
THE INSTITUTE FOR SYSTEMS RESEARCH

ISR develops, applies and teaches advanced methodologies of design and 

analysis to solve complex, hierarchical, heterogeneous and dynamic prob-

lems of engineering technology and systems for industry and government.

ISR is a permanent institute of the University of Maryland, within the  

A. James Clark School of Engineering. It is a graduated National Science 

Foundation Engineering Research Center.

www.isr.umd.edu

Towards a Unified Theory of 
Consensus

Christoforos Somarakis and John S. Baras

ISR TECHNICAL REPORT 2014-09





Technical Report submitted to Website: http://drum.lib.umd.edu/
INSTITUTE FOR SYSTEMS RESEARCH
Digital Repository at the University of Maryland
Copyrighted Material , Number 0, October 2014 pp. 1–46

TOWARDS A UNIFIED THEORY OF CONSENSUS

Christoforos Somarakis1 and John S. Baras2

The Institute For Systems Research

Univerisity Of Maryland
College Park, MD 20740, USA

Abstract. We revisit the classic multi-agent distributed consensus problem.
We adopt mild connectivity assumptions and with a novel application of the

contraction coefficient we obtain simple yet general and unifying results both

in discrete and continuous time. Furthermore, we extend the discussion to
stochastic settings. We apply our approach to a wide variety of linear, non-

linear consensus and flocking algorithms proposed in the literature and we

derive new conditions for asymptotic consensus.
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1. Introduction. Self-organized dynamics lie in the core of modern complex sys-
tems a most interesting branch of which is their application in networked control.

Examples of networks that illustrate a collective behavior as a result of local dy-
namic interaction among the nodes of the network are ubiquitous both in nature and
in human societies. Ants cooperate together to form a nest or to transfer provisions
and birds form flocks and fly together enhancing their hunting abilities. Humans in-
teract and socialize by exchanging opinions and sometimes may converge to a fairly
common view (especially after choosing a leader). Engineers build mobile commu-
nication or robotic networks which coordinate their behavior by local exchange of
information. These are all examples of collaborative control of multi-agent com-
plex systems. The self-organized aspect of these systems is usually understood by
a decentralized, local exchange of information. The central phenomenon in these
examples is the manner agents, as individuals, exchange information on a state
of interest and update this state so that eventually all agents’ states concentrate
around a common value. These problems are known as consensus problems and
enjoy a durable interdisciplinary interest in the applied sciences. As a result several
mathematical models have been introduced to appraise the so-called emergence of
consensus among agents.

In its classic version, a formal framework includes a finite number of agents
N ≥ 2, each agent i = 1, . . . , N of which possesses a value of interest. This value,
denoted by xi ∈ R, evolves under the following averaging schemes, expressed either
in discrete or continuous time:

xi(t+ 1) =
∑
j

aijxj(t), ẋi =
∑
j

aij(xj − xi), i = 1, . . . , N. (0.1)

The quantities aij ’s are non-negative numbers that model the influence of agent j on
i and essentially characterize the interdependence of agents, the connectivity regime
and eventually the process of the asymptotic alignment. For the discrete model it
holds that

∑
j aij ≡ 1 and for the continuous model

∑
j aij ≡ 0. In particular, the

extensive amount of proposed frameworks, much of which is discussed below, are
concerned with different versions of the connectivity weights aij . Equations of type
(0.1) are also known as first order consensus schemes.

1.1. Review of the existing literature. Being fundamental part of the large
field of multi-agent self-organized dynamical system, consensus algorithms have
continuously drawn the attention of researches among various scientific communi-
ties. In this section, we conduct a thorough, yet by no means complete, review of
the existing models in the literature.

1.1.1. Detereministic models. The interest in distributed iterative schemes has a
long history in the literature [11], [41], [18]. In the control community, distributed
computation over networks begins with the work of Tsitsiklis et. al. [47] where
problems of asynchronous agreement and parallel computing were considered for
Eq. (0.1).

A theoretical framework for solving consensus problems was introduced by Olfati-
Saber et al. in [35] while in their seminal paper Jadbabaie et al. [22] studied a model
of asymptotic alignment proposed by Viscek et al. [48]. Both these works consider
populations of autonomous agents that exchange information under the assump-
tion of symmetric communication, i.e. aij = aji. While Olfati-Saber et al. followed
algebraic graph theory methods [6], Jadbabaie et al. based their results on the
theory of non-negative matrices and non-homogeneous Markov Chains, [41]. The
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novelty of these works concern switching communication networks, i.e. communi-
cations weights aij(t) that vary over time and may be positive or zero at each t. In
[22] this switching connectivity regime asks for a connectivity condition to ensure
asymptotic coordination, known as recurrent connectivity.

Nonlinear versions of Eq. (0.1) have also appeared in the literature, [33, 28, 38]
both in discrete and continuous time versions, mainly as extensions to the linear
ones. In [33, 34], Moreau studied non-linear discrete time and linear continuous
time versions of consensus algorithms. In [33] the author used set valued Lyapunov
functions and proved that in systems of type

xi(t+ 1) = fi(t, x1(t), . . . , xN (t)), i = 1, . . . , N

agreement among agents is reached as t → ∞ on condition that each agent’s state
lies inside the convex hull of their neighbors’ previous states. A similar argument
was built for the linear continuous time version of the algorithm [33]. Another non-
linear algorithm was analyzed in [28] very similar to this of Moreau, while in [38]
the authors study the continuous time non-linear model

ẋi =
∑
j

aij(t)
(
gij(xj)− gij(xi)

)
as an extension to [35] and includes both static and switching connectivity condi-
tions.

Another non-linear model for asymptotic consensus is with the use of the passiv-
ity property of the coupling functions. In [2, 36] the authors introduce and study
the asymptotic properties of the model

ẋi =
∑
j

gij
(
t, xj(t)− xi(t)

)
with gij(t, z) being a passive function in z. This model is another interesting general-
ization of Eq.(0.1) and very similar to the Kuramoto model [26] for synchronization
but even more similar to Krause’s opinion dynamics model [25].

In a series of papers, [9, 10, 7] Cucker et al. introduced a model for speed
alignment among birds with connectivity weights that depend on their relative
distance. In the most fundamental form the model reads

ẋi = ui

u̇i =
∑
j

a(|xi − xj |)(uj − ui) i = 1, . . . , N (0.2)

where xi denotes the position of the bird i and ui denotes its speed. These sys-
tems are generally known in the literature as 2nd order consensus models and have
attracted an enormous attention from the Applied Mathematics community. The
central objective is again the derivation of conditions under which the birds align
their speed while the flock remains shaped. Mathematically, this translates to the
following asymptotic flocking condition

|ui(t)− uj(t)| → 0, sup
t
|xi(t)− xj(t)| <∞, ∀ i, j = 1, . . . , N.

In the work of Cucker the communication between i and j is assumed to have the
form

a(|xi − xj |) =
K

(σ + |xi − xj |β)
.

Based on this particular form, sufficient conditions for asymptotic flocking, as func-
tions of the parameters K,σ, β, are derived. The fact that this particular coupling
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under aij is instrumental in the stability analysis is very restricting. For this rea-
son, simplified proofs, improvements and extensions both to microscopic and macro-
scopic level, were developed in the years to follow [17, 16, 40]. These works mainly
consider continuous time versions of the Cucker-Smale model.

1.1.2. Stochastic models. Essentially any positive value of aij signifies the existence
of connection between j and i (in the sense that j affects i e.g. by signal transmis-
sion). Real-world networked systems, however, suffer from various communication
failures or creations between nodes. For example when agents are moving, some
existing connections may fail as obstacles may appear between agents or assuming
proximity graphs, one agent may enter the effective region of other agents. There-
fore a standard abstraction is this when agents are connected via a network that
changes with time due to link/node failures, packet drops etc. Such variations in
topology can happen randomly, and this motivates the investigation of consensus
problems under a stochastic framework.

1. Linear Consensus. Let us now discuss a number of studies based on stochastic
versions of Eq. (0.1). Hatano et al. consider in [20, 32] an agreement prob-
lem over random information networks where the existence of an information
channel between a pair of elements at each time instance is probabilistic and
independent of other channels. In [37], Porfiri and Stilwell provide sufficient
conditions for reaching consensus almost surely in the case of a discrete linear
system, where the communication flow is given by a directed graph derived
from a random graph process, independent of other time instances. Under
a similar communication topology model, Tahbaz-Salehi and Jadbabaie in
[45] provide necessary and sufficient conditions for almost sure convergence to
consensus and in [46] they extend the applicability of their necessary and suf-
ficient conditions to strictly stationary ergodic random graphs. In [31] Matei
et al. consider the linear consensus system (0.1) under the assumption that
the communication flow between agents is modeled by a randomly switching
graph. The switching is determined by a homogeneous, finite-state Markov
chain and each communication pattern corresponds to a state of the Markov
process. Then necessary and sufficient conditions are provided to guarantee
convergence to average consensus in the mean square sense and in the almost
sure sense.

2. Nonlinear Consensus. In [29] the authors study local synchronization of non-
linear discrete-time dynamical networks with time varying couplings both in
deterministic and stochastic varying connections, using variational stability
methods. A different line of stochastic formulation of consensus algorithms is
proposed for the 2nd order model in [15, 1, 8], where additive Brownian noise
is added to Eq. (0.2) and sufficient conditions are derived for consensus in the
almost sure sense are derived. Both these works rely on the algebraic prop-
erties of the symmetric communication weights so that a Lyapunov stability
argument for stochastic stability is developed.

1.2. Motivation & contribution. In their vast majority, all works rely on a fun-
damental assumption: The exchange of information among any two communicating
nodes occurs under established connection with a time varying weight that is, uni-
formly bounded away from zero. This automatically ensures the applicability of an
abundance of results from linear algebra, algebraic graph theory, probability theory
etc. [41, 6, 4, 32, 18, 19] towards proving asymptotic consensus.
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The following elementary example shows that if the uniform lower bound as-
sumption is lifted, consensus is not ensured:

Example 1.1. Consider the 2-D dynamical system(
x(t+ 1)

y(t+ 1)

)
=

(
1−f(t) f(t)

g(t) 1− g(t)

)(
x(t)

y(t)

)
where f(t) = Kf/t

2 and g(t) = Kg/t
2for t ≥ 1 for Kf ,Kg < 1. Then for |x(0) −

y(0)| = δ 6= 0 it can be shown that

|x(t+ 1)− y(t+ 1)| = (1− f(t)− g(t))(x(t)− y(t))

= δ

t∏
i=0

(1− f(i))→ C sin(π
√
Kf +Kg)

for some constant C > 0 according to the Euler-Wallis formula. So for
√
Kf +Kg /∈

Z consensus is not achieved.

The importance of this underlying assumption has been noted before [33] and
we strenuously remark that whichever work does not explicitly state it, it should be
subject to criticism. Distributed consensus systems that bear non-uniform positive
weights have appeared in the literature [25], [9] and it is this condition that makes
the corresponding stability problems particularly challenging.

This paper can be considered as a considerable outgrowth of [44] where the
problem of vanishing communications was considered in a fairly basic level and only
for discrete time linear consensus algorithms. The organization and contribution of
this monograph is discussed in the rest of this section.

In §2, we state the main nomenclature to be used in this work and review ele-
ments on elements of algebraic graph theory, non-negative matrix theory, measure
dynamical systems, stochastic differential equations and fixed point theory. We
also provide preliminary results by extending parts of the theory of non-negative
matrices that will come at hand in the following.

In §3, we revisit the classic deterministic linear consensus problem. More specif-
ically in paragraph 3.1 the discrete time case is considered where we provide con-
vergence results without the assumption of uniform lower-bound on connectivity
weights. The results are stated progressively and they range from the strongest (el-
ementary static, increased), to the mildest (recurrent) connectivity regime. Drop-
ping the uniform lower bound imposes new conditions for consensus on the rate
that the non-zero connectivity weights are allowed to vanish. These conditions
heavily depend on the type of the connectivity regime. In paragraph 3.2 the case
of continuous time is analyzed in a surprisingly similar vein, since the same mathe-
matical machinery tools is essentially exploited: After turning the problem from a
differential equation into an integral equation one, we manage to obtain bounds of
contraction in just like the discrete case.

In §4, we consider the stochastic version of the problem from two different per-
spectives. In the first case, we impose uncertainty in the existence of connections
and we establish probabilistic rules to control these particular dynamics and we
propose a new framework based on measure preserving dynamical systems. The
main contribution is the unified results this framework provides among a number of
important relevant versions proposed in the literature. In particular we will show
that convergence to consensus can happen only with a positive probability and not
almost surely, whenever the weights are free to asymptotically vanish. The second
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stochastic approach deals with uncertainties in the form of equations. This leads to
stochastically perturbed differential equations, where the noise is supplied by Brow-
nian processes. We elaborate on the deterministic case and provide new results for
asymptotic flocking in the almost sure and mean square sense.

A thorough discussion of the overall obtained results with concluding remarks is
held in §5.

2. Notations & Definitions. In this section, we will discuss the general theoret-
ical framework in which we will establish our results. Z is the set of integers, N is
the set of naturals and R the set of real numbers. For N ∈ N, V = {1, . . . , N}. We
will work in the N -dimensional Euclidean space RN any vector x ∈ RN of which is
considered as a column vector, unless otherwise stated. The agreement or consensus
space ∆ is defined as the subset of RN such as

∆ = {x ∈ RN : x1 = x2 = · · · = xN}

A rank−1 is a N × N matrix M is such that it has identical rows and for which
Mx ∈ ∆, ∀x ∈ RN . Next, we define the spread of a vector x ∈ RN as

S(x) = max
i,j

xi − xj .

This quantity will serve as a pseudo-norm for the stability analysis to follow. Indeed
it is always non-negative and satisfies the triangular inequality, but S(x) = 0 if and
only if x ∈ ∆. By 1 we understand the N−dimensional vector with all entries equal
to 1 and obviously S(c1) = 0 for any c ∈ R. By I we understand the N×N identity
matrix. By || · ||p we denote the p norm where in particular xTx = ||x||22.

2.1. Algebraic graph theory. By a topological directed graph G we understand
the pair (V, E) where V is the (static) set of vertexes, E = {(i, j) : i, j ∈ V} is the
set of edges where (i, j) 6= (j, i) . The degree Ni of a vertex i ∈ V is defined as the
subset Ni : {j ∈ V, (i, j) ∈ E}, all the vertexes adjacent to i. The graph G is routed-
out branching if there exists a vertex i ∈ V (called the route of the graph) such that
for any j 6= i ∈ V there is a path of edges (lk, lk−1)|mk=0 such that l0 = i and lm = j.
The graph G is connected if any vertex is a route. For two graphs G1 = (V, E1) and
G2 = (V, E2), we say that G1 is a sub-graph of G2 if E1 ⊂ E2. The adjacency matrix
A is a 0− 1, N ×N matrix with elements Aij = 1⇔ (i, j) ∈ E. The degree matrix
D := Diag

[
di
]
. Finally, the Laplacian of G is the matrix L := D−A with the sum

of its rows be identically equal to zero. This results in the spectral property that 0
is a always an eigenvalue of L and for any other eigenvalue λ ∈ C of L, <{λ} > 0
if and only if G is connected. Two vertexes i, j ∈ V communicate if there is a path
from i to j and a path from j to i. A vertex is essential if whenever there is a path
from i to j then there is a path from j to i. A vertex is called inessential if it is
not essential. All essential vertexes are divided into communication classes and all
inessential vertexes that communicate with at least one vertex may be divided into
inessential classes such that all vertexes within a class communicate. All such classes
are self-communicating. Each remaining inessential vertex communicates with no
vertexes and individually forms an inessential class called non self-communicating.
By S we denote the family of graphs with fixed N vertexes and self-edges on every
node, and by T ⊂ S the set of graphs each of which is routed-out branching.
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2.1.1. Agreement dynamics. By the term agreement dynamics we classify in this
paper the elementary case of static time invariant linear consensus systems of the
form (0.1) and in particular the continuous time model. Then in vector for

ẋ = −Lx, x(0) = x0 ∈ RN (1)

where L = D−A is the Laplacian. It is very well known that x(t)→ 1cTx0 where
c belongs to the subspace of RN spanned by the left eigenvectors of L associated
with the zero eigenvalue. Consequently if GA is routed-out branching then L has
only one zero eigenvalue and c ∈ RN is such that cTL = 0, ci ≥ 0 and

∑
i ci = 1, i.e.

the (unique) normalized eigenvector, so that cTx0 ∈ ∆. The rate of convergence is
dictated by the real part of the second smallest eigenvalue of L. It is noted that
in the symmetric case aij = aji, c = 1

1
N and the limit point is the average of the

initial states. The latter is true even if the symmetric weights depend on time.
For more on Graph Theory and relevant methods on multi-agent systems, the

interested reader is referred to [13, 4, 32].

