline gypsum
sample observed and quantified in a time-series synchrotron X-ray micro-
tomography experiment. Solid Earth 3, 71–86. doi:10.5194/se-3-71-2012

Fusseis, F., Xiao, X., Schrank, C., De Carlo, F., 2014. A brief guide to synchrotron
radiation-based microtomography in (structural) geology and rock mechanics. J.
Struct. Geol. 65, 1–16. doi:10.1016/j.jsg.2014.02.005

Gaetani, G.A., O’Leary, J.A., Koga, K.T., Hauri, E.H., Rose-Koga, E.F., Monteleone,
B.D., 2014. Hydration of mantle olivine under variable water and oxygen fugacity
conditions. Contrib. to Mineral. Petrol. 167, 1–14. doi:10.1007/s00410-014-0965-
y

Garapić, G., Faul, U.H., Brisson, E., 2013. High‐resolution imaging of the melt
distribution in partially molten upper mantle rocks: evidence for wetted two‐grain
boundaries. Geochemistry, Geophys. Geosystems 14, 1–11.
doi:10.1029/2012GC004547

Garboczi, E.J., 1998. Finite element and finite difference programs for computing the
linear electric and elastic properties of digital images of random materials.
Building and Fire Research Laboratory, National Institute of Standards and
Technology.

Gardés, E., Gaillard, F., Tarits, P., 2014. Toward a unified hydrous olivine electrical
conductivity law. Geochemistry, Geophys. Geosystems 4984–5000.
doi:10.1002/2014GC005496.Received

Gray, W.G., 1975. A derivation of the equations for multi-phase transport. Chem.
Eng. Sci. 30, 229–233.

Gurmani, S.F., Jahn, S., Brasse, H., Schilling, F.R., 2011. Atomic scale view on

 239

partially molten rocks: Molecular dynamics simulations of melt-wetted olivine
grain boundaries. J. Geophys. Res. Solid Earth 116, 1–9.
doi:10.1029/2011JB008519

Gürsoy, D., De Carlo, F., Xiao, X., Jacobsen, C., 2014. TomoPy: a framework for the
analysis of synchrotron tomographic data. Synchrotron Radiat. 21.

Hammond, W.C., Humphreys, E.D., 2000. Upper mantle seismic wave velocity:
Effects of realistic partial melt geometries. J. Geophys. Res. 105, 10975.
doi:10.1029/2000JB900041

Harlow, F.H., Welch, J.E., 1965. Numerical Calculation of Time-Dependent Viscous
Incompressible Flow of Fluid with Free Surface. Phys. Fluids 8, 2182–2189.
doi:10.1063/1.1761178

Hashin, Z., Shtrikman, S., 1963. A variational approach to the theory of the elastic
behaviour of multiphase materials. J. Mech. Phys. Solids 11, 127–140.
doi:10.1016/0022-5096(63)90060-7

Hays, J.F., 1966. Lime-alumina-silica. Carnegie Inst. Washingt. Yearb. 65, 234–239.
Hier-Majumder, S., Ricard, Y., Bercovici, D., 2006. Role of grain boundaries in

magma migration and storage. Earth Planet. Sci. Lett. 248, 735–749.
doi:10.1016/j.epsl.2006.06.015

Holness, M., Graham, C., 1991. Equilibrium dihedral angles in the system H20 -
CO2- NaCl-calcite, and implications for fluid flow during metamorphism.
Contrib. to Mineral. Petrol. 108, 368–383.

Holtzman, B.K., Kohlstedt, D.L., 2007. Stress-driven Melt Segregation and Strain
Partitioning in Partially Molten Rocks: Effects of Stress and Strain. J. Petrol. 48,
2379–2406. doi:10.1093/petrology/egm065

Holtzman, B.K., Kohlstedt, D.L., Zimmerman, M.E., Heidelbach, F., Hiraga, T.,
Hustoft, J., 2003. Melt segregation and strain partitioning: implications for
seismic anisotropy and mantle flow. Science 301, 1227–30.
doi:10.1126/science.1087132

Hughes, M.P., 2000. AC electrokinetics: applications for nanotechnology.
Nanotechnology 11, 124.

