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Mid-ocean ridges are a fundamental component of plate tectonics on Earth. 

They are the longest mountain ranges; combined, they stretch over 70,000 km of the 

Earth’s surface. They are significant sources of volcanism, producing more than 20 

km3 of new oceanic crust each year. The volcanism observed at the ridge axis is 

linked to processes that transport and focus melt in the underlying upper mantle.  

Typically, upper mantle melt distribution is inferred either through inversion 

of geophysical data, such as electromagnetic signals, or through geodynamic 

modeling. Both approaches require robust constitutive relationship between on 

electrical conductivity, permeability, and porosity. Unfortunately, direct 

measurements of transport properties of partially molten rock are technically 



challenging due to the extreme conditions required for melting. This work aims to 

quantify permeability-porosity and electrical conductivity-porosity relationships of 

partially molten monomineralic and polymineralic aggregates by simulating fluid 

flow and direct current within experimentally obtained, high-resolution, three-

dimensional (3-D) microstructures of partially molten rocks. 

In this study, I synthesized rocks containing various proportions of olivine, 

orthopyroxene (opx), and basaltic melt, common components of the upper mantle. I 

imaged their 3-D microstructure using high-resolution, synchrotron-based X-ray 

micro-computed tomography. The resulting 3-D geometries constitute virtual rock 

samples on which pore morphology, permeability, and electrical conductivity were 

numerically quantified. 

This work yields microstructure-based electrical conductivity-porosity and 

permeability-porosity power laws for olivine-melt and olivine-opx-melt aggregates 

containing melt fractions of 0.02 to 0.20. By directly comparing the velocity and 

electrical fields, which are outputs of the fluid flow and direct current simulations, 

respectively, this study provides strong evidence that fluid and electricity travel 

through distinctly different pathways within the same rock, due to the stronger 

dependence of fluid flux on hydraulic radius. This study also provides the first 

quantitative evidence of lithological melt partitioning, where melt fractions spatially 

associated with olivine are systematically higher than those with orthopyroxene due 

to the relatively low surface energy density of olivine-melt interfaces with respect to 

opx-melt interfaces. The results of this study place important, novel constraints on 3-



D melt distribution and transport properties of the partially molten mantle regions 

beneath mid-ocean ridges.  
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Preface 

In this document, the transport properties, e.g. permeability and electrical 

conductivity, of monomineralic and polymineralic partially molten rocks are 

quantified and linked to volume proportion of melt. Since transport properties of 

partially molten rocks are notoriously difficult to measure due to the extreme 

pressure-temperature conditions required for melting and high viscosity of basaltic 

melt, I take a novel approach: imaging and digitizing synthetic partially molten 

mantle rocks using advanced. These 3-D images constitute virtual rock samples on 

which digital rock physics (DRP) experiments can be conducted and transport 

properties can be quantified. My methodology, results, and implications for 

understanding melt transport at mid-ocean ridges are discussed over the next six 

chapters.  

• Chapter 1: I introduce geological context and outstanding questions 

related to melt transport at mid-ocean ridges. The concepts necessary 

to understand my research methods and findings are introduced.  

• Chapter 2: I quantify the 3-D melt distribution and permeability of 

partially molten olivine-basaltic melt as a function of melt fraction.  

• Chapter 3: I derive the electrical conductivity of partial melts from 

microstructural considerations. I compare my results with previously 

conducted experiments in literature. 

• Chapter 4: I investigate the role of mineral heterogeneity and surface 

energy on melt distribution in samples containing olivine, 



 iii 

orthopyroxene, and basaltic melt. 

• Chapter 5: I compute the permeability and electrical conductivity of 

partially molten rock samples composed of olivine, orthopyroxene, 

and basaltic melt. 

• Chapter 6: Concluding remarks and a preview of future research. 
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Chapter 1: Introduction 

 

1.1 Melting at mid-ocean ridges 

Melting of mantle rock is controlled by environmental conditions, such as 

pressure, temperature, and volatile content. For an intraplate region of the upper 

mantle far from sources of volcanism, the pressure-temperature conditions are 

generally thought to be insufficient to cause melting of the mantle, which is 

composed primarily of olivine and pyroxene. At mid-ocean ridges, however, 

divergence of the overriding oceanic plates induces a pressure gradient that pulls 

upward hot rock sourced deeper in the mantle. The resultant pressure drop, which 

occurs faster than thermal equilibration, carries the peridotite across its solidus (Fig. 

1.1), inducing partial melting – also known as decompression melting – over a broad 

region (Allégre et al., 1973; McKenzie and Bickle, 1988). The pressure and 

temperature conditions in the upper mantle, which vary with depth, define a prism-

shaped region of partial melt more or less centered about the ridge axis that extends 

laterally for hundreds of kilometers (McKenzie and Bickle, 1988; Oxburgh, 1980). 

Seismic (e.g. MELT Seismic Team, 1998; Toomey et al., 1998). Magnetotelluric (e.g. 

Evans et al., 1999; Key et al., 2013) surveys of the fast-spreading East Pacific Rise 

confirmed this conceptual model of mid-ocean ridge melting. However, the 

mechanism for transporting and focusing melt to the ridge axis is still debated. 

A number of theories have been proposed to explain the transport of melt 

from depth to the ridge, which involves both the ascent of melt and redirection to the 

ridge axis (melt focusing). For a long time, it was thought that the same pressure  
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gradient that induces decompression melting is also responsible for focusing melt 

(Phipps-Morgan, 1987; Ribe, 1988; Spiegelman and McKenzie, 1987). However, it 

was determined that divergence of the plates alone required unrealistic upper mantle 

viscosity values to account for magma ascent rates inferred from uranium-series data. 

Advection of trapped melt by means of buoyancy-driven convection (Buck and Su, 

1989; Rabinowicz et al., 1984; Scott and Stevenson, 1989) was another popular 

theory at that time but required higher melt fractions than are observed by 

geophysical methods and a lower permeability than standard estimates.  

Current thinking is that melt percolates through the upper mantle via porous 

flow along a grain boundary network of interstitial melt. Though porous flow is most 

often thought of in in the context of fluid transport in the crust, where overburden 

pressures are sufficiently low to maintain interconnected pore space, the 

compressibility of melt is low enough to support an intergranular, interconnected 

network. The permeability of this network has been a parameter of high interest, since 

it relates the percolation velocity of melt on the aggregate-scale to local pressure 

gradients.  

A number of attempts have been made to determine the permeability of 

partially molten rock, including consideration of idealized melt geometries, network 

modeling, and direct measurement on analogue systems. However, as will be 

discussed in more detail, these methods neither consider the proper three-dimensional 

(3-D) pore structure of partially molten rocks nor the correct chemistry. 
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Three-grain junction 
connected melt

tubules

Four-grain junction
isolated melt

pockets

A

B

Figure 1.2: Idealized representation of three-dimensional melt geometry using 
isotropic tetrakaidecahedral grain shape. Included are two-dimensional cross-sec-
tions of melt features. (A) Interconnected melt tubules that form at three and 
four-grain junctions for ș < 60º. (B) Isolated melt tubules form at four-grain junc-
tions for ș > 60º.
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1.2 Melt microstructure 

The grain-scale geometry of a partially molten rock is controlled by energy 

minimization processes (Bulau et al., 1979). For a melt fraction (ϕ) below the 

disaggregation limit (ϕ < 0.25) (Scott and Kohlstedt, 2006), spatial variations in 

surface energy associated with interphase boundaries constitute thermodynamic 

gradients that drive melt into an equilibrium configuration (Smith, 1964; Waff and 

Bulau, 1979). The fluid transport, electrical, and mechanical properties of the rock 

depend crucially on the morphology and topology of the interstitial melt network.  

A good indicator of the microstructure geometry is the dihedral angle (θ) 

(Smith, 1964, 1948), which is the angle that subtends two solid-melt interfaces. In 

general, θ varies from grain contact to grain contact, depending on the relative surface 

energy densities of the adjacent phase boundaries. However, for two identical, 

adjacent, isotropic grains separated by melt, θ is defined by the following relation: 

 cos θ
2

⎛
⎝⎜

⎞
⎠⎟ =

γ ss
2γ sm

 (1.1) 

where γss and γsl are the surface energy densities of the solid-solid and solid-liquid 

phase boundaries, respectively. For θ < 60° and any melt fraction, melt forms an 

interconnected network along triple junctions consisting of prismatic melt tubules that 

are connected at four-grain junctions (Fig. 1.2A) (von Bargen and Waff, 1986). 

Conversely, for θ > 60°, melt forms isolated pockets at grain corners (Fig. 1.2B) 

unless a critical melt fraction is exceeded. γss and γsl are fundamental to the chemistry 

and mineralogy on either side of the interface. An aggregate composed of olivine, 

which is the primary upper mantle mineral component, and basaltic melt exhibits a 

median dihedral angle of ~35° (Waff and Bulau, 1982), so an olivine-basaltic melt  
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aggregate should support an interconnected melt network.  

Analysis of 2-D cross-sections (e.g. Cooper and Kohlstedt, 1982; Waff and 

Bulau, 1982; Cmíral et al., 1998; Faul and Fitz Gerald, 1999) reveal a range of melt 

features. Most those features are prismatic melt tubes that reside at three and four-

grain junctions, which is consistent with the von Bargen and Waff (1986) model. 

However, additional melt features, such as melt films and melt pools, also exist due to 

the anisotropic surface energy density of olivine-basaltic melt interfaces (Faul, 2000; 

Laporte and Provost, 2000). This observation is confirmed by 3-D analysis of the 

coordination number distribution (Fig. 1.3), where the coordination number is defined 

as the number of melt features that connect at a single point and is a measure of the 

melt network topology. Fig. 1.3 highlights the diversity of features present in olivine-

basalt aggregates (e.g. prismatic tubules, melt films, melt pools). 

 

1.3 Permeability of the melt microstructure 

1.3.1 Permeability of idealized geometries 

 An interconnected, interstitial melt network facilitates melt transport over 

distances larger than the grain-scale (Turcotte and Schubert, 2014). A crucial 

parameter used for modeling melt transport in mid-ocean ridge systems is 

permeability (k), which is a measure of the capacity of the rock to transport melt. 

Permeability is a power law function of melt fraction, 

 k = φ nd 2

C
 (1.2) 

where ϕ is the melt fraction and d is the average grain size [m2]. C and n are power 

law parameters that depend on the morphology and topology of the melt network. For 
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idealized melt network geometries (e.g. Frank, 1968; von Bargen and Waff, 1986), 

Eqn. (1.2) can be analytically derived. For example, a network composed of uniform 

tetrakaidecahedral grains, i.e. prismatic melt tubules residing at three and connecting 

at four-grain junctions, permeability is given by Eqn. (1.2), where n = 2 and C is 1600 

(von Bargen and Waff, 1986). Another model (Faul et al., 1994) that assumes 

ellipsoidal inclusions, an approximation to a partial melt with wet grain faces, yields a 

power law exponent of n = 3. However, melt geometries of real partially molten rocks 

are heterogeneous and exhibit a range of melt features at different melt fractions, in 

which case Eqn. (1.2) is an empirical relation. 

In order to assess the influence of melt network heterogeneity on permeability, 

Zhu and Hirth (2003) used a network permeability model to randomly vary the 

diameter of melt tubules in a pack of isotropic, tetrakaidecahedral grains. They found 

that for a uniform tubule diameter, the permeability-melt fraction power law was the 

same as that analytically derived by von Bargen and Waff (1986). Though for 

randomly varying melt tubule diameters, computed permeabilities adhered to a power 

law exponent n = 3. Though a major step forward from idealized geometries, a 

systematic laboratory quantification of partially molten mantle rock permeability is 

needed. 

 

1.3.2 Experimental constrains on permeability 

Permeability is technically challenging to measure for partially molten 

systems because of the extreme pressure-temperature conditions required for melting 

and the high viscosity of basaltic melt. Therefore, a number of studies (e.g. Holness  
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and Graham, 1991; Jurewicz and Watson, 1984; Mibe et al., 1998; Wark and Watson, 

1998; Wark et al., 2003; Watson and Brenan, 1987) look to analogue systems that 

have wetting properties similar to the olivine-basaltic melt system. For example, 

Wark and Watson (1998) measured the permeability of aggregates composed of 

quartz plus H2O brine (θ = 32°). They found permeability adheres closely to Eqn. 

(1.2), where power law parameters n = 3 and C = 200 (Fig. 1.4). Studies that used 

analogue materials provided valuable insight to the grain-scale fluid distribution in 

real, heterogeneous porous rocks. However, grain-scale fluid distribution is sensitive 

to distribution of surface energy – and therefore mineralogy and fluid chemistry – so 

it is unclear if the findings of analogue studies apply to partially molten mantle rocks, 

which are composed primarily of olivine. In order to properly constrain the 

permeability of partially molten mantle rock, a chemistry and mineralogy that is 

representative of the mantle must be used. 

Several attempts to measure the permeability of olivine-basalts have been 

made. For example, Renner et al. (2003) measured the compaction rate of olivine-

basaltic melt samples, undergoing draining in response to an imposed pressure 

gradient. By relating the measured compaction rate to permeability, they found their 

results implied a permeability-melt fraction relationship that qualitatively resembled 

Wark and Watson (1998) (power law parameters n = 3 and C = 200), but a rigorous 

fit to the data was not conducted. Furthermore, permeability is a property of the 

instantaneous melt geometry. As the melt fraction and grain-scale melt distribution 

changes during compaction, so does the permeability. 

An additional experimental constraint on olivine-basaltic melt permeability- 
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melt fraction relationship was provided by Connolly et al. (2009), who used a high-

temperature, high-pressure centrifuge to mimic compaction-driven flow that occurs 

during melt transport under upper mantle conditions. Their samples were spun to 

accelerations of 400-700 g, which greatly enhanced the rate of melt flow. Using a 

scanning electron microscope (SEM) to measure the porosity profile of their samples 

(Fig. 1.5) before and after centrifuging, they were able to back out sample 

permeability. Their sample was composed of olivine-basalt and had melt fractions of 

0.05. Their data suggested a piece-wise permeability-melt fraction relationship: a 

quadratic (n = 2) dependence for low melt fractions and a cubic (n = 3) dependence 

on melt fraction for higher melt fractions, which they interpret as indicative of a 

change in melt morphology from a tubule-dominant network at low melt fraction to 

one that is populated by higher-coordination number connections. They estimated the 

geometrical constant C to range between 3 and 27, which is consistent with a highly 

heterogeneous grain-scale melt distribution. Though their experiment was a 

significant leap forward in linking permeability to the melt microstructure, it is not 

straightforward to assess boundary effects of their experimental setup. Therefore, it is 

necessary to independently constrain the permeability as a function of melt fraction 

using alternative methodology. 

 

1.3.3 Electrical conductivity of partially molten mantle rocks 

 The electrical conductivity of partially molten mantle rock can be used as a 

tool for probing melt content of the mantle and for inferring the 3-D grain-scale 

distribution of melt in partially molten rock samples. The presence of partial melt 
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increases the electrical conductivity of mantle rock by several orders of magnitude 

(e.g. Roberts and Tyburczy, 1999; ten Grotenhuis et al., 2005; Yoshino et al., 2010). 

For an olivine-basaltic melt aggregate, the bulk electrical conductivity is an average 

of the electrical conductivities of olivine and basaltic melt, which is on the order of 

0.01 S/m (Constable, 2006; Yoshino et al., 2010) and 1-10 S/m (Roberts and 

Tyburczy, 1999; ten Grotenhuis et al., 2005; Yoshino et al., 2010) for olivine and 

basaltic melt, respectively. If melt exists as isolated pockets, i.e. melt fraction is 

below the percolation threshold and dihedral angle is greater than 60°, olivine and 

melt will conduct in series. As a result to bulk electrical conductivity of the aggregate 

be very low. Conversely, if melt forms an interconnected network, bulk electrical 

conductivity is high, since melt and olivine conduct electricity in parallel. The bulk 

electrical conductivity of an actual partially molten rock will be somewhere between 

these two end-member cases. 

Much like permeability, bulk electrical conductivity of partially molten rocks 

adheres to a power law, specifically Archie’s Law: 

 σ bulk = Aσmeltφ
m  (1.3) 

where A and m are power law parameters, σbulk and σmelt are the electrical 

conductivities of the bulk and melt phase, and ϕ is melt fraction. Eqn. (1.3) is an 

empirical relation that assumes the mineral phase is a good insulator relative to the 

melt phase, which is true for olivine-basaltic melt aggregates.  

Note the similarities between Eqn. 1.2 and Eqn. 1.3. Both are power laws that 

relate a bulk transport properties to characteristics of the melt microstructure. The fact 

that the same pathways that facilitate fluid flow are also available to conduction of  
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electrical current has garnered significant interest in linking permeability and 

electrical conductivity. We address the possibility of using electrical conductivity as a 

tool for inferring permeability in Chapter 3. 

 

1.3.4 Using electrical conductivity to infer 3-D melt distribution 

It is common practice to infer 3-D melt geometries from measured values if 

σbulk. Fig. 1.6 is comparison of an Archie relation for the olivine-basaltic melt system, 

obtained by fitting measured bulk electrical conductivity data, and the geometric 

mixing models (Fig. 1.6A). Measured values of σbulk for olivine-basaltic melt 

aggregates appear to straddle the Hashin-Shtrikman upper bound, which assumes a 

non-uniform pack of spherical grains completely wetted by a uniform layer of melt 

(Fig. 1.6B). However, this interpretation is inconsistent with microscopy studies that 

observe coexisting melt tubules, melt films, and melt pools. A derivation of electrical 

conductivity for a real partially molten rock geometry from microstructural 

considerations, which is discussed in Chapter 3, is therefore needed to explain the 

high bulk electrical conductivities observed in synthetic partial melts. 

 

1.3.5 3-D melt distribution from X-ray micro-computed tomography 

Rather than inferring a 3-D melt distribution of olivine-basaltic melt samples 

by comparing measured bulk properties to idealized mixing models, the three-

dimensional melt microstructure can be obtained using synchrotron X-ray micro-

computed tomography (µ-CT) (Zhu et al., 2011). µ-CT is a three-dimensional 

imaging technology that exploits the difference in relative X-ray absorption 
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efficiencies of materials. µ-CT has been used for decades to study the pore structure 

of crustal rock samples. However, µ-CT has only recently been applied to study the 

olivine-basalt partially molten system in part due to the technical challenge associated 

with resolving the small density contrast (~400 kg m-3) between olivine and basaltic. 

Novel reconstruction algorithms that incorporate diffraction-enhanced tomography 

(Fitzgerald, 2000), also known as qualitative phase retrieval, allow one to highlight 

grain-basalt interfaces. The resulting high-resolution, 3-D image constitutes a virtual 

rock sample on which microstructural analysis or digital rock physics (DRP) 

experiments can be conducted.  

 

1.4 Basics of X-ray micro-computed tomography 

There are two categories of X-ray µ-CT: absorption-contrast and phase-

contrast tomography. Both are inverse problems that are solved using some 

implementation of the filtered-back-projection method (see Kak and Slaney (1988) 

for a review of principles).  

Absorption-contrast tomography utilizes spatial variations in the density 

distribution to image an object. The estimated spatial density distribution can be 

computed by inverting a series of projections taken along different ray paths through 

the object (Fig. 1.7 & Fig. 8). Each projection contains a record of the proportion of 

X-ray attenuation integrated along the ray path. For each X-ray path, the X-ray 

intensity I is given by 

 I = I0 exp − µ x( )dx
−∞

+∞

∫
⎡

⎣
⎢

⎤

⎦
⎥  (1.4) 

where I0 is the intensity of the incident X-ray and µ is the absorption coefficient along 
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the path of the X-ray. Reconstructing the 3-D image amounts to finding the 

absorption coefficients µ that relate the known incident X-ray intensity to the 

attenuated signal recorded in the projections. Robustly resolving material interfaces 

using absorption contrast tomography requires a sufficiently large density contrast 

between materials. As was discussed briefly in Section 1.3.4, the density contrast 

between olivine and basalt is too low for absorption-contrast alone to be effective at 

imaging samples composed of olivine and quenched basaltic melt.  

Additional information can be obtained from the diffraction signal embedded 

in the X-ray projection. There are two classes of phase-contrast tomography: 

“qualitative” phase-contrast tomography (e.g. Fitzgerald (2000)), commonly referred 

to as “edge-enhancement,” incorporates information about diffraction of X-rays at the 

mineral-mineral or mineral-fluid interface to highlight those interfaces. Qualitative 

phase-contrast tomography was successfully applied to monomineralic partially 

molten forsterite-basalts (Zhu et al., 2011). However, even edge-enhancement is not 

sufficient to resolve polymineralic aggregates that contain olivine-orthopyroxene 

(opx) and opx-basalt interfaces, whose density contrast is ~70 kg m-3. Therefore, 

quantitative phase-contrast-tomography (e.g. Paganin et al., 2002), which exploits the 

spatial distribution of the index refraction, can be used to improve the image quality. 

Common quantitative phase retrieval algorithms (Paganin et al., 2002) essentially 

perform joint-inversions between absorption-contrast and phase-contrast tomography. 

They provide excellent image quality when the density contrast between components 

is small. 
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1.6 Segmentation of grayscale image 

The grayscale output of the reconstruction algorithm is not immediately 

lendable to automatic quantification and numerical computation of physical 

properties. An additional step, often referred to as segmentation, needs to be 

conducted to transform the grayscale image to a label image, wherein each voxel is 

assigned a non-negative integer identification number. Once “segmented,” a number 

of algorithms can be used to quantify the morphology and topology of the mineral 

and fluid structure. Label images can be easily discretized and be used as the 

computational domain in digital rock physics (DRP) simulations to compute physical 

rock properties.  

The goal of segmentation is to accurately capture the spatial distribution of 

materials based on their grayscale values so that the reconstructed digital rocks are 

representative of the real samples. Refer to Fusseis et al. (2014) for a quantitative 

comparison of segmentation techniques applied to X-ray µ-CT of geological 

materials. For the purpose of this project, it suffices to say that common segmentation 

algorithms fall into two categories: global and local. Global segmentation algorithms 

involve thresholding the data by a globally defined variable, such as the grayscale 

value at the inflection of the grayscale histogram computed for the whole subvolume. 

Conversely, local segmentation algorithms assign label identifiers to pixels based on 

locally varying quantities. Local segmentation algorithms are better at repressing the 

random or speckled noise and the long-wavelength grayscale variations but are 

computationally expensive to perform on large volumes. 
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1.7 Digital rock physics applied to partially molten rock: an overview 

The true power of µ-CT comes to light when it is combined with numerical 

simulations. The 3-D label images constitute virtual rock samples on which any 

virtual rock physics experiment can be conducted and any range of parameters can be 

tested with relative ease. With a DRP approach, tweaking an experiment amounts 

changing input parameters or boundary conditions. Material properties can be 

accurately derived from first principles and directly linked to characteristics of the 

rock microstructure. 

I used DRP techniques to characterize microstructure and compute 

permeability and electrical conductivity of olivine-basalt aggregates (Chapter 2 and 3) 

and olivine-opx-basalt (Chapter 4 and 5) aggregates as a function of melt fraction. 

Melt morphologies and topologies are quantified on statistically representative 

volumes and linked to transport properties. A number of 3-D image processing, 

segmentation, and automated quantification tools are also discussed. 
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Chapter 2: Experimental quantification of permeability of partially molten 

mantle rocks 

 

Abstract 

Melt percolation in mantle rocks is currently poorly constrained, especially at 

low melt fractions. At mid-ocean ridges, for example, geochemical and geophysical 

observations produce divergent estimates of how much melt is present in the mantle 

and how quickly it moves. Accurate estimates of permeability and grain-scale melt 

distribution in mantle rock are necessary to reconcile these observations. We present 

three-dimensional (3-D), 700 nm-resolution images of olivine-basalt aggregates, 

containing nominal melt fractions (ϕn) between 0.02 and 0.20. Samples were prepared 

from a powdered mixture of San Carlos olivine and high-alumina basalt and hot-

pressed in a solid-media piston-cylinder apparatus at 1350 °C and 1.5 GPa. Images 

were obtained using synchrotron X-ray micro-computed tomography (µ-CT) from the 

Advance Photon Source at Argonne National Laboratory. Stokes flow simulations, 

conducted using the digital melt volume as the numerical domain, determine that the 

permeabilities of experimental charges range from 2×10-16 to 5×10-13 m2 for ϕn=0.02 

to 0.20, respectively. The simulation results are well represented by the power-law 

relation between permeability (k) and melt fraction (ϕ), k = ϕn d 2 / C, where n = 2.6 ± 

0.2, and assuming a grain size of 35 µm, C =58−22
+36 . These results place important new 

constraints on rates of melt migration and melt extraction within partially molten 

regions of the mantle. 
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2.1 Introduction 

At mid-ocean ridges, the divergence of lithospheric plates causes an upwelling 

of hot mantle. The pressure relief during ascent carries peridotite across its solidus 

and induces partial melting. The melt, which is less dense than the surrounding 

mantle, separates from the solid and percolates towards the surface via porous and 

possibly channelized flow (e.g. Kelemen et al., 1997). The melt extraction rate is 

governed by the permeability of the mantle, which is highly influenced by the amount 

of melt present as well as the topology and connectivity of the melt network. Despite 

its importance for understanding melt transport in the mantle, the permeability of 

partially molten mantle rock is poorly constrained. The aim of this study is to provide 

better permeability estimates through the quantification of grain-scale melt 

distribution. 

At textural equilibrium, the relationship between permeability and the grain-

scale melt distribution in a partially molten rock takes the form of a power law 

(Cheadle, 1989; Connolly et al., 2009; McKenzie, 1984; Ricard et al., 2001; von 

Bargen and Waff, 1986; Wark and Watson, 1998),  

 k = φ nd 2

C
 (2.1) 

where d is grain size, n is the power law exponent, and C is a geometric factor 

influenced by the dihedral angle. For an isotropic system with uniform grain size and 

shape, n=2 (McKenzie, 2000; von Bargen and Waff, 1986). However, for more 

complex systems, where the effects of crystal anisotropy and grain-scale 

heterogeneity are no longer negligible, higher vales of n should be used. For example, 

a value of n=3 represents well porous flow through a non-uniform network of packed 
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tetrakaidekahedral grains (Zhu and Hirth, 2003). These model results have been 

corroborated by permeability experiments conducted on analogue systems composed 

of quartzite + H2O and calcite + H2O where grain size distribution is non-uniform, 

grain shapes are anisotropic, and n~3 (Wark and Watson, 1998).  

Mineralogy plays an important role, through its influence on surface free 

energy, in determining the minimum-energy configuration of the system. Therefore, 

experiments conducted on partial melts with chemistry similar to the mantle must be 

considered. Some permeability experiments (Connolly et al., 2009; Renner et al., 

2003) have been conducted for olivine partial melts. They find that the permeability 

of partially molten olivine basalt at high melt fractions (ϕ > 0.02) is consistent with a 

power law where n~3. However, permeametry of partially molten aggregates in these 

experiments is technically challenging. Consequently, the results of such studies are 

subject to considerable uncertainty. 

Grain-scale melt distribution is typically studied by examining backscattered 

electron images from two-dimensional (2-D) cross-sections of isostatically pressed 

samples (e.g. Cmíral et al., 1998; Faul and Fitz Gerald, 1999). By assuming a model 

about the three-dimensional (3-D) connectivity of the melt network, it is possible to 

infer and estimate sample permeability using the 2-D data. However, those estimates 

are innately ambiguous, since permeability is an intrinsic property of the 3-D 

microstructure (Zhu et al., 2011). Therefore, a fully 3-D approach must be employed 

in order to accurately determine sample permeability. Two methods may be employed 

for characterizing microstructures in three dimension: serial cross-sectioning (Garapić 
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et al., 2013; Wark et al., 2003) and synchrotron X-ray micro-computed tomography 

(µ-CT) (Watson and Roberts, 2011; Zhu et al., 2011). This study focuses on the latter. 

Constraints on mantle permeability come from both geochemical and 

geophysical observations. Analyses of uranium-series isotopes in mid-ocean ridge 

basalts (MORB) (Lundstrom et al., 1995; McKenzie, 2000, 1985; Sims et al., 2002; 

Stracke et al., 2006), have shown a measureable degree of secular disequilibrium 

between 238U and its shorter-lived daughter nuclides 230Th and 236Ra. Preservation of 

secular disequilibrium at the surface implies a low melt fraction retained by the 

mantle, ϕ < 0.01, with a relatively fast upwelling velocity at ~1 m yr-1 (Kelemen et 

al., 1997). By contrast, geophysical observations imply considerably higher melt 

fraction. For example, seismic and magnetotelluric data (Evans et al., 1999; The 

MELT Seismic Team, 1998) from the East Pacific Rise 17°S give evidence that the 

melt fraction in the mantle is 0.01 to 0.02, implying that melt extraction is inefficient 

at lower melt fractions. In a more recent study, Key et al. (2013) reported a melt 

fraction close to 0.10 under the East Pacific Rise 9°N using magnetotelluric 

inversions. Accurate estimates of permeability of partially molten rocks are needed to 

reconcile the apparent contradiction in melt fraction. 

In this study, we utilize high-resolution µ-CT to digitally capture the 3-D melt 

distributions of olivine-basalt aggregates isostatically pressed in a piston-cylinder 

apparatus at 1350 °C and 1.5 GPa. Nominal melt fractions (ϕn) of samples 

systematically ranged from 0.2 to 0.20 (Zhu et al., 2011). To demonstrate textual 

equilibrium of these experimental charges, we also conducted time series experiments 

at nominal melt fraction of 0.05  (refer to Appendix A). For each sample, we selected 
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several representative subvolumes and characterized their permeability, grain size 

distribution, and melt interconnectivity. The permeability of each subvolume was 

calculated by numerically solving the Stokes fluid questions for the velocity and 

pressure fields within the digital melt microstructure. Permeability was plotted as a 

function of the measured melt fraction (ϕm) in the corresponding subvolume and an 

empirical relation between permeability and melt fraction was obtained. Our results 

provide new experimental constraints on the permeability and melt distribution of 

partially molten rocks.  

 

2.2 Experimental Methods 

2.2.1 Sample Preparation 

 Experimental charges were prepared from a powder mixture of natural, high-

alumina basalt (Mg #=0.705) and San Carlos olivine (~Fo90) (Zhu et al., 2011). 

Olivine grains were sorted using a sieve to a maximum grain size of 10 µm. The 

nominal melt fraction desired for each sample was obtained by varying the basalt 

content of the mixture, which was then homogenized with ethanol for six hour-long 

cycles in an automatic agate mortar and pestle. The homogenized mixtures were 

pressed into cylindrical pellets under a 1-ton press, placed into graphite capsules (Fig. 

2.1A), and dried overnight at 400 °C to remove water. The whole assembly was 

centered in a straight-walled graphite furnace using crushable MgO spacers. The 

pressure medium for all experiments consisted of a CaF2 sleeve. 

Experiments were conducted using 1.27 cm assemblies (Boyd and England, 

1960). Pressure was initially applied using the cold piston-in technique (Johannes et 
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al., 1971). The friction correction for the assemblies was calibrated against the Ca-

tschermakite breakdown reaction at 1.2 to 1.4 GPa and 1300 °C (Hays, 1966) and 

determined to be less than the pressure uncertainty of the pressure gauge, so no 

correction has been applied to the reported pressures.  Temperature was measured and 

controlled using a W3Re97/W25Re75 thermocouple; no correction for the effect of 

pressure on thermocouple EMF has been applied to the reported temperatures. N2 was 

flowed over the thermocouple wires to minimize thermocouple oxidation over the 

course of an experiment. Temperatures are estimated to be accurate to ±10°C and 

pressures to ±50 MPa. The temperature difference over the capsule was determined to 

be less than 5 °C using offset thermocouples. Experiments were terminated by 

shutting off the power. Upon completing each experimental run, the graphite capsule 

was sawed open to expose the surface of the experimental charge (Fig. 2.1B). The 

exposed surface was polished and reflected light photomicrographs were taken. A 

cylindrical ~0.9mm diameter cylindrical samples was then cored from each charge to 

be used for µ-CT analysis (Fig. 2.1C).  

Two suites of experiments were conducted (Table 2.1). The first suite was a 

time series, which was conducted to determine the minimum time required for a 

sample to reach textural equilibrium. All of the time series samples have a nominal 

melt fraction of 0.05 and the sintering time varied systematically from 42 to 336 

hours (see Appendix A). The second suite of samples consisted of nominal melt 

fractions of 0.02, 0.05, 0.10, and 0.20. The sintering time for each sample was 

sufficiently long to ensure textural equilibrium (Zhu et al., 2011). 
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2.3 Analytical Methods 

2.3.1 Synchrotron X-ray micro-computed tomography 

Microtomography was conducted at 2-BM of the Advanced Photon Source at 

Argonne National Laboratory, Argonne, IL. A multi-layer monochrometer was used 

to select a narrow band (27 keV) of X-rays. Those photons were then passed through 

the olivine-basalt sample (Fig. 2.2). On the opposite side of the sample, the X-rays 

were transmitted to a LuAg:Ce scintillator, converting them into visible light. A CCD 

camera was used to detect the visible light, and the light intensity was recorded. The 

sample was rotated 180° in 0.12° increments to build a digital volumetric 

representation of the sample in about 20 minutes (Fig. 2.2). For each sample, the raw 

intensity data was processed using GidRec (Dowd et al., 1999) into a stack of image 

slices. Each slice is a grayscale image whose constituent pixels have values that are 

functions of X-ray attenuation, which is in turn, a function of material density. In this 

way, µ-CT is used to differentiate phases, so long as the density contrast between the 

phases is substantial.  

Silicate melt samples pose a unique problem in that the density contrast 

between olivine and basalt is not sufficient to differentiate the phases using standard 

phase contrast techniques. To circumvent this issue, we employed diffraction-

enhanced imaging (Fitzgerald, 2000) to improve the contrast between olivine and 

basalt (Zhu et al., 2011). Diffraction-enhanced imaging utilizes the interference 

pattern, which occurs in the near-field Fresnel diffraction regime, to highlight the 

olivine-basalt interfaces and produce high-resolution 3-D microstructure of olivine-

basalt systems. 
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2.3.2 Subvolume selection 

 Due to limited computation power, we selected only a few cubic subvolumes 

per sample for analysis. The size of those subvolumes ranged from 140×140×140 

µm3 (i.e. 100×100×100 pixel3) to 350×350×350 µm3 (i.e. the 500×500×500 pixel3) 

(Fig. 2.3). We determined through a series of permeability analyses on progressively 

larger subvolumes that a 350×350×350 µm3 subvolume is sufficiently representative 

of the sample microstructure. Refer to Appendix A.1 for details.  

Several 350×350×350 µm3 subvolumes from each sample were analyzed. 

Although each subvolume is susceptible to local heterogeneities in the melt 

microstructure, taken together, these subvolumes adequately represent the melt 

microstructure of the entire sample. Analyses of sample permeability, grain size, and 

interconnectivity were conducted using a combination of Avizo® and Matlab® 

software. 

 

2.3.3 Noise reduction and segmentation techniques 

To reduce noise and suppress artifacts that remain from the imaging process, 

we employed a non-local means filter (Buades et al., 2005) and an anisotropic 

diffusion filter (Weickert et al., 1998) (Fig. A.1). Once we reduced the noise to an 

acceptable level, we implemented a series of algorithms to segment the grayscale 

data. Segmentation is a procedure by which we transform grayscale data into a binary 

label file required for our quantitative analyses of the microstructure (Fig. A.2). Two 

techniques were used for segmenting the grayscale data: a marker-based watershed 

transformation and a top-hat threshold.  
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The watershed transformation (Beucher, 1992) is based on the idea of 

redefining grayscale pixel value as topographic relief. First, interphase boundaries are 

highlighted by thresholding the grayscale gradient of the denoised image. Then a 

global threshold is employed to make an initial try at segmenting the denoised data. 

The image is then inundated starting from the initial segmentation. The regions 

defined by the thresholded gradient act as impermeable barriers to the rising virtual 

fluid, preventing the merging of distinctly different phases. The result, after the 

watershed transformation, is a high-quality, segmented binary image where phase 

boundaries are defined exactly at grayscale inflections.  

The watershed transform is suitable for accurately segmenting larger features 

in the data; however, it tends to miss very thin melt conduits. To capture these finer 

details, a top-hat filter (Vincent, 1993) is applied and then a global threshold is 

utilized to select those details. The size of the kernel is selected based on the size of 

those features. An opening filter is then applied to the inverse of the image in order to 

smooth out the boundaries of the image. Some user-controlled refinements of the 

binary image were typically needed. The size of the features that top-hat segmenting 

is able to recognize is limited by the kernel size. Avizo limits the size of the kernel to 

twenty pixels, so a watershed transform is still needed if there are features in the 2-D 

slice that are larger than the kernel size. Examples of the final 3-D binary images for 

four charges of different nominal melt fractions are show in Fig. 2.4. 

 

2.3.4 Quantification of network topology 

We performed a series of systematic analyses on subvolumes of the 3-D 
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binary image of our olivine-basalt samples. We quantify the melt fraction, grain size 

distribution, network interconnectivity, and permeability for each subvolume (Table 

A.1). The melt fraction (ϕm) of each subvolume is measured by calculating fraction of 

voxels, the three-dimensional image unit, assigned to the melt phase in the segmented 

image. The measured melt fraction of a subvolume may vary from the nominal melt 

fraction (ϕn) because of sample heterogeneity and possible melt-rock interactions. 

Uncertainty on the measured melt fraction was estimated by contracting (low bound) 

and dilating (upper bound) the binary melt image by one pixel (Fusseis et al., 2012). 

For this reason, error bars are asymmetric. 

Grain size distribution was quantified using Avizo’s Separate Objects module. 

The module takes the binary label image as input and performs a series of high-level 

algorithms, including a watershed transform, distance transform, and numerical 

reconstructions, to separate individual grains by a 1-pixel boundary. We report the 

grain size distribution for every subvolume as the distribution of equivalent 

diameters. Separation of individual grains is difficult when melt fraction is low, since 

the only thing that separates grains are melt channels. Therefore large uncertainties in 

the equivalent diameter distributions are expected for the scoba-9 (ϕn=0.02) sample. 

Quantification of the melt network connectivity was accomplished using 

Avizo’s skeletonization module. Skeletonization is the process by which the general 

melt microstructure is simplified to an interconnected skeleton network. The skeleton 

is used to assess the topology of the melt network. First, a distance map is calculated. 

Second, a thinning algorithm is applied to the binary image that removes pixel-by-

pixel the outer layers of melt channels until only a string of pixels remain. The  
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Figure 2.4: Volume renderings of the melt distribution for olivine–basalt containing nominal melt fractions of 
(A) 0.02, (B) 0.05, (C) 0.10, and (D) 0.20. The dimensions of each subvolume are 140×140×140 µm3. Gray 
represents the melt phase, empty spaces are olivine grains, and red highlights the intersection of melt and the 
bounding box.
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algorithm is calibrated so as to preserve small features of the melt microstructure. 

Finally, the mean thicknesses of the melt conduits are retrieved from the distance 

map. A Matlab® script, called ScobaCleaner.m, was written to automatically remove 

spurious features from the skeletonized melt network (see supplementary material and 

Zhu et al. 2011). 

 

2.3.5 Quantification of permeability 

Permeability calculations were performed using Avizo’s XLab Hydro module. 

Two different computational modules were used: the Absolute Permeability 

Experiment Simulation (APES), which computes a scalar estimate of the 

permeability, and the Absolute Permeability Tensor Calculation (APTC), which 

computes the 3×3 permeability tensor for the subvolume. Both APES and APTC 

implement the finite volume method (Harlow and Welch, 1965) to solve the Stokes 

Equations for the velocity and pressure fields. The Stokes Equations are given by 

  (2.2) 

where p is the pressure [Pa], µ is the viscosity [Pa s] of the simulated fluid, and u is 

the velocity [m s-1]. 

For APES, flow in the digital melt domain is driven by a pressure differential 

(ΔP) imposed across the subvolume (Fig. 2.5). A 1-pixel-wide impermeable layer is 

added to the sides of the sample domain parallel to the flow in order to prevent loss of 

fluid through the adjacent faces. Accommodation zones are added to the inflow and 

outflow faces of the subvolume to ensure that there is a self-consistent pressure field 

over the faces. The APES module then solves for the velocity field in the melt domain 

∇⋅u = 0
µ∇2u −∇p = 0

⎧
⎨
⎩
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(Fig. 2.5). Each APES fluid flow simulation was conducted along the z-direction, 

parallel to the cylindrical sample axis. During post-processing, the volumetric flux Q 

[m3
 s-1] across the sample end faces is computed, and an application of Darcy’s Law 

yields the permeability k [m2]. 

 
 (2.3) 

where A is the cross-sectional area [m2] and L [m] is the length of the computational 

domain. 

Contrary to the APES, APTC simulates fluid flow by solving a modified, 

volume-averaged form of the Stokes Equations (Gray, 1975) 

 
 (2.4) 

where D is a tensorial representation of the spatial deviation of the velocity [s-1], d is 

a vectorial representation of the spatial deviation of the pressure [Pa s m1], and I is 

the 3×3 identity matrix. Rather than invoking Darcy’s Law, the permeability tensor K 

is computed by volume-averaging D over the whole computational domain V. 

 
 (2.5) 

Equation systems 2.2 and 2.4 do not lend themselves immediately to solving 

through implicit methods, since matricies of this form are singular. Therefore, an 

artificial compressibility coefficient (Chorin, 1967) is incorporated in the discretized 

forms of Eqn. 2.2 and 2.4. 

Differing from the APES module, which imposes a pressure gradient to 

induce fluid flow, the APTC module supplies mass to the system via a volumetric  

k = −Q µ
ΔP

L
A

∇⋅D = 0
µ∇2D −∇d = I

⎧
⎨
⎩

K = 1
V
DdV

V
∫
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source term in the discretized formulation of Eqn. 2.4. Accommodation zones are 

defined on all six faces of the subvolume to impose periodic boundary conditions 

between parallel faces. One major drawback of the APTC module is computational 

cost of the calculation. Moreover, significant permeability anisotropy is not expected 

in our isostatically pressed samples. The APES module, in contrast, is a relatively 

quick computation capable of calculating the scalar permeability for a given 

subvolume, provided the permeability is not significantly anisotropic. For our study, 

APES is the preferred module for calculating sample permeability. APTC is only 

used to verify the absence of significant permeability anisotropy. 

 

2.4 Results 

The analyses mentioned above were performed on all 350×350×350µm3 

subvolumes for nominal melt fractions ranging from 0.02 to 0.20. Refer to the Table 

A.1 of the online supplement for a complete list of results. From now on, subvolumes 

will be referred to using the notation “scoba-a-b-c”, where the placeholders a, b, and 

c refer to the sample number, subvolume dimension in pixels, and the subvolume 

identification number, respectively (Table A.1). 

 

2.4.1 Grain size results 

Results from our time series experiments (Appendix A) indicate that the 

olivine-basalt samples with ϕn of 0.02, 0.05, 0.10, and 0.20 have equilibrium textures.  

The olivine-basalt aggregates with ϕn from 0.05 to 0.2 exhibit lognormal 

Equivalent Diameter Distributions (EDD). However, the scoba-9 sample (ϕn=0.02) 
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has an EDD that differs significantly from the others, which likely results from a 

failure of the Separate Objects module to accurately segment individual grains at 

small melt fractions. For melt fractions as low as 0.02, many of the melt channels are 

below the resolution of µ-CT (Zhu et al., 2011). When this is the case, two or more 

adjacent grains may be misrepresented as a single large grain. This may explain why 

the mean EDD reported for scoba-9 is much larger than the others, and it may also 

explain why the EDD exhibits a long tail for equivalent diameters larger than 80µm. 

These larger grains cannot be remnants of the pre-sintered samples, since the 

maximum grain size of the pre-sintered experimental charge is 10 µm.  

The mean equivalent diameters for scoba-9 (ϕn=0.02), scoba-12 (ϕn=0.05), 

scoba-6 (ϕn=0.10), and scoba-5 (ϕn=0.20) are 42−20
+38  µm, 34−12

+18  µm, 38−13
+21  µm, and 

41−15
+24  µm, respectively (Fig. 2.6). Errors are asymmetric because equivalent diameter 

distributions are characteristically lognormal. 

