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The main objective of this dissertation was to explore the structural, electrical, 

and optical properties of undoped and extrinsically doped thin film and single crystal 

ZnO under various growth and processing thermal conditions in the context of 

understanding intrinsic defect formation and extrinsic dopant incorporation.   

Undoped ( )1000  ZnO thin films were grown by on-axis RF sputter deposition at 

a range of temperatures and in oxygen-rich and oxygen-deficient atmospheres.  For 

comparison, ( )1000  ZnO single crystals were thermally processed under similar 

conditions.  Samples were examined for temperature-dependent effects on surface and 

bulk properties for temperature-dependent changes in structure, semiconducting band 

gap, and Schottky barrier height in order to isolate temperature regions that may  

support conditions that minimize defect production.  



  

Phosphorus-doped ( )1000  ZnO thin films were grown and doped ZnO crystals 

were prepared under the same conditions described above.  Phosphorus was selected as 

a potential p-type dopant due to reduced concerns for outdiffusion of the dopant from 

the host crystal.  Films were grown via sputter deposition.  Crystals were prepared via 

planar (vapor) doping. 

By investigating undoped ZnO, this work expands current understanding of the 

fabrication of ZnO-based unipolar devices, such as Schottky diodes.  To this end, the 

structure (surface and bulk), composition, optical, and electrical properties of ZnO 

single crystals were investigated as a function of annealing temperature and atmosphere.  

Near-surface diffusion of Zn atoms was found to influence the Schottky barrier height.  

Annealing conditions that minimize donor defect states, as detected by 

photoluminescence, were found. 

By investigating extrinsically doped ZnO, this work sheds light on the feasibility 

of bipolar device fabrication using ZnO.  For film growth, we found a narrow window 

of deposition temperature and pressure that optimizes crystallinity and transmission in 

the ultraviolet spectrum for the preparation of p-type doped material.  For single 

crystals, we found optimal conditions for p–type doping ZnO using phosphorus vapor.  

Results from Hall measurements of these doped single crystals allowed for a revision of 

the limits defined by previously existing experimental results in the “failure to dope” 

rule for ZnO.   
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Chapter 1: Background and Overview 
 

1.1 Basic Properties of ZnO 
 
 
 ZnO is a wide band gap optoelectronic material belonging to the II-VI family of 

semiconductors.  It was discovered during the Bronze Age1.  The band gap of undoped 

ZnO is direct and is equal to 3.37 eV2.  It is transparent to visible light.   

 ZnO has received increased attention over the past few years because of its ease 

in fabrication3,4, its presumed radiation hardness properties (attributed to its large 

displacement energy = 57 eV)5, availability of large-area substrates6 and most 

importantly, its wide band gap, which makes it an excellent candidate for producing 

unipolar devices (for example, Schottky detectors) and bipolar devices (for example, 

ultraviolet (UV)-emitting diodes).  The challenge in producing unipolar and bipolar 

devices lies in the ability to control the n-type conductivity of ZnO and the ability to 

reliably p-type dope ZnO.    

 ZnO has a near-perfect hexagonal wurtzite structure, as depicted in Figure 1, 

consisting of Zn and O planes which are alternately stacked along the c-axis direction.  

The surface of ZnO may be Zn terminated ([0001]-oriented) or oxygen terminated 

([0001]-oriented).  Each Zn atom is tetrahedrally coordinated to four oxygen atoms.  

ZnO is a near-perfect hexagonal lattice in the sense that the ratio between lattice 

parameters, c/a,  is 1.601 as compared to the standard 1.633 value for a hexagonal 

lattice.  This is only a 2% deviation from the ideal hexagonal lattice.  The lattice 

parameters and the basic properties of ZnO are listed in Table 1.   
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Figure 1  Hexagonal lattice structure of ZnO 

 

 

Table 1: Basic Properties of ZnO 
 

Crystal System Wurtzite  

Lattice Constant a = 3.2465 Å,  c = 5.2066 Å 

Sublimation Point 1975 ± 25 oC 

Density 5.665 x 103 kg/ m3 

Dielectric Constant ε11 = 8.55, ε33 = 10.20 x 10 -11F/m  

Band Gap Egap = 3.37 eV 

Optical Transparency Range 0.4 – 2.5 µm 

 

c = 5.206Å 

a = 3.24 Å 

 Zn 

 

  O 

[000 1 ] direction 
oxygen terminated 

[0001] direction 
zinc terminated 
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1.2 Basic Notions of Defects and Doping  

 

1.2.1 Intrinsic Defects 

 In its native state, an undoped semiconductor will contain defects that arise 

during growth and fabrication processes.  These intrinsic or native defects may be one-

dimensional—point defects—missing atoms (vacancies), additional atoms appearing in 

sites other than substitution sites (interstitials) and atoms in the wrong place (antisites—

e.g. a cation sitting on an anion site).  Defects may also have higher dimensions--such 

as dislocations, grain boundaries, twins, or stacking faults.   

 

1.2.2 Extrinsic Defects 

 Left in their native, undoped, state most semiconductors would have few  

electrical applications since on average, the electrical conductivity of a semiconductor is 

lower than that of a metal.  For this reason, it is necessary to introduce defects into a 

semiconductor, extrinsic defects, which modify the electrical conductivity.   These 

defects can be introduced as single elements or multiple elements (co-doping). 

 Consider the example of substituting boron into a silicon lattice (Figure 2 (a)).  

Silicon has a valence state of +4 and boron has a valence state of +3.  In the undoped 

state, each silicon atom forms four covalent bonds, one with each of its nearest 

neighbors.  Boron has three valence electrons, so it can complete bonding only if it 

takes an electron from the valence band associated with the Si-Si bond.  This leaves 

behind a hole that is able to participate in conduction.  Boron is called an acceptor in Si 
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because it accepts an electron from the valence band, leaving behind mobile holes.  The 

hole can be ionized from the valence band (Figure 2(b)).   
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Figure 2  p-type doping Silicon:  (a) Lattice structure of Si, showing the position of the boron dopant.  (b) 
Effect of p-type doping Silicon on band structure.  

 

 The ionization energy of the acceptor impurity is modeled as an analog to the 

hydrogen atom with the dielectric constant (ε ) and effective mass (m*)  of the host 

+ + + + 

EConduction 

 

 

 

EAcceptor 

EFermi 

EValence 

 

  Si          Si    Si 

 

 

                  

  Si          Si    Si 

 

 

 

  Si          B   (-) charge excess  

 

  

 

 

(a) 

(b) 

(+) 

hole 

from Si-Si bond 

         



 

 5
 

material.  A hydrogen atom has a binding energy of  
2

4

)4(2 ho

me
πε
−

.  For the 

semiconductor, e2 is replaced by e2/ε and m by the effective mass, m*.  The acceptor 

ionization energy is written as: 

2

*4

)4(2 ho
acceptor

me
E

πεε
=   

  

 Analogously, the Bohr radius of the hydrogen atom, [(4πεoh
2)/me2], is 

converted to the Bohr radius of an acceptor impurity7: 

 

2*

24

em
a o

acceptor

hπεε
=  

 

1.2.3 Thermodynamics of Defect Formation 

 The concentration of a defect (intrinsic or extrinsic) is determined by its 

formation energy.  The formation energy is influenced by the concentration of existing 

defects in the host material, the host’s stoichiometry, dopant concentration and other 

growth/processing conditions (for example, p(O2) and deposition temperature).  Basic 

thermodynamics can be used to write out the formations for defects in a semiconductor.  

 

1.2.3.a   Formation Energy:  Uncharged Defects 
 
 Introducing an uncharged impurity into a host crystal, A0, depends upon the 

chemical potential of the impurity, µA, because the impurity is taken from a reservoir 

(1.1) 

(1.2) 
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with finite energy.  The formation energy required to introduce an uncharged impurity 

into a host lattice can be written as8: 

 

∆E(A0) = E host(Ao) – E total(0) - µA - µ host  

 

 Where Ehost(A0) = the total energy of the host crystal containing one uncharged  

impurity;  Etotal(0) =  the total energy of the host crystal without an impurity;  µA = the 

chemical potential of the impurity in the reservoir from which it is taken and µHost = the 

energy of the host atom(s) in its reservoir.  For a binary compound, µHost =  µAnion  + 

µCation. 

 

1.2.3.b   Formation Energy:  Charged Defects 
 
 
 Introducing a charged defect incurs two energy costs to the host lattice: 

(1) Energy is required to ionize a neutral defect state.  (For example, 

the acceptor, A0, could ionize into a positively charged donor 

state, A+) 

(2) Energy to extract/replace a charge into the Fermi sea.  

Knowing this, the formation energy for introducing a charged donor impurity, 

A+, to a host lattice can be written as: 

 

∆E(A+) = E host(A0) + E total(A0→A+) + q E Fermi 

 

(1.3) 

 

(1.4) 
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Where Ehost(A0) = the total energy of the host crystal containing one uncharged  

impurity;  Etotal(A0→A+) =  the total energy of the host crystal containing an impurity of 

charge q;  qEFermi =  the energy associated with the charge which resides in the Fermi 

reservoir.  

 An equivalent equation can be written for the formation energy required to 

introduce a charged acceptor impurity, A-, to a host lattice: 

 

∆E(A-) = E host (A0) + E total (A0→A-)  - q E Fermi 
 
 

1.2.3.c  Compensation 
 

 The introduction of a charged impurity into the host material may induce the 

formation of an oppositely charged native defect, known as compensation9,10.  

Compensation is an attempt to return the system to its lowest energy state—the original 

EFermi, by reversing the dopant’s effects on the band structure.  By reversing the effects 

of the dopant, the Fermi level is shifted back to its original position.   

 For example, when an acceptor defect is introduced into an n-type material, a 

defect level is formed below EFermi and near the valence band edge.  The host lattice can 

come into equilibrium by dropping an electron from a filled state (a donor state within 

the gap or perhaps the conduction band) into the newly created acceptor state level, 

filling the acceptor state.  Thus, the acceptor state is trapped and unable to participate in 

modifying the conductivity type of the host material.  

 From the previous subsection, if a host lattice is doped with donor impurities 

(A+), EFermi will increase (move closer to the conduction band minimum).  As EFermi 

 

(1.5) 
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increases, the formation energy of native acceptors in the host lattice, ∆E(A-),  will 

decrease due to the minus sign in front of qEFermi term (Eqn. 1.4).  At some point, 

∆E(A+) could be low enough to spontaneously generate defects that would negate the 

effects of intentional doping.11.   

 As we will see in Section 1.3, doping limits in wide band gap semiconductors 

are believed to originate from interplays between intentional defect introduction and the 

formation of compensating states. 

 

1.2.4 Defect Energy Levels 

 Independent of whether the defect is intrinsic or extrinsic, the periodicity of the 

host lattice is disrupted.  This disruption manifests itself as a perturbation of the host’s 

band structure—defect energy levels appear.  Defect energy levels are classified as deep 

levels if they are 0.1 eV or more away from the valence band (acceptor defect level) or 

conduction band (donor defect level).  Deep levels have an insignificant ionization of 

carriers at room temperature.  Defect energy levels are classified as shallow levels if 

they are less than 0.1 eV or more away from the valence or conduction band.  Shallow 

levels have a measurable number of thermally excited carriers at room temperature.   

 

1.3 Doping Asymmetry of the Wide Band Gap Semiconductors  

 
Almost twenty years ago, it was observed that several wide band gap 

semiconductors were readily doped (either intrinsically or extrinsically) as one 

conductivity type, but not as readily doped as the other conductivity type12.  For 
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example, MgTe and MgSe can be p-type doped, but n-type doping is challenging.  

Similarly, CdS and ZnS can be doped to form good n-type conductors, but p-type 

doping is challenging13.   

Other semiconductors, such as Si and Ge, can be readily n- or p-type doped, that 

is to say that they can be symmetrically doped.  The wide band gap semiconductors 

were deemed asymmetrically doped.  The observed doping asymmetry was initially 

believed to arise from sample growth and preparation conditions—dopant quality, 

dopant solubility and other conditions that were not fundamentally tied to the electronic 

structure of the material.  

By 1998, the term “doping asymmetry” underwent a change in nomenclature, 

taking on a connotation of grim proportions—the failure to dope rule14,15.  The failure to 

dope rule, which will be discussed in detail in Chapter 2, used phenomenological 

arguments to come to the conclusion that if a certain wide band gap semiconductor 

could be readily p- (n-) type doped any efforts to dope that material n- (p-) type would 

fail.   

The failure to dope rule originates from our discussion in Subsection 1.2.3.b and 

c—the formation energy required in order to introduce a charged impurity into the host 

lattice may become low enough to generate a compensating defect.  The failure to dope 

rule states that some wide band gap semiconductors may thwart their own doping 

processes in this way.  This is because during the introduction of the intended dopant, 

the formation energy of a compensating defect may be driven to such a low value that a 

large concentration of these compensating defects is spontaneously generated.  These 
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spontaneously generated compensating defects are capable of negating the effect of the 

intended dopant.  

For example, if a donor is introduced into a semiconductor that is readily 

rendered n-type, such as CdS or ZnO, as the donor dopant concentration increases, the 

formation energy for the compensating acceptor in the host lattice decreases.  

Eventually, the host lattice will reach a point when the efforts to intentionally dope are 

at risk of compensation due to the lowered formation energy of the defect state that is 

capable of compensation.  In this situation, EFermi is pinned (E
pin
Fermi ).  E

pin
Fermi  represents 

the limit for EFermi in order for an intentionally doped system to remain uncompensated.   

There are two E pin
Fermi  values: E

),( npin
Fermi  and E

),( ppin
Fermi .  E

),( npin
Fermi  is defined relative to 

the conduction band minimum and sets a limit on the n-type doping behavior of a 

semiconductor.  E ),( ppin
Fermi  is defined relative to the valence band maximum and sets a 

limit on the p-type doping behavior.  The position of E pin
Fermi  is influenced heavily by the 

position of the conduction band minimum (E ),( npin
Fermi ) or the valence band maximum 

(E ),( ppin
Fermi ).  The valence band maximum and conduction band minimum for a range of 

semiconductors and insulators have been calculated from first-principles16.  

In the failure to dope rule, limits to E )/,(
,

pnpin
alExperimentFermi  are set based on reported 

experimental results.  This approach relates E )/,(
,

pnpin
alExperimentFermi  to the measured carrier 

concentration of a wide band gap semiconductor, pnN /  , via simple Fermi-Dirac 

statistics17:   
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dE
EE
E

mETN pnpin
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Where mp* = hole effective mass and β = 1/kBT.    The position of E )/,(
,

pnpin
alExperimentFermi  is 

determined by inverting the above equation and using experimental values of m*
p and 

pnN /  

 When comparing the band diagrams for various semiconductors and including 

pinned EFermi, it is easier to plot and compare if the E
)/,( pnpin

Fermi  levels are set to constant 

values and the conduction band minimum and valence band maximum are scaled 

accordingly.  This is depicted in Figure 3, where E )/,(
,

pnpin
alExperimentFermi  are represented by solid 

lines and E )/,( pnpin
Fermi  calculations from first principles are drawn as dashed lines.  Some 

materials, such as ZnO, had only “negligible” E )/,(
,

pnpin
alExperimentFermi  values and thus, in those 

cases, there is no solid line printed in the figure.  

(1.6) 
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Figure 3 Band diagram for II-VI and I-II-VI2 compounds

18.  Values for the valence band maximum and 
conduction band minimum energies are indicated by the lower and upper numbers in a given column, 

respectively.  Dashed lines indicate E ),(
,

npin
alExperimentFermi (upper dashed line) and E ),(

,
ppin

alExperimentFermi . (lower 

dashed line) calculated from theoretical first principles.  Short solid lines indicate E
)/,(

,
pnpin

lTheoreticaFermi .  “C/D” 

indicates that the position of the pinned level is consistent with data. 
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,
npin

alExperimentFermiE

Valence Band Maximum 

Conduction Band Minimum 

),(
,
ppin

alExperimentFermiE



 

 13
 

Chapter 2: Doping ZnO 

 
 As Figure 3 illustrated, ZnO is one of the many wide band gap semiconductors 

that is believed to exhibit a doping asymmetry.  E ),( npin
Fermi  is inside the conduction band--

n-type conducting ZnO is readily achievable via either native or extrinsic defects. 

E ),( ppin
Fermi  for ZnO is predicted to be 1.00 eV above the valence band, which if the failure 

to dope rule is correct, would imply that p-type doping ZnO will not be simple to 

achieve with either intrinsic or extrinsic defects.   

 We introduce the following shorthand for the discussion of defect states in ZnO 

(Kroger-Vink notation19):  Zni ≡ Zn interstitial; Oi ≡ O interstitial;  VZn ≡ Zn vacancy 

and VO ≡ oxygen vacancy.   

 

2.1 n-type Doping ZnO  

 

2.1.1 Intrinsic n-type doping  

 n-type ZnO is easily formed by native defects.  The evidence for this can be 

found by simply picking up any film or crystal that has not been subjected to any other 

doping process—any “undoped” (extrinsically) ZnO film or crystal will likely exhibit n-

type conductivity.  The formation of intrinsic defects stabilizes ZnO as an n-type 

conductor20.  This is a consequence of low formation energies of native n-type defects--

Zn interstitials (Zni) and oxygen vacancies (Vo)
21,22,23.  Calculations have predicted that 
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∆E(Zni) = 0.7 eV and ∆E(Vo) = 0.05 eV, between 1/3 to 1/10 the formation energies for 

native acceptor defects.   

 Although it is commonly accepted that ZnO is n-type due to zinc interstitials or 

oxygen vacancies, it is not clear if specific thermodynamic conditions drive only one of 

these defects or if both of them are responsible in equal concentrations for n-type 

conductivity in ZnO24,25,26.   

 

2.1.2 Extrinsic n-type doping  

 Native defects have a limited capacity to controllably modify the properties of n-

type ZnO.  In order to controllably modify the electrical conductivity of n-type ZnO, 

extrinsic defects are introduced.    

 n-type enhancers have typically been found among Group I or Group III 

elements.  Group III elements such as aluminum,27,28,29 gallium,30 and indium31 are 

often selected to enhance n-type doping capabilities.  Films have comparable mobilities 

to that of undoped ZnO (~20 –60 cm/(V-s)), carrier concentrations of 1020 – 1021 cm-3 

and  resistivities as low as 10-4 Ω−cm. 