Iwamori, H., 1994. 238U-230Th-226Ra and 235U-231pa disequilibria produced by
mantle melting with porous and channel flows. Earth Planet. Sci. Lett. 125, 1–16.

Johannes, W., Bell, P., Mao, H., Boettcher, A., Chopman, D., Hays, J., Newton, R.,
Seifert, F., 1971. An Interlaboratory Comparison of Piston-Cylinder Pressure
Calibration Using the Albite-Breakdown Reaction. Contrib. to Mineral. Petrol. 32,
24–38.

Johnson, K., Dick, H.J.B., 1992. Open system melting and temporal and spatial
variation of peridotite and basalt at the Atlantis II fracture zone. J. Geophys. Res.
Solid Earth 97, 9219–9241. doi:10.1029/92JB00701

Johnson, D.L., Koplik, J., Schwartz, L.M., 1986. New pore-size parameter
characterizing transport in porous media. Phys. Rev. Lett. 57, 2564–2567.
doi:10.1103/PhysRevLett.57.2564

Jones, A.G., Fullea, J., Evans, R.L., Muller, M.R., 2012. Water in cratonic
lithosphere: Calibrating laboratory-determined models of electrical conductivity
of mantle minerals using geophysical and petrological observations.
Geochemistry, Geophys. Geosystems 13, 1–27. doi:10.1029/2012GC004055

 240

Jurewicz, S., Jurewicz, A., 1986. Distribution of Apparent Angles on Random
Sections With Emphasis of Dihedral Angle Measurements. J. Geophys. Res. 91,
9277–9282.

Jurewicz, S., Watson, E., 1984. Distribution of partial melt in a felsic system: the
importance of surface energy. Contrib. to Mineral. Petrol. 85, 25–29.
doi:10.1007/BF00380218

Jurewicz, S., Watson, E., 1985. The distribution of partial melt in a granitic system:
The application of liquid phase sintering theory. Geochim. Cosmochim. Acta 49,
1109–1121. doi:10.1016/0016-7037(85)90002-X

Kak, A.C., Slaney, M., 1988. Principles of computerized tomographic imaging. Siam.
Katz, A.J., Thompson, A.H., 1987. Prediction of rock electrical conductivity from

mercury injection measurements. J. Geophys. Res. 92, 599.
doi:10.1029/JB092iB01p00599

Katz, R.F., Spiegelman, M., Holtzman, B., 2006. The dynamics of melt and shear
localization in partially molten aggregates. Nature 442, 676–9.
doi:10.1038/nature05039

Kelemen, P.B., Dick, H.J.B., Quick, J.E., 1992. Formation of harzburgite by
pervasive melt/rock reaction in the upper mantle. Nature 358, 635–641.

Kelemen, P.B., Hirth, G., Shimizu, N., Spiegelman, M., Dick, H.J., 1997. A review of
melt migration processes in the adiabatically upwelling mantle beneath oceanic
spreading ridges. Philos. Trans. R. Soc. London. Ser. A Math. Phys. Eng. Sci.
355, 283–318.

Kelemen, P.B., Shimizu, N., Salters, V.J.M., 1995a. Extraction of mid-ocean-ridge
basalt from the upwelling mantle by focused flow of melt in dunite channels.
Nature 375, 747 – 753. doi:10.1038/375747a0

Kelemen, P.B., Whitehead, J.A., Aharonov, E., Jordahl, K.A., 1995b. Experiments on
flow focusing in soluble porous media, with applications to melt extraction from
the mantle. J. Geophys. Res. 100, 475–496. doi:10.1029/94JB02544

Key, K., Constable, S., Liu, L., Pommier, A., 2013. Electrical image of passive
mantle upwelling beneath the northern East Pacific Rise. Nature 495, 499–502.
doi:10.1038/nature11932

King, D.S.H., Hier-Majumder, S., Kohlstedt, D.L., 2011a. An experimental study of
the effects of surface tension in homogenizing perturbations in melt fraction.
Earth Planet. Sci. Lett. 307, 349–360. doi:10.1016/j.epsl.2011.05.009

King, D.S.H., Holtzman, B.K., Kohlstedt, D.L., 2011b. An experimental investigation
of the interactions between reaction-driven and stress-driven melt segregation: 1.
Application to mantle melt extraction. Geochemistry, Geophys. Geosystems 12,
1-16. doi:10.1029/2011GC003684

Laporte, D., Provost, A., 2000. Equilibrium geometry of a fluid phase in a
polycrystalline aggregate with anisotropic surface energies: Dry grain boundaries.
J. Geophys. Res. 105, 25937–25953. doi:10.1029/2000JB900256

Lundstrom, C.C., Gill, J., Williams, Q., Perfit, M.R., 1995. Mantle Melting and
Basalt Extraction by Equilibrium Porous Flow. Science 270, 1958–1961.