2.2. Non-negative matrix theory. A non-negative matrix P = {pij} is such
that pij ≥ 0 for all i, j.3 The non-negative matrix P is generalized stochastic, or
m-stochastic, if

∑
j pij = m for all i. A crucial property of an m-stochastic matrix

is that m is always an eigenvalue of it. For m = 1 we have, of course, the well-
known stochastic matrix. We will now introduce and discuss, in detail, the standard
mathematical tool to deal with infinite products of stochastic matrices.

Given an m-stochastic matrix P = [pij ], the quantity

τ(P ) =
1

2
max
i,j

∑
s

|pis − pjs| = m−min
i,j

∑
s

min{pis, pjs} (2)

is the coefficient of ergodicity of P . A crucial set of properties of τ is discussed in
the following result:

Theorem 2.1. [18] For any m-stochastic matrix P and z ∈ RN the following
properties hold:

1. ||δP || ≤ τ(P )||δ||, for all real row vectors δ such that δ1 = 0.
2. S(Pz) ≤ τ(P )S(z)
3. |λ| ≤ τ(P ), for any (possibly complex) eigenvalue λ of P with the property

that λ 6= m.

The coefficient of ergodicity measures the averaging effect of stochastic matrices
and it is the central concept behind any convergence result in linear consensus
algorithms. its history dates back to one of Markov’s first papers [30]. In the
literature there exists an abundance of similar ideas: the coefficient of ergodicity
is also known as contraction coefficient, Markov coefficient, Dobrushin coefficient,
Birkhoff coefficient, Hajnal diameter, as each corresponding researcher has arrived
at it independently and/or under different setups, [41, 19]. For a recent review on
the coefficients of ergodicity we refer to [21].

Remark 2.2. Property (1) of Theorem 2.1 leads to the sub-multiplicative property:
for P1, P2 m stochastic matrices, their product P1P2 constitutes and m2 stochastic
matrix and it satisfies

τ(P1P2) ≤ τ(P1)τ(P2).

3Unless otherwise specified each matrix is supposed to be square and of dimension N ×N .
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The sub-multiplicative property becomes particularly useful when m = 1 ex-
actly because at m = 1 the set of stochastic matrices becomes closed under matrix
multiplication. As Theorem 2.1 the coefficient τ applies to dynamics of the type

w = Pz

with P being m-stochastic. A straightforward extension is this when P acts as an
abstract linear operators on Z and it is summarized in the following Theorem which
is actually the first result of this work:

Theorem 2.3. Let I be a compact subset of R and assume that for any compact
I ′ ⊂ I, WI′ =

∫
s∈I′ P (s)ds is m-stochastic. If w =

∫
s∈I P (s)z(s)ds

then
S(w) = τ(WI)S(z∗)

for some z∗ =
(
z1(s1), . . . zN (sN )

)
for si ∈ I and

τ(WI) =
1

2
max
h,h′

N∑
k=1

∫
s∈I
|phk(s)− ph′k(s)|ds

= m−min
h,h′

N∑
k=1

min

{∫
s∈I

phk(s)ds,

∫
s∈I

ph′k(s)ds

} (3)

The proof of this result relies on the first mean value theorem for integration and
a technical lemma, both of which are cited below:

Lemma 2.4 (The first mean value theorem for integration). If G ∈ C0[J,R] and
φ is integrable that does not change sign on J then there exists x ∈ J such that

G(x)

∫
J

φ(t)dt =

∫
J

G(t)φ(t)dt.

Lemma 2.5 (Lemma 1.1 of [18]). Suppose δ ∈ RN such that δT1 = 0 and δ 6= 0.
Then there is an index I = I(δ) of ordered pairs (i, j) with i, j ∈ V such that

δT =
∑

(i,j)∈I

Tij
2

(ei − ej)

ei is the row vector (0, . . . , 0, 1, 0, . . . , 0) with 1 at the ith position.

Proof of Theorem 2.3. Pick h, h
′ ∈ V. Then for ph,ph′ the hth and h

′th rows of P
respectively, we have ∫

s∈I

(
ph(s)− ph′(s)

)
z(s)ds

Now, since N < ∞ there is a partition {Il}ml=1 of I which depends on h, h′ such
that for any Il, phk(s)− ph′k(s) does not change sign in for s ∈ Il, k ∈ V and it is
not identically zero. Then for fixed Il we apply Lemma 2.4 to obtain

∑
k

∫
s∈Il

(
phk(s)− ph′k(s)

)
zk(s)ds =

∑
k

∫
s∈Il

(
phk(s)− ph′k(s)

)
dszk(s∗k) = δTl z

∗
l

for some s∗k = s(Il, h, h
′), δTl =

∫
Il

(
ph(s)−p′h(s)

)
ds 6= 0 and z∗l = (z1(s∗1), . . . zN (s∗N ))T .

By Assumption
∫
Il
P (s)ds is m-stochastic and therefore δTl 1 = 0. Hence Lemma

2.5 is applied and together with the triangle inequality

|δTl z∗l | ≤
1

2
||δl||1S(z∗l )

(see also [18]). Then if we let S(z∗) = maxl S(z∗l ), we obtain the bound
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S(w) = max
h,h′

∣∣∣∣ ∫
s∈I

(
ph(s)− ph′(s)

)
z(s)ds

∣∣∣∣
=
∑
l

|δTl z∗l | ≤ max
h,h′

1

2

∫
I

||ph(s)− ph′(s)||1dsS(z∗)

Finally, from the identity |x− y| = x+ y− 2 min{x, y} for any x, y ∈ R and the fact
that ∀h, h′ ∈ V

∑
k

∫
s∈I phk(s)ds =

∑
k

∫
s∈I ph′k(s)ds = m we get

1

2
max
h,h′

∑
k

∫
s∈I
|phk(s)− ph′k(s)|ds = m−min

h,h′

∑
k

min

{∫
s∈I

phk(s)ds,

∫
s∈I

ph′k(s)ds

}

Similarly, for the expression

w =

∫
s∈I1

P1(s)

∫
q∈I2(s)

P2(q)z(q)dqds

one can show, along the lines of the proof of Theorem 2.3 that if W
(2)
I =∫

s∈I1 P1(s)
∫
q∈I2(s) P2(q)dqds is stochastic, then

S(w) ≤ τ(W
(2)
I )S(z∗) (4)

for some z∗ =
(
z1(s

(1)

(ij)), z2(s
(2)

(ij)), . . . , zN (s
(N)

(ij))
)

all s
(l)

(ij) of which are in I1 ∪ I2.

Finally, the sub-multiplicativity property for pairs of stochastic matrices of the
particular form discussed in this section, applies to expressions of the type

w =

∫
s∈I1

P1(s)

∫
q∈I2(s)

P2(q)z(q)dqds

so long as
∫
s∈I1 P1(s)

∫
q∈I2(s) P2(q)dqds is stochastic.

Regardless if we are working with products of matrices within integrals or not,
a crucial point in this work is to ask for which coupling elements pij , it holds that

τ < m.

It is this feature that characterizes the contractive (averaging) nature of the stochas-
tic matrices. It can be easily verified that mini,j

∑
s min{pis, pjs} (or the extension

in Eq. (3)) is strictly positive for any P which possesses a strictly positive col-
umn. These matrices are called scrambling and lie in the core of the analysis of
non-homogeneous discrete Markov Chains [41, 19].

The properties of stochastic matrices and their products play a crucial role in
the analysis to follow and the standard approach is through graph theory: Any
non-negative (and in particular stochastic) matrix P can be represented as a graph
GP with its adjacency matrix AP the elements of which satisfy the property Aij =
1⇔ Pij 6= 0. For two stochastic matrices P1 and P2, we write P1 ∼ P2 if GP1

= GP2

(consequently P1 = P2). This way we can study P from the point of view of graph
theory and use the terminology of §2.1.

A non-negative matrix P is called irreducible if GP consists of a single essential
class and a stochastic matrix P is called regular if GP is routed-out branching.

A classical result in the theory of products of stochastic matrices is that for a
regular matrix P there is a power of it that makes it scrambling: i.e. ∃γ ≥ 1 :
τ(P γ) < 1 and from the sub-multiplicative property P t → 11

T c for some c ∈ R,
as t → ∞. The power of P that makes it scrambling is known as the scrambling
index and the aforementioned statement on the asymptotic behavior of P t is the



10 C. SOMARAKIS AND J. S. BARAS

ergodic theorem of stochastic matrices [18]. As the product of stochastic matrices
is stochastic as well, the preceding notions can be extended to study the behavior
of the non-homogeneous products of stochastic matrices. We exclusively study
backward products of stochastic matrices defined as

Pp,h := Pp+hPp+h−1 · · ·Pp+1 = [pp,hij ].

for p ≥ 0, h ≥ 1. We recall now the set S and its subset T . Let R = RN denote the
cardinality of T . Each member Gi of it, has a scrambling index γi. In fact T can
be partitioned in such mutually disjoint subsets: T =

⊔
v Yv so that for G1 ∈ Yz1 ,

G2 ∈ Yz2 , z1 6= z2 if and only if γz1 6= γz2 . Consequently, we can enumerate

1 = γ0 < γ1 < · · · < γmax ≤
[
N

2

]
For instance, Y0 is the subclass of routed-out branching graphs, each member GY0

of which has scrambling index, γ0 = 1, i.e. there exist i such that [GY0
]ji ∈ EGY0 .

Next we note that for any G1,G2 ∈ T with G2 being a sub-graph of G1, it holds
that γ1 ≤ γ2, and thus we understand that by adding an edge to any graph, the
scrambling index will certainly not increase. In particular, there exists a sufficient
number of new edges that will decrease the scrambling index. Fix j < i. Then for
any Gi ∈ Yi there exists a positive number li,j such that the graph Gj formed out of

Gi with li,j additional edges will be a member of
⋃j
v=0 Yv, in which case γj ≤ γi−1.

Remark 2.6. The minimum number of edges needed to be added on an arbitrary

member of Yi so that the resulting graph is a member of
⋃i−1
v=0 Yv, denoted by

l∗ := maxi{li,i−1}.

For more on the dynamics of products of non-negative matrices the reader is
referred to [19, 18, 41].

2.3. Elements of dynamical system theory. Let (X,B, µ) be a finite measure
space (that is µ(X) < ∞) and for the rest of the paper we assume, without loss
of generality, µ(X) = 1. We define a measurable transformation T : X → X, as
a map with the property that T−1(B) ⊂ B. T : X → X is measure preserving if
µ(T−1B) = µ(B) for any B ∈ B. A measure preserving transformation is called
ergodic if for any B ∈ B with the property that T−1B = B either µ(B) = 0 or
µ(B) = 1.

For a collection of probability spaces,
{

(Xt,Bt, µt)
}
t∈N, we define the product

probability space in the natural way: X =
∏
t∈N Xt and a point χ ∈ X is considered

to be the sequence χ = χ0χ1χ2 . . . where χt ∈ Xt. The σ-algebra B(X) generated
by subsets of X is the product of σ-algebras Bi and it is defined as the intersection
of all σ-algebras that contain the collection of subsets of X:

J =

{ ∏
j≤n1−1

Xj ×
∏

n1≤j≤n2

Aj ×
∏

j≥n2+1

Xj
}

=
{
χ ∈ X : χj ∈ Aj , j ∈ [n1, n2]

}Aj∈Bj
0≤n1≤n2

each of which is a measurable rectangle (or a cylinder). On each of the above
rectangles we attach the value

∏n2

t=n1
µt(At) and this can be extended to a proba-

bility measure µ on (X,B) in the standard way [49], concluding the definition of the
product probability space (X,B, µ). A measurable transformation T : X → X on
the product space, known as shift, is defined by T (χ0χ1χ2 . . . ) = χ1χ2 and it may
attain all the desired properties of measure preserving and ergodicity. By T tχ we
mean the element χtχt+1 . . . and we will also use the projection map {T tχ} = χt,
χt ∈ Xt.
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For more on dynamical systems and ergodic theory the reader is referred to
[23, 49].

2.4. Elements of stochastic differential equations. For given t0 ∈ R and a
probability space (Ω,U ,P), a collection of random variables {Yt : t ≥ t0}, each of
which Yt : Ω → RN if U-measurable, consists a stochastic process. The σ-algebra
generated by Yt is the smallest sub σ-algebra of U to which Yt is measurable.

Let B be an N -dimensional Brownian motion defined on [t0,∞) and Y0 is an
N -dimensional random variable independent of B(t0). The σ-algebra generated by
Y0 and the history of the Brownian motion up to (and including) time t ≥ t0 is

Ut := U
(
B(s)|t0≤s≤t,Y

0).
The family {Ut} is called a filtration and a process Yt is adapted to Ut if Yt is Ut-
measurable for all t ≥ t0. The set (Ω,U ,Ut,P) consists a complete filtered probabil-
ity space. Fix T > t0 and let b : RN × [t0, T ]→ RN , B : RN × [t0, T ]→MN×N are
given vector valued and matrix valued deterministic functions, respectively. Then
an RN valued stochastic process Yt is a solution of the Itô stochastic differential
equation {

dYt = b(Ut, t)dt+B(Yt, t)dBt

Yt0 = Y0
t0 ≤ t ≤ T

provided:

1. Yt is a Ut-adapted process.

2. E
[ ∫ T
t0
|bi(Yt, t)|dt

]
<∞.

3. E
[ ∫ T
t0
|B2
ij(Yt, t)|dt

]
<∞.

4. ∀t ∈ [t0, T ]

Yt = Y0 +

∫ t

t0

b(Ys, s)ds+

∫ t

t0

B(Ys, s)dBs, a.s.

The existence and uniqueness (in probability) of a solution to the above initial
value problem is guaranteed after assuming a local Lipschitz condition on b and B
and a linear sub-growth of |b(x, t)| and |B(x, t)| with respect to x. For more on
Itô calculus and explicit types of solutions in certain linear stochastic differential
equations as well as in asymptotic behavior of stochastic processes the reader is
referred to the excellent textbooks [14, 24] and especially to [3].

2.5. Fixed point theory. A pair (M, ρ) is a metric space if M is a set and ρ :
M ×M → [0,∞) such that ρ(y, z) ≥ 0 with equality to hold if and only if z = y,
ρ(z, y) = ρ(y, z) and ρ(y, z) ≤ ρ(z, x) + ρ(z, y). A complete metric space is such
that every Cauchy sequence in M converges in M. The major result of Fixed Point
Theory is Banach’s Contraction Principle

Theorem 2.7. Let (M, ρ) be a complete metric space and Q : M→M to satisfy

ρ(Qy1,Qy2) ≤ αρ(y1, y2)

for any y1, y2 ∈ M and α ∈ [0, 1). Then there exists a unique y ∈ M such that
Qy = y.

In the study of stability of solutions of differential equations is occasionally de-
sirable to derive estimates on the rate of convergence to an asymptotic state. In
this case, stability by means of fixed point theory proves to be very convenient. The
existence of a fixed point of a solution operator in a weighted complete metric space
implies that the solution (i.e. the fixed point) attains the property of convergence
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with the prescribed rate (weight). For the purpose of this paper the weight is de-
fined as a rate function h : [t0,∞)→ [1,∞) such that h(t0) = 1, h is monotonically
increasing and limt h(t) = ∞. Examples of complete (weighted) metric spaces are
provided in [5]. For more on fixed point theory the reader is referred to [39, 42, 5].

3. Deterministic Consensus. We begin the discussion with dynamics that change
with time in a purely deterministic fashion. In the first two subsections we study
both discrete and continuous time variants of linear consensus algorithms, whereas
in the last subsection we discuss applications in non-linear algorithms as those in-
troduced in §1.1.1.

