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Deciding which projects, alternatives and/or investments should be implemented is a 

complex and important topic not only in transportation engineering, but in management, 

operations research, and economics. If the project’s benefits or costs depend on which other 

project is realized, then the projects are interrelated. The evaluation method computes the 

costs of network flows determined with the Frank-Wolfe algorithm, which is modified to 

consider intersection flows and delays. Intersections are modelled with pseudo-links. The 

methods used for choosing the optimal schedule of project improvements are: Ant Colony 

Optimization, Simulated Annealing and Tabu Search. The heuristic that yields the best 

most quickly solution is Ant Colony Optimization and it is chosen for the sensitivity 

analysis. The results of the sensitivity analysis show how the changes in ACO parameters 

and the model parameters influence the behavior of the model and the algorithm. 
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Chapter 1. Introduction 

Problem statement 

Transportation engineers have been dealing with the problem of evaluating, 

selecting and scheduling infrastructure projects, which resulted in the development of 

various methods. Alternatives taken into consideration can be classified as follows: 

- Mutually exclusive–only one alternative can be selected; 

- Independent–the benefit and costs of alternatives are independent of which 

alternatives are selected or when those are implemented; 

- Interdependent (interrelated)–alternatives that pervade transportation networks 

since improvements alter the flows, and hence benefits, on other network 

components. 

The aim of the thesis is to show how a traffic assignment model can be used to 

evaluate the objective function of an investment planning optimization problem for an 

urban road network, especially by showing how intersections can be included in the traffic 

assignment. A method for evaluating and selecting improvement alternatives which 

considers intersection improvements in addition to link widening alternatives is presented. 

Interactions between vehicles are included in the traffic assignment by assigning pseudo 

links. Each of the three movements at a single approach at 4-leg intersection (left, right, 

through) are modeled with a pseudo-link, creating a total of 12 pseudo-links per 4-leg 

intersection.  

As traffic increases, roads and intersections become congested, which leads to 

motorists experiencing increased travel time and delays. One solution, which is considered 

in this thesis is the construction of additional lanes. A second solution is intersection 
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widening, which can increase the overall capacity. After selecting the congested roads and 

intersections, the next step is to determine in what order the improvements should be 

implemented to minimize the present worth of costs. One way is to rank the roads and 

intersections based on congestion (delay) levels, and the project (whether it is a road 

improvement or intersection improvement) that has the highest value of congestion (delay) 

gets scheduled first. Another way is to rank them based on the benefit/cost ratio, using 

benefit cost analysis. These ways are not good enough because they fail to consider 

interrelations among projects. 

Selection and scheduling of projects can become a large optimization problem as 

the number of considered projects in the system grows. While considering a set of 

improvement projects, the goal is finding a sequence of projects minimizing total system 

costs over the analyzed period. 

The Frank Wolfe model for traffic assignment is used as the tool for evaluating 

network flows with changing configurations, while the Ant Colony Optimization 

algorithm, along with Tabu Search, and Simulated Annealing are used as optimization tools 

to obtain the best possible schedule of projects. 

Research objectives and contributions 

The work presented in this thesis contributes to the relevant literature in several 

ways. First, we modify the Frank-Wolfe algorithm (1956) to consider intersection 

movements (nodes are treated as intersections) by introducing one pseudo pseudo link for 

each intersection movement from each approach. Moreover, we apply the Akcelik’s delay 

model (1988, 1990) to estimate the delay on each of the pseudo links. Akcelik’s model was 

chosen because its number of input parameters was significantly smaller than the number 
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of parameters required for the HCM 2010 delay model. Also, Akcelik’s delay model 

needed fewer assumed input valued than the HCM model. Assumptions in the HCM 2010 

delay model that were needed were about the behavior of pedestrians, transit traffic, and 

possible public transportation stations near intersections.  

When considering projects that need to be implemented in the near or distant future, 

the parameters needed for HCM model are hard to estimate. The decision maker does not 

have a precise information about pedestrians and future transit traffic formaking 

assumptions about the parameters. This information can change over time, especially 

information about the position of the public transportation stops, which also influences the 

HCM delay model. 

The swarm metaheuristic algorithm is applied along with other two known 

metaheuristic algorithms to compare different approaches for solving the problem of 

selecting, sequencing and scheduling projects.  