 

2.2 p-type Doping ZnO  

 
The ease by which ZnO is doped n-type contrasts to the historical difficulties 

associated with p-type ZnO.  Efforts to p-type dope ZnO by driving native defects or by 

the introduction of single or multi-element extrinsic dopants have been ongoing for the 
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past two decades.  In this chapter, we discuss the challenges associated with p-type 

doping ZnO and review efforts to intrinsically and extrinsically p-type dope ZnO.  

 

2.2.1 The Challenges Associated with p-type Doping ZnO 

In Section 1.3, we briefly introduced two concepts associated with the challenge 

of doping wide band gap semiconductors: 

a. Doping asymmetry/failure to dope rule 

b. Process- and dopant-associated conditions 

We now discuss these two concepts as they apply to p-type doping ZnO.  

 

2.2.1.a  ZnO and the Failure-to-Dope Rule 
 

The formation energy of a defect that can kill off efforts to p-type dope a wide 

band gap semiconductor (Subsection 1.2.3.b) can be simplified to: ∆Ep ~ q E ),( ppin
Fermi . 

 For p-type ZnO, the authors of the seminal failure-to-dope rule article 

determined that q E ),( ppin
Fermi  was 1.00 eV above the valence band maximum (Fig. 4).  This 

is far enough away from the Fermi level to indicate that any effort to p-type dope ZnO 

would likely be met with compensating defects.  That is, E ),( ppin
Fermi  is far away from the 

valence band maximum and so, the formation energy of the compensating donor defect, 

∆E(A+), will be low.  The result—difficulty in p-type doping ZnO due to the low 

formation energies of compensating defects.  Local Density Approximation calculations 

determined that the formation of donor defects were indeed low relative to the 
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formation energies of acceptor defects- at least 1/3rd, if not 1/10th the value of the 

formation energy of acceptor defects32.   

q E ),( ppin
Fermi  was determined to be 1.00 eV above the valence band by assuming that  

the hole concentration of p-type ZnO was “negligible.”  Since the Fermi-Dirac equation 

used to determine the carrier concentration has only two free parameters: the carrier 

concentration and the effective mass, assuming that the carrier concentration is 

“negligible” will naturally paint a dismal picture for the ability to p-type dope ZnO.  

 In this dissertation, we update the failure-to-dope rule.  We describe the 

approach that we took to develop a process for p-type doping ZnO single crystals with 

hole concentrations that could hardly be called “negligible.” (Chapters 5 and 6).  In 

Chapter 7, we use our experimental results in order to update the failure-to-dope rule.  

We show that the position of E ),( ppin
Fermi  is not 1.00 eV from the valence band maximum, 

painting a slightly more optimistic picture for the future of p-type doping of ZnO.  

 

2.2.1.b  Process- and Dopant-Associated Conditions 
  

 While the failure-to-dope rule sets constraints based on the pinning of EFermi, 

there are other terms in the formation energy equations introduced in Section 1.2.3.b—

chemical potentials—influenced by the exchange of host and dopant particles in and out 

of their respective reservoirs.  These chemical potentials can be modified by process-

associated conditions (growth/processing temperature) and dopant-associated conditions 

(relative electronegativity of the dopant & host atoms, solubility, competitive phases).   
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Growth/Processing Temperature: Influences the resulting concentration of dopant 

incorporated into the lattice by modifying Eformation.  For example, heating in order to 

reduce the chemical potential is believed to facilitate the dissolution of dopants into a 

host material33.   

 

Electronegativity Differences:  Linus Pauling spearheaded efforts in chemistry to 

understand the nature of chemical bonds in compounds34.  He developed a series of 

rules that simplify the mechanism of lattice formation down to its bare electrostatics.  

Of significance to this discussion is Pauling Rule #5—Environmental Homogeneity—

chemically similar atoms will prefer similar environments.  In other words, it is 

energetically favorable to insert a dopant material of comparable electronegativity to 

that of the host elements.  In addition to the electronegativity difference between the 

dopant atom and the appropriate host atom, one must also consider the ability of the 

dopant atom to coordinate with the structure’s existing coordination.   

 

Limited solubility of dopant atoms: The ability of one material to dissolve into another 

is a variation on Pauling Rule #5:  materials that are chemically similar or have similar 

sizes tend to dissolve into one another with ease compared to materials with significant 

chemical or physical differences.  The solubility is the maximum equilibrium 

concentration that can be attained in the semiconducting host material.  The equilibrium 

concentration, c, is35: 

TkE

sites
BformationeNc

/−=  

 

 

(2.1) 
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Where Eformation = formation energy; Nsites = the number of sites that the impurity can be 

incorporated onto; T = temperature and kB = Boltzmann’s constant. 

 

2.2.2 Intrinsic p-type doping 

 
In principle, ZnO could be p-type doped via intrinsic defects, namely: oxygen 

interstitials (Oi) and Zn vacancies (VZn).  However possible it may seem, there is one  

significant factor that would steer any sensible experimentalist away from attempting to 

p-type dope ZnO solely by intrinsic defects: formation energy.  Firstly, as stated in 

Section 2.2.1.a, the formation energies for acceptor defects (Oi and VZn) are large in 

comparison to those for donor defects.  So, under equilibrium conditions, the donors 

would win out.  Even if it were possible to somehow minimize or even drive out the n-

type native defects, the formation energies for acceptor defects may still be high and 

thus, only a small concentration of p-type defects would form36.   

 

Competitive Phase Formation:  The introduction of a large concentration of dopant 

material does not guarantee that the host material will allow the dopant to substitute 

onto the appropriate lattice site.  Some fraction of the dopant material may interact with 

host atoms to form other phases whose properties may compete with the properties of 

the desired doped phase37,38.    

 

Unintentional Introduction of Compensating Donor Defects:  Atmospheric hydrogen, 

which is ubiquitous in even the most pristine deposition ambients, may be an 
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unintentional culprit of compensation39,40.  If this is the case, hydrogen would pose a 

significant challenge to the doping process, as it can act as an amphoteric dopant, 

countering whichever conductivity is prevailing at the time of exposure.  O-H bonds 

have a negative energy of formation for all H+ charge states (-1.84 to -1.59 eV) and 

locations along the wurtzite structure, H2, H
- and H0 all have positive energies of 

formation (0.84, 3.92, and 1.07 eV, respectively)41. Thus, the H+ form of hydrogen 

would be the predominant charge state at an oxygen-terminated ZnO surface (as is the 

case with our samples).  The H+ state would serve as a donor to ZnO in the form of 

Zn(OH)2.  

 

Limited impurity ionization at room temperature caused by deep level impurities:  The 

impurity ionization energy determines the fraction of carriers doped into the host 

material that will be thermally activated and free to participate in conduction.  As 

discussed earlier, it is determined by the intrinsic properties of the host material 

(effective mass, dielectric constant).  At room temperature, the ionization energy must 

be kBT = 26 meV or less in order to have a significant number of carriers to participate 

in conduction.  If the dopant’s impurity level is deep, meaning that it is positioned at 

greater than 26 meV (relative to the valence band edge for p-type semiconductors) the 

probability of thermal excitation of carriers will be low.  For example, an impurity level 

of 200 meV would have only roughly 1% of its carriers free to participate in 

conduction.  
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2.2.3 Extrinsic p-type doping 

 
Although there have been some reports in the literature of p-type doping ZnO 

with intrinsic dopants those reports are not commonplace42,43,44,45.  More commonly, p-

type doping ZnO has been pursued by introducing extrinsic defects.  Extrinsic dopants 

for p-type doping ZnO include single element substitutions as well as multi-element 

(co-doping) efforts.  To p-type dope ZnO using a single element substitution, an excess 

of holes is required.  So the impurities introduced should have a valence state of +1 or -

3.  Either one of these states would produce an excess of holes.   

 

2.2.3.a  Single Element Substitutions:  +1 and –3 Valence States 
  
 

Group I elements such as K, Li and Na all have a +1 valence state and thus, have 

the potential to substitute on the Zn site.  Experimentally, they have not been proven to 

be effective p-type dopants.  For example, K enters ZnO as an interstitial, rather than 

substituting onto the Zn site46.  It is predicted that Li or Na as dopants for p-typing ZnO 

may form inclusions (Na2O or Li2O) and/or hydrogen complexes (Na-H or Li-H), both 

of which have lower energies of formation in comparison to the energy of formation for 

dopant insertion into the ZnO lattice47,48.  Other +1 valence state elements outside of 

Group I, such as Ag, which was predicted to have a near-deep acceptor state49, were 

attempted during the investigatory stages of this thesis and were, due to sample 

preparation issues, not reported in the body of this work.   

Group V elements such as N, P, As and Sb have a -3 oxidation state that would 

satisfy the constraint for p-doping ZnO by substituting at the oxygen site.  We will 
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discuss Group V dopants in more detail in subsection 5.  Theoretical calculations of the 

energy levels of N, P, As and Sb as substitutional impurities for ZnO are shown in 

Figure 4.   

 

 
Figure 4 Predicted energy levels of anion impurities introduced into different wurtzite lattices vs. 

energy of a given element’s p-orbital70 

 
 
 
 

2.2.3.b  Co-Doping 
  

Co-doping using metal donors (for example, Al or Ga) along with an acceptor 

state element (for example, N, Cu or Li) has been attempted for p-type doping ZnO with 

      P As          Li Na 
         Sb       
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limited reproducibility50,51.  With co-doping, an acceptor-donor complex is formed.  The 

thought here is that the acceptor is introduced with overall lower activation energy, 

enhancing the ability of the acceptor to be incorporated into the ZnO lattice52.   

While co-doping improves the chance of incorporation by substitution, the issue 

of localized hole states still remains unsolved by this method.  For this reason, co-

doping approaches were not considered for this investigation.   

 

2.2.4 Group V Elements as Extrinsic p-type Dopants for ZnO 

 
Group V elements such as N, P, As, and Sb have been suggested as possible 

dopants for p-type doping ZnO53.  Looking at their electron configurations, Group V 

dopants have the capacity to be amphoteric, that is, they have the capacity to act as a 

donor or acceptor.  The outer orbitals for Group V elements are s2p3—so the p orbital 

can be filled completely (-3), it may be emptied (+3) or both s and p orbitals can be 

emptied (+5).  The possible oxidation states for these elements are listed in Table 2.  At 

the time of this writing, there was no published work on the amphoteric nature of Group 

V dopants in ZnO. 

 

Electronegativity Differences: Of the possible Group V dopants, nitrogen and 

phosphorus are under vigorous investigation.  Invoking Pauling Rule 5, we briefly 

examine the electronegativity differences of Group V elements bonded to either Zn or O 

in Table 3.  The percent ionic character in the bond was calculated using an empirical 
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relationship proposed by Linus Pauling that is related to the electronegativity difference 

between the two constituent elements, A and B: 

 

percent ionic character = 100 )( )(. AAe χχ −− 2501  

 

 Where χA and χB are the electronegativities of element A and element B, 

respectively.  

The key question is whether or not evidence exists for less disruption of the 

overall electrostatic background (hence, reduced Madelung potential and energy of 

lattice formation).  While none of the Group V dopants has a close ionic character when 

bonded to Zn, the Zn-N bond is more ionic than the Zn-P bond, indicating that N may 

make a better p-type dopant than phosphorus since there is a smaller % difference 

between the nature of the Zn-N bond and the Zn-O bond compared to the Zn-P bond.   

 

Ionic Radii: A comparison of ionic radii for Zn, O and candidate p-type doping 

elements along with coordination and oxidation numbers can be found in Table 4.   

Recall, that Zn and O are four-fold coordinated in the ZnO lattice.    A general rule of 

thumb is that two elements can substitute for one another if their ionic radii are within 

15% of one another.   

 

(2.2) 
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Table 2: Oxidation states of Group V elements 
 

Oxidation States Element Electron 

Configuration 

Positive Negative 

 N [He] 2s2  2p3 +5, +4, +3, +2, +1  -1, -2, -3 

 P  [Ne] 3s2  3p3 +5,  +3 -3 

 As [Ar] 4s2  4p3 +5,  +3 -3 

 Sb [Kr] 5s2  5p3 +5,  +3 -3 

 Bi [Xe] 6s2  6p3 +5,  +3 X 

 

 

Table 3: Electronegativity difference and % ionic character of Zn, O and dopant elements 
 

Bond Bond 

Length 

[nm] 

Pauling 

Electronegativity 

Difference 

% Ionic 

Character of 

Bond 

Zn-O 0.197 1.8 56 
Zn-N 0.201 1.4 39 
Zn-P 0.248 0.5 6 
Zn-As 0.256 0.4 4 
Zn-Sb N/A 0.3 2 
Zn-Bi N/A 0.3 2 

 

 



 

 25
 

 
 

Table 4: Comparison of ionic radii for Zn, O and candidate dopant material54 
 
 

Element Oxidation 
Number 

Coordination 
 

Ionic 
Radius[Å] 

 
4 0.60 

5 0.68 

6 0.74 

 
 
Zn 

 
 

+2 

8 0.90 

2 1.35 

3 1.36 

4 1.38 

5 1.40 

 
 
 
O 

 
 
 
-2 
 

6 1.42 

-3 4 1.46 
+3 6 0.16 

N 

+5 6 0.13 

-3 4 2.12 

+3 6 0.44 

4 0.17 
5 0.29 

 
 

P 
 
+5 

6 0.38 

-3  2.22 
+3 6 0.58 

4 0.34 

  
As 

 

+5 
6 0.46 

-3  2.45 
4 0.76 
5 0.80 

 
+3 

6 0.76 

 
 
Sb 

 

+5 6 0.6 

5 0.96  

6 1.03 

 
Bi 

 
+3 

8 1.17 
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Competitive Phase Formation:  ZnO, like many wide band gap materials, has a low 

dielectric constant, indicative of contracted outer orbitals.  Consequently, a larger 

concentration of dopant material may be necessary in order to increase the outer orbitals 

to a size that will permit overlap and consequently, conduction, to take place55.  

Increasing the concentration of the dopant does not necessarily facilitate dopant 

incorporation, since competing compounds may form.  For example, in the case of 

using phosphorus to attempt to p-type ZnO, Zn3P2 may form, placing constraints on the 

concentration of P available for ZnO doping.  Zn3P2 is also a p-type material with a 

band gap of ~1.3 eV.56  Table 5 is a comprehensive table of potential competitive 

phases and their conductivity types for group II elements combined with group V 

elements.  

 
Table 5: List of potential competitive phases & their conductivity types  

for Group II elements combined with Group V dopants57 
 

Group II 

Group V 

3d
10
 4s

2
 

Zn 

4d
10
5s

2 

Cd 

4s
2
4p 

Ga 

5s
2
5p 

In 

2p
3
 

N 

X X n-type 
GaN 

X 

3p
3
 

P  

p-type 
Zn3P2 

X n-type 
GaP 

n-type 
InP 

4p
3
 

As 

p-type 
Zn3As2 
ZnAs2 

n-type 
Cd3As2 
CdAs2 

n-type 
GaAs 

n-type 
InAs 

5p
3
 

Sb 

p-type 
ZnSb 

p-type 
CdSb 

p-type 
GaSb 

p-type 
InSb 

6p
3
 

Bi 

X X X X 

 

Note: “X’ in Table 5 denotes that there is no known compound produced from 

this combination of elements. 
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Limited Solubility of Dopant Atoms: Almost 20 years before the rush to produce p-type 

ZnO, a group of theorists speculated that while N is likely to be a shallow dopant in 

ZnO, it is not very soluble70.  They speculated that ion implantation may be the only 

way to dope ZnO.  Nitrogen, as N2, NO
-, or NO2, has been attempted as a p-type dopant 

in ZnO58,59.  It has been found that activation of N to a free radical form60 or growth via 

temperature modulated epitaxy61 does give rise to p-type conductivity; however, 

samples undergo conversion to their original n-type state after a few days in an ambient 

environment62.   

We suspect that if there are minimal oxygen vacancies and Zn interstitials at the 

time of the initial film growth (n-type conductivity contributions), since no additional 

Zn is added post-deposition, oxygen vacancy formation by out-diffusion of nitrogen, 

which may have occupied oxygen’s position in the lattice is the likely culprit for 

reversion to the original n-type state.  The reported timescales of a few hours to a few 

days is suggestive of a rapid diffusion mechanism, such as diffusion of nitrogen along 

grain boundaries in the film out to the surface63. 

 While nitrogen may seem like an obvious and potentially successful candidate 

for p-type doping of ZnO, it may be solubility or outdiffusion limited.  Thus, it is 

important to explore possible alternatives.  Phosphorus is one of those alternatives.  

Given its electron configuration, for p-type doping ZnO, phosphorus should substitute 

on the anion-site with p orbital character.  The impurity level for phosphorus in ZnO is 

not agreed upon; some predictions show that it is at the shallow-deep borderline64, while 

others predict that it is deep.65, 66 
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Compensation by formation of undesirable dopant complexes:  It is possible that the 

dopant compensates itself by forming a defect complex.  This is possible if the energy 

of formation of the defect complex is less than the energy of formation of the dopant 

impurity.   Such complexes have been observed in efforts to n-type dope GaAs with 

Si67.  The formation of compensating dopant complexes is predicted for II-VI 

semiconductors when doped with N, P, As or Sb, but not specifically for ZnO68.   

The most common dopant complexes are extrinsic dopant defects known as DX 

(a complex composed of a donor, D, and another element in the complex, X) centers, in 

n-type systems and AX centers in p-type systems.  We’ll focus on AX centers here.  

AX centers are a special class of deep-level defect capable of compensating for 

the introduction of acceptors.  In the case of ZnO, an AX center could form by breaking 

two Zn-O bonds and forming one O-O bond69.  In the process, two electrons are 

produced, thus adding to the overall balance of donors.  This defect is known to be 

destabilized by large lattice distortions in other wide-band gap semiconductors, such as 

ZnSe and ZnMgSe70. 

Arsenic has been reported to be a p-type dopant71,72.  Reported carrier 

concentrations range from 1015 to 10
18 cm-3 and hole mobilities range from 6-35 

cm2/(V-s) with no correlation between the carrier concentration and hole mobility.  The 

defect level of As is predicted to be quite deep (Eacceptor = 930 meV)
73.  There is some 

speculation that strain relief and Coulomb interactions between As and Zn may produce 

a new class of defects that have shallow levels—wherein As occupies a Zn antisite and 

two Zn vacancies are induced.  The Zn vacancies would then represent a native kind of 
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p-type dopant.  In this case, As would not act as the direct source of the p-type doping, 

but rather as a facilitator for the formation of a native p-type defects.     