3.1. Discrete time. Consider N <∞ agents with values xi ∈ R. At each time t,
agent i updates its value xi(t) ∈ R according to{

xi(t+ η)− xi(t) = η
∑
j 6=i aij(t)

(
xj(t)− xi(t)

)
, t ≥ 0

xi(0) = x0i
(5)

for i ∈ V and η > 0 fixed which without loss of generality we will set η = 1.
We look for solutions of (5) with the property that xi(t)− xj(t) → 0 as t → ∞

∀i, j ∈ V. This is equivalent to xi(t) → k as t → ∞, ∀i ∈ V. Indeed, note that for
x(t) =

(
x1(t), . . . , xN (t)

)
for t ≥ 0, it holds that for aii(t) = 1−

∑
j aij(t) > 0

xi(t) ∈ [min
i
x0i ,max

i
x0i ]

then the ω(x0) limit set is non-empty, closed and invariant with respect to (5).
Then if xi(t) − xj(t) → 0, any point in the ω limit set will lie in ∆. Indeed for
x(0) ∈ ω, we have x(0) ∈ ∆ as well and the solution x

(
t, 0,x0

)
will be in ∆ for all

t ≥ 0. A similar argument for the continuous time counterpart of (5) is made in
§3.2.

3.1.1. Static connectivity I.

Assumption 3.1. The connectivity weights aij(t) : Z+ → R+ are defined such that
for any t the corresponding graph GP is scrambling and that∑

j∈Ni

aij(t) ≤ m < 1, aij(t) > 0⇒ aij(t) ≥ f(t), i 6= j

where f is a positive function with the property that ∃M ∈ [0,∞) so that f(t) ∈
(0, 1−m] for t ≥M .

Remark 3.2. It is an easy exercise to show that if
∑
j aij(t) ≤ m < 1 then a

sufficient condition for f ≤ 1−m is m ≤ N
N+1 .

We rewrite (5) as

xi(t+ 1) = aii(t)xi(t) +
∑
j∈Ni

aij(t)xj(t)

where aii(t) := 1−
∑
j∈Ni aij(t) which is positive under Assumption 3.1. In vector

form the solution reads
x(t+ 1) = P (t)x(t)

where P (t) is the stochastic matrix

P (t) :=


1−

∑
j 6=1 a1j(t) a12(t) · · · a1N (t)

a21(t) 1−
∑
j 6=2 a2j(t) · · · a2N (t)

...
...

. . .
...

aN1(t) aN2(t) · · · 1−
∑
j 6=N aNj(t)

 (6)



TOWARDS A UNIFIED THEORY OF CONSENSUS 13

This particular type of stochastic matrices will be used in the consensus dynamics
both in discrete and continuous time.

Remark 3.3. An essential property of P (t) is that the diagonal elements are strictly
positive. For this reason, for any P1, P2, the product P2P1 is also stochastic with
the same structure as (6).

Next we exploit the structure of P (t) to obtain non-trivial upper bound estimates
for τ

(
P (t)

)
.

Lemma 3.4. Let P (t) be a stochastic matrix with the form of Eq. (6). Under
Assumption 3.1, the coefficient of ergodicity, τ satisfies

τ
(
P (t)

)
< 1− f(t), t >> 1.

Proof. Pick any t ≥M for M having the meaning of Assumption 3.1. The definition
of τ requires to find the two rows i, j that minimize the sum∑

k

min{aik, ajk}.

The structure of P (t), in Eq.(6) and Assumption 3.1 implies that there exists a
column i∗ with strictly positive elements. Then for arbitrary i, j∑

k

min{aik, ajk} ≥ min{aii∗ , aji∗}

from which two cases are to be considered

a. i, j 6= i∗ and min{aii∗ , aji∗} = aii∗ so that aii∗ ≥ f(t).
b. i = i∗ or j = i∗ and min{aii∗ , aji∗} = aii∗ so that aji∗ ≥ ai∗i∗ = 1 − di(t) ≥

1−m.

so that
τ
(
P (t)

)
≤ 1−min

{
1−m, f(t)

}
= 1− f(t).

Theorem 3.5. Under Assumption 3.1, the system (5) converges to consensus if∑
s f(s) =∞.

Proof. The results is a straightforward application of Theorem 2.1 and Lemma 3.4.
Given the initial vector x0, the general solution of (5) at time t is

x(t) = P (t− 1)P (t− 2) · · ·P (0)x0 = P−1,tx
0

and for t ≥M + 1,

S
(
x(t)

)
≤ τ

(
P (t− 1)

)
S
(
x(t− 1)

)
≤

t−1∏
s=M

τ
(
P (s)

)
S
(
x(M)

)
≤

t−1∏
s=M

τ
(
P (s)

)
S
(
x0)

where we have used the sub-multiplicativity property of τ(·). Then

lim
t→∞

S
(
x(t)

)
≤ S

(
x0) lim

t→∞

t−1∏
s=M

τ
(
P (s)

)
≤ S

(
x0) lim

t→∞

t−1∏
s=M

(
1− f(s)

)
≤ S

(
x0) lim

t→∞

t−1∏
s=M

e−f(s)

≤ S
(
x0) lim

t→∞
e−

∑t−1
s=M

f(s)

= 0.
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Assumption 3.1 allows for the connectivity graph GP (t) = (V, E(t)) to be time
dependent only to the point where it is sufficiently connected, i.e. it must be
scrambling for all sufficiently large t. We can generalize the above result, firstly
to the case of deterministic switching connection topologies and secondly to the
general case of the recurrent connectivity.

3.1.2. Switching connectivity I. We begin with the first generalization.

Assumption 3.6. There exists B > 0 and M ∈ [t0,∞) such that for any t ≥
M , the family of stochastic matrices {P (s)}t+B−1s=t contain at least one scrambling
matrix.

Assumption 3.6 is straightforward extension of Assumption 3.1 and it implies the
following corollary of Theorem 3.5:

Corollary 3.7. Under Assumption 3.6, the solution of Eq. (5) converges to a
constant value if f satisfies, either

∞∑
n=1

f(sn) =∞

where {sl}l≥1 is the sequence of times such that sl ∈ Il = [M+(l−1)B,M+ lB−1]
and P (sl) is scrambling, or

0 < sup
l≥1

max
s∈Il

∑
n∈Il

f(n)

f(s)
<∞,

∑
t

f(t) =∞.

Proof. For any integer n ≥ B
M , the solution at t = nB can be written as

x(t) =

1∏
l=n

PM+(l−1)B−1,B

0∏
s=M

P (s)x0.

In view of Remark 3.3 and Assumption 3.6, for l = 1, . . . , n the matrix P(l−1)B−1,B
is scrambling with τ = 1 − f(sl) for sl ∈ [(l − 1)B, lB − 1]. On the first imposed
condition on f , the proof proceeds exactly as in Theorem 3.5. Finally, it is an easy
exercise to show that the second imposed condition on f implies the first one and
the proof is concluded.

3.1.3. Static connectivity II. In this section we relax the connectivity assumptions
considered in §3.1.1, to simple connectivity. In this case, it is by no means clear
that τ(P (t)) < 1 so that the contraction effect of P (t) is captured by τ . It is true,
however, that under certain conditions the left product Pt,h may be scrambling. In
the example to follow we illustrate the effect of non-uniform connectivity weights.

Example 3.8. Consider a network of 4 agents, characterized by the stochastic
matrix

P (t) =


1− a12(t) a12(t) 0 0
a21(t) 1− a21(t)− a23(t) a23(t) 0

0 a32(t) 1− a32(t) − a34(t) a34(t)
0 0 a43(t) 1− a43(t)


with aij(t) ≥ f(t) > 0 and f(t) a monotonically decreasing function. It is easy
to check that τ

(
P (t)

)
= 1 for all t. However, in the static case where B = 1,

any product of such two matrices is scrambling. Indeed straightforward calculation
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reveals that P (t)P (t−1) is scrambling with the first and fourth row to have nonzero
entries that sum up to

a12(t)a23(t− 1) + a32(t− 1)a43(t) ≥ 2f2(t)

so that for t >> 1
τ(P (t)P (t− 1)) = 1− 2f2(t)

and

S
(
x(t)

)
≤

1∏
i=t

τ
(
P (i)P (i− 1)

)
S
(
x0) ≤ S(x0)e−2

∑[ t
2
]−1

i=1 f2(2i−1) → 0

on condition that
∑
i f

2(2i− 1) diverges, so that asymptotic consensus occurs.

We can make this argument more rigorous.

Assumption 3.9. For the connectivity weights aij(t), it holds that aij(t) 6= 0 ⇒
aij(t) ≥ f(t), where f(t) is a positive, monotonically non-increasing function such
that f(t)→ 0.

Remark 3.10. Under Assumption 3.9, Lemma 3.4 implies that for any scrambling
matrix P (t) we have τ

(
P (t)

)
< 1 − f(t) for t large enough. The function f is

appropriately chosen so that the non-trivial upper bound of τ is controlled by this
function. Consequently, since any product Pt−γ,t is stochastic with the same struc-
ture as well (see Remark 3.3) and scrambling, the lower bound of the off-diagonal
elements of Pt−γ,t , yields τ

(
Pt−γ,t

)
< 1 − fγ+1(t) when t is large enough. Again,

how large should that t become depends on the choice of f which in its turn would
depend on the connectivity structure of Pt−γ,t .

Lemma 3.11. For fixed p ≥ 0, h ≥ 1, consider the matrix product Pp,h for each
P (s)|s=p+1...p+h defined as in (6) with the property that τ

(
Pp,s

)
= 1 for s ∈ 1 . . . h−1

and τ
(
Pp,h

)
< 1. If a := mins∈{s=p+1...p+h}{aij(s)} ∈ [0, 1−m] where

∑
j aij(s) ≤

m < 1, ∀s = p+ 1 . . . p+ h, then it holds that:

τ
(
Pp,h

)
≤ 1− ah.

Proof. We will use induction on h. For h = 2, Pp,2 = Pp+2Pp+1. Since τ
(
Pp+1

)
= 1

and τ
(
Pp,2

)
< 1 then there exists a strictly positive column of P (p+ 2)P (p+ 1) =

[pij ]. Let i be this column. Then

pii = (1− di(p+ 2))(1− di(p+ 1)) +
∑
j

aij(p+ 2)aji(p+ 1) ≥ (1−m)2

pji =
∑
k

ajk(p+ 2)akj(p+ 1) ≥ min{(1−m)a, a2} = a2

from the bound on a the result follows. If the statement is true for h = l, then for
h = l+ 1, similar calculations yield the bounds pii ≥ (1−m)l+1, pji ≥ al+1 so that
τ
(
Pp,h

)
≤ 1− al+1.

With this in mind we state the next result that concerns static topological con-
nectivity.

Theorem 3.12. Let Assumption 3.9 hold. If there exists M > 0 such that for any
t1, t2 ≥M , we have P (t1) ∼ P (t2) so that the corresponding graph GP (t1) = GP (t2)

is routed-out branching, the solutions of (5) reach global consensus if f satisfies∑
t

fγ(M + tγ − 1) =∞
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or if f satisfies

0 < sup
t≥M

∑(t+1)γ−1
i=tγ fγ(i)

fγ((t+ 1)γ − 1)
<∞,

∑
t≥M

fγ(t) =∞

where γ is the (time independent) scrambling index of P (t).

Proof. P (t1) ∼ P (t2) ∀t1, t2 implies that the corresponding communication graph
is static routed-out branching. This is equivalent to P (t) being regular. Then the
backward product Pt−γ,γ is a scrambling stochastic matrix with

τ
(
Pt−γ,γ

)
≤ 1− fγ(t)

when t is large, according to Lemma 3.11. From the sub-multiplicativity property
of τ , we can proceed as in Theorem 3.5 for t ≥ nγ, to obtain the estimate

S(x(t)) ≤ S(x0)e−
∑n−1
i=1 fγ(M+iγ−1)

so that asymptotic consensus occurs in view of the first condition. It is, again, an
easy exercise to show that the second condition implies the first.

3.1.4. Switching connectivity II. We will consider now the mildest connectivity con-
dition for the discrete case, i.e. for any t ≥ 0 , P (t) ∈ S but any product of matrices
must belong in T , over a uniformly bounded interval of time. In particular we have
the following condition:

Assumption 3.13. There exist M > 0 and B ≥ 1, such that for all t ≥ M ,
GPt,B ∈ T .

Assumption 3.13 is the well-known condition of recurrent connectivity [22].

Theorem 3.14. Let Assumptions 3.9 and 3.13 hold. Then we have unconditional
asymptotic consensus for the solution of (5) if f satisfies: either∑

t

fσ(M + tσ − 1) =∞,

or

0 < sup
t≥M

∑(t+1)σ−1
i=tσ fσ(i)

fσ((t+ 1)σ − 1)
<∞ and

∑
t≥M

fσ(t) =∞

where σ = l∗([N/2] + 1)B and l∗ with the meaning of Remark 2.6.

Proof. We have that Pt,B ∈ T with γ = γt,B . Then Pt+B,B ∈ T as well and

γt,2B ≤

{
max{γt,B , γt+B,B} − 1, GPt,B ⊂ GPt+B,B or GPt+B,B ⊂ GPt,B
max{γt,B , γt+B,B}, o.w.

If GPt,B is not a sub-graph of GPt+B,B and GPt,B is not a sub-graph of GPt+B,B or

vice-versa, it holds that ECPt,B ∩E
C
Pt+B,B

6= ∅. An element of this set is the pair (i, j)

such that [GPt,B ]ij = 0 and [GPt+B,B ]ij > 0 or vice versa. This element, however,
will be a member of EPt,2B since [GPt,2B ]ij ≥ [GPt+B,B ]ij [GPt,B ]jj > 0. From the
discussion on the partitioning of T with respect to the scrambling indexes and for
l∗ = maxi{li,i−1},

γt,l∗B ≤ max{γt,B , γt+B,B} − 1

Consequently Pt,l∗([N/2]+1)B will be scrambling. Set σ = l∗([N/2] + 1)B. Consider
the solution

x(t) = P (t)P (t− 1) · · ·P (0)x0

Since PM,σ−1 will be scrambling at time M + σBt the estimate

S
(
x(M + σBt)

)
≤ e−

∑
t f
σ(M+tσ−1)S(x0) (7)
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holds. The proof is concluded by the non-summability of
∑
t f

σ(M+ tσ−1). Again
it is only an easy exercise to show that the second condition implies the first.

Remark 3.15. This first set of theorems on discrete time linear consensus is a
generalization of existing results in the literature [22]. In case of uniformly bounded
weights all the relevant results are recovered in a more concise manner whereas in the
vanishing communication topology, the interdependence of the connectivity regime
and the rate at which the connections vanish is illustrated.

As a first application of the Theorems 3.5, 3.12 and 3.14 we have the following
example.

Example 3.16. Consider the system (5) and its solution x(t) with with f(t) ≥
ω(t−α) i.e. for large t , f dominates a function that vanishes as slow as t−α. Then
under Assumption 3.1 and Theorem 3.5 or under Assumption 3.6 and Corollary
3.7 convergence to consensus is guaranteed for α ∈ [0, 1]. On the other hand the
simple routed-out branching condition gives the sufficient condition α ∈ [0, 1/γ]
for Assumption 3.9 and Corollary 3.12 or α ∈ [0, 1/σ] under Assumption 3.13 and
Theorem 3.14.

Example 3.17 (Application in flocking dynamics.). Let us review now a second
order consensus model, as the one’s proposed in the literature [9, 10]. For N <
∞ and i = 1, . . . , N we consider N birds with positions xi and velocities vi to
coordinate their speeds according to the following algorithm:{

xi(t+ η) = xi(t) + ηvi(t)

vi(t+ η) = vi(t) + η
∑
j aij

(
x(t)

)(
vj(t)− vi(t)

) (8)

with x(0) = x0, v(0) = v0 as given initial data and η > 0 the fixed mesh value. We
assume aij(x) ≥ f

(
S(x)

)
whenever aij 6= 0 for f an upper bounded non-negative

and non-increasing function. To simplify notation we write x(t) for x(th) and the
same for v. The next result stems out of Theorem 3.5.

Corollary 3.18. Consider Eq. (8) and its solution
(
x(t),v(t)

)
∈ RN×N . Let

Assumption 3.1 to hold for the connectivity weights aij for t0 = 0, M = 0. Set
C := lim supx→∞ xf(x) ≤ ∞. If η < 1

maxi |Ni|f(0) and

S(v0) < C − f
(
S(x0)

)
S(x0)

then (x(t),v(t)) satisfies

sup
t≥0

S
(
x(t)

)
<∞ and lim

t→∞
S
(
v(t)

)
= 0.