 

2.4.2 Connectivity of melt network 

Results from connectivity analyses are conveyed as Coordination Number 

Distributions (CND) in Fig. 2.7. The skeletonization analysis replaces melt-filled 

triple junctions with tubules whose widths vary along their axes. The intersections 

between melt tubules are designated “nodes.” Connectivity is defined as the number 

of melt tubules connected to each node. The connectivity of an ideal melt network is 

predicted to be 4 (von Bargen and Waff, 1986), but it varies in natural systems like 

our samples (Zhu et al., 2011). We determine the CND of one 350×350×350µm3 

subvolume from each sample.  



 41 

To describe the CND in a physical context, nodes with a coordination number 

of 1 represent dead-end melt channels. Nodes with a coordination number of 2 are 

removed from the skeleton, since two connected melt conduits effectively act as one 

single conduit. Nodes with a coordination number of 3 are mostly associated with 

regions where melt pooling or grain boundary wetting is occurring. A node with a 

coordination number of 4 indicates a four-grain junction. Nodes with a coordination 

number of 5 or higher are either representative of physical junctions in which more 

than four grains are present, or artifacts from the ScobaCleaner.m algorithm when the 

connections from short tubules get merged (Table A.2). 

The CNDs of scoba-5 (ϕn=0.20), scoba-6 (ϕn=0.10), scoba-12 (ϕn=0.05), and 

scoba-9 (ϕn=0.02) indicate that the frequency of coordination number 4 nodes 

decreases as melt fraction increases (Fig. 2.7). This represents a decrease in the 

number of melt junctions connected to four melt tubules. Conversely, the frequency 

of coordination number 3 increases over the same range, representing an increase in 

melt grain boundary wetting. The higher connectivity nodes, e.g. 5-8, have more or 

less the same frequency across scoba-12, scoba-6, and scoba-5. 

Scoba-9 (ϕn=0.02) appears to contradict the progression towards a 

coordination number 4 dominated melt microstructure, since coordination number 3  

nodes represent a clear majority of the nodes in the network. However, many thin 

melt tubules in scoba-9 appear broken and register as nodes having a connectivity of 

1. This artifact is a result of the µ-CT resolution limits. A node having four connected 

tubules might register as a node that has only three connecting tubules if one of those 

tubules is removed during cleaning or data processing. This would account for the  
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anomalously high abundance of dead-end tubules as well as the less-than-expected 

frequency of coordination number 4 nodes. Notwithstanding these resolution limits, it 

is clear that the melt network remains well connected even when the nominal melt 

fraction is 0.02 and the measured melt fraction of representative subvolumes 

approaches 0.0121−0.005
+0.006 . Therefore, even at low melt fractions our subvolumes 

support fluid flow. 

 

2.4.3 Permeability results 

Permeability was computed for three to five 350×350×350 µm3 subvolumes 

per sample (Fig. 2.3). Fig. 2.8 shows the calculated permeability as a function of the 

measured melt fraction of each subvolume. We performed a linear fit on the data 

using the total least squares algorithm based on York et al. (2004), including the 

standard error on measured melt fraction. Since permeability values were calculation 

results, no uncertainty was reported. Uncertainty of melt fractions came from the 

ambiguity in the location of the olivine-basalt phase interface. The upper and lower 

bounds of melt fractions were estimated by expanding and shrinking the melt phase 

by 1 pixel at the olivine-melt interface (Fusseis et al., 2012). When fitting the data, 

we shift the porosity value to halfway between the upper and lower bounds of melt 

fraction. We find that fluid flow in our olivine-basalt samples is well characterized by 

a power-law relationship between permeability and melt fraction (Eqn. 2.1), where 

the power law exponent is n = 2.6 ± 0.2(1σ), and, assuming a grain size of 35 µm in 

our samples, the geometric constant is C = 58−22
+36  (1σ).  
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2.4.4 Permeability Anisotropy 

We computed the permeability tensor K for the scoba-12-500-4 subvolume 

(φn=0.05) using the APTC module, yielding 

 

 (2.6) 

The eigenvalues of K, called the principal permeabilities, are 2.02×10-15 m2, 1.88×10-

15 m2, and 1.81×10-15 m2. The coefficient of variation of these values is ~6%, which is 

negligible compared to modeling uncertainty. Therefore, we conclude that the melt 

microstructure of our sample is isotropic at the scale of this 350×350×350µm3 

subvolume. Since the microstructures are isotropic, we conclude that isostatically 

pressing the samples produces an isotropic permeability structure, so the APES 

module is sufficient for computing the permeabilities of our subvolumes. 

The permeability of this subvolume determined by the APES module is 4.6×10-15 m2, 

which is about a factor of 2 larger than the determination from APTC. The 

discrepancy is likely due to the different formulation of the permeability 

determination problem. The formulation used by APES is closest to the original 

definition of permeability and is therefore preferred here. We also artificially rotated 

the subvolume and recalculated the permeability by APES in three mutually 

perpendicular directions. We find the permeabilities to be 5.4×10-15 m2, 4.7×10-15 m2, 

and 4.6×10-15 m2 for kx, ky, and kz, respectively. Permeability values are similar within 

~3.9% relative variance, which confirms that the permeability in our samples is 

essentially isotropic. 

 

K =
1.86 2 ×10−3 −6 ×10−2

2 ×10−3 1.90 8×10−2

−6 ×10−2 8×10−2 1.94

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

×10−15m2
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Figure 2.8: Permeability calculated for 350 × 350 × 350 µm3 subvolumes plotted as a function of the 
measured melt fraction on log–log axes. Different samples are represented by different colors, with 
sample number and nominal melt content indicated in the legend. The dashed line represents the best-
fit line for log10(k) = n log10(ϕm) + log10(d2/C), where geometric constant C =𝟓𝟖!𝟐𝟐!𝟑𝟔 and power law 
exponent n =2.6 ± 0.2. For fit, d is assumed to be 35 µm, a value we chose because it is within the 
range of grain sizes measured from all subvolumes.  
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2.5 Discussion 

2.5.1 Morphology of melt microstructure 

Visual inspection of our melt microstructures reveals that, for low melt 

fractions the network topology resembles the ideal model proposed by von Bargen 

and Waff (1986), where melt preferentially reside to three and four-grain junctions. 

As the nominal melt fraction increases to 0.05, we visually observe the onset of grain 

boundary wetting, though melt tubules continue to be the dominant feature of the melt 

microstructure. At ϕn=0.10, there is an inversion from a tube-dominated network to 

one in which the melt films and pools are the most prominent features. Finally, for 

ϕn=0.20, grain boundaries are almost completely wetted, as the sample is approaching 

its theoretical disaggregation limit, ϕn≥0.20 (Hier-Majumder et al., 2006; McKenzie, 

1984). 

 

2.5.2 Interpretation of power law exponent 

The permeability of an ideal melt network, in which grain size is uniform, 

depends on the square of melt fraction, i.e., n=2 when melt resides at triple junction 

(von Bargen and Waff, 1986) and on the cube of melt fraction, i.e. n=3, as higher 

melt fraction (Wark et al., 2003). This transition may correspond the two 

morphological regimes observed here, i.e. a tubule-dominated at low melt fractions 

(n=2) versus pool and film-dominated at higher melt fractions (n=3). Considerations 

of grain-scale heterogeneity would also produce n=3 (Zhu and Hirth, 2003). 

However, the data from this study are captured adequately by a single relation with n 

= 2.6 ± 0.2 and C = 58−22
+36 . More complex relations are not justified by the data, 
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considering the uncertainty of our porosity and permeability estimates. 

The experimental results of Renner et al. (2003) and Connolly et al. (2009) are 

compatible with n=3, which, considering that these experiments infer permeability 

indirectly from the compaction rate of olivine-basalts aggregate, present an 

encouraging agreement with our study. Therefore, microstructure readjustment during 

quenching appears to be minor in our experiments and our permeability–porosity 

relation can probably be used to describe olivine-basalt aggregates at mantle 

conditions. For extrapolation to higher temperatures and pressures, we may need to 

consider an increased importance of melt film grain faces, as the dihedral angle 

appears to decrease as temperature and pressure increase (Yoshino et al., 2009b). 

However, melt films observed at high melt fraction in our sample do not have a 

marked effect on our permeability–porosity relation. Future work would need to 

address their contribution to permeability at low melt fraction, high pressure, and high 

temperature. 

Given the various melt geometries present in our datasets, a value of n=2.6, 

between 2 and 3, is not surprising. Consider a mixture of subvolumes consisting of 

end member melt distributions, one end member is entirely made up of melt tubules 

along triple junctions (n=2) while the other contains only wet grain boundaries and 

melt pools (n=3). The overall permeability of the system is the mixing of the 

individual subvolume permeabilities and, in the absence of a large-scale order 

between these subvolumes, will converge to the geometric mean permeability as the 

number of subvolumes increases (Madden, 1976). If the permeability of each 

subvolume Vi is given by the empirical relation ki = Ciφ
ni , the geometric mixing leads 
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to an equation for the total permeability kT 

 kT = C1…CN( )
1
N φ

n1+  … +nN
N  (2.7) 

where N is the total number of subvolumes. Eqn. 2.7 is, in its own right, a power law, 

the same as Eqn. 2.1. In our case, our end member distributions have n=2 and n=3, so 

Eqn. 2.7 leads to a new power law exponent of 2.5, which is very much consistent 

with the value of n = 2.6 ± 0.2 obtained by our fit. A value of n between 2 and 3 can 

be though of as representing a mixing of melt geometries. 

  

2.5.3 1-D mantle model 

Given the new empirical relation between permeability and the melt fraction, 

we make a simple model of melt transport in the mantle. If 230Th disequilibrium 

observed is produced at 60 to 75 km depths, melt transport must have occurred at a 

velocity w of order of 1 m yr-1 (3×10-8 m/s). Darcy’s law implies  

 φw = k0
µ
φ nΔρg  (2.8) 

where k0= is the permeability coefficient, φ is the porosity, Δρ is the density 

contrast between melt and solid mantle, µ=10 Pa s is the melt viscosity (Ryan and 

Blevins, 1987) and g~10 m/s is the acceleration of gravity. 

Assuming a grain size of 3 mm (Toramaru and Fujii, 1986), we estimate 

k0~1.55×10-7 m2. If ρs=3300 kg m-3, ρf=2700 kg m-3 (Stolper et al., 1981), Δρ=600 kg 

m-3. From Eqn. 2.8, the porosity needed to sustain a melt velocity w is given by 

 φ = w β( )
1
n−1  (2.9) 

where β = k0Δρg/µ = 9.3×10-5 m s-1. Therefore, preserving 230Th disequilibrium 

d 2 C
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produced at depth requires a porosity of at least 0.0068. This number is comparable 

with estimates from seismic studies (The MELT Seismic Team, 1998), although at 

the low end of the observational constraints. Higher porosity results in faster melt 

velocity, which is more easily reconciled with 230Th excess in MORB. 

 An alternative estimate of mantle porosity can be obtained from a mass 

balance between melt produced by decompression of a mantle column at velocity W 

(Ribe, 1985; Spiegelman and Elliott, 1993): 

  (2.10) 

where F is degree of melting, which increases with height above the level where melt 

starts. By combining Eqns. 2.8 and 2.10, the mean melt fraction retained by our 

model mantle is estimated at. 

 φ = ρs

ρ f

FW
β

⎛

⎝⎜
⎞

⎠⎟

1
n

 (2.11) 

Remarkably, the permeability in this model does not depend on porosity but only on 

geodynamical parameters 

 k = ρs

ρ f

µFW
Δρg

 (2.12) 

 Assuming F=0.20 at the top of the melting column (Asimow et al., 1995) W=5 

cm yr-1 (1.7×10-9 m s-1) (Spiegelman and Elliott, 1993),  we obtain a melt fraction 

ϕ=0.0085, and, according to Eqn. 2.8, a melt velocity of 5.0×10-8 m s-1 (~1.6 m yr-1). 

If this velocity were valid for the entire melting column, the transit time 

through the melting column zM would be 

ρfφw = ρsFW
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 tU = zM
w

= ρs
ρf
FMW

⎛
⎝⎜

⎞
⎠⎟

1−n
n
β −1/nzM  (2.13) 

where FM is the degree of melting in the column. However, the degree of melting 

increases upward in the column. Assuming a linear increase of F from 0 to FM 

through a column of height zM, we obtain  

 tT = ntU  (2.14) 

For FM=0.2 and zM=75 km, tT~136 kyrs. This value is in the high end of what 

is permissible to preserve 230Th excesses, especially considering that chromatographic 

effect will reduce the velocity of isotopes (Spiegelman and Elliott, 1993). However, 

the transit time depends on grain size to the power -2/n through the β coefficient. 

Increasing the grain size to 1 cm reduces the melt transit time to 54 kyrs, although a 

melt fraction of 0.0034 which is harder to reconcile with geophysical estimates of 

melt content underneath mid-ocean ridges. 

A larger melt fraction would be compatible with 230Th constraints but could 

not be sustained by melting of an upwelling mantle column. However, these 

calculations assume a very simple system, i.e. 1-D melt percolation through a uniform 

network in steady state. They do not give any consideration heterogeneities in the 

melt distribution larger than the grain-scale. It may be possible to reconcile uranium-

series disequilibrium and geophysical observations if the mantle is heterogeneous, 

with high porosity channels. 

 

2.5.4 Implications for mantle heterogeneities 

High melt fraction dunite conduits have been observed in ophiolites and 
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appear necessary to explain chemical disequilibrium between mid-ocean ridge basalts 

and the mantle residuum (Dick, 1977; Johnson and Dick, 1992; Kelemen et al., 1992; 

Quick, 1982; Spiegelman and Kelemen, 2003). Dunite conduits form as a buoyant 

melt, which is saturated in olivine but under-saturated in orthopyroxene (Ortoleva et 

al., 1987), reacts with pyroxene-bearing peridotite, simultaneously dissolving the 

orthopyroxene and precipitating olivine (Kelemen et al., 1997, 1995a, 1995b). The 

dissolution of pyroxene is an incongruent melting reaction: more melt is produced by 

volume than is removed from the system by the precipitation of olivine (Kelemen et 

al., 1995b), and increases both melt fraction and permeability. Naturally, the rate of 

dissolution is enhanced in regions where permeability is increased, which, in turn 

continues to enhance permeability. Thus, a positive feedback, known as the reactive 

infiltration instability (RII), is established between the opx dissolution and 

permeability enhancement. Numerical models (Aharonov et al., 1995; Kelemen et al., 

1997; Spiegelman et al., 2001; Spiegelman and Kelemen, 2003) have shown that the 

RII is capable of producing banded dunite structures similar to those found in nature. 

Our results have direct implications for melt transport within these conduits. 

At the grain-scale, permeability is largely controlled by the local melt distribution, 

which is determined by local variations in the free surface energy of the system. Free 

surface energy is an intrinsic property of the system composition, i.e. the mineral 

phases present and the composition of the melt. Since the compositions of our 

samples are similar to those of partially molten dunite, it stands to reason that melt 

transport within these dunite conduits adheres to the power-law relationship between 

permeability and melt fraction that we constrain here. Due to the RII, the melt 
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fraction within dunite conduits is four times the overall mantle melt content 

(Spiegelman et al., 2001). Therefore, the permeability of these conduits is about 37 

times larger than for a homogeneous mantle. Neglecting melt production by RII, the 

channels would occupy 25% of the mantle, so that channelization would increase the 

velocity by approximately a factor of 10, making it easier to preserve 230Th 

disequilibrium while verifying the mass balance considerations described in the 

previous section. 

The permeability of dunite conduits may further increase if the difference in 

surface energy between olivine and opx is sufficient to preferentially partition melt to 

olivine-rich areas (Watson, 1999), increasing melt content in dunite conduit beyond 

the product of incongruent melting. Lithological melt partitioning has been proposed 

to occur in mantle systems where olivine and opx are present. However, experimental 

evidence for melt partitioning in systems with mineralogies similar to the mantle is 

lacking. Although more research is needed to establish the extent to which the RII 

and lithological partitioning modify the permeability structure of the mantle, dunite 

conduits are good candidates for enhancing overall melt transport within the partially 

molten region of the mantle beneath mid-ocean ridges. 

 

2.6 Conclusion 

This study is the first to use a 3-D imaging technique on synthetic partially 

molten peridotites to estimate sample permeability. Visual inspection of the digital 

microstructures shows that for melt fractions as low as 0.02, interconnected melt 

channels residing along grain edges are the dominant features of the melt network. 
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For melt fractions greater than 0.05, considerable melt pooling and grain boundary 

wetting are observed in addition to melt channels. Measured connectivity 

distributions confirm the increased contribution of grain boundary wetting as melt 

content increases. 

The permeability of our samples was computed numerically for sufficiently 

large representative subvolumes and ranged from 4×10-16 to 2×10-13 m2 for melt 

fractions ranging from 0.02 to 0.20. The relationship between permeability and local 

melt fraction is adequately represented by a power law k=d2φn/C, with d the grain size 

(approximately 35 µm in our samples), the exponent n = 2.6 ± 0.2, and the geometric 

constant C = 58−22
+36 . A first-order calculation, based on mass balance in a 1-D melting 

column, show that our empirical relation implies a melt fractions of order 1% under 

mid-ocean ridges with upwelling velocities of order 1 m yr-1 leading to transit times 

through the melting column that are consistent with those constrained by uranium-

series analyses. Combined with numerical computation, µ-CT has proven to be a 

useful tool for characterizing the microstructure of partially molten peridotites and 

computing their material properties. The results of this study place important new 

constraints on melt transport beneath mid-ocean ridges, where partial melting occurs. 
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Chapter 3: Influence of microstructure on electrical conductivity of partially 

molten rocks  

 

Abstract 

 Estimates of melt content beneath fast-spreading mid-ocean ridges inferred 

from magnetotelluric tomography (MT) vary between 0.01 and 0.10. Much of this 

variation may stem from a lack of understanding of how the grain-scale melt 

geometry influences the bulk electrical conductivity of a partially molten rock, 

especially at low melt fraction. We compute bulk electrical conductivity of olivine-

basalt aggregates over 0.02 to 0.20 melt fraction by simulating electric current in 

experimentally obtained partially molten geometries. Olivine-basalt aggregates were 

synthesized by hot-pressing San Carlos olivine and high-alumina basalt in a solid-

medium piston-cylinder apparatus. Run conditions for experimental charges were 1.5 

GPa and 1350 °C. Upon completion, charges were quenched and cored. Samples 

were imaged using synchrotron X-ray micro-computed tomography (µ-CT). The 

resulting high-resolution three-dimensional (3-D) image of the melt distribution 

constitutes a digital rock sample, on which numerical simulations can be conducted to 

estimate material properties. To compute bulk electrical conductivity, we simulated a 

direct current measurement by solving the current continuity equation, assuming 

electrical conductivities for olivine and melt. An application of Ohm’s Law yields the 

bulk electrical conductivity of the partially molten region. The bulk electrical 

conductivity values for nominally dry materials follow a power-law relationship σbulk 

= Aσmeltϕm with fit parameters m = 1.3 ± 0.3 and A = 0.66 ± 0.06. Laminar fluid flow 
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simulations were conducted on the same partially molten geometries to obtain 

permeability, and the respective pathways for electrical current and fluid flow over 

the same melt geometry were compared. Our results indicate that the pathways for 

flow fluid can be different from those for electric currents. The tortuosity of direct 

current pathways is lower than that of fluid flow pathways. The simulation results are 

compared to existing experimental data, and the potential influence of volatiles and 

melt films on electrical conductivity of partially molten rocks are discussed. 

 

3.1 Introduction 

At mid-ocean ridges, melt is thought to percolate over a broad, partially 

molten region through a grain-scale network of interconnected melt (Fig. 3.1). The 

capacity of the upper mantle to transport melt, which is ultimately responsible for the 

production of oceanic crust, strongly depends on the spatial distribution of melt in the 

mantle. The magnetotelluric (MT) method, which exploits the high conductivity of 

partially molten rock, is a valuable tool used to probe the melt content of the upper 

mantle. Though MT measurements are consistent with the presence of partial melt at 

mid-ocean ridges, they disagree on the shape of the melting region and on the local 

melt fraction, with estimates in the literature varying from as low as 0.01-0.03 (Evans 

et al., 1999) to as much as 0.10 (Key et al., 2013). The first step towards reconciling 

MT survey estimates is to robustly link electrical conductivity of partially molten 

mantle rocks to the grain-scale morphology and interconnectivity of melt. A 

microstructure-based approach to constraining electrical conductivity as a function of 

melt fraction will provide a baseline for extrapolate laboratory measurement to  
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natural conditions and to assess the potential contributions of volatiles and melt 

anisotropy to bulk electrical conductivity. 

Bulk electrical conductivity of partially molten rock strongly depends on 

interconnectivity of the highly conductive melt phase. For a monomineralic system, 

under hydrostatic melting conditions, melt settles into an equilibrium configuration 

that minimizes the total surface energy of the system. The degree of interconnectivity 

can be assessed by the dihedral angle associated with its constituent solid-liquid phase 

boundaries (Bulau et al., 1979; Waff and Bulau, 1979). For a dihedral angle greater 

than 60°, melt forms isolated pockets. In this case, the melt and solid phases are 

connected in series and the bulk electrical conductivity of the mixture is only 

marginally greater than that of the solid. However, for a dihedral angle less than 60°, 

as is the case for a partially molten olivine-basalt (Cmíral et al., 1998; Cooper and 

Kohlstedt, 1984; Jurewicz and Jurewicz, 1986; Toramaru and Fujii, 1986; Waff and 

Bulau, 1982), melt forms an interconnected network along grain edges (von Bargen 

and Waff, 1986). As such, the melt conducts electricity in parallel with olivine and 

the bulk electrical conductivity for melt fractions greater than 0.01 increases by at 

least one order of magnitude (Roberts and Tyburczy, 1999; ten Grotenhuis et al., 

2005; Yoshino et al., 2010). 

Since the electrical conductivity of rock strongly depends on the melt 

geometry, bulk conductivity versus melt fraction relationships have been derived for a 

number of idealized melt geometries: cube pack (Waff, 1974), tube lattice 

(Schmeling, 1986), and hard sphere pack (Hashin and Shtrikman, 1963; Waff, 1974). 

Though these end-member cases are useful for conceptualizing melt configurations, 
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partially molten mantle rocks are heterogeneous and exhibit a range of melt features 

(Faul, 2000; Laporte and Provost, 2000; Miller et al., 2014; Wark et al., 2003) 

depending on the melt fraction present. At melt fraction larger than ~0.01, melt 

mostly resides in triple junctions connected at four-grain junctions (Miller et al., 

2014; Toramaru and Fujii, 1986; Waff and Bulau, 1982, 1979; Zhu et al., 2011) 

though melt films that wet two-grain boundaries have also been observed at low melt 

fraction (Cmíral et al., 1998; Faul, 2000; Garapić et al., 2013). Melt pools exist with 

increasing frequency as melt fraction increases, leading to an increased degree of 

grain boundary wetting or spillover from triple junctions (e.g., Zhu et al., 2011). At 

melt fraction of 0.2, melt pools are the dominant feature of the melt network (Miller 

et al., 2014; Zhu et al., 2011). The coexistence of multiple geometries for a given melt 

fraction highlights the importance to consider realistic, three-dimensional (3-D) melt 

geometries when computing material properties like electrical conductivity. 

Experiments conducted on partially molten olivine-basalts find that bulk 

electrical conductivity varies as a power law with melt fraction (i.e., Archie’s Law): 

 σbulk=Aσmeltϕm (3.1) 

where σbulk is bulk conductivity, σmelt is melt conductivity, and ϕ is melt fraction. A 

and m are power law parameters that depend on the melt morphology and 

interconnectivity. Values m=0.89 to 1.30 and A=0.73 to 1.47 have been reported for 

olivine-basalt partial melts (Roberts and Tyburczy, 1999; ten Grotenhuis et al., 2005; 

Yoshino et al., 2010). These studies do not directly link electrical conductivity with 

the melt network morphology.  

Most studies find that the data on partially molten samples overlap the upper 
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Hashin-Shtrikman bound linking the conductivities of pure olivine and melt end-

members, However, the upper Hashin-Shtrikman bound is intended to represent a 

loose pack of uniformly wetted spheres. We argue that this interpretation is 

inconsistent with microstructural observations of texturally equilibrated rocks (e.g. 

Cmíral et al., 1998; Cooper and Kohlstedt, 1984; Jurewicz and Jurewicz, 1986; 

Toramaru and Fujii, 1986; Waff and Bulau, 1982). Also, end-member conductivities 

were not always directly measured as part of the experiments. While experimental 

constraints on the electrical conductivity of partially molten rock as a function of melt 

fraction are essential to interpret MT data, a direct link between electrical properties 

and melt geometry is still missing.  

In addition, the use of electrical conductivity to infer permeability of systems 

where direct permeability measurements could be challenging, such as partially 

molten rocks, has garnered significant interest. With the assumptions that pathways 

for both conductivity and permeability are linked to the microstructure of the rock, 

several studies have discussed the apparent formation factor, defined as the σbulk/σmelt 

and its relation to microstructure in various porous media (Avellaneda and Torquato, 

1991; Johnson et al., 1986; Katz and Thompson, 1987). A self-consistent analysis of 

permeability and electrical conductivity using network (David, 1993) and laminar 

flow models on periodic pore spaces (Martys and Garboczi, 1992; Schwartz et al., 

1993) conclude that these approaches produce comparable results in terms of 

extrapolating permeability from electrical conductivity. However, considering the 

fundamental differences in the physics of electrical conduction and fluid flow, it is 

important to examine the link between electrical conductivity and permeability based 
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on microstructure.  

In this study, we compute the bulk electrical conductivity and permeability of 

digital rocks that represent the real 3-D distribution of melt in olivine-basalt samples 

synthesized at mantle pressure-temperature conditions. Each sample was digitized by 

high-resolution, 3-D imaging using synchrotron-based X-ray micro-computed 

tomography (µ-CT) (Zhu et al., 2011). The resulting 3-D images constitute digital 

rocks, on which direct current and fluid flow simulations were conducted. The 

potential influence of melt films at two-grain boundaries, which have been observed 

with high-resolution microscopy, on electrical conductivity and permeability is 

evaluated. We separately assess the influence of H2O in melt and olivine by adjusting 

the electrical conductivity of olivine and melt. 

 

3.2 Methods 

3.2.1 Sample preparation and imaging 

 The samples considered in this study are synthetic olivine-basalts aggregates 

representing partially molten rocks (Miller et al., 2014; Zhu et al., 2011). 

Experimental charges were prepared from a powered mixture of San Carlos olivine 

and natural, Fo90, high-alumina basalt (Mg #=0.0705) mixed in proportion to achieve 

nominal melt fractions 0.02, 0.05, 0.10, and 0.20. Charges were isostatically hot-

pressed under simulated mantle pressure-temperature conditions (1.5 GPa and 1350 

°C) in a solid-medium piston-cylinder apparatus for a minimum of 1 week to achieve 

textural equilibrium. Upon completion, charges were quenched, turning the molten 

basalt to glass, and ~1 mm cores were drilled from the samples. Cores were imaged 
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using a combination of absorption-contrast and phase-contrast X-ray µ-CT at 27 keV 

to resolve the small density contrast between olivine and basaltic glass. Projections of 

the integrated X-ray absorption and phase shift were recorded over 180° at 0.12° 

increments and reconstructed into 3-D grayscale datasets using GridRec (Dowd et al., 

1999). Voxel (3-D pixel) values in the reconstructed images roughly correspond to 

material density. Cubic voxels are 700 nm in length, measured along the voxel edge.  

 

3.2.2 Subvolume selection 

Sample cores often exhibit significant decompression cracking. These cracks 

are voids that are not present at elevated pressure and temperature. To circumvent 

decompression cracks – and to reduce the size of the computational domain – we 

consider smaller subsets, or subvolumes, that are cropped from the whole-sample 

images (Miller et al., 2014). All the subvolumes used in direct current simulations, 

with the exception of those we used to assess the potential influence of H2O, have 

dimensions 280 µm × 280 µm × 280 µm, which was determined to be representative 

of the bulk based on an electrical conductivity convergence analysis conducted on 

progressively larger, nested subvolumes (Fig. 3.2). At least three statistically 

representative subvolumes were cropped from each sample.  

 

3.2.3 Noise-removal and segmentation 

Grayscale subvolumes were processed using an edge-preserving anisotropic 

diffusion filter (Weickert et al., 1998) to remove noise and artifacts, improving the  
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efficacy of automatic segmentation algorithms. In order to setup a numerical domain 

for computation, grayscale subvolume data were transformed into label images using 

a variety of semi-automatic segmentation techniques: watershed transform (Beucher 

and Meyer, 1992; Beucher, 1992) for high melt fraction and a bottom-hat global 

threshold (Vincent, 1993) for low melt fraction. Refer to Miller et al. (2014) for more 

details in data processing. 

The melt fraction of each subvolume was calculated by counting the number 

of cubic, uniform voxels labeled as basalt. A robust uncertainty analysis of the 

measured melt fraction requires access to the point-spread function of the image data, 

which is difficult to obtain. As an alternative, following Fusseis et al. (2012), we 

estimate lower and upper bounds for the melt fraction by measuring the melt fraction 

associated with the contracted and dilated melt image, respectively. Contractions and 

dilations were conducted along all three orthogonal directions of the cubic 

subvolume. 

 

3.2.4 Direct current simulations 

Though the electrical response of a partially molten rock is controlled by the 

variable mobility of charge carriers to an alternating electric field – either by ambient 

electromagnetic waves in the Earth or an alternating current source in the laboratory – 

we chose to simulate direct current only to obtain bulk electrical conductivity. Bulk 

electrical conductivity should not depend on the type of electrical source, whether it is 

inferred from the frequency-dependence of alternating current measurements or the 

direct current simulations. We focus on modeling charge transport by solving the 
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current continuity equation and do not explicitly consider the mobility of charge 

carriers. 

Our model is based on the formulations proposed by Garboczi (1998) and 

Zhan et al. (2010). Each segmented label image is considered the computational 

domain in a direct current simulation. We solve the current continuity equation, 

which is the Laplace Equation 

  (3.2) 

where σ is the local electrical conductivity [S m-1] of voxels associated with each 

conductive material and ψ is the local scalar electric potential [V] defined at voxel 

centers. Electric current is driven by an imposed electric potential differential (ΔΨ) 

across the subvolume, between the inlet and outlet faces. A no-flux condition is 

imposed at the four faces parallel to the global electric potential gradient to ensure 

current is conserved (Fig. 3.3). Using a second-order centered finite-difference 

formulation, Eqn. (3.2) at each voxel becomes 

  (3.3) 

where n is the number of connecting voxels and κij is the electrical conductance of the 

bond connecting voxels i and j. The distinction between electrical conductance and 

electrical conductivity is a geometric factor, which is unity for bonds connecting 

voxels in a uniform cubic grid. Voxels i and j are restricted to adjoining elements.  

With consideration of the no-flux and inlet/outlet conditions, Eqn. (3.3) is 

reformulated into a matrix equation 

 κ lmψ m = bm  (3.4) 

∇⋅ σ ∇ψ( ) = 0

κ ij ψ j −ψ i( ) = 0
j=1

n

∑
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where bm is a vector that contains the influence of the boundary conditions on interior 

voxels and κlm is a positive definite, symmetric matrix that contains the electrical 

conductances of the bonds connecting each voxel. Elements are summed over m 

indices. An additional constraint on the system comes from current continuity, which 

states that the conductance of each bond must satisfy 

 κ lm = 2σ lσm

σ l +σm

 (3.5) 

If voxels l and m belong to the same material, the conductance of the connecting bond 

is just the electrical conductivity of that material. Conductance between voxels that 

are not neighbors equals zero. Eqn. (3.4) is solved using the conjugate gradient 

method to a tolerance of 1×10-5. An incomplete Cholesky factorization (Meijerink 

and van der Vorst, 1977) was used as a preconditioner to improve convergence rate of 

the conjugate gradient solver. Each simulation was set-up, discretized, and solved 

using custom, Matlab-based finite-difference software.  

Evaluating the effect of melt films along grain boundaries requires a special 

procedure since the resolution of µ-CT is not sufficient to observe possible nanometer 

scale melt films. We employ an upper bound approach. First we use Avizo’s Separate 

Objects module, based on the morphological watershed transform, to define likely 

olivine-olivine grain boundaries. Assuming all the interfaces are covered by melt 

films, each voxel at grain boundaries thus consists of both olivine and melt. We 

assign to these voxels an electrical conductivity that is the parallel average of the 

olivine and basalt conductivities, 

  (3.6)
 

 

where χ is the proportion of the voxel that is occupied by melt. Assuming a melt film 

σ film =σmeltχ +σ olivine 1− χ( )
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thickness of 100 nm, the maximum value reported in the literature (Cmíral et al., 

1998), and considering that our voxels have a uniform thickness of 700 nm, χ=1/7. 

This approach is similar to that taken by Zhan et al. (2010) to model the effect of an 

electric double layer on bulk electrical conductivity of sandstone. This approach 

overestimates the effects of melt films along olivine-olivine grain boundary as the 

effective conductivity of the voxels should be anisotropic and Eq. 6 should only be 

valid in the grain-parallel direction. We are able to bracket the effect of the melt films 

by comparing simulations with χ=0 and χ=1/7. 

 

3.2.5 Fluid flow simulations 

 Permeability simulations were conducted using Avizo XLab Hydro following 

Miller et al. (2014). In these simulations, accommodation zones, where fluid spreads 

evenly over the inlet and outlet faces, were appended to the sample subvolumes. The 

Stokes Equations, which assume steady-state laminar flow, were solved on a 

staggered finite-volume grid (Harlow and Welch, 1965). Flow was induced by 

imposing pressure drop ΔP across the input and output faces. A no-flux condition was 

imposed at the material interface and the intersection of the melt geometry with the 

bounding box. As XLab Hydro cannot consider variations in material properties we 

could not evaluate the effects of melt films using a similar strategy as in the direct 

current simulations. Instead, we assigned a 1-voxel thick surface along the olivine-

olivine boundaries as melt. This approach grossly exaggerates the effect of melt films, 

which are no more than 1/7 voxel thick. An alternative approach would have been to 

resample the melt geometry to a voxel size that is comparable to the actual melt film 



 69 

thickness (tens of nanometers). However, this approach would increase the number of 

degrees of freedom in our system to an unmanageable size, and as shown later, the 

exaggerated melt films, as handled by our simplified approach, alter both the 

permeability and the porosity in the simulations, with negligible effect on the 

porosity-permeability relationship of partially molten rocks.  

 

3.2.6 Computing tortuosity 

 Since we solve for the velocity and electrical fields, it is straightforward to 

compute the tortuosity of each simulation. Tortuosity is defined as the ratio of length 

of the path a parcel of fluid – or electron for direct current simulations – would travel 

through the geometry to the length of that geometry in the direction parallel to flow. 

The tortuosity can be recovered by computing the path length of streamlines, since 

streamlines are also pathlines for laminar flow. The streamlines can be weighted by 

its associated mass flux (Matyka et al., 2008). If we take the limit as the spacing 

between the streamline seeds goes to zero, as would be the case in a continuum, the 

tortuosity can be calculated using, 

  (3.7) 

where umag is the velocity magnitude and uz is the z-component of the velocity, 

assuming z is the direction of flow (Duda et al., 2011). 

 

3.3 Results 

3.3.1 Electrical conductivity 

Bulk electrical conductivity was computed for each subvolume label image  

τ =
umag
uz
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(280 µm)3, assuming conductivities of 7.53 S m-1 (ten Grotenhuis et al., 2005) and 

0.009 S m-1 (Constable, 2006) for nominally dry melt and olivine, respectively. 

Summary of results are listed in Table 3.1. Simulation results are reported as a 

function of the measured melt fraction (Fig. 3.4). A linear fit to the simulations results 

on a log-log scale, assuming that our data lie at the midpoint between our error bars 

(York et al., 2004), give Archie parameters m=1.3±0.3 and A=0.66±0.06 (Fig. 3.4). 

The value for our power-law exponent m agrees, within uncertainty, with data from 

Roberts and Tyburczy (1999) and ten Grotenhuis et al. (2005). Most of the 

differences in A between Roberts and Tyburczy (1999) and ten Grotenhuis et al. 

(2005) can be attributed to the different experimental condition. 

 

3.3.2 Permeability 

Laminar flow simulations were conducted on the same subvolumes as the 

direct current simulations. Permeabilities are plotted as a function of melt fraction and 

compared to bulk electrical conductivities (Fig. 3.4). A fit to the permeability data in 

log-log space gives power law exponent n=2.7±0.7, consistent with Miller et al. 

(2014). There is a clear difference in the power law curves between electrical 

conductivity and permeability. Fig. 3.5 shows that electricity flows more uniformly 

through the pore network and is less sensitive to pore diameters than fluid flow, 

which is consistent with the results of David (1993) and Martys and Garboczi (1992). 

Fluid flow, on the other hand, is dominated by a few major flow pathways, through 

which most of the mass is transported. 
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3.3.3 Tortuosity 

The tortuosity of our Stokes flow simulations, as computed by Eqn. (3.5) (Fig. 

3.6), is consistently higher than direct current simulations, which provides 

quantitative evidence that electricity flows diffusively though the entire melt network, 

whereas fluid flow focuses along specific pathways. As fluid travels through 

distinctly different pathways through the melt network than does electricity, linking 

permeability to electrical conductivity is strictly empirical, with no microstructural 

justification. It should be noted that the high tortuosity of direct current and fluid flow 

simulations conducted at ϕ=0.02 relative to those pertaining to higher melt fractions 

are likely due to low interconnectivity of the digital geometries ϕ≤0.02. 

 

3.4 Discussion 

3.4.1 Electrical conductivity and permeability comparison 

Differences between the permeability and electrical conductivity of an 

aggregate can be attributed to the differences in the radius dependence between the 

fluid and electric fluxes. Consider a simple network of interconnected tubes of 

various widths. For each tube, there is an analytical expression for the fluid and 

electric fluxes. The fluid flux (Q) is given by 

 Q = πb4

8µ
ΔP
L

 (3.8) 

where b is the radius of the tube, µ is the viscosity of the fluid, ΔP is the pressure 

difference from one end of the tube to the other, and L is the tube length. The electric 

flux (Φ) is given by 



 76 

 Φ = πb2 ΔΨ
L

 (3.9) 

where ΔΨ is the difference in electric potential from one end of the tube to the other. 

The strong dependence of the fluid flux on the radius of the tube causes fluid flow to 

be far more sensitive to the pathways available to flow. Since mass and current are 

both conserved quantities, the strong radius dependence of fluid flux results in the 

formation of a so-called “critical pathway” (David, 1993) through which most of the 

material is transported. The fact that tortuosity for laminar flow simulations is 

consistently higher than direct current simulations is evidence of these critical 

pathways. 

 

3.4.2 Comparison with experimental data 

Our simulations results on electrical conductivity are compared to mixing 

models (Fig. 3.7A) that assume idealized melt geometries and electrical 

conductivities for each material. Five different idealized melt geometries are 

considered: parallel and series bounds, upper and lower Hashin-Shtrikman bounds 

(Hashin and Shtrikman, 1963), and a geometric average model. The parallel 

composite model, which assumes melt is organized into a series of pipes that extend, 

with zero tortuosity, through an insulating secondary phase, constitutes an absolute 

upper bound for the bulk electrical conductivity. The series model is the parallel 

model rotated 90°, so that current must pass through both olivine and melt. It is the 

absolute lower bound for the electrical conductivity of a composite material. Hashin-

Shtrikman bounds are conceptually similar to the parallel and series bounds, except 

they assume a system composed of loosely packed spheres surrounded by a uniform  
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layer of melt. The geometric mean model (Madden, 1976) considers a larger 

composite that consists of series and parallel sub-composites.  

Fit to our simulation results yields power law parameters m=1.3±0.3 and 

C=0.66±0.06, which is between the Hashin-Shtrikman bounds, assuming 

σolivine=0.009 S m-1 and σmelt=7.53 S m-1. This is consistent with a heterogeneous melt 

distribution like those observed in microscopy studies (e.g. Cmíral et al., 1998; 

Cooper and Kohlstedt, 1982; Faul and Fitz Gerald, 1999; Garapić et al., 2013; Miller 

et al., 2014).  

Our results are systematically offset from the Hashin-Shtrikman upper 

boundary by a factor of 2 to 3. However, experimentally measured partially molten 

olivine-basalt electrical conductivities are often shown to overlap with the upper 

Hashin-Shtrikman bound (ten Grotenhuis et al, 2005; Yoshino et al, 2010). Although 

we do not have access to the actual samples from these studies, the chemistry, 

mineralogy, and preparation procedures are nominally the same as our own, 

suggesting that there is an additional contribution to the bulk conductivity that cannot 

be accounted for by separately considering the electrical conductivity of olivine and 

melt.  

Recently, Zhang et al. (2014) measured the electrical conductivity of partially 

molten peridotite as a function of strain in simple shear. They separately measured the 

electrical conductivity of their melt and partially molten aggregates before and after 

deformation and found the electrical conductivity of their undeformed aggregate to be 

between the Hashin-Shtrikman lower and upper bounds, consistent with our study. 

Interestingly, the electrical conductivity of the deformed sample, measured in the 
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shear direction, overlapped the upper Hashin-Shtrikman bound. The change in 

conductivity before and after deformation may result from either a change in melt 

distribution or a reaction taking place during the experiment, which produces high 

conductivity phases. Similar effects may be present in other experimental studies in 

which measured values of electrical conductivity of partially molten samples are in 

agreement with the Hashin-Shtrikman upper bound. 

Our study provides a rigorous link between melt distribution geometry and 

electrical conductivity. Direct current simulations on synthetic datasets of straight and 

parallel tubes are in good agreement with analytical solutions to the Laplace equation. 

Due to limitations in current imaging techniques, it is conceivable that some 

connections of the melt network are missing from the melt distribution obtained for 

samples with low melt fractions. However, the missing connections could not explain 

the discrepancy between our simulation results and the experimental data because 

simulations conducted on subvolumes containing nominal melt fractions 0.10 and 

0.20, in which melt channels are completely interconnected, still yield electrical 

conductivity values less than experimental measurements. However, melt films, 

which are too thin to resolve with µ-CT, and the presence of H2O in melt and olivine 

during electrical conductivity measurements, may play an important role. We 

describe below what the effect of these features would be. 

 

3.4.3 Melt films 

In addition to melt tubules and pools, a number of high-resolution studies 

(Cmíral et al., 1998; Faul, 2000; Faul et al., 1994; Garapić et al., 2013; Waff and 
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Faul, 1992; Wirth et al, 1996) document thin films of melt at some two-grain 

junctions. The thickness of melt films ranges between 3 nm and 100 nm. It has been 

suggested that thin films control melt transport at low melt fraction (Faul, 1997). We 

apply our direct current and Stokes flow models to quantifying the influence of melt 

films on bulk electrical conductivity and permeability using the approximations to 

melt films described in Section 3.2.2. By assuming all grain-grain boundaries are 

wetted by melt – i.e. the anisotropy of grain boundary surface energy is neglected– 

our approach gives an upper bound for the influence of melt films. Fluid flow 

simulations are conducted assuming that a full, 1-voxel fluid layer wets grain-grain 

boundaries. 

Results are plotted in Fig. 3.7B. Artificially imposing melt films in our 

olivine-basalt geometry increases sample conductivity and has a similar effect on the 

bulk conductivity as increasing olivine electrical conductivity. This is because the 

voxels at grain boundaries are now considered an average of olivine and melt 

electrical conductivities, whereas these voxels were considered olivine only in the 

previous series of simulations. Bulk electrical conductivity increases substantially at 

low melt fraction and less so for higher melt fraction. The large error bounds on our 

melt fraction suggest that this change for ϕ>0.02 is within uncertainty. Nevertheless, 

the inclusion of melt films alone cannot account for the high electrical conductivities 

observed in experiments, even though their effect is grossly exaggerated in our 

simulations. 

Including melt films substantially increases the permeability of our partial 

melt geometries. At the same time, the presence of melt films also substantially 
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increase melt fraction. The resulting porosity-permeability relationship does not differ 

significantly from that of Miller et al. (2014) without melt films. Actually, the 

permeability of a subvolume that includes melt films is systematically lower than 

permeability of a subvolume of similar porosity that does not include melt films. 