A similar complex formation that facilitates p-type doping has been predicted 

for antimony (Sb) doped into ZnO.  Experimental efforts to dope Sb into ZnO have 

been equally limited.  Results show p-type behavior with low mobilities (1.5 cm2/V-s) 

and high carrier concentrations (5 x 1020 cm-3)74. 
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Chapter 3: Conceptual Map of this Effort 

 The focus of this dissertation is best summarized as a “bottom up” approach, as 

indicated in the diagram below: 

 

 

 

 

 

 

 

 

 

 
 
 
 

Figure 5 Conceptual map of this investigation 

 

 Efforts to p-type dope ZnO currently do not rest on a solid foundation of 

understanding the conditions that promote or suppress defect formation.  In this 

dissertation, we approach the problem of producing p-type ZnO by understanding defect 

formation in the undoped material.   In Chapters 4 and 5 of this dissertation, we begin to 

build this solid foundation by examining the thermal evolution of defects in undoped 

ZnO.   

 Using the foundation set in Chapters 4 and 5, in Chapter 6, we discuss our 

investigation of the thermal evolution of doped ZnO thin films and single crystals.  

 

Chapters 4 and 5: 

Thermal Evolution of Undoped ZnO 
 

 

Chapter 6: 

Thermal Evolution of Doped ZnO 
 

Chapter 7: 

Device 

Fabrication 

Implications 
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Finally, in Chapter 7 we discuss our findings in the context of unipolar (Schottky) and 

bipolar device fabrication.  
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Chapter 4: Thermal Evolution of Bulk Properties of 
Undoped ZnO Thin Films 

 

4.1 Introduction and Approach 

 

In order to understand the conditions that minimize the presence of defects that may 

lead to self-compensation, competitive phase formation, or introduction of undesirable 

impurities that have the capacity to compete with p-type doping of ZnO, we began by 

optimizing the conditions under which undoped ZnO thin films may be grown.  We 

investigated the effects of deposition temperature (Tdep) and p(O2) on structural and 

optical properties of undoped ZnO thin films.   

While investigating process conditions that would minimize the concentration of 

undesirable, compensating defects, the following guideline was kept in mind:  films 

should be prepared in such a way that, according to theory, would maximize the 

formation energy of the undesirable defect states. 

RF sputter deposition was selected as the thin film deposition technique since well-

oriented, on-stoichiometry thin-film ZnO can be deposited at low temperatures75.   

Other techniques, such as Pulsed Laser Deposition (PLD), can produce high-quality 

films, but they do so only at high temperatures (for ZnO, Tdep ~ 600-800
oC)76.   

Low deposition temperatures were necessary for the following reasons:  (1) to 

permit comparisons with existing efforts to p-type dope ZnO and (2) to minimize 

dopant loss associated with the low sublimation point of P2O5, the p-type dopant of 
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interest in this work, (Tsublimation ~ 350
oC); and (3) to minimize donor carrier 

concentration.   

There is a well-known interplay between thin film epitaxy (governed by the 

deposition temperature, Tdep), the microstructure of the thin film (crystallinity) and 

strain and the optical and electronic properties of semiconducting thin films.  We 

examine the interplay for undoped films in this chapter.  

4.1.1 The Role of Low Deposition Temperatures 

 

Generally speaking, epitaxial growth via sputtering occurs above a critical 

temperature77, Tdep, critical , typically quoted at 25% of Tmelt.  For ZnO, Tdep, crit ~ 500
oC.   

So, we would expect a progressive narrowing of the (0002) FWHM as Tdep approached 

and then exceeded Tdep,crit as the growth approached epitaxy, limited only by film-

substrate mismatch.  Well-oriented films deposited at low temperatures demonstrate a 

clear advantage of using sputtering over other deposition techniques.  

The range of deposition temperatures used was:  Tdep = unassisted heating, 

125oC, 250oC, and 550oC.  These were selected in order to allow for comparisons to 

previous studies of p-type doping in ZnO using phosphorus.  The thought here is that if 

defects exist in the undoped host material for this range of deposition temperatures, then 

the likelihood of producing uncompensated p-type doped thin films would be small. 

 

4.1.2 The Role of p(O2)  

 
Using RF sputtering prepares the oxygen reservoir with unbound oxygen atoms, 

since O2 is dissociated in the atmosphere via the sputter plasma, setting µOxygen < 0.  
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Dissociation of oxygen in the sputter plasma raises the formation energy of the donor 

state (Vo) and lowers the overall chemical potential of the acceptor state (Oi)
78.   

Zunger addressed this for wide band gap semiconductors by looking at general 

conditions for the minimization/maximization of the formation energy and enthalpy: 

• Cation-rich deposition conditions produce:  anion vacancies & cation 

interstitials 

• Anion-rich deposition conditions produce:  cation vacancies & anion 

interstitials. 

This is depicted in Figure 6.   

 

 
 
 
 

 
 
 
 
 
 

 
 
 
 

 
 
 
 

 
 
Figure 6 Schematic depiction of the formation energies of general intrinsic donors 
(anion vacancy VA , cation interstitial Ci) and intrinsic acceptors (cation vacancy VC  and anion 
interstitial Ai) vs. the chemical potential.  Adapted from Reference 79 

 
 

 Thus, from the above discussion, an oxygen-rich deposition atmosphere is 

“anion-rich.”  Under such conditions, the formation energies for VZn and Oi will be low.  

These two defect states do not compensate efforts to p-type dope ZnO and thus, an 
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anion-rich atmosphere will support efforts to p-type dope ZnO.  An argon-rich 

atmosphere is “cation-rich”.  Under these conditions, the formation energies of defects 

capable of compensating p-type conductivity are lowest.  Thus, an cation-rich 

atmosphere will counter efforts to p-type dope ZnO. 

Indirect experimental support for this theory has existed for quite some time, but 

has not been put in the context of formation energies and appropriate thin film 

deposition conditions.  For example, undoped ZnO films grown in an argon-rich 

atmosphere have been observed to have high donor concentrations (1018 cm-3), with the 

donor concentration associated with Zn interstitials (cation-rich). 80.  Also, nucleation 

sites in films grown in an argon-rich atmosphere have been observed to be less dense in 

comparison to films grown in oxygen-rich ambients81 with crystalline quality (as 

measured via the (0002) XRD FWHM) degrading as p(O2) decreased
82.  A lower 

density of nucleation sites may result in more structural defects, since growth may not 

proceed as smoothly in the regions where there is a lower density of nucleation sites.  

To test the effects of p(O2) on the formation of defects in ZnO,  a total pressure 

of 16 mTorr was selected.  Pre-existing work on Al-doped (donor doped) ZnO films 

showed a rise in resistivity accompanied by a drop in donor mobility for films grown at 

this pressure83.  This suggested that donor concentration is minimized at this sputter 

pressure and may support an effort to p-type dope ZnO. 

 Two deposition atmospheres were used: an argon-rich condition—p(Ar) = 15 

mTorr and p(O2) = 1 mTorr and an oxygen-rich condition--p(Ar)= 6 mTorr and p(O2) = 

10 mTorr.  The condition of p(Ar) = 6 mTorr was selected because it is the minimum Ar 



 

 36
 

pressure required in order to achieve a stable plasma power for a 100W setting of the 

RF source84.   

 

4.1.3 The Role of Strain  

 

In addition to Tdep and p(O2), lattice strain plays a role in influencing the 

generation of defects in a semiconductor.   

The addition or removal of atoms from a lattice structure modifies relative 

atomic positions, producing changes in the lattice parameters--lattice strain.  Strain is 

calculated relative to the lattice parameter value from an accepted reference such as the 

JCPDS85.   

Uniaxial strain along the c-axis direction, εzz , is written as: 

εzz = 100×
−

o

o

c

cc
% 

 Where, εzz   is strain along the c-axis, c is the measured c-axis lattice parameter, 

co = the bulk c-axis lattice parameter value from the JCPDS powder diffraction 

database, c = 5.2066 Å 86, which is a close approximation to the relaxed (unstrained) 

lattice parameter of a thin film.  

As depicted in Fig. 7, there are two types of strain:  compressive and tensile.  In 

the above equation: 

• εzz > 0 is defined as tensile strain  

• εzz < 0 is defined as compressive strain.  

 

 

(4.1) 
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Strain influences the chemical potential for defect formation. The chemical 

potential of a stressed solid in some atomic volume, Ω, can be written as: 

µ = ± σΩ 

Where σ,  stress, is related to the lattice strain via: 

σ = Yε 

Where Y = Young’s Modulus, which is equal to 111 GPa for ZnO87. 

 

Strain can arise from four main sources:   

• substrate-film lattice mismatches 

• thermal expansion mismatches between the film and substrate 

• formation of native defects associated with the growth process  

• incorporation of dopant atoms with a size that is different from that of 

the host atom.  

 

In this section, we focus on the first two sources of strain.  We will focus on the third 

source in Chapter 6 when we discuss phosphorus doping in the ZnO lattice. 

 

 

COMPRESSIVE STRAIN        TENSILE STRAIN 

Figure 7 Left—Schematic of epitaxial film layer under tensile strain.   Right—Schematic of 
epitaxial film layer under compressive strain.  Interface between film and substrate is 
denoted by a dotted line.  

  

Film 

Substrate 

 

 

 

 

(4.2) 

 

 

(4.3) 
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Strain associated with Substrate Mismatch: When a film is under compressive 

strain, it is a consequence of a smaller lattice parameter of the desired film compared to 

the underlying substrate.  In order for the film to grow with some degree of epitaxy, it 

must compress its lattice structure, in attempts to match the lattice parameter of the 

underlying substrate.  Films with tensile strain result from the stretching of the lattice in 

attempts to accommodate the underlying lattice parameter of the substrate, which is 

larger.  The lattice mismatch that is relevant to this work—the mismatch between 

( )0001 Al2O3 and ( )1000  ZnO is approximately 18 %.  

In the limit of very thin films, <1000 Å, such a mismatch would produce 

noticeable variations in bulk properties of the film, such as the band gap, Egap, since the 

strain associated with heteroepitaxial growth is confined to the narrow region of film-

substrate interface.  The film thicknesses used in this work are ~ 2500 - 5000 Å, making 

substrate-induced strain less of a concern for this thesis, since as the film thickness 

increases, a strain relaxation growth mode emerges. 

 

Strain Associated With Intrinsic Defect Formation: Native defects in ZnO, oxygen 

vacancies or zinc interstitials, modify the lattice parameters of ZnO and thus, are 

sources of strain.   

The presence of tensile strain in the ZnO host lattice (presumably from Zn 

interstitials) is predicted to lower the energy required to form oxygen vacancies88.  

Thus, the presence of tensile strain may be used an indicator of poor conditions for p-

type dopant incorporation.   
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4.2 Growth Parameter Influence on Structural Properties 

ZnO thin films were grown via on-axis RF magnetron sputter deposition on 

double-sided polished (0001) Al2O3 substrates at a total deposition pressure of 16 

mTorr.  The evolution of strain and lattice structure were examined as a function of two 

main sputtering variables:  p(O2) and deposition temperature (Tdep).  A detailed 

description of RF sputtering and the deposition system that was constructed for this 

dissertation can be found in Appendix 1.   

Crystallinity and the c-axis lattice constant were among the properties we sought 

to optimize.  The crystallinity is a direct measure of the degree of disorder in a lattice 

from a wide variety of sources.   

In addition, we examined the temperature dependence of tensile strain in the ZnO 

host lattice.  Tensile strain, primarily originating from Zn interstitials, is predicted to 

lower the energy required to form oxygen vacancies and the presence of strain lowers 

the formation energy for compensating defects around extrinsically introduced 

defects89.   

4.2.1 Crystallinity 

 

Although Tdep was low in comparison to conventional epitaxial growth 

temperatures for undoped ZnO, undoped films grown under both Ar-rich and O-rich 

atmospheres were (000 1 )-oriented, with no additional orientations present.  A FWHM 

~ 2o indicated that the films were mildly textured for films grown at Tdep = unassisted 

heating.  This is consistent with reports in the literature90. 
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We observed minimal temperature-dependent changes in the x-ray FWHM of 

the (0002) peak for argon-rich films (raw data - Fig. 8(a), FWHM vs. Tdep – Fig. 9(a)).  

There are only minimal changes up to and including Tdep  = 550
oC, which is greater than 

Tdep, crit.  There is a minimum in the FWHM at Tdep = 250
oC, which is not consistent 

with the predicted Tdep, crit behavior.   

Films grown under oxygen-rich conditions (raw data - Fig. 8(b), FWHM vs. Tdep 

– Fig. 9(a)) showed a monotonically decreasing FWHM with increasing Tdep, consistent 

with the predicted Tdep, crit behavior.  This indicates that undoped films grown under 

argon-rich conditions are not optimally-oriented at the Tdep that have been used in 

previous studies of P2O5 doping of ZnO for the purposes of p-type doping.   

Given this data, it is not terribly surprising to see inconsistent reports of p-type 

conductivity.  Simply stated, if the starting material is not well oriented, the host lattice 

is riddled with defects that will compete with efforts to p-type dope ZnO.  

From the FWHM data, we observe that the oxygen rich condition, p(O2) = 10 

mTorr, supports well-oriented ZnO film growth, particularly for Tdep ≥ 250
oC.  The 

argon-rich condition, p(O2) = 1 mTorr, supports the growth of quasi-epitaxial samples 

that have optimal crystallinity at Tdep = 250
oC.   
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Figure 8 Rocking curve data for (0002) orientation of undoped ZnO thin films grown on (000-1) 

Al2O3 for Ar-rich and O-rich ambients at various Tdep 
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4.2.2 c-axis length 

 

Although there is little change in the FWHM with increasing Tdep for undoped 

films deposited in the argon-rich atmosphere, the c-axis length changes considerably for 

films grown in this atmosphere (Fig. 9(b)).  For unheated samples, the c-axis lattice 

parameter is close to the value for bulk ZnO, as quoted in the JCPDS (5.2066Å).  As 

Tdep increases to 250
oC, the c-axis increases. This corresponds to the temperature at 

which the FWHM is at a minimum, indicating that lattice expansion is the likely source 

of improvements in crystallinity. For example, for a Tdep = 550
oC, the c-axis length 

approaches that of the bulk value.  

Samples grown in an oxygen-rich atmosphere at Tdep ≤ 250
oC have a c-axis 

length that is considerably longer than the bulk value.  Across Tdep, the c-axis length 

shows similar Tdep dependence as the FWHM—there is a monotonic decrease in the c-

axis length with increasing Tdep. As Tdep increases to 550
oC, the c-axis length 

approaches the bulk ZnO value and is smaller than that of the argon-rich films grown at 

550oC.   

Undoped films grown at the same Tdep as in films grown in previous studies of 

phosphorus doping of ZnO, in an Ar-rich atmosphere show a lower degree of 

crystallinity vs. films grown at the same temperature range in an oxygen-rich 

atmosphere.  That lower degree of crystallinity is likely the source of defects that may 

serve to counter efforts to p-type dope ZnO.  This is observed to a lesser extent for the 

films deposited in oxygen.   Thus, if structural defects are the culprits for compensation, 

efforts to p-type dope ZnO are best supported in an oxygen-rich atmosphere. 
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Figure 9 (a)(0002) FWHM vs. Tdep  and (b) c-axis length vs Tdep for undoped ZnO thin films 

grown in either Ar-rich or O-rich ambients at 16 mTorr.  
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4.2.3 c-axis Strain  

 

Strain along the c-axis (εzz) of the undoped films was examined as a function of 

deposition temperature, Tdep, for both argon-rich and oxygen-rich deposition conditions 

(Fig. 10).  Uniaxial strain measurements along the c-axis were determined via four-

circle x-ray diffraction measurements of the lattice parameters of the film.   The (0002) 

reflection of ZnO was selected, as it had the largest intensity.   

Overall, films grown in the oxygen-rich atmosphere show tensile strain that 

progressively decreases with increasing Tdep.  Films grown in the argon-rich atmosphere 

show a nonmonotonic dependence upon Tdep that is overall tensile in nature, with a 

region of compressive strain between Tdep = 250
 – 400oC.   
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Figure 10 εzz vs. Tdep for undoped ZnO thin films grown in either oxygen rich or argon rich 
atmospheres.  
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So, while the oxygen-rich grown films show a better overall FWHM along the c-

direction, indicating fewer defects in a film in comparison to the argon-rich deposited 

films, the films grown in oxygen show a large amount of tensile strain, which is, as we 

stated in Section 4.2, predicted to lower the energy of formation for compensatory 

defects in ZnO.  This further places limitations on the available parameter space to 

minimize defects that are capable of compensatory behavior. 

 

4.4 Relationship between Strain and Optical Properties 

 

4.4.1  Background 

 Strain perturbs energy levels in the band structure of a material, which manifests 

itself as changes in the optical and electrical properties of ZnO.   

In its simplest form, electrons at the defect center are like electrons in a 

conventional one-dimensional quantum mechanical infinite square well.  Strain deforms 

the dimensions of that box.  A simple one-dimensional infinite square well potential has 

an energy E = h2n2/8ma2, where a is the width of the box, in this case, the c-axis lattice 

spacing.  If strain changes the width of the box from a to ∆a, then we can write: ∆E/E = 

∆a/a ≡ εzz .  Thus we can correlate the shift in the main peak position with the lattice 

strain91, using E = 3.37 eV as the unstrained ZnO main peak position using this basic, 

non-perturbative quantum mechanical model.  

As an additional level of complexity, a series of band-structure models for 

strain-perturbed wurtzite structures, such as ZnO, has been developed92,93.  We focus on 

one model and its conclusions regarding the effects of strain on the energy gap.  
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Pikus initially presented the effect of any elastic deformation on the optical 

properties of a wurtzite lattice in 196294.  The effect of strain on the band gap of a 

wurtzite-type lattice was written as a linear approximation relative to the conduction 

band energy (which is fixed).  The approximation looks only at the change in the 

position of the valence band position due to strain: 

 

Egap, strained = – ( Evalence, 0  + ∆Evalence) 

 

Where, Egap, strained = band gap value for a strained material, Evalence, 0 = the 

position of the valence band without lattice strain present and ∆Evalence  = the change in 

the position of the valence band in the presence of strain.   