Proof. The smallness on the mesh η is imposed to make the second part of Eq. (8) a
well posed consensus algorithm.4 Then, under the Assumption 3.1 the correspond-
ing graph is GP (x(t)) is scrambling for every t and hence it justifies the contraction
bound

S
(
v(t)

)
≤
(
1− ηf

(
S
(
x(t)

)))
S
(
v(t)

)
Proving that supt S

(
x(t)

)
<∞ implies that the flock will always remain sufficiently

connected so that aij will be uniformly lower bounded and a direct application of
Theorem 3.5 suffices to prove speed coordination. Indeed let t∗ be the first time
that S

(
x(t∗)

)
≥ S

(
x(t∗ − 1)

)
. Then for the “functional”

V (t) = S
(
v(t)

)
+ f

(
S
(
x(t)

))
S
(
x(t)

)
4Indeed a large h may lead to instability,[9]
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we have
V (t∗)− V (t∗ − 1) ≤
≤
(
1− ηf

(
S
(
x(t∗ − 1)

)))
S
(
v(t∗ − 1)

)
− S

(
v(t∗ − 1)

)
+

+ f
(
S
(
x(t∗)

))
S
(
x(t∗)

)
− f

(
S
(
x(t∗ − 1)

))
S
(
x(t∗ − 1)

)
≤ −ηf

(
S
(
x(t∗ − 1)

))
S
(
v(t∗ − 1)

)
+ f

(
S
(
x(t∗ − 1)

))[
S
(
x(t∗)

)
− S

(
x(t∗ − 1)

)]
≤ −ηf

(
S
(
x(t∗ − 1)

))
S
(
v(t∗ − 1)

)
+ ηf

(
S
(
x(t∗ − 1)S

(
v(t∗ − 1)

)
= 0

but V (t∗ − 1) ≤ S(v0) + ηf
(
S(x0)

)
S(x0) = V (0). Consequently, V (t∗) ≤ V (0) or

equivalently

0 ≤ S
(
v(t∗)

)
≤ S(v0) + f

(
S(x0)

)
S(x0)− f

(
S
(
x(t∗)

))
S
(
x(t∗)

)
choosing C ′ < C small enough so that S(v0) = C ′ − S(x0) and this implies

0 ≤ C′ − f
(
S
(
x(t∗)

))
S
(
x(t∗)

)
and this implies that S

(
x(t∗)

)
is bounded.

Notice that if limx xf(x) = ∞ then we have asymptotic flocking without any
condition on the initial data.

Remark 3.19. The above example provides a generalization of the discrete models
known in the literature [9, 10] in the sense that aij are not assumed to be either
symmetric or to have any particular expression. Moreover the above result can be
generalized to the case of simple or even switching connectivity (Theorems 3.12 and
3.14). These cases are to be discussed next.

3.2. Continuous time. For N < ∞ number of agents we consider the following
initial value problem:{

ẋi(t) =
∑
j∈Ni aij(t)

(
xj(t)− xi(t)

)
, t ≥ t0

xi(t0) = x0i
(9)

where i ∈ V.
When modeling failing signals and an overall switching connectivity regime, the

researcher must consider the connectivity weights aij(t) to “jump” from a positive
value to zero in a discontinuous fashion. In this case Eq. (9) turns a differential
equation with discontinuous right hand-side and a generalized notion of solution
is usually considered, [12]. This system is simple enough to allow for a simple
alternative. Assuming aij(t) to be right continuous, a solution x(t, t0,x

0) of (9) is a
continuous function with a right t-derivative that satisfies the differential equation
for every t ≥ t0.5 This solution also satisfies any classical integral equation which
occurs after inverting Eq.(9) in the classical manner.

Assumption 3.20. The connectivity weights aij are upper bounded, right contin-
uous, non-negative functions of time.

This, although hardly an assumption, together with N < ∞ implies that m :=
supt≥t0 maxi

∑
j aij(t) <∞. We recall now the matrix representation of the graph

Gt in terms of the degree matrix D = D(t) and the adjacency matrix A = A(t).
Then the matrix W (t) := mI − D(t) + A(t) is m-stochastic. We begin as in the
case of discrete time with two elementary yet crucial remarks:

5If one is not willing to accept this premise, a discontinuous aij(t) on an subset of [t0,∞) with
Lebesgue measure zero implies a solution that satisfies (9) in almost every t and the same analysis

applies.
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Lemma 3.21. Under Assumption 3.20 the solution x
(
t, t0,x

0
)

of Eq. (9) then

x0min ≤ xi(t) ≤ x0max, ∀ t ≥ t0, i ∈ V.

Proof. We will make a fixed point theory argument. The solution x
(
t, t0,x

0
)

satis-
fies

x
(
t, t0,x

0) = e
−

∫ t
t0
D(s)ds

x0 +

∫ t

t0

e−
∫ t
s D(w)dwA(s)x(s)ds

Define the space of functions

M =
{
y(t) ∈ C0([t0,∞),RN

)
: y(t) = x0, x0min ≤ yi(t) ≤ x0max

}
together with the weighted metric

ρ(y1,y2) = sup
t≥t0

e−γ(t−t0)||y1(t)− y2(t)||1

where eγ(t−t0) serves as rate function with γ > 0 to be determined. The pair (M, ρ)
is a complete metric space. Define the vector valued function

(Ly)(t) := e
−

∫ t
t0
D(s)ds

x0 +

∫ t

t0

e−
∫ t
s D(w)dwA(s)y(s)ds

is such that y ∈M implies

(Ly)j(t) ≤ e−
∫ t
t0
dj(s)dsx0max +

∫ t

t0

e−
∫ t
s dj(w)dw

∑
l

ajl(s)dsx
0
max

≤ e−
∫ t
t0
dj(s)dsx0max +

(
1− e−

∫ t
t0
dj(s)ds

)
x0max

= x0max

and similarly for the lower bound (L)j(t) ≥ x0min. It follows that L : M → M. Set
m = maxi supt≥t0 di(t) <∞ from the Assumption 3.20. Finally, for y1,y2 ∈M

ρ(Ly1,Ly2) ≤ sup
t≥t0

e−γ(t−t0)
∫ t

t0

||e−
∫ t
s D(w)dwA(s)||1||y1(s)− y2(s)||1ds

≤ sup
t≥t0

e−γ(t−t0)
∑
j

∫ t

t0

e−
∫ t
s di(w)dwdj(s)e

γ(s−t0)dsρ(y1,y2)

≤ sup
t≥t0

Me−γt
∫ t

t0

eγsdsρ(y1,y2)

≤ m

γ
ρ(y1,y2).

Then for γ > m the operator L is a contraction and by Theorem 2.7 it attains a
unique fixed point in M.

Lemma 3.22. If x(t, t0,x
0) is the solution of Eq. (9) such that S

(
x(t)

)
→ 0 as

t→∞ then the forward limit set ω(x0) is a singleton with a point in ∆.

Proof. From Lemma 3.21 we have that ω(x0) is non-empty, compact and connected
and any element of which must lie in ∆. Take xω ∈ ω(x0) and consider the solution
x(t, t0,x

ω). Since xω ∈ ∆ as well, we have that ẋ ≡ 0, i.e. the solution is constant.
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3.2.1. Static & switching networks I. We begin the first round of results in this
section assuming increased connectivity among agents. This means that the overall
connectivity regime may be static or switching provided that P (t) is scrambling on
the average:

Theorem 3.23. Let Assumption 3.20 hold. If f(t) := mini,j
∑
s min{ais(t), ajs(t)}

satisfies: ∫ ∞
f(t)dt =∞

then we have global convergence of the system (9) to a constant value.

Proof. We write Eq. (9) in vector form

ẋ = −D(t)x+A(t)x = −mx+
(
mI−D(t)+A(t)

)
x = −mx+W (t)x⇔ d

dt
(emtx) = emtP (t)x

so that from Theorem 2.1 we obtain the bound

S

(
d

dt

(
emtx(t)

))
≤ emt(m− f(t))S

(
x(t)

)
then

d

dt
S
(
x(t)

)
= −me−mtS

(
emtx(t)

)
+ e−mt

d

dt
S
(
emtx(t)

)
≤ −mS

(
x(t)

)
+ e−mtS

(
d

dt

(
emtx(t)

))
≤ −mS

(
x(t)

)
+ (m− f(t))S

(
x(t)

)
≤ −f(t)S

(
x(t)

)
which implies

S
(
x(t)

)
≤ e−

∫ t
t0
f(s)ds

S
(
x0)

and the result follows in view of the imposed condition on f and Lemma 3.22.

Remark 3.24. This is a generalization of the results obtained in [40] concerning
continuous time consensus algorithms. In addition, furtherly improved results on
non-linear continuous time models are to be obtained in the following.

On condition that there is always an agent i = i(t) ∈ V that affects every other
agent j in the group it then suffices for

∫∞
f(s)ds = ∞. The non-integrability

condition is the continuous time counterpart of the non-summability of f imposed
on Theorem 3.5.

3.2.2. Static & switching networks II. We will escalate the analysis with the study
the dynamics of Eq. (9) under the recurrent connectivity condition. Define for
B ≥ 0, s ∈ [t−B, t]

C(t, s) = e−mBδ(s− (t−B))I + e−m(t−s)W (s)

with δ(·) being the delta function and W (s) = mI −D(s) +A(s), as before.

Proposition 3.25. Let Assumption 3.20 hold. For any B > 0, l ≥ 1, the matrix

P
(l)
B (t) :=

{ ∫ t
t−B C(t, s1)ds1, l = 1∫ t
t−B C(t, s)P

(l−1)
B (s)ds, l > 1

whenever defined, is stochastic.
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Proof. The matrix

PB(t) :=

∫ t

t−B

(
e−mBδ(s1 − (t−B))I + e−m(t−s1)W (s1)

)
ds1

is stochastic. Indeed, the ith row of PB(t) consists of the positive diagonal element

e−mB +

∫ t

t−B
e−m(t−s1)(m− di(s1))ds1 = 1−

∫ t

t−B
e−m(t−s1)di(s1)ds1

and the non-negative off-diagonal elements

∫ t

t−B
e−m(t−s1)aij(s1)ds1.

since di(s1) =
∑
j aij(s1), PB(t) is stochastic.

We proceed with induction: For l = 2,

P
(2)
B (t) =

=

∫ t

t−B

∫ s1

s1−B

(
e−mBδ(s1 − (t−B))I + e−m(t−s1)W (s1)

)
·

·
(
e−mBδ(s2 − (s1 −B))I + e−m(s1−s2)W (s2)

)
ds2ds1

=

∫ t

t−B

∫ s1

s1−B
e−2mRδ(s1 − (t−B))δ(s2 − (s1 −B))ds2ds1I+

+

∫ t

t−B

∫ s1

s1−B
e−mRδ(s1 − (t−B))e−m(s1−s2)W (s2)ds2ds1+

+

∫ t

t−B

∫ s1

s1−B
e−m(t−s1)W (s1)e−mRδ(s2 − (s1 −B))ds2ds1+

+

∫ t

t−B

∫ s1

s1−B
e−m(t−s1)W (s1)e−m(s1−s2)W (s2)ds2ds1

and straightforward calculations yield

P
(2)
B (t) = e−2mBI +

∫ t−B

t−2B

e−m(t−s2)W (s2)ds2 + e−mB
∫ t

t−B
e−m(t−s1)W (s1)ds1

+

∫ t

t−B

∫ s1

s1−B
e−m(t−s2)W (s1)W (s2)ds2ds1

Now, every element of P
(2)
B (t) is non-negative as a sum of non-negative matrices.

It is only left to verify that
∑
j [P

(2)
B (t)]ij = 1 for any i. Indeed, the first matrix

contributes e−2mB , the second and the third e−mB − e−2mB and the fourth (1 −
e−mB)2, so eventually

e−2mB + 2(e−mB − e−2mB) + (1− 2e−mB + e−2mB) = 1
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Let P
(l)
B (t) be stochastic. Then the elements of P

(l+1)
B (t) are non-negative by the

same reasoning as above and finally, since

P
(l+1)
B (t)

=

∫ t

t−B
C(t, s1) · · ·

∫ sl

sl−B
C(sl, sl−1)ds

= e−mBP
(l)
B (t) + (1− e−mB)P

(l)
B (t)−

−
∫ t

t−B

∫ s1

s1−B
· · ·
∫ sl

sl−B
C(t, s1)C(s1, s2) · · ·

(
D(sl+1)−A(sl+1)

)
dsl+1 . . . ds1

= P
(l)
B (t)−

∫ t

t−B

∫ s1

s1−B
· · ·
∫ sl

sl−B
C(t, s1)C(s1, s2) · · ·

(
D(sl+1)−A(sl+1)

)
dsl+1 . . . ds1

the sum of the ith row of P
(l+1)
B (t) equals 1 because the corresponding sum in the

final integrand is zero (as it is a left multiplication of a matrix with a Laplacian
matrix).

Assumption 3.26. There exist B > 0 and M > t0 so that for any t ≥ M the
graph GPB(t) that corresponds to PB(t) is routed-out branching.

In addition to the upper boundedness of aij(t), the weights are also assumed to
satisfy the dwelling time condition [22]. This ensures that in any subset of R+ with
positive and bounded measure, the number of discontinuities must be finite. More
rigorously:

Assumption 3.27. For any t ≥ t0 there exists ε > 0 independent of t such that
aij(t) 6= 0 ⇒ aij(s) ≥ f(s) for s ∈ Iε(t

∗) = [t∗ − ε, t∗ + ε] for some t∗ ∈ R and
t ∈ Iε(t∗).

Theorem 3.28. Let Assumptions 3.9,3.20, 3.26 and 3.27 hold. Unconditional
asymptotic consensus for the solution of the system (9) is achieved under one of the
following conditions:

1. GP (t) is independent of time (static connectivity) and there exists a sequence
ti ≥M with ti+1 − ti ≥ γB, such that∑

i

fγ(ti) =∞.

2. GP (t) depends on time (switching connectivity) and there exists a sequence
ti ≥ t0 with ti+1 − ti ≥ σB, such that∑

i

fσ(ti) =∞.

where σ = l∗([N/2] + 1) and l∗ with the meaning of Remark 2.6.

Proof. We begin with the static case. The solution x of (9) satisfies

ẋ = −mx +
(
mI −D(t) +A(t)

)
x⇒ d

dt

(
emtx

)
= emt

(
mI −D(t) +A(t)

)
x

emtx(t)− em(t−B)x(t−B) =

∫ t

t−B
ems

(
mI −D(s) +A(s)

)
x(s)ds

⇒
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x(t) =

∫ t

t−B

(
e−mBδ(s− (t−B))I + e−m(t−s)(mI −D(s) +A(s)

))
x(s)ds

=

∫ t

t−B
C(t, s1)x(s1)ds1

=

∫ t

t−B

∫ s1

s1−B
· · ·
∫ sγ−1

sγ−1−B
C(t, s1)C(s1, s2) · · ·C(sγ−1, sγ)x(sγ)dsγ · · · ds1

Consequently from Theorem 2.3, Lemma 3.21 and Proposition 3.25 we have

S
(
x(t)

)
≤ τ

(
P

(γ)
B (t)

)
S(x

(
t− γB)

)
a condition that illustrates the contractive dynamics exactly because τ

(
P

(γ)
B (t)

)
< 1

on the assumption of static connectivity. Equivalently, there exists γ ≥ 1 so that
P γB(t) is scrambling, i.e. for some j∗ ∈ V, [P γB(t)]j∗i > 0 for all i ∈ V. Then we can
execute similar calculations as in Lemma 3.11:

[P
(γ)
B (t)]j∗j∗ ≥∫ s0

s0−B

∫ s1

s1−B
· · ·
∫ sγ−1

sγ−1−B

γ∏
k=1

(
e−mBδ

(
sk − (sk−1 −B)

)
+

+ e−m(sk−1−sk)
(
m− di(sk)

))
dsγ · · · ds1

> e−γmB

with s0 = t and for i 6= j∗

[P
(γ)
B (t)]j∗i ≥

≥
∫ s0

s0−B

∫ s1

s1−B
· · ·
∫ sγ−1

sγ−1−B

∑
l0,...,lγ−1

e−m(s0−sγ)ail0(s1)al0l1(s2) . . . alγ−1j∗(sγ)dsγ · · · ds1

>

∫ s0

s0−B

∫ s1

s1−B
· · ·
∫ sγ−1

sγ−1−B
e−m(s0−sγ)dsγ · · · ds1fγ(t) =

(1− e−mB)γ

mγ
fγ(t)

For t′ ≥ M large enough so that f(t) ≤ me−mB

1−e−mB whenever t ≥ t′, we obtain from
Lemma 3.4 the estimate:

τ
(
P γB(t)

)
≤ 1− c1fγ(t) (10)

where c1 = (1−e−mB)γ

mγ > 0. Finally, for the aforementioned sequence {ti}, for any
t ≥ t′, there exists i such that t ∈ [ti, ti+1]. Then

S
(
x(t)

)
≤ S

(
x(ti)

)
≤
(
1− c1fγ(ti)

)
S
(
x(ti − γB)

)
≤
(
1− c1fγ(ti)

)
S
(
x(ti−1)

)
For ε > 0, pick i1 and i2 large enough so that ti1 ≥ t′ and

∑i2
j=i1

f(tj) ≥
c−11 log( ε

S(x0) ) and then for t ≥ ti

S
(
x(t)

)
≤

i2∏
k=i1

(1− cfγ(tk))S
(
x0) ≤ e−c∑i

k=1 f
γ(tk)S

(
x0) ≤ ε

and the proof of the first part is concluded.
In the case of switching connectivity we proceed as above but with the remarks in

the proof of Theorem 3.14. Then P
(σ)
B (t) is scrambling for any t and the contraction

estimate
τ
(
P

(σ)
B (t)

)
< 1− c2fσ(t)

where now c2 := (1−e−mε)σ
mσ > 0 for ε > 0 as defined in Assumption 3.27.