Although the difference is minimal and likely insignificant, melt films reduce 

permeability for a given porosity.  

The larger effect of the melt films on bulk electrical conductivity relative to 

permeability is consistent with the concept of a critical pathway. In permeability 

computations, melt films contribute little to the critical pathways because fluid flux’s 

strong dependence on hydraulic radius. In contrast, electrical conductivity flows more 

diffusively and uses melt films as viable pathways for electric transport. Thus melt 

films may be important contributors to the electrical properties of partially molten 

rocks, especially if their chemistry is distinct from the chemistry of the melt (Wirth, 

1996). However, their contribution to the bulk electrical conductivity is not sufficient 

to account for the apparent discrepancy between the simulated and measured bulk 

electrical conductivities. 

 

3.4.4 H2O in melt 

The presence of volatiles, specifically H2O and CO2, in melt is an excellent 

candidate for enhancing bulk electrical conductivity at high melt fraction. An addition 

of ~1 wt. % H2O to an otherwise dry basaltic melt can increase the electrical 

conductivity by a factor of 3 (Ni et al., 2011). CO2 has an even stronger effect on the 

melt electrical conductivity (Sifré et al., 2014; Yoshino et al., 2010) but is not 
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explicitly addressed here. To assess the effect of H2O on the bulk electrical 

conductivity of partial molten rocks, we run direct current simulations for various 

melt conductivities and convert to H2O concentration for the melt using  

  (3.10) 

where  is the concentration of H2O in the melt and T is temperature. Starting 

values for melt electrical conductivity were adopted from measured values (ten 

Grotenhuis et al., 2005). Though different degrees of melting will likely produce 

subsequently different H2O concentrations – since H2O will partition form olivine to 

the melt – we assume a uniform increase in the melt conductivity.  

Our results are presented in Fig. 3.7C. A H2O concentration of 1.7 wt. % is 

sufficient to explain the high conductivities for high melt fraction in ten Grotenhuis et 

al. (2005) but underestimates the conductivity at lower melt fraction. Therefore, the 

electrical conductivity-melt fraction power-law does not match their experimental 

results at lower melt fraction. As melt fraction decreases, the electrical conductivity 

of olivine will have a stronger influence on the bulk electrical conductivity. 

 

3.4.5 H2O in olivine 

Under hot, “dry” conditions, the electrical conductivity of olivine, which is 

controlled by polaron electron hopping (Constable, 2006; Dai et al., 2010; Schock et 

al., 1989; Wanamaker and Duba, 1993; Xu et al., 2000; Yoshino et al., 2009a), is 

three to four orders of magnitude less than that of basaltic melt and should contribute 

insignificantly to the bulk electrical conductivity. Under “wet” conditions, however, 

olivine electrical conductivity can increase significantly (e.g. Wang et al., 2006; 

log σmelt = 2.172 −
860.82 − 204.46 CH2O

T −1146.8

CH2O
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Yoshino et al., 2006, 2009; Poe et al., 2010; Jones et al., 2012; Dai and Karato, 

2014a, 2014b; Gardés et al., 2014) though the magnitude of its influence on the bulk 

electrical conductivity of olivine is debated (Gardés et al., 2014). To explore the 

effect of an increased olivine electrical conductivity, we run direct current simulations 

using a range of higher olivine conductivities. 

The conductivity of olivine with some fraction of water is estimated according 

to the model of Gardés et al. (2014). They consider three superposed conduction 

mechanisms. The first two, diffusion of cation vacancies and polaron hopping, 

operate under anhydrous conditions at high and low temperatures, respectively 

(Constable, 2006; Dai et al., 2010; Schock et al., 1989; Wanamaker and Duba, 1993; 

Xu et al., 2000; Yoshino et al., 2009a), while the third mechanism is related to the 

presence of hydrogen in olivine. 

  (3.11) 

where ΔH are the activation enthalpies for the mechanisms,  is the weight 

concentration of H2O in the olivine, α corrects for the decrease in the activation 

enthalpy for increasing H2O concentration, R is the ideal gas constant, and T is 

temperature. 

Results are plotted in Fig. 3.7D. We find that increasing olivine conductivity 

noticeably enhances the bulk conductivity at low melt fraction and changes the shape 

of the bulk electrical conductivity-melt fraction power-law. If we assume wet 

conditions for both olivine and melt, we find that σmelt=15.60 S/m and σolivine=0.045 

S/m explains experimental data by ten Grotenhuis (2005). An olivine electrical 

conductivity of 0.045 S/m at 1475 °C translates to ~145 ppm. Given, the solubility of 
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H2O in olivine ~90 ppm (Gaetani et al., 2014), measured at 1200 °C, it is difficult to 

justify 145 ppm H2O concentration in olivine. However, without solubility data 

measured at higher melt temperature, it is unclear whether the solubility of H2O in 

olivine at 1200 °C can be extrapolated to 1475 °C.  

The trend of the data from laboratory measurements (e.g., ten Grotenhuis et 

al., 2005) may reflect water in the aggregates, with the combined effect of water in 

olivine and melt films dominant at low melt fraction and water in the melt dominant 

at high melt fraction. Neither effect is expected to significantly affect the relation 

between permeability and melt fraction. 

 

3.4.6 Chemical heterogeneity 

We speculate the existence of a thin, electrochemically distinct layer at the 

olivine-melt interface that might account for the apparent discrepancy between the 

bulk electrical conductivities measured and those we computed using real partial melt 

geometries. Electrolytic conduction by Na+ ions dissolved in the fluid is the primary 

mode of electrical transport in porous sedimentary rocks (Nover, 2005). High 

concentration of Na+ ions at the mineral-fluid interface would provide an additional 

pathway for electrical conduction. In crustal rocks, lattice deficiencies at the surface 

of clay minerals result in a locally negative charge that attracts Na+ (Nover, 2005), 

coating the mineral-fluid interface with a thin, highly conductive layer, often called 

the electric double layer (EDL). The thickness of the EDL is roughly the Debye 

length (Debye and Hückel, 1923; Morgan et al., 1989), which depends on physical 

parameters of the fluid phase, such as the molarity and permittivity of solution. For 
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reference, the Debye length of the clay-water interface is on the order of a few to tens 

of nanometers (Tombácz and Szekeres, 2006; Wan and Tokunaga, 2002). Though the 

thickness of the EDL is quite small compared to the diameter of the melt conduits, the 

local electrical conductivity of the EDL would be greater than that of the fluid, and 

since it forms an interconnected pathway, will conduct in parallel with the fluid. 

Therefore, electrical conduction near the mineral-fluid interface may be a separate 

and important conduction mechanism to consider, especially at low fluid fraction.  

The existence of EDLs in partially molten olivine-basalts is currently not 

considered, since the chemistry of olivine-melt interface is intrinsically different from 

the clay-water interface. The formation of an EDL on an olivine-melt interface would 

require a local charge imbalance, possibly due to concentration of impurities. 

Gurmani et al. (2011) and Wirth (1996) have proposed chemical variations in the 

presence of melt films but not for every olivine-melt interface. Nevertheless, the 

presence of EDLs – or more generally a spatial heterogeneity of the primary charge 

carriers – is a convenient mechanism to reconcile our model results and laboratory 

measurements. Furthermore, the influence of EDL on the bulk conductivity may be 

invisible to impedance spectroscopy if electrical conduction through EDLs operates 

in the same frequency spectrum as electrolytic conduction. Unfortunately, modeling 

the influence of the EDL on bulk conductivity requires a priori knowledge of the 

Debye length and EDL electrical conductivity. These variables, to our knowledge, 

have not been constrained for the partially molten olivine-basalt system.  

 

3.5 Conclusion 
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We modeled direct current on experimentally obtained olivine-basalt partial 

melt geometries in order to link microstructural properties to bulk electrical 

conductivity and deconvolute the role of melt geometry from other processes, e.g. 

volatile content, that may affect electrical properties. Our digital rock physics 

approach for determining the bulk electrical conductivity of partially molten rocks 

has the benefit of having fine control on the physics and material properties of the 

system, while still adhering to a real melt geometry. Rather than having to rely on an 

idealized melt geometry from measured electrical properties of the system, we are 

able to compute electrical properties directly from the melt microstructure.  

We found that the high bulk electrical conductivities observed in experiments 

cannot be accounted for by considering only a two-phase olivine-melt model unless 

there is significant enhancement of the melt electrical conductivity by volatiles. The 

trends observed in laboratory measurements may reflect water in the aggregates, with 

the combined effect of water in olivine and melt films dominant at low melt fraction, 

and water in the melt dominant at high melt fraction. Neither effect is expected to 

significantly affect the relation between permeability and melt fraction. We speculate 

that a high electrical conductivity, chemically distinct electrochemical layer on the 

grain-melt interface may also affect laboratory measurements. Such layers have been 

well characterized in rocks that contain clay minerals but have not been discussed in 

the context of partially molten mantle rocks.  
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Chapter 4: Experimental evidence for lithologic melt partitioning between 

olivine and orthopyroxene in partially molten harzburgite 

 

Abstract 

The grain-scale distribution of melt in partially molten aggregates under 

isostatic stress is controlled by gradients in surface energy associated with the grain-

grain and grain-melt boundaries. For a monomineralic aggregate, e.g. olivine-basaltic 

melt composed of idealized isotropic grains, melt is more or less equally distributed 

among grains. However, in a polymineralic aggregate, e.g. olivine-orthopyroxene 

(opx)-basaltic melt, spatial variations in surface energy cause melt to partition 

unevenly among the mineral components in favor of a lower energy configuration. In 

an aggregate that has substantial mineralogical variability, this phenomenon, known 

as lithologic fluid partitioning, can act as a mechanism for concentrating melt and 

possibly modify permeability and electrical conductivity of the rock. 

Experimental studies that examine analogue systems, e.g. calcite-fluorite-

H2O, observe strong fluid partitioning among the constituent minerals. However, 

experimental evidence for melt partitioning between olivine and opx, the two most 

relevant minerals to the upper mantle, is lacking. We present experimental results that 

elucidate the degree of melt partitioning between olivine and opx in partially molten 

harzburgites.  

Samples were prepared by mixing powdered oxides and natural, high-alumina 

basalt in various proportions to test for lithologic melt partitioning across a range of 

melt fractions. Bulk composition was such that a 3 to 2 olivine to opx ratio was 
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maintained over all samples; though the measured olivine to opx ratio for subvolumes 

varies widely 1.2 and 4.3 between subvolumes. Samples were cored and imaged 

using synchrotron-based X-ray micro-computed tomography, producing a high-

quality three-dimensional digital sample. Representative subvolumes were cropped 

from the digital samples, avoiding decompression fractures where possible. Grayscale 

subvolumes were transformed into label images whereby each voxel is assigned a 

phase identification number, e.g. 1 for melt, 2 for olivine, and 3 for opx. Local melt 

fraction distributions for olivine and opx were automatically characterized for each 

subvolume by counting voxels inside ellipsoidal envelopes that were fitted to each 

olivine and opx grain, respectively.  

We find that melt partitions in a 1.1 to 1.5 ratio between olivine and opx, 

respectively, across all subvolumes. We present lithologic melt partitioning as a 

mechanism for focusing melt in the mantle that could potentially enhance average 

melt ascent velocities. 

 

4.1 Introduction 

Melt transport at mid-ocean ridges is thought to operate via porous flow along 

an interconnected, intergranular network (Turcotte and Schubert, 2014). Geochemical 

data collected from mid-ocean ridge basalt suggest melt flux is likely dominated by 

melt fraction heterogeneities that are larger than the grain size. For example, secular 

disequilibrium of uranium-series nuclides (Condomines et al., 1981; Iwamori, 1994; 

Newman et al., 1983; Volpe and Hammond, 1991) and the undersaturation of opx 

with respect to olivine (Kelemen et al., 1997) are indirect evidence of high-melt 
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fraction, high-permeability conduits. Two mechanisms of interest have been proposed 

to organize melt on length scales comparable to the compaction length – a natural 

length scale that depends only on the material properties of the partially molten 

mantle rock: the reaction infiltration instability (RII) (e.g. Aharonov et al., 1995; 

Daines and Kohlstedt, 1994; Kelemen et al., 1995a; Spiegelman et al., 2001) and 

deformation-induced melt segregation (e.g. Holtzman and Kohlstedt, 2007). The 

former is a consequence of the positive feedback between melt flux and opx 

dissolution, and the later results from the anisotropic viscosity of partially molten 

rock (Qi et al., 2014; Allwright and Katz, 2014). We propose an additional 

mechanism that can concentrate and organize melt: lithologic melt partitioning, which 

is a consequence of the thermodynamic gradient caused by spatial variations in 

mineralogy. 

At equilibrium, melt distributes into a configuration that minimizes the total 

surface energy of the system. An idealized system composed of uniform, isotropic 

olivine grains, the minimum-energy configuration is one in which the melt fraction is 

the same around every grain (Fig. 4.1A). However, the presence of secondary 

mineral, such as orthopyroxene (opx), which has a higher solid-melt surface energy 

density than olivine, will perturb the uniform surface energy distribution, causing 

melt to concentrate in olivine-rich regions. This phenomenon, known as lithologic 

melt partitioning, where melt partitions unevenly between olivine and opx, results in a 

locally high melt fraction in olivine-rich regions and a locally low melt fraction opx-

rich regions. 

An alternative – but equivalent – pedagogical model for understanding  
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lithologic melt partitioning uses the concept of the minimum-energy melt fraction. 

For a given dihedral angle (Eqn. 1.1), there is a melt fraction, called the minimum-

energy melt fraction (Fig. 4.1C), that minimizes the total interfacial energy of the 

system. Consider a simple system consisting of a monomineralic aggregate that is 

open to a melt reservoir. The aggregate will draw melt from the reservoir via capillary 

action until the minimum energy melt fraction is attained. However, in the upper 

mantle, olivine and opx grains coexist. In this more realistic scenario, melt will 

partition unevenly between olivine and opx but will not attain their nominal 

minimum-energy melt fractions for the given dihedral angle.  

Lithologic melt partitioning was observed in analogue systems that consisted 

of two juxtaposed mineral aggregates and interstitial H2O. For example, piston-

cylinder experiments (Watson, 1999) showed that H2O partitions in a 5 to 2 ratio 

between fluorite and quartz, respectively, and in a 3 to 1 ratio between clinopyroxene 

and quartz (Fig. 4.2), respectively. In the same study, lithologic melt partitioning was 

examined using juxtaposed olivine and opx aggregates containing the same initial 

proportions of basaltic melt. Since the surface energy density of the olivine-basaltic 

melt interface is markedly lower than that of the opx-basaltic melt interface, it is 

surprising that the sample exhibited no measurable melt partitioning. Watson 

concluded that the distance separating the olivine and opx-rich regions was too large 

(a few milometers) and viscosity of basaltic melt was too high for lithologic melt 

partitioning to occur in the timeframe of the experiment (~6 days). 

We approach measuring lithologic melt partitioning in partially molten 

harzburgitic rocks using a novel approach. Experimental charges, composed of  
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various proportions of olivine, opx, and basaltic melt, were synthesized in solid-

media piston-cylinders apparatuses. Olivine and opx grains were homogeneously 

mixed, which reduced the length-scale of partitioning three orders of magnitude. 

Cores were drilled from the samples and imaged in three-dimensions (3-D) using 

synchrotron-based X-ray micro-computed tomography (µ-CT). Statistically 

representative volumes were cropped from each sample and local melt distributions 

were obtained for olivine and opx by systematically measuring the proportion of melt 

in each olivine and opx-rich region. 

 

4.2 Methods 

4.2.1 Sample preparation of harzburgite samples 

Harzburgite samples were prepared by hot, isostatic pressing of a mixture 

containing oxides and natural, high-alumina basalt. The oxide mixture was prepared 

by homogenizing oxides mixed in proportion such that olivine (forsterite) and opx 

(enstatite) crystals would have the same chemistry as those found in a natural 

harzburgite collected from the Southwest Indian Ridge (Dick, 1989). For each melt 

fraction, the oxide proportions were adjusted to maintain a nominal 3 to 2 (olivine to 

opx) ratio. The ingredients and chemical proportions used in making the oxide 

mixtures are reported in Table 4.1.  

Not all of the elements could be added to the mix as oxides. Calcium, for 

example, was added in carbonate form (CaCO3). The mix was homogenized for six 

one-hour cycles using an automatic agate mortar and pestle. Upon completion, we 

applied a decarbonation procedure to transform the carbonates to oxides. To  
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decarbonate the mixture, it was placed in a furnace at 300 °C and heated to 850 °C at 

100 °C/hr. The mix was held at 850 °C for a minimum of 24 hours. Pulverized natural 

basalt was added in various proportions to the oxide mix to attain total melt fractions 

of 0.02, 0.05, 0.10, and 0.20 when melted. The same homogenization procedure was 

repeated for every oxide-basalt mixture. 

For each melt fraction, ~36 mg of the oxide-basalt mixture was cold-pressed 

into a cylindrical pellet using a 1-ton press and placed into a graphite capsule (Fig. 

4.3). Capsules were dried overnight at 400 °C to remove surface H2O from the 

experimental charges. Charges were placed in solid-medium piston-cylinder 

apparatuses and brought up to 1.5 GPa and 1350 °C using the cold piston-in 

technique (Johannes et al., 1971). Details about the uncertainty in pressure and 

temperature can be found in Chapter 2.2 and Appendix A. 

Upon completion of the piston-cylinder runs, experimental charges were 

quenched by turning off the heating source while maintaining a steady flow of cold 

water through the space surrounding the pressure vessel. Cylindrical 1-mm cores 

were drilled from each sample along the cylindrical sample axis (Fig. 4.3). 

 

4.2.2 Imaging procedure 

The image acquisition, pre-processing, and data reduction procedures are 

outlined in Fig. 4.4. 

Cylindrical harzburgite samples were imaged using a synchrotron light source 

at beamline station 2BM-a of the Advanced Photon Source, Argonne National 

Laboratory. The very small density contrasts at olivine-opx and olivine-basalt  
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boundaries warranted a novel imaging procedure, which involved a combination of 

absorption-contrast and phase-contrast imaging techniques. A monochrometer was 

used to select a narrow energy spectrum around 24.4 keV. The sample was rotated 

180° through the X-ray beam, and at every 0.12° increment, we recorded a snapshot 

of the X-ray projection using a CCD camera. Each projection contains information 

about the X-ray absorption and phase integrated along the trajectory of the X-ray. 

Prior to reconstruction, the background illumination was removed from each 

projection. 

The open source, Python-based software Tomopy (Gürsoy et al., 2014), which 

was developed by the beamline scientists at Advanced Photon Source, was used to 

perform the image reconstruction. First, a stripe-removal algorithm based on Münch 

et al. (2009) was applied. A quantitative phase retrieval algorithm, which was based 

on Paganin et al. (2002) was used to simultaneously recover the X-ray absorption and 

diffraction signal. Finally, GridRec (Dowd et al., 1999) was used to perform the 

tomographic reconstruction. In the resulting grayscale image (Fig. 4.5, olivine 

(lightest granular phase), opx (darkest granular phase), and quenched basaltic melt 

(dark interstitial phase) are clearly distinguishable. 

 

4.2.3 Subvolume Selection 

A visual inspection of the whole sample reconstruction reveals strong melt 

fraction heterogeneity along the cylindrical axis of each sample (Fig. 4.6). The melt 

fraction is at a minimum at the bottom of sample and a maximum at the top of the 

sample. We interpret this long-wavelength heterogeneity to be caused by melt  
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buoyancy. Over the course an experiment, melt which is less dense than the 

surrounding olivine or opx, will rise to the top of the sample. As the melt rises, the 

loss of mass towards the bottom of the sample is compensated by compaction of the 

granular matrix. As melt fraction decreases at the bottom of the sample, surface 

tension and compaction forces reach mechanical equilibrium with buoyancy.  

Following Miller et al. (2014) and Watson and Roberts (1999), smaller 

subsets of data, which we call subvolumes, were cropped from each reconstructed 3-

D image at locations of relatively constant melt fraction. Decompression fractures 

(Fig. 4.5A) and long-wave-length melt fraction heterogeneity (e.g. Fig. 4.6B between 

280 and 560 µm) were avoided.  

 

4.2.4 Image segmentation 

In order to characterize the melt distribution, each grayscale subvolume was 

converted to a label image: grayscale voxels were assigned values 1, 2, or 3 for 

basaltic glass, olivine, or opx, respectively. We developed a semi-automatic 

segmentation workflow. First, a trial segmentation of the melt is performed using a 

combination of Avizo’s local thresholding module and tophat global threshold. Thin 

decompression fractures are manually removed from the image by overlapping the 

trial segmentation with a morphological erosion and dilation of the image using a 

2×2×2 voxel3 ball-shaped kernel. Avizo’s morphological filter toolbox was used. 

 Subtle contrast at the olivine-opx interfaces and bright imaging artifacts at the 

grain edges prevented us from applying the same local threshold technique to 

differentiate the opx from the olivine. We used a morphological watershed 
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transformation to separate grains and then handpicked opx grains from the aggregate. 

Grains that were incorrectly separated were corrected using Avizo’s propagating 

contour tool. Once all of the opx grains were differentiated from olivine, the 

watershed basins were removed by a simultaneous dilation of the olivine and opx 

images. To remove jagged edges, which are artifacts of the morphological watershed 

tool, the resulting image was smoothed using an 3×3×3 voxel3 Gaussian kernel. The 

segmented melt image is superposed on the olivine-opx segmented image. The result 

is a very accurate segmentation of the melt and a slightly less accurate approximation 

of the olivine-opx grain boundaries. Accurately estimating the location of the olivine-

melt and opx-melt interfaces is far more important than the olivine-opx interface 

since we are most interested in the local melt fraction around each grain. 3-D volume 

renderings of the label images are given in Fig. 4.7. 

In some samples, a bright, dendritic phase, which we think is partially 

recrystallized melt, appears in the melt near the olivine-melt interface. Partially 

recrystallization of the melt is usually indicative of an imperfect quench. Since they 

are not present melt prior to quenching, voxels associated with these dendritic 

features are assigned to melt in the segmentation procedure. Refer to Appendix C, 

Fig. C.1) for an image of the bight dendritic phase. 

 

4.2.5 Quantification of local melt fraction distribution 

Though a homogeneous mixture of olivine and opx reduces the amount of 

time required to reach a steady state microstructure, it complicates evaluation of the 

characteristic melt fraction associated with each mineral phase. Therefore, we  
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adopted a dynamic measuring technique, in which a local melt fraction is measured 

for each grain and then plotted in a distribution. Each local melt fraction measurement 

was performed by counting melt voxels contained within an ellipsoidal envelope 

surrounding each grain. First, an ellipsoid was fitted to each grain (Fig. 4.8) using 

ellipsoid_fit.m, which is a freely available software on Matlab Central and is also 

included in Appendix C. The principle lengths and orientations of the ellipsoid are 

eigenvalues and eigenvectors, respectively, of the ellipsoid fit parameters. Next, we 

dilated the fitted ellipsoid by multiplication with a growth parameter p. Phase 

proportions were calculated by voxel counting within each ellipsoidal envelope. We 

looped through all grains in each subvolume and plotted them as a distribution.  

Clearly, local melt fractions depend on p, so we calibrated our algorithm by 

computing the local melt fraction distributions for various values of p (Fig. 4.8). 

Values for p ranged from 1 (original fit to grain) to 4 (includes many grains). We 

wanted an ellipsoid envelop that enclosed only melt adjacent to each grain, which 

occurs for values of p = 1 to 1.4.  

 

4.2.6 Characterizing grain size distributions 

The grain size distribution of each subvolume was determined by estimating 

the equivalent diameter, which is defined as the diameter of a sphere having the 

equivalent volume as the grain, of each grain. First, an opening filter having a “ball-

shaped” kernel was applied to the segmented grain label images. Second, a 

morphological watershed algorithm was used to approximate the solid-solid 

boundaries. The equivalent diameter was then measured for each grain.  
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The morphological watershed transform is completely automatic; however, 

there is a caveat: it sometimes incorrectly approximates grain boundaries. If grain 

boundaries are mostly melt-free, the morphological watershed transform can count 

multiple grains as a single grain. Aside from manually drawing grain boundaries, we 

do not have a method to correct for erroneous grain boundaries. 

 

4.3 Results 

4.3.1 Visual inspection of melt distribution 

A visual inspection of a clump of opx grains (Fig. 4.9) near the bottom of hzb-

14 (ϕn = 0.20) qualitatively demonstrates lithological melt partitioning in a sample 

composed of olivine, opx, and basaltic melt. Mineral clumping occurs in higher 

frequency near the bottom of the sample where the melt fraction is much lower (ϕ ~ 

0.04) than the top. As pointed out in the figure – and holds true across all samples –

olivine-rich regions are abundant sources of melt with respect to the opx-regions, 

which are nearly melt free for low melt fraction. 

The presence of a reduced melt fraction that spans several or more grains has 

important implications for transport properties of the upper mantle. If present in the 

upper mantle, melt rich – or olivine rich because of lithologic melt partitioning – 

conduits may increase melt transport efficiency. 

In our samples, olivine- and opx-rich regions are mixed more or less 

homogeneously in the sample and do not extend through the entire sample. Therefore, 

olivine-rich and opx-rich regions cannot conduct fluid flow in parallel. In the mantle, 

however, the reactive-infiltration instability is thought to juxtapose olivine with  
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harzburgite (Kelemen et al., 1995a), which may allow the high melt fraction, high 

permeability olivine-rich region to transport melt in parallel with the low melt 

fraction, low permeability opx-rich region and increase the transport efficacy of the 

mantle. 

 

4.3.2 Local melt fraction distributions 

Local melt fraction distributions were computed for each subvolume. Use of p 

as a scaling factor for the ellipsoidal envelope assumes that the size of melt features 

scales with grain size. The difference between the median local melt fraction for 

olivine and opx are plotted as a function of growth parameter p (Fig. 4.10). As 

expected, the local melt fraction tends to the total measured melt fraction of the 

subvolume for very large values of p.  

We report the minimum energy melt fraction for olivine and opx grains at 

poptimal , which is the value of p that maximizes the difference between the median 

local melt fractions. We can see from Fig. 4.10, that the maximum difference in the 

median local melt fractions occurs between poptimal = 1.0 and 1.4. For values less than 

poptimal, voxels associated with adjacent melt features are missed. For poptimal, 

neighboring grains dilute the measured local melt fraction.  

We quantify the degree of melt partitioning by a parameter R, which is the 

median olivine local melt fraction divided by the median opx local melt fraction. We 

find that for all subvolumes, R > 1. Therefore, there is a higher local melt fraction 

associated with olivine grains than with opx grains. The difference between the 

median olivine and opx local melt fraction appears to increase with increasing melt  
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fraction. Results are summarized in Table 4.2. 

 

4.3.3 Grain size distributions 

We compute equivalent diameter distributions for olivine and opx (Fig. 4.11). 

Equivalent diameter data appear to follow lognormal distributions. Correspondingly, 

we report the geometric mean and standard deviation as the mean grain size and 

width of grain size distribution. As expected, subvolumes containing order of 1000 

grains have narrower distributions. As noted in Miller et al. (2014), the automated 

watershed transform that was used to separate 3-D grain data produces a more 

accurate grain size distribution when the melt fraction is higher, since grain 

boundaries are more easily distinguished if they are coated by melt. Melt-free triple 

junctions and dry grain-grain boundaries occur with increasing frequency as the melt 

fraction decreases. 

In order to understand the kinetics of grain growth in our polymineralic 

aggregate and to evaluate the efficiency of grain growth via chemical diffusion 

through the interconnected melt network, we plot mean grain size of olivine and opx 

as a function of melt fraction (Fig. 4.12). Though there is significant overlap of the 

grain size distributions, the median opx grain size increases systematically with melt 

fraction while the median olivine grain size is insensitive to changes in melt fraction. 

Interestingly we do not see evidence of grain pinning in the olivine grain size data. 

 

4.4 Discussion 

4.4.1 Melt concentration due to lithologic melt partitioning 
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Our results are strong evidence that spatial variations in mineralogy cause 

lithologic melt partitioning in partially molten harzburgite. However, the length scale 

over which spatial gradients in surface energy can segregate melt is not currently 

constrained. If the effect of lithologic melt partitioning is short-range, i.e. can only 

cause melt fraction heterogeneity in the immediate proximity of low-surface energy 

grain surfaces, the permeability structure of the upper mantle should adhere closely to 

the mineralogical structure of the geological formation. However, if the range of 

lithologic melt partitioning reaches beyond the proximity of adjacent grains, it may 

enhance the melt transport capabilities of the upper mantle. 

The sharp contrast in melt fraction in close proximity to opx-rich regions 

suggests that lithologic melt partitioning is short-range. However, in a closed system 

with a finite melt fraction, conservation of mass necessitates that even a tiny 

enhancement of the local melt fraction be compensated by a decrease in melt fraction 

elsewhere in the sample.  

 

4.4.2 Lithologic melt partitioning and transport properties 

Lithologic melt partitioning has the potential to enhance the permeability of 

partially molten harzburgite. For a monomineralic system, permeability depends only 

on the spatial distribution of melt in the volume. The presence of a low wettability 

mineral phase will perturb the otherwise uniform melt distribution, in which case the 

effective permeability is some complicated mixing between the permeability of two 

end-member mineralogies. Unfortunately, determining the actual mixing relation for 

harzburgite effective permeability requires computing permeabilities of both partially  
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molten pure olivine-basaltic melts and opx-basaltic melts for various melt fractions, 

which we do not have. Nevertheless, percolation theory suggests the effective 

permeability of a homogeneously mixed olivine-opx aggregate approaches the 

geometric mean of the individual partially molten dunite and pyroxenite end-

members (Madden, 1976). However, if olivine and opx-rich regions are for some 

reason organized into conduits, the two regions will conduct fluid flow in parallel, 

and the olivine-rich regions will dominate fluid flow. Conversely, if olivine- and opx-

rich regions are overlaid as layers that are oriented perpendicular to the flow 

direction, the lower permeability region will determine the effective permeability.  

 

4.4.3 Geological implications for lithologic melt partitioning 

There is no evidence that lithologic melt partitioning can create a 

mineralogical heterogeneity; an initial mineralogical heterogeneity needs to be 

present. The reaction infiltration instability (RII) is a good candidate for establishing 

an initial mineralogical heterogeneity. The RII is a positive feedback processes in 

which dissolution of opx in a harzburgitic mantle by a melt that is undersaturated with 

respect to opx leads to an increase in melt flux that further promotes opx dissolution 

(Daines and Kohlstedt, 1994; Kelemen et al., 1997, 1995a). Numerical modeling 

using multiphase flow theory has shown that the RII is capable of forming high melt 

fraction dunite conduits whose thicknesses range from tens to thousands of meters 

(Aharonov et al., 1995; Kelemen et al., 1995a; Spiegelman et al., 2001). More 

recently, the RII has been confirmed to produce high melt fraction dunite conduits in 

laboratory experiments (Pec et al., 2015). If these dunite conduits are present in the 
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upper mantle, they may constitute a thermodynamic gradient that further segregates 

melt in the upper mantle.  

Lithologic melt partitioning may help to stabilize the formation of high-melt 

fraction conduits that form as a result of the RII. Spiegelman et al. (2001) suggests 

that once the opx supply has been depleted, the melt fraction will continue to eat 

away at the side of the conduits so as to replenish the melt fraction in the conduits lost 

to buoyancy. This is an unstable process that causes opx dissolution to progress until 

olivine is the sole mineral component of the upper mantle. However, field 

observations of banded dunite-harzburgite formations in the Oman ophiolite 

(Kelemen et al., 1995a) suggest that dunite conduits are persistent features of the 

upper mantle if we assume a steady-state mid-ocean system. Therefore, an additional 

mechanism is required to sustain high melt fraction in the dunite conduits. The 

observed lithologic melt partitioning in our harzburgite samples may provide a 

mechanism for driving melt into the dunite channels, replenishing the melt supply in 

the high-melt fraction dunites. 

 

4.4.4 Grain size and melt fraction 

We attribute the increase in mean opx grain size with melt fraction (Fig. 4.12) 

and the insensitivity of olivine to melt fraction to differences in wetting properties of 

the mineral components. Chemical diffusion through an interconnected melt network 

is a more efficient means of growing grains than grain boundary diffusion (Watson, 

1999). If the dihedral angle associated with a phase boundary is greater than 60°, a 

threshold melt fraction is required to maintain interconnectivity of the melt network; 
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otherwise melt forms isolated pockets at grain corners. For this scenario, grain 

boundary diffusion is the sole mode of transport for the material required to grow 

grains. Conversely, for high melt fraction, melt forms an interconnected network in 

the presence of both olivine and opx. As the melt fraction decreases, the melt network 

begins to lose connectivity around opx grains, disconnecting them from their 

chemical supply.  

There is evidence of a tradeoff between melt-assisted diffusion and grain-

boundary diffusion in our samples (Fig. 4.12). Below the percolation threshold, opx 

grains grow via grain-boundary diffusion. Olivine grains, however, which form a 

dihedral angle of ~35° (Waff and Bulau, 1982) with basaltic melt, will maintain 

contact with the melt network at all melt fractions. Therefore, olivine grain growth 

should be relatively insensitive to melt fraction. 

 

4.5 Conclusion 

We used high-resolution X-ray µ-CT to image the 3-D microstructure of 

partially molten harzburgites that contain a range of melt fractions. A novel 

methodology was applied to resolve the density contrast at olivine-basalt, opx-basalt, 

and olivine-opx interfaces. We computed local melt fraction distributions for olivine 

and opx grains by fitting ellipsoidal envelopes to each grain. We found that melt 

partitions in about a 1.1 to 1.5 ratio between olivine and opx for total nominal melt 

fractions 0.02 to 0.20, which we attribute to spatial variations in surface energy 

associated with low surface energy density olivine interfaces and high surface energy 

density opx interfaces. The measurable melt partitioning in harzburgitic systems 
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warrants a microstructural evaluation of transport properties permeability and 

electrical conductivity as well as numerical modeling of larger magmatic systems 

composed of substantial proportions of olivine and opx.  
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Chapter 5: Permeability and electrical conductivity of partially molten 

harzburgite 

 

Abstract 

Modeling melt transport and correctly interpreting electromagnetic data of the 

upper mantle beneath mid-ocean ridges require robust, microstructure-based 

constraints on the constitutive equations that relate permeability and electrical 

conductivity to melt fraction, respectively. Differences in the wetting properties of 

minerals are thought to alter transport properties of partially molten mantle rock. The 

presence of orthopyroxene, for example, is thought to decrease the connectivity of the 

melt network if the local melt fraction dips below the melt fraction required for 

maintaining an interconnected network. Since opx is a primary constituent of the 

upper mantle, any relation between transport properties and melt fraction must 

consider its effects. 

We examined the effect of opx on the permeability and electrical conductivity 

of partially molten rock aggregates composed of olivine, opx, and basaltic melt over a 

range of nominal melt fractions (ϕn = 0.02 to 0.20). Synthetic olivine-opx-melt 

samples were prepared by isostatically hot-pressing powdered mixtures of oxides and 

natural, high-alumina basalt at 1.5 GPa and 1350 °C for a minimum of one week. 

Experimental charges were cored and imaged using synchrotron-based X-ray micro-

computed tomography. The resulting 3-D images constitute digital rock samples, on 

which numerical laminar flow and direct current simulations were conducted. 

Permeabilities and electrical conductivities of olivine-opx-melt samples were 
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compared to those composed of pure olivine and basaltic melt at similar melt 

fractions. We found that all olivine-opx-melt permeability data plot along the 

permeability-melt fraction curve for olivine-melt if we compensate for intersample 

variations in the mean grain size. Interestingly, we found that the bulk electrical 

conductivity of harzburgite is systematically lower than that of dunite. 

 

5.1 Introduction 

The capacity of the upper mantle to transport melt at mid-ocean ridges and 

conduct electricity largely depends on the interconnectivity of the grain-scale melt 

network. For a dihedral angle less than 60°, melt forms an interconnected network at 

any melt fraction; otherwise a threshold melt fraction is required to maintain melt 

interconnectivity. Since olivine forms a dihedral angle of ~35° (Fig. 5.1) with basaltic 

melt (Waff and Bulau, 1982), melt transport in the upper mantle, which is primarily 

composed of olivine, is thought to be efficient. However, field observations suggest 

the mantle composition is closer to a harzburgite, containing as much as 40 vol. % 

orthopyroxene (opx), which forms a dihedral angle of ~75° with basaltic melt (Fig. 

5.1) (Toramaru and Fujii, 1986). Therefore, if the threshold melt fraction needed for 

melt interconnectivity is not maintained everywhere, opx-rich regions will contain 

isolated melt, decreasing the permeability and electrical conductivity of the rock.  

Though we know the permeability and electrical conductivity of mantle rock 

is some complicated average that depends on the modal proportion and spatial 

distribution of olivine and opx (Madden, 1976), the exact influence of opx on the 

transport properties of mantle rock is difficult to constrain using conventional rock  
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physics experiments. Microscopy analysis of partially molten rocks composed of 

olivine, opx, and basaltic melt offer useful information regarding the connectivity of 

melt in polymineralic system. For example, Toramaru and Fujii (1986) analyzed the 

dihedral angle distributions of synthetic olivine-opx-melt samples. They found that 

the number of isolated melt pockets and melt-free triple junctions increases with 

increasing opx proportion. They attributed their result to the to the tendency for melt 

to form isolated melt pockets when adjacent to high surface energy density phase 

boundaries (e.g. opx-melt interfaces). Isolated melt pockets do not facilitate melt 

transport and contribute only minorly to electrical conductivity of the aggregate. 

The influence of high dihedral angle associated with opx-bearing triple 

junctions on permeability was assessed using network permeability models (Zhu and 

Hirth, 2003). Assuming melt formed an interconnected network only along triple 

junctions, Zhu and Hirth (2003) computed permeabilities for three-phase systems 

containing various proportions of olivine, opx, and interstitial basaltic melt. Despite 

the ability of opx to reduce melt interconnectivity, they found that a system composed 

of 40 vol. % (proportion of opx volume to grain volume) only reduced permeability 

by a factor of ~2 relative to an olivine-melt system at melt fraction of 0.01. As the 

number of wetted triple junctions required to maintain an interconnected network 

approached the percolation threshold (39% triple junctions are wetted) permeability 

drops off rapidly with melt fraction: at melt fraction 0.01, 60 vol. % opx results in 

over four orders of magnitude reduction in permeability. Network models by Zhu and 

Hirth (2003) provide strong motivation to examine synthetic systems composed of 

olivine, opx, and basaltic melt. 
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An additional influence of opx on the grain-scale distribution of melt – and 

potentially the transport properties – is the tendency of melt to localize around low-

energy interfaces. This phenomenon known as lithologic melt partitioning (Jurewicz 

and Watson, 1985; Watson, 1999), has been verified in variety analogue systems (e.g. 

quartz-clinopyroxene, calcite-fluorite, and quartz-fluorite) (Watson, 1999) and 

recently in Chapter 4 of this manuscript for partially molten rocks composed of 

olivine and opx. Since transport properties depend on melt fraction, lithologic melt 

partitioning may affect the permeability and electrical conductivity on an aggregate 

scale, and if coupled with an additional mechanism that forms mineralogical 

heterogeneity larger than the grain-scale, lithologic melt partitioning may drastically 

modify the efficiency of melt transport in the mantle.  

As a first step to understanding how mineralogical heterogeneity affects melt 

transport in the upper mantle, we seek to quantify the grain-scale permeability and 

electrical conductivity of partially molten harzburgite as a function of melt fraction. 

Since permeability and electrical conductivity are technically challenging to measure 

experimentally, we adopt a digital rock physics approach. We synthesize partially 

molten harzburgites that have various proportions of basalt and a constant olivine to 

opx volume ratio. High-resolution, three-dimensional images were taken using 

synchrotron-based micro-computed tomography. Virtual fluid flow and direct current 

experiments were conducted using the melt geometries to compute permeability and 

electrical conductivity. Permeabilities and electrical conductivities of partially molten 

harzburgite samples were compared to those computed for olivine (Chapter 2 and 3 of 

this manuscript). 
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5.2 Methods 

5.2.1 Sample preparation of harzburgite samples 

 Harzburgite samples were prepared by hot, isostatic pressing of oxide-basalt 

mixtures in piston-cylinder apparatuses at 1350 °C and 1.5 GPa. The composition of 

the primary oxide mixture was based on the chemical composition of a natural 

Southwest Indian Ridge harzburgite (Dick, 1989) and adjusted for each melt fraction 

so that we achieved a nominally constant 3 to 2 (olivine to opx) volumetric ratio and 

melt fraction 0.02, 0.05, 0.10 and 0.20 after sintering. Details of the sample 

preparation procedure are discussed in Section 4.2.1. The oxide mixture was 

homogenized over ethanol by six six-hour homogenization cycles in an automatic 

agate mortar and pestle. Pulverized natural basalt was added in various proportions to 

the oxide mixture to attain total nominal melt fractions of 0.02, 0.05, 0.10, and 0.20 

under run conditions. Each oxide-basalt mixture was homogenization using the same 

procedure as the primary oxide mixture. 

Upon completion of the experimental runs, experimental charges were 

quenched by turning off the power while maintaining a steady flow of cold water 

around the pressure vessel. 1 mm cylindrical cores were drilled from each sample 

along the cylindrical sample axis. 

 

5.2.2 Imaging procedure 

Following Zhu et al. (2011), cylindrical harzburgite samples were imaged 

using a 24.4 keV synchrotron light source at 2BM of the Advanced Photon Source, 
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Argonne National Laboratory, Argonne, IL. Image reconstruction was performed 

using the software package Tomopy (Gürsoy et al., 2014). Refer to Section 4.2.2 for a 

detailed description of the imaging procedure. 

 

5.2.3 Subvolume Selection 

 Several smaller, computationally manageable data subsets, which we call 

“subvolumes,” were cropped from each reconstructed digital sample. Subvolume 

sizes and locations were selected so as to avoid long-wavelength variations in the 

measured melt fraction and decompression fractures. Wherever possible, we sought 

subvolume sizes as large as we could computationally handle (500×500×500 voxels3 

for permeability computations and 400×400×400 voxel3 for electrical conductivity 

computations). If decompression fractures or the vertical melt anomaly prevented us 

from selecting such a larger subvolume, we opted for a smaller subvolume; though 

even the smallest subvolume contains greater than 300 grains.  

 

5.2.4 Image segmentation 

Avizo® was used to perform image segmentation. In order to characterize the 

melt distribution and transport properties, each grayscale subvolume needed to be 

converted to a label image, where each grayscale voxel was assigned a value of 1, 2, 

or 3 for basaltic glass, olivine, or opx, respectively. We developed a semi-automatic 

segmentation workflow that we applied to all subvolumes. First, melt was segmented 

using a combination of Avizo’s local thresholding module and tophat global threshold 

(Vincent, 1993). Thin decompression fractures were manually removed from the  
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image by overlapping the trial segmentation with a morphological erosion and 

dilation of the image, applied sequentially using a 2×2×2 voxel3 ball-shaped kernel. 

Subtle contrast and bright imaging artifacts at the grain edges prevented us 

from applying the same local threshold technique to differentiate the opx from the 

olivine. We used Avizo’s morphological watershed transformation (Beucher and 

Meyer, 1992) to separate grains and then handpicked opx grains from the aggregate. 

Grains that were incorrectly separated were corrected using a propagating contour 

tool. Once all of the opx grains were differentiated from olivine, the watershed basins 

were removed by simultaneously dilating the olivine and opx grain images. The 

resulting image was smoothed using an isotropic Gaussian kernel to remove the 

jaggedness imposed by the morphological watershed transform. The segmented melt 

image was superposed on the olivine-opx label image. The result was a very accurate 

segmentation of the melt and a slightly less accurate approximation of the olivine-opx 

grain boundaries. 

 

5.2.5 Computation of permeability and electrical conductivity 

Permeabilities of our partially molten harzburgite subvolumes were obtained 

using Avizo’s XLab Hydro Absolute Permeability Experiment Simulation module, 

which mimics an actual permeability measurement. The melt geometry was 

discretized according to the original voxel spacing (1 voxel  = 0.7 µm). Velocity and 

pressure fields were obtained by solving the Stokes Equations using the artificial 

compressibility method (Chorin, 1967) on a staggered finite-volume grid. Refer to 

Section 2.3.5 for a detailed description of the numerical model. 
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Permeability was obtained by applying Darcy’s Law to the model output. The 

volume-averaged velocity field was used in place of the so-called Darcy velocity 

(Whitaker, 1998). Permeability is a function of only the melt geometry; external 

quantities, such as the imposed pressure gradient and viscosity, are divided out in the 

volume-average step and do not bear on permeability. 