Madden, T., 1976. Random networks and mixing laws. Geophysics 41, 1104–1125.
Markov, K.Z., 2000. Elementary micromechanics of heterogeneous media, in:

Heterogeneous Media. Springer, pp. 1–162.

 241

Martys, N., Garboczi, E.J., 1992. Length scales relating the fluid permeability and
electrical conductivity in random two-dimensional model porous media. Phys.
Rev. B 46, 6080–6090.

Matyka, M., Khalili, A., Koza, Z., 2008. Tortuosity-porosity relation in the porous
media flow. Phys. Rev. E 78, 1–8. doi:10.1103/PhysRevE.78.026306

McKenzie, D., 1984. The Generation and Compaction of Partially Molten Rock. J.
Petrol. 25, 713–765.

McKenzie, D., 1985. 230Th-238U disequilibrium and the melting process beneath
ridge axes. Earth Planet. Sci. Lett. 72, 149–157.

McKenzie, D., 2000. Constraints on melt generation and transport from U-series
activity ratios. Chem. Geol. 162, 81–94. doi:10.1016/S0009-2541(99)00126-6

McKenzie, D., Bickle, M.J., 1988. The Volume and Composition of Melt Generated
by Extension of the Lithosphere. J. Petrol. 29, 625–679.

Meijerink, J.A., van der Vorst, H.A., 1977. An iterative solution method for linear
systems of which the coefficient matrix is a symmetric M-matrix. Math. Comput.
31, 148–148. doi:10.1090/S0025-5718-1977-0438681-4

Mibe, K., Fujii, T., Yasuda, A., 1998. Connectivity of aqueous fluid in the Earth’s
upper mantle. Geophys. Res. Lett. 25, 1233–1236.

Miller, K.J., Zhu, W., Montési, L.G.J., Gaetani, G.A., 2014. Experimental
quantification of permeability of partially molten mantle rock. Earth Planet. Sci.
Lett. 388, 273–282. doi:10.1016/j.epsl.2013.12.003

Morgan, F.D., Williams, E.R., Madden, T.R., 1989. Streaming potential properties of
westerly granite with applications. J. Geophys. Res. 94, 12449.
doi:10.1029/JB094iB09p12449

Münch, B., Trtik, P., Marone, F., Stampanoni, M., 2009. Stripe and ring artifact
removal with combined wavelet-Fourier filtering. EMPA Act. 17, 34–35.
doi:10.1364/OE.17.008567

Murase, T., McBirney, A., 1973. Properties of some common igneous rocks and their
melts at high temperatures. Geol. Soc. Am. Bull. 84, 3563–3592.
doi:10.1130/0016-7606(1973)84<3563

Newman, S., Finkel, R.C., Macdougall, J.D., 1983. 230Th-238U disequilibrium
systematics in ocean tholeiites from 21°N on the East Pacific Rise. Earth Planet.
Sci. Lett. 65, 17–33.

Ni, H., Keppler, H., Behrens, H., 2011. Electrical conductivity of hydrous basaltic
melts: implications for partial melting in the upper mantle. Contrib. to Mineral.
Petrol. 162, 637–650. doi:10.1007/s00410-011-0617-4

Nover, G., 2005. Electrical properties of crustal and mantle rocks - A review of
laboratory measurements and their explanation. Surv. Geophys. 26, 593–651.
doi:10.1007/s10712-005-1759-6

Ortoleva, P., Chadam, J., Merino, E., Sen, A., 1987. Geochemical self-organization
II: the reactive-infiltration instability. Am. J. Sci. 287, 1008–1040.

Oxburgh, E.R., 1980. Heat flow and magma genesis. Phys. Magmat. Process. 161–
199.