Remark 3.29. Unconditional consensus is the term used to clarify that convergence
is independent of the initial conditions.
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Example 3.30. Consider the network consisted of N = 4 agents, with coupling
defined by the following adjacency matrix

A(t) =


0 a12(t) 0 0

a21(t) 0 a23(t) 0
0 a32(t) 0 a34(t)
0 0 a43(t) 0


where for all t ≥ 0 it holds that aij(t) 6= 0⇒ 0 < a ≤ aij(t) < 1

2 and also
a23(t) = a32(t) = a34(t) = a43(t) = 0 & a12(t), a21(t) 6= 0, t ∈ [3lε, (3l + 1)ε)

a12(t) = a21(t) = a34(t) = a43(t) = 0 & a23(t), a32(t) 6= 0, t ∈ [(3l + 1)ε, (3l + 2)ε)

a23(t) = a32(t) = a12(t) = a21(t) = 0 & a34(t), a43(t) 6= 0, t ∈ [(3l + 2)ε, (3l + 3)ε)

for some fixed ε > 0.
Then

C(t, s) =


d̄1(t, s) e−(t−s)a12(s) 0 0

e−(t−s)a21(s) d̄2(t, s) e−(t−s)a23(s) 0

0 e−(t−s)a32(s) d̄3(t, s) e−(t−s)a34(s)

0 0 a43(s)e−(t−s) d̄4(t, s)


where d̄i(t, s) = e−3εδ(s− (t− 3ε)) + e−(t−s)(1− di(s)). Now for any t ≥ 0,

P3ε(t) =

∫ t

t−3ε

[C(t, s)]ijds =

=


1− e−t

∫ t
t−3ε

esdi(s)ds, i = j

e−t
∫ t
t−3ε

esaij(s)ds, (i, j) ∈ {(1, 2), (2, 1), (2, 3), (3, 2), (3, 4), (4, 3)}
0, o.w.

and by construction of the switching signal, it can be easily shown that

P (t) ≥ J :=


1
2
(1 + e−ε) a(1− e−ε) 0 0
a(1− e−ε) e−ε a(1− e−ε) 0

0 a(1− e−ε) e−ε a(1− e−ε)
0 0 a(1− e−ε) 1

2
(1 + e−ε)


elementwise; a remark made merely to prove that P3ε(t) ∈ T and that γP3ε(t) =

2. Consequently, P
(2)
3ε (t) =

∫ t
t−3ε C(t, s)P3ε(s)ds is lower bounded by J2 with J2

corresponding to a matrix with at least one positive column (in fact the second and

the third are all positive). Then P
(2)
3ε (t) is scrambling for any t ≥ 0 and the lower

bounded we are interested in is determined from J2, being min+[J2]ij . It can be
easily seen that for fixed ε and a small enough this number is in fact a2(1 − eε)2.
Let a attain such a small value. Since for any t ≥ 0, there exists l ∈ Z+ such that
3lε ≤ t ≤ (3l + 1)ε, we conclude that

S(x(t)) ≤ S(x(3lε)) ≤ (1− 2a2(1− e−ε)2)lS(x(0)) = Ke−θtS(x(0))

where K := e
2
3a

2(1−e−ε)2 and θ := 2a2 (1−e−ε)2
3ε , as it is dictated by Theorem 3.28

for {ti} any sub-sequence with 3ε interval and f(t) to be lower bounded by a.

3.3. Necessary conditions. So far, we have discussed only sufficient conditions
for consensus and it is exactly the effect of the contraction coefficient that points to
such direction. Necessary conditions are rather rare. Here we will discuss necessary
conditions for asymptotic consensus and we shall conclude on the discrepancy be-
tween the sufficient conditions partially because we used the contraction coefficient.
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Theorem 3.31. Consider the system (9) and its solution x with Assumption 3.20
to hold and the communication graph to be routed-out branching. Assume that over
a population of N autonomous agents there is a cut of V such that V = V1 t V2 so
that for any (i, j) ∈ V1×V2 or (j, i) ∈ V1×V2, aij(t) > 0 implies

∫∞
aij(s)ds <∞.

If for any l1, l2 ∈ V, xl1(t) − xl2(t) → 0 implies |xl1(t) − xl2(t)| ≤ e−γtS(x0) then
there exist initial conditions such that S

(
x(t)

)
> 0 for any t ≥ t0

Proof. Let the initial conditions be set such xl(0) < xn(0) for l ∈ V1 and m ∈ V2.
Consider then the subset V11 of V1 and accordingly the subset V22 of V2 which
by assumption they must have connections between them. Let i ∈ V11 such that
xi(t) ≤ xi∗(t) for any i∗ ∈ V11 and j ∈ V22 such that xj(t) ≥ xj∗(t) for any j∗ ∈ V22.

ẋi(t) ≤ dij
(
xj(t)− xi(t)

)
+ zi(t)

ẋj(t) ≥ dji
(
xi(t)− xj(t)

)
+ zj(t)

where zi(t) =
∑
l∈V1 ail

(
xl(t)−xi(t)

)
, zj(t) =

∑
l∈V2 ajl

(
xl(t)−xj(t)

)
are functions

that signify the interconnections among agents on the separated subsets. Now,

d

dt

(
xj(t)− xi(t)

)
≥ −

(
dij(t) + dji(t)

)(
xj(t)− xi(t)

)
+ zj(t)− zi(t)

if either zi(t) or zj(t) do not vanish then S(x(t)) will not converge to zero and there
is nothing to prove. On the other hand we have by assumption that |zi(t)−zj(t)| ≤
2(N − 1)Ce−γtS(x0) for (N − 1)C to play the role of the uniform upper bound of
aij(t) according to Assumption 3.20. Next we set for simplicity Q(s) =

(
dij(s) +

dji(s)
)

Now,
∫∞
t0
Q(s)ds < ∞ and this means that there is a sequence {tn}n≥1 and a

constant J1 > 0 such that ∫ tn

0

Q(s)ds ≥ J1.

Since

xj(t)− xi(t) ≥ e−
∫ t
0 Q(s)ds(x0j − x0i ) +

∫ t

0

e−
∫ t
w Q(s)ds(fj(w)− fi(w)

)
dw,

we have that

|xj(tn)− xi(tn)| ≥
∣∣∣∣e−J1 |x0ji| − ∫ tn

0

e−
∫ tn
w Q(s)ds2(N − 1)Ce−γwdwS(x0)

∣∣∣∣.
Choosing

∣∣e−J1 |x0ji| − 2(N−1)CS(x0)
γ

∣∣ > ε we obtain |xij(t)| > ε for infinitely many t

and the proof is concluded.

The exponential convergence assumption taken in the theorem above is a mod-
erate condition that it can be dropped if the corresponding coupling weights are
uniformly bounded away from zero. Then one is allowed to combine the uniform
convergence of solutions and the linearity of the system to conclude on the expo-
nential rate.

3.4. Applications in non-linear systems. The aim of this section is to apply
the results of §3.2 in three different non-linear systems proposed in the literature.

The first model is a consensus scheme, with a non-linear coupling based on pas-
sivity and it is discussed under different contexts [26, 2, 36, 25]. We derive a simple
convergence result with a direct linearization technique.

Next, we focus on the continuous time counterpart of the previously discussed
model in Eq. (8) and in the related literature [9, 10, 40, 16, 17]. We weaken



26 C. SOMARAKIS AND J. S. BARAS

the assumptions beyond the asymmetric weight condition, to the simple static and
switching connectivity and derive conditions on the initial values for convergence
to asymptotic flocking.

Finally, motivated by [38], we introduce a generic non-linear perturbation to our
non-linear system and inspect the condition to consensus by stability in variation
and fixed point theory.

3.4.1. Non-linear passive coupling. A network of N < ∞ agents exchanges infor-
mation according to the following algorithm:{

ẋi(t) =
∑
j∈Ni gij

(
t, xj(t)− xi(t)

)
, t ≥ t0

x(t0) = x0
(11)

for i ∈ V. For any t ≥ t0 there may or may not exist a connection between
j and i. This defines a connectivity regime that can be described by a graph
Gg(t) = (V, E(t)) with (i, j) ∈ E(t) if and only if gij(t, ·) 6= 0.

Let Gg(t) be the graph that is associated with existence or not of a connection
between j and i. The passivity assumptions of gij(·) are summarized in the next
statement:

Assumption 3.32. For any i, j ∈ V, gij(t, x) : [t0,∞)×R→ R is continuous in x
and right-continuous in t and for t ≥ t0 it satisfies the following properties:

1. gij(·, x) : [t0,∞)→ [0,m) uniformly in x,
2. gij(t, 0) = 0 for any t ≥ t0,

3. gij(t, ·) 6= 0⇒ gij(t,x)
x > 0 ∀ x 6= 0 ,

4. gij(t, ·) 6= 0⇒ limx→0
g(t,x)
x ∈ R+ independent of t.

The form of gij incorporates two features of the consensus algorithms discussed
so far. The first is that by construction gij are compatible with the previously dis-
cussed connectivity regimes (switching connectivity) and the second is the passivity
property which makes the solutions to behave in a qualitative similar way to the
linear case (9). For example, the boundedness of the solutions of Eq.(9) as explained
in Lemma 3.21 is preserved in Eq.(11) under the passivity condition.

Lemma 3.33. Under Assumption 3.32, the solution of Eq. (11) satisfies

S
(
x(t)

)
≤ S(x0).

Proof. Let t∗ > t0 be the first time that the solution x(t) of Eq. (11) escapes
[mini x

0
i ,maxi x

0
i ]. Then there exists i ∈ V such that xi(t

∗) = maxi x
0
i and ẋi(t

∗) >
0, a contradiction according to Assumption 3.32. Similarly for mini x

0
i .

Now we are ready to apply Theorem 3.23.

Corollary 3.34. Consider the initial value problem (11) and let Assumption 3.32
hold. Define

f(t) := max
x∈[0,S(x0)]

g(t, x)

x
.

Unconditional asymptotic consensus of Eq. (11) is achieved if

1. Gg is static and
∫∞

f(s)ds =∞
2. Gg(t) is time varying the f satisfies one of the properties of Theorem 3.23.
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Proof. The passivity assumption obviously ensures that the solution of (11) exists
in the large. Let x(t, t0,x

0) ∈ RN an arbitrary but fixed solution of Eq. (11), we
define

aij(t) :=
gij(t, xj(t)− xi(t))

xj(t)− xi(t)
and effectively rewrite the initial value problem (11) as

ẏi(t) =
∑
i

aij(t)
(
yj(t)− yi(t)

)
yi(0) = x0i

so that the solutions y and x are indistinguishable. Thus one can study the behavior
of y to conclude about x.6 Under Assumption 3.32 we see that aij(t) satisfies

f(t) := min
x∈[0,S(x0)]

g(t, x)

x
≤ aij(t) ≤ max

x∈[0,S(x0)]

g(t, x)

x

and that by the continuity assumptions the right hand-side is in turn uniformly
bounded from above. Then all the results of the previous section can be applied for
the new system, accordingly.

The form g(t, xi − xj) is quite general. Apart from the standard Kuramoto
setting where gij(x) = sinx [26] it can also include the opinion dynamics framework
proposed by Krause [25] with gij(x) = a(|xi − xj |)(xj − xi).

The authors acknowledge that the actual difficulty in the latter model lies in the
fact that the dynamics are deployed in a proximity graph without gij ’s being uni-
formly bounded from below and the dynamics aij are non-linear and autonomous.
A definitive analysis of Krause’s dynamics is yet to be achieved since it is precisely
the derivation of an appropriate Lyapunov functional a quite challenging problem.

3.4.2. Flocking models. Also known as second order consensus systems these algo-
rithms were proposed for modeling the velocity coordination and flock formation
populations of birds, whenever the latter were seen as autonomous individuals. A
population of N <∞ birds is the collection of the values (xi, ui) where i = 1, . . . , N .
Each bird i evolves its position xi and its speed ui according to{

ẋi(t) = ui(t)

u̇i(t) =
∑
j∈Ni aij(x)

(
uj(t)− ui(t)

)
, t ≥ 0

(12)

for i ∈ V and given vectors of initial position x0 = x(0) and velocity u0 = u(0).
In flocking dynamics the connectivity weights aij are state dependent making the
algorithm essentially non-linear. The first models assumed symmetric coupling
effects aij = aji to be decreasing functions of the relative distance between i and
j. More specifically these rates were also assumed to have an explicit closed form.
[9, 10]. Since then, a number of generalizations improved this restriction to the
case of asymmetric weights preferring topologically defined relative distances and
not only Euclidean [40]. This means that aij is not necessarily a function only of
xi, xj but it may depend on the positions of the whole group, i.e. aij = aij(x). The
derived results, so far demand the restricting condition

∑
i aij < 1 and increased

(scrambling) connectivity) in the sense of Theorem 3.23. In this work, for a solution
(x,u) of Eq. (12) we take

aij(x(t)) ≥ f(S(x(t)))

with the property that f(s) → 0 as s → ∞ and
∑
j aij ≤ (N − 1)f(0) =: m < ∞.

The difficulty of these systems lies on the fact that aij are not uniformly bounded

6This is known in the literature as a direct linearization technique (see for example [5]).
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from below. The problem is to derive sufficient conditions on initial position and
velocity so that the flock remains connected and it aligns its speed to a common
one, i.e. the solution

(
x(t),u(t)

)
satisfies

lim
t
S
(
u(t)

)
= 0 & sup

t≥0
S
(
x(t)

)
<∞ (13)

i.e. the asymptotic flocking condition. For the next result the Assumptions of
Theorem 3.28 hold.

Theorem 3.35. Consider the system (12) and its solution
(
x(t),u(t)

)
∈ RN×RN .

The following conditions hold:

1. Static scrambling connectivity. The solution exhibits asymptotic flocking if

S(u0) <

∫ ∞
S(x0)

f(w)dw (14)

2. Static routed-out branching connectivity. The solution exhibits asymptotic
flocking if

S(u0) <
(1− e−mB)γ

mγγB

∫ ∞
P
γ,B

x0,u0

fγ(s)ds (15)

where P γ,Bx0,u0 = max
{
S(x0), |S(x0)− S(u0)γB|

}
, m = maxi |Ni|f(0).

3. Switching connectivity. The solution exhibits asymptotic flocking if

S(u0) <
(1− e−mε)σ

mσσB

∫ ∞
P
σ,B

x0,u0

fσ(s)ds (16)

where σ = l∗([N/2] + 1), l∗ with the meaning of Remark 2.6 and ε > 0 with
the meaning of Assumption 3.27.