Bulk electrical conductivities of each subvolume were computed using Finite-

Difference Electrical Conductivity Calculator (FDECC), which is a Matlab-based 

direct current experiment simulator that we built in-house. FDECC is based on the 

finite-difference formulation derived by Garboczi (1998). FDECC discretized the 

subvolume label image according to the original voxel spacing. Electrical 

conductivities were assigned to each voxel. We obtained the electrical potential scalar 

field by solving the current continuity equation (Laplace Equation) using the implicit 

finite-difference method. The volume-averaged current density was computed from 

the electric potential field. The bulk electrical conductivity of the label image was 

obtained by applying Ohm’s Law to the model output. Refer to Section 3.2.4 for 

details about the direct current simulation. 

 

5.2.6 Characterizing grain size distributions 

In addition to melt fraction and melt interconnectivity, permeability depends 

on the grain size. Our subvolumes exhibit a significant variation in their mean grain 

sizes. In order to fairly evaluate the dependence of permeability on measured melt 

fraction, we divided each permeability value by the square of the geometric mean 

grain size measured for each subvolume.  
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Grain sizes distributions of each subvolume were determined by measuring 

the equivalent diameter, which is the diameter of a sphere having the equivalent 

volume as the grain. First, a generous opening filter having a “ball-shaped” kernel 

was applied to the segmented grain label images. Second, a morphological watershed 

algorithm was used to approximate the grain-grain boundaries. The equivalent 

diameter was measured for each grain. 

The morphological watershed transform is completely automatic, so it is very 

useful for analyzing a large number of grains. However, there is a caveat: the 

morphological watershed transform often incorrectly approximates grain boundaries. 

If grain boundaries were mostly melt-free, the morphological watershed transform 

sometimes counted multiple grains as one grain.  

 

5.3 Results 

5.3.1 Statement about uncertainty 

Melt fraction error bars in Fig. 5.3 and 5.4 do not reflect random, Gaussian 

error. Instead, the left and right end of each error bar is the measured melt fraction 

after a 1-pixel contraction and dilation of the 3-D melt geometry, respectively. 

Therefore, a meaningful comparison of the olivine-melt and olivine-opx-melt 

permeability and electrical conductivity datasets must be conducted on their 

corresponding minimum and maximum melt fractions. This method of using 

morphological contraction / dilation to define minimum and maximum error bars for 

measured phase proportions is rather crude, since it likely overestimates the effect 

blurring due to instrument error and discretization of the sample geometry; however  
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to our knowledge, it is the only method available. In principle, the true error can be 

derived from the point-spread function, would require a ground-truth with a higher 

resolution 3-D imaging technique. 

Since uncertainty in melt fraction is defined by a morphological contraction 

and dilation of the melt image, a small error in melt fraction requires grains to have a 

large volume to surface area ratio. Olivine-opx-melt subvolumes have a smaller 

average grain size than olivine-melt subvolumes and a correspondingly lower volume 

to surface area ratio. Therefore, uncertainty on melt fraction measurements is higher 

for olivine-opx-melt subvolumes than for olivine-melt subvolumes. 

 

5.3.2 Permeability 

Fluid flow simulations were conducted along the z (vertical) axis of each 

subvolume. Fig. 5.3 gives the calculated permeabilities of olivine-opx-melt 

subvolumes as a function of measured melt fraction for each subvolume. Melt 

fractions were measured for each subvolume by voxel counting. Upper and lower 

bounds for the uncertainty in the measured melt fraction were computed by applying 

a 1-voxel dilation and contraction, respectively, to the melt label image (Fusseis et al., 

2012).  Permeability values were divided by the average grain size squared in order 

to remove the effect of inter-subvolume grain size variability from permeability. We 

performed a linear fit to the log10 transform of our data using the total least squares 

algorithm (York et al., 2004) and plotted it as a solid black line in Fig. 5.3. Before the 

fit, we applied an ad hoc shift to the measured melt fraction data to compensate for 

the asymmetric error bars. Partially molten olivine-melt permeability data (Miller et  
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al., 2014) are plotted in Fig. 5.3 for comparison. After normalizing the permeabilities 

by the mean grain size measured in each subvolume, olivine-opx-melt data plot on the 

same permeability-melt fraction trend as olivine-melt data, so we conclude the 

presence of opx does not appear to affect the permeability-melt fraction curve over 

the melt fractions tested. 

 

5.3.3 Electrical conductivity 

Direct current simulations were conducted along the z (vertical) axis of each 

subvolume. Fig. 5.4 shows the computed bulk electrical conductivities of each 

subvolume plotted as a function of measured melt fraction. For all direct current 

simulations, the electrical conductivities of melt and granular phases is assumed to be 

7.53 S/m (ten Grotenhuis et al., 2005) and 0.009 S/m (Presnall et al., 1972; Yoshino 

et al., 2010), respectively. We assumed olivine and opx electrical conductivities are 

the same. Bulk electrical conductivities of olivine-opx-melt subvolumes were 

compared to those from partially molten olivine-melt (see Chapter 3 for more details). 

Archie relations, which are power laws, 

 σ bulk = Aσmeltφmeausred
m  (1) 

were fitted to olivine-melt and olivine-opx-melt subvolume data. In Eqn. (1), σbulk is 

the bulk electrical conductivity, σmelt is the melt electrical conductivity. A and m are 

power law parameters that depend on the spatial distribution of melt. We found that 

error bounds associated with olivine-opx-melt and the olivine-melt permeabilities 

overlap but are systematically lower than the dunite bulk electrical conductivities for 

the same measured melt fraction. 
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5.4 Discussion 

5.4.1 Influence of opx on permeability 

At 3 to 2 olivine to opx ratio, the network permeability models by Zhu and 

Hirth (2003) suggest there is only a slight reduction in the permeability of olivine-

opx-melt subvolumes with respect to olivine-melt subvolumes for all melt fractions. 

At ϕ = 0.01, for example, there is only a ~50% reduction in permeability. Though 

triple junctions along opx grains are less effective conductors of melt flow than those 

along olivine grains, especially at low melt fraction, the relative insensitivity of 

permeability to opx (Fig. 5.3A) reflects the tendency for flow to form so-called 

“critical pathways” (David, 1993; Martys and Garboczi, 1992) in the presence of 

olivine through which the majority of melt mass is transported. We show evidence for 

critical pathways in the olivine-melt system in Chapter 2. As opx content increases, 

the frequency of effective triple junctions decreases. Melt flow reconfigures in 

response, taking advantage of the remaining viable triple junctions. As a result, 

permeability decreases only slightly due to the more tortuous pathway (Fig. 5.5A) 

that it must take to traverse the melt network.  

Though we do not see a significant change in permeability from olivine-melt 

to olivine-opx-melt sample suites, we acknowledge the fact that there is a high degree 

of variability in the measured olivine to opx volumetric proportions (Fig. 5.3B). 

Subvolumes that contained smaller melt fraction also have smaller proportions of 

opx. There are several mechanisms that may account for the correlation between melt 

and opx proportions, e.g. effects of wetting properties or temperature gradient. 

Nevertheless, Fig. 5.3B shows us that the threshold opx fraction required to influence  
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permeability may not have been attained by the lower melt fraction samples. Network 

permeability models suggest that at least a 3 to 2 olivine to opx ratio is necessary to 

reduce permeability. Therefore, in order to conclusively determine the effect of opx 

on permeability in olivine-opx-melt composite systems, subvolumes having at least 3 

to 2 olivine to opx volume ratio and low melt fraction (ϕ < 0.02) must be examined. 

 

5.4.2 Implications for trace element partitioning in xenoliths 

Mineralogical effects on the permeability of mantle rocks may have important 

implications for interpreting trace element partitioning in peridotite xenoliths. The 

diffusivity of Li in partially molten mantle rocks is two to three orders of magnitude 

larger than other trace elements (Richter et al., 2003), making Li a sensitive indicator 

of melt-rock interactions in the mantle. Studies (e.g. Frey and Green, 1974; Rudnick 

and Ionov, 2007) observe strong Li disequilibria – both elemental and isotopic – 

between peridotite xenoliths and the “normal” mantle, which is consistent with an 

event of mantle metasomatism, i.e. grain-boundary infiltration of a Li-rich melt or 

fluid (Rudnick and Ionov, 2007). Despite preferential diffusion of Li into 

clinopyroxene (cpx) over olivine, as evidenced by measured olivine-cpx partitioning 

coefficients (olivine-cpxD = 0.2 to 1.0), refractory harzburgite xenoliths exhibit higher 

overall enrichment of Li compared to fertile lherzolite xenoliths (Rudnick and Ionov, 

2007). One interpretation of this result invokes the wetting properties of peridotite 

mineral components: if the permeability of olivine-rich (pyroxene-poor) peridotite is 

higher than olivine-poor peridotite (pyroxene-rich), harzburgite xenoliths will 

experience higher flux of Li-rich melt than lherzolite xenoliths and thus, higher Li 
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concentrations. The possibility of using Li as an indicator of permeability is strong 

motivation for more accurately constraining the permeability of mantle rock at low 

melt fraction and higher pyroxene content. 

 

5.4.3 Influence of opx on electrical conductivity 

Though the permeability-melt fraction relation appears to be unaffected by the 

presence of opx, the bulk electrical conductivities of olivine-opx-melt geometries are 

noticeably lower than those of olivine-melt geometries at similar melt fraction (Fig. 

5.4A). Contrary to melt percolation, which forms critical pathways due to the high 

sensitivity of melt flux to the hydraulic radius, electricity conducts more diffusively 

through the partially molten geometry, increasing the number of viable electrical 

pathways relative to fluid pathways. Though there are more conduits available for 

electrical conduction, these “added” pathways are less effective conductors, due to 

their low hydraulic radius, resulting in reduction of bulk electrical conductivity.  

Though there is systematic offset in bulk electrical conductivity between the 

olivine-melt and olivine-opx-melt suites, we acknowledge there large uncertainties 

associated with measuring melt fraction from tomographic image data. To better 

constrain the impact of opx on transport properties beyond what is done in this study, 

either a better method of characterizing uncertainty associated with measuring phase 

proportions or a higher-resolution 3-D imaging technique is needed.  

 

5.5 Conclusion 

 We demonstrated the effect of opx, a low wettability mineral phase that is 
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common in the upper mantle, on the permeability and electrical conductivity of 

partially molten mantle rock by conducting numerical simulations of fluid flow and 

direct current using real rock microstructures. Harzburgite rock samples containing 

nominal melt fractions of 0.02 to 0.20 and 3 to 2 olivine to opx ratio were synthesized 

at mantle pressure-temperature conditions. Samples were imaged using X-ray µ-CT 

and converted to label images to be used as input for numerical computations of 

permeability and electrical conductivity. We compared transport properties of olivine-

opx-melt and olivine-melt aggregates. For the melt fractions examined, we found that 

harzburgite permeabilities did not deviate from the dunite permeability-melt fraction 

curve. However, we found that olivine-opx-melt electrical conductivity is lower than 

olivine electrical conductivity for the same melt fraction, which we interpret by 

invoking critical pathways for fluid flow. Our data represent the first systematic study 

that relates macroscopic transport properties of partially molten mantle rocks 

containing more than one mineral phase to rock microstructure. 
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Chapter 6: Summary and future work 

 

6.1 Summary of results and conclusions 

This dissertation work represents a significant achievement in the linking of 

macroscopic material properties of partially molten mantle rock to microstructural 

characteristics. Previous attempts to characterize permeability of partially molten 

mantle rocks, for the most part, rely on 2-D images of partially molten rocks to infer 

permeability, which is intrinsic to the 3-D melt microstructure and are therefore 

inadequate. However, recent advances in X-ray imaging technology allow us to 

capture, in high-resolution, the 3-D microstructure of partially molten rocks. These 

images constitute digital rock samples on which any number of non-destructive 

virtual rock physics experiments can be conducted. These so-called digital rock 

physics (DRP) simulations are fast, accurate, and repeatable (Andrä et al., 2013) and 

enable the user to straightforwardly conduct rock physics experiments without having 

to devise elaborate experimental systems.  

Over the course of this project, we developed a number of tools for 

automatically quantifying the microstructure and transport properties of our digital 

samples. For example, we were able to quantify, by skeletonizing our melt geometry, 

the interconnectivity of melt network as a function of melt fraction and sintering 

duration. Though it is not discussed in this document, skeletonized melt networks can 

also be used in network models to compute permeability and electrical conductivity. 

An automatic grain separation algorithm allowed us to characterize the grain size 

distributions of our samples without having to infer a 3-D grain-shape; though there 
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were some approximations made about the location of grain-grain boundaries. 

Furthermore, we are able to use the 3-D geometry as direct input to numerical models 

to compute permeability and electrical conductivity as a function of melt fraction. 

Using a combination of experimental petrology, conventional rock physics, 

advanced imaging, and numerical modeling, we were able to formulate meaningful 

empirical permeability-melt fraction and electrical conductivity-melt fraction 

relations. Our permeability-melt fraction relation confirms the rate at which melt 

separates from residue, a critical parameter in multiphase flow models of melt 

transport at mid-ocean ridges. A simple 1-D model, suggests that, with the new 

permeability-melt fraction relation, estimates of melt fraction in the upper mantle 

inferred from U-series geochemistry are more or less consistent with those inferred 

from geophysical datasets. The electrical conductivity-melt fraction relation we 

presented will be used in future studies to guide better interpretation of 

electromagnetic data. A side-by-side comparison of fluid flow and direct current on 

the same melt geometries determined that fluid and electricity have different 

sensitivities to the pathways available to flow. We argued, based on first principles, 

that, aside from an empirical similarity, there is no evidence that a rigorous link 

between permeability and electrical conductivity exists. 

Our DRP approach allowed us to test the influence of opx, a low wettability 

mineral that is common in the upper mantle, on transport properties of partially 

molten mantle rock. Before this study, the only evidence opx affected transport 

properties came from synthetic datasets (Zhu and Hirth, 2003) and 2-D microscopy 

analysis of synthetic samples composed of olivine and basalt. Using the tools 
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described in this thesis, we confirmed that spatial variations in the surface energy 

distribution, related to the presence of opx, caused lithologic melt partitioning. 

Lithologic melt partitioning did not appear to alter the permeability of our samples 

over the melt fractions tested. However, if combined with another mechanism that 

creates a parallel mineralogical structure, such as the reaction infiltration instability, 

lithologic melt partitioning may increase the efficiency of melt transport in the  upper 

mantle. 

 

6.2 Future research directions 

We have just scratched the surface in what we can do with DRP. Potential 

future directions include experiments with deformed samples, eigenfrequency 

analysis of electrical conductivity, and evaluation of seismic properties of partially 

molten rocks.  

The upper mantle is a dynamic system (Turcotte and Schubert, 2014). 

Experiments and models suggest that there is a coupling between shear deformation 

and porous flow that give rise to high-melt fraction bands (Daines and Kohlstedt, 

1997; Holtzman and Kohlstedt, 2007; Holtzman et al., 2003; King et al., 2011a; King 

et al., 2011b; Qi et al., 2014; Zimmerman et al., 1999). These bands may play an 

important role in melt transport and melt focusing at mid-ocean ridges. In order for 

permeabilities derived from synthetic partially molten rocks to be directly applicable 

to the upper mantle, sheared samples must be considered. 

Experimental determination of electrical conductivity through impedance 

spectroscopy is technically challenging because there may be different conduction 
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mechanism, e.g. conduction through the sample, conduction through the pressure 

vessel, conduction through some surface layer, that operate at the same frequency 

spectrum (Nover, 2005; Yoshino, 2010). A numerical impedance spectroscopy 

analysis of our images can be used to deconvolute those various processes and help to 

interpret experimental results. Specifically, a comparison between numerical and 

experimental impedance spectroscopy can be used to test the hypothesis that there is 

surface conduction through an electrical double layer at the grain-melt interface that 

contributes to the bulk conductivity of the aggregate. However, the fairest comparison 

between experiments and digital rock physics simulations would involve imaging the 

samples that were used in actual impedance spectroscopy experiments.  

It would be of tremendous value to the seismology community studying 

seismic wave propagation at mid-ocean ridges or subduction zones to use DRP 

techniques to constrain the bulk modulus of partially molten rock as a function of 

melt fraction. As a first approach, static loading models conducted on the 3-D melt 

geometries to reduce the error of 2-D models (e.g. Hammond and Humphreys, 2000). 

Though software needs to be developed to handle many degrees of freedom 

associated with static loading models on large subvolumes. Eventually, wave-

propagation codes, similar to Saenger and Bohlen (2004), can be used to determine 

frequency dependence of partially molten mantle rock; though significant advances 

need to be made in the modeling of grain boundary slide as a mechanism for energy 

dissipation.   
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Appendix A: Supplementary information for microstructure and permeability 

quantification 

 

A.1 Removing noise using anisotropic diffusion filtering 

We used an edge-preserving smoothing filter to remove noise from our 

tomography data. This particular algorithm is an implementation of anisotropic 

diffusion (Weickert et al., 1998) and is provided as part of the Avizo image filter 

library. Anisotropic diffusion is a class of smoothing filters that reduces noise by 

numerically solving the three-dimensional diffusion equation, 

 
 (A1) 

where I is the position (x) and time (t) dependent scalar field representing the 

grayscale pixel intensity and D is the diffusivity tensor, which is a function of the 

local intensity gradient squared. Stepping in time, each image is given as a 

convolution of the previous image and a diffusivity kernel. 

For a constant diffusivity, Eqn. (A1) is linear, and the problem is equivalent to 

a Gaussian blur. Linear diffusion filters are effective at removing random noise from 

the tomography data; however, diffusion occurs without any a priori information 

about the image, often costing edge resolution. In our samples, where the phase 

contrast is low, edges are often the only distinguishing feature in the data. Therefore, 

it is vital that we preserve fine details in the tomography images, such as phase 

boundaries. 

We employ an anisotropic diffusion filter (Fig. A.1). Anisotropic diffusion 

uses information about the local grayscale intensity gradient, which is known a priori,  

∂I x, t( )
∂t

= ∇⋅ D ∇I x, t( ) 2( ) ∇I x, t( )⎡
⎣⎢

⎤
⎦⎥
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to prevent diffusion across edges. This is accomplished by defining a threshold value 

c in the formulation of an anisotropic diffusivity kernel that limits diffusion between 

pixels whose intensities differ by IC. Correctly calibrating IC ensures that diffusion 

does not occur over edges, leaving well-defined phase boundaries. 

Other parameters of the anisotropic diffusion filter include the total diffusion 

time and time step. As a general rule, the shorter the time step, the more accurately 

the diffusion equation is solved. However, shortening the time step necessitates a 

longer computation and may cause issues of solver stability. For our purposes, a total 

diffusion time of 25s and time step of 1s yields good results within an acceptable 

timeframe. Regarding the threshold, values of IC typically range between 35 and 75 

when range of grayscale values over the whole image is -500 to 500. 

Fig. A.1 illustrates one application of the anisotropic diffusion filter to a 

200×200×200µm3 subvolume. The application of anisotropic diffusion results in a 

smoother, less noisy image than the original that is largely free of artifacts, such as 

streaks. The resulting image is also better conditioned for global thresholding than the 

original image. 

 

A.2 Segmenting using watershed transformation 

The Avizo® watershed transformation algorithm was implemented for 

segmenting data with small phase contrast. We start with a grayscale image processed 

by the anisotropic diffusion filter described above (Fig. A.2A) and compute the 

gradient magnitude of pixel intensity. Due to the edge-enhanced imaging technique, 

the highest gradients in our olivine-basalt samples occur at grain edges (Fig. A.2B). A  
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global threshold was then applied to the gradient magnitude image to record the 

positions of pixels located within the phase transition regions. This is called the 

gradient mask (Fig A.2C). Next, an initial inundation is marked using a global 

threshold where phases are unambiguously defined (Fig. A.2D). The watershed 

transform is then applied. Flooding begins from the initial inundation and continues 

until meeting the gradient mask (Fig. A.2E). The gradient mask acts as an 

impermeable barrier through which different flooding regions cannot spill into one 

another. The watershed transformation is analogous to flooding drainage basins in 

natural watershed systems, hence the name of the algorithm. The labeled basins were 

then dilated to fill the defined gradient mask (Fig. A.2F). Once segmented, a 3-D 

opening filter was applied to the binary data, which removed small details at 

boundaries and opened passages separated by only two pixels (Fig. A.2G). Some 

small manual adjustments (e.g. hole filling) were often needed to produce accurate 

segmentations. The final result after the watershed transformation is a high-quality, 

binary image where phase boundaries are defined exactly at grayscale inflections 

(Fig. A.2H). 

 

A.3 Determining the size of the representative volume element 

Because of heterogeneity in melt distribution, permeability may depend on the 

size of the subvolume. In order to determine the minimum subvolume size that 

represents a statistically significant portion of the sample, we computed the 

permeability of several subvolumes cropped from scoba-12 (ϕn = 0.05) ranging in size 

from 140×140×140 µm3 to 350×350×350 µm3. The APES module was used for  
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permeability computations (Fig. A.3A). We plot their permeability as a function of 

subvolume volume (Fig. A.3). Permeability values of different subvolumes of similar 

size are consistent within a factor of 4. The average permeability of each subvolume 

group and the standard deviation (1σ) are reported in Fig. A.3. Compared to the 

spread in permeability values, which are a result of region-to-region variation, the 

size of the simulation domain has little effect on simulation results (Table A.1). Based 

on these results, we consider the permeability calculations performed in this study to 

be representative of the bulk sample from which they were cropped. To guarantee that 

our results are representative of the sample, we only report in the main text 

permeability calculated on the largest possible subvolume size (350×350×350 µm3). 

 

A.4 Cleaning the skeletonized melt network 

Much like segmentation, there are artifacts that arise from the thinning 

algorithm during the skeletonization of the melt network. Some of these artifacts 

include clusters of nodes and short channels where there should be a single junction. 

These artifacts typically occur at large melt pools or at wetted grain boundaries. In 

histograms of connectivity, these artifacts manifest as anomalously high numbers of 

the coordination number 3 nodes, where coordination number refers to the number of 

edge connections possessed by a node.  

A Matlab® script, called ScobaCleaner.m, was written for automatically 

removing artifacts in the skeleton network. Four types of artifacts exist. They are 

denoted loops, sublinks, twins, and short-links (Table A2). Inevitably, there will be 
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some short-links that should not be merged, sometimes resulting in the formation of a 

artificial high-connectivity junction (Zhu et al., 2011). 

 

A.5 Time series experiment 

In order to evaluate the time necessary to achieve textural equilibrium, we 

created a time series of charges. The nominal melt fraction is 0.05 for those charges, 

and the sintering durations are 42 hours (scoba-13), 84 hours (scoba-14), 168 hours 

(scoba-12), and 336 hours (scoba-15), respectively. A low nominal melt fraction was 

chosen for the time series experiments because low melt fraction samples take longer 

to equilibrate than higher melt fraction ones (Cmíral et al., 1998), which gives us a 

maximum estimate for the time required for our samples to reach textural 

equilibrium. A melt faction 0.05 is best choice given the current resolution limitation 

of µ-CT. 

Equivalent diameter distributions (EDD) were computed for 350×350×350 

µm3 subvolumes from scoba-13-500-2, scoba-14-500-1, scoba-12-500-1, and scoba-

15-500-1 (Fig. A.4). The EDD’s of scoba-13-500-2 and scoba-14-500-1 (Figs. A.4A 

and A.4B), which are shorter duration experiments, differ substantially from scoba-

12-500-1 and scoba-15-500-1. The longer duration charges scoba-12 and scoba-15 

have nearly identical EDDs (Figs A.4C and A.4D), suggesting that grain size 

evolution has reached an essentially steady state. The similarity between the two 

longer duration experiments suggests that textural equilibrium (Wark and Watson, 

1998) is reached approximately some time between 84 and 168 hours for olivine-

basalt aggregates with a nominal melt fraction of 0.05. The similarity between the  
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mean equivalent diameters suggests that grain growth was probably very slow after 

42 hours. 

Coordination number distributions (CND) were also computed for 

350×350×350 µm3 subvolumes from scoba-13-500-2, scoba-14-500-1, scoba-12-500-

1 and scoba-15-500-1 (Fig. A.5). Comparison of the CNDs of these samples reveals 

that the number of dead-end nodes with coordination number of 1 decrease with 

increasing sintering time. Nodes with coordination number of 3 are mostly associated 

with regions where melt pooling or grain boundary wetting is occurring. We observe 

an inversion between the frequency coordination number 3 and 4 nodes, indicating a 

migration of the melt from grain boundaries to tubules. In subvolume cubes scoba-12-

500-1 and scoba-15-500-1, nodes with coordination number of 4 are the most 

abundant, which is consistent with the idealized model of an isotropic system at 

textural equilibrium (von Bargen and Waff, 1986). Though there is a small increase in 

the relative abundance of coordination number 4 nodes from 168 hours to 336 hours, 

the melt network appears to have reached an approximately steady state by 168 hours. 

A.6 Correcting for skeletonization artifacts 

Main artifacts during skeletonization and corrections. The skeleton network is 

a simplified representation of the complex melt microstructure. Included in the table 

are visualizations of the skeleton artifacts. Edges and nodes in question are 

highlighted in yellow. All other edges and nodes are colored gray and red, 

respectively. Actions taken by ScobaCleaner for simplifying the skeletonized melt 

network and the effect on the coordination number distribution are summarized. 
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% ------------------------------------------------------------------------ % 

function [Edge, Node] = SkeletonWrapper(directory, fname, dim, lt, varargin) 

% 
% ------------------------------------------------------------------------ 
% 
% This is the wrapper script for pruning skeletonized tomography data.  
% Several artifacts, which often arise from skeletonization but are not  
% real features that appear in the binary image data, are removed with this 
% algorithm. They are: 
%        
%       1) Loops -- Edges that form a loop 
%       2) Sublinks -- two edges with one node connecting them where that 
%          node does not have any other connections. 
%       3) Short Edges -- edges whose length is less than the input lt 
%       4) Islands -- Nodes that do not have any connecting edges or single 
%          edges that are not connected to the rest of the network. 
%          that are not connected to the rest  
%       5) Twins -- twin edges that share the same node endings 
% 
% More info about how these artifacts are removed from the skeleton network 
% is given in the online supplement of Miller et al. (2014) in Earth and 
% Planetary Science Letters and Zhu et al. (2011) in Science. 
 
% Miller, K.J., Zhu, W., Montési, L.G.J., Gaetani, G. A., 2014.  
%   Experimental quantification of permeability of partially molten mantle  
%   rock. Earth Planet. Sci. Lett. 388, 273-282. 
%  
% Zhu, W., Gaetani, G.A., Fusseis, F., Montési, L.G.J., De Carlo, F., 2011.  
%   Microtomography of partially molten rocks: three-dimensional melt  
%   distribution in mantle peridotite. Science 332, 88-91. 
%  
% Inputs: 
%               
%       'directory' --> (string) directory where skeleton text file is  
%                       located  
%       'fname'     --> (string) name of skeleton text file 
%       'dim'       --> (number of any precision) vector specifying the x, 
%                       y, and z dimensions of the skeleton 
%       'lt'        --> (number of any precision) desired maximum length of 
%                       edges. Edges whose length is lower than lt are  
%                       preserved, while those larger than lt are pruned  
%       'varargin'  --> (cell) variable input parameter that contains the 
%                       following inputs. 
%       'Print'     --> (string) Prints inital and pruned results to pdf  
%                       file specified by the string immediately following  
%                       'Plot'. Warning: Case-sensitive! 
%       'Save'      --> (string) Saves the pruned resluts 'Node' and 'Edge' 
%                       to .mat files specified by string immediately  
%                       following 'Save'. Warning: Case-sensitive. '-Edge' 
%                       and '-Node' are appended to the ends of file name. 
% 
% Outputs: 
% 
%       'Edge'      --> (structure) Structure that contains position, 
%                       connectivity, and thickness information associated  
%                       with edges. 
%       'Node'      --> (structure) Structure that contains position and 
%                       connectivity information about nodes, where edges 
%                       are connected. 
% 
% Example:  
% 
%   Run cleaning algorithm for skeleton 'sample_1_skeleton.txt' 
%   Removes edges longer than than 10 length units. Saves and prints those  
%   results. Skelton data is stored as text file, which is outputted by  
%   Avizo. 
%  
%   [Edge, Node] = SkeletonWrapper( ... 
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%                   '~/Desktop/skeleton_files/', ... 
%                   'sample_1_skeleton.txt', ... 
%                    10, ... 
%                   'Save', ... 
%                   'Print'); 
% 
% Authors: Kevin J. Miller and Laurent G.J. Montési 
% $Author: Kevin J. Miller  and Laurent G.J. Montési$ $Date: 07-Jul-2015  
% 15:12:00 $ $Revision: 1.0 $ 
% Copyright: Kevin J. Miller and Laurent G.J. Montési 2015 
% 
% ------------------------------------------------------------------------ 
% 
 
tic; 
 
if ~isempty(varargin) 
    save_switch = ~isempty(find(strcmp('Save', varargin), 1)); 
    print_switch = ~isempty(find(strcmp('Print', varargin), 1)); 
else 
    save_switch = 0; 
    print_switch = 0; 
end 
 
dotInd = strfind(fname, '.'); 
 
% Reading the text file into the workspace 
[Edge, Node] = SkeletonReader(directory, fname);  
 
% Checking the initial volume of the skeleton 
vtotal1 = VolumeChecker(Edge); 
vol_fraction1 = vtotal1/(dim(1)*dim(2)*dim(3)); 
fprintf( ... 
    '\nPre-cleaned volume fraction of skeleton = %.4f%%\n', ... 
    vol_fraction1*100); 
 
% Checking to see if there are any zero-length edges removing them. 
iZeroLength = find([Edge.length] == 0); 
if ~isempty(iZeroLength) 
    for ize = 1 : numel(iZeroLength) 
        [Edge, Node] = RemoveDeleted(Edge, ...  
            Node, ... 
            iZeroLength(ize), ... 
            unique(Edge(iZeroLength(ize)).endID), ... 
            'RemoveZeroEdge'); 
    end 
end 
 
% connectivity histogram before cleanup 
HistAll(Edge, Node, dim(3), fname(1:dotInd-1), 'Initial'); 
 
mtit(sprintf('%s - Pre Cleanup', fname(1:dotInd-1)), ... 
    'FontSize', 20, ... 
    'Color', [0 0 0], ... 
    'xoff', 0, ... 
    'yoff', .025, ... 
    'Interpreter', 'None'); 
 
nPtIterp = 4; 
 
% Interpolating edges that have less than 4 points 
[Edge, Node] = IntialInterp(Edge, Node, nPtIterp); 
 
fprintf('\n iter |  1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  10 
| Total\n'); 
fprintf('------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----
|-----|\n'); 
 
[nc, ~] = hist([Node.connectivity], 1:10); 
 
% Printing initial connectivity to command window. 
fprintf('%s|%5i|%5i|%5i|%5i|%5i|%5i|%5i|%5i|%5i|%5i|%5i|\n', 'intial', ... 
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        nc(1), ... 
        nc(2), ... 
        nc(3), ... 
        nc(4), ... 
        nc(5), ... 
        nc(6), ... 
        nc(7), ... 
        nc(8), ... 
        nc(9), ... 
        nc(10), ... 
        length(Node) ... 
        ); 
 
% removing island edges from model, since these do not conduct flow 
[Edge, Node] = RemoveIslands(Edge, Node); 
 
% Printing conntivity after removal of island edges and nodes 
[nc, ~] = hist([Node.connectivity], 1:10); 
fprintf('%s|%5i|%5i|%5i|%5i|%5i|%5i|%5i|%5i|%5i|%5i|%5i|\n', '  RI  ', ... 
    nc(1), ... 
    nc(2), ... 
    nc(3), ... 
    nc(4), ... 
    nc(5), ... 
    nc(6), ... 
    nc(7), ... 
    nc(8), ... 
    nc(9), ... 
    nc(10), ... 
    length(Node));  
    
% main loop that removes loops, sublinks, and twin edges 
[Edge, Node, ~] = MainLoop(Edge, Node); 
 
[nc, ~] = hist([Node.connectivity], 1:10); 
fprintf('%s|%5i|%5i|%5i|%5i|%5i|%5i|%5i|%5i|%5i|%5i|%5i|\n', '  ML  ', ... 
    nc(1), ... 
    nc(2), ... 
    nc(3), ... 
    nc(4), ... 
    nc(5), ... 
    nc(6), ... 
    nc(7), ... 
    nc(8), ... 
    nc(9), ... 
    nc(10), ... 
    length(Node) ... 
    ); 
 
fprintf('------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----
|-----|\n'); 
 
vt_vec = []; 
 
% removes short edges by absorbing their volume into neighboring edges 
[Edge, Node, ~] = MergeShort(Edge, Node, lt, vt_vec);  
 
% removing resulting loops, sublinks, and twin edges 
[Edge, Node] = MainLoop(Edge, Node);  
 
fprintf('------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----
|-----|\n'); 
 
[nc, ~] = hist([Node.connectivity], 1:10); 
fprintf('%s|%5i|%5i|%5i|%5i|%5i|%5i|%5i|%5i|%5i|%5i|%5i|\n', '  ML  ', ... 
        nc(1), ... 
        nc(2), ... 
        nc(3), ... 
        nc(4), ... 
        nc(5), ... 
        nc(6), ... 
        nc(7), ... 
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        nc(8), ... 
        nc(9), ... 
        nc(10), ... 
        length(Node) ... 
        ); 
 
% checking volume after cleanup process 
vtotal2 = VolumeChecker(Edge);  
 
vol_fraction2 = vtotal2/(dim(1)*dim(2)*dim(3)); 
 
fprintf( ... 
    '\nPost-cleaned volume fraction of skeleton = %.4f%%\n', ... 
    vol_fraction2*100); 
 
HistAll(Edge, Node, dim(3), fname(1:dotInd-1), 'After'); 
 
mtit(sprintf('%s - Post Cleanup - LT = %i', fname(1:dotInd-1), lt),... 
    'FontSize', 20, ... 
    'Color', [0 0 0], ... 
    'xoff', 0, 'yoff',.025, ... 
    'Interpreter', 'None'); 
 
% saving data 
if save_switch 
    save(sprintf('%s%s_LT%i-Edge.mat', ... 
            directory, ... 
            fname(1:dotInd-1), ... 
            lt ... 
            ), ... 
        'Edge' ... 
        ); 
    save( ... 
        sprintf( ... 
            '%s%s_LT%i-Node.mat', ... 
            directory, ... 
            fname(1:dotInd-1), ... 
            lt ... 
            ), ... 
        'Node' ... 
        ); 
end 
 
% printing data 
if print_switch 
    print(1, '-dpdf', ... 
        sprintf( ... 
            '%s%s_LT-%i_pre-cleanup', ... 
            directory, ... 
            fname(1:end-4), ... 
            lt ... 
            ) ... 
        ); 
    print(2, '-dpdf', ... 
        sprintf( ... 
            '%s%s_LT-%i_post-cleanup', ... 
            directory, ... 
            fname(1:end-4), ... 
            lt ... 
            ) ... 
        ); 
end 
 
fprintf('\n'); 
toc; 
fprintf('\n'); 
 
end 
 
% ------------------------------------------------------------------------ % 
 
function [Edge, Node] = SkeletonReader(directory, fname) 
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% Reads the text file into structures 
 
% fileInd = strfind(fname, 'rec'); 
fprintf('\nReading %s into structures...', fname); 
% disp(sprintf('Read 
 
fid=fopen([directory, fname]); 
 
for i=1:3; 
    fgetl(fid); 
end %Skip header 
 
% Read file parameters 
nvertex=str2num(fscanf(fid,'%*s %*s %s',[1,1])); 
nedge=str2num(fscanf(fid,'%*s %*s %s',[1,1])); 
npoint=str2num(fscanf(fid,'%*s %*s %s',[1,1])); 
iskip = 6; 
for i=1:iskip;fgetl(fid);end %Skip transition 
GoOn=1; id=0; 
while GoOn; 
    A=fgetl(fid); 
    GoOn=~isempty(A); 
    if GoOn; 
        id=id+1; 
        category=textscan(A,'%s'); 
        Connect(id).metadata.object=category{1}(1); 
        Connect(id).metadata.type=category{1}(3); 
        Connect(id).metadata.info=category{1}(4); 
        Connect(id).metadata.tag=category{1}(6); 
        switch char(Connect(id).metadata.object); 
            case 'POINT' 
                Connect(id).metadata.ndata=npoint; 
            case 'EDGE' 
                Connect(id).metadata.ndata=nedge; 
            case 'VERTEX' 
                Connect(id).metadata.ndata=nvertex; 
        end 
        nd=str2double(Connect(id).metadata.type{1}(end-1)); 
        if isnan(nd); 
            Connect(id).metadata.ndim=1; 
        else 
            Connect(id).metadata.ndim=nd; 
        end 
         
    end 
end 
 
for id=1:numel(Connect) 
    GoOn=1; 
    while GoOn; 
        A=fgetl(fid); 
        if ~isempty(A); 
            GoOn=~strcmp(A(1),'@'); 
        end 
    end 
    [Connect(id).metadata.ndim,Connect(id).metadata.ndata]; 
    Connect(id).data= 
        fscanf(fid,'%g', 
        [Connect(id).metadata.ndim,Connect(id).metadata.ndata]); 
end 
fclose(fid); 
Connect(2).data=Connect(2).data+1; 
 
% prepare connections 
startedge=cumsum([0,Connect(3).data]); 
vtvolume=0; %default volume; 
for ie=1:nedge; 
    Edge(ie).xdata= ... 
        Connect(4).data(1,[startedge(ie)+1:startedge(ie+1)]); 
    Edge(ie).ydata= ... 
        Connect(4).data(2,[startedge(ie)+1:startedge(ie+1)]); 
    Edge(ie).zdata= 
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        Connect(4).data(3,[startedge(ie)+1:startedge(ie+1)]); 
    Edge(ie).linklength= 
        (diff(Edge(ie).xdata).^2+ 
        diff(Edge(ie).ydata).^2+ 
        diff(Edge(ie).zdata).^2).^(1/2); 
    Edge(ie).length= 
        sum(Edge(ie).linklength); 
    Edge(ie).endID= 
        Connect(2).data(:,ie); 
    Edge(ie).radius= 
        Connect(5).data(startedge(ie)+1:startedge(ie+1)); 
end 
for iv=1:nvertex; 
    Node(iv).xdata=Connect(1).data(1,iv); 
    Node(iv).ydata=Connect(1).data(2,iv); 
    Node(iv).zdata=Connect(1).data(3,iv); 
    Node(iv).linkID= 
        find((Connect(2).data(2,:)==iv)|(Connect(2).data(1,:)==iv)); 
    Node(iv).connectivity = numel(Node(iv).linkID); 
end 
 
% Storing the initial structures 
Network = struct('Edge', {}, ... 
                 'Node', {}, ... 
                 'Stage', {}); 
              
Network(1).Edge = Edge; 
Network(1).Node = Node; 
Network(1).Stage = 1; 
% 
fprintf('Done!\n'); 
 
end 
 
% ------------------------------------------------------------------------ % 
 
function [vtotal] = VolumeChecker(Edge) 
 
vvec = nan(length(Edge), 1); 
 
for ie = 1 : length(Edge) 
    [lv, v] = EdgeVolume(Edge(ie), 1); 
    vvec(ie) = v; 
end 
 
vtotal = sum(vvec); 
 
end 
 
% ------------------------------------------------------------------------ % 
 
function [Edge, Node] = RemoveDeleted(Edge, Node, ModEdgeID, ModNodeID, 
varargin) 
 
cleaner_type = varargin{1}; 
 
switch cleaner_type 
    case 'RemoveLoops' 
        edge_delete = ModEdgeID; 
        mod_vec = [ModEdgeID; length(Edge) + 1];                 
        Edge(edge_delete) = []; %translating the edges 
         
        [clinks, tf] = padcat(Node.linkID);         
        for ied = 1 : numel(mod_vec) - 1 
            %positions of links in clinks matrix 
            tp = clinks > mod_vec(ied) & clinks < mod_vec(ied+1);  
            lt = clinks(tp) - ied; 
            clinks(tp) = lt; 
        end 
         
        for in = 1 : size(clinks, 1) 
            linkID = clinks(in,:); 
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            Node(in).linkID = linkID(tf(in,:)); 
        end    
 
    case 'CollapseLoops' 
        E_old = Edge; 
        N_old = Node; 
         
        mod_vec = ModEdgeID; 
        nmod = numel(mod_vec); 
        nn = length(N_old); 
         
        E_new = E_old; 
        N_new = N_old;         
         
        for im = 1 : nmod 
            edgeID = mod_vec(im); 
            endID = E_old(edgeID).endID; 
            edge_end_pos = [ ... 
                E_old(edgeID).xdata(1), E_old(edgeID).xdata(end); ... 
                E_old(edgeID).ydata(1), E_old(edgeID).ydata(end); ... 
                E_old(edgeID).zdata(1), E_old(edgeID).zdata(end)]; 
            node_pos = ... 
                [N_old(endID).xdata; ... 
                 N_old(endID).ydata; ... 
                 N_old(endID).zdata]; 
            for ii = 1 : 2 
                if node_pos(1) ~= edge_end_pos(1,ii) && ... 
                   node_pos(2) ~= edge_end_pos(2,ii) && ... 
                   node_pos(2) ~= edge_end_pos(2,ii) 
                
                   new_node_pos = edge_end_pos(:,ii); 
                   N_new(nn+im).xdata = new_node_pos(1); 
                   N_new(nn+im).ydata = new_node_pos(2); 
                   N_new(nn+im).zdata = new_node_pos(3); 
                   N_new(nn+im).linkID = edgeID; 
                   N_new(nn+im).connectivity = 1; 
                    
                   E_new(edgeID).endID = [E_old(edgeID).endID; (nn + im)];                    
                end 
            end 
        end 
         
        Edge = E_new; 
        Node = N_new; 
         
    case {'RemoveSublinks', 'MergeShort', 'RemoveIslandEdges'} 
%        
        mod_vec = sort([ModEdgeID; length(Edge) + 1]); 
        edge_delete = ModEdgeID; 
 
        %translating the edges 
        Edge(edge_delete) = [];  
         
        %concatenateing the structure elements containing the linkIDs      
        [clinks, tf] = padcat(Node.linkID);  
        for ied = 1 : numel(mod_vec) - 1 
            %positions of links in clinks matrix 
            tp = clinks > mod_vec(ied) & clinks < mod_vec(ied+1);  
            lt = clinks(tp) - ied; 
            clinks(tp) = lt; 
        end 
         
        % converting the array of linkID into the Node structure field 
        for in = 1 : size(clinks, 1) 
            linkID = clinks(in,:); 
            Node(in).linkID = linkID(tf(in,:)); 
        end 
         
        node_trans = sort([ModNodeID; length(Node) + 1]); 
        node_delete = ModNodeID; 
        Node(node_delete) = []; 
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        cnodes = [Edge.endID]'; 
        for ind = 1 : numel(node_trans) - 1 
            %positions of nodes in cnodes 
            tp = cnodes > node_trans(ind) & cnodes < node_trans(ind+1);  
            lt = cnodes(tp) - ind; 
            cnodes(tp) = lt; 
        end 
         
        % converting the array of linkID into the Edge structure field 
        for ie = 1 : size(cnodes, 1) 
            endID = cnodes(ie,:); 
            Edge(ie).endID = endID'; 
        end 
     
    case 'RemoveTwins' 
        mod_vec = sort([ModEdgeID, length(Edge) + 1]); 
        edge_delete = ModEdgeID; 
         
        Edge(edge_delete) = []; % translating the edges 
         
        % updating the linkID entries of the Node structure after the edges 
        % were translated in the last loop 
        [clinks, tf] = padcat(Node.linkID);         
        for ied = 1 : numel(mod_vec) - 1 
            %positions of links in clinks matrix 
            tp = clinks > mod_vec(ied) & clinks < mod_vec(ied+1);  
            lt = clinks(tp) - ied; 
            clinks(tp) = lt; 
        end 
         
        % converting the array of linkID into the Node structure field 
        for in = 1 : size(clinks, 1) 
            linkID = clinks(in,:); 
            Node(in).linkID = linkID(tf(in,:)); 
        end 
         
    case 'RemoveIslandNodes' 
        node_delete = ModNodeID; 
        node_trans = sort([ModNodeID; length(Node) + 1]); 
         
        Node(node_delete) = []; 
         
        cnodes = [Edge.endID]'; 
        for ind = 1 : numel(node_trans) - 1 
            %positions of nodes in cnodes 
            tp = cnodes > node_trans(ind) & cnodes < node_trans(ind+1);  
            lt = cnodes(tp) - ind; 
            cnodes(tp) = lt; 
        end 
         
        % converting the array of linkID into the Edge structure field 
        for ie = 1 : size(cnodes, 1) 
            endID = cnodes(ie,:); 
            Edge(ie).endID = endID'; 
        end 
         
    case 'RemoveZeroEdge' 
        mod_vec = sort([ModEdgeID, length(Edge) + 1]); 
        edge_delete = ModEdgeID; 
         
        Edge(edge_delete) = []; % translating the edges 
        Node(ModNodeID).linkID(Node(ModNodeID).linkID == ModEdgeID) = []; 
        Node(ModNodeID).connectivity = Node(ModNodeID).connectivity - 1; 
         
        % updating the linkID entries of the Node structure after the edges 
        % were translated in the last loop 
        [clinks, tf] = padcat(Node.linkID); 
        for ied = 1 : numel(mod_vec) - 1 
            %positions of links in clinks matrix 
            tp = clinks > mod_vec(ied) & clinks < mod_vec(ied+1);  
            lt = clinks(tp) - ied; 
            clinks(tp) = lt; 
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        end 
         
        % converting the array of linkID into the Node structure field 
        for in = 1 : size(clinks, 1) 
            linkID = clinks(in,:); 
            Node(in).linkID = linkID(tf(in,:)); 
        end 
end 
 
end 
 
% ------------------------------------------------------------------------ % 
 
function HistAll(Edge, Node, dim, varargin) 
varargin_on = isempty(varargin); 
 
if varargin_on == 0 
    initial_switch = ... 
        abs(isempty(find(strcmp('Initial', varargin), 1)) - 1); 
    after_switch = abs(isempty(find(strcmp('After', varargin), 1)) - 1); 
else 
    initial_switch = 0; 
    after_switch = 0; 
end 
 
%% Buffer 
%Declaring a buffer zone so that the nodes with connectivity 1 do not 
%overwhelm the histogram 
bd = 30; %buffer distance 
% Buffer = struct('xlim', {}, 'ylim', {}, 'zlim', {}); 
Buffer.xlim = [bd, dim - bd]; 
Buffer.ylim = [bd, dim - bd]; 
Buffer.zlim = [bd, dim - bd]; 
 
it = 1; 
NodeFit = struct('xdata', {}, ... 
    'ydata', {}, ... 
    'zdata', {}, ... 
    'linkID', {}, ... 
    'connectivity', {}); 
 
for in = 1 : length(Node) 
    node_position = [Node(in).xdata; Node(in).ydata; Node(in).zdata]; 
    if node_position(1) > ... 
            Buffer.xlim(1) ... 
            && node_position(1) ... 
            < Buffer.xlim(2) && ... 
            node_position(2) > ... 
            Buffer.ylim(1) && ... 
            node_position(2) < ... 
            Buffer.ylim(2) && ... 
            node_position(3) > ... 
            Buffer.zlim(1) && node_position(3) < Buffer.zlim(2) 
        NodeFit(it) = Node(in); 
        it = it + 1; 
    end 
end 
 
if initial_switch == 1 
    figure(1); clf; hold on; 
end 
if after_switch == 1 
    figure(2); clf; hold on; 
end 
 
CLimit = max([NodeFit.connectivity]); 
% CLimit = 8; 
subplot 221 
c = [NodeFit.connectivity]; 
% [n, xout] = hist(c, [1:max(c)]); 
[n, xout] = hist(c, 1:1:CLimit); 
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nnorm = n./sum(n); 
h1 = bar(xout, nnorm); 
set(h1, 'FaceColor', [1 1 1]*.6); 
axis([0, max(xout) + 1, 0, max(nnorm) + .1]); 
for b = 1 : numel(xout) 
    text(xout(b), nnorm(b)+.03, num2str(n(b)), ... 
        'FontSize', 12, ... 
        'HorizontalAlignment', 'center'); 
end 
 
xlabel('Coordination #', 'FontSize', 12); 
ylabel('Frequency', 'FontSize', 12); 
title('Connectivity', 'FontSize', 12); 
% xticklabel = get(gca, 'XTickLabel'); 
% XTickVar = get(gca, 'XTickLabel'); 
% set(gca, 'XTickLabel', XTickVar*100); 
 
subplot 222 
[n, xout] = hist([Edge.radius], 20); 
nnorm = n./sum(n); 
h2 = bar(xout, nnorm); 
set(h2, 'FaceColor', [1 1 1]*.6); 
axis([0, max(xout) + 1, 0, max(nnorm) + .1]); 
 
xlabel('Length', 'FontSize', 12); 
ylabel('Frequency', 'FontSize', 12); 
title('Link Radius', 'FontSize', 12); 
 
subplot 223 
[n, xout] = hist([Edge.length], 20); 
nnorm = n./sum(n); 
h3 = bar(xout, nnorm); 
set(h3, 'FaceColor', [1 1 1]*.6); 
axis([0, max(xout) + 1, 0, max(nnorm) + .1]); 
 
xlabel('Length', 'FontSize', 12); 
ylabel('Frequency', 'FontSize', 12); 
title('Link Length', 'FontSize', 12); 
 
subplot 224 
[n, xout] = hist(log10([Edge.length]), 20); 
nnorm = n./sum(n); 
h4 = bar(xout, nnorm); 
set(h4, 'FaceColor', [1 1 1]*.6); 
axis([0, max(xout) + .1, 0, max(nnorm) + .025]); 
 
xlabel('Length', 'FontSize', 12); 
ylabel('Frequency', 'FontSize', 12); 
title('Log Link Length', 'FontSize', 12); 
 
end 
 
% ------------------------------------------------------------------------ % 
 
function [Edge, Node] = IntialInterp(Edge, Node, ninterp) 
% Many of the subroutines in this package require that edges be composed of 
% less than 4 points. So we add points to edges based on linear 
% interpolation. 
 