• If ∆Evalence  < 0, the result is a decrease in the measured band gap value 

• If ∆Evalence  > 0, the result is an increase in the measured band gap value 

 

The valence band maximum was written by Pikus in terms of strain in the 

wurtzite lattice as: 

∆Evalence  = 








∆+∆−∆

∆−∆
+×

∆
+∆

])3/(8))3/([(

)3/(
1

2 22
2

1

SOSOCF

SOCF  

  

Where,  ∆1 = C1εzz + C2(εxx + εyy) and ∆2 = C3εzz + C4(εxx + εyy);  the Ci are the 

deformation potentials for ZnO (with C1= -2.66, C2 = +2.82, C3 = -1.34, C4 = 1.0eV)
95 

and εxx, εyy, and εzz are strains along the respective crystallographic directions; ∆CF = 

crystal field splitting energy = 42 meV and ∆SO = spin orbit splitting energy = -5 meV
96.  

 

 

(4.4) 

 

 

(4.5) 
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 Substituting in the above constant values, Eqn 4.5 becomes: 

 

∆Evalence  = 5.88(εxx + εyy) – 5.90 εzz  

 

 Since, for a wurtzite lattice, εxx = εyy, for c-axis films, then:  

 

∆Evalence  = 11.76 εxx - 5.90 εzz  

 And Eqn. 4.4. becomes:  

 

                    Egap, strained = – [Evalence, 0  + (11.76 εxx - 5.90 εzz)] 

  

For c-axis-oriented ZnO films grown by RF sputtering, the in plane strain, εxx, 

does not vary much with deposition temperature or pressure, with an average εxx = εyy = 

-0.02 or 2% 97.  In addition, it is related to εzz  by a constant prefactor associated with the 

elastic constants along the c-and a- axis directions98.  

Knowing this, we are able to write the strained band gap in terms of only the out 

of plane strain component, εzz :   

 

Egap, strained = – [Evalence, 0  + (0.235 - 5.90 εzz)] 

 

By this linear approximation, assuming a uniform in plane strain, a 1 % 

compressive strain εzz results in a shift in the band gap by +0.3 eV relative to the 

 

 

(4.6) 

 

 

(4.7) 

 

 

(4.8) 

 

 

(4.9) 
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unstrained valence band position.  A 1% tensile strain produces a shift of   -0.1 eV.  

This is depicted schematically in Figure 11.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11  Schematic of band structure as perturbed by strain  
  

This linear approximation can be used to find Evalence, 0   and also to estimate any 

change in the valence band maximum position in the presence of strain.  In doing so, it 

helps to refine limitations imposed by the failure-to-dope rule (Figure 3).   

To check for this, films were analyzed via UV-visible spectrometry relative to a 

blank sapphire substrate, operating in transmission mode.  Details of the measurement 

and analysis process can be found in Appendix 3.  
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4.4.2 Results 

Spectra for the argon-rich and oxygen-rich cases are shown in Fig. 12 (a) and 

(b), respectively.  Egap was extracted from the raw spectra, as discussed in the Appendix, 

and plotted as a function of Tdep (Fig. 13).  For both deposition atmospheres, the band 

gap is smaller than what is observed for single crystal ZnO (Egap = 3.37 eV), indicating 

that both deposition atmospheres produce off-stoichiometry films.  Films grown in the 

Ar-rich atmosphere have rather narrow Egap values which reached a minimum at Tdep = 

250oC.  The oxygen-rich films have an overall larger Egap, a value that is lower, but still 

closer to the optimally-doped ZnO value.   

Fig. 14 shows that the relationship between Egap, strained and out of plane lattice 

strain, εzz, is not linear for either deposition atmosphere.  Fig. 14 also shows that the 

band gap value is nearly equal for films grown in the two different ambients at  εzz =  

1%.  
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Figure 12 % Transmission vs. λ (excitation wavelength) for undoped ZnO grown at various Tdep 
for Ar-rich (top) or O-rich (bottom) atmospheres.  Insets:  Transition width ∆λ vs. Tdep. 
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Figure 13 Band Gap (Egap) vs. Tdep for undoped ZnO films grown in either Ar-rich or O-rich 

atmospheres. 
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Figure 14 Band Gap (Egap) vs. εzz  for undoped ZnO films grown in either Ar-rich or O-rich 
atmospheres. 

 

4.4.3 Tdep Influence on the Distribution of Defect States 

  

∆λ , the transition width of the UV-Vis transmission spectrum, provides 

information about the spread of defect states inside of the gap.  We see that the width of 

the transmission spectrum (Fig. 12 insets for (a) and (b)) correlates with Tdep—as the 

sample becomes more oriented, ∆λ decreases for the oxygen-rich case—there is a 

narrower distribution of states in the energy gap.  

The argon-rich grown films show a minimum in the spread of defect states 

within the gap for films that were grown at 125oC (Fig. 12, top inset).  This correlates to 

the maximum in uniaxial strain (Fig. 10).  The oxygen-rich-grown films show a 

minimum in ∆λ for samples deposited at Tdep = 250
oC (Fig. 12, bottom inset).  This 
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correlates to the inflection point of the temperature-dependent strain behavior.  So the 

degree of crystallinity influences the spread of states within the gap.  ∆λ is smaller for 

films grown in oxygen-rich atmospheres compared to those grown in Zn-rich 

atmospheres.  

4.5 Conclusions 

Higher Tdep promotes overall better crystallinity.  Crystallinity is better overall in 

the oxygen-rich ambient, but tensile strain is larger overall.  While a better crystallinity 

will minimize the effects of self-compensating defects, the presence of strain may 

reduce the formation energy for compensating impurities.  Strain in the oxygen-rich 

deposited films is overall less than the strain observed in those films grown in an argon-

rich atmosphere.  
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Chapter 5: Thermal Evolution of Surface and Bulk 
Properties of Undoped ZnO Single Crystals 
 

5.1 Background 

Understanding the thermal evolution of ZnO single crystals under non-ultrahigh 

vacuum (non-UHV) conditions is important when considering optimal conditions to 

dope p-type ZnO single crystals.  Ion implantation99 and planar doping100 are commonly 

used in silicon, III-V, and II-VI semiconductor doping.  Both of these methods contain a 

thermal processing step in a non-UHV atmosphere to either activate the dopant, as is the 

case with ion implantation, or to introduce the dopant via diffusion, as is the case for 

planar doping.   

Planar doping of single crystal ZnO would involve diffusion of a solid dopant 

source into the crystal via the surface, so any significant compositional changes at the 

surface affects the extent of dopant diffusion into the sample.    

While there have been extensive studies of the thermal evolution of the ZnO 

surface in the pristine environment of an ultrahigh vacuum (UHV) system101,102,103,104, 

prior to this work, studies of the behavior of single crystal ZnO upon thermal annealing 

under non-UHV conditions have been limited to low temperature anneals (TANNEAL < 

400 oC) or indirect measurements of surface effects105,.  These studies have been 

conducted in either nitrogen or air atmospheres.   

A common conclusion drawn by both UHV and non-UHV studies is that the 

surface roughness of thermally treated ZnO changes, but the origin of the roughness has 

not been directly determined.  Speculative origins, such as surface reordering associated 



 

 55
 

with limited out diffusion with Zn or O evaporation106 --“metallization of the polar 

surface107”, or contaminant formation108 have been raised.    

In this chapter, we explore the behavior of ZnO upon thermal annealing in non-

UHV conditions in a more comprehensive manner than previously reported efforts.  

Firstly, since there have been no direct investigations of the origin of surface roughness 

variations of ZnO single crystal samples annealed under non-UHV conditions109, we 

look at the surface and near-surface temperature evolution directly.  Secondly, we 

expand extensively on the existing work on thermal annealing behavior of ZnO by 

examining thermal annealing response for TANNEAL ≥ 400
oC in air other non-oxidizing 

ambients—argon and vacuum.  

We compare both the argon-rich and oxygen-rich (in this case, air) atmospheres, 

as in Chapter 4.  In addition, we look at the effects of vacuum annealing.  Again, we 

invoke the argument that the formation energy for native n-type promoting defects is 

low for samples grown in atmospheres that promote Zn-richness, such as the argon-rich 

atmosphere used our film growth studies and we investigate the applicability of this 

argument to the promotion of Zn-richness during annealing.   

Elucidating changes in surface composition has a two-fold impact:  (1) Unipolar 

Schottky barrier height will be influenced by variations in surface composition and (2) 

Bipolar device fabrication processes may be directly influenced by the surface.  Since 

thermal annealing in semiconductors is known to stimulate or suppress defect formation 

it also affects the capacity of the introduced dopant to p-type dope ZnO in single crystal 

form.  This is observed in GaAs, where diffusion of dopants into the surface is affected 

by surface conditions, particularly surface defect states110.  
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5.2 Approach 

Our approach probed the continuum of changes in single crystal ZnO, from the 

surface to the bulk, as depicted in Fig. 15.  The surface region was sampled using 

Atomic Force Microscopy (AFM) and X-ray Photoelectron Spectroscopy (XPS).  AFM 

samples the immediate surface morphology and XPS samples up to a depth of 15 nm 

into the material.  In the near-bulk region, Rutherford Backscattering Spectrometry 

(RBS) was used to assess composition and crystallinity to a depth of 500 nm.  In the 

bulk, x-ray diffraction (XRD), electrical transport, and optical measurements 

(photoluminescence) were used to assess structural changes, carrier changes and band 

structure changes, respectively.  The minimum depth sampled by these techniques was 

~ 2000 nm (2 µm).  With information from these different length-scales, we were able 

to assess the thermal evolution in air of ZnO single crystals as a function of depth. 

 

 

 

 

 
 
 

Figure 15 Schematic of the approach and techniques used in this chapter111. 

 

Commercially available hydrothermally grown, single-side polished (000 1 ) 

face ZnO single crystals (Cermet Incorporated) were isochronally annealed for 1 hour in 

air, argon (p ~atm.) or vacuum (p~10-6 Torr) for Ta = 200 - 800
oC.   
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Atomic Force Microscopy: Subsequent to annealing, sample r.m.s. roughnesses were 

immediately measured using atomic force microscopy (AFM) in tapping mode (2 × 2 

µm2).  Special care was taken to use a new AFM tip for each roughness measurement in 

order to avoid any error associated with tip wear.  Further details may be found in 

Appendix 4. 

 

X-ray Photoelectron Spectroscopy: X-ray Photoelectron Spectroscopy (XPS) was 

conducted using a Kratos AXIS 165 spectrometer with 165 nm hemispherical analyzer 

and 8 channeltron detection system.  The system was set in hybrid lens mode with a 

210W Mg anode. Adventitious carbon concentrations were determined for each sample 

and were used in the analysis to correct for offsets in the binding energy (average 

E(C1s) ~284 eV). No x-ray induced changes in the samples were observed.  Zn 2p and 

O 1s data were fit using a standard least-squares fit with a multiple Gaussian peak 

approach (goodness of fit r2  values ~ 0.990 or better, see Figure 20(b)).  Further details 

may be found in Appendix 5. 

 

Rutherford Backscattering Spectroscopy:   RBS probes up to 500 nm in depth when a 

sample’s crystallographic orientation is not aligned with respect to the incoming alpha 

particles (random aligment).  When a crystallographic axis of a sample is aligned with 

the beam of incoming alpha particles, the particular mode of RBS in use is known as the 

channeling mode.  Channeling is a near-surface measurement that is capable of probing 

the atomic displacement within a 20-100 nm depth from the surface (dependent upon 
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the ion energy). χmin, is the minimum channeling yield, the ratio of the number of 

disordered ions to total ions.  A minimum yield of 5% implies that greater than 95% of 

the total number of atoms are in the correct position.  More details of RBS are discussed 

in Appendix 4. 

 

5.3 Results 

 5.3.1 Surface Roughness 

We observed that the surface morphology of ZnO single crystals depends upon 

both the annealing temperature and the composition of the annealing atmosphere. 

annealed in air roughened for TANNEAL < 600
oC (Fig. 16(a)).  In the unannealed state, 

AFM showed a moderately smooth surface, up to scratches lingering from the 

commercial provider’s chemical-mechanical polishing process.  The surface also 

contained pebble-like structures.  The r.m.s. roughness of the unannealed surface is ~0.3 

nm.  Crystal surfaces annealed at TANNEAL = 400
oC showed a striking change in 

morphology.  Large valleys were visible in the AFM surface plot of samples annealed at 

this temperature (Fig. 16(b)).  The overall roughness was a factor of four larger than the 

unannealed state.  Crystals annealed at higher TANNEAL ( > 400
oC) had smooth surfaces, 

with roughnesses that are equivalent to the unannealed case.  The pebble-like features 

that were observed on the unannealed samples are also seen for samples annealed at 

TANNEAL > 400
oC (Figs. 16(c), (d)).  When compared to the unannealed case, the 

distribution of these pebbles across the crystal surface is less dense and the pebbles have 

larger diameters.   
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The immediate difference between crystals annealed in air versus in non-

oxidizing ambients is apparent in the surface roughness (Fig. 17).  Samples annealed in 

argon (Fig. 17, left column) do not show the rough, spherical features observed in 

vacuum- and air-annealed samples.  Argon-annealed samples have a morphology that 

does not significantly vary with TANNEAL.  Vacuum-annealed samples (Fig. 17, right 

column) show a dramatic morphological change when annealed at 200oC.  Broad, 

feathery structures ~ 0.25 µm wide, appear.  As TANNEAL increases, these structures 

condense into small, near-spherical structures that are < 0.1µm in diameter.    

While roughnesses for samples annealed in argon and vacuum are of a similar 

magnitude (Fig. 18), the morphologies of samples annealed under the two non-

oxidizing ambients are quite different.  The absolute values of the r.m.s. roughness for 

samples annealed in either of the non-oxidizing ambients are less overall than those of 

the air-annealed samples for the full range of TANNEAL (Fig. 19).  This indicates that 

oxidation plays a role in determining the behavior of ZnO surfaces annealed in air at 

TANNEAL > 400
oC. 
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Figure 16 (a) RMS roughness as a function of TANNEAL for ZnO single crystals annealed in air.  Error bars 

are within the size of the points on the plot.  AFM surface morphology plots for (b) 
Unannealed single crystal ZnO, (c) 400cC and (d) 1000oC anneals. Diagonal lines are 
artifacts of the scanning process.  
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Figure 17  AFM images of samples annealed non-oxidizing ambients as a function of TANNEAL. 
 Left column = argon-annealed, right column= vacuum-annealed.  A height scale bar is 

provided in the lower right-hand column. 
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 Figure 18  r.m.s. roughness for both non-oxidizing ambients—argon and  

  vacuum. 
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 Figure 19 Percent change in r.m.s. roughness, relative to unannealed samples 
for all three annealing ambients. 
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 5.3.2 Schottky Barrier Height 

 

 It is well-established that the formation of a Schottky contact is influenced by 

the surface chemistry of the semiconductor as well as interactions between the 

semiconductor and metal contact during processing.  The presence of Zn(OH)2 and Zn-

rich agglomerations would lead to variations in device properties, such as the Schottky 

barrier height (φB) and surface resistance as a function of Tanneal.  A Zn(OH)2 will act 

like a thin insulating barrier, whereas a Zn-rich surface will act like a metallic 

contact112.    

 A survey of the literature shows a 20% drop in φB comparing unannealed 

samples to samples annealed at 200oC113,114.  Schottky junctions made with crystals 

annealed in air at higher temperatures (T<500oC), show a saturation in the barrier value.  

The formation of Zn(OH)2, which is an insulator, should lead to an increase in the 

Schottky barrier height if the surface is (0001)-oriented (Zn rich) due to the loss of 

metallic carriers from Zn atoms, now bound into the insulating Zn(OH)2.  It should lead 

to a reduction in the barrier height if the surface is (000 1 )-oriented (O-rich), since some 

of the oxygen atoms will now have hydrogen surface terminations that serve as metallic, 

n-type carriers.   

 To confirm the presence of Zn-rich regions, Schottky barriers were fabricated 

onto the air-annealed ZnO single crystals using Au contacts.  We used Schottky barrier 

measurements to better understand the surface composition variations with Tanneal .  We 

applied non-reactive metal contacts (Au) 115 to the ZnO surface and conducted I-V 

measurements in order to extract the Schottky barrier height vs. Tanneal.  Details on the 
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fabrication, measurement and analysis of the Schottky barriers can be found in 

Appendix 7.  
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Figure 20 Schottky barrier height (φB) vs. TAnneal  for air annealed crystals. 
 



 

 65
 

0 200 400 600 800
0.70

0.75

0.80

0.85

0.90
Typical Barrier Value

 

 

φφ φφ b
[e
V
]

T
Anneal

[
o
C]

 Vacuum 

 Argon

 

 Figure 21  TANNEAL dependence of Schottky barrier for argon- and vacuum-
  annealed samples. 

  

 
 All samples show Schottky barrier heights that are lower than the values 

reported in the literature.  For air-annealed samples (Fig. 20), the barrier height shows a 

near-monotonic decrease with increasing TAnneal.  Argon-annealed samples (Fig. 21) 

show a minimum φB at 400
oC, close to the melting point of Zn at ambient pressure.  

Vacuum-annealed samples (Fig. 19) show a minimum in the barrier at 600oC.    

 For air-annealed samples, we observed a correlation between surface roughness 

and barrier height.  For T> 600oC, we observe the smoothest surfaces and T ≥ 800oC, 

we observe that the Schottky barrier monotonically decreases.  
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 5.3.3 X-Ray Photoelectron Spectroscopy 

 

The composition of surface pebbles on the air-annealed crystals was examined 

using XPS.  Figure 22(a) shows XPS spectra of the O1s peaks for single crystals 

unannealed and annealed at TANNEAL = 400
oC, 600oC and 1000oC.  Three peaks were fit 

to the O1s data with r2 > 0.99 with a binding energy (EB), EB ~ 530, 531 and 533 eV. 

These three peaks correspond to three phases on the surfaces. An example of the fitting 

process is shown in Fig. 22(b).  

The EB~530 eV peak was attributed to O
-2
 on the ZnO wurtzite lattice

116.  From 

the mass concentration, on-stoichiometry ZnO is not the primary constituent at the 

surface.   