Paganin, D., Mayo, S.C., Gureyev, T.E., Miller, P.R., Wilkins, S.W., 2002.
Simultaneous phase and amplitude extraction from a single defocused image of a
homogeneous object. J. Microsc. 206, 33–40. doi:10.1046/j.1365-

 242

2818.2002.01010.x
Park, H., Yoon, D.N., 1985. Effect of Dihedral Angle on the Morphology of Grains in

a Matrix Phase ix. Metall. Trans. A 16, 923–928.
Peate, D., Hawkesworth, C.J., 2005. U series disequilibria: insights into mantle

melting and the timescales of magma differentiation. Rev. Geophys. 43.
doi:10.1029/2004RG000154.1.INTRODUCTION

Pec, M., Holtzman, B.K., Zimmerman, M., Kohlstedt, D.L., 2015. Reaction
infiltration instabilities in experiments on partially molten mantle rocks. Geology
G36611–1.

Phipps Morgan, J.., 1987. Melt Migration Beneath Mid-Ocean Spreading Centers.
Geophys. Res. Lett. 14, 1238–1241.

Poe, B.T., Romano, C., Nestola, F., Smyth, J.R., 2010. Electrical conductivity
anisotropy of dry and hydrous olivine at 8GPa. Phys. Earth Planet. Inter. 181,
103–111. doi:10.1016/j.pepi.2010.05.003

Presnall, D.C., Simmons, C.L., Porath, H., 1972. Changes in electrical conductivity of
a synthetic basalt during melting. J. Geophys. Res. 77, 5665.
doi:10.1029/JB077i029p05665

Qi, C., Kohlstedt, D.L., Katz, R.F., Takei, Y., 2014. An experimental test of the
viscous anisotropy hypothesis for partially molten rocks. arXiv Prepr.
arXiv1412.0203 1–21.

Quick, J.E., 1982. The origin and significance of large, tabular dunite bodies in the
Trinity Peridotite, Northern California. Contrib. to Mineral. Petrol. 78, 413–422.

Rabinowicz, M., Nicolas, A., Vigneresse, J.L., 1984. A rolling mill effect in
asthenosphere beneath oceanic spreading centers. Earth Planet. Sci. Lett. 67, 97–
108.

Renner, J., Viskupic, K., Hirth, G., Evans, B., 2003. Melt extraction from partially
molten peridotites. Geochemistry, Geophys. Geosystems 4, 8606.
doi:10.1029/2002GC000369

Ribe, N., 1985. The generation and composition of partial melts in the earth’s mantle.
Earth Planet. Sci. Lett. 73, 361–376.

Ribe, N., 1988. On the dynamics of generalization. J. Geophys. Res. 93, 429–436.
doi:10.1037/0033-295X.97.4.576

Ricard, Y., Bercovici, D., Schubert, G., 2001. A two�phase model for compaction
and damage: 2. Applications to compaction, deformation, and the role of
interfacial surface tension. J. Geophys. Res. 106, 8907–8924.

Richter, F.M., Davis, A.M., DePaolo, D.J., Watson, E.B., 2003. Isotope fractionation
by chemical diffusion between molten basalt and rhyolite. Geochim. Cosmochim.
Acta 67, 3905–3923. doi:10.1016/S0016-7037(03)00174-1

Roberts, J.J., Tyburczy, J.A., 1999. Partial-melt electrical conductivity: Influence of
melt composition. J. Geophys. Res. 104, 7055. doi:10.1029/1998JB900111

Rudnick, R.L., Ionov, D. a., 2007. Lithium elemental and isotopic disequilibrium in
minerals from peridotite xenoliths from far-east Russia: Product of recent
melt/fluid-rock reaction. Earth Planet. Sci. Lett. 256, 278–293.
doi:10.1016/j.epsl.2007.01.035

 243

Ryan, M.P., Blevins, J.Y.K., 1987. The viscosity of synthetic and natural silicate
melts and glasses at high temperatures and 1 bar (105 Pascals) pressure and at
higher pressures. US Government Printing Office.