% ninterp = 4; %all edges will have a minimum of 4 points 
fprintf('\nInterpolating edges that contain < %i points...', ninterp); 
nptsmod = 0; 
for ie = 1 : length(Edge) 
    xyz = [Edge(ie).xdata; Edge(ie).ydata; Edge(ie).zdata]; 
    npoints = size(xyz, 2); 
    x.position = xyz; 
    x.radius = Edge(ie).radius; 
    if npoints < ninterp 
        [~, volume0] = EdgeVolume(Edge(ie), 1); 
        [xi, yi, zi, ri] = EdgeInterp(x, ninterp); 
        Edge(ie).xdata = xi; 
        Edge(ie).ydata = yi; 
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        Edge(ie).zdata = zi; 
        Edge(ie).linklength = sum(diff([xi; yi; zi], [], 2).^2, 1).^(1/2); 
        Edge(ie).length = sum(Edge(ie).linklength); 
        Edge(ie).radius = ri; 
         
        nptsmod = nptsmod + 1; 
    end 
end 
 
fprintf('\n    %i edges were modified\n', nptsmod); 
 
end 
 
% ------------------------------------------------------------------------ % 
 
function [linkvolume, volume] = EdgeVolume(edge, lscale) 
 
x = [0 cumsum(edge.linklength)]*lscale; 
f = pi*(edge.radius*lscale).^2;         
vol = .5*diff(x).*(f(1:end-1) + f(2:end)); 
linkvolume = vol; 
volume = sum(vol); 
 
end 
 
% ------------------------------------------------------------------------ % 
 
function [xi, yi, zi, ri] = EdgeInterp(x, n) 
 
edge_position = [x(end).position(1,:)', ... 
    x(end).position(2,:)', ... 
    x(end).position(3,:)']; 
 
InterpStruct0.distance = ... 
    cat(1, 0, cumsum(sqrt(sum(diff(edge_position, [], 1).^2, 2)))); 
InterpStruct0.radius = ... 
    cat(2,0,cumsum(sqrt(sum(diff(x(end).radius,[],2).^2, 1))))'; 
InterpStruct1.position = ... 
    interp1(InterpStruct0.distance, edge_position, ... 
    linspace(0, InterpStruct0.distance(end), n), 'linear'); 
InterpStruct1.distance = ... 
    cat(1, 0, cumsum(sqrt(sum(diff(InterpStruct1.position, [], 1).^2, 2)... 
    ))); 
 
e = 1e-4; 
 
InterpStruct1.radius = ... 
    interp1(round(InterpStruct0.distance/e)*e, x(end).radius', ... 
    round(InterpStruct1.distance/e)*e, 'linear')'; 
 
xi = InterpStruct1.position(:,1)'; 
yi = InterpStruct1.position(:,2)'; 
zi = InterpStruct1.position(:,3)'; 
 
ri = InterpStruct1.radius; 
 
end 
 
% ------------------------------------------------------------------------ % 
 
function [Edge, Node] = RemoveIslands(Edge, Node) 
% Rmoves island nodes and island edges whose end nodes have connectivity 
% equal to 1. 
 
% Removing island nodes 
cleaner_type = 'RemoveIslandNodes'; 
island_node = find([Node.connectivity] == 0); 
if isempty(island_node) == 0 
    [Edge, Node] = RemoveDeleted(Edge, Node, island_node, [], ... 
        cleaner_type); 
end 
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% Removing island edges 
cleaner_type = 'RemoveIslandEdges'; 
island_edge = []; 
ModNodeID = []; 
for ie = 1 : length(Edge) 
    endID = Edge(ie).endID; 
    connectivity = [Node(endID).connectivity]; 
    if isequal(connectivity, [1 1]) 
        island_edge = [island_edge; ie]; 
        ModNodeID = [ModNodeID; endID]; 
    end 
end 
 
ModEdgeID = island_edge; 
 
[Edge, Node] = RemoveDeleted(Edge, Node, ModEdgeID, ModNodeID, ... 
    cleaner_type); 
 
end 
 
% ------------------------------------------------------------------------ % 
 
function [Edge, Node, hist_log] = MainLoop(Edge, Node, varargin) 
% 
% ------------------------------------------------------------------------ 
% 
% This is the wrapper script for removing sublinks, twins, and loops. 
% Mainloop.m iterates through 'Edge' and 'Node' until all sublinks, twins, 
% and loops are removed. 
%  
% Inputs: 
%  
%       Edge --> Input 'Edge' structure 
%       Node --> Input 'Node' structure 
%  
% ------------------------------------------------------------------------ 
 
varargin_on = isempty(varargin); 
if varargin_on == 0 
    merge_switch = ~isempty(find(strcmp('Merge', varargin), 1)); 
else 
    merge_switch = 0; 
end     
 
Connectivity = [Node.connectivity]; 
[nc, ~] = hist(Connectivity, 1:10);     
hist_log(1,:) = nc; 
 
iLim = 1; 
dc_sum = 1;  
 
while dc_sum > 0 
     
    iLim = iLim + 1; 
     
    [Edge, Node] = ModifyLoops(Edge, Node, 15); 
     
    if ~merge_switch 
        [Edge, Node] = RemoveSublinks(Edge, Node); 
    end 
     
    [Edge, Node] = RemoveTwins(Edge, Node); 
     
    Connectivity = [Node.connectivity]; 
    nc = hist(Connectivity, 1:10); 
    hist_log(iLim,:) = nc; 
     
    dc = diff(hist_log(end-1:end,:), [], 1); 
     
    dc_sum = sum(abs(dc)); 
     
end 
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end 
 
% ------------------------------------------------------------------------ % 
 
function [Edge, Node] = ModifyLoops(Edge, Node, vthreshold) 
% 
% ------------------------------------------------------------------------ 
% 
% PlotSkeleton.m modifies the input skeleton network by removing loops, 
% i.e. edges with only one connected node. 
%  
% Inputs: 
%  
%       'Edge'       --> Input 'Edge' structure 
%       'Node'       --> Input 'Node' structure 
%       'vthreshold' --> volume threshold for totaly removing loop 
%  
%       'Edge'       --> Output 'Edge' structure 
%       'Node'       --> Output 'Node' structure 
%  
% ------------------------------------------------------------------------ 
%  
 
% Romoving loops below the threshold length 
loopInd = find(diff([Edge.endID]) == 0); 
lvolume = nan(numel(loopInd), 1); 
 
for il = 1 : numel(loopInd) 
    [~, volume] = EdgeVolume(Edge(loopInd(il)), 1); 
    lvolume(il) = volume; 
end 
 
% vthreshold = 15; %volume threshold 
removeInd = loopInd(lvolume <= vthreshold); 
nremove = numel(removeInd); 
 
cleaner_type = 'RemoveLoops'; 
 
ModNodeID = []; 
 
ModEdgeID = nan(floor(length(Node)*.2), 1); 
ime = 1; 
 
for il = 1 : nremove 
    mod_node = Edge(removeInd(il)).endID(1); 
    iedge_delete = removeInd(il); 
     
    ModEdgeID(ime) = iedge_delete; 
    ime = ime + 1; 
         
    % removing the loop edge from the linkID entry of the Node 
    % structure 
    Node(mod_node).linkID = ... 
        Node(mod_node).linkID(Node(mod_node).linkID ~= removeInd(il)); 
    Node(mod_node).connectivity = Node(mod_node).connectivity - 1; 
end 
 
ModEdgeID(isnan(ModEdgeID)) = []; 
 
[Edge, Node] = RemoveDeleted( ... 
    Edge, Node, ModEdgeID, ModNodeID, cleaner_type); 
 
% Collapsing loops into single edges 
loopInd = find(diff([Edge.endID]) == 0); 
lvolume = nan(numel(loopInd), 1); 
 
for il = 1 : numel(loopInd) 
    [~, volume] = EdgeVolume(Edge(loopInd(il)), 1); 
    lvolume(il) = volume; 
end 
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collapseInd = loopInd(lvolume > vthreshold); 
ncollapse = numel(collapseInd); 
 
for il = 1 : ncollapse 
     
%     disp(il); 
     
    edgeID = collapseInd(il); 
    nodeID = unique(Edge(edgeID).endID); 
          
    link_pos = ... 
        [Edge(edgeID).xdata; Edge(edgeID).ydata; Edge(edgeID).zdata]; 
    [~, loop_volume] = EdgeVolume(Edge(edgeID), 1); 
     
    uE = 1e-6; 
 
    nUniqueLinkPos = ... 
        size(unique(round(link_pos(:,2:end-1)'./uE)*uE, 'rows')', 2); 
     
    if nUniqueLinkPos == 1 % adhoc modification for Maddy's research 
         
        fprintf('\nWarning: Found linear loops at edge %i\n\n', edgeID); 
         
        Edge(edgeID).xdata = Edge(edgeID).xdata(1:2); 
        Edge(edgeID).ydata = Edge(edgeID).ydata(1:2); 
        Edge(edgeID).zdata = Edge(edgeID).zdata(1:2); 
        Edge(edgeID).linklength = Edge(edgeID).linklength(1); 
        Edge(edgeID).length = Edge(edgeID).linklength(1); 
        Edge(edgeID).radius = Edge(edgeID).radius(2:end-1);  
         
        nn = length(Node); 
        edge_position = [Edge(edgeID).xdata; ... 
            Edge(edgeID).ydata; ... 
            Edge(edgeID).zdata]; 
        node_position = [Node(nodeID).xdata; ... 
            Node(nodeID).ydata; ... 
            Node(nodeID).zdata]; 
        node_position = node_position(:, ones(1,size(edge_position, 2))); 
         
        e = 1e-3; 
         
        ipos = find(sum(edge_position<=node_position+e & ... 
            edge_position>=node_position-e) == 3); 
         
        if ipos == 1 
            nnode_position = edge_position(:,end); 
        else 
            nnode_position = edge_position(:,1); 
        end 
         
        Node(nn+1).xdata = nnode_position(1); 
        Node(nn+1).ydata = nnode_position(2); 
        Node(nn+1).zdata = nnode_position(3); 
        Node(nn+1).linkID = edgeID; 
        Node(nn+1).connectivity = numel(Node(nn+1).linkID); 
         
        Edge(edgeID).endID = [nodeID; nn + 1]; 
     
    else 
     
        % finding the index of the value that is half the distance along  
        % the loop 
        halfway = Edge(edgeID).length/2; 
        edge_dist_vec = cumsum(Edge(edgeID).linklength); 
        imax = find(diff(sign(edge_dist_vec - halfway))); 
        if imax == 1 % adhoc modification for Maddy's research 
            imax = imax + 1; 
        end 
        npts_tot = size(link_pos, 2); %# of points that make up the edge 
         
        % splitting the original edge into 2 edges, essentially turning the 
        % loop into a twin 
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        npts1 = imax - 1; % # of points in the 1st new edge 
         
        % position data of the 1st new edge 
        edge(1).position = link_pos(:,1:npts1); 
        edge(1).radius = Edge(edgeID).radius(1:npts1); 
         
        % position data of the 2nd new edge 
        edge(2).position = fliplr(link_pos(:,npts1:npts_tot)); 
        edge(2).radius = fliplr(Edge(edgeID).radius(npts1:npts_tot)); 
         
        [~, minptID] = min([size(edge(1).position, 2), ... 
            size(edge(2).position, 2)]); 
        [cmaxpt, maxptID] = max([size(edge(1).position, 2), ... 
            size(edge(2).position, 2)]); 
         
        % this will happen if the two new edges coincidentally have  
        % the same number of points 
        if minptID == maxptID  
            minptID = 1; 
            maxptID = 2; 
            cmaxpt = size(edge(maxptID).position, 2); 
        end 
         
        [xmin, ymin, zmin, rmin] = EdgeInterp(edge, cmaxpt); 
         
        LoopInterp = struct('xdata', {}, ... 
            'ydata', {}, ... 
            'zdata', {}, ... 
            'radius', {}); 
         
        LoopInterp(minptID).xdata = xmin; 
        LoopInterp(minptID).ydata = ymin; 
        LoopInterp(minptID).zdata = zmin; 
        LoopInterp(minptID).radius = rmin; 
         
        LoopInterp(maxptID).xdata = edge(maxptID).position(1,:); 
        LoopInterp(maxptID).ydata = edge(maxptID).position(2,:); 
        LoopInterp(maxptID).zdata = edge(maxptID).position(3,:); 
        LoopInterp(maxptID).radius = edge(maxptID).radius; 
         
        xd = cat(1, LoopInterp(1).xdata, LoopInterp(2).xdata); 
        yd = cat(1, LoopInterp(1).ydata, LoopInterp(2).ydata); 
        zd = cat(1, LoopInterp(1).zdata, LoopInterp(2).zdata); 
        rd = cat(1, LoopInterp(1).radius, LoopInterp(2).radius); 
         
        ad = pi*rd.^2; 
        a = sum(ad); 
         
        xi = sum(xd.*ad)./a; %area-weighted average; 
        yi = sum(yd.*ad)./a; %area-weighted average; 
        zi = sum(zd.*ad)./a; %area-weighted average; 
         
        ri = sqrt(a/pi); %area-weighted average 
         
        % smoothing the new edge 
        xs = smooth(xi', .3); 
        ys = smooth(yi', .3); 
        zs = smooth(zi', .3); 
         
        % calculating the link lengths 
        linklengthi = sum(diff([xs'; ys'; zs'], [], 2).^2, 1).^(1/2); 
         
        % calculating the length of the new edge 
        lengthi = sum(linklengthi); 
         
        % updating the Edge structure 
        Edge(edgeID).xdata = xs'; 
        Edge(edgeID).ydata = ys'; 
        Edge(edgeID).zdata = zs'; 
        Edge(edgeID).linklength = linklengthi; 
        Edge(edgeID).length = lengthi; 
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        nn = length(Node); 
        edge_position = [Edge(edgeID).xdata; ... 
            Edge(edgeID).ydata; ... 
            Edge(edgeID).zdata]; 
        node_position = [Node(nodeID).xdata; ... 
            Node(nodeID).ydata; ... 
            Node(nodeID).zdata]; 
        node_position = node_position(:, ones(1,size(edge_position, 2))); 
         
        e = 1e-3; 
         
        ipos = find(sum(edge_position<=node_position+e & ... 
            edge_position>=node_position-e) == 3); 
         
        if ipos == 1 
            nnode_position = edge_position(:,end); 
        else 
            nnode_position = edge_position(:,1); 
        end 
         
        Node(nn+1).xdata = nnode_position(1); 
        Node(nn+1).ydata = nnode_position(2); 
        Node(nn+1).zdata = nnode_position(3); 
        Node(nn+1).linkID = edgeID; 
        Node(nn+1).connectivity = numel(Node(nn+1).linkID); 
         
        Edge(edgeID).endID = [nodeID; nn + 1]; 
        Edge(edgeID).radius = ri; 
         
        % calculating the volume of the new edge 
        [~, volume] = EdgeVolume(Edge(edgeID), 1); 
         
        % growing the links to conserve the volume of the original twins  
        % added together 
        vrat = loop_volume/volume; 
        Edge(edgeID).radius = Edge(edgeID).radius.*sqrt(vrat); 
         
    end 
     
end 
 
end 
 
% ------------------------------------------------------------------------ % 
 
function [Edge, Node] = RemoveSublinks(Edge, Node) 
 
cleaner_type = 'RemoveSublinks'; 
 
% narrowing the number of nodes to the ones with coordination # of 2 
coord2 = find([Node.connectivity] == 2); 
nc2 = numel(coord2); 
 
for ic2 = 1 : nc2 
    noi = coord2(ic2); 
    eoi = Node(noi).linkID; 
    endID = [Edge(eoi).endID]; 
    opp_ends = endID(endID ~= coord2(ic2))'; 
    unique_nodes = unique(opp_ends); 
    if numel(unique_nodes) > 1 %erogo there is a sublink 
        iedge_keep = min(eoi); 
        iedge_delete = eoi(eoi ~= iedge_keep); 
        inode_delete = noi; 
         
        % position matricies of the first and second connecting edges 
        e1p = [Edge(eoi(1)).xdata; ... 
            Edge(eoi(1)).ydata; ... 
            Edge(eoi(1)).zdata]; 
        e2p = [Edge(eoi(2)).xdata; ... 
            Edge(eoi(2)).ydata; ... 
            Edge(eoi(2)).zdata]; 
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        % radius of the first and second connecting edges 
        e1r = Edge(eoi(1)).radius; 
        e2r = Edge(eoi(2)).radius; 
         
        % determining the index and flipping order 
        [flip_switch, iflip, oflip] = FlipSwitch(e1p, e2p, cleaner_type); 
         
        MultiEdge = struct('position', {}, 'radius', {}); 
         
        MultiEdge(1).position = [e1p(1,:); e1p(2,:); e1p(3,:)]; 
        MultiEdge(2).position = [e2p(1,:); e2p(2,:); e2p(3,:)];         
        MultiEdge(1).radius = e1r; 
        MultiEdge(2).radius = e2r; 
         
        presort = struct('position', {}, 'radius', {}); 
        postsort = struct('position', {}, 'radius', {}); 
         
        switch flip_switch 
            case 1 
                presort(oflip(oflip ~= iflip)).position = ... 
                    MultiEdge(oflip(oflip~=iflip)).position; 
                presort(iflip).position = ... 
                    fliplr(MultiEdge(iflip).position); 
                presort(oflip(oflip ~= iflip)).radius = ... 
                    MultiEdge(oflip(oflip ~= iflip)).radius; 
                presort(iflip).radius = ... 
                    fliplr(MultiEdge(iflip).radius); 
                 
                postsort(1).position = presort(oflip(1)).position; 
                postsort(2).position = presort(oflip(2)).position; 
                postsort(1).radius = presort(oflip(1)).radius; 
                postsort(2).radius = presort(oflip(2)).radius;                 
                 
            case 0 
                postsort(oflip(1)).position = MultiEdge(1).position; 
                postsort(oflip(2)).position = MultiEdge(2).position; 
                postsort(oflip(1)).radius = MultiEdge(1).radius; 
                postsort(oflip(2)).radius = MultiEdge(2).radius; 
        end 
         
        postsort(2).position(:,1) = []; 
        postsort(2).radius(1) = []; 
         
        % appended positions of the edge 
        append_position = [[postsort(1).position], [postsort(2).position]]; 
        append_radius = [[postsort(1).radius], [postsort(2).radius]]; 
         
        % positions of the nodes 
        node_positions = ... 
                    [Node(opp_ends(1)).xdata, Node(opp_ends(2)).xdata; ... 
                     Node(opp_ends(1)).ydata, Node(opp_ends(2)).ydata; ... 
                     Node(opp_ends(1)).zdata, Node(opp_ends(2)).zdata]; 
         
        % flipping the edge if neccessary 
        [append_position, append_radius] = ... 
                    FlipEdge(append_position, node_positions, ... 
            'Radius', append_radius); 
         
        % updating the edge structure 
        Edge(iedge_keep).xdata = append_position(1,:); 
        Edge(iedge_keep).ydata = append_position(2,:); 
        Edge(iedge_keep).zdata = append_position(3,:); 
        Edge(iedge_keep).linklength = ... 
                    sum(diff(append_position, [], 2).^2).^(1/2); 
        Edge(iedge_keep).length = sum(Edge(iedge_keep).linklength); 
        Edge(iedge_keep).endID = opp_ends'; 
        Edge(iedge_keep).radius = append_radius; 
         
        other_node = ... 
                    Edge(iedge_delete).endID(Edge(iedge_delete).endID ~= 
noi); 
        old_loc = Node(other_node).linkID == iedge_delete; 
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        Node(other_node).linkID(old_loc) = iedge_keep; 
         
        [Edge, Node] = ... 
                    RemoveDeleted(... 
                    Edge, Node, iedge_delete, inode_delete, cleaner_type); 
         
        coord2(ic2+1:end) = coord2(ic2+1:end) - 1; 
         
    end 
end 
     
end 
 
% ------------------------------------------------------------------------ % 
 
function [Edge, Node] = RemoveTwins(Edge, Node) 
 
cleaner_type = 'RemoveTwins'; 
 
E = Edge; 
N = Node; 
ne = length(Edge); 
nn = length(Node); 
 
idelete_edge = nan(1, floor(ne*.2)); 
idelete_node = nan(1, floor(nn*.2)); 
 
ide = 1; 
 
for in = 1 : nn 
    %IDs of the egdes that are connected to Node in 
    linkIDs = N(in).linkID;  
     
    %IDs of the nodes that are connected to the connecting edges [in;  
    %new_node] 
    endID = [E(linkIDs).endID];  
     
    %node IDs that ~= in but are connected to the connecting edges  
    %[new_nodes] 
    cnodes = endID(endID ~= in)';  
    unique_nodes = UniqueVal(cnodes); 
     
    %ergo there is a twin present 
    if numel(unique_nodes) < numel(cnodes)  
        if numel(unique_nodes) == 1 
            nrep = numel(cnodes); 
        else 
            nrep = hist(cnodes, unique_nodes); 
        end 
        rep_nodes = unique_nodes(nrep > 1); 
        for ir = 1 : numel(rep_nodes) %loops through repeating indicies 
            %list of nodes that are shared by the twins 
            noi = [in; rep_nodes(ir)];  
            %list of edges that comprise the twins 
            eoi = linkIDs(cnodes == rep_nodes(ir));  
            twin = struct('xdata', {}, ... 
                'ydata', {}, ... 
                'zdata', {}, ... 
                'radius', {}, ... 
                'endID', {}); 
            npts = nan(numel(eoi), 1); 
            for it = 1 : numel(eoi) %looping through the twin edges 
                if isequal(E(eoi(it)).endID, noi) == 1 || ... 
                        isequal(flipud(E(eoi(it)).endID), noi) == 1 
                    twin(it).xdata = E(eoi(it)).xdata; 
                    twin(it).ydata = E(eoi(it)).ydata; 
                    twin(it).zdata = E(eoi(it)).zdata; 
                    twin(it).radius = E(eoi(it)).radius; 
                    twin(it).linklength = E(eoi(it)).linklength; 
                    twin(it).length = E(eoi(it)).length; 
                    twin(it).endID = E(eoi(it)).endID; 
                    twin(it).radius = E(eoi(it)).radius; 
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                    npts(it) = numel(twin(it).xdata); 
                    [~, tv] =  EdgeVolume(twin(it), 1); 
                    twin(it).volume = tv; 
                end 
            end 
             
            % in case the twins have the same number of points 
            [tmax, tmaxInd] = max(npts); 
             
            index_vec = 1:length(twin); 
             
            other_index = index_vec(index_vec ~= tmaxInd); 
             
            e1p = [twin(tmaxInd).xdata; ... 
                twin(tmaxInd).ydata; ... 
                twin(tmaxInd).zdata]; 
             
            e1r = twin(tmaxInd).radius; 
             
            xd = nan(numel(npts), tmax); 
            yd = nan(numel(npts), tmax); 
            zd = nan(numel(npts), tmax); 
            rd = nan(numel(npts), tmax); 
             
            xd(1,:) = e1p(1,:); 
            yd(1,:) = e1p(2,:); 
            zd(1,:) = e1p(3,:); 
             
            rd(1,:) = e1r; 
             
            for it = 1 : length(other_index) 
                e2p = [twin(other_index(it)).xdata; ... 
                    twin(other_index(it)).ydata; ... 
                    twin(other_index(it)).zdata]; 
                 
                e2r = twin(other_index(it)).radius; 
                 
                [flip_switch, ~, ~] = FlipSwitch(e1p, e2p, cleaner_type); 
                 
                switch flip_switch 
                    case 0 
                        MultiEdge(1).position = ... 
                            [e1p(1,:); e1p(2,:); e1p(3,:)]; 
                        MultiEdge(2).position = ... 
                            [e2p(1,:); e2p(2,:); e2p(3,:)]; 
                         
                        MultiEdge(1).radius = e1r; 
                        MultiEdge(2).radius = e2r; 
                    case 1 
                        MultiEdge(1).position = e1p; 
                        MultiEdge(2).position = fliplr(e2p); 
                         
                        MultiEdge(1).radius = e1r; 
                        MultiEdge(2).radius = fliplr(e2r); 
                end 
                 
                [xi, yi, zi, ri] = EdgeInterp(MultiEdge, tmax); 
                 
                xd(it+1,:) = xi; 
                yd(it+1,:) = yi; 
                zd(it+1,:) = zi; 
                 
                rd(it+1,:) = ri; 
                 
            end 
             
            % calculating the cross-sectional area at each point in the 
            % edge 
            ad = pi*rd.^2; 
            a = sum(ad); 
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            xa = sum(xd.*ad)./a; %area-weighted average; 
            ya = sum(yd.*ad)./a; %area-weighted average; 
            za = sum(zd.*ad)./a; %area-weighted average; 
             
            ri = nan(1, size(ad, 2)); 
            ri(1) = rd(1,1); 
            ri(end) = rd(1,end); 
             
            ri(2:end-1) = sqrt(a(2:end-1)/pi); %area-weighted average 
             
            % smoothing the new edge 
            xs = smooth(xa', .3); 
            ys = smooth(ya', .3); 
            zs = smooth(za', .3); 
             
            xs(1) = xi(1); xs(end) = xi(end); 
            ys(1) = yi(1); ys(end) = yi(end); 
            zs(1) = zi(1); zs(end) = zi(end); 
             
            position_check = [xs'; ys'; zs']; 
             
            node_positions = [Node(noi(1)).xdata, Node(noi(2)).xdata; ... 
                Node(noi(1)).ydata, Node(noi(2)).ydata; ... 
                Node(noi(1)).zdata, Node(noi(2)).zdata]; 
             
            % flipping the edge if neccessary 
            [position_check, ri] = ... 
                            FlipEdge(... 
                            position_check, node_positions, 'Radius',  ri);             
             
            % calculating the link lengths 
            linklengthi = sum(diff(position_check, [], 2).^2, 1).^(1/2); 
             
            % calculating the length of the new edge 
            lengthi = sum(linklengthi); 
             
            % storing the edge ID to be kept 
            %                 isave_edge = eoi(tmaxInd); 
            isave_edge = min(eoi); 
             
            % storing the new values in the Edge structure 
            E(isave_edge).xdata = position_check(1,:); 
            E(isave_edge).ydata = position_check(2,:); 
            E(isave_edge).zdata = position_check(3,:); 
            E(isave_edge).linklength = linklengthi; 
            E(isave_edge).length = lengthi; 
            E(isave_edge).endID = noi; 
            E(isave_edge).radius = ri;             
             
            % calculating the volume of the edge 
            [~, volume] = EdgeVolume(E(isave_edge), 1); 
             
            % growing the links to conserve the volume of the 
            % original twins added together 
            vrat = sum([twin.volume])/volume; 
            E(isave_edge).radius = E(isave_edge).radius.*sqrt(vrat); 
             
            % storing the IDs of the edges to be deleted 
            EdeleteID = eoi(eoi ~= isave_edge); 
            ndt = numel(EdeleteID); 
            idelete_edge(ide:(ide+ndt-1)) = EdeleteID; 
             
            ide = ide + ndt; 
             
            % updating the Node structure 
            %updating the linkIDs 
            N(noi(1)).linkID = ... 
                            N(noi(1)).linkID(~ismember( ... 
                            N(noi(1)).linkID, eoi(eoi ~=isave_edge)));  
            %updating the connectivity 
            N(noi(1)).connectivity = ... 
                            N(noi(1)).connectivity - (length(twin) - 1);  
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            N(noi(2)).linkID = ... 
                            N(noi(2)).linkID(~ismember( ... 
                            N(noi(2)).linkID, eoi(eoi ~=isave_edge))); 
            N(noi(2)).connectivity = ... 
                            N(noi(2)).connectivity - (length(twin) - 1); 
             
        end 
    end 
     
end 
 
idelete_edge = idelete_edge(~isnan(idelete_edge)); 
 
[Edge, Node] = RemoveDeleted(E, N, idelete_edge, idelete_node, ... 
    cleaner_type); 
 
end 
 
% ------------------------------------------------------------------------ % 
 
function [Edge, Node, vt_vec] = MergeShort(Edge, Node, lt, vt_vec) 
% 
% ------------------------------------------------------------------------ 
% 
% Removes edges shorter than 'lt' by merging connected edges. Total volume  
% is preserved in this process. 
% 
% ------------------------------------------------------------------------ 
 
cleaner_type = 'MergeShort'; 
 
shortID = find([Edge.length] < lt, 1); %ID of edge that could be too short 
 
GoShort = 1; 
it = 0; 
 
while GoShort > 0 
     
    it = it + 1; 
     
    % In case, the shortID is an island edge 
    IE_endID = Edge(shortID).endID; 
    IE_connectivity = [Node(IE_endID).connectivity]; 
    if isequal(IE_connectivity, [1 1]) 
        [Edge, Node] = RemoveDeleted(Edge, Node, shortID, IE_endID, 
'RemoveIslandEdges'); 
    else 
        cnodes = [Edge(shortID).endID]; 
        inode_keep = min(cnodes); 
        inode_delete = cnodes(cnodes ~= inode_keep); 
        iedge_delete = shortID; 
        clinks = padcat(Node(cnodes).linkID); 
         
        % finding the point on the connecting edges corresponding to a 
length 
        % "BoundStruct(1).length" or "right_length" away from the node. This 
will be the 
        % point that will be connected to the straight line connecting the 
COM 
        % of the short edge to the connecting edge. 
        EdgeUpdate = struct('xdata', {}, ... 
            'ydata', {}, ... 
            'zdata', {}, ... 
            'linklength', {}, ... 
            'length', {}, ... 
            'endID', {}, ... 
            'radius', {}); 
         
        connectivity = [Node(cnodes).connectivity]; 
        offshoot = cnodes(connectivity == 1); 
         
        if ~isempty(offshoot) %pruning short offshoots 
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            straighten_switch = 0; 
            [~, shortvolume0] = EdgeVolume(Edge(shortID), 1); 
            clinks_copy = clinks; 
            clinks_copy(isnan(clinks_copy)) = 0; 
            sum_clinks = sum(clinks_copy, 2); 
            ibranch = find(sum_clinks ~= clinks_copy(:,1), 1); 
            branch_links = clinks_copy(ibranch,:); branch_links = 
branch_links(branch_links ~= shortID); 
            nblinks = numel(branch_links); 
            vdiv = shortvolume0/nblinks; 
            for ibl = 1 : nblinks 
                [~, bvolume0] = EdgeVolume(Edge(branch_links(ibl)), 1); 
                new_bvolume = bvolume0 + vdiv; 
                vrat = new_bvolume/bvolume0; 
%                 vrat = bvolume0/new_bvolume; 
                 
                leu = length(EdgeUpdate) + 1; 
                 
                EdgeUpdate(leu).xdata = Edge(branch_links(ibl)).xdata; 
                EdgeUpdate(leu).ydata = Edge(branch_links(ibl)).ydata; 
                EdgeUpdate(leu).zdata = Edge(branch_links(ibl)).zdata; 
                EdgeUpdate(leu).linklength = 
Edge(branch_links(ibl)).linklength; 
                EdgeUpdate(leu).length = Edge(branch_links(ibl)).length; 
                EdgeUpdate(leu).endID = Edge(branch_links(ibl)).endID; 
                EdgeUpdate(leu).radius = 
Edge(branch_links(ibl)).radius*sqrt(vrat); 
            end 
            inode_delete = offshoot; 
            inode_keep = cnodes(cnodes ~= offshoot); 
            new_node_pos = [Node(inode_keep).xdata; ... 
                Node(inode_keep).ydata; ... 
                Node(inode_keep).zdata]; 
        else 
            % creating a temporary straight edge from the short edge 
            straighten_switch = 1; 
            npts = numel(Edge(shortID).xdata); 
            cnodes_pos = [Node(cnodes).xdata; Node(cnodes).ydata; 
Node(cnodes).zdata]; %positions of the endIDs 
            node_dist_vec = [0 cumsum(sum(diff(cnodes_pos, [], 
2).^2).^(1/2))]; 
            straight_pos = interp1(node_dist_vec', cnodes_pos', linspace(0, 
node_dist_vec(end), npts))'; 
            StraightEdge = struct('xdata', {}, ... 
                'ydata', {}, ... 
                'zdata', {}, ... 
                'linklength', {}, ... 
                'length', {}, ... 
                'endID', {}, ... 
                'radius', {}); 
            StraightEdge(1).xdata = straight_pos(1,:); 
            StraightEdge(1).ydata = straight_pos(2,:); 
            StraightEdge(1).zdata = straight_pos(3,:); 
            StraightEdge(1).linklength = sum((diff(straight_pos, [], 2).^2), 
1).^(1/2); 
            StraightEdge(1).length = sum(StraightEdge.linklength); 
            StraightEdge(1).endID = cnodes; 
            StraightEdge(1).radius = Edge(shortID).radius; %radius data of 
the old, curved link 
             
            % growing the link radii to conserve the volume of the original 
edge. 
            [~, old_volume] = EdgeVolume(Edge(shortID), 1); %volume of the 
old short edge 
            [~, new_volume] = EdgeVolume(StraightEdge, 1); %volume of the 
straight edge with the same radius but different lengths 
%             vrat = new_volume/old_volume; 
            vrat = old_volume/new_volume; 
            StraightEdge(1).radius = StraightEdge.radius*sqrt(vrat); 
            [vlinks_mod, v_mod] = EdgeVolume(StraightEdge, 1); 
             
            % Finding the center of mass of the straightened edge 
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            midpts = straight_pos(:,1:end-1)+diff(straight_pos, [], 2)/2; 
            vw = midpts.*repmat(vlinks_mod, 3, 1); 
            COM = sum(vw, 2)./v_mod; 
             
            between_vec = nan(1, 3); 
             
            % locating the index where I want to split the straight segment 
            between_vec(1) = inbetween(straight_pos(1,:), COM(1)); 
            between_vec(2) = inbetween(straight_pos(2,:), COM(2)); 
            between_vec(3) = inbetween(straight_pos(3,:), COM(3)); 
             
            inan = isnan(between_vec); 
            if ~isempty(find(inan, 1)) 
                between_vec(inan) = unique(between_vec(~inan)); 
            end 
             
            iCOM = unique(between_vec); 
            if iCOM == 1 
                iCOM = 2; 
            end 
            if iCOM == size(straight_pos, 2); 
                iCOM = size(straight_pos, 2) - 1; 
            end 
             
            % If the straight edge only contains 3 coordinates, the COM is 
            % automatically assigned to be the median of the points. 
            if size(straight_pos, 2) == 3 
                iCOM = 2; 
            end 
             
            new_node_pos = straight_pos(:,iCOM); 
             
            % finding the distance from the COM to the left and right 
connecting 
            % nodes 
            left_node_pos = [Node(cnodes(1)).xdata; ... 
                Node(cnodes(1)).ydata; ... 
                Node(cnodes(1)).zdata]; 
            right_node_pos = [Node(cnodes(2)).xdata; ... 
                Node(cnodes(2)).ydata; ... 
                Node(cnodes(2)).zdata]; 
             
            BoundStruct = struct('length', {}, ... 
                'pts', {}, ... 
                'radius', {}); 
             
            % 1 --> left bound; 2 --> right bound 
            BoundStruct(1).length = sum(diff([COM, left_node_pos], [], 
2).^2, 1).^(1/2); 
            BoundStruct(2).length = sum(diff([COM, right_node_pos], [], 
2).^2, 1).^(1/2); 
             
            %the center of mass pt is shared 
            BoundStruct(1).pts = straight_pos(:,1:iCOM); 
            BoundStruct(2).pts = straight_pos(:,iCOM:end); 
             
            BoundStruct(1).radius = Edge(shortID).radius(1:iCOM); 
            BoundStruct(2).radius = Edge(shortID).radius(iCOM:end); 
             
            % calculating the volumes of the individual segments on either 
side of 
            % COM 
            left_volume = sum(vlinks_mod(1:iCOM)); 
            right_volume = sum(vlinks_mod(iCOM+1:end)); 
             
            BoundStruct(1).volume = left_volume; 
            BoundStruct(2).volume = right_volume; 
             
            for ii = 1 : 2 
                noi = cnodes(ii); 
                node_pos = [Node(noi).xdata; Node(noi).ydata; 
Node(noi).zdata]; 
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                clinks1 = clinks(ii,:); 
                clinks1 = clinks1(clinks1 ~= shortID); 
                nclinks1 = numel(clinks1(isnan(clinks1) ~= 1)); 
                vdiv = BoundStruct(ii).volume/nclinks1; 
                for il = 1 : numel(clinks1(isnan(clinks1) ~= 1)) 
                    edge_pos = [Edge(clinks1(il)).xdata; ... 
                        Edge(clinks1(il)).ydata; ... 
                        Edge(clinks1(il)).zdata]; 
                    endInd = find(sum([round(edge_pos(1,:)*1e4)/1e4 == 
round(node_pos(1)*1e4)/1e4; ... 
                        round(edge_pos(2,:)*1e4)/1e4 == 
round(node_pos(2)*1e4)/1e4; ... 
                        round(edge_pos(3,:)*1e4)/1e4 == 
round(node_pos(3)*1e4)/1e4], 1) == 3, 1); 
                    if endInd == size(edge_pos, 2) 
                        edge_pos = fliplr(edge_pos); %needs to be flipped 
                        lradius = fliplr(Edge(clinks1(il)).radius); 
                    else 
                        lradius = Edge(clinks1(il)).radius; 
                    end 
                     
                    edge_dist_vec = [0 cumsum(sum(diff(edge_pos, [], 
2).^2).^(1/2))]; 
                    if edge_dist_vec(end) > BoundStruct(ii).length 
                        [~, imin] = min(abs(edge_dist_vec - 
BoundStruct(ii).length)); 
                        if imin >= numel(edge_dist_vec) 
                            iattach = numel(edge_dist_vec) - 1; 
                        else 
                            iattach = imin; 
                        end 
                    else 
                        iattach = numel(edge_dist_vec) - 1; %for connecting 
edges that are shorter than the shortIDs 
                    end 
                     