The primary constituent of the single crystal ZnO surface is the O1s peak at 

~531 eV.  The O1s binding energy of this peak is offset from the O1s position for 

optimally doped ZnO by -1 eV117.  This lower binding energy means that there is a 

weaker bond between Zn-O, suggestive of oxygen atoms being shared by more than 2 

Zn atoms, implying that the Zn-O bonding is off stoichiometry, possibly due to 

interstitial Zn on the surface.  An off-stoichiometry surface is consistent with the 

attribution of the 531 eV peak to O-2 ions in the oxygen-deficient regions of ZnO118.  

The third peak in the O1s spectrum has a binding energy of ~ 533 eV and is associated 

with Zn(OH)2.  This is consistent with our statement in Section 2.24, where the 

dominant form of hydrogen, unintentionally introduced to an O-terminated surface, 

would lead to the formation of a hydroxide.  
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The oxygen mass concentration for each of these peaks as a function of TANNEAL 

is shown in Figure 23(a).  The total mass concentration of oxygen is approximately 

70%, which is consistent with the commercial supplier’s statement that the single 

crystal is (000 1 )-oriented, that is, the surface is oxygen-terminated.  Looking at Fig. 

23(a), the primary constituent on the crystal surface is off-stoichiometry ZnO, 

specifically ZnO with oxygen-vacancies (ZnOδ).  O1s peaks associated with ZnO and 

off-stoichiometric ZnO showed a reduction in the mass concentration of oxygen for 

TANNEAL< 600
oC. Above 600oC, oxygen concentration increases, with the difference in 

the concentration of oxygen bound in ZnO and ZnOδ being constant (overall, there is a 

5% difference in the mass concentrations for the two phases).    

The Zn 2p peak contributions to the XPS spectra, 2p1/2 and 2p3/2 states
119 (Fig. 

23 (b)), showed an increase in surface Zn concentration with TANNEAL up to 600
oC.  

This indicates that Zn diffused from lower layers in the ZnO crystal, into the first 10 nm 

of the surface.  The slope of the Zn 2p3/2 curve is at its steepest where TANNEAL ~ 200
oC, 

indicating the largest change in mass concentration of Zn occurs in that temperature 

region. 
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Figure 22 (a) O1 s spectra for ZnO samples annealed in air at Tanneal  = unannealed, 400, 600 and 

1000oC. (b) An example of an O1s spectrum, uncorrected for adventitious carbon peak 
EB, with fits.  
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Figure 23 (a) O1s mass concentration of off-stoichiometry ZnO (ZnO, squares), on-stoichiometry 
ZnO (circles) and Zn(OH)2 (triangles) as a function of TA.  (b) Zn 2p mass concentration 
vs. TA.   
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Combining the XPS mass concentration results with AFM data we observed that 

there are two temperature regions for roughness generation:  one for TANNEAL ≤ 400
oC 

and another for TANNEAL > 400
oC. 

For samples annealed at TANNEAL ≤ 400
oC in air, XPS shows two main 

contributions to the surface roughness:  excess Zn atoms and Zn(OH)2.  

The roughness peaks at 400oC, which corresponds to a minimum in the oxygen-

deficient phase of ZnO and a maximum in the mass concentration of Zn(OH)2.  

Zn(OH)2 cannot be the primary source of roughness as its mass concentration represents 

only a 4 at. % change of the total O1s mass concentration.  This is roughly equivalent to 

the growth of approximately 0.4 monolayers (1 at. % of OH is equal to 0.1 monolayer), 

making the total contribution of Zn(OH)2 equal to approximately 1 monolayer at 400
oC 

Such a small change is consistent with the stabilization behavior of other polar oxide 

surfaces annealed and subsequently cooled at a slow cooling rate120.  Thus, the primary 

source of morphological changes must arise from another source.   

We argue that the source of morphological changes arises from the 

agglomeration of Zn atoms that have either diffused to the surface or are associated with 

the loss of surface oxygen.  Fig. 24, which shows the total mass concentration for both 

Oxygen and Zinc, plotted vs. TANNEAL, shows a progressive increase in the mass 

concentration of Zn and a progressive decrease in surface oxygen mass concentration.  

That is to say that oxygen is leaving the surface and Zn is diffusing from the near-

surface region to the immediate surface.   

As TANNEAL increases beyond 400
oC, Zn atoms at the surface either evaporate or 

oxidize and can contribute to the formation of on-stoichiometry or off-stoichiometry 
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ZnO.  Mass loss or mass conversion (and subsequent integration into the host lattice) 

contributes to the overall smoothing of the surface.  This is seen in the O1s mass 

concentration for all the phases.  One example of mass conversion is Zn(OH)2 

dehydrating into on-stoichiometry ZnO, which is a well-known conversion 

mechanism121.  Conversion of the Zn(OH)2 is consistent with the O1s data for on-

stoichiometric ZnO, which initially shows a drop for TANNEAL ≤ 400
oC, but begins to 

rise for TANNEAL >400
oC.  The percent change in O1s mass concentration lost for the 

Zn(OH)2 peak between 400 and 600
oC and the mass concentration gained by  ZnOδ are 

equivalent, within experimental error.  

The significance of TANNEAL is no coincidence.  The melting temperature of Zn 

is 410oC 122.  The loss of Zn mass concentration observed via XPS is consistent with 

this explanation.  Thus the mechanism for surface roughness generation is that Zn in the 

oxygen deficient ZnO near surface region is diffusing from the near-surface region to 

the immediate surface and agglomerating.  The agglomerated Zn atoms and, to a lesser 

extent, the Zn(OH)2 are the sources of roughness for samples annealed in air for 

TANNEAL ≤ 400
oC. 

As TANNEAL increases above 400
oC, the Zn-rich surface melts, followed by 

oxidation of the residual Zn atoms or evaporation of those atoms, producing regions of 

either stoichiometric or non-stoichiometric ZnO.  The oxidation or loss of the excess 

surface Zn leads to an overall smooth surface.   

 



 

 72
 

0 200 400 600 800 1000

65

70

75

 

Annealing Temperature (
o
C)

O
x
y
g
e
n
 M
a
s
s
 C
o
n
c
e
n
tr
a
ti
o
n
 (
%
)

25

30

35
Z
in
c
 M
a
s
s
 C
o
n
c
e
n
tra

tio
n
 (%

)

 

Figure 24 Comparison of total oxygen mass concentration (squares) with total zinc mass 
concentration (circles) as a function of annealing temperature. Mass concentration for 
oxygen and for zinc were calculated independently using the approach discussed in 
Appendix 5.  

 

Returning to the Schottky barrier height data—recall that barrier height starts 

out at 0.86 eV for unannealed samples and drops by 5% when annealed at 400oC.  The 

decrease in the barrier height at this annealing temperature is the point at which 

Zn(OH)2 is at its maximum and the non-stoichiometric ZnO is at its minimum.  Oxygen 

on the oxygen-rich surface is being consumed and terminated with carriers that 

participate in the conduction process, leading to a surface that is overall more metallic 

in character at 400oC.  At 600oC, there is a ~2.5% rise in the barrier height relative to 

the 400oC barrier.  This corresponds to the minimum in oxygen concentration and 

maximum in Zn concentration in the XPS data.  As Tanneal increases further, φB 

continues to drop.   
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From the XPS data alone, we concluded that the source of variable surface 

morphology for samples annealed in arises from surface agglomeration of Zn.  The 

reduction of the Schottky barrier for single crystals annealed at Tanneal < 500
oC is 

consistent with an increasingly more metallic surface, as would be the case for 

migration and coalescence of Zn atoms from ZnO.  Thus, the increase in roughness 

from 200-400 oC is likely attributable to the out-diffusion of Zn atoms and is consistent 

with the rise in Zn mass concentration observed in the surface region via XPS.  As 

TAnneal increases, these atoms likely oxidize or evaporate.   

 

 5.3.4 Rutherford Backscattering Spectrometry 

 If, as the XPS and Schottky barrier results from the previous section indicate, Zn 

is diffusing from the near-surface region of the single crystal towards the surface or 

oxygen is leaving the near-surface region, then atomic positions in the near-surface 

lattice are experiencing a local reordering in response.  This local crystalline reordering 

should be observable (in both composition and crystallinity) via Rutherford 

Backscattering Spectroscopy (RBS).   

 The full RBS channeling spectra for air-annealed samples are shown in Fig. 25.  

The Zn edge and O peak are labeled.   

Looking at channeling of the Zn peak as a function of TANNEAL (Fig. 26), we see 

two main changes with increasing TANNEAL: χmin peaks at 200
oC, indicating that atomic 

positions are maximally changing at quite a low temperature and then monotonically 

decreases with increasing TANNEAL.  
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 Figure 25 RBS Spectra for air-annealed single crystals at various TANNEAL 
  
 

 

 

 

 

 

 

 

  
 
Figure 26 Channeling yield vs. annealing temperature for single crystal ZnO annealed in air. 

 

XPS showed that Zn atoms increase in concentration at the surface (Section 
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probed by XPS. The rise in the channeling peak for samples annealed at TANNEAL= 

0 200 400 600 800 1000

2

4

6

8

10

12

14

 

 

χ m
in
 [
%
]

T
ANNEAL

[
o
C]



 

 75
 

200oC,  combined with the Zn XPS data are evidence that Zn diffuses from the first 20 – 

100 nm depth (the depth probed by RBS channeling) towards the surface.   In 

channeling mode, RBS is a near- surface probe (20-100 nm), the region where the 

lattice reorders.  Since the channeling data shows atomic disruptions (increases in χmin) 

for samples annealed at lower TANNEAL, we conclude that channeling has the capacity to 

detect the onset of diffusion in ZnO prior to the appearance of Zn at the surface, making 

RBS in channeling mode a predictor of the onset of diffusion.  Thus, it can be said that 

the peak that was observed in χmin at TANNEAL = 200
oC is a thermal snapshot of the 

beginning of the diffusion process. 

Looking at the channeling yield as a function of TANNEAL for the samples 

annealed in non-oxidizing ambients (Fig. 27), we see channeling yields for samples 

annealed in argon and vacuum show peaks with χmin ~ 14 -16%.  This is comparable to 

the χmin of the air-annealed sample and suggests that the degree of disorder for ZnO is 

independent of annealing ambient.  Like the air-annealed samples, samples annealed in 

argon and vacuum showed similar maximum values for χmin.   All samples showed a 

minimization of χmin for TAnneal ≥ 800
oC.  
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Figure 27  RBS channeling yield for argon- and vacuum-annealed samples. 

 

 

 5.3.5 X-ray Diffraction 

Strain effects are dependent upon the different annealing ambients. Air-annealed 

and vacuum annealed (Fig. 28 (a), (c)) samples show c-axis strain that is < 1%. Argon-

annealed samples show a large, temperature dependent variation in strain (Fig. 28 (b)).   

This contrasts with the behavior of the c-axis rocking curve FWHM (Fig. 29).  The 

temperature dependence of strain appeared to be similar to the temperature dependence 

observed in channeling. 
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Figure 28  Strain vs. Tanneal  for air-annealed (a),  argon-annealed (b)  and vacuum-annealed 

samples (c).
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Correlating Crystallinity as Measured via XRD to Channeling 

Temperature-dependent changes in the crystal structure can be further probed at 

a greater depth in the sample using x-ray diffraction (XRD) rocking curves.  In the same 

way that χmin is often invoked as a measure of crystallinity, the FWHM of an x-ray 

diffraction rocking curve is informally referred to as a measure of “the degree of 

crystallinity” for a film or single crystal.  Typically, the parallels between FWHM and 

channeling yield that are typically made in the literature are informal and of a limited 

capacity--the literature connects a low value of channeling yield or narrow FWHM with 

well-oriented samples.  In this section, we show that the parallels between χmin and the 

FWHM of the x-ray rocking curve are measures of disruptions in crystallinity with two 

very important differences: 

• Depth of Measurement: RBS Channeling is limited to 100 nm at most, 

whereas XRD rocking curves probe 100s of microns.  

• Sensitivity to Atomic Displacements:  RBS and XRD both show results 

of a superposition of atomic displacements from a variety of sources.  

XRD has the advantage of directly measuring interlattice separations as 

well as strain, whereas RBS indirectly measures such separations.  

 

Broadly speaking, the XRD FWHM does reflect the degree of crystallinity.  

However, there are several terms that influence the FWHM of a rocking curve: 

 

βm
2 (hkl) = βo

2 (hkl) + βd
2 (hkl) + βα

2 (hkl) + βε
2 (hkl) + βL

2 (hkl)   

 

 
 

 

(5.1) 
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Where βo
2 (hkl) = the intrinsic rocking curve; the lowest possible value for a  perfect 

single crystal, ~ 10 arcseconds; βd
2 (hkl) = instrumental broadening; βα

2 (hkl) = 

mosaicisity-rotation at dislocations; βε
2 (hkl) = strain broadening (surrounding 

dislocations) ;  βL
2 (hkl) = crystal size broadening.  

 

The minimum channeling yield is related to the atomic spacing: 

 

χmin = N d π ρ2 

 

Where N  = number of atoms, d = atom spacing in a given row of atoms and ρ = r.m.s. 

thermal vibration amplitude of the atoms in the lattice in the plane of the sample.   

 

 Isolating each term directly can be challenging, since a detailed knowledge of 

the thermal vibration amplitude is needed and there are limits in measuring the number 

of atoms via RBS.  

Thus, the convention to correlate FWHM to χmin seems to have limited 

application to samples whose crystallographic orientations are equivalent when looking 

parallel and perpendicular to the surface (cubic structures and perhaps mildly 

orthorhombic structures).  This is a consequence of the fact that channeling measures 

atomic displacements perpendicular to the surface normal, whereas FWHM is a 

measure of lattice displacements parallel to the surface normal. 

 

 
 

 

(5.2) 
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Figure 29 c-axis FWHM vs. TAnneal   for (a) air-, (b) argon- and (c) vacuum-annealed samples. 
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the (0002) rocking curve broadens with increasing TAnneal, (Fig. 29 (a)) but unlike, 

channeling, it does not peak at TANNEAL  = 200
oC.  Since it is widely accepted that 

channeling and FWHM are invoked during discussions of the “degree of crystallinity,” 

this discrepancy is surprising. 

If instead, we look at a direct measure of the lattice spacing, via the c-axis length 

or even the strain, εzz, air-annealed films show a dip at 200
oC, indicating a sudden 

change from a state of mild tensile strain to a state of mild compressive strain.  Thus, 

the strain is a better parallel to χmin.  This is consistent with the 0
th order equation for 

channeling yield, which is dependent upon atom spacing, as well as all higher order 

approximations123.  While there is some correlation between channeling yield and 

FWHM of a given orientation, in this case, the channeling yield has a stronger 

correlation as a function of TA, to the uniaxial strain component along the c-axis 

direction, εzz, calculated relative to the bulk value, as listed in the JCPDS
124. 

Analogous to the undoped thin films, the generation of oxygen vacancies would 

lead to a reduction in lattice volume, giving rise to compressive strain.  The vacancies 

are likely oxygen vacancies (vs. Zn vacancies) due to the lower enthalpy of formation 

of Vo vs. VZn as well as the low diffusion barrier associated with oxygen vacancies and 

is predicted upon formation of oxygen vacancies125.  Such a large lattice relaxation from 

a previously strained state is observed in the argon-annealed samples for TANNEAL 

>400oC.  The formation of these vacancies may be associated with the low diffusion 

barrier for oxygen in ZnO126.   
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 5.3.6 Photoluminescence Spectroscopy 

 In the previous chapter, we used UV-Vis spectrophotometry in order to measure 

Egap.  That technique is well-suited for measuring thin-film or transparent 

semiconductors, but is not suitable for samples that are not fully transparent or are thick 

(as is the case for our work with single crystals).  In order to measure the optical 

properties of the single crystal samples vs. Tanneal, photoluminescence (PL) was 

conducted.  

 PL is a near-bulk sensitive measurement that non-destructively evaluates the 

electronic structure of a solid.  PL probes a depth on the order of 10s of microns.  Like 

UV-Vis spectrophotometry, it is possible to measure Egap as well as measure defect 

states in the material using PL.  Please see Appendix 3 for a detailed overview of the 

technique. 

A typical PL spectrum for ZnO contains two significant classes of emission 

lines: UV and visible.  Emission lines in the UV region are a consequence of direct 

recombination of free exciton pairs, associated with the band-edge and near-band edge 

states.  Visible emission lines are a consequence of radiative recombination centers 

associated with defect states and possibly states within the gap.   

Three main regions of emission lines can be found in ZnO PL spectra—UV, 

green and yellow wavelength regions.  These are listed in Table 6. 

 

 

 

 



 

 83
 

 

 

Table 6:  Common peaks found in ZnO photoluminescence spectra 
  

Energy 
[eV] 

Transition Reference 

5.4 Zn intersititals 127 
3.38 – 3.45 DX and AX complexes  
3.37 Band Edge 128 
3.20 Donor-Acceptor Pair (DAP) 132 
3.16 DAP   
3.10 DAP  
3.06 Zn vacancy, VZn 129,130,131,132,133 
2.36 Oxygen intersitital, Oi 134, 135 
2.2 Li+ Impurities 136 

2.07 Oxygen Vacancy, VO 137, 138, 139 
 

 

 5.3.6. a  Results:   Main Spectral Lines (not associated with defects) 
 
 

Band Edge Peak: In the case of the air-annealed samples, the population of 

states that luminesce at 3.37 eV at room temperature has a maximum for samples 

annealed at 400oC and declines with increasing Tanneal.  This indicates the formation of 

non-radiative recombination centers.  This behavior is consistent with existing thermal 

oxidation studies on Zn metal thin films exposed to oxidizing ambients, which attribute 

the peaking of the PL band edge peak intensity at TANNEAL = 400
oC to improved 

crystallinity of the thin films in this study140.   

The vacuum annealed sample showed distinct peaks on the tail of the band edge 

of the band-edge peak.  These peaks are typically observed for PL taken below room 

temperature. Typically, PL spectra of ZnO single crystals of films taken at room 



 

 84
 

temperature show quenched spectral line intensities141, 142 or lines that are thermally 

smeared into a single band143.   

When argon gas is introduced into the annealing ambient, these features become 

less and less distinct.  For example, the Argon annealed samples do show peaks at the 

zero-, one-, two-, and three-LO-phonon assisted donor-acceptor pair transitions, but of 

lower intensity for all TANNEAL.   