Proof. We begin with the first connectivity condition, where there is at least one
agent affecting the rest of the group. We follow the same path as in Theorem 3.23
for u and show that

d

dt
S
(
u(t)

)
≤ −f

(
S
(
x(t)

))
S
(
u(t)

)
⇒ S

(
u(t)

)
≤ e−

∫ t
0 f(S(x(w)))dwS

(
u0)

so that asymptotic flocking will occur with exponential rate of convergence if S
(
x(t)

)
≤

r for some r > 0. For this, we follow [17, 40] and introduce the functional

V1(x,u) = S(u) +

∫ S(x)

0

f(w)dw (17)

so that along a solution of (12)
(
x(t),u(t)

)
where u(t) = ẋ(t) we have

d

dt
V1(t) =

d

dt
V1

(
x(t),u(t)

)
≤ −f

(
S
(
x(t)

))
S
(
u(t)

)
+ f

(
S
(
x(t)

))
S
(
u(t)

)
= 0

then

V1(t) ≤ V1(0)⇔ S(u(t)) +

∫ S(x(t))

0

f(w)dw ≤ S(u0) +

∫ S(x0)

0

f(w)dw

From the imposed condition Eq. (14) on the initial data we deduce that there exists
r′ such that

S(u0) =

∫ r′

S(x0)

f(w)dw

so that S
(
x(t)

)
≥ S

(
x0
)

0 ≤ S
(
u(t)

)
≤
∫ r′

S(x0)

f(w)dw −
∫ S(x(t))

S(x0)

f(w)dw
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which makes sense if S
(
x(t)

)
≤ r′. Pick r = max{r′, S(x0)} to conclude that

condition (14) ensures that the flock of birds will remain connected, hence they will
coordinate their speeds exponentially fast.

For the second part, the flock is static and routed-out branching, hence it is
routed-out branching over the interval [t − B, t], for any t > 0 and B > 0. Let
m <∞ be defined as usual and

W (x(s)) = mI −D(x(s)) +A(x(s))

and next

C(t, s) = e−mBδ(s− (t−B))I + e−m(t−s)W (x(s))

Finally for the scrambling index γ of the topological graph GP (x(t)) (which is inde-
pendent of time)

P
(γ)
B

(
x(t)

)
=

∫ t

t−B

∫ s1

s1−B

∫ s2

s2−B
· · ·
∫ sγ−1

sγ−1−B
C(t, s1)C(s1, s2) · · ·C(sγ−1, sγ)dsγ . . . ds1

which is stochastic from Proposition 3.25 and has the same scrambling index as
P
(
x(t)

)
. Since the corresponding graph GW is independent of time, so will be the

scrambling index γ. We follow the first part of Theorem 3.23

S
(
u(t)

)
≤ τ

(
W

(γ)
B (x(t))

)
S(u

(
t− γB)

)
≤
(

1− cfγ
(
S
(
x(t)

)))
S(u

(
t− γB)

)
(18)

with c := (1−e−mB)γ

mγ and S
(
x(t)

)
≥ r for r such that f(r) = me−mB

1−e−mB . We define
the functional

V2(x,u) =

∫ t

t−γB
S
(
u(s)

)
ds+ c

∫ S(x)

0

fγ(s)ds

the derivative of V̇2 along the solution of Eq. (12),
(
x(t),u(t)

)
is

V̇2(t) = S
(
u(t)

)
− S

(
u(t− γB)

)
+ cfγ

(
S(x(t))

)
S
(
u(t)

)
≤
(
1− cfγ(Sx(t))

)
S
(
u(t− γB)

)
− S

(
u(t− γB)

)
+ cfγ

(
S(x(t))

)
S
(
u(t− γB)

)
≤ 0

in view of Lemma 3.21 (from which it is deduced that S
(
u(t)

)
≤ S

(
u(t− γB)

)
,∀t.

Then for t ≥ γB
V2(t) ≤ V2(γB)

⇔∫ t

t−γB
S
(
u(s)

)
ds+ c

∫ S(x(t))

0

fγ(s)ds ≤
∫ γB

0

S
(
u(s)

)
ds+ c

∫ S(x(γB))

0

fγ(s)ds

Let the following condition hold∫ γB

0

S
(
u(s)

)
ds = c

∫ ∞
S(x(γB))

fγ(s)ds (19)

and we pick r′ such that∫ γB

0

S
(
u(s)

)
ds = c

∫ r′

S(x(γB))

fγ(s)ds

then from the last inequality, S
(
x(t)

)
≤ S

(
x(γB)

)
implies

0 ≤
∫ r′

S(x(t))

fγ(s)ds⇒ S
(
x(t)

)
≤ r′
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so that the flock remains bounded and exponential speed alignment is ensured.
Finally, we show that Eq. (15) implies Eq. (19), Indeed,∫ γB

0

S
(
u(s)

)
ds ≤ γBS(u0)

from Lemma 3.21. Now we look for a lower bound of S
(
x(t)

)
. If S

(
x(t)

)
≥ S(x0)

from the form of Eq. (12) the rate at which S(x(t)
)

may shrink can be deduced

from the extreme scenario of x0 = (x0, 0, . . . , 0), x0 6= 0 so that S(x0) = x0 and
u0 = (u0, 0, . . . , 0) , u0 6= 0 with S(u0) = |u0|. Neglecting the averaging effect
which will inevitably diminish S

(
u(t)

)
, x0 < 0 implies that the first bird at t will

have approached (or bypassed) the rest of the group by −|x0|+ |u0|t. All in all, at
t = γB

S
(
x(γB)

)
≥ max

{
S(x0), |S(x0)− S(u0)γB|

}
= P γ,B

x0,u0

so that ∫ ∞
S(x(γB))

fγ(s)ds ≥
∫ ∞
P
γ,B

x0,u0

fγ(s)ds

then

S(u0) <
(1− e−mB)γ

mγγB

∫ ∞
P
γ,B

x0,u0

fγ(s)ds.

The case of switching connectivity is treated as in Theorem 3.23 and the use of
V2 after substituting γ with σ. Then Eq. (16) substitutes Eq. (15) to ensure
asymptotic flocking.

Remark 3.36. In the case of static connectivity, γ = 1 implies that Eq. (14) and
Eq. (15) coincide as B ↓ 0.

3.4.3. A fully-nonlinear model. The sign of the coupling weights aij(t) is instrumen-
tal in the analysis. All the reviewed literature of §1 discusses models which with one
way or another assume this condition. Adopting the terminology of [43], condition
aij ≥ 0,∀i, j classifies (9) as a cooperative system, while aij ≤ 0 as competitive
system. Although the literature in consensus algorithms as cooperative systems is
nearly complete, to the best of our knowledge there are no results on multi-agent
competitive systems. As it is explained in the general theory of monotone dynamical
systems [43], competitive dynamical systems exhibit a much richer behavior than
the cooperative ones. As such analysis is far beyond the scope of this paper, in this
section we will consider a non-linear perturbation of Eq. (9) that sustains consensus
solutions. Then by stability in variation we will derive sufficient conditions under
which it can behave as a co-operative one, converging to a common constant value.

For N < ∞, a population of N agents exchanges values according to the initial
value problem:{

ẋi =
∑
j∈Ni aij(t)

(
xj(t)− xi(t)

)
+ gij(t, xj)− gij(t, xi), t ≥ t0

xi(t0) = x0i
(20)

for i ∈ V. We study the asymptotic behavior of Eq. (20) by approximating it with
(9). Indeed for

G(t,x) =

[∑
j

g1j(t, xj)− g1j(t, x1), . . . ,
∑
j

gNj(t, xj)− gNj(t, xN )

]T
we rewrite (20) as

ẋ = −L(t)x + G(t,x)

where L(t) = D(t)−A(t) is the Laplacian matrix.
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The variation of constants formula implies that the solution x of (20) satisfies

x(t) = Φ(t, t0)x0 +

∫ t

t0

Φ(t, s)G(s,x(s))ds (21)

Now, y(t) = Φ(t, t0)x0 is the solution of (9), for which we know that under the
Assumptions 3.9 and 3.13 Φ(t, t0)x0 → αTx0 for some α ∈ RN with the properties
that αi ≥ 0,

∑
i αi = 1. In terms of the semi-norm, there exists a bounded rate

function h(t, t0) such that limt h(t, t0) = 0 for any fixed t0 and

S
(
y(t)

)
= S

(
Φ(t, t0)x0) ≤ h(t, t0)S(x0) (22)

For the sake of simplicity we will also assume that∫ ∞
h(t, t0)dt <∞ (23)

for the unperturbed system. Next we will impose conditions on gij . There is an
abundance of conditions one can impose on the functions gij(t, x) to proceed and
for the sake of simplicity we will assume a global lipschitz condition.

Assumption 3.37. For any t ≥ t0 it holds that:

|gij(t, x1)− gij(t, x2)| ≤ kij(t)|x1 − x2|

for some integrable bounded function kij(t).

Under the preceding assumption we obtain S
(
G(t,x)

)
≤ k(t)S

(
x
)

for

k(t) = max
i,j

∑
l

kil(t) + kjl(t)

Proposition 3.38. The solution x(t) (20), satisfies

S
(
x(t)

)
≤ h(t, t0)S(x0) +

∫ t

t0

h(t, s)k(s)S
(
x(s)

)
ds

Proof. Let y be the solution of ẏ = −L(t)y. Then a variation of parameters of the
functional S(x), yields the form

S
(
x(t)

)
= S

(
y(t)

)
+

∫ t

t0

∂

∂x
S
(
y(t, s,x(s))

)T
G
(
s,x(s)

)
ds

(see also Theorem 1.3.1 of [27]) and the result follows from the bound on S
(
y(t)

)
and Assumption 3.37.

From the Proposition above we obtain that S
(
x(t)

)
is in fact upper bounded by

q(t), which satisfies the integral equation

q(t) = h(t, t0)q(t0) +

∫ t

t0

h(t, s)k(s)q(s)ds, q(t0) = S(x0) (24)

Theorem 3.39. Consider Eq. (9) with its solution to satisfy (22) and also let
condition (23) hold. Under Assumption 3.37 the solution of (20) converges to a
consensus value as fast as 1

w(t) if:

sup
t≥t0

w(t)h(t, t0) <∞, and sup
t≥t0

w(t)

∫ t

t0

h(t, s)
k(s)

w(s)
ds ≤ α < 1
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Proof. From the discussion above the stability of (20) to a consensus value is reduced
to the stability to zero of the integral equation (24). For the latter, we will build a
fixed point theory argument. Recall the discussion in §2.5 and consider the space

M = {y ∈ B : y(t0) = S(x0), sup
t≥t0

w(t)|y(t)| <∞}

which together with the weighted metric ρ(y1, y2) = supt≥t0 w(t)|y1(t)− y2(t)| con-
stitute a complete metric space [5]. In this space we will apply the Contraction
Mapping Principle (Theorem 2.7) as follows: Define the operator

(Qy)(t) :=

{
S(x0), t = t0

h(t, t0)S(x0) +
∫ t
t0
h(t, s)k(s)y(s)ds, t ≥ t0

and note that under for any y ∈ M, (Qy)(t) → 0 as the first term vanishes in
view of the unperturbed system to satisfy the conditions of Theorem 3.28 and the
second term vanishes as the convolution of an L1 function with a function that
goes to zero. The same holds for the weighted quantity w(t)|(Qy)(t)| in view of the
imposed conditions. Finally, it is easy to see that Q is a contraction in (M, ρ) since

ρ(Qy1,Qy2) ≤ sup
t≥t0

w(t)

∫ t

t0

h(t, s)
k(s)

w(s)
dsρ(y1, y2) ≤ αρ(y1, y2).

Hence, by the contraction mapping principle Q attains a unique fixed point in M
and the proof is concluded.

We conclude this section with an illustrating example.

Example 3.40. Consider the non-linear system

ẋ = a(t)(y − x) + κ1(t)

(
sin y

1 + y2
− sinx

1 + x2

)
ẏ = b(t)(x− y) + κ2(t)

(
cosx

1 + x4
− cos y

1 + y4

)
for t ≥ 0, x(0) = x0, y(0) = y0, a(t), b(t) ≥ 0. At first, we observe that for
κ1 = κ2 ≡ 0 and x(t) =

(
x(t), y(t)

)
S(x(t)) ≤ e−

∫ t
0 a(s)+b(s)dsS(x0)

and convergence occurs if for f(t, 0) =
∫ t
0
a(s) + b(s)ds, with f(t) → ∞. De-

fine a function w such that supt w(t)e−f(t) < ∞. Then basic algebra yields ap-
proximations of the Lipschitz constants k1(t) = κ1(t) and k2(t) = 1.231κ2(t) and
κ(t) = κ1(t) + κ2(t) . By a simple continuity argument, requiring

sup
t

∫ t

0

f(t, s)κ(s)ds < 1,

one can always find w to satisfy the conditions of Theorem 3.39.
As a numerical application take a(t) = t, b(t) = 1.1 + sin t, k1(t) = sin t2, k2(t) =

1.231
√
t and w(t) = e0.05t. Then it can be calculated (using for example MAPLE)

the bound

0 ≤ sup
t≥0

sin t2 + 1.231
√
t

1.1 + t+ sin t− 0.05
≤ 0.9

so that∫ t

0

e−
∫ t
s a(w)+b(w)dw ≤ 0.8

∫ t

0

e−
∫ t
s a(w)+b(w)−0.05dw(a(s) + b(s)− 0.05

)
ds ≤ 0.9

so that Theorem 3.39 applies.



TOWARDS A UNIFIED THEORY OF CONSENSUS 33

4. Stochastic Consensus. As already discussed in §1.1.2, the stochastic part in
consensus systems was initially implemented for the purpose of modeling the un-
certainty in the inter-connection regime among agents. In the mathematical world,
this statistical regularity smooths out the, characterized by several researchers as
stringent, condition of recurrent connectivity. Imposing mild statistical regularity
on the dynamics of inter-connections, the assumption of connectivity over uniformly
bounded intervals of time is satisfied almost surely and it can be essentially omitted.

The purpose of this section is to re-formulate the consensus problem with empha-
sis on discrete time, modeling the communication topology in a measure theoretic
framework. For this we recall the discussion §2.3. We will show that, our setting is
general enough to unify many results proposed in the literature. We propose a dy-
namical shift, T , that generates stochastic matrices so that asymptotic consensus is
an event with a probability induced by the measure that preserves T . If in addition
the shift T is ergodic then any T -invariant event is of either full or zero measure.
In the examples subsection we will review results of the literature that are based
on the close relationship of our framework to stationary stochastic processes.

Similarly to the deterministic case we separate the existence of a connection
among agents from the weight of this connection, exactly because we are under the
non-uniform lower bound condition. It is this condition that plays a critical role
in the analysis of the system. In fact, unless the probabilistic regime concerning
the connection failures is trivial, asymptotic consensus is never guaranteed in full
probability whenever the weights are free to vanish.

4.1. Topology driven by measure preserving dynamical systems. For N <
∞ we define the discrete set Y of all possible (directed) connections among N
nodes. The cardinality of Y is finite. Then we define the product measure space
(X,B, µ) =

∏
t≥0(Y, 2Y,m) for some measure function m and the induced product

measure as it was discussed in §2.3. The shift operator T : X → X is a measure
preserving transformation since for any A ∈ J , µ(T−1A) = µ(A) (see also [49]). We
understand χi as an N×N , 0−1 matrix with all diagonals zero and the off-diagonal
values to attain value 1 if there is a connection from the agent of the column to the
agent of the row, otherwise attain the zero value, as well.

4.1.1. Discrete time. Recall the system (5) and its solution

x(t) = P (t− 1)P (t− 2) . . . P (0)x(0) (25)

for GP (t) ∈ S. We would want the steering force that generates the matrices P (t) at
every instant t, to be the shift T : X → X. Let the family of functions {aij(t)}i6=j ,
so that for t ≥ 0 and any i 6= j ∈ V, aij(t) ∈ [f(t),∞) for some fixed non-increasing
positive function f that vanishes as t→∞. Let the stochastic matrix

P (t) = φ(T tχ) (26)

to be defined through the following measurable function φ : X→ S:

[φ(T tχ)ij ] =


aij(t)

ε
∑
j:[{Ttx}ij ]=1 aij(t)

if
[
{T tx}ij

]
= 1 and i 6= j

0 if [{T tx}ij ] = 0 and i 6= j

for some fixed ε > 1 so that [φ(T tχ)ii] := 1 −
∑
j [φ(T tχ)ij ]. We are interested in

the set PB ∈ B as follows:

PB =
{
χ ∈ X : GPt,B is routed-out branching ∀t ≥ 0

}
.
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Due to the uncertainty of connectivity we chose to state a slightly different, from
the deterministic, version on the weights. We re-scaled the connectivity weights, in
order to preserve the stochastic structure for P (t), regardless of the probabilistic
generator that controls the existence of connections. It should be noted that P (t)
is in this case not necessarily symmetric.