                    % Creating temporary edge that appends the appropriate 
side 
                    % of the short-side with the connecting nodes. This edge 
                    % will be called etemp1 
                    e1p = BoundStruct(ii).pts; 
                    e2p = [edge_pos(1,1:iattach); ... 
                        edge_pos(2,1:iattach); ... 
                        edge_pos(3,1:iattach)]; 
                    e1r = BoundStruct(ii).radius; 
                    e2r = lradius(1:iattach); 
                     
                    [flip_switch, iflip, oflip] = FlipSwitch(e1p, e2p, 
cleaner_type); 
                     
                    MultiEdge = struct('position', {}, 'radius', {}); 
                     
                    MultiEdge(1).position = e1p; 
                    MultiEdge(2).position = e2p; 
                     
                    MultiEdge(1).radius = e1r; 
                    MultiEdge(2).radius = e2r; 
                     
                    presort = struct('position', {}, 'radius', {}); 
                    postsort = struct('position', {}, 'radius', {}); 
                     
                    append_position = []; 
                    append_radius = []; 
                     
                    switch flip_switch 
                        case 1 
                            presort(oflip(oflip ~= iflip)).position = 
MultiEdge(oflip(oflip~=iflip)).position; 
                            presort(iflip).position = 
fliplr(MultiEdge(iflip).position); 
                            presort(oflip(oflip ~= iflip)).radius = 
MultiEdge(oflip(oflip ~= iflip)).radius; 
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                            presort(iflip).radius = 
fliplr(MultiEdge(iflip).radius); 
                             
                            postsort(1).position = 
presort(oflip(1)).position; 
                            postsort(2).position = 
presort(oflip(2)).position; 
                            postsort(1).radius = presort(oflip(1)).radius; 
                            postsort(2).radius = presort(oflip(2)).radius; 
                             
                            postsort(2).position(:,1) = []; 
                            postsort(2).radius(1) = []; 
                             
                            append_position = [[postsort(1).position], 
[postsort(2).position]]; 
                            append_radius = [[postsort(1).radius], 
[postsort(2).radius]]; 
                             
                            % flipping the edge id neccessary 
                            [append_position, append_radius] = 
FlipEdge(append_position, node_pos, ... 
                                'Radius', append_radius); 
                             
                        case 0 
                            postsort(oflip(1)).position = 
MultiEdge(1).position; 
                            postsort(oflip(2)).position = 
MultiEdge(2).position; 
                            postsort(oflip(1)).radius = MultiEdge(1).radius; 
                            postsort(oflip(2)).radius = MultiEdge(2).radius; 
                             
                            postsort(2).position(:,1) = []; 
                            postsort(2).radius(1) = []; 
                             
                            append_position = [[postsort(1).position], 
[postsort(2).position]]; 
                            append_radius = [[postsort(1).radius], 
[postsort(2).radius]]; 
                             
                            % flipping the edge id neccessary 
                            [append_position, append_radius] = 
FlipEdge(append_position, node_pos, ... 
                                'Radius', append_radius); 
                    end 
                     
                    temp_pos1 = append_position; 
                     
                    % Creating temporary edge that extends from the COM 
                    % point to iattach on the connecting edge 
                    pt_pos = [straight_pos(1,iCOM), edge_pos(1,iattach); ... 
                        straight_pos(2,iCOM), edge_pos(2,iattach); ... 
                        straight_pos(3,iCOM), edge_pos(3,iattach)]; 
                    % 
                    npts = numel(temp_pos1(1,:)); 
                    pt_dist_vec = [0 cumsum(sum(diff(pt_pos, [], 
2).^2).^(1/2))]; 
                    temp_pos2 = interp1(pt_dist_vec', pt_pos', ... 
                        linspace(0, pt_dist_vec(end), npts))'; 
                     
                    [flip_switch, ~, ~] = FlipSwitch(temp_pos1, temp_pos2, 
'RemoveTwins'); 
                     
                    MultiEdge = struct('position', {}, 'radius', {}); 
                     
                    switch flip_switch 
                        case 0 
                            MultiEdge(1).position = temp_pos1; 
                            MultiEdge(2).position = temp_pos2; 
                             
                            MultiEdge(1).radius = append_radius; 
                            MultiEdge(2).radius = append_radius; 
                        case 1 
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                            MultiEdge(1).position = temp_pos1; 
                            MultiEdge(2).position = fliplr(temp_pos2); 
                             
                            MultiEdge(1).radius = append_radius; 
                            MultiEdge(2).radius = fliplr(append_radius); 
                    end 
                     
                    nme = length(MultiEdge); 
                     
                    xd = nan(nme, size(MultiEdge(1).position, 2)); 
                    yd = nan(nme, size(MultiEdge(1).position, 2)); 
                    zd = nan(nme, size(MultiEdge(1).position, 2)); 
                    rd = nan(nme, size(MultiEdge(1).position, 2)); 
                     
                    for ime = 1 : nme 
                        xd(ime,:) = MultiEdge(ime).position(1,:); 
                        yd(ime,:) = MultiEdge(ime).position(2,:); 
                        zd(ime,:) = MultiEdge(ime).position(3,:); 
                        rd(ime,:) = MultiEdge(ime).radius; 
                    end 
                     
                    % Averaging the temporary edges to make one edge 
                    ad = pi*rd.^2; 
                    a = sum(ad); 
                     
                    xa = sum(xd.*ad)./a; %area-weighted average; 
                    ya = sum(yd.*ad)./a; %area-weighted average; 
                    za = sum(zd.*ad)./a; %area-weighted average; 
                     
                    xa(1) = xd(1,1); xa(end) = xd(1,end); 
                    ya(1) = yd(1,1); ya(end) = yd(1,end); 
                    za(1) = zd(1,1); za(end) = zd(1,end); 
                     
                    %             ri = sqrt(a/pi); %area-weighted average 
                    ri = append_radius; 
                     
                    % concatenating the position vectors 
                    npos = [xa; ya; za]; 
                     
                    % appending the data from the first temp edge above the 
iattach 
                    % index 
                    edge_extra = edge_pos(:,iattach:end); 
                    radius_extra = lradius(:,iattach:end); 
                     
                    [flip_switch, iflip, oflip] = FlipSwitch(npos, 
edge_extra, 'MergeShort'); 
                     
                    MultiEdge = struct('position', {}, 'radius', {}); 
                     
                    MultiEdge(1).position = npos; 
                    MultiEdge(2).position = edge_extra; 
                     
                    MultiEdge(1).radius = ri; 
                    MultiEdge(2).radius = radius_extra; 
                     
                    presort = struct('position', {}, 'radius', {}); 
                    postsort = struct('position', {}, 'radius', {}); 
                     
                    append_position = []; 
                    append_radius = []; 
                     
                    switch flip_switch 
                        case 1 
                            presort(oflip(oflip ~= iflip)).position = 
MultiEdge(oflip(oflip~=iflip)).position; 
                            presort(iflip).position = 
fliplr(MultiEdge(iflip).position); 
                            presort(oflip(oflip ~= iflip)).radius = 
MultiEdge(oflip(oflip ~= iflip)).radius; 
                            presort(iflip).radius = 
fliplr(MultiEdge(iflip).radius); 
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                            postsort(1).position = 
presort(oflip(1)).position; 
                            postsort(2).position = 
presort(oflip(2)).position; 
                            postsort(1).radius = presort(oflip(1)).radius; 
                            postsort(2).radius = presort(oflip(2)).radius; 
                             
                            postsort(2).position(:,1) = []; 
                            postsort(2).radius(1) = []; 
                             
                            append_position = [[postsort(1).position], 
[postsort(2).position]]; 
                            append_radius = [[postsort(1).radius], 
[postsort(2).radius]]; 
                             
                            % flipping the edge id neccessary 
                            [append_position, append_radius] = 
FlipEdge(append_position, new_node_pos, ... 
                                'Radius', append_radius); 
                             
                        case 0 
                            postsort(oflip(1)).position = 
MultiEdge(1).position; 
                            postsort(oflip(2)).position = 
MultiEdge(2).position; 
                            postsort(oflip(1)).radius = MultiEdge(1).radius; 
                            postsort(oflip(2)).radius = MultiEdge(2).radius; 
                             
                            postsort(2).position(:,1) = []; 
                            postsort(2).radius(1) = []; 
                             
                            append_position = [[postsort(1).position], 
[postsort(2).position]]; 
                            append_radius = [[postsort(1).radius], 
[postsort(2).radius]]; 
                             
                            % flipping the edge id neccessary 
                            [append_position, append_radius] = 
FlipEdge(append_position, new_node_pos, ... 
                                'Radius', append_radius); 
                    end 
                     
                    new_endID = Edge(clinks1(il)).endID; 
                    inew_endID = Edge(clinks1(il)).endID == noi; 
                    new_endID(inew_endID) = inode_keep; 
                     
                    leu = length(EdgeUpdate) + 1; 
                     
                    EdgeUpdate(leu).xdata = append_position(1,:); 
                    EdgeUpdate(leu).ydata = append_position(2,:); 
                    EdgeUpdate(leu).zdata = append_position(3,:); 
                    EdgeUpdate(leu).linklength = sum((diff(append_position, 
[], 2).^2), 1).^(1/2); 
                    EdgeUpdate(leu).length = 
sum(EdgeUpdate(leu).linklength); 
                    EdgeUpdate(leu).endID = new_endID; 
                    EdgeUpdate(leu).radius = append_radius; 
                     
                    [~, volume0] = EdgeVolume(EdgeUpdate(leu), 1); 
                     
                    [~, original_clink_v] = EdgeVolume(Edge(clinks1(il)), 
1); 
                     
                    new_volume = original_clink_v + vdiv; 
                     
                    vrat = new_volume/volume0; 
                     
                    EdgeUpdate(leu).radius = 
EdgeUpdate(leu).radius*sqrt(vrat); 
                end 
            end 
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        end 
         
        clinks_sorted = [clinks(1,:)'; clinks(2,:)']; 
         
        ul = clinks_sorted(~isnan(clinks_sorted)); 
        ul = ul(ul ~= shortID); 
         
        Node(inode_keep).xdata = new_node_pos(1); 
        Node(inode_keep).ydata = new_node_pos(2); 
        Node(inode_keep).zdata = new_node_pos(3); 
        Node(inode_keep).linkID = ul'; 
        Node(inode_keep).connectivity = numel(ul); 
         
        % creating a temporary straight edge out of the short edge 
        if straighten_switch == 1 
            for iup = 1 : length(EdgeUpdate) 
                final_position = [EdgeUpdate(iup).xdata; ... 
                    EdgeUpdate(iup).ydata; ... 
                    EdgeUpdate(iup).zdata]; 
                final_radius = EdgeUpdate(iup).radius; 
                node_order = EdgeUpdate(iup).endID == inode_keep; 
                if isequal(node_order, [0; 1]) == 1 
                    EdgeUpdate(iup).endID = flipud(EdgeUpdate(iup).endID); 
                end 
                Edge(ul(iup)).xdata = final_position(1,:); 
                Edge(ul(iup)).ydata = final_position(2,:); 
                Edge(ul(iup)).zdata = final_position(3,:); 
                Edge(ul(iup)).linklength = sum(diff(final_position, [], 
2).^2, 1).^(1/2); 
                Edge(ul(iup)).length = sum(Edge(ul(iup)).linklength); 
                Edge(ul(iup)).endID = EdgeUpdate(iup).endID; 
                Edge(ul(iup)).radius = final_radius; 
            end 
        else 
            for iup = 1 : length(EdgeUpdate) 
                final_position = [EdgeUpdate(iup).xdata; ... 
                    EdgeUpdate(iup).ydata; ... 
                    EdgeUpdate(iup).zdata]; 
                final_radius = EdgeUpdate(iup).radius; 
                endID = EdgeUpdate(iup).endID; 
                v = [Node(endID(1)).xdata, Node(endID(2)).xdata; ... 
                    Node(endID(1)).ydata, Node(endID(2)).ydata; ... 
                    Node(endID(1)).zdata, Node(endID(2)).zdata]; 
                 
                final_position = FlipEdge(final_position, v); 
                 
                Edge(ul(iup)).xdata = final_position(1,:); 
                Edge(ul(iup)).ydata = final_position(2,:); 
                Edge(ul(iup)).zdata = final_position(3,:); 
                Edge(ul(iup)).linklength = sum(diff(final_position, [], 
2).^2, 1).^(1/2); 
                Edge(ul(iup)).length = sum(Edge(ul(iup)).linklength); 
                Edge(ul(iup)).endID = EdgeUpdate(iup).endID; 
                Edge(ul(iup)).radius = final_radius; 
            end 
        end 
         
        [Edge, Node] = RemoveDeleted(Edge, Node, iedge_delete, inode_delete, 
cleaner_type); %removing the deleted nodes and edges 
         
        % checkin gto make sure that the edge is not an island 
        if Node(inode_keep).connectivity == 1 && 
Node(Edge(Node(inode_keep).linkID).endID(Edge(Node(inode_keep).linkID).endID 
~= inode_keep)).connectivity == 1 
             
            [Edge, Node] = RemoveDeleted(Edge, Node, iedge_delete, 
inode_delete, 'RemoveIslandEdges'); %removing the deleted nodes and edges 
             
        else 
         
        %%%%%%%%%%%%%%%%%%%%%%%% 
        % Identifying the edges and nodes immediately surrounding the short 
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        % edge for speed. 
        cn_lvl1 = unique([Edge(Node(inode_keep).linkID).endID]); 
        cn_lvl1 = cn_lvl1(cn_lvl1 ~= inode_keep); 
         
        ce_lvl1 = Node(inode_keep).linkID'; 
         
        ce_lvl2 = unique([Node(cn_lvl1).linkID]'); 
        ce_lvl2_loc = ~ismember(ce_lvl2, ce_lvl1); 
        ce_lvl2 = ce_lvl2(logical(ce_lvl2_loc)); 
         
        cn_lvl2 = unique([Edge(ce_lvl2).endID]); 
        cn_lvl2_loc = ~ismember(cn_lvl2, cn_lvl1); 
        cn_lvl2 = cn_lvl2(logical(cn_lvl2_loc)); 
         
        target_nodes = [inode_keep; cn_lvl1; cn_lvl2]; 
        target_edges = [ce_lvl1; ce_lvl2]; 
         
        % truncating the edges and nodes structures for speed 
        TargetNode = Node(target_nodes); 
        TargetEdge = Edge(target_edges); 
         
        for itn = 1 : numel(target_nodes) 
            TargetNode(itn).GlobalNodeID = target_nodes(itn); 
            TargetNode(itn).GlobalLinkID = TargetNode(itn).linkID; 
            TargetNode(itn).GlobalConnectivity = 
numel(TargetNode(itn).linkID); 
        end 
         
        for ite = 1 : numel(target_edges) 
            TargetEdge(ite).GlobalEdgeID = target_edges(ite); 
        end 
         
        %%%%%%%%%%%%%%%%%%%%%%%% 
         
        % Translating to their local indicies 
        GlobalEdgeConnect = [TargetEdge.endID]'; %rows are edges, and 
columns are the indicies of the endID's 
        LocalEdgeConnect = nan(size(GlobalEdgeConnect)); 
        unique_nodes = unique(GlobalEdgeConnect); 
        for iun = 1 : numel(unique_nodes) 
            loc = GlobalEdgeConnect == target_nodes(iun); 
            [r, ~] = find(sum(loc, 2)); 
            LocalEdgeConnect(loc) = iun; 
            TargetNode(iun).linkID = sort(r)'; 
            TargetNode(iun).connectivity = numel(r); 
            TargetNode(iun).nodeID = iun; 
        end 
         
        for ilocal = 1 : numel(target_edges) 
            TargetEdge(ilocal).endID = LocalEdgeConnect(ilocal,:)'; 
            TargetEdge(ilocal).edgeID = ilocal; 
        end 
         
        % Differentiating between the interior and exterior nodes 
        local_ext_nodes = nan(1, floor(length(TargetNode))); 
        local_int_nodes = nan(1, floor(length(TargetNode))); 
        global_int_nodes = nan(1, floor(length(TargetNode))); 
        ixn = 1; 
        iin = 1; 
        for itn = 1 : numel(target_nodes) 
            local_tC = TargetNode(itn).connectivity; 
            global_tC = TargetNode(itn).GlobalConnectivity; 
            if local_tC ~= global_tC || global_tC == 1 
                local_ext_nodes(ixn) = itn; 
                ixn = ixn + 1; 
            else 
                local_int_nodes(iin) = itn; 
                global_int_nodes(iin) = target_nodes(itn); 
                iin = iin + 1; 
            end 
        end 
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        local_int_nodes(isnan(local_int_nodes)) = []; 
        global_int_nodes(isnan(global_int_nodes)) = []; 
        local_ext_nodes(isnan(local_ext_nodes)) = [];         
         
        % Differentiating between the interior and exterior edges 
        local_target_edges = 1:numel(target_edges); 
        local_ext_edges = [TargetNode(local_ext_nodes).linkID]'; 
        local_int_edges = local_target_edges(~ismember(local_target_edges, 
... 
            local_ext_edges)); 
        global_int_edges = target_edges(local_int_edges); 
                 
        % truncating the target edges and nodes even furhter 
        TargetEdgeInt = TargetEdge(local_int_edges); 
        TargetNodeInt = TargetNode(local_int_nodes); 
         
        % removing exterior nodes from the interior node structure 
        for inr = 1 : numel(local_int_nodes) 
            linkID = TargetNodeInt(inr).linkID; 
            iol = ismember(linkID, local_ext_edges); 
            TargetNodeInt(inr).linkID(iol) = []; 
            [~, loc] = ismember(TargetNodeInt(inr).linkID, local_int_edges); 
            TargetNodeInt(inr).linkID = loc; 
            TargetNodeInt(inr).connectivity = 
numel(TargetNodeInt(inr).linkID); 
        end 
         
        % removing the exterior edges from the interior edge structure 
        for ier = 1 : length(TargetEdgeInt) 
            [~, loc] = ismember(TargetEdgeInt(ier).endID, local_int_nodes); 
            TargetEdgeInt(ier).endID = loc; 
        end 
         
        % Running the main clean-up loop for the noi, as well as the nodes 
and 
        % edges immediately surrounding the noi. 
        [TargetEdgeInt, TargetNodeInt] = MainLoop(TargetEdgeInt, 
TargetNodeInt, 'Merge'); 
         
        %%%%%%%%%%%%%%%%%%%%%%%% 
         
        % Locating the deleted edges/nodes 
        old_EdgeIDs = unique([TargetEdgeInt.edgeID]); 
        local_emissing = local_int_edges(~ismember(local_int_edges, 
old_EdgeIDs)); 
        local_epresent = local_int_edges(ismember(local_int_edges, 
old_EdgeIDs)); 
         
        global_emissing = target_edges(local_emissing); 
        global_epresent = target_edges(local_epresent); 
         
        old_NodeIDs = unique([TargetNodeInt.nodeID]); 
        local_nmissing = local_int_nodes(~ismember(local_int_nodes, 
old_NodeIDs)); 
         
        global_nmissing = target_nodes(local_nmissing); 
         
        % Converting to global indicies 
        global_int_edges(ismember(global_int_edges, global_emissing)) = []; 
        local_int_edges(ismember(local_int_edges, local_emissing)) = []; 
         
        for ile = 1 : length(TargetEdgeInt) 
            endID_local = local_int_nodes(TargetEdgeInt(ile).endID)'; 
            [~, loc] = find(ismember(local_int_nodes, endID_local)); 
            endID_global = global_int_nodes(loc); 
            TargetEdgeInt(ile).endID = endID_global'; 
        end 
         
        for iln = 1 : length(TargetNodeInt) 
            linkID_local = local_int_edges(TargetNodeInt(iln).linkID); 
            [~, loc] = find(ismember(local_int_edges, linkID_local)); 
            linkID_global = global_int_edges(loc)'; 
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            TargetNodeInt(iln).linkID = linkID_global; 
            after_linkID_vec = TargetNodeInt(iln).linkID; 
            before_linkID_vec = TargetNodeInt(iln).GlobalLinkID; 
            new_linkID = unique([after_linkID_vec, before_linkID_vec]); 
            new_linkID = new_linkID(~ismember(new_linkID, global_emissing)); 
            TargetNodeInt(iln).linkID = new_linkID; 
            TargetNodeInt(iln).connectivity = 
numel(TargetNodeInt(iln).linkID); 
        end 
         
        TargetEdgeInt = rmfield(TargetEdgeInt, {'GlobalEdgeID', 'edgeID'}); 
        TargetNodeInt = rmfield(TargetNodeInt, {'GlobalNodeID', 'nodeID', 
... 
            'GlobalLinkID', 'GlobalConnectivity'}); 
        % 
        Edge(global_int_edges) = TargetEdgeInt; 
        Node(global_int_nodes) = TargetNodeInt; 
         
        % Ensuring that the repalced edges are correctly flippped with the 
        % appropriate end nodes. 
        for ige = 1 : numel(global_epresent) 
            eoi = global_epresent(ige); 
            noi = Edge(eoi).endID; 
            e1p = [Edge(eoi).xdata; ... 
                Edge(eoi).ydata; ... 
                Edge(eoi).zdata]; 
            e2p = [Node(noi).xdata; ... 
                Node(noi).ydata; ... 
                Node(noi).zdata]; 
             
            end1p = [e1p(:,1), e1p(:,end)]; 
            end2p = [e2p(:,1), e2p(:,end)]; 
             
            end1p_flip = fliplr(end1p); 
             
            u1 = end1p_flip(:,1); 
            u2 = end1p_flip(:,2); 
            v1 = end2p(:,1); 
            v2 = end2p(:,2); 
             
            e = 0.2; 
             
            if sum(u1<=v1+e & u1>=v1-e) == 3 && ... 
                    sum(u2<=v2+e & u2>=v2-e) == 3 
                e1p = fliplr(e1p); 
                Edge(eoi).xdata = e1p(1,:); 
                Edge(eoi).ydata = e1p(2,:); 
                Edge(eoi).zdata = e1p(3,:); 
            end 
        end 
         
        [Edge, Node] = RemoveDeleted(Edge, Node, global_emissing, 
global_nmissing, cleaner_type); 
         
        end 
     
    end 
     
    Connectivity = [Node.connectivity]; 
    nc = hist(Connectivity, 1:10); 
     
    fprintf('  %4i|%5i|%5i|%5i|%5i|%5i|%5i|%5i|%5i|%5i|%5i|%5i|\n', it, ... 
        nc(1), nc(2), nc(3), nc(4), nc(5), nc(6), nc(7), nc(8), nc(9), 
nc(10), length(Node)); 
         
    shortID = find([Edge.length] < lt, 1); 
     
    GoShort = ~isempty(shortID); 
     
end 
 
end  
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Appendix B: Supplementary information for electrical conductivity 

quantification 

 

B.1 Benchmark for bulk electrical conductivity computation 

 Our finite-difference electrical conductivity calculator (FDECC) finds an 

approximate solution to the current continuity (Laplace) equation, given local 

conductivities each material. For a set of voxels connected in series, the 

approximation is perfectly accurate, but for a curved surface there is discretization 

error. We assess that error by computing the bulk electrical conductivity (σbulk) of a 

15-pixel radius conductive sphere (σ1 = 0.06 S/m) embedded in a relatively insulative 

100×100×100 voxel3 cube (σ2 = 10-5 S/m). The analytical solution for the bulk 

electrical conductivity follows the Maxwell-Garnett relation (Markov, 1999, Hughes, 

2000), which is  

 σ bulk −σ 2

σ bulk + 2σ 2

= φ σ1 −σ 2

σ1 + 2σ 2

 B.1 

where ϕ is the phase fraction of the sphere, which is 0.0141 for the sphere and cube 

dimensions listed above. This is the same benchmark computation used by Zhan 

(2010) to validate their model. According Eqn. B.1, the analytical solution for σbulk is 

0.058740 S/m, and σbulk from FDECC is 0.058709 S/m. The small error (0.05%) 

between the analytical and numerical solution suggests that FDECC accurately 

estimates the bulk electrical conductivity of the input olivine-melt and olivine-opx-

melt geometries.  
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% ----------------------------------------------------------------------- % 
%                       Wrapper script for FDECC                          % 
% ----------------------------------------------------------------------- % 
 
drName = [pwd, '/test_images/']; 
fNameList = { ... 
        'crossn.tif' 
%         'sphereInABox.tif' 
    }; 
 
sigmaList = [ ... 
    7.53 0.009 
    ]; 
 
% addendum = '_cropped(400)'; 
addendum = ''; 
 
nFile = length(fNameList); 
for iSigma = 1 : size(sigmaList, 1) 
    sigma = sigmaList(iSigma,:); 
    sigmaStr = sprintf('%.3f-', sigma(:)');  
    sigmaStr = sigmaStr(1:end-1); 
    sigmaBulk = zeros(size(fNameList, 1), 1); 
    for iFile = 1 : nFile         
        nRand = randsample(1:1e4, 1); 
        sRoot = '/Users/kevinmiller/data/dc/results/temp/'; 
        sDir = sprintf( ... 
            '%s%s%s/', sRoot, fNameList{iFile}(1:end-4), addendum); 
        if exist(sDir, 'dir') == 0 
            mkdir(sDir); 
        end 
         
        flowDir = 'Z'; 
        diaryName = sprintf( ... 
            '%s%s_flow%s_sigma%s_%04i.out', ... 
            sDir, ... 
            fNameList{iFile}(1:end-4), ... 
            flowDir, ... 
            sigmaStr, ... 
            nRand); 
         
        if exist(diaryName, 'file') > 0 
            delete(diaryName); 
        end 
         
        diary(diaryName); 
         
        [~, nameComp] = system('hostname'); 
        fprintf('\n%s', nameComp); 
         
        fprintf('\nLoading %s%s\n', drName, fNameList{iFile}); 
         
        G = uint8( ... 
                Tif3DReader( ... 
                    drName, ... 
                    fNameList{iFile} ... 
                    ) ... 
            ); 
         
%         geomLim = 400; 
%         domainLim = size(G); 
%         domainOver = domainLim - geomLim; 
%         if domainOver(1) > 0 
%             halfOver = floor(domainOver(1) / 2); 
%             G = G(halfOver:end-halfOver-1,:,:); 
%         end 
%         if domainOver(2) > 0 
%             halfOver = floor(domainOver(2) / 2); 
%             G = G(:,halfOver:end-halfOver-1,:); 
%         end 
%         if domainOver(3) > 0 
%             halfOver = floor(domainOver(3) / 2); 
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%             G = G(:,:,halfOver:end-halfOver-1); 
%         end 
         
%         if domainLim > geomLim 
%             sizeOver(1) =  
%         G(G == 0) = 2; 
%         G = G(151:350,151:350,151:350); 
%         G = G(51:450,51:450,51:450); 
         
        if numel(sigma) > 1 
            Model = dc3dn(G, flowDir, sigma); 
        else 
            Model = dc3d(G, flowDir, sigma); 
        end        
         
        saveresult(sDir, Model, nRand); 
        fprintf('\n'); 
         
        diary off; 
         
        sigmaBulk(iFile) = Model.result.sigmaEff;         
    end     
     
    if numel(sigmaBulk) > 1 
        save( ... 
            sprintf( ... 
                'sigma%s_%04i_sigmaBulk.mat', ... 
                sigmaStr, ... 
                nRand ... 
                ), ... 
            'sigmaBulk' ... 
            ); 
    end 
     
end 
 
% ------------------------------------------------------------------------ % 
 
function IF = Tif3DReader(Dir, FileTif, varargin) 
 
if ~isempty(varargin) 
    if strcmp(varargin{1}, 'Plot') 
%         cmd = varargin{1}; 
        islice = varargin{2}; 
        if ischar(islice) && strcmp(varargin{2}, 'All') 
        else 
            islice = varargin{2}; 
        end 
    end 
end 
 
% FileTif='rec_scoba_12_200x200x200_sample8_pc-melt_final.tif'; 
InfoImage=imfinfo([Dir, FileTif]); 
mImage=InfoImage(1).Width; 
nImage=InfoImage(1).Height; 
NumberImages=length(InfoImage); 
FinalImage=zeros(nImage,mImage,NumberImages,'uint16'); 
  
TifLink = Tiff([Dir, FileTif], 'r'); 
for i=1:NumberImages 
   TifLink.setDirectory(i); 
   FinalImage(:,:,i)=TifLink.read(); 
end 
TifLink.close(); 
% FinalImage = double(FinalImage); 
 
% getting the dimensions of the sample 
% xloc = strfind(FileTif, 'x'); 
% xDim = str2num(FileTif(xloc(1)-3:xloc(1)-1)); 
% yDim = str2num(FileTif(xloc(2)-3:xloc(2)-1)); 
% zDim = str2num(FileTif(xloc(2)+1:xloc(2)+3)); 
 



 194 

IF = FinalImage; 
 
% % Imported this section from online code  
% % http://people.ece.cornell.edu/land/PROJECTS/Reconstruction/index.html 
% %patch smoothing factor 
% rfactor = 0.125;  
% %isosurface size adjustment 
% level = .8; 
% %useful string constants 
% c2 = 'facecolor'; 
% c1 = 'edgecolor'; 
%  
% p=patch(isosurface(smooth3(FinalImage==1),level)); 
% reducepatch(p,rfactor) 
% set(p,c2,[1,0,0],c1,'none'); 
%  
% p=patch(isosurface(smooth3(FinalImage==2),level)); 
% reducepatch(p,rfactor) 
% set(p,c2,[0,1,0],c1,'none'); 
% % spy(FinalImage(:,:,islice)); 
% [Xi, Yi, Zi] = meshgrid(0:1:xDim-1, 0:1:yDim-1, 0:1:zDim-1); 
%  
% % Xi = uint8(Xi); 
% % Yi = uint8(Yi); 
% % Zi = uint8(Zi); 
% % fidbl = double(FinalImage); 
% % figure(1); clf; 
% % ImageData2D = FinalImage(:,:,islice); 
% % fv = isosurface(fidbl, Xi, Yi, Zi); 
% % slice(FinalImage, Xi, Yi, Zi); 
% % colormap(jet); 
% % bwi = im2bw(FinalImage(:,:,islice)); 
% % image(bwi); 
% if ~isempty(varargin) 
%     image(FinalImage(:,:,islice)); 
% end 
% colormap(jet); 
 
end 
 
% ------------------------------------------------------------------------ % 
 
function Model = dc3dn(G, flowAxis, sigma, varargin) 
%DC3DN 3-D direct current experiment simulation (for N conductivities). 
% 
%   [MODEL] = dc3dn(X) conducts a direct current experiment on a label 
%   geometry. The finite difference method is used to solve the discrete 
%   Laplace equation within a specified binary image. A different electric 
%   potential is imposed at the inlet and outlet faces of the geometry, and 
%   a no flux condition is applied to the boundary box faces that are 
%   perpendicular to the direction of current. dc3dn can handle an 
%   arbitrary number of materials that have different conductivities. 
%   Either a direct or iterative approach is taken to solve the system of 
%   equations. The current density is then calculated using a centered  
%   difference gradient, volume-averaged, and then the effective electrical 
%   conductivity of the volume is calculated. 
%  
%   [MODEL] = dc3dn(G, FLOWAXIS, SIGMA) conducts a direct current  
%   experiment on the 3-D label image G in the direction specified by the 
%   string FLOWAXIS. Conductivities are given by the vector SIGMA and are 
%   applied to materials specified by its index. Results are outputted to 
%   structure MODEL. 
% 
%   Examples:  
%       drName = pwd; 
%       fName = 'crossn.tif'; 
%       G = logical(Tif3DReader(drName, fName)); 
%       Model = dc3dn(G, 'X', [1 .01]); 
%  
%   Class support for input G: 
%      uint8, uint16, single, double 
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% $Author: Kevin J. Miller $ $Date: 04-Feb-2015 09:25:40 $ $Revision: 1.0 $ 
% Copyright: Kevin J. Miller 2015 
 
fprintf('\n-------------------------------------------------------------'); 
fprintf('\n         Initiating Direct Current Experiment              \n'); 
fprintf('-------------------------------------------------------------\n'); 
 
tic;                                                                        
% initiating timer 
 
% ---------------------- Setting parameters ----------------------------- % 
 
fprintf('\n%s\n', datestr(now));                                            
% time-stamps the simulation 
fprintf('\nFlow Direction: %s\n', flowAxis);                                
% printing the flow direction 
 
Model = struct( ...                                                         
% allocating memory for structure 
    'params', [], ... 
    'geom',   [], ... 
    'bids',   [],... 
    'lids',   []); 
 
Model.params = loadparams(Model.params);                                                                 
% loading parameters from text file 
 
Model.params.flowAxis = flowAxis;          
uMat = unique(G); uMat(uMat == 0) = [];                                     
% checking that the number of conductances matches the number of materials 
nMat = numel(uMat); 
Model.params.nMat = nMat; 
if nMat ~= numel(sigma) 
    error('Number of conductances does not match the number of materials'); 
end 
Model.params.flowAxis = flowAxis; 
Model.params.sigma = sigma; 
 
fprintf('\tConductivities:\t\t(');  
fprintf(' %.3e', sigma(:)'); fprintf(' ) [S/m]'); 
 
% ---------------------- Loading the geometry --------------------------- % 
 
switch Model.params.flowAxis                                                
% rotating geometry into position 
    case 'Y' 
        G = uint8(rotategeom_Gen2(G, Model.params.flowAxis, 1)); 
    case 'Z' 
        G = uint8(rotategeom_Gen2(G, Model.params.flowAxis, 1)); 
end 
 
Model.geom.G = G; 
 
fprintf(... 
    '\n\tDimensions:\t\t%ix%ix%i\n', ... 
    size(G, 1), size(G, 2), size(G, 3));     
 
Model = impreprocessn(Model, 'Enclose', 'Refine', Model.params.cres);       
% preprocessing image 
 
Model.geom.dim = size(Model.geom.G);                                        
% geometry dimensions (in pixels) 
Model.geom.bounds = [                                                       
% boundaries of geometry 
    1 Model.geom.dim(1), ... 
    1 Model.geom.dim(2), ... 
    1 Model.geom.dim(3) ... 
    ];              
Model.geom.L = Model.geom.dim(1);                                           
% length of geometry 
Model.params.ndof = prod( size(Model.geom.G) - 2 );                         
% number of degrees of freedom 



 196 

 
% ----------------------------- Begin main block ------------------------ % 
 
Model = discretizen(Model);                                                 
% discretizing geometry 
 
[connect, connectBound, connectSigma, Model] = assembleconnectn(Model);     
% assembling connectivity matrix 
 
A = assemblematrixn(Model, connect, connectBound, connectSigma);            
% building matrix with boundary conditions 
 
Model.lids.inlet =  [];                                                      
% clearing unnecessary variables from structure 
Model.lids.outlet = []; 
Model.lids.noFlux = []; 
 
b = assembleloadvectorn(Model, connect, connectBound);                      
% building load vector with boundary conditions 
 
clear connect connectBound connectSigma; 
 
sideL = size(Model.geom.G, 1) - 2; 
x = 1 : sideL; 
vExp = ( -1 * (Model.params.V_inlet - Model.params.V_outlet) / sideL) * ... 
    x + Model.params.V_inlet; 
X0 = repmat( ... 
    vExp', ... 
    [1 size(Model.geom.G, 2) - 2 size(Model.geom.G, 3) - 2]); 
x0 = X0(:); 
 
solveStruct = struct( ... 
    'droptol',  Model.params.droptol, ... 
    'thresh',   Model.params.thresh, ... 
    'udiag',    Model.params.udiag, ... 
    'soltype',  Model.params.soltype, ... 
    'maxiter',  Model.params.maxiter, ... 
    'reltol',   Model.params.reltol, ... 
    'x0',       x0 ... 
    ); 
 
clear x0 X0; 
 
dumpPath = [pwd, '/dump/'];                                                 
% dumping structure to hard disk 
if ~exist(dumpPath, 'dir') 
    mkdir(dumpPath) 
end 
save([dumpPath, 'Model.mat'], 'Model', '-v7.3'); 
clear Model; 
 
x = dcsolvern(A, b, solveStruct);                                           
% solving linear system 
 
load([dumpPath, 'Model.mat']);                                              
% recovering structure from hard disk 
delete([dumpPath, 'Model.mat']); 
 
% ----------------------------- End main block ------------------------ % 
 
lidInteriorAll = []; 
for iMat = 1 : nMat 
    lidInteriorAll = [lidInteriorAll; Model.lids.interior{iMat}]; 
end 
lidInteriorAll = sort(lidInteriorAll); 
 
v = zeros(prod(Model.geom.dim), 1); 
v(lidInteriorAll) = x;                                                      
 
for iMat = 1 : nMat 
    v(Model.bids.inlet{iMat}) = Model.params.V_inlet; 
    v(Model.bids.outlet{iMat}) = Model.params.V_outlet; 
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end 
 
V = reshape(v, Model.geom.dim(1), Model.geom.dim(2), Model.geom.dim(3)); 
Model.result.V = V; 
 
clear G A x b lidInteriorAll v V; 
 
Model = postprocessingn(Model);                                             
% conducting the postprocessing 
 
fprintf('\n'); 
toc; 
 
fprintf('\n-------------------------------------------------------------'); 
fprintf('\n                      End of Simulattion                   \n'); 
fprintf('-------------------------------------------------------------\n'); 
 
end 
 
% ------------------------------------------------------------------------ % 
 
function A = loadparams(A) 
 
fprintf('\nSeting parameters for model...\n'); 
 
% Parameters that modify the input geometry 
 
A.rmspurs = 0; 
A.enclose = 1; 
A.cres = 1; 
A.rmislands = 0; 
A.islthresh = 100; 
A.addinout = 1; 
 
% Parameters that modify boundary conditions and material properties 
 
A.V_inlet = 2; 
A.V_outlet = 1; 
A.V_vn = 0; 
A.h = 1; 
% A.sigma = [10 .009]; 
% A.nMat = numel(A.sigma); 
 
% Parameters that modify perconditioner options 
 
A.droptol = 1e-3; 
A.thresh = 0; 
A.udiag = 1; 
 
% Parameters that modify solver options 
 
A.soltype = 'iter'; 
A.iterkeep = 2; 
A.maxiter = 1e4; 
A.reltol = 1e-7; 
 
fprintf(sprintf('\n\tRemove Spurs:\t\t    %i', A.rmspurs)); 
fprintf(sprintf('\n\tEnclose geometry:\t    %i', A.enclose)); 
fprintf(sprintf('\n\tRemove Islands (<%i):\t    %i', A.islthresh, 
A.rmislands)); 
fprintf(sprintf('\n\tAppend inlet/outlet:\t    %i', A.addinout)); 
fprintf(sprintf('\n\tResample geometry:\t    %i\n', A.cres)); 
fprintf(sprintf('\n\tInlet potential:\t%5i [V]', A.V_inlet)); 
fprintf(sprintf('\n\tOutlet potential:\t%5i [V]', A.V_outlet)); 
fprintf(sprintf('\n\tSpacing:\t\t%5g [m]', A.h)); 
% fprintf(sprintf('\n\n\tConductivities:\t\t%.0e, %.0e [S/m]\n', A.sigma(1), 
A.sigma(2))); 
fprintf(sprintf('\n\tMaximum iterations:\t%i', A.maxiter)); 
fprintf(sprintf('\n\tRelative tolerance:\t%.0e\n', A.reltol)); 
 
% ------------------------------------------------------------------------ % 
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function G_rot = rotategeom_Gen2(G, flipAxis, flipDir) 
 
switch flipAxis 
    case 'Y' 
        switch flipDir 
            case  1 
                G_rot = flipdim( permute(G, [2 1 3]), 2 ); 
            case -1 
                G_rot = permute( flipdim(G, 2), [2 1 3] ); 
        end         
    case 'Z' 
        switch flipDir 
            case 1 
                G_rot = flipdim( permute(G, [3 2 1]), 3 ); 
            case -1 
                G_rot = permute( flipdim(G, 3), [3 2 1] ); 
        end 
end 
 
end 
 
% ------------------------------------------------------------------------ % 
 
function Model = impreprocessn(Model, varargin) 
% ----------------------------------------------------------------------- % 
% This subroutine preprocesses 2D binary image data for running CFD 
% simulations. 
 