 

Near Band Edge Peak: The feature that contributes to the near-band edge 

peak at ~ 3.20 eV shows an intensity that peaks at TANNEAL.   This peak is attributed to 

the donor-acceptor pair transition144.   

 The fact that this peak shows up is an indication that there are acceptor 

complex states in the crystal, but they are of much lower concentration than the donor 

states.  The intensity of the near-band edge peaks at 400oC.  For TANNEAL  > 400
oC, the 

intensity of the near-band edge peak drops below the intensity of the unannealed 

sample, indicating that the near-band edge peak contribution is reduced for TANNEAL > 

600oC beyond that of the pristine, unannealed state.   
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Figure 30 PL spectra of band edge peak for different TANNEAL for vacuum-annealed samples. 
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Figure 31  PL spectra of band edge peak for different TANNEAL for air-annealed samples. 

 

 

 5.3.6. b Results: Defect-Associated Spectral Lines 
 

 Two main classes of defect-associated spectral lines were observed:   

• Lines associated with the formation of donor and acceptor 

complexes, DX and AX Centers 

• Lines associated with VO and Zni: Green Band defects 

 

• DX and AX Centers 

The band-edge PL peaks of samples annealed in all three ambients are 

asymmetric. The asymmetry is associated with several different states that are 

associated with donor-acceptor pairs, AX and DX centers.  The presence of a DX center 
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is of significance to our quest to p-type dope ZnO, as the presence of a DX center has 

the capacity, via the introduction of donor states, to compensate efforts to p-type dope 

ZnO.  Thus, in evaluating single crystals thermally treated at a range of deposition 

temperatures, in three different deposition atmospheres, we were able to gain a better 

understanding of those conditions that might best support p-type doping using a single 

crystal approach (discussed in Section 6.4). 

 The peak at 3.2052 eV was attributed to the donor-acceptor pair transition.  Fig. 

30 shows that this portion of the spectrum is dominated by the DX center contribution 

near 3.37 eV.   

Individual peaks appear between 3.30 – 3.63 eV, associated with DX and AX 

complexes145.  These are of highest intensity for argon-annealed samples and of lowest 

intensity for air-annealed samples.   

The DX center states around 3.50-3.60 eV are of significance.  Co-existence of 

donor (DX) states and acceptor (AX) complexes in phosphorus-doped thin films of ZnO 

are considered a possible source of thwarted p-type conductivity in ZnO146.  The 

competition between the donors from the DX states with acceptors in the AX states was 

shown to produce an ambiguous electrical conductivity.  Hence, annealing conditions 

which minimize DX centers may yield a higher change of producing p-type 

conductivity in ZnO.  

Peaks at 2.954, 3.006, 3.052, 3.098, 3.159 eV are identified as zero-, one-, two-, 

and three-LO-phonon assisted donor-acceptor pair transitions.  They are equivalently 

spaced with a separation of ~ 55 meV.   This is consistent with reports of LO-phonon 
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mode energy in ZnO147.  These LO-phonon assisted donor-acceptor pair transitions are 

known to be associated with samples possessing rough surfaces4.   

In this case, air-annealed samples show the lowest intensity for the DX center 

peaks.  Thus, of the three annealing ambients, air-annealing will provide the best 

opportunity for p-type doping ZnO using single crystals. 

 
• Green Band: 

Five sharp peaks at E ~ 2.05, 2.12, 2.37, 2.48, 2.63 eV were observed to be 

superimposed on top of  the wide green band spectra.  

In ZnO thin films, the peak at 2.48 eV, superimposed upon the wide green band,  

is thought to be associated with deep donor level oxygen vacancies, as it shows a 

reduction in PL intensity with increasing p(O2) 
148.  The thought is that increasing p(O2) 

will be adsorbed by the ZnO film, helping to fill oxygen vacancies and reducing the 

deep donor level contribution to the PL spectrum.    

 Samples annealed in argon at low TANNEAL (200
oC and 400oC) do not possess a 

broad green band emission (Fig. 32).  They do show isolated emission peaks.  As 

TANNEAL increased, the defect states broadened into a typical green band, similar to what 

was observed in the air-annealed samples.  It is an indication that samples annealed in 

Argon have some amount of off-stoichiometry.  The degree of the off stoichiometry 

worsens with increasing temperature.  Air Annealed samples have a lesser degree of off 

stoichiometry (Fig. 32). 

 Unlike the argon- and air-annealed PL spectra, PL spectra of vacuum annealed 

samples do not show a broad green band (Fig. 33).  The lack of a green band indicates 
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that a continuum of defects does not exist.  Isolated peaks do appear within the green 

band region.  These same isolated states were observed in argon-annealed samples.  
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Figure 32  Green band region of PL spectrum for undoped single crystal ZnO annealed in air (top) 
and argon (bottom) at a range of TAnneal 
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Figure 33  Green band region of PL spectrum for undoped single crystal ZnO annealed in vacuum 
at a range of TAnneal 
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Chapter 6: Phosphorus Dopant Incorporation in 
ZnO Thin Films and Single Crystals 

 

6.1 The History of Phosphorus as a p-type Dopant in ZnO 

 

6.1.1 Thin Film Doping 

 
Phosphorus has been introduced as a dopant to ZnO thin films using a variety of 

different sources including—ion implantation of P ions149 and various solid sources 

such as Zn3P2
150,151 and P2O5 (phosphorus pentoxide).

152  To date, there are a limited of 

studies on the use of P2O5 as a p-type dopant for ZnO. 

Some of the more referenced investigations which report p-type doping in ZnO, 

may actually be reporting effects associated with competing phase formation.  Looking 

at the phase diagram for Zn-P and the phase diagram for ZnO-P2O5 (Figs. 32 and 33), it 

is clear that it is possible to form other phases such as Zn3P2 and Zn-phosphates.  Zn3P2 

and ZnP2 are p-type semiconductors.   

For example, in one study, high percentages of phosphorus doping—3% at. 

wt.153 were used with the intent to drive p-type doping of ZnO with such a high 

percentage of dopant material.  Such a high percentage leaves open the possibility the p-

type behavior arises from a competing phase, such as Zn3P2, especially because the 

initial doping source was Zn3P2.  The group did not conduct any follow-up studies to 

distinguish p-type behavior in ZnO from p-type behavior from competitive phases such 

as Zn3P2.  For example, a simple p-n junction would help determine if the source was 

from Zn3P2  (Egap ~ Vturn on ~ 1.62 eV)  or from p-doped ZnO (Egap ~ Vturn on > 3.5 eV).  
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A report of “anomalous” n-type conductivity was made for 5% wt. P2O5 + 95% 

ZnO thin films deposited by RF sputtering154.  From this work, the investigation 

concluded that P2O5 was not suitable as a p-type dopant for ZnO.  We note that the 

study utilized impure starting materials—ZnO purity = 99.99%, P2O5 purity = 99.98%, 

so the nature behind the observed n-type conductivity may rest in the impure nature of 

the starting materials vs. the actual behavior of phosphorus in the lattice.  

 

6.1.2 Single Crystal Doping 

 
 In addition to thin films, we observed that at the time of this effort and also at 

the time of writing this dissertation, there were no reports of planar doping of ZnO 

using phosphorus.   

 

6.2 P2O5 as a Dopant Material 

 

6.2.1 Basic Properties 

 
 P2O5 is orthorhombic with a sublimation point of Tsub= 350

oC at atmospheric 

pressure.  Its phase diagrams for ZnO-P2O5 and Zn-P2O5 are shown in Figs. 34 and 35, 

respectively.   
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Figure 34 ZnO-P2O5 phase diagram. Adapted from Reference 155 

 

 

 

 

 

 

 

 

 
 

Figure 35 ZnO-Phosphorus phase diagram.  Adapted from156 Of the Tdep studied in the thin film 
section, those on the phase diagram are labeled with  
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6.3 Phosphorus-Doped Thin Film Deposition 

 

 6.3.1 Background 

Strain Associated with Extrinsic Defects (Dopant):  The size of the dopant-host element 

bond and the size of the dopant itself, relative to the host atoms, contribute to the strain 

on the resulting lattice. 

In ZnO, the Zn-O bond length is 1.93 Å, while the P-O nearest neighbor separation 

in P2O5 is 2.18 Å
 157.  If we assume that phosphorus bonds into the ZnO lattice with the 

same coordination as it does in P2O5, then unless the lattice responds and changes size 

in response to dopant introduction, the 0.25 Å difference in bond length may induce 

local tensile strain around impurities. 

In addition, the phosphorus atom has an ionic radius of 2.12 Å.  This is significantly 

larger than the 1.38 Å ionic radius of oxygen and may magnify effects of tensile strain 

in the lattice.  

Such large differences between the bond lengths of the dopant and host dopant as 

well as between radii of the host atoms and dopant atoms can induce large lattice strains 

around the impurity, should the impurity dissolve in the host lattice.   

 

Deposition Conditions: All films were grown under the same conditions as the 

undoped films, as discussed in Chapter 4.  Due to the low sublimation point of the 

dopant source, P2O5, it was necessary to periodically check that the stoichiometry of the 

as-deposited films did not vary significantly from the target stoichiometry.  From run to 
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run, RBS confirmed no significant deviations of the film stoichiometry from the target 

stoichiometry. 

6.3.2 Growth Parameter Influence on Structural Properties of P-Doped Films  

 
The crystallinity of the phosphorus-doped films improves with increasing Tdep 

for all phosphorus-doped samples, independent of whether the atmosphere was oxygen- 

or argon-rich (Fig. 34 (a), (b)).   

We found that adding as low as 1% at. wt. P resulted in a broadening of the 

FWHM.  As that percentage increased, the ZnO thin film amorphized, even at elevated 

Tdep, where near epitaxial behavior was observed for undoped ZnO and the Tsub of P2O5 

is exceeded.   

Above Tdep = 250
oC, the FWHM saturated for all %P dopings and independent 

of the deposition atmosphere, indicating that at a given %P doping, the lattice structure 

reached a limit for the possible degree of crystalline ordering.  

Rutherford backscattering data showed little variation in the % P concentration 

in films grown at low Tdep vs. films grown at high Tdep, for a given starting % P in the 

target.  This indicated that in the case of a starting source like P2O5, with its low 

sublimation point,  rf sputter deposition did not result in any significant loss of dopant, 

even for films grown at Tdep > Tsub  (P2O5).  

 

 6.3.3 Relationship between Strain and Optical Properties 

Strain along the c-axis (εzz) was examined as a function of deposition temperature, 

Tdep, for both argon-rich and oxygen-rich deposition conditions and as a function of % 

at. wt. phosphorus (Fig. 35 (a), (b)).   
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Films grown in both argon- and oxygen-rich atmospheres show tensile strain over 

the full range of Tdep.   The strain approaches zero for films deposited at higher 

temperatures.  The fact that the strain is primarily tensile in nature for this range of 

deposition temperatures is consistent with existing work on undoped ZnO thin films158.   
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Figure 36 (0002) FWHM vs. Tdeposition  for Phosphorus-doped ZnO thin films (%  Phosphorus = 
1, 2, 5, 10% at. wt.) grown in an (a) an argon-rich atmosphere (b) oxygen-rich 
atmosphere.  
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Figure 37 εzz vs. Tdeposition  for Phosphorus-doped ZnO thin films (% Phosphorus = 1, 2, 5, 10% at. 

wt.) grown in an (a) argon-rich atmosphere or (b) an oxygen-rich atmosphere. 
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 Egap decreases for both 1 and 2 % Phosphorus doped films, but increases for 

both 5 and 10 % dopings.  Looking at the compositional dependences of Egap of the 

argon-rich and oxygen-rich films grown at the full range of Tdep (Figs. 36 (a), (b)), we 

found a non-linear compositional dependence at low dopings  (<5%) and a linear 

dependence at higher dopings (5, 10 %).  

 

 Three main features can be commonly observed in semiconductors at the 

heavily doped limit: 

  1. Formation of an alloyed phase 

  2. Band gap shrinkage 

  3. Band tailing 

 

1. Formation of an alloyed phase 

 Semiconductors that are alloyed to form a novel semiconducting material 

typically exhibit an optical band gap that is a compositionally-dependent superposition 

of the two parent compounds, that is: 

 

Egap(product) = x  Egap(compound 1) + (1 - x)Egap(compound 2)  

 

 Where x is the fractional composition of compound 1.  This is known as 

Vegard’s Law159.  Strictly speaking, it is a relationship involving the lattice constants 

rather than the energy gap.  

 
 

 

(6.1) 
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If we assumed that Vegard’s law held and calculated the band gaps for the 

alloyed compositions, we would obtain Egap  =  3.38 eV  for the 1%-doped case and  Egap 

=3.39 eV   for the 2 % case, an overall increase in the band gap, in the opposite 

direction of what we measured.   

Hence, either another compound or phosphorus alone is being incorporated into 

the ZnO thin film.  If one imagines a scenario where Zn3P2 (Eg =1.3 eV) is being 

incorporated, this still leads to an increase in the band gap of the total compound 

relative to ZnO. 

 Furthermore, while there are versions of Vegard’s Law that introduce correction 

terms, resulting in a relationship that deviates slightly from linearity (associated with 

band gap bowing)160, these correction terms are typically small (meV).   

 

2. Band gap shrinkage 

 As the concentration of impurities increases, impurity levels merge to form 

impurity bands.  When a large number of holes are introduced into the valence band 

(equivalently a large number of holes is introduced into the conduction band), hole-hole 

(electron-electron) interactions result from the overlapping of wavefunctions.  The hole-

hole (or electron-electron) interaction is composed of two terms:  a Coulombic term 

and an exchange interaction.  The exchange interaction arises from Pauli exclusion, 

which, in keeping holes (electrons) away from one another lowers the overall energy of 

the system.  This is manifest as a shrinkage of the band gap.  
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 Many semiconductors in the heavily doped limit exhibit band shrinkage.  For 

example, GaAs shows shrinkage of approximately 16 meV.  Such a small shrinkage 

cannot explain the observed magnitude of the change in the band gap.  
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Figure 38 Egap as a function of % phosphorus (RBS) for oxygen-rich grown samples (top) and 

argon-rich grown samples (bottom) 
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Figure 39 Εgap vs. Tdeposition  for Phosphorus-doped ZnO thin films (% Phosphorus = 1, 2, 5, 10% 

at. wt.) grown in an argon-rich atmosphere (top) or an oxygen-rich atmosphere 
(bottom).  
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Figure 40 ∆λ vs. Tdeposition for various % P doped films grown under Ar-rich deposition conditions 
(top) and Oxygen-rich deposition conditions (bottom) 
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3. Band Tailing 
 
 At the band edge, in the high impurity concentration limit, impurity atoms may 

become disordered on the host lattice.  This leads to an overall broadening of the 

transition width, as the tail of the transmission spectrum contains extra states.  The 

doping dependence of  ∆λ is presented in Fig. 40.  

 

6.3.4 Electrical Properties 

 Films doped at 5, 10% showed resistances in the GΩ range, consistent with the 

formation of a glassy, insulating material, likely an alloy of ZnO-P2O5.  Room 

temperature carrier concentration measurements were attempted, but due to the 

inconsistency of the sign of the carriers, attributed to the noise of the signal, it was not 

possible to determine the carrier concentrations of these samples.  p-type behavior was 

observed in p-n junctions fabricated from these highly doped samples, though not 

consistently.   

 

6.4 Planar Doping of P2O5 into ZnO Single Crystals 

 
 Single crystal ZnO samples were planar doped in air via annealing in a 

conventional annealing furnace.  Freshly cleaned and etched crystal surfaces were 

dusted with P2O5 powder and set to anneal in an alumina boat for a range of times and 

temperatures in air.  Ramp up and down rates were set to a constant 40oC/min.   

 Table 7 shows a selection of annealed and planar-doped crystals.  Carrier 

concentration was measured via four-contact Hall measurements at a range of 
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temperatures, up to 200oC, under dark conditions.  Corner contacts were made in Van 

der Pauw geometry (corner contacts) and the Van der Pauw test method161, as outlined 

by the ASTM162 and associated revisions163 was followed.  Au contacts were made, 

followed by In solder connections to Au wires164.  

We found that of the annealing conditions tested (100oC, 400oC, 800oC; for 

durations of 1, 5, and 12 hours), we found that annealing an untreated crystal at 800oC 

for 12 hours consistently produced a p-type doped crystal with reasonable mobility and 

carrier concentration (Table 7).   

The fact that the carrier type is n-type for samples annealed at 800oC, 1 hour is 

indicative of an improved n-type quality with minimal diffusion of P2O5 into the lattice.  

The same process was repeated a year later in a common furnace and yielded p-type 

crystals of equal quality.  

The measured electron concentrations and mobilities that we found are at par 

with reported measurements on single crystals (180 cm2/(V-s))165 

 The hole mobilities reported here are higher than the hole mobilities reported for 

p-type doping efforts of Group V elements into ZnO.  There have been reports of hole 

mobilities as high as 40 cm2/(V-s) in phosphorous-doped ZnO thin films166.  Other 

groups have reported the following hole mobilities for specific dopants167: Sb: 20 

cm2/(V-s); N: 12-20 cm2/(V-s); O (native defect tailoring): 23 cm2/(V-s).  The 

difference between the hole mobilities reported in the literature and those reported here 

may be associated with the fact that the values reported in the literature are for doped 

thin films, which may have a larger defect density than the single crystals employed in 

this effort, which may impede hole mobility.  
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Table 7:  Comparison of Undoped and P2O5-planar doped ZnO transport properties.  

 

 Undoped ZnO 
800oC, 1 hour 

Planar Doped 
400oC, 12 hrs 

Planar Doped 
800oC, 1 hour 

Planar Doped 
800oC, 12 hours 

Carrier Type n-type indeterminate n-type p-type 

Mobility 
[cm2/(V-s)] 

199 indeterminate 234 64 

Carrier 
Concentration 

[cm-3] 

1.52 1016 indeterminate 1.58 1016 1.87 1016 

 

p-n junctions were fabricated using the 12 hour annealed samples.  Au contacts 

were used as the contact on the p-type face of the crystal.  In was used as the contact on 

the n-type fact of the crystal. n- and p-type contacts were simultaneously annealed at 

600oC for 25 minutes in air via direct conduction (hotplate).  A schematic of the device 

geometry is shown in Figure 41.   

I-V characteristics for these junctions are shown in Fig. 42.  Samples were 

measured above room temperature (80-100oC).  Rectification was observed, with Vturn on 

~3.3 V.  This is close to the value of the band gap for ZnO, indicating a p-n response for 

the contacts (vs. a Schottky response, as compared in Fig. 42 (a)).   