The setting clearly proposes that the solution x(t) is a stochastic process defined
on a probability space (Ω,F ,P) and the consensus problem becomes equivalent to
the convergence of x(t) to ∆. We are basically interested in convergence in the
almost sure sense.7

Consensus may be achieved if µ assigns a positive value to PB for some B and
in particular, it is this value of µ(PB) the probability with which consensus occurs,
in exactly the same way as in Theorem 3.14 and therefore we can readily state the
following result without proof:

Theorem 4.1. Let (X,B, µ) be the direct product measure space on products of
stochastic matrices and T : X→ X a shift. Consider the system (5) and the solution
given by (25) with P (t) as in (26) and also consider the set PB. The solution x(t)
of (5) converges to ∆ with probability µ(PB) if f satisfies either∑

t

fσ(tσ) =∞,

or

0 < sup
t≥1

∑(t+1)σ−1
i=tσ fσ(t)

fσ((t+ 1)σ − 1)
<∞ and

∑
t≥1

fσ(t) =∞

where σ = l∗([N/2] + 1)B and l∗ with the meaning of Remark 2.6.

This theorem is simply the measure theoretic analogue of Theorem 3.14 and little
does it contribute to our discussion. It illustrates, however, the interdependence
between the non-uniform lower bounds of aij , the induced statistical regularity
and it is only of theoretical interest. Almost sure convergence is ensured if the
event

⋃
B≥1 PB is of full measure. The most common processes in the literature

(e.g. i.i.d, markov or stationary) obey probability laws that are invariant in time
and they yield almost sure consensus only under the uniform bound condition (i.e.
aij(t) 6= 0 ⇒ aij(t) ≥ δ > 0). It is exactly this case where there is no difference
between the existence of connection and its weight, when one studies the asymptotic
convergence to ∆.

For this reason, in the rest of this section we will strengthen to aij(t) ∈ {0}∪(0, 1)
uniformly in t so that we can focus on the processes, produced by the shift T , which
guarantee the asymptotic behavior of P0,t to a rank-1 matrix.

Corollary 4.2. Let T : X → X be an ergodic shift on the product space (X,B, µ),
P (t) with the form of Eq. (26) and aij(t) ∈ {0}∪ (0, 1) for i 6= j. Then the solution
x of (5) converges to consensus with probability one if µ(PB) > 0 for some B > 0.

Proof. At first we show that the set W =
⋃
B PB is T -invariant. Indeed, for fixed

B > 0 and any χ ∈ PB , we have Tχ ∈ PB , PB ⊂ T−1PB and this is true over
the union, i.e. W ⊂ T−1W . Next it is easy to see that T−1PB ⊂ WB+1 ⊂
W which finally means that T−1W = W . The ergodicity condition makes T an
indecomposable transformation on T invariant sets, i.e. µ(W ) = 0 or µ(W ) = 1 but
the first case is excluded because µ(W ) ≥ µ(PB) > 0. Then the only realization of

7Since P
(
|x(t)| ≤ N maxi xi(0)

)
= 1 we have E[|x(t)|r <]∞ and from these two facts we have

that almost sure convergence implies convergence in the rth mean for any r ≥ 0.
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shifting over X is this concerning processes with routed-out branching graphs over
B intervals for some B <∞. Any other event occurs with zero probability and the
result follows in view of the uniformly bounded weights.

It should be noted here that P (t) is not a stationary process as by construction
the measure µ does not concern the weights aij(t). The stationarity property can
be observed in the quantity GP (t) which as we mentioned above is the only key
feature for the stability analysis.

Example 4.3 (Stationary Ergodic processes [46]). The problem of consensus over
stationary ergodic processes assumes that the matrix P (t) is essentially such a
process. It is very well known that a measure preserving shift can be used to
generate stationary processes and, conversely, that any stationary process is equal
(in distribution) to a process generated by a measure preserving shift [24]. Given
a stationary ergodic process one can easily verify whether this particular shift is
ergodic after applying Birkhoffs ergodic theorem: If 1

n

∑n−1
t=0 1WB

(Pt,B)8 is positive
then the shift is ergodic and consensus is proved in the almost sure sense. Thus,
Corollary 4.2 reproduces the results of [46] but in a broader setting as not only does
it allow for connectivity over B intervals of time, but it is also not concerned with
the stationarity of the weighted graph. It exclusively describes the existence of a
connection and not the strength of it.

Remark 4.4. The approach above can of course include stationary processes that
occur from deterministic systems which exhibit a non-trivial stochastic behavior,
such as chaotic maps or non-linear differential equations, so long as their solutions
produce a (natural) invariant measure on the state space (see [23]). Then one
can read these dynamics as stochastic and consider the consensus problem with
communication topology driven by chaotic signals.

Example 4.5 (IID processes [20], [45]). One of the first works on the topic of
probabilistic consensus in [20], formulated Eq. (5), as a stochastic linear equation
with symmetric connectivity weights (aij = aji) to randomly take values at each
time t ∈ N. The partition of interest would be aij(t) 6= 0 with probability p and
aij(t) = 0 with probability 1− p, independently of the rest of the connections and
times.

Let us digress for a moment and see P (t) = Pt(y) as a random process defined
on a probability space (Y, 2Y,P). Then P (t) takes values in the space of stochastic
matrices with positive diagonals and uniformly bounded weights. Then the back-
ward product Pt,B(y) is a homogeneous sequence of independent random trails and
it forms a stationary process. By the independence assumption it is easy to di-
rectly calculate the probability of the event the corresponding graph GPt,B to be
routed-out branching: If p is the probability that aij(t) 6= 0 then the probability of
j affecting i through a B time interval is by the binomial theorem 1− (1− p)B . For
G a graph on N nodes, let q ∈ [1, (N − 1)2) denote the minimal number of edges so
that each additional edge will keep G routed-out branching. Then for PB as defined

8Here 1s(A) is a dual function that takes value 1 if s ∈ A and 0 otherwise
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before

P
(
PB
)
>

(N−1)2∑
l=q

(
(N − 1)2

l

)(
1− (1− p)B

)l
(1− p)B((N−1)2−l)

= 1−
q−1∑
l=0

(
(N − 1)2

l

)(
1− (1− p)B

)l
(1− p)B((N−1)2−l)

= 1−O
(
(1− p)B)→ 1, as B >> 1

To see why the event E =
{

supB GPt,B is not connected,∀t ≥ 0
}

is a zero proba-
bility event, note that PB are nested for B decreasing and for this reason P(Ec) =
limB→∞ P(PB).

To adapt this example to our framework we work as follows. Let the set {0, 1}
and (p, 1−p) the probability vector for some fixed p ∈ (0, 1), so that {0} is assigned
to 1 − p and {1} is assigned to p. This is an elementary measure space. On this
space, we define the triplet (Y, 2Y,m) over (N − 1)2 pairs of nodes (i.e. without
self-connections) each fixed pair of which will be considered connected and take val-
ues in an open subset of [0, 1] with probability p or it will be zero with probability
1−p, independently of the rest of the pairs. Eventually, (X,B, µ) =

∏∞
j=0(Y, 2Y,m)

is the product space of interest on which the shift T : X → X is defined, as
T (χ0χ1χ2 . . . ) = χ1χ2 . . . . If J is the semi-algebra of all measurable rectangles
then µ(T−1A) = µ(A) for any A ∈ J and by Theorem 1.1 of [49], T is measure
preserving. It is a standard exercise to show that T is ergodic [49]. It is only left to
show that for some B > 0, µ(PB) > 0, a calculation very similar to the one carried
before and Corollary 4.2 applies.

Example 4.6 (Markov processes [31]). The authors considered Eq. 5 with a switch-
ing communication topology driven by a Markovian jump process and in particular a
process on a homogeneous Markov chain over l states defined by a stochastic matrix
Z, each state of which, corresponds to a connectivity regime among N nodes. The
result is summarized as follows: Unconditional asymptotic consensus is achieved if
and only if Z is irreducible and the union of states of the chain correspond to a
routed-out branching graph. We note that the irreducibility of Z implies the exis-
tence of an invariant measure π ∈ Rl > 0 with

∑
i πi = 1 with the property that

πTZ = π. In the shift oriented framework, we have a transformation T on (π, Z)
known as Markov shift which is ergodic if and only if Z is irreducible [49]. Then the
event of connectivity over a B-interval of times is dictated by the invariant measure
to be of positive measure and Corollary 4.2 applies.

4.1.2. Continuous time. The results of the previous section can be modified to deal
with the problem in continuous time and there are numerous different settings to
choose upon. Let us recall the deterministic case and the system (9). The stability
of its solution with respect to ∆ is decided upon the product of the matrices P γB(t).
Just as in the discrete time case, the stochastic nature is implemented exclusively to
model the communication failure. Taking into account the necessary dwelling time
condition (Assumption 3.27) we will use the same measure preserving shift on the
same product space which will operate every ε > 0 time: More specifically, consider
continuous deterministic functions aij that satisfy Assumptions 3.20 and m :=
supt≥t0 maxi

∑
j aij(t) <∞. For fixed ε > 0, q ∈ N and t ∈ [t0 + (q − 1)ε, t0 + qε),

we define the m−stochastic matrix W (t) = mI −D(t) +A(t) with
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[Wij(t)] =

{
aij(t)[{T qχ}ij ], i 6= j

m−
∑
j wij(t), i = j

where T : X→ X is the measurable transformation defined in the preceding section.

Consequently the matrices P
(l)
B (t) : X → S from Proposition 3.25 are well-defined

processes as measurable mappings. Clearly, the properties of T reflect the properties

of P
(l)
B (t) and hence Theorem 3.28 as well as the non-linear results of §3.4.1 and

§3.4.3 can be restated in their probabilistic version.

Example 4.7. Let (Ω,F ,P) be a probability space and for ω ∈ Ω, x(t, ω) ∈ RN×F
a random process such that x(t0) = x0, it is sample continuous, product measurable,
it has a sample right derivative and it is a solution of the stochastic differential
equation

ẋi(t, ω) =
∑
j

aij(t, ω)
(
xj(t, ω)− xi(t, ω)

)
, xi(t0) = x0i

if it satisfies this equation with probability one for all t ≥ t0. The stochastic part of
this equation lies in aij(t, ω) which are assumed to be stochastic processes generated
by the shift T : X→ X and in particular we assume to be just as the one described
in the Example 4.5. Then we are interested in the integral∫ ∞

t0

f(s, ω)ds

where f(t, ω) = mini,j
∑
l min{ail(t, ω), ajl(t, ω)}, since

P
(
ω ∈ Ω : lim

t→∞
S
(
x(t, ω)

)
6= 0

)
= 1− P

(
ω ∈ Ω :

∫ ∞
t0

f(s, ω)ds =∞
)

and it can be easily calculated that at every Iq = [t0 + (q − 1)ε, t0 + qε),

µ

(
x ∈ X : GP (t) scrambling, t ∈ Iq

)
> pN−1 > 0

and by the non-summability and independence of the above events, the sum over
q diverges and the Borel-Cantelli Lemma assures that P (t) will be scrambling for
infinitely many ε intervals of time. Hence P

(
ω ∈ Ω :

∫∞
t0
f(s, ω)ds = ∞

)
= 1 and

almost sure asymptotic consensus occurs.

4.2. Noisy flocking dynamics. A standard application where a system of sto-
chastic differential equations of Itô type occurs is being a stochastic perturbation
of a deterministic nominal system. In this section we will study two flocking mod-
els, both of which are simplifications of a general non-linear system of stochastic
differential equations.

Consider the set V of autonomous agents and fix t0 ∈ R and T ≥ t0. The two

vector valued stochastic processes Xt = (X
(1)
t , . . . , X

(N)
t

)
,Ut =

(
U

(1)
t , . . . , U

(N)
t

)
stand for the positions and the velocities of the members of the flock. (Xt,Ut) are
the solution of the system of Itô stochastic differential equations

dX
(i)
t = U

(i)
t dt

dU
(i)
t =

∑
j

aij(t,Xt)
(
U

(j)
t − U

(i)
t

)
dt+

∑
j

gij(t,Xt,Ut)dB
(ij)
t

, i ∈ V (27)

for t ∈ [t0, T ], subject to initial data

X
(i)
t0

= X0
i , U

(i)
t0

= U0
i
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or, equivalently, they are the solution of

dXt = Utdt

dUt = −L(t,Xt)Utdt+

N∑
i=1

Gi(t,Xt,Ut)dB
(i)
t

(28)

for t ∈ [t0, T ], subject to initial data

Xt0 = X0,Ut0 = U0

provided Xt,Ut are Ut-measurable, L(X, t)Ut ∈ L1
N (0, T ), G ∈ L2

N×N (0, T ).{
Xt = X0 +

∫ t
t0
Usds

Ut = U0 −
∫ t
t0
L
(
s,Xs

)
Usds+

∑N
i=1

∫ t
t0
Gi(s,Xs,Us)dB

(i)
s

a.s. (29)

B(i)(·) =
(
B(i1)(·), B(i2)(·), . . . , B(iN)(·)

)
is an N -dimensional Brownian motion,

X0,U0 are two N -dimensional random variables independent of B(·).
Since we study the asymptotic behavior of solutions, we are essentially interested

in the collection
{

(Xt,Ut)
}
t≥t0

as solution of the above system of SDE’s.

The stochastic system (27) exhibits asymptotic strong stochastic flocking if and

only if the position-velocity processes X
(i)
t , U

(i)
t , i ∈ V satisfy the conditions

lim
t→∞

|U (i)
t − U

(j)
t | = 0, a.s. and sup

t≥t0
|X(i)

t −X
(j)
t | <∞, a.s.

Additionally, the stochastic system exhibits asymptotic strong stochastic flocking in
the mean square sense if the aforementioned processes converge accordingly.

Our aim is to discuss two simplifications of Eq. (27):

1. Time invariant flocking model with a state-independent multiple diffusions,{
dX

(i)
t = U

(i)
t dt

dU
(i)
t =

∑
j aij(U

(j)
t − U

(i)
t )dt+

∑
j gij(t)dB

(j)
t

(26.1)

2. Time varying linear model with state-dependent stochastic disturbance and
uniform time-varying diffusion coefficient{

dX
(i)
t = U

(i)
t dt

dU
(i)
t =

∑
j aij(t)(U

(j)
t − U

(i)
t )dt+ g(t)

∑
j

(
U

(j)
t − U

(i)
t

)
dB

(j)
t

(26.2)

4.2.1. Time invariant flocking. We begin with the study of Eq. (26.1) subject to
initial data X0,U0. In the absence of noise, Eq. (26.1) reduces to Eq. (1), the
dynamics of which are fully understood.

Assumption 4.8. The associated graph GA of the adjacency matrix A = [aij ], is
routed-out branching.

We recall the discussion in §2.1 and from Assumption 4.8 we deduce the existence
and uniqueness of a the normalized eigenvector of the Laplacian with respect to the
zero eigenvalue, c ∈ RN . The solution of Eq.(1) with initial data U0 is e−LtU0 and
it satisfies

|e−Ltu0 − 1cTu0| ≤ Ke−<{λ}t

for some K > 0 that depends both on the norm | · | and the parameters aij and
<{λ} the second smallest real part of the eigenvalues of L that is strictly positive
by Assumption 4.8.
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Proposition 4.9. The solution of (26.1)
(
Xt,Ut

)
satisfies

Xt = X0 +

∫ t

t0

Usds

Ut = e−L(t−t0)U0 +

∫ t

t0

e−L(t−s)G(s)dBs

for t ∈ [t0, T ].

Proof. The form of Xt is the definition of the process so we will only prove the
expression of Ut . Define the process

Vt := U0 +

∫ t

t0

eL(s−t0)G(s)dBs

the differential of which is dVt = eL(t−t0)G(t)dBt. We will use Itô’s product rule
to calculate the differential of e−L(t−t0)Vt which is identical to Ut:

d
(
e−L(t−t0)Vt

)
= G(t)dBt − Le−L(t−t0)Vtdt = −LUtdt+G(t)dBt.

Then the result follows.

We see that in this simple case, the solution Ut is expressed in closed form.
Asymptotic stochastic flocking is determined by the asymptotic behavior of the

local martingales
∫ t
t0
gij(s)dB

j
s as t→∞.