% if ~isempty(varargin) 
%     GoRmSpurs = ~isempty(find(strcmp(varargin, 'Remove Spurs'), 1)); 
%     GoRefine = ~isempty(find(strcmp(varargin, 'Refine'), 1)); 
%     GoEnclose = ~isempty(find(strcmp(varargin, 'Enclose'), 1)); 
%     GoRmIslands = ~isempty(find(strcmp(varargin, 'Remove Islands'), 1)); 
%     GoOpenInlets = ~isempty(find(strcmp(varargin, 'Open Inlets'), 1)); 
%     if GoRmSpurs 
%         rms_loc = find(strcmp('Remove Spurs', varargin), 1); 
%         tconn = varargin{rms_loc+1}; 
%     end   
%     if GoRefine 
%         ref_loc = find(strcmp('Refine', varargin), 1); 
%         trefine = varargin{ref_loc+1}; 
%     end      
%     if GoEnclose 
%         flowInd = find(Model.params.flowVec, 1); 
%     end 
%     if GoRmIslands 
%         islandth_loc = find(strcmp('Remove Islands', varargin), 1); 
%         islandth = varargin{islandth_loc+1}; 
%     end 
% else 
%     GoRmSpurs = 0; 
%     GoRefine = 0; 
%     GoEnclose = 0; 
%     GoRmIslands = 0; 
%     GoOpenInlets = 0; 
% end     
 
% if Model.params. 
%     Model.geom.G = OpenInlets(Model.geom.G); 
% end 
% if GoRmSpurs 
%     Model.geom.G = RmSpurs(Model.geom.G, tconn); 
% end 
Model.geom.G0 = Model.geom.G; 
if Model.params.cres > 1 
    Model.geom.G = imresamplen(Model.geom.G, Model.params.cres); 
%     Model.geom.G0 = Model.geom.G; 
end 
if Model.params.addinout 
    Model.geom.G = addinout(Model.geom.G); 
end 
% if Model.params.enclose 
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% %     Model.geom.G0 = Model.geom.G; 
%     Model.geom.G = dc_ImEnclose3D(Model.geom.G);     
% else 
%     Model.geom.G0 = Model.geom.G; 
% end 
if Model.params.rmislands 
%     conn = 8; 
    Model.geom.G = rmislands(Model.geom.G, 
3*Model.params.cres*Model.params.islthresh); 
end 
 
end 
 
% ------------------------------------------------------------------------ % 
 
function G = addinout(G) 
 
G = padarray(G, [1 1 1], 'replicate'); 
 
% inletCopy = G(1,:,:); 
% outletCopy = G(end,:,:); 
%  
% G = cat(1, inletCopy, G); 
% G = cat(1, G, outletCopy); 
 
end 
 
% ------------------------------------------------------------------------ % 
 
function newG = rmislands(G, thresh) 
 
fprintf('\tRemoving islands(<%i)...', thresh); 
 
CC = bwconncomp(G, 6); 
F = zeros(size(G), 'uint16'); 
iVal = uint16(1); 
nIsl = numel(CC.PixelIdxList); 
for iIsl = 1 : nIsl 
    cIsl = CC.PixelIdxList{iIsl}; 
    if size(cIsl, 1) > thresh 
        F(CC.PixelIdxList{iIsl}) = iVal; 
        iVal = iVal + 1; 
    end 
end 
 
newG = F > 0; 
 
nisl = sum(G(:)) - sum(newG(:)); 
 
fprintf('%i pixels modified', nisl); 
 
end 
 
% ------------------------------------------------------------------------ % 
 
function Model = discretizen(Model) 
 
% Discretizes image that consists of an arbitrary number of materials. 
 
fprintf('\nDiscretizing geometry...'); 
 
Model.bids = struct( ...                                                    
% storing binary images and linear ID's in 'Model' structure 
        'inlet',    [], ... 
        'outlet',   [], ... 
        'solLiq',   [], ... 
        'noFlux',   [], ... 
        'interior', [], ... 
        'inside',   []); 
     
Model.lids = struct( ...                                                    
% storing binary images and linear ID's in 'Model' structure 
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        'inlet',    [], ... 
        'outlet',   [], ... 
        'solLiq',   [], ... 
        'noFlux',   [], ... 
        'interior', []); 
 
nMat = Model.params.nMat; 
 
for iMat = 1 : nMat 
     
    noFlux = Model.geom.G == iMat; 
    noFlux(:,2:Model.geom.dim(2)-1,2:Model.geom.dim(3)-1) = 0; 
     
    inside = Model.geom.G == iMat;                                          
% binary image of inside nodes 
     
    inlet = false( ...                                                      
% allcating memory for binary image of inlet nodes 
        Model.geom.bounds(2), ... 
        Model.geom.bounds(4), ... 
        Model.geom.bounds(6)); 
     
    outlet = false( ...                                                     
% allcating memory for binary image of outlet nodes 
        Model.geom.bounds(2), ... 
        Model.geom.bounds(4), ... 
        Model.geom.bounds(6)); 
     
    inlet(1,:,:) = inside(1,:,:);                                           
% binary image of inlet nodes 
    outlet(Model.geom.bounds(2),:,:) = inside(Model.geom.bounds(2),:,:);    
% binary image of outlet nodes 
     
    inside_test =           inside; 
    inside_test(:,1,:) =    0; 
    inside_test(:,end,:) =  0; 
    inside_test(:,:,1) =    0; 
    inside_test(:,:,end) =  0; 
     
    solLiqStrel(:,:,1) = [0 0 0; 0 1 0; 0 0 0]; 
    solLiqStrel(:,:,2) = [0 1 0; 1 1 1; 0 1 0]; 
    solLiqStrel(:,:,3) = [0 0 0; 0 1 0; 0 0 0]; 
     
    solLiq = imdilate(inside_test, solLiqStrel) & ~inside_test;             
% binary image of solid-liquid boundary boundary nodes 
         
    inlet =     inlet & ~noFlux; 
    outlet =    outlet & ~noFlux; 
     
    solLiq(1,:,:) =                     0;                                  
% removing inlet positions from solLiq 
    solLiq(Model.geom.bounds(2),:,:) =  0;                                  
% removing outlet positions from solLiq     
    solLiq(:,1,:) =                     0; 
    solLiq(:,Model.geom.bounds(4),:) =  0; 
    solLiq(:,:,1) =                     0; 
    solLiq(:,:,Model.geom.bounds(6)) =  0; 
     
    interior = inside & ~inlet & ~outlet & ~noFlux;                         
% removing solLiq, inlet, and outlet nodes from 'inside' binary image 
          
    Model.bids = storestructn(Model.bids, { ...                             
% storing binary images and linear ID's in 'Model' structure 
        'inlet'     inlet 
        'outlet'    outlet 
        'solLiq'    solLiq 
        'noFlux'    noFlux 
        'interior'  interior 
        'inside'    inside 
        }); 
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    Model.lids = storestructn(Model.lids, { ...                             
% storing binary images and linear ID's in 'Model' structure 
        'inlet'     find(inlet) 
        'outlet'    find(outlet) 
        'solLiq'    find(solLiq) 
        'noFlux'    find(noFlux) 
        'interior'  find(interior) 
        }); 
     
end 
 
end 
 
% ------------------------------------------------------------------------ % 
 
function S = storestructn(S, storeName, varargin) 
 
% if ~isempty(varargin) 
%     if strcmpi(varargin, 'append') 
%         appendSwitch = 1; 
%     else 
%         appendSwitch = 0; 
%     end 
% else 
%     appendSwitch = 0; 
% end 
 
sizeStruct = structfun(@(x) size(x, 2), S); 
uMat = unique(sizeStruct); 
if numel(uMat) > 1 
    error('Sizes of structure fields are not consistent'); 
end 
cMat = uMat + 1; 
nstr = length(storeName); 
for istr = 1 : nstr 
    S.(storeName{istr,1}){cMat} = storeName{istr,end}; 
end 
 
end 
 
% ------------------------------------------------------------------------ % 
 
function [connect, connectBound, connectSigma, Model] = ... 
    assembleconnectn(Model) 
 
% Subroutine for assembling the connectivity matrix. 
 
fprintf('\n\nAssembling connectivity matrix...'); 
 
nMat = Model.params.nMat; 
 
connect = cell(nMat, 1); 
connectSigma = cell(1, Model.params.nMat); 
 
sigmaAll = zeros(size(Model.geom.G)); 
for iMat = 1 : Model.params.nMat 
    sigmaAll(Model.bids.inside{iMat}) = Model.params.sigma(iMat); 
    sigmaAll(Model.bids.noFlux{iMat}) = Model.params.sigma(iMat); 
end 
 
sigmaAll(Model.bids.noFlux{1} | Model.bids.noFlux{2}) = 0; 
 
Model.sigmaAll = sigmaAll; 
 
connectBound = struct( ... 
    'isInlet',      [], ... 
    'isOutlet',     [], ... 
    'isSolLiq',     [], ... 
    'isNoFlux',     [], ... 
    'isConnBound',  []); 
 
for iMat = 1 : nMat 
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    [iInBox, jInBox, kInBox] = ind2sub(... 
        size(Model.bids.interior{iMat}), ... 
        find(Model.bids.interior{iMat} == 1));                              
% coorinates of the center nodes 
    ijkInBox = [iInBox, jInBox, kInBox]; 
     
    xMinus = [ijkInBox(:,1) - 1, ijkInBox(:,2),     ijkInBox(:,3)    ];     
% coorinates of the west-shifted nodes 
    xPlus  = [ijkInBox(:,1) + 1, ijkInBox(:,2),     ijkInBox(:,3)    ];     
% coorinates of the east-shifted nodes 
    yMinus = [ijkInBox(:,1),     ijkInBox(:,2) - 1, ijkInBox(:,3)    ];     
% coorinates of the south-shifted nodes 
    yPlus  = [ijkInBox(:,1),     ijkInBox(:,2) + 1, ijkInBox(:,3)    ];     
% coorinates of the north-shifted nodes 
    zMinus = [ijkInBox(:,1),     ijkInBox(:,2),     ijkInBox(:,3) - 1];     
% coorinates of the south-shifted nodes 
    zPlus  = [ijkInBox(:,1),     ijkInBox(:,2),     ijkInBox(:,3) + 1];     
% coorinates of the north-shifted nodesy 
     
    ctrLids = sub2ind( ... 
        size(Model.bids.interior{iMat}), ... 
        ijkInBox(:,1), ... 
        ijkInBox(:,2), ... 
        ijkInBox(:,3));                                                     
% linear indices of the  centers nodes 
     
    xMinusLids =  sub2ind( ... 
        size(Model.bids.interior{iMat}), ... 
        xMinus(:,1), ... 
        xMinus(:,2), ... 
        xMinus(:,3));                             % linear indices of the 
west-shifted nodes 
    xPlusLids  =  sub2ind( ... 
        size(Model.bids.interior{iMat}), ... 
        xPlus(:,1), ... 
        xPlus(:,2), ... 
        xPlus(:,3));                              % linear indices of the 
east-shifted nodes 
    yMinusLids =  sub2ind( ... 
        size(Model.bids.interior{iMat}), ... 
        yMinus(:,1),  ... 
        yMinus(:,2),  ... 
        yMinus(:,3));                             % linear indices of the 
south-shifted nodes 
    yPlusLids  =  sub2ind( ... 
        size(Model.bids.interior{iMat}), ... 
        yPlus(:,1), ... 
        yPlus(:,2), ... 
        yPlus(:,3));                              % linear indices of the 
north-shifted nodes 
    zMinusLids =  sub2ind( ... 
        size(Model.bids.interior{iMat}), ... 
        zMinus(:,1), ... 
        zMinus(:,2), ... 
        zMinus(:,3));                             % linear indices of the 
south-shifted nodes 
    zPlusLids  =  sub2ind( ... 
        size(Model.bids.interior{iMat}), ... 
        zPlus(:,1), ... 
        zPlus(:,2), ... 
        zPlus(:,3));                              % linear indices of the 
north-shifted nodes 
     
    connect{iMat} = [ ... 
        ctrLids, ... 
        xMinusLids, ... 
        xPlusLids, ... 
        yMinusLids, ... 
        yPlusLids, ... 
        zMinusLids, ... 
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        zPlusLids];                                                         
% connectivity matrix of interior nodes 
     
    connectIsInlet  = ismembc( ... 
        connect{iMat}, ... 
        Model.lids.inlet{iMat} );      % logical array showing 
connectivities that are located on inlet 
    connectIsOutlet = ismembc(... 
        connect{iMat}, ... 
        Model.lids.outlet{iMat});      % logical array showing 
connectivities that are located on outlet 
    connectIsSolLiq = ismembc( ... 
        connect{iMat}, ... 
        Model.lids.solLiq{iMat});      % logical array showing 
connectivities that are located on solid-pore interface 
    connectIsNoFlux = ismembc( ... 
        connect{iMat}, ... 
        Model.lids.noFlux{iMat});      % logical array showing 
connectivities that are located on solid-pore interface 
     
    connectIsInlet(connectIsInlet(:,1),:) =     0;                              
% removing nodes that are part of 'inlet' from connectivity matrix 
    connectIsOutlet(connectIsOutlet(:,1),:) =   0;                            
% removing nodes that are part of 'otlet' from connectivity matrix 
    connectIsNoFlux(connectIsNoFlux(:,1),:) =   0;                            
% removing nodes that are part of 'otlet' from connectivity matrix 
 
    isConnBound = ( ...                                                     
% logical index of nodes that are connected to boundary nodes 
          sum(connectIsInlet, 2) ... 
        + sum(connectIsOutlet, 2) ... 
        + sum(connectIsNoFlux, 2)) > 0; 
     
    connectSigma{iMat} = sigmaAll(connect{iMat}); 
     
    connectBound = storestructn(connectBound, { ... 
        'isInlet'       connectIsInlet 
        'isOutlet'      connectIsOutlet 
        'isSolLiq'      connectIsSolLiq 
        'isNoFlux'      connectIsNoFlux 
        'isConnBound'   isConnBound 
        }); 
 
end 
 
Model.sigmaAll = single(Model.sigmaAll); 
 
end 
 
% ------------------------------------------------------------------------ % 
 
function A = assemblematrixn(Model, connect, connectBound, connectSigma) 
 
% Subroutine for assembling the coefficient matrix. 
 
fprintf('\n\nAssembling coefficient matrix...'); 
 
sigmaExp = @(s1, s2) (2 * s1 .* s2) ./ (s1 + s2); 
 
nStencilPts = 7;                                                            
% size of finite-difference stencil 
 
maxMatBounds = repmat(prod(Model.geom.dim), [1 2]);                         
% maximum matrix bounds for stiffness matrix 
nonZeroMax = nStencilPts*maxMatBounds(1);                                   
% mamimum possible number of non-zero element in stiffness matrix 
 
A = spalloc(maxMatBounds(1), maxMatBounds(2), nonZeroMax); 
augList = []; 
 
for iMat = 1 : Model.params.nMat 
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    sigmaNoFlux = connectSigma{iMat}.*(connectBound.isNoFlux{iMat}); 
    sumSigmaNoFlux = sum(sigmaNoFlux, 2);     
    notC_isNoFlux = ~connectBound.isNoFlux{iMat}; 
     
    notC_isInlet = ~connectBound.isInlet{iMat};     
    notC_isOutlet = ~connectBound.isOutlet{iMat}; 
     
    cCtr = -1 * ( ... 
          sigmaExp(connectSigma{iMat}(:,1), connectSigma{iMat}(:,2)) ... 
        + sigmaExp(connectSigma{iMat}(:,1), connectSigma{iMat}(:,3)) ... 
        + sigmaExp(connectSigma{iMat}(:,1), connectSigma{iMat}(:,4)) ... 
        + sigmaExp(connectSigma{iMat}(:,1), connectSigma{iMat}(:,5)) ... 
        + sigmaExp(connectSigma{iMat}(:,1), connectSigma{iMat}(:,6)) ... 
        + sigmaExp(connectSigma{iMat}(:,1), connectSigma{iMat}(:,7))) ... 
        + sumSigmaNoFlux; 
 
    cWest =  sigmaExp( ... 
        connectSigma{iMat}(:,1) .* notC_isNoFlux(:,1) .* ... 
        notC_isInlet(:,1)       .* notC_isOutlet(:,1), ... 
        connectSigma{iMat}(:,2) .* notC_isNoFlux(:,2) .* ... 
        notC_isInlet(:,2)       .* notC_isOutlet(:,2) ... 
        ); 
    cEast =  sigmaExp( ... 
        connectSigma{iMat}(:,1) .* notC_isNoFlux(:,1) .* ... 
        notC_isInlet(:,1)       .* notC_isOutlet(:,1), ... 
        connectSigma{iMat}(:,3) .* notC_isNoFlux(:,3) .* ... 
        notC_isInlet(:,3)       .* notC_isOutlet(:,3) ... 
        ); 
    cSouth =  sigmaExp( ... 
        connectSigma{iMat}(:,1) .* notC_isNoFlux(:,1), ... 
        connectSigma{iMat}(:,4) .* notC_isNoFlux(:,4) ... 
        ); 
    cNorth =  sigmaExp( ... 
        connectSigma{iMat}(:,1) .* notC_isNoFlux(:,1), ... 
        connectSigma{iMat}(:,5) .* notC_isNoFlux(:,5) ... 
        ); 
    cLower =  sigmaExp( ... 
        connectSigma{iMat}(:,1) .* notC_isNoFlux(:,1), ... 
        connectSigma{iMat}(:,6) .* notC_isNoFlux(:,6) ... 
        ); 
    cUpper =  sigmaExp( ... 
        connectSigma{iMat}(:,1) .* notC_isNoFlux(:,1), ... 
        connectSigma{iMat}(:,7) .* notC_isNoFlux(:,7) ... 
        ); 
 
    A = A + sparse(repmat(connect{iMat}(:,1), [7 1]), ... 
        [connect{iMat}(:,1); ... 
         connect{iMat}(:,2); ... 
         connect{iMat}(:,3); ... 
         connect{iMat}(:,4); ... 
         connect{iMat}(:,5); ... 
         connect{iMat}(:,6); ... 
         connect{iMat}(:,7)], ... 
        [cCtr; cWest; cEast; cSouth; cNorth; cLower; cUpper], ... 
        maxMatBounds(1), maxMatBounds(2), nonZeroMax); 
     
    augList = cat(1, augList, ... 
        [Model.lids.inlet{iMat}; ... 
        Model.lids.outlet{iMat}; ... 
        Model.lids.noFlux{iMat}]); 
 
end 
 
allList = 1:prod(Model.geom.dim); 
augBidList = ismember(allList, augList); 
intList = allList(~augBidList); 
 
A = A(:,intList); 
A = A.'; 
A = A(:,intList); 
A = A.'; 
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ndof = size(A, 1); 
 
fprintf('\n\n\tNumber of degrees of freedom: %i\n', ndof); 
 
end 
 
% ------------------------------------------------------------------------ % 
 
function b = assembleloadvectorn(Model, connect, connectBound) 
 
% Subroutine for assemblin gthe load vector 
 
npts = prod(Model.geom.dim); 
bKeep = []; 
 
b = spalloc(npts, 1, Model.params.ndof); 
 
for iMat = 1 : Model.params.nMat; 
 
bVals = -1 * Model.params.sigma(iMat) * ( ...                               
% applying Dirchlet and Neumann boundary conditions 
    Model.params.V_inlet  * sum(connectBound.isInlet{iMat},  2) + ... 
    Model.params.V_outlet * sum(connectBound.isOutlet{iMat}, 2)); 
 
b = b + sparse( ...                                                         
% forming sparse load vector 
    connect{iMat}(:,1), ... 
    ones(size(bVals)), ... 
    bVals, ... 
    npts, ... 
    1, ... 
    size(bVals, 1)); 
 
bKeep = [bKeep; Model.lids.interior{iMat}]; 
 
end 
 
bKeep = sort(bKeep); 
b = b(bKeep);                                                               
% removing pixels that belong to the boundary or solid material 
 
Model.lids.interior = []; 
 
end 
 
% ------------------------------------------------------------------------ % 
 
function x = dcsolvern(A, b, solveStruct) 
 
% Subroutine for setting up and initializing the preconditioner and solver. 
 
switch solveStruct.soltype 
     
    case 'direct' 
         
        fprintf('\nDirect solver: Matlab %s', '"\"'); 
         
        x = A\b; 
                        
    case 'iter'         
         
        fprintf('\nPreconditioning matrix...\n'); 
        fprintf('\n\tPreconditioner: Incomplete Choleski Factorization'); 
 
        iluStruct = struct( ... 
            'type',    'ict', ... 
            'droptol', solveStruct.droptol, ... 
            'shape', 'lower' ... 
            ); 
         
        L = ichol(-1*A, iluStruct); 
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        fprintf('\n\tdroptol: %.1e\n', solveStruct.droptol);         
        fprintf('\nInitiating solver...\n'); 
        fprintf('\n\tIterative solver: PCG\n\treltol: %.1e\n', ... 
            solveStruct.reltol); 
 
        [x, flag, rr1, iter, relNorm] = pcg(... 
            -1*A, ... 
            -1*b, ... 
            solveStruct.reltol, ... 
            solveStruct.maxiter, ... 
            L, L', ... 
            solveStruct.x0); 
 
        switch flag 
            case 0 
                fprintf('\n\tPCG converged to the desired tolerance %.1e 
within %i iterations.\n', solveStruct.reltol, numel(relNorm)); 
            case 1 
                error('\n\tPCG iterated %i times but did not converge.\n', 
solveStruct.maxiter); 
            case 2 
                error('\n\tPreconditioner was ill-conditioned.\n'); 
            case 3 
                error('\n\tPCG stagnated.\n'); 
        end 
         
        figure(1); clf; 
        plot(1:numel(relNorm), relNorm, '-o'); 
        set(gca, 'YScale', 'log'); 
        title('Convergence'); 
        xlabel('Iterations'); 
        ylabel('Relative Norm'); 
         
end 
 
end 
 
% ------------------------------------------------------------------------ % 
 
function Model = postprocessingn(Model) 
 
% Subroutine for postprocessing the scalar electric potential data to 
% obtain the bulk electrical conductivity for the geometry. 
 
fprintf('\nPost-processing...\n'); 
 
% Post-processing 
 
E = cell(1, 3); 
J = cell(1, 3); 
 
V = Model.result.V(:,2:end-1,2:end-1); 
Model.result.V = V; 
 
G = Model.geom.G(:,2:end-1,2:end-1); 
 
gradVXCtr = V(2:end,:,:) - V(1:end-1,:,:); 
gradVYCtr = V(:,2:end,:) - V(:,1:end-1,:); 
gradVZCtr = V(:,:,2:end) - V(:,:,1:end-1); 
 
ex = gradVXCtr; 
ey = gradVYCtr; 
ez = gradVZCtr; 
 
ex = -1 * ex; 
ey = -1 * ey; 
ez = -1 * ez; 
 
sigmaExp = @(s1, s2) (2 * s1 .* s2) ./ (s1 + s2); 
sigmaShiftX = sigmaExp(Model.sigmaAll(2:end,2:end-1,2:end-1), ... 
    Model.sigmaAll(1:end-1,2:end-1,2:end-1)); 
sigmaShiftY = sigmaExp(Model.sigmaAll(:,3:end-1,2:end-1), ... 
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    Model.sigmaAll(:,2:end-2,2:end-1)); 
sigmaShiftZ = sigmaExp(Model.sigmaAll(:,2:end-1,3:end-1), ... 
    Model.sigmaAll(:,2:end-1,2:end-2)); 
 
jx = ex .* sigmaShiftX; 
jy = ey .* sigmaShiftY; 
jz = ez .* sigmaShiftZ; 
 
switch Model.params.flowAxis 
    case 'X' 
         
        rotG = Model.geom.G; 
        rotG = rotG(:,2:end-1,2:end-1); 
         
        E{1} = ex; 
        E{2} = ey; 
        E{3} = ez;         
         
        J{1} = jx; 
        J{2} = jy; 
        J{3} = jz; 
         
    case 'Y' 
 
        rotG = flip(permute(Model.geom.G, [2 1 3]), 1); 
        rotG = rotG(2:end-1,:,2:end-1); 
         
        V = flip(permute(V, [2 1 3]), 1); 
         
        E{1} = flip(permute(ey, [2 1 3]), 1); 
        E{2} = flip(permute(ex, [2 1 3]), 1); 
        E{3} = flip(permute(ez, [2 1 3]), 1); 
         
        J{1} = flip(permute(jy, [2 1 3]), 1); 
        J{2} = flip(permute(jx, [2 1 3]), 1); 
        J{3} = flip(permute(jz, [2 1 3]), 1); 
             
    case 'Z' 
 
        rotG = flip(permute(Model.geom.G, [3 2 1]), 1); 
        rotG = rotG(2:end-1,2:end-1,:); 
         
        V = flip(permute(V, [3 2 1]), 1); 
         
        E{1} = flip(permute(ez, [3 2 1]), 1); 
        E{2} = flip(permute(ey, [3 2 1]), 1); 
        E{3} = flip(permute(ex, [3 2 1]), 1); 
         
        J{1} = flip(permute(jz, [3 2 1]), 1); 
        J{2} = flip(permute(jy, [3 2 1]), 1); 
        J{3} = flip(permute(jx, [3 2 1]), 1); 
         
end 
 
dVdL = -1 * (Model.params.V_outlet - Model.params.V_inlet) / ... 
    (Model.geom.L - 1); 
 
switch Model.params.flowAxis 
    case 'X' 
        jxAvg = (1 / prod(size(J{1}))) * sum(sum(sum(J{1}))); 
        sigmaEff = jxAvg / dVdL; 
    case 'Y' 
        jyAvg = (1 / prod(size(J{2}))) * sum(sum(sum(J{2}))); 
        sigmaEff = jyAvg / dVdL; 
    case 'Z' 
        jzAvg = (1 / prod(size(J{3}))) * sum(sum(sum(J{3}))); 
        sigmaEff = jzAvg / dVdL; 
end 
 
Model.result = storestruct(Model.result, { ... 
    'sigmaEff' sigmaEff 
    'V' V 
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    'E' E 
    'J' J 
    'rotG' rotG 
    }); 
 
fprintf('\n\tBulk electrical conductivity: %.4e\n', ... 
    Model.result.sigmaEff); 
 
end 
 
% ------------------------------------------------------------------------ % 
 
function Model = modifygeom(Model) 
 
fprintf('\nModifying geometry...\n'); 
 
% fprintf('\n\n\tDirectory:\t%s', drName); 
% fprintf('\n\tFile:\t\t%s', fName); 
fprintf('\n\tDimensions:\t%ix%ix%i\n', size(Model.geom.G, 1), 
size(Model.geom.G, 2), size(Model.geom.G, 3));     
 
switch Model.params.flowAxis 
    case 'Y' 
        Model.geom.G = uint8(rotategeom_Gen2(Model.geom.G, 
Model.params.flowAxis, 1)); 
    case 'Z' 
        Model.geom.G = uint8(rotategeom_Gen2(Model.geom.G, 
Model.params.flowAxis, 1)); 
end 
 
fprintf('\n\tPreprocessing image\n'); 
 
if Model.params.cres > 1 
    Model.geom.G = imresample(Model.geom.G, Model.params.cres); 
    fprintf('\n'); 
end 
if Model.params.enclose 
    Model.geom.G = imenclose(Model.geom.G); 
    fprintf('\n'); 
end 
if Model.params.rmislands 
    Model.geom.G = rmislands(Model.geom.G, 
3*Model.params.cres*Model.params.islthresh); 
    fprintf('\n'); 
end 
if Model.params.rmspurs 
    Model.geom.G = rmspurs(Model.geom.G); 
    fprintf('\n'); 
end 
if Model.params.rminletspurs 
    Model.geom.G = rminletspurs(Model.geom.G); 
    fprintf('\n'); 
end 
 
nDim = numel(size(Model.geom.G)); 
switch nDim 
    case 2 
        Model.geom.dim = size(Model.geom.G);                                        
% geometry dimensions (in pixels) 
         
        Model.geom.bounds = [ ...                                                   
% boundaries of geometry 
            1 Model.geom.dim(1), ... 
            1 Model.geom.dim(2) ... 
            ]; 
    case 3 
        Model.geom.dim = size(Model.geom.G);                                        
% geometry dimensions (in pixels) 
         
        Model.geom.bounds = [ ...                                                   
% boundaries of geometry 
            1 Model.geom.dim(1), ... 
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            1 Model.geom.dim(2), ... 
            1 Model.geom.dim(3) ... 
            ]; 
end 
 
Model.geom.L = Model.geom.dim(1);                                           
% length of geometry 
 
end 
 
% ------------------------------------------------------------------------ % 
 
function G3 = imresample(G, trefine) 
 
fprintf('\n\tResampling image to '); 
 
G1 = imresize(G, trefine, 'nearest'); 
G2 = logical(rotategeom_Gen2(G1, 'Z', 1)); 
G2 = imresize(G2, [trefine*size(G2, 1) size(G2, 2)], 'nearest'); 
G3 = logical(flip(permute(G2, [3 2 1]), 1)); 
 
fprintf('%ix%ix%i', size(G3, 1), size(G3, 2), size(G3, 3)); 
 
end 
 
% ------------------------------------------------------------------------ % 
 
function newG = imenclose(G) 
 
fprintf('\tEnclosing geometry...'); 
 
% newG = G; 
nDim = numel(size(G)); 
 
switch nDim 
    case 2 
        newG = padarray(G, [0 1]); 
    case 3 
        newG = padarray(G, [0 1 1]); 
end 
 
% newG(:,1,:) = 0; 
% newG(:,end,:) = 0; 
% newG(:,:,1) = 0; 
% newG(:,:,end) = 0; 
 
nMod = abs(sum(G(:)) - sum(newG(:))); 
 
fprintf('%i pixels were modified', nMod); 
 
end 
 
% ------------------------------------------------------------------------ % 
 
function newG = rmislands(G, thresh) 
 
fprintf('\tRemoving islands(<%i)...', thresh); 
 
CC = bwconncomp(G, 6); 
F = zeros(size(G), 'uint16'); 
iVal = uint16(1); 
nIsl = numel(CC.PixelIdxList); 
for iIsl = 1 : nIsl 
    cIsl = CC.PixelIdxList{iIsl}; 
    if size(cIsl, 1) > thresh 
        F(CC.PixelIdxList{iIsl}) = iVal; 
        iVal = iVal + 1; 
    end 
end 
 
newG = F > 0; 
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nisl = sum(G(:)) - sum(newG(:)); 
 
fprintf('%i pixels modified', nisl); 
 
end 
 
% ------------------------------------------------------------------------ % 
 
function G = rmspurs(G) 
 
fprintf('\tRemoving spurs...'); 
 
SE(:,:,1) = [0 0 0; 0 1 0; 0 0 0]; 
SE(:,:,2) = [0 1 0; 1 0 1; 0 1 0]; 
SE(:,:,3) = [0 0 0; 0 1 0; 0 0 0]; 
 
% SE1 = [1 0 1]; 
% SE2 = [1; 0; 1]; 
% SE3 = cat(3, 1, 0, 1); 
 
tempG = double(G); 
 
nSpurs = 0; 
GoOn = 1; 
 
while GoOn > 0 
    C = convn(tempG, SE, 'same');     
    C = C.*tempG;     
    spurs = (C == 1); 
    tempG(spurs) = 0;     
    nSpurs_temp = sum(spurs(:)); 
    if nSpurs_temp == 0 
        GoOn = 0; 
    end 
    nSpurs = nSpurs + nSpurs_temp; 
end 
 
G = logical(tempG); 
 
fprintf(sprintf('%i pixels removed.', nSpurs)); 
 
end 
 
% ------------------------------------------------------------------------ % 
 
function newG = rminletspurs(G) 
 
notG = ~G; 
neighborInletSlice = notG(2,:,:); 
neighborOutletSlice = notG(end-1,:,:); 
notG(1,:,:) = neighborInletSlice; 
notG(end,:,:) = neighborOutletSlice; 
newG = ~notG; 
 
end 
 
% ------------------------------------------------------------------------ % 
 
function borderBW = findborder(BW, varargin) 
 
if ~isempty(varargin) 
    if strcmpi(varargin{1}, 'Outside') % | 'Outside' 
        BW = ~BW; 
    end 
end 
 
conn = conndef(3,'minimal'); 
erodeBW = imerode(BW, conn); 
borderBW = BW & ~erodeBW; 
 
end 
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% ------------------------------------------------------------------------ % 
 
function S = storestruct(S, storeName, varargin) 
 
nstr = size(storeName, 1); 
for istr = 1 : nstr 
    S.(storeName{istr,1}) = storeName{istr,end}; 
end 
 
end 
 
% ------------------------------------------------------------------------ % 
 
function Model = assembleconn(Model) 
 
fprintf('\n\nAssembling connectivity matrix...'); 
 
[iInBox, jInBox, kInBox] = ind2sub(size(Model.geom.G), Model.lids.interior);            
% coorinates of the center nodes 
 
xMinus = [iInBox - 1, jInBox,     kInBox    ];                                  
% coorinates of the west-shifted nodes 
xPlus  = [iInBox + 1, jInBox,     kInBox    ];                                   
% coorinates of the east-shifted nodes 
yMinus = [iInBox,     jInBox - 1, kInBox    ];                                  
% coorinates of the south-shifted nodes 
yPlus  = [iInBox,     jInBox + 1, kInBox    ];                                   
% coorinates of the north-shifted nodesyMinus = [ijInBox(:,1), ijInBox(:,2) 
- 1];                                  % coorinates of the south-shifted 
nodes 
zMinus = [iInBox,     jInBox,     kInBox - 1];                                  
% coorinates of the south-shifted nodes 
zPlus  = [iInBox,     jInBox,     kInBox + 1];                        % 
coorinates of the north-shifted nodes 
 
ctrLids = sub2ind(size(Model.geom.G), iInBox, jInBox, kInBox);          % 
linear indices of the  centers nodes 
 
xMinusLids = sub2ind(size(Model.geom.G), xMinus(:,1), xMinus(:,2), 
xMinus(:,3));         % linear indices of the west-shifted nodes 
xPlusLids  = sub2ind(size(Model.geom.G), xPlus(:,1),  xPlus(:,2),  
xPlus(:,3));            % linear indices of the east-shifted nodes 
yMinusLids = sub2ind(size(Model.geom.G), yMinus(:,1), yMinus(:,2), 
yMinus(:,3));         % linear indices of the south-shifted nodes 
yPlusLids  = sub2ind(size(Model.geom.G), yPlus(:,1),  yPlus(:,2),  
yPlus(:,3));            % linear indices of the north-shifted nodes 
zMinusLids = sub2ind(size(Model.geom.G), zMinus(:,1), zMinus(:,2), 
zMinus(:,3));         % linear indices of the south-shifted nodes 
zPlusLids  = sub2ind(size(Model.geom.G), zPlus(:,1),  zPlus(:,2),  
zPlus(:,3));            % linear indices of the north-shifted nodes 
 
clear xMinus xPlus yMinus yPlus zMinus zPlus; 
 
connect = [ctrLids, xMinusLids, xPlusLids, yMinusLids, yPlusLids, 
zMinusLids, zPlusLids];                % connectivity matrix of interior 
nodes 
 
clear xMinusLids xPlusLids yMinusLids yPlusLids zMinusLids zPlusLids;    
 
connectIsInlet  = ismember(connect, Model.lids.inlet);                                  
% logical array showing connectivities that are located on inlet 
connectIsOutlet = ismember(connect, Model.lids.outlet);                                
% logical array showing connectivities that are located on outlet 
connectIsSolLiq = ismember(connect, Model.lids.solLiq);                                
% logical array showing connectivities that are located on solid-pore 
interface 
 
connectIsInlet(connectIsInlet(:,1),:)   = 0;                                            
% removing nodes that are part of 'inlet' from connectivity matrix 
connectIsOutlet(connectIsOutlet(:,1),:) = 0;                                          
% removing nodes that are part of 'otlet' from connectivity matrix 
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connectIsSolLiq(connectIsSolLiq(:,1),:) = 0;                                          
% removing nodes that are part of 'solLiq' from connectivity matrix 
 
isConnBound = ( ...                                                         
% logical index of nodes that are connected to boundary nodes 
      sum(connectIsInlet, 2)  ... 
    + sum(connectIsOutlet, 2) ... 
    + sum(connectIsSolLiq, 2)) > 0; 
 
connectBound = struct( ... 
    'isInlet',     [], ... 
    'isOutlet',    [], ... 
    'isSolLiq',    [], ... 
    'isConnBound', []); 
     
connectBound = storestruct(connectBound, { ... 
    'isInlet'     connectIsInlet 
    'isOutlet'    connectIsOutlet 
    'isSolLiq'    connectIsSolLiq 
    'isConnBound' isConnBound 
    } ... 
    ); 
 
Model.connect = connect; 
Model.connectBound = connectBound; 
 
end 
 
% ------------------------------------------------------------------------ % 
 
function A = assemblematrix(Model) 
 
fprintf('\n\nAssembling coefficient matrix...'); 
 
nodeList = sort([Model.lids.inlet; Model.lids.outlet; Model.lids.solLiq; 
Model.lids.interior]); 
 
nStencilPts = 7;                                                            
% size of finite-difference stencil 
maxMatBounds = repmat(numel(nodeList), [1 2]);                         % 
maximum matrix bounds for stiffness matrix 
 
nNeighSolLiq = sum(Model.connectBound.isSolLiq, 2); 
notC_isSolLiq = ~Model.connectBound.isSolLiq; 
 
enterVals = [ ... 
    -(nStencilPts - 1)*ones(size(Model.connect, 1), 1) + nNeighSolLiq; ... 
    notC_isSolLiq(:,2); ... 
    notC_isSolLiq(:,3); ... 
    notC_isSolLiq(:,4); ... 
    notC_isSolLiq(:,5); ... 
    notC_isSolLiq(:,6); ... 
    notC_isSolLiq(:,7) ... 
    ]; 
 
[~, indInt] = sort(nodeList); 
indMat = zeros(size(nodeList)); 
indMat(nodeList) = indInt; 
 
A = sparse(repmat(indMat(Model.connect(:,1)), [7 1]), ... 
    [indMat(Model.connect(:,1)); ...  
     indMat(Model.connect(:,2)); ... 
     indMat(Model.connect(:,3)); ... 
     indMat(Model.connect(:,4)); ... 
     indMat(Model.connect(:,5)); ... 
     indMat(Model.connect(:,6)); ... 
     indMat(Model.connect(:,7))], ... 
    enterVals, ... 
    maxMatBounds(1), maxMatBounds(2), numel(enterVals));     
 
A = A(:,indMat(Model.lids.interior)); 
A = A.'; 
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A = A(:,indMat(Model.lids.interior)); 
A = A.'; 
 
fprintf('\n\n\tNumber of degrees of freedom: %i\n', 
numel(Model.lids.interior)); 
 
end 
 
% ------------------------------------------------------------------------ % 
 
function b = assembleloadvector(Model) 
 
% nConnBound = sum(Model.connectBound.isConnBound);                                 
% number of connections pertaining to each node 
 
npts = prod(Model.geom.dim); 
 
% b = spalloc(npts, 1, nConnBound);                                           
% allocating memory for sparse load vector 
b = zeros(npts, 1); 
 
% boundSum = -1*( ...                                                  % 
applying Dirchlet and Neumann boundary conditions 
%     Model.params.V_inlet  * sum(Model.connectBound.isInlet,   2) + ... 
%     Model.params.V_outlet * sum(Model.connectBound.isOutlet,  2) ... 
%     ); 
%  
% iNonzero = find(boundSum(; 
%  
% b = sparse 
 
b(Model.connect(:,1)) = -1*( ...                                                  
% applying Dirchlet and Neumann boundary conditions 
    Model.params.V_inlet  * sum(Model.connectBound.isInlet,   2) + ... 
    Model.params.V_outlet * sum(Model.connectBound.isOutlet,  2) ... 
    ); 
 
b = b(Model.lids.interior);                                                 
% removing pixels that belong to the boundary or solid material 
b = sparse(b); 
 
end 
 
% ------------------------------------------------------------------------ % 
 
function parentStruct = clearstruct(parentStruct, childStruct) 
 
nstr = size(childStruct, 1); 
for istr = 1 : nstr 
    parentStruct.(childStruct{istr,1}) = []; 
end 
 
end 
 
% ------------------------------------------------------------------------ % 
 
function x = dcsolver(A, b, solveStruct) 
 
switch solveStruct.soltype 
     
    case 'direct' 
         
        fprintf('\nDirect solver: Matlab %s', '"\"'); 
         
        x = A\b; 
                        
    case 'iter'  
 
        iluStruct = struct( ... 
            'type',    'ict', ... 
            'droptol', solveStruct.droptol, ... 
            'shape', 'lower' ... 
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            ); 
         
        fprintf('\nPreconditioning matrix...\n'); 
        fprintf('\n\tPreconditioner: Incomplete Choleski Factorization'); 
        fprintf('\n\tdroptol: %.1e\n', solveStruct.droptol);         
        fprintf('\nInitiating solver...\n'); 
        fprintf('\n\tIterative solver: PCG\n\treltol: %.1e\n', 
solveStruct.reltol); 
 
        L = ichol(-1*A, iluStruct); 
        [x, flag, rr1, iter, relNorm] = pcg(-1*A, -1*b, solveStruct.reltol, 
solveStruct.maxiter, L, L'); 
 
        switch flag 
            case 0 
                fprintf('\n\tPCG converged to the desired tolerance %.1e 
within %i iterations.\n', solveStruct.reltol, numel(relNorm)); 
            case 1 
                error('\n\PCG iterated %i times but did not converge.\n', 
solveStruct.maxiter); 
            case 2 
                error('\n\tPreconditioner was ill-conditioned.\n'); 
            case 3 
                error('\n\PCG stagnated.\n'); 
        end 
                 
%         Model.result.flag = flag; 
%         Model.result.iter = iter; 
%         Model.result.relNorm = relNorm; 
%         Model.result.rr1 = rr1; 
         
        figure(1); clf; 
        plot(1:numel(relNorm), relNorm, '-o'); 
        set(gca, 'YScale', 'log'); 
        title('Convergence'); 
        xlabel('Iterations'); 
        ylabel('Relative Norm'); 
         
end 
 
% Model.result.potential = x; 
 
end 
 
% ------------------------------------------------------------------------ % 
 
function Model = postprocessing(Model, x) 
 
fprintf('\nPost-processing\n'); 
 
% Post-processing 
 
v = zeros(prod(Model.geom.dim), 1); 
 
v(Model.lids.interior) = x;                                                 
% remapping solution to 3D geometry 
v(Model.lids.inlet) = Model.params.V_inlet; 
v(Model.lids.outlet) = Model.params.V_outlet; 
 
V = reshape(v, Model.geom.dim(1), Model.geom.dim(2), Model.geom.dim(3)); 
V = V(:,2:end-1,2:end-1); 
 
G = Model.geom.G(:,2:end-1,2:end-1); 
 
ex = -1 * (V(2:end,:,:) - V(1:end-1,:,:)) .* G(1:end-1,:,:) .* G(2:end,:,:); 
ey = -1 * (V(:,2:end,:) - V(:,1:end-1,:)) .* G(:,1:end-1,:) .* G(:,2:end,:); 
ez = -1 * (V(:,:,2:end) - V(:,:,1:end-1)) .* G(:,:,1:end-1) .* G(:,:,2:end); 
 
jx = Model.params.sigma * ex; 
jy = Model.params.sigma * ey; 
jz = Model.params.sigma * ez; 
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E = cell(1, 3); 
J = cell(1, 3); 
 
switch Model.params.flowAxis 
    case 'X' 
         
        rotG = Model.geom.G; 
         
        E{1} = ex; 
        E{2} = ey; 
        E{3} = ez;         
         
        J{1} = jx; 
        J{2} = jy; 
        J{3} = jz; 
         
    case 'Y' 
         
        rotG = flip(permute(Model.geom.G, [2 1 3]), 1); 
         
        V = flip(permute(V, [2 1 3]), 1); 
         
        E{1} = flip(permute(ey, [2 1 3]), 1); 
        E{2} = flip(permute(ex, [2 1 3]), 1); 
        E{3} = flip(permute(ez, [2 1 3]), 1); 
         
        J{1} = flip(permute(jy, [2 1 3]), 1); 
        J{2} = flip(permute(jx, [2 1 3]), 1); 
        J{3} = flip(permute(jz, [2 1 3]), 1); 
     
    case 'Z' 
         
        rotG = flip(permute(Model.geom.G, [3 2 1]), 1); 
         
        V = flip(permute(V, [3 2 1]), 1); 
         
        E{1} = flip(permute(ez, [3 2 1]), 1); 
        E{2} = flip(permute(ey, [3 2 1]), 1); 
        E{3} = flip(permute(ex, [3 2 1]), 1); 
         
        J{1} = flip(permute(jz, [3 2 1]), 1); 
        J{2} = flip(permute(jy, [3 2 1]), 1); 
        J{3} = flip(permute(jx, [3 2 1]), 1); 
         
end 
 
dVdL = -1 * (Model.params.V_outlet - Model.params.V_inlet) / (Model.geom.L - 
1); 
 
switch Model.params.flowAxis 
    case 'X'         
        jxAvg = (1/prod([size(G, 2), size(G, 3)])) * 
sum(sum(J{1}(:,:,floor(size(G, 1) / 2)))); 
        sigmaEff = jxAvg / dVdL; 
    case 'Y' 
        jyAvg = (1/prod([size(G, 1), size(G, 3)])) * 
sum(sum(J{2}(:,:,floor(size(G, 2) / 2)))); 
        sigmaEff = jyAvg / dVdL; 
    case 'Z' 
        jzAvg = (1/prod([size(G, 1), size(G, 2)])) * 
sum(sum(J{3}(:,:,floor(size(G, 3) / 2)))); 
        sigmaEff = jzAvg / dVdL; 
end 
 
Model.result = []; 
Model.result = storestruct(Model.result, { ...     
    'sigmaEff' sigmaEff 
    'V' V 
    'E' E 
    'J' J 
    'rotG' rotG 
    }); 
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fprintf('\nBulk electrical conductivity: %.4e\n', ... 
    Model.result.sigmaEff); 
 
End 
 
% ------------------------------------------------------------------------ % 
 
function saveresult(sDir, Model, nRand) 
     
    if ~exist(sDir, 'dir') 
        mkdir(sDir); 
    end 
 
    V = Model.result.V; 
     
    E = cellfun(@single, Model.result.E, 'UniformOutput', false); 
    J = cellfun(@single, Model.result.J, 'UniformOutput', false); 
     
    ex = E{1}; 
    ey = E{2}; 
    ez = E{3}; 
     
    jx = J{1}; 
    jy = J{2}; 
    jz = J{3}; 
     
    sigmaStr = sprintf('%.3f-', Model.params.sigma(:)'); sigmaStr = 
sigmaStr(1:end-1); 
     
    newDir = sprintf('%sflow%s_sigma%s_%04i/', sDir, Model.params.flowAxis, 
sigmaStr, nRand); 
    if exist(newDir, 'dir') == 0 
        mkdir(newDir); 
    end 
     
    print(1, '-dpng', [newDir, 'convergence']); 
     
    save(sprintf('%sstruct', newDir), 'Model', '-v7.3'); 
    fprintf('\nSaving %sstruct.mat', newDir); 
    save(sprintf('%spotential', newDir), 'V', '-v7.3'); 
    fprintf('\nSaving %spotential.mat', newDir); 
    save(sprintf('%selectricField', newDir), 'E', '-v7.3'); 
    fprintf('\nSaving %selectricField.mat', newDir); 
    save(sprintf('%scurrentDensity', newDir), 'J', '-v7.3'); 
    fprintf('\nSaving %scurrentDensity.mat', newDir); 
     
    fprintf('\n'); 
%     save(sprintf('%s_struct', newDir, newDir, 'ex', '-v7.3'); 
%     fprintf('\nSaving %sflow%s_refine%i_sigma%s_electricFieldX.mat', 
newDir); 
%     save(sprintf('%s_struct', newDir, newDir, 'ey', '-v7.3'); 
%     fprintf('\nSaving %sflow%s_refine%i_sigma%s_electricFieldY.mat', 
newDir); 
%     save(sprintf('%s_struct', newDir, newDir, 'ez', '-v7.3'); 
%     fprintf('\nSaving %sflow%s_refine%i_sigma%s_electricFieldZ.mat', 
newDir); 
     