A case study is also presented with the comparison of the performance of the swarm 

algorithm with two other known heuristics. An exhaustive enumeration test is presented 

which shows the goodness of solutions obtained with heuristics. A K-S statistical test is 

also presented in case of higher number of considered projects to estimate the likelihood 

that better undiscovered solutions exist than those obtained with heuristical algorithm. 

Thesis organization 

After the introduction, chapter 2 provides a literature overview in which prior 

research is presented on delay models, project scheduling and selecting, ant colony 

optimization, tabu search, simulated annealing, network improvement models. Chapter 3 

presents the evaluation methodology based on the Frank-Wolfe traffic assignment 
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algorithm. Chapter 4 describes the problem formulation as well as solution representation, 

objective function and assumptions made in this thesis.  Chapter 5 explains delay and 

signalized intersections and provides the information about the delay model used in this 

research.  Chapter 6 provides details about the optimization techniques used in the thesis, 

including Ant Colony Optimization (ACO), Tabu search (TS), and Simulated Annealing 

(SA). Chapter 7 presents the case study, the transportation network used, and the results 

obtained after implementing evaluation model and optimization model, and the statistical 

test to check the goodness of the solution optimized with the ACO algorithm. Chapter 8 

includes sensitivity analysis for the ACO algorithm. In other words, the influence of ant 

colony size, pheromone evaporation rate and problem size on the ACO heuristic. 

Moreover, the changes in demand values, interest rate, and project improvement cost are 

also considered in the sensitivity analysis. Finally, Chapter 9 provides conclusions, closing 

remarks, possible future research. 
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Chapter 2      Literature overview 

Intersections are not only the capacity-limiting components of an urban road 

network, but also the most complex components within it. The reason for this is that link 

flows are limited by conflicting flows. At 4-leg intersections there are 12 legal vehicular 

movements and 4 legal pedestrian movements. As traffic demand increases on approaches, 

conflicts between the vehicles also increase, as well as delays which can lead to congestion 

not only at the intersection, but also in other parts of the network, depending on the severity 

of congestion.  

Traffic signals assign right-of-way passages. By doing so, they can significantly 

reduce the number of conflicts and help regulate the traffic flow. Other advantages of traffic 

signal control include (Roess et al. (2015)): orderly movement of traffic, increase in traffic-

handling capacity of the intersection, reduction in the frequency and severity of certain 

types of crashes.  They also provide for continuous or nearly continuous movement of 

traffic at a definite speed under favorable conditions, can be used to interrupt heavy traffic 

at intervals to permit other traffic to cross the intersection. Disadvantages of traffic signals 

include the following (Roess et al. (2015)): possibility of excessive delay, excessive 

disobedience of the signals. Users can significantly use other routes to avoid traffic signals, 

thus making the network more congested. If delays occur, they not only cause congestion 

which leads to anxiety and nervousness amongst the drivers but also an increase in 

pollution and in costs. These costs consist of suppliers cost (government agencies) and user 

costs. 

A massive part of these costs can be attributed to traffic delays, Arnott & Small 

(1994) suggested that U.S. annual delay costs exceeded approximately $48 billion in the 
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nineties. Possibly the first papers about delays at signalized intersections were written by 

Wardop (1952), and Webster (1958).  Wardrop (1952) assumed that vehicles enter the 

intersection with uniform arrivals. Wardrop’s expression can be written as: 

 𝑑 =
(𝑟 −

1
2𝑠)2

2𝐶(1 − 𝑦)
 (1) 

 

where: 

d-average delay [sec], 

r-the effective red time [sec], 

s-saturation flow on the approach [vps or vph], 

C-cycle length [sec], 

y-flow ratio, 

Webster (1958), Miller (1968) and Newell (1956) proposed three more 

representative models that estimated delays at signalized intersections. Hutchinson (1972), 

Sosin (1980) and Cronje (1983) have numerically compared these delay expressions. 

Webster’s (1958) paper presented results of researching delays to vehicles at fixed-

time traffic signals and the optimum settings of such signals. Methods developed in this 

paper can be, according to the author, applied both to fixed-time and to vehicle-actuated 

traffic signals. 