Theorem 4.10. Let Assumption 4.8 hold. If E[(U0)2],E[(X0)2] <∞ and for any
i, j ∈ V, the functions gij satisfy

lim
t→∞

∫ t

t0

g2ij(s)ds <∞ and

∫ ∞
t

g2ij(s)ds ∈ L1
[t0,∞]

then asymptotic stochastic flocking occurs. In particular the agents align their speed
around the U∞-measurable random variable

k := cTU0 +
∑
i,j

∫ ∞
t0

cigij(s)dB
(j)
s .

and they exhibit asymptotic stochastic flocking in the almost sure and in the mean
square sense.

Proof. At first we clarify that k is well-defined since
∫∞
t0
gij(s)dB

(j)
s is almost surely

finite exactly because the first imposed condition on gij yields almost sure finiteness
by the Martingale Convergene Theorem [24]. Next,

Ut − 1k =
(
e−L(t−t0) − 1cT

)
U0 +

∫ t

t0

(
e−L(t−s) − 1cT

)
G(s)dBs + 1cT

∫ ∞
t

G(s)dBs
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From the Properties of Itô’s integral and the Cauchy-Schwarz inequality we ob-
tain the following bound:

E
[
||Ut − 1k||22

]
≤

≤ K2e−2<{λ}(t−t0)E[||U0||22] + E
[(∫ t

t0

(
e−L(t−s) − 1cT

)
G(s)dBs

)2]
+

+ E
[(∫ ∞

t

1cTG(s)dBs

)2]
≤ K2e−2<{λ}(t−t0)E[||U0||22] +

∑
i,j

∫ t

t0

K2e−2<{λ}(t−s)g2ij(s)ds+

+
∑
i,j

∫ ∞
t

c2i g
2
ij(s)ds

(30)

We have that by assumption g2ij(t) vanishes. Now, E
[
||Ut−1k||22

]
is bounded from

above by three terms, each of which converges to zero as t → ∞: the first, by
Assumption 4.8, the third by the imposed condition on gij(s)’s and the second as a
convolution of an L1 function with a function that goes to zero. Then the random
variable Ut converges asymptotically to ∆ in the mean square sense. To prove
almost sure speed coordination we first see that from the Chebyshev inequality for
any, ε > 0

P
(
|U (i)
t − U

(j)
t | ≥ ε

)
≤ 1

ε2
E
[
|U (i)
t − U

(j)
t |

2] ≤ 1

ε2
E
[
||Ut − 1k||22

]
it is an easy exercise to show that all of the terms that bound E

[
||Ut − 1k||22

]
from above in Eq. (30) are integrable over [t0,∞] (the second term can be proved

by a simple change in the order of integration). Then because P
(
|U (i)
t − U

(j)
t |
)

is
summable, almost sure convergence to 1k ∈ ∆ follows (see Theorem 4(c) of §7.2 in
[14]).

Finally,

|X(i)
t −X

(j)
t | ≤ |X

(i)
t0
−X(j)

t0
|+
∫ t

t0

|U (i)
s − U (j)

s |ds <∞ a.s.

and hence X
(i)
t − X

(j)
t is bounded in probability, therefore it is bounded in the

2nd-mean (see Theorem 4(b) of §7.2 in [14]).

It is noted that since gij are deterministic functions, k is a normally distributed
random variable with mean

∑
i ciE[U0

i ] and variance
∑
i,j c

2
i

∫∞
t0
g2ij(s)ds.

Remark 4.11. The results of this section can be trivially generalized to the case
of time-varying connectivity weights aij(t). In this case the kernel Φ(t, t0) behaves
similarly in the case of Sec. 3.2, whatever the connectivity regime may be.

4.2.2. Time varying flocking. Algebraic methods do not apply in general linear
systems whereas stability in variation can effectively work in the case of state-
independent noise as it was analyzed above. When a version with state-dependent
noisy compartments is considered one would not want to disregard its contribution
with respect to consensus. Given Eq. (26.2) subject to initial data X0,U0 we will
derive expressions based on the coefficient of ergodicity. We will now state two
assumptions; a very mild and a very strong one:

Assumption 4.12. For A = [aij(t)] it holds that maxi∈V supt≥t0
∑
j aij(t) <∞.
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Assumption 4.13. The adjacency matrix of Ag of the diffusion compartment,
corresponds to a complete graph.

The necessity of Assumption 4.13 stems from the fact that the white noise dBt

as an integrator obeys no rules of monotonicity with respect to its integrand. For

simplicity we introduce the notation S(U2
t ) = maxi,j(U

(i)
t − U

(j)
t )2

Proposition 4.14. Under Assumptions 4.12 and 4.13, the solution (Xt,Ut) of
(26.2) satisfies

d
(
S(U2

t )
)
≤ 2
(
g2
N

2
− f(t)

)
S(U2

t )dt− g(t)S(U2
t )
∑
l

dB
(l)
t

where f(t) = mini,j
∑
l min{ail, ajl}.

Proof. We fix t ≥ t0 and we will always consider the elements i = it, j = jt ∈ V that

maximize the process U
(ij)
t :=

(
U

(i)
t − U

(j)
t

)
, We need to derive an expression of

the differential d
(
e2mt(U

(ij)
t )2

)
with Next we compute the differentials dU

(ij)
t and

d
(
U

(ij)
t

)2
using Itô calculus, as follows:

dU
(ij)
t =

∑
l

(
ailU

(li)
t − ajlU (lj)

t

)
dt+ g(t)

∑
l

U (li)dB
(l)
t − g(t)

∑
l

U
(lj)
t dB

(l)
t =

=
∑
l

(
ailU

(li)
t − ajlU (lj)

t

)
dt− g(t)U (ij)

∑
l

dB
(l)
t

d
(
U

(ij)
t

)2
= 2U

(ij)
t

[∑
l

(
ailU

(li)
t − ajlU (lj)

t

)
+Ng2U

(ij)
t

]
dt− 2g

(
U

(ij)
t

)2∑
l

dB
(l)
t

so eventually,

d
(
e2mt(U

(ij)
t )2

)
=

= 2me2mt(U
(ij)
t )2dt+ e2mtd

(
U

(ij)
t

)2
= 2e2mtU

(ij)
t

[(
m+

Ng2

2

)
U

(ij)
t +

∑
l

(
ailU

(li)
t − ajlU (lj)

t

)]
dt− 2ge2mt

(
U

(ij)
t

)2∑
l

dB
(l)
t

= 2e2mtU
(ij)
t

∑
l

(
ail − ajl

)
U ltdt− 2ge2mt

(
U

(ij)
t

)2∑
l

dB
(l)
t

where aii = m + Ng2

2 −
∑
l ail which is positive for m large enough. At this point

we shall focus on
∑
l(ail − ajl)U

(l)
t for which we notice that aij > 0 and Q =∑

l(ail − ajl) = 0 for all i, j ∈ V. Then if we let wl := ail − ajl, we note that

θ =
∑
l:wl>0

wl = −
∑
l:wl<0

wl

so

Q =
∑
l:wl>0

wlU
(l)
t +

∑
l:wl<0

wlU
(l)
t

=
∑
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wlU
(l)
t −

∑
l:wl<0

|wl|U (l)
t

= θ

(∑
l:wl>0 wlU

(l)
t

θ
−
∑
l:wl<0 |wl|U

(l)
t

θ

)
≤ θ
(

max
l
U

(l)
t −min

l
U

(l)
t

)
= θU

(ij)
t
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then since θ ≤ 1
2 maxi,j

∑
l |ail − ajl| = m + g2(t)N2 − mini,j

∑
l min{ail, ajl} we

obtain the bound for f(t) = mini,j
∑
l min{ail(t), ajl(t)}

d
(
e2mt(U

(ij)
t )2

)
≤ 2e2mt

(
m+

Ng2(t)

2
− f(t)

)(
U

(ij)
t

)2
dt− 2g(t)e2mt

(
U

(ij)
t

)2∑
l

dB
(l)
t

and finally we obtain

d(U
(ij)
t )2 = d

(
e−2mte2mt(U

(ij)
t )2

)
= e−2mtd

(
e2mt(U

(ij)
t )2

)
− 2m(U

(ij)
t )2dt

≤
(
Ng2(t)− 2f(t)

)(
U

(ij)
t

)2
dt− 2g(t)

(
U

(ij)
t

)2∑
l

dB
(l)
t

as i, j are chosen to be the maximizers of
(
U

(i)
t −U

(j)
t

)2
the proof is concluded.

Now we are ready to prove the flocking result :

Theorem 4.15. Under Assumptions 4.12 and 4.13, asymptotic stochastic flocking
for the system (26.2) occurs if

e
∫ t
t0
Ng2(s)−2f(s)ds ∈ L1

[t0,∞).

Proof. From Proposition 4.14 the solution (Xt,Ut) satisfies [3]

S(U2
t ) ≤ e

∫ t
t0

(
N
2
g2(s)−2f(s)

)
ds+

∑
l

∫ t
t0
g(s)dB

(l)
t S(U2

t0), a.s.

so that the second moment is calculated from the properties of the martingales∫ t
t0
g(s)dBs as :

E
[
S(U2

t )] ≤ e
∫ t
t0
Ng2(s)−2f(s)dsE

[
S(U2

t0)]

and the rest of the proof is identical to this of Theorem 4.10.

We note here that if g2 ∈ L1 then the non-summability of f suffices to prove

consensus and in addition e
∫ t f(s)ds ∈ L1 suffices to prove flocking. Other wise,∫∞

t0
g2(s)ds =∞ implies that |

∫ t
t0
g(s)dBs| behaves asymptotically as√

2

∫ t

t0

g2(s)ds log log

∫ t

t0

g2(s)ds, a.s.

by the iterated logarithm for martingales [24, 14]. With this in mind it is possible
that the assumption of the integrability of g2 can be relaxed.

Remark 4.16. The two results above are improvements of [15, 1] as we allow
weights to be non-symmetric and the diffusion coefficient to be time-varying. In
the particular case of time independent weights we also allow minimal connectivity
as well as we are able to identify the consensus point of the velocities. Furthermore,
one is free to assume non-linear state-dependent connections on condition that they
are lower-bounded away from zero. Initial conditions as for example Eq. (14) that
automatically imply a bounded distance among agents as in the deterministic case
do, are yet to be established.
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5. Discussion. We considered several consensus and flocking models beyond the
point of symmetric or uniform coupling, both in discrete and continuous time. Our
analysis is based on the mathematical tool that measures the contraction rate of
products of stochastic matrices with respect to the agreement sub-space ∆. The
appropriate use of this concept allowed for a thorough and unified approach of
several, seemingly different, models so that in most cases the convergence results
were either recovered in a more concise manner or they were extended.

5.1. Simple convergence analysis. For the linear deterministic algorithms, we
revealed the role of uniform bounds on positive connectivity weights with respect
to the static or switching networks. The idea behind the unconditional exponential
coordination in switching connectivity is the assumption of uniformly lower bound
on coupling weights together with the uniform recurrent connectivity. Additional
information on the values of the weights and the established connections are of
interest only in the question on the rate of convergence to consensus.

The uniformly lower bound condition was replaced by sufficient conditions, on
the rate at which the weights are allowed to vanish, for agreement among agents
to asymptotically occur. The main result is stated both under static and under
switching connectivity communication regime.

This case was considered in the continuous time dynamics, surprisingly enough,
with the use of the same mathematics. To the best of our knowledge, the use of
the coefficient of ergodicity to continuous systems was limited to cases of increased
connectivity [40]. An insightful comparison between the discrete and continuous
time dynamics revealed the way to extend the use of this valuable tool to the case
of continuous time, as well. The basic problem was inverted from a differential
equation to an integral equation one so that concepts from the theory of continuous
time Markov Chains would be activated. Indeed, the necessarily positive value
B > 0 considered in §3.2.2 (with Assumption 3.26) has nearly equivalent meaning
to the necessary positive time one needs to classify the communication classes in a
continuous time markov chain [14] .

Additionally, a major advantage in working with integral equations is that we
would be free to allow discontinuous jumps of the connectivity weights without the
mobilization of elaborated generalized concepts of solution of differential equations.

5.2. The effect of symmetry. Models with symmetry are more easy to use and
analyze but are less realistic. In the case of consensus dynamics, symmetric cou-
pling is very easily examined under the L2 metric

∑
i<j(xi − xj)2 and not the one

used here S(x). This is because in the former case, a very useful concept from
topological algebraic theory, known as the Fiedler number plays the role of the
contraction coefficient [4, 13] yielding better results. It can be shown for example
that in the case of symmetric weights for a continuous time linear algorithm a con-
dition

∫∞
min+

ij aij(s)ds = ∞ is enough to ensure consensus under a routed-out
branching condition, whereas in the non-symmetric case we showed that we need∫∞

min+
ij a

γ
ij(s)ds =∞ where γ is the scrambling index.

This difference is best illustrated in the analysis of non-linear flocking models,
the symmetric case of which is fully understood [9, 10] as compared to the non-
symmetric one where increased connectivity was necessary [40]. In our work, we
managed to extend the non-symmetric version to the point the symmetric versions
are (i.e. the simple connectivity and switching connectivity regimes).
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5.3. The consensus point. In §2.1 we saw that the time invariant nature of the
system allows the existence of an integral of motion, i.e. cTx. Then the consensus
point k = cTx0. In general systems (time varying linear or non-linear) such integrals
do not exist, unless one is willing to assume time invariant symmetry conditions.
For instance, if cTRN is a row vector such that cTL(t) ≡ 0, i.e. a common left
eigenvector of the Laplacian matrices L(t)|t≥t0 . A straightforward example is the
case aij = aji where c = 1

N 1.

5.4. More on non-linearity. Beyond flocking models, we also exploited the coef-
ficient of ergodicity as a contraction kernel to two important generalizations of the
linear case. The first one explains that the the underlying concept of convergence
in linear algorithms is that these systems have the property of passive co-operative
coupling. Based on this property we showed that a simple direct linearization is
enough to reduce the study of the original non-linear problem to a linear one with
the solutions of these two to be indistinguishable.

Next, we exploited the contraction coefficient as a kernel to study non-linear
and essentially non-monotonic consensus algorithms, by stability in variation. We
created a fixed point theory argument and established conditions under which the
non-linear system converges to consensus by also providing estimates on the rate of
convergence.

5.5. Necessary conditions revisited. Apart from Theorem 3.31 in §3.3 we sys-
tematically avoided to state necessary conditions for consensus and we had a good
reason to do so.

We know that uniformly lower bounds together with the recurrent connectivity
condition suffice to ensure exponential convergence. Heuristically speaking, the
positive diagonal elements of P (t) ensure that if the latter condition is not met
for a single connected component then it may be met for two components over
uniformly bounded intervals of time. Hence there are only specific initial conditions
that ensure global consensus, whereas there are other who do not. If, in turn, the
latter condition is not met, then recurrent connectivity condition may be met for
three connected components and so forth, until the number of components meets
the number of agents. These types of necessary conditions are presented for example
in [29, 46, 31].

Whenever the weights are free to vanish, however, the above argument is of little
use and the case of non-convergence is at the moment, only discussed by examples.
On the other hand, it may be the contraction coefficient appears that it is unfit for
providing necessary conditions. We reported above for example that it gives more
conservative estimates than the Fiedler number in the symmetric case.

In this work, we stated another type of necessary conditions to consensus, mainly
to highlight the discrepancy with the sufficient conditions. Indeed the necessary con-
ditions are significantly milder than the sufficient ones due to the, already mentioned
above, fact that the coefficient of ergodicity typically provides very conservative es-
timates of contraction.

5.6. Stochastic regularity and noise. The developed framework for the deter-
ministic case was carried through to the case of stochastic sources. In the liter-
ature, uncertainty is supplied either on the part of connections or by considering
pure-noise disturbances. In the first case, the time-invariant deterministic rules that
ensure sufficient connectivity to asymptotic agreement, were transported to a mea-
sure theoretic framework where the dynamics were dictated by measure preserving
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dynamical systems, a fairly unifying and simple approach which covers several pro-
posed models. We showed that whenever the weights are lower bounded away from
zero, the event of asysmptotic consensus can be proved with probability one. On
the other hand, whenever the weights are allowed to vanish, the event of asymptotic
consensus can only happen with a positive probability and not almost surely.

Finally, in the case of noisy perturbations, the coefficient of ergodicity was mobi-
lized once again to produce new results in this direction. We remark yet again, how
symmetry plays a crucial role in the analysis of Itô’s stochastic differential equa-
tions. In particular, whenever the noisy part is dictated by a Brownian motion,
the dynamics are too irregular to sustain general asymmetric connections on the
part of the noise, whenever the latter depends on the state. The analysis provides
a number of fruitful problems for the future.
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