%     save(sprintf('%s_struct', newDir, newDir, 'jx', '-v7.3'); 
%     fprintf('\nSaving %s_currentDensityX.mat', newDir); 
%     save(sprintf('%s_struct', newDir, newDir, 'jy', '-v7.3'); 
%     fprintf('\nSaving %s_currentDensityY.mat', newDir); 
%     save(sprintf('%s_struct', newDir, newDir, 'jz', '-v7.3'); 
%     fprintf('\nSaving %s_currentDensityZ.mat', newDir); 
     
end  



 217 

 

Appendix C: Summary of experimental charges and methods for measuring 

local melt fraction distribution 

 

C.1 Summary of harzburgite samples 
 
 
See next page.  
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C.2 Quantitative chemistry analysis for harzburgite samples 
 
See next page.  
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Bright Dendritic
Phase

Figure C.1: Bright dentritic phase appears to be partially crystallized basalt and is 
assumed to be melt during segmentation, since they should not be present at run 
conditions.
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% ------------------------------------------------------------------------ % 
 
function [phiOl, phiOpx, Stats] = LPAnalyze(inputFile, p, varargin) 
% Characterizes the local melt fraction distribution of a label image. 
% Requires melt, olivine, and opx label images as input. Also requries 
% separated olivine and opx 16-bit grain label images and .txt document 
% containing the centers of each grain. 
 
if ~isempty(varargin) 
    printSwitch = ~isempty(find(strcmp('Print', varargin), 1)); 
    writeSwitch = ~isempty(find(strcmp('Write', varargin), 1)); 
    plotSwitch = ~isempty(find(strcmp('Plot', varargin), 1)); 
    saveSwitch = ~isempty(find(strcmp('Save', varargin), 1)); 
    plotGrain = ~isempty(find(strcmp('Plot Grain', varargin), 1)); 
else 
    printSwitch = 0; 
    writeSwitch = 0; 
    plotSwitch = 0; 
    saveSwitch = 0; 
    plotGrain = 0; 
end 
 
% ------------------------------------------------------------------------ 
% Reading the melt and grain files. Note: Be sure that the input grain 
% files have had grains intersecting the bounding box removed. 
% ------------------------------------------------------------------------ 
fprintf('-------------------------------------------------------------------
-----'); 
warning('off', 'all'); 
 
listDir = 'C:\Users\kevinmiller\code\LPAnalyze_new\'; % directory for binary 
tif images 
 
FileNames = LabelFileReader(listDir, inputFile); 
 
nfile = length(FileNames.DirTif); 
for ifile = 1 : nfile 
    % Loading the binary files 
    fprintf('\nReading %s...', FileNames.LabelOlName{ifile}); 
    LabelOlTif = Tif3DReader(FileNames.DirTif{ifile}, 
FileNames.LabelOlName{ifile}); 
    fprintf('Completed!\n'); 
    fprintf('Reading %s...', FileNames.BinOlName{ifile}); 
    BinOlTif = Tif3DReader(FileNames.DirTif{ifile}, 
FileNames.BinOlName{ifile}); 
    fprintf('Completed!\n'); 
    fprintf('Reading %s...', FileNames.LabelOpxName{ifile}); 
    LabelOpxTif = Tif3DReader(FileNames.DirTif{ifile}, 
FileNames.LabelOpxName{ifile}); 
    fprintf('Completed!\n'); 
    fprintf('Reading %s...', FileNames.BinOpxName{ifile}); 
    BinOpxTif = Tif3DReader(FileNames.DirTif{ifile}, 
FileNames.BinOpxName{ifile}); 
    fprintf('Completed!\n'); 
    fprintf('Reading %s...', FileNames.BinMeltName{ifile}); 
    BinMeltTif = Tif3DReader(FileNames.DirTif{ifile}, 
FileNames.BinMeltName{ifile}); 
    fprintf('Completed!\n'); 
     
    % Loading the quantitative grain analyses 
    DirAnl = 'C:\Users\kevinmiller\data\analysis\'; % directory for the 
quantitative grain analyses 
    fidOl = fopen([DirAnl, FileNames.OlAnlName{ifile}]); 
    fidOpx = fopen([DirAnl, FileNames.OpxAnlName{ifile}]); 
    GrainAnlOl = textscan(fidOl, '%d %d %d %d %d', 'HeaderLines', 1); 
fprintf('\nReading %s\n', FileNames.OlAnlName{ifile}); 
    GrainAnlOpx = textscan(fidOpx, '%d %d %d %d %d', 'HeaderLines', 1); 
fprintf('Reading %s\n', FileNames.OpxAnlName{ifile}); 
    fclose(fidOl); fclose(fidOpx); % closing the file identifiers 
     
    nOl = max(max(max(LabelOlTif))); % number of olivine grains 
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    nOpx = max(max(max(LabelOpxTif))); % number of opx grains 
     
    OlCtr = double([GrainAnlOl{2}, GrainAnlOl{3}, GrainAnlOl{4}]) + 1; % 
centers of olivine grains 
    OpxCtr = double([GrainAnlOpx{2}, GrainAnlOpx{3}, GrainAnlOpx{4}]) + 1; % 
centers of opx grains 
     
    % allocating memory for the list of local melt fractions for each phase 
    phiOl = nan(nOl, 1); 
    phiOpx = nan(nOpx, 1); 
     
    usInd = strfind(FileNames.BinMeltName{ifile}, '_'); 
    dotInd = strfind(FileNames.BinMeltName{ifile}, '.'); 
    xInd = strfind(FileNames.BinMeltName{ifile}(usInd(3)+1:usInd(4)-1), 
'x'); 
    dim = [ ... % determining the dimensions of the subvolume from the name 
of BinMeltName 
        str2double(FileNames.BinMeltName{ifile}(usInd(3)+1:usInd(3)+xInd(1)-
1)), ... 
        
str2double(FileNames.BinMeltName{ifile}(usInd(3)+xInd(1)+1:usInd(3)+xInd(2)-
1)), ... 
        str2double(FileNames.BinMeltName{ifile}(usInd(3)+xInd(2)+1:usInd(4)-
1))]; 
    seriesID = sprintf('%s', FileNames.BinMeltName{ifile}(1:usInd(1)-1)); 
    sampleID = sprintf('%s', 
FileNames.BinMeltName{ifile}(usInd(1)+1:usInd(2)-1)); 
    subvolID = sprintf('%s', 
FileNames.BinMeltName{ifile}(usInd(4)+1:dotInd(1)-1)); 
    anlName = sprintf('%s_%s_%ix%ix%i_%s.LPAnalysis_p%.2f', seriesID, 
sampleID, dim(1), dim(2), dim(3), subvolID, p); 
     
    fprintf('\nSubvolume dimensions: %ix%ix%i pixels^3\n', dim(1), dim(2), 
dim(3)); 
     
    % ----------------------------------------------------------------------
-- 
    % Doing a loop for olivine grains 
    % ----------------------------------------------------------------------
-- 
    fprintf('\nAnalyzing olivine grains\n'); 
    ismore = 1; 
    for iOl = 1 : nOl 
        iOlCtr = OlCtr(iOl,:); 
        [ii, jj, kk] = ind2sub(size(LabelOlTif), find(LabelOlTif==iOl)); % 
finding the location of each pixel belonging to grain iOl 
        %         isPlane = numel(unique(kk)) == 1; 
        if ~(numel(unique(ii)) == 1 || numel(unique(jj)) == 1 || 
numel(unique(kk)) == 1) 
            %             k = convhull(ii, jj, kk); % reducing the number of 
points to a simplified convex hull 
            k = convhull(ii, jj, kk, 'simplify', false); % reducing the 
number of points to a simplified convex hull 
            hullpts = [jj(k(:,2)), ii(k(:,1)), kk(k(:,3))]; % combining the 
hull points into an array 
            T0 = [1 0 0 -iOlCtr(1); 0 1 0 -iOlCtr(2); 0 0 1 -iOlCtr(3); 0 0 
0 1]; 
            hullpts0 = T0*[hullpts'; ones(1, size(hullpts, 1))]; hullpts0 = 
hullpts0(1:3,:)'; % translating the hullpts to the origin 
            hullpts0 = [hullpts0(:,2), hullpts0(:,1), hullpts0(:,3)]; 
             
            [~, radii0, Pevecs, ~] = ellipsoid_fit(hullpts0); % fitting the 
convex hull points to an ellipsoid 
            if any(isnan(radii0)) 
                radii0 = sqrt(-1); 
            end 
             
        else 
            radii0 = sqrt(-1); 
        end 
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        if isreal(radii0) || ~any(isnan(radii0)) % checking that radii is 
real, since ellipsoid_fit can return imaginary values if hullpts0 is noisy 
             
            radii0New = p*radii0; % calculating the new ellipsoid parameters 
based on the dialation parameter, p 
            DPNew = diag(radii0New.^-2); % diagonalizing the principal 
lengths 
            PNew = Pevecs*DPNew*Pevecs'; % rotating back to the grain's 
reference 
             
            parsNew = [PNew(1,1); PNew(2,2); PNew(3,3); PNew(1,2); 
PNew(1,3); PNew(2,3)]; % list of the new paramters of the dialated ellipsoid 
             
            xmin = -sqrt(1/(sign(parsNew(1))*parsNew(1))); 
            xmax =  sqrt(1/(sign(parsNew(1))*parsNew(1))); 
             
            ymin = -sqrt(1/(sign(parsNew(2))*parsNew(2))); 
            ymax =  sqrt(1/(sign(parsNew(2))*parsNew(2))); 
             
            zmin = -sqrt(1/(sign(parsNew(3))*parsNew(3))); 
            zmax =  sqrt(1/(sign(parsNew(3))*parsNew(3))); 
             
            ellipBound = [ ... % coordinates for box bounding the ellipsoid 
                sign(xmin)*(ceil(abs(xmin)) + 1), 
sign(xmax)*(ceil(abs(xmax)) + 1); ... 
                sign(ymin)*(ceil(abs(ymin)) + 1), 
sign(ymax)*(ceil(abs(ymax)) + 1); ... 
                sign(zmin)*(ceil(abs(zmin)) + 1), 
sign(zmax)*(ceil(abs(zmax)) + 1)]; 
             
            % translating to the center of the grain 
            T2 = [1 0 0 iOlCtr(2); 0 1 0 iOlCtr(1); 0 0 1 iOlCtr(3); 0 0 0 
1]; 
            ellipBoundT = T2*[ellipBound; ones(1, 2)]; ellipBoundT = 
ellipBoundT(1:3,:); 
             
            if ~(any(ellipBoundT(1,:) < 1 | ellipBoundT(1,:) > dim(1)) || 
... % exclude grains that intersect the boundary of the subvolume 
                    any(ellipBoundT(2,:) < 1 | ellipBoundT(2,:) > dim(2)) || 
... 
                    any(ellipBoundT(3,:) < 1 | ellipBoundT(3,:) > dim(3))) 
                 
                meltBound = BinMeltTif(ellipBoundT(1,1) : ellipBoundT(1,2), 
ellipBoundT(2,1) : ellipBoundT(2,2), ellipBoundT(3,1) : ellipBoundT(3,2)); 
                 
                % indexing the binary melt image and translating it to the 
origin 
                [iAll, jAll, kAll] = ind2sub(size(meltBound), 
find(meltBound==1 | meltBound==0)); % finding the xyz coordinates of all 
pixels in the cropped melt image 
                [iMelt, jMelt, kMelt] = ind2sub(size(meltBound), 
find(meltBound==1)); % finding the xyz coordinates of pixels associated with 
melt in the cropped melt image 
                 
                ctrLocal = [floor((max(iAll) - min(iAll))/2), 
floor((max(jAll) - min(jAll))/2), floor((max(kAll) - min(kAll))/2)] + 1; % 
center of the sample region where the corner is on the origin 
                 
                T3 = [1 0 0 -ctrLocal(1); 0 1 0 -ctrLocal(2); 0 0 1 -
ctrLocal(3); 0 0 0 1]; % assembling translation matrix for translating to 
the origin 
                 
                ijkAll = [iAll, jAll, kAll]; % concatenating all pixel 
coordinates 
                ijkAllT = T3*[ijkAll'; ones(1, numel(iAll))]; ijkAllT = 
ijkAllT(1:3,:)'; % translating to the origin 
                [inptsAll, ~, ~] = inoutEllipGen2(ijkAllT, parsNew); 
                 
                ijkMelt = [iMelt, jMelt, kMelt]; % concatenating melt pixel 
coordinates 
                ijkMeltT = T3*[ijkMelt'; ones(1, numel(iMelt))]; ijkMeltT = 
ijkMeltT(1:3,:)'; % translating back to the original cropped melt indices 
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                [inptsMelt, ~, ~] = inoutEllipGen2(ijkMeltT, parsNew); 
                 
                if plotGrain 
                    figure(5); clf; hold on; 
                    %                     plot3(ijkMeltT(ijkMeltT(:,2) > 
0,1), ijkMeltT(ijkMeltT(:,2) > 0,2), ijkMeltT(ijkMeltT(:,2) > 0,3), 'or'); 
                    %                     plot3(hullpts0(:,1), 
hullpts0(:,2), hullpts0(:,3), 'o', ... 
                    %                         'MarkerSize', 12, ... 
                    %                         'MarkerFaceColor', 'b'); 
                    plot3(hullpts0(:,1), hullpts0(:,2), hullpts0(:,3), 'o', 
... 
                        'MarkerSize', 12, ... 
                        'MarkerFaceColor', 'b'); 
                    %                     plot3(inptsMelt(inptsMelt(:,2) > 
0,1), inptsMelt(inptsMelt(:,2) > 0,2), inptsMelt(inptsMelt(:,2) > 0,3), 
'oc', ... 
                    %                         'MarkerSize', 12, ... 
                    %                         'MarkerFaceColor', 'c'); 
                    plot3(inptsMelt(:,1), inptsMelt(:,2), inptsMelt(:,3), 
'o', ... 
                        'MarkerSize', 10, ... 
                        'MarkerFaceColor', 'g'); 
                    %                     F = 
Pevecs*diag(radii0New)*Pevecs'; 
                    %                     [XS, YS, ZS] = sphere(100); 
                    %                     XYZe = F*[XS(:)'; YS(:)'; ZS(:)']; 
XYZe = XYZe(1:3,:)'; 
                    %                     Xe = reshape(XYZe(:,1), size(XS, 
1), size(XS, 2)); 
                    %                     Ye = reshape(XYZe(:,2), size(YS, 
1), size(YS, 2)); 
                    %                     Ze = reshape(XYZe(:,3), size(ZS, 
1), size(ZS, 2)); 
                     
                    %                     deform = (Xe.^2 + Ye.^2 + 
Ze.^2).^.5; 
                    %                     s1 = surf(Xe, Ye, Ze, deform); 
                    %                     set(s1, ... 
                    %                         'FaceColor', 'none'); 
                    axis equal tight; 
                    box on; 
                    view(-30, 30); 
                end 
                 
                nAll = size(inptsAll, 1); % number of pixels bounded by 
ellipsoid 
                nMelt = size(inptsMelt, 1); % number of pixels associated 
with melt inside the boundary ellipsoid 
                 
                iphiOl = nMelt/nAll; % melt fraction for current region 
                phiOl(ismore,1) = iphiOl; % storing the local melt fraction 
                ismore = ismore + 1; % moving on to the next grain 
                fprintf('\t%i / %i olivine grains analyzed; Local melt 
fraction: %.4f\n', iOl, nOl, iphiOl); % printing progress 
            else 
                fprintf('\t%i / %i olivine grains analyzed; Local melt 
fraction: Out of Bounds\n', iOl, nOl); 
            end 
        else 
            fprintf('\t%i / %i olivine grains analyzed; Local melt fraction: 
Radii are imaginary\n', iOl, nOl); 
        end 
    end 
     
    % ----------------------------------------------------------------------
-- 
    % Doing a loop for opx grains 
    % ----------------------------------------------------------------------
-- 
    fprintf('\nAnalyzing opx grains\n'); 
    ismore = 1; 
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    for iOpx = 1 : nOpx 
        if iOpx == 73 
            disp(''); 
        end 
        iOpxCtr = OpxCtr(iOpx,:); 
        [ii, jj, kk] = ind2sub(size(LabelOpxTif), find(LabelOpxTif==iOpx)); 
% finding the location of each pixel belonging to grain iOpx 
        if ~(numel(unique(ii)) == 1 || numel(unique(jj)) == 1 || 
numel(unique(kk)) == 1) 
            %             k = convhull(ii, jj, kk); % reducing the number of 
points to a simplified convex hull 
            k = convhull(ii, jj, kk, 'simplify', false); % reducing the 
number of points to a simplified convex hull 
            hullpts = [jj(k(:,2)), ii(k(:,1)), kk(k(:,3))]; % combining the 
hull points into an array 
            T0 = [1 0 0 -iOpxCtr(1); 0 1 0 -iOpxCtr(2); 0 0 1 -iOpxCtr(3); 0 
0 0 1]; 
            hullpts0 = T0*[hullpts'; ones(1, size(hullpts, 1))]; hullpts0 = 
hullpts0(1:3,:)'; % translating the hullpts to the origin 
            hullpts0 = [hullpts0(:,2), hullpts0(:,1), hullpts0(:,3)]; 
             
            [~, radii0, Pevecs, ~] = ellipsoid_fit(hullpts0); % fitting the 
convex hull points to an ellipsoid 
             
        else 
            radii0 = sqrt(-1); 
        end 
         
        if isreal(radii0) && ~any(isnan(radii0)) % checking that radii is 
real, since ellipsoid_fit can return imaginary values if hullpts0 is noisy 
             
            radii0New = p*radii0; % calculating the new ellipsoid parameters 
based on the dialation parameter, p 
            DPNew = diag(radii0New.^-2); % diagonalizing the principal 
lengths 
            PNew = Pevecs*DPNew*Pevecs'; % rotating back to the grain's 
reference 
             
            parsNew = [PNew(1,1); PNew(2,2); PNew(3,3); PNew(1,2); 
PNew(1,3); PNew(2,3)]; % list of the new paramters of the dialated ellipsoid 
             
            xmin = -sqrt(1/(sign(parsNew(1))*parsNew(1))); 
            xmax =  sqrt(1/(sign(parsNew(1))*parsNew(1))); 
             
            ymin = -sqrt(1/(sign(parsNew(2))*parsNew(2))); 
            ymax =  sqrt(1/(sign(parsNew(2))*parsNew(2))); 
             
            zmin = -sqrt(1/(sign(parsNew(3))*parsNew(3))); 
            zmax =  sqrt(1/(sign(parsNew(3))*parsNew(3))); 
             
            ellipBound = [ ... % coordinates for box bounding the ellipsoid 
                sign(xmin)*(ceil(abs(xmin)) + 1), 
sign(xmax)*(ceil(abs(xmax)) + 1); ... 
                sign(ymin)*(ceil(abs(ymin)) + 1), 
sign(ymax)*(ceil(abs(ymax)) + 1); ... 
                sign(zmin)*(ceil(abs(zmin)) + 1), 
sign(zmax)*(ceil(abs(zmax)) + 1)]; 
             
            % translating to the center of the grain 
            T2 = [1 0 0 iOpxCtr(2); 0 1 0 iOpxCtr(1); 0 0 1 iOpxCtr(3); 0 0 
0 1]; 
            ellipBoundT = T2*[ellipBound; ones(1, 2)]; ellipBoundT = 
ellipBoundT(1:3,:); 
             
            if ~(any(ellipBoundT(1,:) < 1 | ellipBoundT(1,:) > dim(1)) || 
... % exclude grains that intersect the boundary of the subvolume 
                    any(ellipBoundT(2,:) < 1 | ellipBoundT(2,:) > dim(2)) || 
... 
                    any(ellipBoundT(3,:) < 1 | ellipBoundT(3,:) > dim(3))) 
                 
                meltBound = BinMeltTif(ellipBoundT(1,1) : ellipBoundT(1,2), 
ellipBoundT(2,1) : ellipBoundT(2,2), ellipBoundT(3,1) : ellipBoundT(3,2)); 
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                % indexing the binary melt image and translating it to the 
origin 
                [iAll, jAll, kAll] = ind2sub(size(meltBound), 
find(meltBound==1 | meltBound==0)); % finding the xyz coordinates of all 
pixels in the cropped melt image 
                [iMelt, jMelt, kMelt] = ind2sub(size(meltBound), 
find(meltBound==1)); % finding the xyz coordinates of pixels associated with 
melt in the cropped melt image 
                 
                ctrLocal = [floor((max(iAll) - min(iAll))/2), 
floor((max(jAll) - min(jAll))/2), floor((max(kAll) - min(kAll))/2)] + 1; % 
center of the sample region where the corner is on the origin 
                 
                T3 = [1 0 0 -ctrLocal(1); 0 1 0 -ctrLocal(2); 0 0 1 -
ctrLocal(3); 0 0 0 1]; % assembling translation matrix for translating to 
the origin 
                 
                ijkAll = [iAll, jAll, kAll]; % concatenating all pixel 
coordinates 
                ijkAllT = T3*[ijkAll'; ones(1, numel(iAll))]; ijkAllT = 
ijkAllT(1:3,:)'; % translating to the origin 
                [inptsAll, ~, ~] = inoutEllipGen2(ijkAllT, parsNew); 
                 
                ijkMelt = [iMelt, jMelt, kMelt]; % concatenating melt pixel 
coordinates 
                ijkMeltT = T3*[ijkMelt'; ones(1, numel(iMelt))]; ijkMeltT = 
ijkMeltT(1:3,:)'; % translating back to the original cropped melt indices 
                [inptsMelt, ~, ~] = inoutEllipGen2(ijkMeltT, parsNew); 
                 
                if plotGrain 
                    figure(5); clf; hold on; 
                    %                     plot3(ijkMeltT(ijkMeltT(:,2) > 
0,1), ijkMeltT(ijkMeltT(:,2) > 0,2), ijkMeltT(ijkMeltT(:,2) > 0,3), 'or'); 
                    %                     plot3(hullpts0(:,1), 
hullpts0(:,2), hullpts0(:,3), 'o', ... 
                    %                         'MarkerSize', 12, ... 
                    %                         'MarkerFaceColor', 'b'); 
                    plot3(hullpts0(:,1), hullpts0(:,2), hullpts0(:,3), 'o', 
... 
                        'MarkerSize', 12, ... 
                        'MarkerFaceColor', 'b'); 
                    %                     plot3(inptsMelt(inptsMelt(:,2) > 
0,1), inptsMelt(inptsMelt(:,2) > 0,2), inptsMelt(inptsMelt(:,2) > 0,3), 
'oc', ... 
                    %                         'MarkerSize', 12, ... 
                    %                         'MarkerFaceColor', 'c'); 
                    plot3(inptsMelt(:,1), inptsMelt(:,2), inptsMelt(:,3), 
'o', ... 
                        'MarkerSize', 10, ... 
                        'MarkerFaceColor', 'g'); 
                    %                     F = 
Pevecs*diag(radii0New)*Pevecs'; 
                    %                     [XS, YS, ZS] = sphere(100); 
                    %                     XYZe = F*[XS(:)'; YS(:)'; ZS(:)']; 
XYZe = XYZe(1:3,:)'; 
                    %                     Xe = reshape(XYZe(:,1), size(XS, 
1), size(XS, 2)); 
                    %                     Ye = reshape(XYZe(:,2), size(YS, 
1), size(YS, 2)); 
                    %                     Ze = reshape(XYZe(:,3), size(ZS, 
1), size(ZS, 2)); 
                     
                    %                     deform = (Xe.^2 + Ye.^2 + 
Ze.^2).^.5; 
                    %                     s1 = surf(Xe, Ye, Ze, deform); 
                    %                     set(s1, ... 
                    %                         'FaceColor', 'none'); 
                    axis equal tight; 
                    box on; 
                    view(-30, 30); 
                end 
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                nAll = size(inptsAll, 1); % number of pixels bounded by 
ellipsoid 
                nMelt = size(inptsMelt, 1); % number of pixels associated 
with melt inside the boundary ellipsoid 
                 
                iphiOpx = nMelt/nAll; % melt fraction for current region 
                phiOpx(ismore,1) = iphiOpx; % storing the local melt 
fraction 
                ismore = ismore + 1; % moving on to the next grain 
                fprintf('\t%i / %i opx grains analyzed; Local melt fraction: 
%.4f\n', iOpx, nOpx, iphiOpx); % printing progress 
            else 
                fprintf('\t%i / %i opx grains analyzed; Local melt fraction: 
Out of Bounds\n', iOpx, nOpx); 
            end 
        else 
            fprintf('\t%i / %i opx grains analyzed; Local melt fraction: 
Radii are imaginary\n', iOpx, nOpx); 
        end 
    end 
     
    % ----------------------------------------------------------------------
-- 
    % Calculating the statistics for both mineral types and dumping to file 
    % ----------------------------------------------------------------------
-- 
    phiOl(isnan(phiOl) | (phiOl == 0)) = []; % removing NaN's from phiOl 
    phiOpx(isnan(phiOpx) | (phiOpx == 0)) = []; % removing NaN's from phiOpx 
     
    saveDir = 'C:\Users\kevinmiller\data\lp\'; 
     
    if saveSwitch % saving the local melt fractions for eachgrain 
        if ~exist(saveDir, 'dir') 
            mkdir(saveDir) 
        end 
        olSaveName = sprintf('%s%s_phiOl.mat', saveDir, anlName); 
        fprintf('\n%s', olSaveName); 
        opxSaveName = sprintf('%s%s_phiOpx.mat', saveDir, anlName); 
        fprintf('\n%s', opxSaveName); 
        save(olSaveName, 'phiOl'); 
        save(opxSaveName, 'phiOpx'); 
    end 
     
    totalMeltFraction = sum(BinMeltTif(:))/(size(BinMeltTif, 
1)*size(BinMeltTif, 2)*size(BinMeltTif, 3)); % calculating the total melt 
fraction of the subvolume region 
    totalOlFraction = sum(BinOlTif(:) > 0)/(size(BinOlTif, 1)*size(BinOlTif, 
2)*size(BinOlTif, 3)); % calculating the total olivine fraction of the 
subvolume region 
    totalOpxFraction = sum(BinOpxTif(:) > 0)/(size(BinOpxTif, 
1)*size(BinOpxTif, 2)*size(BinOpxTif, 3)); % calculating the total olivine 
fraction of the subvolume region 
    totalMaterialFraction = totalMeltFraction + totalOlFraction + 
totalOpxFraction; 
     
    gMeanOl = geomean(phiOl*100); % geometrix mean melt fraction around 
olivine grains 
    gStdOl = exp(sqrt(sum(log(phiOl*100/gMeanOl).^2)/numel(phiOl))); % 
geometric standard deviation of local melt fraction around olivine gains 
     
    gMeanOpx = geomean(phiOpx*100); % geometric mean melt fraction around 
opx grains 
    gStdOpx = exp(sqrt(sum(log(phiOpx*100./gMeanOpx).^2)/numel(phiOpx))); % 
geometric standard deviation of local melt fraction around opx grains 
     
    R = gMeanOl/gMeanOpx; % partitioning ratio 
     
    orderOl = sort(phiOl); 
    medOl = median(orderOl); 
    lowHalfOl = orderOl(orderOl < medOl); 
    medLowHalfOl = median(lowHalfOl); 
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    highHalfOl = orderOl(orderOl > medOl); 
    medHighHalfOl = median(highHalfOl); 
     
    Q1Ol = medLowHalfOl; 
    Q2Ol = medOl; 
    Q3Ol = medHighHalfOl; 
     
    orderOpx = sort(phiOpx); 
    medOpx = median(orderOpx); 
    lowHalfOpx = orderOpx(orderOpx < medOpx); 
    medLowHalfOpx = median(lowHalfOpx); 
    highHalfOpx = orderOpx(orderOpx > medOpx); 
    medHighHalfOpx = median(highHalfOpx); 
     
    Q1Opx = medLowHalfOpx; 
    Q2Opx = medOpx; 
    Q3Opx = medHighHalfOpx; 
     
    Stats.TotalMaterial.olivine = totalOlFraction; 
    Stats.TotalMaterial.opx = totalOpxFraction; 
    Stats.TotalMaterial.melt = totalMeltFraction; 
     
    Stats.Local.olivine.nGrains = nOl; 
    Stats.Local.olivine.mean = gMeanOl; 
    Stats.Local.olivine.std = gStdOl; 
    Stats.Local.olivine.median = medOl; 
    Stats.Local.olivine.quartiles = [Q1Ol, Q2Ol, Q3Ol]; 
     
    Stats.Local.opx.nGrains = nOpx; 
    Stats.Local.opx.mean = gMeanOpx; 
    Stats.Local.opx.std = gStdOpx; 
    Stats.Local.opx.median = medOpx; 
    Stats.Local.opx.quartiles = [Q1Opx, Q2Opx, Q3Opx]; 
     
    Stats.R = gMeanOpx/gMeanOl; 
     
    % Outputting results to text file 
    sprintf('\nAtempting to write metadata to file\n\t%s%s\n', saveDir, 
anlName); 
    isfile = exist(sprintf('%s%s.txt', saveDir, anlName), 'file'); 
    if isfile 
        sprintf('\nWarning: File %s already exists\n', anlName); 
    end 
     
    if writeSwitch % writing to text file 
        fid = fopen(sprintf('%s%s.txt', saveDir, anlName), 'wt'); 
        fprintf(fid, 'Sample Name:\n\t%s\n', 
FileNames.BinMeltName{ifile}(1:dotInd(1)-1)); 
        fprintf(fid, '\nTotal number of grains: %i\n\tOlivine: %i\n\tOpx: 
%i\n', nOl + nOpx, nOl, nOpx); 
        fprintf(fid, '\nNumber of grains used in average: %i\n\tOlivine: 
%i\n\tOpx: %i\n', numel(phiOl) + numel(phiOpx), numel(phiOl), 
numel(phiOpx)); 
        fprintf(fid, '\nTotal Material Fractions:\n\tOlivine: %.2f%%\n\tOpx: 
%.2f%%\n\tMelt: %.2f%%\n\tTotal: %.2f%%\n', totalOlFraction*100, 
totalOpxFraction*100, totalMeltFraction*100, totalMaterialFraction*100); 
        fprintf(fid, '\nMelt fraction associated with each phase:\n'); 
        fprintf(fid, '\tOlivine: %.2f%% with error (-%.2f%% / +%.2f%%)\n', 
gMeanOl, abs(gMeanOl - gMeanOl/gStdOl), abs(gMeanOl - gMeanOpx*gStdOl)); 
        fprintf(fid, '\tOpx: %.2f%% with error (-%.2f%% / +%.2f%%)\n\n', 
gMeanOpx, abs(gMeanOpx - gMeanOpx/gStdOpx), abs(gMeanOpx - 
gMeanOpx*gStdOpx)); 
        fprintf(fid, 'Quartiles:\n\tOlivine: [%.2f%%, %.2f%%, 
%.2f%%]\n\tOpx: [%.2f%%, %.2f%%, %.2f%%]\n\n', Q1Ol*100, Q2Ol*100, Q3Ol*100, 
Q1Opx*100, Q2Opx*100, Q3Opx*100); 
        %         fprintf(fid, 'Partitioning ratio:\n\t%.2f +/- %.4f 
(Olivine to Opx)\n\n', R, RStd); 
        fclose(fid); 
    end 
     
    % Printing our results in the command window at the end of run 



 231 

    fprintf('\nTotal number of grains: %i\n\tOlivine: %i\n\tOpx: %i\n', nOl 
+ nOpx, nOl, nOpx); 
    fprintf('\nNumber of grains used in average: %i\n\tOlivine: %i\n\tOpx: 
%i\n', numel(phiOl) + numel(phiOpx), numel(phiOl), numel(phiOpx)); 
    fprintf('\nTotal Material Fractions:\n\tOlivine: %.2f%%\n\tOpx: 
%.2f%%\n\tMelt: %.2f%%\n\tTotal: %.2f%%\n', totalOlFraction*100, 
totalOpxFraction*100, totalMeltFraction*100, totalMaterialFraction*100); 
    fprintf('\nMelt fraction associated with each phase:\n'); 
    fprintf('\tOlivine: %.2f%% with error (-%.2f%% / +%.2f%%)\n', gMeanOl, 
abs(gMeanOl - gMeanOl/gStdOl), abs(gMeanOl - gMeanOpx*gStdOl)); 
    fprintf('\tOpx: %.2f%% with error (-%.2f%% / +%.2f%%)\n\n', gMeanOpx, 
abs(gMeanOpx - gMeanOpx/gStdOpx), abs(gMeanOpx - gMeanOpx*gStdOpx)); 
    fprintf('Quartiles:\n\tOlivine: [%.2f%%, %.2f%%, %.2f%%]\n\tOpx: 
[%.2f%%, %.2f%%, %.2f%%]\n\n', Q1Ol*100, Q2Ol*100, Q3Ol*100, Q1Opx*100, 
Q2Opx*100, Q3Opx*100); 
    fprintf('Partitioning ratio: %.2f +/- %.4f\n\n', R); 
     
    % ----------------------------------------------------------------------
-- 
    % Plotting the results 
    % ----------------------------------------------------------------------
-- 
    if plotSwitch % if 'Plot' is specified in the variable input 
        figure(1); clf; subplot(211) 
        nedge = 10; 
        edges = linspace(0, 0.4, nedge); 
        dataOl = histc(phiOl, edges); 
        dataOpx = histc(phiOpx, edges); 
        plot(edges, dataOl, 'g'); hold on; 
        plot(edges, dataOpx, 'r'); hold off; 
        xlabel('Local Melt Fraction'); 
        ylabel('# of Grains'); 
         
        title(sprintf('LP Histograms for %s%s-%s with p = %.1f and nedge = 
%i', seriesID, sampleID, subvolID, p, nedge)); 
         
        XLim = get(gca, 'XLim'); 
        YLim = get(gca, 'YLim'); 
         
        %         text(XLim(2)*.75, YLim(2)*.6, 
sprintf('Olivine:\nMean_\\phi: %.2f%%\n\\sigma_\\phi: 
%.2f%%\nOpx:\nMean_\\phi: %.2f%%\n\\sigma_\\phi: %.2f%%', gMeanOl, gStdOl, 
gMeanOpx, gStdOpx)); 
        text(XLim(2)*.75, YLim(2)*.6, sprintf('Olivine:\nMedian_\\phi: 
%.2f%%\nOpx:\nMedian_\\phi: %.2f%%', 100*Q2Ol, 100*Q2Opx)); 
        subplot(212) 
        plot(sort(phiOl),linspace(0,1,numel(phiOl)),'g'); 
        hold on; 
        plot(sort(phiOpx),linspace(0,1,numel(phiOpx)),'r'); 
         
        plot([Q1Ol, Q1Ol], [0 1], '--g'); 
        plot([Q2Ol, Q2Ol], [0 1], '--g'); 
        plot([Q3Ol, Q3Ol], [0 1], '--g'); 
         
        plot([Q1Opx, Q1Opx], [0 1], '--r'); 
        plot([Q2Opx, Q2Opx], [0 1], '--r'); 
        plot([Q3Opx, Q3Opx], [0 1], '--r'); 
         
        xlabel('Local Melt Fraction'); 
        ylabel('Cumulative frequency'); 
        legend('Olivine', 'Opx', 'Location', 'Southeast'); 
        set(gca,'xscale','log'); 
        xlim([0.01,1]); 
         
        if printSwitch % Saving the figure 
            dotLoc = strfind(FileNames.BinMeltName{ifile}, '.'); 
            saveName = sprintf('%s%s_LithPart_p%.2f.pdf', saveDir, 
FileNames.BinMeltName{ifile}(1:dotLoc(1)-1), p); 
            print(1, '-dpdf', saveName); 
            fprintf('Saving file to:\n\t%s\n\n', saveName); 
        end 
    end 



 232 

end 
 
end 
 

% ------------------------------------------------------------------------ % 

function FileNames = LabelFileReader(Dir, fileList) 
  
 FileNames = struct( ... 
     'DirTif', {}, ... 
     'BinMeltName', {}, ... 
     'BinOlName', {}, ... 
     'BinOpxName', {}, ... 
     'LabelOlName', {}, ... 
     'LabelOpxName', {}, ... 
     'OlAnlName', {}, ... 
     'OpxAnlName', {} ... 
     ); 
      
 fid = fopen(sprintf('%s%s', Dir, fileList)); 
 GoOn0 = 1; 
 while GoOn0 
     cline = fgetl(fid); 
     switch cline 
         case '# Binary Files Folder' 
             DirTif = {}; 
             GoOn1 = 1; next = 1; 
             nextLine = fgetl(fid); 
             while GoOn1                              
                 if isempty(nextLine) || ~ischar(nextLine); break; 
                 else 
                     DirTif{next,1} = nextLine; 
                     next = next + 1; 
                     nextLine = fgetl(fid); 
                 end                 
             end 
             FileNames(1).DirTif = DirTif; 
         case '# Melt 8-bit Binary File' 
             BinMeltName = {}; 
             GoOn1 = 1; next = 1; 
             nextLine = fgetl(fid); 
             while GoOn1                              
                 if isempty(nextLine) || ~ischar(nextLine); break; 
                 else 
                     BinMeltName{next,1} = nextLine; 
                     next = next + 1; 
                     nextLine = fgetl(fid); 
                 end                 
             end 
             FileNames.BinMeltName = BinMeltName; 
         case '# Olivine 8-bit Binary File' 
             BinOlName = {}; 
             GoOn1 = 1; next = 1; 
             nextLine = fgetl(fid); 
             while GoOn1                              
                 if isempty(nextLine) || ~ischar(nextLine); break; 
                 else 
                     BinOlName{next,1} = nextLine; 
                     next = next + 1; 
                     nextLine = fgetl(fid); 
                 end                 
             end 
             FileNames.BinOlName = BinOlName; 
         case '# Opx 8-bit Binary File' 
             BinOpxName = {}; 
             GoOn1 = 1; next = 1; 
             nextLine = fgetl(fid); 
             while GoOn1                              
                 if isempty(nextLine) || ~ischar(nextLine); break; 
                 else 
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                     BinOpxName{next,1} = nextLine; 
                     next = next + 1; 
                     nextLine = fgetl(fid); 
                 end                 
             end 
             FileNames.BinOpxName = BinOpxName; 
         case '# Olivine 16-bit Binary File for Interior Grains' 
             LabelOlName = {}; 
             GoOn1 = 1; next = 1; 
             nextLine = fgetl(fid); 
             while GoOn1                              
                 if isempty(nextLine) || ~ischar(nextLine); break; 
                 else 
                     LabelOlName{next,1} = nextLine; 
                     next = next + 1; 
                     nextLine = fgetl(fid); 
                 end                 
             end 
             FileNames.LabelOlName = LabelOlName; 
         case '# Opx 16-bit Binary File for Interior Grains' 
             LabelOpxName = {}; 
             GoOn1 = 1; next = 1; 
             nextLine = fgetl(fid); 
             while GoOn1                              
                 if isempty(nextLine) || ~ischar(nextLine); break; 
                 else 
                     LabelOpxName{next,1} = nextLine; 
                     next = next + 1; 
                     nextLine = fgetl(fid); 
                 end                 
             end 
             FileNames.LabelOpxName = LabelOpxName; 
         case '# Olivine Analysis Files' 
             OlAnlName = {}; 
             GoOn1 = 1; next = 1; 
             nextLine = fgetl(fid); 
             while GoOn1                              
                 if isempty(nextLine) || ~ischar(nextLine); break; 
                 else 
                     OlAnlName{next,1} = nextLine; 
                     next = next + 1; 
                     nextLine = fgetl(fid); 
                 end                 
             end 
             FileNames.OlAnlName = OlAnlName; 
         case '# Opx Analysis Files' 
             OpxAnlName = {}; 
             GoOn1 = 1; next = 1; 
             nextLine = fgetl(fid); 
             while GoOn1                              
                 if isempty(nextLine) || ~ischar(nextLine); break; 
                 else 
                     OpxAnlName{next,1} = nextLine; 
                     next = next + 1; 
                     nextLine = fgetl(fid); 
                 end                 
             end 
             FileNames.OpxAnlName = OpxAnlName; 
     end 
     if ~ischar(nextLine) && nextLine == -1;  
         GoOn0 = 0; 
     end 
 end 
  
 end 
 

% ------------------------------------------------------------------------ % 

function FinalImage = Tif3DReader(Dir, FileTif, varargin) 
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 if ~isempty(varargin) 
     if strcmp(varargin, 'Flip'); 
         flipSwitch = 1; 
     else 
         flipSwitch = 0; 
     end 
     if strcmp(varargin{1}, 'Plot') 
 %         cmd = varargin{1}; 
         islice = varargin{2}; 
         if ischar(islice) && strcmp(varargin{2}, 'All') 
         else 
             islice = varargin{2}; 
         end 
     end 
 else 
     flipSwitch = 0; 
 end 
  
 % FileTif='rec_scoba_12_200x200x200_sample8_pc-melt_final.tif'; 
 InfoImage=imfinfo([Dir, FileTif]); 
 mImage=InfoImage(1).Width; 
 nImage=InfoImage(1).Height; 
 NumberImages=length(InfoImage); 
 FinalImage=zeros(nImage,mImage,NumberImages,'uint16'); 
   
 TifLink = Tiff([Dir, FileTif], 'r'); 
 for i=1:NumberImages 
    TifLink.setDirectory(i); 
    FinalImage(:,:,i)=TifLink.read(); 
 end 
 TifLink.close(); 
  
 if flipSwitch 
     for iz = 1 : size(FinalImage, 3) 
         FinalImage(:,:,iz) = FinalImage(:,:,iz)'; 
     end 
 end 
 % FinalImage = double(FinalImage); 
  
 % getting the dimensions of the sample 
 % xloc = strfind(FileTif, 'x'); 
 % xDim = str2num(FileTif(xloc(1)-3:xloc(1)-1)); 
 % yDim = str2num(FileTif(xloc(2)-3:xloc(2)-1)); 
 % zDim = str2num(FileTif(xloc(2)+1:xloc(2)+3)); 
  
 % % Imported this section from online code  
 % % http://people.ece.cornell.edu/land/PROJECTS/Reconstruction/index.html 
 % %patch smoothing factor 
 % rfactor = 0.125;  
 % %isosurface size adjustment 
 % level = .8; 
 % %useful string constants 
 % c2 = 'facecolor'; 
 % c1 = 'edgecolor'; 
 %  
 % p=patch(isosurface(smooth3(FinalImage==1),level)); 
 % reducepatch(p,rfactor) 
 % set(p,c2,[1,0,0],c1,'none'); 
 %  
 % p=patch(isosurface(smooth3(FinalImage==2),level)); 
 % reducepatch(p,rfactor) 
 % set(p,c2,[0,1,0],c1,'none'); 
 % % spy(FinalImage(:,:,islice)); 
 % [Xi, Yi, Zi] = meshgrid(0:1:xDim-1, 0:1:yDim-1, 0:1:zDim-1); 
 %  
 % % Xi = uint8(Xi); 
 % % Yi = uint8(Yi); 
 % % Zi = uint8(Zi); 
 % % fidbl = double(FinalImage); 
 % % figure(1); clf; 
 % % ImageData2D = FinalImage(:,:,islice); 
 % % fv = isosurface(fidbl, Xi, Yi, Zi); 
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 % % slice(FinalImage, Xi, Yi, Zi); 
 % % colormap(jet); 
 % % bwi = im2bw(FinalImage(:,:,islice)); 
 % % image(bwi); 
 % if ~isempty(varargin) 
 %     image(FinalImage(:,:,islice)); 
 % end 
 % colormap(jet); 
  
 end 

 
% ------------------------------------------------------------------------ % 

Download ellipsoid_fit.m from http://www.mathworks.com/matlabcentral/fileexchange/24693-ellipsoid-
fit/content//ellipsoid_fit.m 
 
% ------------------------------------------------------------------------ % 

function [inpts, outpts, tf] = inoutEllipGen2(x, pars) 
  
 P = [pars(1), pars(4), pars(5); ... 
      pars(4), pars(2), pars(6); ... 
      pars(5), pars(6), pars(3)]; 
  
 % P = [pars(2), pars(4), pars(5); ... 
 %      pars(4), pars(1), pars(6); ... 
 %      pars(5), pars(6), pars(3)]; 
  
 M1 = P*x'; 
 M2 = sum((x').*M1, 1); 
  
 In = M2 <= 1; 
 Out = M2 > 1; 
  
 tf = In; 
  
 inpts = x(In,:); 
 outpts = x(Out,:); 
  
 end 
 
% ------------------------------------------------------------------------ % 
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