Saenger, E.H., Bohlen, T., 2004. Finite-difference modeling of viscoelastic and
anisotropic wave propagation using the rotated staggered grid. Geophysics 69,
583–591. doi:10.1190/1.1707078

Schmeling, H., 1986. Numerical models on the influence of partial melt on elastic,
anelastic and electrical properties of rocks. Part II: electrical conductivity. Phys.
Earth Planet. Inter. 43, 123–136. doi:10.1016/0031-9201(86)90080-4

Schock, R.N., Duba, A.G., Shankland, T.J., 1989. Electrical conduction in olivine. J.
Geophys. Res. Solid Earth 94, 5829–5839.

Schwartz, L., Martys, N., Bentz, D., 1993. Cross-property relations and permeabilty
estimation in model porous media. Phys. Rev. E 48, 4584–4591.

Scott, D.R., Stevenson, D.J., 1989. A self‐consistent model of melting, magma
migration and buoyancy‐driven circulation beneath mid‐ocean ridges. J. Geophys.
Res. Solid Earth 94, 2973–2988.

Scott, T., Kohlstedt, D.L., 2006. The effect of large melt fraction on the deformation
behavior of peridotite. Earth Planet. Sci. Lett. 246, 177–187.
doi:10.1016/j.epsl.2006.04.027

Sifré, D., Gardés, E., Massuyeau, M., Hashim, L., Hier-Majumder, S., Gaillard, F.,
2014. Electrical conductivity during incipient melting in the oceanic low-velocity
zone. Nature 509, 81–85. doi:10.1038/nature13245

Sims, K.W.W., Goldstein, S.J., Blichert-toft, J., Perfit, M.R., Kelemen, P., Fornari,
D.J., Michael, P., Murrell, M.T., Hart, S.R., DePalo, D.J., Layne, G., Ball, L., Jull,
M., Bender, J., 2002. Chemical and isotopic constraints on the generation and
transport of magma beneath the East Pacific Rise. Geochim. Cosmochim. Acta
66, 3481–3504.

Smith, C., 1964. Some Elementary Principles of polycrystalline microstructure.
Metall. Rev. 9.

Smith, C.S., 1948. Grains, Phases, and Interfaces: An Interpretation of
Microstructure. Trans. Am. Inst. Min. Metall. Eng. 175, 15–51.
doi:10.1007/s11661-010-0215-5

Spiegelman, M., 1993. Flow in deformable porous media. Part 2. Numerical analysis-
the relationship between shock waves and solitary waves. J. Fluid Mech. 247, 39.
doi:10.1017/S0022112093000370

Spiegelman, M., Elliott, T., 1993. Consequences of melt transport for uranium series
disequilibrium in young lavas. Earth Planet. Sci. Lett. 118, 1–20.

Spiegelman, M., Kelemen, P.B., Aharonov, E., 2001. Causes and consequences of
flow organization during melt transport: The reaction infiltration instability in
compactible media. J. Geophys. Res. 106, 2061–2077.

Spiegelman, M., McKenzie, D., 1987. Simple 2-D models for melt extraction at mid-
ocean ridges and island arcs. Earth Planet. Sci. Lett. 83, 137–152.
doi:10.1016/0012-821X(87)90057-4

Spiegelman, M., Kelemen, P.B., 2003. Extreme chemical variability as a consequence
of channelized melt transport. Geochemistry, Geophys. Geosystems 4, 1055–
1072. doi:10.1029/2002GC000336

 244

Stolper, E., Walker, D., Hager, B.H., Hays, J.F., 1981. Melt Segregation from
Partially Molten Source Regions: The Importance of Melt Density and Source
Region Size. J. Geophys. Res. 86, 6261–6271.

Stracke, A., Bourdon, B., McKenzie, D., 2006. Melt extraction in the Earth’s mantle:
Constraints from U–Th–Pa–Ra studies in oceanic basalts. Earth Planet. Sci. Lett.
244, 97–112. doi:10.1016/j.epsl.2006.01.057

ten Grotenhuis, S.M., Drury, M.R., Spiers, C.J., Peach, C.J., 2005. Melt distribution
in olivine rocks based on electrical conductivity measurements. J. Geophys. Res.
Solid Earth 110, 1–11. doi:10.1029/2004JB003462

The MELT Seismic Team, 1998. Imaging the Deep Seismic Structure Beneath a Mid-
Ocean Ridge: The MELT Experiment. Science 280, 1215–1218.
doi:10.1126/science.280.5367.1215