 

 

 

 

 

Figure 41  Device geometry of planar-doped p-n junctions 
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Figure 42 (a) Comparison of I-V Characteristics of undoped ZnO and phosphorus-doped ZnO, 
both prepared by heating in air at 800oC for 12 hours, followed by contact deposition (described in the 
text) and subsequent anneal at 600oC, 25 min. (b )I-V Characteristics of p-doped ZnO with room lights on 
(solid, red) and off (dashed, black) 
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 The junctions are responsive to light (Fig. 42 (b)).  I-V characteristics show 

several peaked structures.   

In addition to P2O5, other phosphate compounds were tested for their viability as 

planar doping components—both in direct contact and spin-coated using distilled water.  

The phosphate compound (NH4H2PO4) under a range of annealing times and 

temperatures yielded samples whose conductivity type and carrier concentration proved 

difficult to measure due to the high resistance of the samples (>100 GΩ).  
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Chapter 7: Implications for Unipolar and Bipolar 
Device Fabrication 
 

7.1 Unipolar Devices  

 Single crystal results presented in Chapter 5 show that the best Schottky 

devices, with the lowest barrier heights are from samples annealed at TAnneal ≥ 600
oC.  

Of the three atmospheres studied in this work, the air-annealed samples produced 

reliable, low-barrier devices.  

 Samples annealed in air at 1000oC had the lowest Schottky barrier overall.  

These samples possessed clean surfaces with, as XPS has shown, a high concentration 

of oxygen, which likely improves the quality of the contact between the Schottky metal 

and semiconductor.  Single crystals annealed between 400 – 800oC are oxygen-deficient 

and Zn-rich.  Thus, the fabrication of unipolar devices under these conditions may 

prove to be less effective at surfaces prepared in this temperature range.   

 Argon and vacuum atmospheres produced samples with higher Schottky 

barriers that were at par with the existing barrier heights, as found in the literature.  For 

argon-annealed samples, the lowest barrier was found in samples annealed at 600oC, 

while in vacuum annealed samples, the lowest barrier was found for samples annealed 

at 200oC.  Surfaces for samples prepared at these temperatures showed minima in 

roughness for the temperature range studied.  Further work to explore the pressure 

dimension of this parameter space is required in order to fully eke out effects associated 

with the vapor pressure of Zn and the rendering of a Zn-deficient (read: oxygen-rich) 

surface.  
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7.2 Bipolar Devices   

 7.2.1 Updating the Experimental Limits of the Failure to Dope Rule 

. The failure to dope rule, as introduced in Subsection 2.2.4, is one of the most 

commonly invoked rules cited to explain the difficulties in p-type doping of ZnO.  

Since the initial announcements of p-type ZnO, these calculations have not been 

updated.  Using our results, we update the failure to dope rule in this section. 

 As shown in Section 6.5, we found that p-type doped ZnO films and single 

crystals have carrier concentrations ~ 1016 cm-3.  Given this, we re-calculated the 

position of the ),(
,
ppin

alExperimentFermiE , as introduced in Section 1.3, so as to better represent the 

known limits for p-type doping ZnO.   

We began by refreshing our memory of Eqn. 1.6, which we write here only in 

terms of the relevant p-type term:  
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In order to obtain a solution for ),(
,
ppin

alExperimentFermiE , it was necessary to invert Eqn. 

1.6.  Rather than solve it analytically, we looked at the applicability of one of two 

existing approximations for the Fermi-Dirac distribution:168: 

• Non-degenerate approximation 

• Degenerate approximation 

These approximations are used for solving the Fermi-Dirac integral above.  

 
 

(7.1) 
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The non-degenerate approximation is utilized in cases where FermiE  is well-

above (3kBT) the valence band edge.  At room temperature, the non-degenerate 

approximation would hold if ),(
,
ppin

alExperimentFermiE  was 78 meV away from the conduction or 

valence band.  The degenerate approximation is utilized in cases where EFermi is inside 

the valence band.   

Since Zhang’s initial ),(
,
ppin

alExperimentFermiE  was predicted to be far from the valence 

band maximum and since we have no indication that the Fermi level should appear 

inside the valence band, since the valence band maximum may be at an even lower 

value than depicted in Zhang’s article169 we took the non-degenerate approximation as a 

reasonable starting point.  In this case, the Fermi function can be replaced by a simple 

Maxwell-Boltzmann-like exponential:   
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Where Evalence = the valence band maximum.  

 

Eqn. 7.2 is re-written in terms of ),(
,
ppin

alExperimentFermiE  as Eqn. 7.3 and is consistent 

with the approach taken by Walukiewicz to address the doping asymmetry in 

semiconductors170: 
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Where Nv is: 
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Substituting in the electron effective mass m*
 = 0.59me 

171 into Eqn. 7.4, we obtain Nv = 

1.13 x 10 25 m-3 at 300K.   Inserting this into Eqn. 7.3, along with nhole = 1.87 x 10
16 cm-

3 (from Table 7), we obtained ),(
,
ppin

alExperimentFermiE  = - 0.34 eV.  At the time of writing, there 

were no known cyclotron resonance measurements of the hole effective mass for 

phosphorus-doped ZnO, thus the electron effective mass was used in this calculation.  

This value does not differ significantly from the hole effective mass measured by 

cyclotron resonance in undoped single crystals172. 

This is significantly different from the value calculated in the original paper by 

Zhang, which assumed the absolute worst-case scenario (a negligible hole concentration 

not explicitly stated by the authors) for ZnO and placed ),(
,
ppin

alExperimentFermiE  far above the 

valence band maximum.  If one assumes that a “negligible” carrier concentration is of 

the order 1013cm-3, one obtains the ),(
,
ppin

alExperimentFermiE  shown in Fig. 4 ~ + 0.5 eV.   

The recalculation of ),(
,
ppin

alExperimentFermiE  will assist in efforts to refine and improve 

conditions to grow p-type doped thin films as well as future efforts to develop thin film 

as well as single crystal devices. 

 
 

(7.4) 
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Figure 43 Modified band diagram from Figure 4.  Modification schematically reflects a change 

of ),(
,
ppin

alExperimentFermiE  (thick solid line) value as recalculated in the text.  Originally, 

),(
,
ppin

alExperimentFermiE  appeared at the dashed line labeled “C/D” 

 
 

 

 7.2.2 Single Crystal Planar Doping Conditions 

 Surfaces were found to be Zn rich for samples annealed in air between 400 – 

800oC.  800oC anneals may be ideal for planar doping if enough dopant can diffuse in—

any Zn interstitials that existed in the near-surface/near-bulk region may have diffused 

out to the surface.  Table 7 shows that a 12-hour anneal produces a reasonable mobility.   

),(
,
ppin

alExperimentFermiE
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 There may be a density of Zn vacancies that can support p-type conduction or at 

least a minimum in the concentration of Zn interstitials able to participate in extrinsic 

dopant compensation. 

 

 7.2.3 Phosphorus-Doped Thin Film Growth Conditions 

 The conditions that promote p-type conduction in thin films are less 

straightforward.  This may be attributable to competing donor and acceptor states. 

In both undoped and doped cases, the lattice strain is tensile and relaxes with 

increasing Tdep, except in the case of the 1% doped films grown in an argon-rich, which 

show an increase in tensile strain with increasing Tdep. 

 It is plausible that the larger tensile strain observed in 1% P-doped films 

supports formation of compensatory defects, such as oxygen vacancies, since a 

reduction in Egap is observed with increasing strain along the (0002) direction, where we 

would expect, from theory involving effects of epitaxial strain alone, an increase in the 

band gap.   

If compensatory defects are not to blame, strong lattice relaxation may be the 

source of the dopant energy level deep within the gap173, which would require device 

operation at temperatures greater than room temperature in order for ionization of 

carriers to occur.  

 An argon-rich atmosphere may set the stage for oxygen vacancies, since the 

source of oxygen in the film is limited to oxygen in the target and the limited oxygen 

ambient.   

 While it is true that the oxygen-rich ambient may not be a likely ambient to 

support oxygen vacancies in the film, the reduction in band gap suggests that the 
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resulting ZnO is not stoichiometric, possibly from the presence of excess Zn, which 

would sit as interstitials.  If this is the case, then this deposition condition will not 

facilitate p-type doping, as Zn interstitials are a known source of n-type enrichment174.  
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Appendix 1:     RF Sputter Deposition 

 

A1.1 Introduction to Sputter Deposition 

 
Sputter deposition is a method of thin-film deposition that occurs via ion 

bombardment of a target.  Argon gas is ionized by a large applied electric field.  The 

field gradient accelerates the argon gas ions towards a target.  The accelerated ions 

bombard the target and via momentum transfer, cause knock-on collisions with target 

atoms near the surface.  A fraction of the knocked-on target atoms move through 

several atomic layers before they are ejected.  The ejected material then travels through 

the chamber space and condenses on the substrate surface.  Depending upon Tdep, the 

condensed material has variable levels of mobility and interacts with other condensed 

atoms on the substrate surface.   

Sputtering has an advantage over many other deposition techniques in that the 

transfer of material is typically stoichiometric.  It tends to produce films with good 

adhesion strength, homogeneity in composition and uniformity of thickness.   

Sputtering can occur using a DC power supply or an RF power supply.  DC 

sputtering, which is commonly used to sputter metals, utilizes a DC voltage gradient 

between the target cathode and substrate anode to produce an accelerating voltage.  DC 

sputtering has limited use for high-resistivity materials (some semiconductors and all 

insulators).  The high negative potential applied to the insulating target leads to positive 

charge build up on the target surface and an eventual cessation of sputtering175.  RF 

sputtering allows for the deposition of non-conductive materials.   
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Sputtering can occur in reactive or non-reactive modes.  In reactive mode, the 

target is one source of elements and the ionized gas, which contains some amount of 

reactive gas (e.g. oxygen, ammonia, nitrogen) is the other source.  For example, ZnO 

can be produced in reactive mode when a Zn metal target is sputtered in an oxygen 

atmosphere.  In many cases of reactive sputtering, it is not known if the desired 

compound is formed (1) at the target surface and then transferred to the substrate; (2) in 

the plasma and then transferred to the substrate; (3) on the substrate surface.   

 

A1.2 Experimental Details 

 
An RF Plasma Products RF5S RF generator operating at 13.56 MHz was used to 

generate the plasma and accelerate ions to the target.  A 1” diameter target was bonded 

to a copper backing plate using thermally conductive silver epoxy.  The backing plate 

was thermally coupled to a water-cooled face of the sputter gun using thermally 

conductive silver grease.  Water-cooling serves to continuously dissipate heat 

associated with ion bombardment.  Cooling is important, since excess heating of the 

target can drive changes in its stoichiometry.   

Undoped ZnO targets were fabricated using 99.999% ZnO powder isostatically 

pressed to minimize void formation.  Phosphorus-doped ZnO targets were fabricated 

using 99.999% P2O5 powder mixed with 99.999% ZnO powder.  To alleviate concerns 

for contamination from the Al2O3 mortar and pestle (the conventional route for mixing 

during target fabrication), the powder mixture was placed in suspension with n-heptane 

solvent and was stirred using a Teflon-encased stir bar in a Pyrex beaker for 24 hours.  
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After the stirring period, the n-heptane was gently boiled off, (Tboil = 98
oC).  The dried 

powder was isostatically pressed at 10,000 psi into a target without use of binders such 

as polyvinyl alcohol, again, in order to minimize contamination.  Targets were neither 

hot-pressed nor thermally sintered, so as to avoid loss of P2O5 during the sintering 

process and to minimize native defect evolution, which can occur during conventional 

thermal processing of target materials.   

All substrates underwent pre-cleaning using a three-solvent process.  Substrates 

were placed in a Fluoroware chip boat and cleaned in pyrex beakers.  Substrates were 

degreased in trichloroethlylene for 10 minutes under ultrasonic agitation.  A 5-minute 

ultrasonic acetone rinse followed.  Finally, the substrates were ultrasonically cleaned in 

methanol for 10 minutes.  Substrates were blown dry with pressurized N2, immediately 

mounted to the substrate heater, and placed in the deposition chamber.  

Substrates were mounted to a rotating substrate heater using silver paint.  The 

rotating substrate heater was heated by four internally-mounted quartz lamps.  These 

lamps were controlled using a Eurotherm PID controller, using a thermocouple that was 

electrically isolated and was screened from the RF source.  

Prior to deposition, the chamber was pumped down to p < 1 x10-6 Torr.  The 

chamber was baked out with heater tape the day before deposition occurs in order to 

drive off any potential sources of hydrogen.  The chamber was quickly opened and the 

substrates (which have been cleaned using the procedure described below) were 

mounted.  The chamber was pumped down using a diaphragm pump and single-stage 

turbo pump.  
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With the shutter in place, the target was pre-sputtered for 30 minutes prior to 

deposition in an oxygen-rich atmosphere.  Pre-sputtering was conducted in order to: 

• Clean the oxide target surface 

• Equilibrate sputtering rates of the target’s constituents 

(reproducibility) 

• Coat the chamber walls so as to minimize contamination due to 

chamber outgassing during the deposition process.  

The RF matching network was tuned to minimize reflected power and maximize 

forward power. 

Prior to opening the shutter, the atmosphere was set to the standard deposition 

pressure and composition and an additional stage of pre-sputtering takes place for 30 

more minutes.  During this time, the substrate heater was set to its target temperature.  

The heater stage was set to rotate in order to insure compositional uniformity across the 

sample.  Target to substrate distance was fixed at 6 cm for the depositions described in 

this investigation.  Power was fixed at 100W.  Once the two stages of pre-sputtering are 

complete, the shutter was lifted and the deposition process began.   
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Figure 44 Top view schematic of rf sputter deposition chamber and associated electronics and gas 
handlers. 
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Figure 45 Photograph of rf sputter chamber and electronics rack 
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Appendix 2:   Atomic Force Microscopy 

 

A2.1 Introduction  

 
 Atomic Force Microscopy (AFM) is a common method of mapping surface 

morphology on the nanometer scale.  In its simplest form, contact mode, a cantilever 

with a pointed tip is pressed against a sample surface with forces on the order of 

nanoNewtons.  In order to keep the cantilever deflection (equivalently, the force 

applied) constant, the z-position of the cantilever is varied.  The cantilever is scanned 

across the sample surface--(x,y) direction—yielding a map of z-direction across the 

surface. 

 A variation on contact mode, tapping mode, drives the cantilever at its 

mechanical resonance frequency and the tip is brought into close proximity to the 

sample surface, but is not in direct contact.  Variations in the tip-sample interaction 

forces give rise to variations in the resonance frequency, affecting the amplitude of the 

cantilever’s motion.  Unlike contact mode, which is just sensitive to short-range tip-

sample interactions (by virtue of it being in direct contact with the sample), tapping 

mode is sensitive to short- and longer-range forces.   

 

A2.2 Experimental Details 

 
 An SPM MultiMode system from Digital Instruments was operated in tapping 

mode at room temperature and atmosphere over (2 x 2) and (10 x 10) µm2 areas with a 

(512 x 512) resolution.  Drive frequencies were on the order of 290 kHz.  Roughness 
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measurements were obtained after looking at three regions that were spatially separated 

by at least 20 µm, relative to the location of the initial measurement.   

 

A2.3 Analysis 

 
 Roughness was calculated over the full 2 x 2 µm2 region of interest.  Three 

different regions were scanned, separated by a distance 10 µm or more.  The root-mean-

square (rms) average roughness of a surface is calculated over the entire area of interest, 

A, by integrating over r(x,y), the roughness profile: 

∫ ∫=
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0
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0
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1

dydxyxr
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Appendix 3:  UV Spectroscopy 

 

A3.1 Introduction 

 
ZnO is optically active material—if a photon has an E > Egap, then it is possible 

to drive an electron from the valence band into the conduction band.  Ultraviolet 

spectroscopy allows for such an event to take place by driving a semiconductor with 

photons of λ= 400-200 nm of the electromagnetic spectrum.  Two approaches were 

used in this thesis: spectrophotometry—which varies the excitation wavelength and 

looks at the emitted response at that wavelength and luminescence which pumps a fixed 

wavelength in and looks at the emitted response.  

 

A3.2 UV-Visible Spectrophotometry—Experimental Details & Analysis 

 
Purpose 

 UV-Visible Spectrophotometry is a technique that allows for the extraction of 

the optical properties of a material (reflectance, absorption and transmission) as well as 

the band gap of the material.   

 

Experimental Details 

 A Shimadzu UV-2501PC commercial spectrophotometer was used to make 

transmission measurements at room temperature and ambient atmosphere.  A schematic 

of the system in transmission mode is shown in the figure below.  The system contains 
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two light sources:  a conventional tungsten source, which illuminates the sample for 

measurement in the visible range down to the near-UV (800 – 360 nm); the second 

source is a deuterium (D2) lamp, which illuminates the sample in the UV (360 – 188 

nm).  A single photomultiplier tube serves as the detector across the ranges of both 

sources.   

 A standard source, such as an uncoated substrate, is placed in the standard arm 

of the spectrophotometer and the response of this is measured and subtracted from the 

thin film + substrate, which is placed in the measurement arm.    

Analysis 

UV-Vis Spectrophotometry directly measures the percent transmission as a 

function of wavelength for a thin film relative to the underlying substrate.  The cutoff 

wavelength, λc, is defined as the wavelength at which the transmission is at 50% of its 

value at 800 nm.  Cutoff wavelength, λc, was extracted using Boltzmann fits to %T vs. 

wavelength data in the form:  

   )(
)()(

)(%
/)( ic
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T

e
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T λ

λλ
λ

λλλ
+

+

−
=

∆−1
.    

Here, T(λf) = 188 nm, T(λi) = 800 nm and λc = cutoff wavelength, ∆λ is the 

transition width.  

This is converted to a band gap, Egap, since Egap = 
c

hc

λ
.  Here, h = 6.62 x 10-34 J-s     

and c is the speed of light.  This result is then converted from Joules into electron volts, 

using the conversion:  1 eV = 1.6 × 10-19 J. 

This approach was selected over the typical approach by Pankove176, which 

converts transmission to an absorption coefficient and then attempts to fit a line to the 
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transition edge of the absorption curve.  Pankove’s approach involves qualitative “guess 

work” in defining the range to fit a line to the transition edge of the absorption curve, in 

order to determine the value of the band gap. 