Tombácz, E., Szekeres, M., 2006. Surface charge heterogeneity of kaolinite in
aqueous suspension in comparison with montmorillonite. Appl. Clay Sci. 34,
105–124. doi:10.1016/j.clay.2006.05.009

Toomey, D., Wilcock, W., Solomon, S., Hammond, W., JA, O., 1998. Mantle
Seismic Structure Beneath the MELT Region of the East Pacific Rise from P and
S Wave Tomography. Science 280, 1224–1227.
doi:10.1126/science.280.5367.1224

Toramaru, A., Fujii, N., 1986. Connectivity of Melt Phase in a Partially Molten
Peridotite. J. Geophys. Res. 91, 9239–9252. doi:10.1029/JB091iB09p09239

Turcotte, D.L., Schubert, G., 2014. Geodynamics. Cambridge University Press.
Vaughan, P.J., Kohlstedt, D.L., 1982. Distribution of the glass phase in hot-pressed,

olivine-basalt aggregates: An electron microscopy study. Contrib. to Mineral.
Petrol. 81, 253–261. doi:10.1007/BF00371679

Vincent, L., 1993. Morphological grayscale reconstruction in image analysis:
Applications and efficient algorithms. IEEE Trans. Image Process. 2, 176–201.

Volpe, A., Hammond, P., 1991. 238U-230Th-226Ra disequilibria in young Mount St.
Helens rocks: time constraint for magma formation and crystallization. Earth
Planet. Sci. Lett. 107, 475–486.

von Bargen, N., Waff, H.S., 1986. Permeabilities, Interfacial Areas and Curvatures of
Partially Molten Systems: Results of Numerical Computations of Equilibrium
Microstructures. J. Geophys. Res. 91, 9261–9276. doi:10.1029/JB091iB09p09261

W. Williams, R., B. Gill, J., 1989. Effects of partial melting on the uranium decay
series. Geochim. Cosmochim. Acta 53, 1607–1619. doi:10.1016/0016-
7037(89)90242-1

Waff, H., Bulau, J., 1982. Experimental Determination of Near-Equilibrium Textures
in Partially Molten Silicates at High Pressures. High Press. Res. Geophys. 229–
236.

Waff, H., Faul, U., 1992. Effects of Crystalline Anisotropy on Fluid Distribution in
Ultramafic Partial Melts. J. Geophys. Res. 97, 9003–9014.

Waff, H.S., 1974. Theoretical considerations of electrical conductivity in a partially
molten mantle and implications for geothermometry. J. Geophys. Res. 79, 4003.
doi:10.1029/JB079i026p04003

Waff, H.S., Bulau, J.R., 1979. Equilibrium Fluid Distribution in an Ultramafic Partial
Melt Under Hydrostatic Stress Conditions. J. Geophys. Res. 84, 6109–6114.

 245

Wan, J., Tokunaga, T.K., 2002. Partitioning of clay colloids at air-water interfaces. J.
Colloid Interface Sci. 247, 54–61. doi:10.1006/jcis.2001.8132

Wanamaker, B.J., Duba, A.G., 1993. Electrical conductivity of San Carlos olivine
along [100] under oxygen‐and pyroxene‐buffered conditions and implications for
defect equilibria. J. Geophys. Res. Solid Earth 98, 489–500.

Wang, D., Mookherjee, M., Xu, Y., Karato, S., 2006. The effect of water on the
electrical conductivity of olivine. Nature 443, 977–980. doi:10.1038/nature05256

Wark, D.A., Watson, E.B., 1998. Grain-scale permeabilities of texturally equilibrate,
monomineralic rocks. Earth Planet. Sci. Lett. 164, 591–605.

Wark, D.A., Williams, C.A., Watson, E.B., Price, J.D., 2003. Reassessment of pore
shapes in microstructurally equilibrated rocks, with implications for permeability
of the upper mantle. J. Geophys. Res. 108, 1–16. doi:10.1029/2001JB001575

Watson, E.B., 1999. Lithologic partitioning of fluids and melts. Am. Mineral. 84,
1693–1710.

Watson, E.B., Brenan, J.M., 1987. Fluids in the lithosphere, 1. Experimentally-
determined wetting characteristics of CO2-H2O fluids and the implications for
fluid transport, host-rock physical properties, and fluid inclusion formation. Earth
Planet. Sci. Lett. 85, 497–515.

Watson, H.C., Roberts, J.J., 2011. Connectivity of core forming melts: Experimental
constraints from electrical conductivity and X-ray tomography. Phys. Earth
Planet. Inter. 186, 172–182. doi:10.1016/j.pepi.2011.03.009

Weatherley, S.M., Katz, R.F., 2012. Melting and channelized magmatic flow in
chemically heterogeneous, upwelling mantle. Geochemistry Geophys.
Geosystems 13, Q0AC18. doi:10.1029/2011GC003989

Weickert, J., Romeny, B.M.T.H., Viergever, M.A., 1998. Efficient and reliable
schemes for nonlinear diffusion filtering. IEEE Trans. Image Process. 7, 398–410.

Westneat, M.W., Socha, J.J., Lee, W.-K., 2008. Advances in biological structure,
function, and physiology using synchrotron X-ray imaging*. Annu. Rev. Physiol.
70, 119–142.

Whitaker, S., 1998. The method of volume averaging. Springer Science & Business
Media.

Wirth, R., 1996. Thin amorphous films (1–2 nm) at olivine grain boundaries in
mantle xenoliths from San Carlos, Arizona. Contrib. to Mineral. Petrol. 124, 44–
54.

Xu, Y., Shankland, T.J., Duba, A.G., 2000. Pressure effect on electrical conductivity
of mantle olivine. Phys. Earth Planet. Inter. 118, 149–161.

York, D., Evensen, N.M., Martı́nez, M.L., De Basabe Delgado, J., 2004. Unified
equations for the slope, intercept, and standard errors of the best straight line. Am.
J. Phys. 72, 367–375. doi:10.1119/1.1632486

Yoshino, T., 2010. Laboratory electrical conductivity measurement of mantle
minerals. Surv. Geophys. 31, 163–206. doi:10.1007/s10712-009-9084-0

Yoshino, T., Laumonier, M., McIsaac, E., Katsura, T., 2010. Electrical conductivity
of basaltic and carbonatite melt-bearing peridotites at high pressures: Implications
for melt distribution and melt fraction in the upper mantle. Earth Planet. Sci. Lett.
295, 593–602. doi:10.1016/j.epsl.2010.04.050

Yoshino, T., Matsuzaki, T., Shatskiy, A., Katsura, T., 2009a. The effect of water on

 246

the electrical conductivity of olivine aggregates and its implications for the
electrical structure of the upper mantle. Earth Planet. Sci. Lett. 288, 291–300.

Yoshino, T., Price, J.D., Wark, D.A., Watson, E.B., 2006. Effect of faceting on pore
geometry in texturally equilibrated rocks: Implications for low permeability at
low porosity. Contrib. to Mineral. Petrol. 152, 169–186. doi:10.1007/s00410-006-
0099-y

Yoshino, T., Yamazaki, D., Mibe, K., 2009b. Well-wetted olivine grain boundaries in
partially molten peridotite in the asthenosphere. Earth Planet. Sci. Lett. 283, 167–
173. doi:10.1016/j.epsl.2009.04.007

Zhan, X., Schwartz, L., Toksöz, M., 2010. Pore-scale modeling of electrical and fluid
transport in Berea sandstone. Geophysics 75, F135–F142.

Zhou, S.-A., Brahme, A., 2008. Development of phase-contrast X-ray imaging
techniques and potential medical applications. Phys. Medica 24, 129–148.

Zhu, W., Gaetani, G.A., Fusseis, F., Montési, L.G.J., De Carlo, F., 2011.
Microtomography of partially molten rocks: three-dimensional melt distribution
in mantle peridotite. Science 332, 88–91. doi:10.1126/science.1202221

Zhu, W., Hirth, G., 2003. A network model for permeability in partially molten rocks.
Earth Planet. Sci. Lett. 212, 407–416. doi:10.1016/S0012-821X(03)00264-4

Zimmerman, M.E., Zhang, S., Kohlstedt, D.L., Karato, S., 1999. Melt distribution in
mantle rocks deformed in shear. Geophys. Res. Lett. 26, 1505.
doi:10.1029/1999GL900259