All measurements conducted in this dissertation were conducted between 800-

200 nm, with an 0.2 nm step size and slit width = 0.2 nm.  The sample aperture window 

was ~ 4 mm x 6 mm.  The scan speed was set to a medium scan rate.  Measurements 

were conducted relative to a blank sapphire substrate in the reference arm.   

  

 
 

Figure 46 UV-Visible Spectroscopy, Transmission Mode.  The beam path is indicated by the cyan 
arrows and the position of Reflectance Mode attachment is indicated by a gray box 
around the sample and reference. (Adapted from W. Yang, thesis) 
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A3.3 Photoluminescence—Theory and Experimental Details 

 
Photoluminescence spectroscopy (PL) is a non-destructive technique used for 

probing the electronic structure of materials.   As the name suggests, photons with E > 

Egap are directed onto a sample, which absorbs energy into the material.  The excitation 

generates electron-hole pairs.     

Eventually, these electron-hole pairs recombine.  The recombination event may 

be accompanied by light whose wavelength is proportional to Efinal  - Einital, known as a 

radiative recombination process.  It is possible that some fraction of energy during the 

recombination event may not include the emission of light.  This is known as a non-

radiative recombination process.   

 PL was used for: 

1. Determination of Egap:  Very simply, the wavelength of the peak with the 

maximum intensity corresponds to the band gap.   Egap = hνgap.  

 

2. Monitoring of crystalline quality: Compressive and tensile strains effect 

band position.  Crystalline quality, as observed in the XRD FWHM, 

affects peak widths.  We discuss this in greater detail, as applicable, in 

the body of the dissertation.  

 

Experimental Details 

All measurements were conducted in reflection mode at room temperature using 

an N2 pulsed laser with λ = 337 nm, set to the maximum repetition rate of 10 Hz.  The 
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pulse width was < 4 ns (FWHM).  At 30 Hz, the average power was ~ 7.5mW.  Prior to 

measurement, a GaN MOVPE-grown sample, 60 microns in thickness, was used to 

calibrate the intensity.  The N2 peak position at 337 nm was used as the calibration point 

for the fiber optic spectrometer and was removed during normalization.   

 Data was collected using an Ocean Optics SD2000 fiber optic spectrometer.  An 

optical fiber of 1000 µm was used for the purposes of calculating the integrated 

intensity.  The spectrograph was set to operate with a 25 µm slit and a resolution of 0.6 

nm in wavelength.   The spectrometer was controlled with a PC1000 interface board, 

containing an A/D converter on an ISA bus card.   

 

 

 

      

 

  

 
 
 
 
 
 
 
 
 

 
 
 

 
Figure 47 Top view schematic of PL system.
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Appendix 4:   Rutherford Backscattering Spectrometry and Channeling 

 

A4.1 Introduction 

 
 Rutherford Backscattering Spectrometry is no more than a sophisticated version 

of Lord Ernest Rutherford’s original 1911 experiment involving helium ions impacting 

a gold foil177.   

A collimated monoenergetic beam of α-particles (4He+) with a spot size of 

approximately 1 mm in diameter and 0.01o divergence is generated with an accelerator 

source.  The beam is directed towards the sample under investigation using magnetic 

steering mechanism.  Upon reaching the sample, the individual α-particles have several 

possible paths of interaction:  they may interact with the near-surface region of the 

sample by elastically scattering off of surface atoms or by entering the sample, 

scattering within some depth of the sample, losing energy along the way and 

backscattering out into an annular barrier detector.  The energy of the backscattered α-

particle is proportional to the atomic mass (Eqn. A4.1).  The result is an energy 

spectrum of the backscattered α-particles as a function of energy (or in terms of the 

detector’s channel numbers, which are directly proportional to the backscattered 

energy).  A schematic is depicted in Figure 48.  

 

Rutherford Backscattering Spectrometry (RBS) has several applications: 

• Composition determination to within 3% of the atomic mass 
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• Thickness determination of thin films, to within 5 nm 

• Crystallinity (when measured in Channeling Mode).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 48 Diagram of RBS in randomly aligned mode for a binary system (such as ZnO).  Arrows 

indicate incident and backscattered energy. 
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Elemental Composition:    

 The energy of the backscattered particle is influenced primarily by the atomic 

mass in the sample and the scattering angle—the higher the backscatter energy, the 

higher the atomic mass: 
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 Where Einitial = energy of the incident α-particles, M1 = atomic mass of the 

incident particle, M2 = atomic mass of the sample under study.  

The number of backscattered particles that have been detected is known as the 

yield, Y, and is defined as:  
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 Where Q = number of incident ions,  Ns = surface density (atoms/cm2), 







Ωd

dσ
 = 

the probability that a collision will result in a detected particle, the differential cross-

section;  and ∆Ω  = the solid angle of the detector.  

 The differential cross-section is178: 
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 Film Thickness:  The film’s thickness, t, is be determined by measuring the 

width of the peak(s) of the constituent element, ∆Ε.  This must be normalized by the 
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stopping power, So, (expressed in units of [eV/Å]) which is the rate of energy loss of the 

α-particles as a function of penetration depth:   

∆E = So t 

 Crystallinity:  The degree of crystalline order in a film or single crystal material 

is determined via RBS by operating the spectrometer in Ion Channeling Mode.  In this 

mode,  any rows of atoms that are aligned with the α-particles beam will allow the 

beam to pass—a typical lattice spacing is on the order of Ångstroms, whereas a α-

particles has a wavelength that is 104 times smaller (for MeV operations).  So, an α-

particles can move as a point particle through the channels defined by the lattice 

structure.  The degree of crystallinity is expressed as the percent channeled (% χ), is a 

percentage that is calculated relative to the random (unaligned) backscattered signal.  A 

specimen with “excellent” channeling (typically a single crystal) has χ ~ 1-2 %.   

  Near-perfect channeling would imply little to no backscattering, since the α-

particles would be able to pass through the perfectly aligned “channels” of the lattice.  

Any misalignment of the lattice serves as barriers for further travel (see the picture on 

the right in the figure below). Consequently, backscattering of an element can occur.  

So, when aligned, samples that do not channel well will have backscattered signals with 

larger amplitudes compared to those that do channel well.  A typical χ for such a 

specimen is >10%.  

 In channeling mode, the backscattered yield is often higher at the surface than it 

is in the bulk.  This gives rise to a surface peak179.  

 
 

 

(A4.4) 
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Figure 49  RBS Channeling Modes. (a) Channeling in a perfectly aligned lattice. (b) Channeling 
in an imperfect lattice. The backscattered element, a consequence of the imperfection of 
the lattice is represented by the dashed arrow.  

 

Limitations 

 RBS is unable to measure low-Z elements, such as oxygen, unless it is measured 

in a special resonance mode, where oxygen concentration is then measurable with an 

accuracy of ~ 3%  Furthermore, elements with neighboring Z values may not possess 

readily resolvable peaks, depending upon the thickness of the film containing that 

element.  

 

A4.2 Experimental Details 

 
α-particles are generated in a Pelletron, which is an electrostatic accelerator.  

Pellets made of insulating material, linked to one another to form a chain (similar to a 

belt in a Van der Graaf generator), are used to build up an electrical potential.  The 

pellet chain is housed in a vessel containing SF6, which serves to isolate the chain.  The 

resulting voltage gradient is used to accelerate α-particles towards the specimen180.   α-
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particles collide with the specimen and by classical mechanics, momentum transfer 

occurs and an atom of a particular Z is scattered back into a detector.  

The beam used in this dissertation was ~ 2 MeV.  Samples were mounted on a 

four-axis goniometry to permit alignment of the crystal for the purposes of channeling 

measurements (discussed below).   

  

 

Figure 50  Photograph of Pelletron accelerator and RBS beam line (Courtesy of S. Dhar) 
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Appendix 5:  X-ray Photoelectron Spectroscopy 

 

A5.1 Introduction 

 
X-ray photoelectron spectroscopy (XPS) is a technique for determining surface 

composition based on the photoelectric effect.  A sample is placed under ultrahigh 

vacuum conditions (typically 10-11 Torr) and irradiated with x-ray photons from an x-

ray tube (or in some cases a synchrotron).  Via the photoelectric effect, the surface 

atoms eject an electron from the core-level of the electronic structure.  The electrons are 

separated according to energy in a hemispherical analyzer and counted.   

The energy of the emitted electrons is related to the atomic bonding environment 

at the surface and is referred to as the binding energy, EB.  The number of emitted 

electrons that are collected at a given energy is related to the concentration of the 

particular atomic bonding state of an element.  So, the kinetic energy of the electrons 

ejected from the solid are related to the binding energy (EB) and incident energy of the 

x-ray photons (hν) and the spectrometer work function, φspectrometer , via: 

 

EKE = hν - EB - φspectrometer 

 
 

 

(A5.1) 
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A5.2 Experimental Details 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 51  Top view schematic of X-ray Photoelectron Spectroscopy setup. 
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A5.3 Analysis 

 

Typically the 1s peak for carbon is found at 285.0 eV.  Deviations from this 

value set the scale for the surface charge energy, ECh, which adds another correction 

term to the EKE equation: 

EKE = hν - EB - φspectrometer- ECh 

 

The precise EB for a given atom on the surface depends upon its local chemical 

environment.  Variations in the degree of attraction or repulsion between core-level 

electrons and the nucleus give rise to variations in EB.  These are known as chemical 

shifts.  For example, if a collection of atoms of the same element have two oxidation 

states—those atoms with a high oxidation state will have a lot of valence electrons to 

donate and so will produce an XPS peak that is chemically shifted to a higher EB 

compared to atoms at the lower oxidation state.  The lower oxidation state has fewer 

core-level electrons interacting with the nucleus and so the strength of interaction 

between the core level electrons and the nucleus is weaker, hence the binding energy is 

lower.  Electronegativity effects also drive chemical shifts.  For example, a typical 

hydrocarbon bond C-H has a C1s binding energy of 285.0 eV.  If  a fluorine atom is 

bound to carbon (C-F), the C1s binding energy shifts to 287.8 eV.   

The area under an XPS peak is related to the quantity of each element present.  

By measuring peak areas and adequately correcting peak position relative to the 

adventitious carbon peak position, it is possible to determine the % composition of a 

given element: 

 
 

 

(A5.2) 
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Iij  =  K T(EK) Lij (γ) σij ∫ ni(z) e
-z/λ(Ek)cosθ dz 

 

Where:  Iij = the area of the peak j from element i 

  K = instrument specific constant 

  T(Ek) = transmission function of the analyzer 

  Lij (γ) = angular asymmetry factor for orbital j of element i 

  σij  = photoionization cross-section of peak j from element i 

λ(Ek) = inelastic mean free path length 

θ = take-off angle of the photoelectrons measured relative to the surface 

normal 

 
 
 

(A5.3) 
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Appendix 6:   Four-Circle X-ray Diffraction 

 

A6.1 Introduction 

 
 X-ray diffraction is a powerful technique for microstructural investigation of a 

material’s properties. These properties include:  atomic spacing, phase composition, 

epitaxy, crystallinity, grain size and defect structure.  It is a non-destructive technique.   

 Crystals consist of atomic planes spaced some distance, d, apart.  X-rays from an 

x-ray tube source (here, a Cu source) are diffracted by atomic planes in the crystal, 

constructively interfering and giving rise to a measurable diffraction peak.  The 

condition for constructive interference is given by Bragg’s Law: 

 

nλ = 2dhkl sin θhkl 

  

Where n = the order of diffraction, dhkl = d-spacing between (hkl) planes, θhkl is 

the angle between atomic planes and the incident x-ray beam and λ is the wavelength of 

the incident x-ray beam (λ = 1.54066Å,for the Cu Kα line) .  In order to observe the 

diffraction peak, the detector is at 2 θhkl.   

In the case of thin films, a distribution of orientations is visible.  In this case, the 

diffracted x-rays emerge as a cone with an opening about 2 θhkl.  The most common 

geometry for observing thin films is the Bragg-Bretano geometry181.  In this geometry, 

x-rays are incident upon the sample at an angle θ.   The sample is rotated at ½ the 

 
 

 

(A6.1) 
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angular velocity of the detector.  In this geometry, only information about the (hkl) 

planes parallel to the surface is obtained because the incident and diffracted x-rays are 

at the same angle relative to the sample surface.  

 Interplanar spacing is seldom uniform.  Deviations from the standard value of 

interplanar spacing are associated with strain.  The effect of strain, to a first 

approximation, is a superposition of diffraction lines shifted away from the unstrained 

position at a range of d-values, with the intensity of those lines reflecting the 

distribution of strain.    

When the detector is set to a fixed 2θ  value, satisfying the Bragg condition at a 

given d value and the sample is moved along  (“rocked”) in θ, the resulting peak that is 

measured is an indicator of the degree of crystallinity of the film.  That is to say that it is 

a measure of the degree of misorientation.  

  

A6.2 Experimental Details 

 
 A Siemens D5000 X-ray diffractometer with CuKα source was operated at 

40kV, 30mA. All thin film measurements commenced with substrate alignment.  Scans 

of film peaks were aligned in φ  and  χ prior to all measurements.    
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Figure 52 Diagram of XRD four-circle. 
 

 

φφφφ Circle 

2θ2θ2θ2θ  Circle 

ωωωω  Circle 

χχχχ  Circle 

2θ2θ2θ2θ  Axis ωωωω  Axis 

φφφφ Axis 

χχχχ  Axis 

Detector 

X-ray  

Source 

z 

 

                   y 

        

                 
x 



 

 144
 

 

Appendix 7:   I-V and Schottky Barrier Measurements 

 

A7.1  Introduction 

 
 When a metal is placed in contact with a semiconductor, EFermi of the metal and 

semiconductor come into equilibrium in the absence of an externally applied electric 

field.  As they come into equilibrium, a potential barrier between the metal and the 

semiconductor forms.  This barrier is known as a Schottky barrier.  In this case, the 

contact has diode-like (non-linear) I-V characteristics.  In some cases, there is no 

potential barrier at the surface and thus, the contact is a conventional Ohmic contact and 

has conventional (linear) I-V characteristics.  

 Schottky barriers arise because of a difference between the positions of EFermi  in 

a metal vs. in a semiconductor.  In equilibrium, the EFermis of the two different materials 

must line up.  In order for this to occur, electrons will flow from the semiconductor into 

the metal, leaving empty, ionized states behind.  These states, combined with their 

recently-flowed electron counterparts on the other side of the interface, produce a dipole 

electric field (and its associated potential).  The potential associated with this dipole is 

continuous, decaying into the semiconductor as one moves away from the metal-

semiconductor interface.  Using Poisson’s equation it can be written as: 
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Where Nd = donor concentration, x–distance away from the metal-semiconductor 

interface and xo = position of the interface.  It is the potential that gives rise to band-

bending at the metal-semiconductor interface. 

In order for electrons to flow, the potential barrier associated with the band 

bending must be overcome.  This barrier is known as the Schottky barrier, φB, and is 

dependent upon the metal as well as the processing conditions. eφB = eφvacuum -  eχ.. 

Where φvacuum is the work function and χ. is the electron affinity (see diagram).  
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Figure 53 Diagram of band-bending and Schottky barrier for various applied voltages 
(not to scale!) 

 
 

A7.2  Experimental Details 

 
 An I-V measurement setup was constructed for the purposes of measuring low-
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Fig. 60.  All measurements were made in a dark room, after 2-3 hours of settling in the 

darkness in order to minimize effects from persistent photoconductivity.  

 A Keithley 2400 Sourcemeter was connected to tungsten or beryllium-tungsten 

probe tips using coaxial test leads.  The sample stage was guarded.  Test leads were 

cleaned with methanol and a lint-free wipe prior to each run.  Unconnected, the 

minimum measurable current through the leads was 4 x 10-11Amps.   

The Keithely Sourcemeter was controlled via LabView virtual instruments 

written for the purposes of I-V testing.  Test resistors as well as test diodes were run in 

order to investigate the limits of the constructed system.  

 Au was used as the Schottky contact and soldered In were used as the Ohmic 

contact.182 

Samples were measured between [-5, +5] V with 0.05 V steps.  Measurements 

were averaged 5 times with a 5 second wait between voltage steps.  Measurements were 

repeated in loops in 6 hour intervals to test for variations associated with persistent 

photoconductivity.  

 

A7.3  Analysis 

 

The forward current can be written as: 
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Where e = charge of the electron, Va = applied voltage, Rs = series resistance of the 

Schottky junction, T = temperature, I = measured current, n = ideality factor and Is  = 

saturation current, which is defined as183: 
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Where A*= Richardson constant for  ZnO is  = 32 A cm-2 K-2  184,185.   
  

The barrier height was calculated by extrapolating the ln (I) vs. V curve to V = 0  

This gives Is.  From this it is possible to determine the barrier height by inverting the 

previous equation such that186: 
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Suggested Interview Questions for the Dissertation Defense 
 
 
My thanks to the principal and staff of Hollywood Elementary School, College Park, for 
the opportunities to judge their science fairs, participate in their career fairs and allow 

me to reproduce these questions (from their 2006 Science Fair) in my thesis! 
 

Perhaps the committee will find this useful during the defense! 
 
 

Project Area Suggested Questions 
Purpose/Question -Why did you select this project? 

-How did you develop an interest in this topic? 
Prediction/Hypothesis 
 

-Before you started, what did you think was going to happen in 
your investigations? 
-Why did you think that was going to happen? 
-What information did you get from your research? 

Materials and 
Procedures 

-What did you make sure to keep the same during your 
investigation? 
-Why did you use “x” samples in your investigation? 
-Why is it important to use metric units in your investigation? 
-Can you identify the independent variable? 
-Can you identify the dependent variable? 

Results -Can you use your graph to explain your experiment? 
-If you continued this investigation for a longer period of time, 
what might happen? 
-If you used _____ instead of _____, would you get the same 
results? Why or why not? 
-What pattern or trend does your graph show? 
-If your graph were to continue in such a pattern or trend, what 
might you conclude? 

Conclusion -What did you find out in your investigation? 
-What did you learn about your hypotheses or predictions? 
-How does your topic relate to real life? 
-How could you continue testing or experimenting to learn 
more about your topic? 
-Can you think of any new questions you might want to 
investigate that are related to your topic? 
-How could the information you found out in your project help 
someone in their career? 
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