Estimation of overflow delay is one of the major difficulties when developing delay 

models at signalized intersections. This difficulty stems from obtaining simple and easily 

computable formula for overflow delay and has forced researchers and analysts to search 

for approximations and boundary values. 
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Heidemann and Olszewski (1994) used probability distributions to estimate delay 

at signalized intersections. In their models, the probability distributions of delay were 

obtained from the probabilities of queue lengths. 

Ban et al. (2009) estimated a delay pattern for signalized intersections using sample 

travel time. These patterns can provide a way to estimate the delay for any vehicle arriving 

at the intersection. This is useful for providing time-dependent intersection delay 

information to the public. Ban et al. (2009) proposed a model which was based on two 

observations regarding the delays: delay could be approximately represented by linear 

curves due to the characteristics of queue forming and discharging, and there was a 

meaningful increase in delay after the start of the red time. 

Dion et al. (2004) introduced numerous delay models and compared delay estimates 

obtained from those models, specifically: deterministic queueing delay model, a model 

based on shock wave theory, the steady-state Webster model, the queue-based models 

dating from 1981 from Australian Capacity Guide, the 1995 Canadian Capacity Guide for 

Signalized Intersections, and the 1994 and 1997 versions of the Highway Capacity Manual 

(HCM), and the delays estimated from the microscopic traffic simulation software 

INTEGRATION. The results obtained were compared for numerous ranges of v/c ratios, 

specifically from 0.1 to 1.4 for consistency. The delay models from Australian Capacity 

Guide, the 1995 Canadian Capacity Guide, the 1997 HCM, and the INTEGRATION traffic 

simulation model produced similar delay estimates. Moreover, it was assessed that all delay 

models considered produced relatively consistent estimates of delay in under-saturated 

condition at signalized intersections with v/c ratios below 0.6.  
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Hurdle (1984) asserted that the steady-state models which do not assume 

completely uniform arrivals predict similar values of delay. In steady state models, delay 

approaches infinity as the v/c ratio increases.  

Akcelik (1988) compared the performance of the HCM 1985 with his own model. 

Values of delay from HCM 1985 and Akcelik’s delay model differed by 2 seconds (5%) at 

most for v/c ratios below 1. Akcelik in his paper also compared the presented model with 

Canadian, Australian and HCM delay models. This comparison is shown in table 2.1 

(Akcelik (1988)). 

Table 2.1 Performance measures of delay models 

 Akcelik’s HCM Australian Canadian 

Average overflow queue (veh) 4.26 4.03 3.93 4.37 

Average overall delay d (sec/veh) 60.1 58.4 57.7 60.9 

Average stopped delay (sec/veh) 46.2 44.9 44.4 46.8 

Boon et al. (2012) studied a traffic intersection with vehicle-actuated traffic control. 

Until all the lanes are emptied, traffic lights will remain green. Boon et al. (2012) assumed 

general renewal arrival processes, and based on that assumption they derived exact limiting 

distributions of the delays under heavy traffic conditions. Moreover, Boon et al. (2012) 

derived a light traffic limit of the mean delays for intersections with Poisson arrivals, and 

developed a heuristic adaptation of this limit. Combining these two results, they developed 

a closed-form approximation for the mean delays of vehicles in each lane. 

Sheffi (1985) stated that the behavior of travelers and traffic control policies were 

two connected processes that could have two different goals: traveler’s behavior influenced 

user optimum, and traffic control influenced system optimum. To achieve a network 
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optimum, traffic is controlled in many ways using, among many practices, traffic signals, 

traffic information and ramp metering. Changing the traffic control can change the traffic 

volume, for example if traffic control is changed and congestion is decreased on some 

routes/links, traffic might divert to other links where congestion can build up. 

Traditionally, if the traffic assignment models consider intersections, they do it 

simplistically, mostly because of problems with data and limitations of algorithms in the 

assignment models. Theoretically, one can argue that the Frank Wolfe algorithm cannot 

guarantee to estimate delays at intersections. This is a specific problem, because in 

congested urban areas queues and delays at intersections often have a huge effect on total 

travel time and on route choice behavior. Transportation engineers are faced with two 

difficulties: 

• Models that theoretically converge but with simplified assumptions on: speed – 

flow relations, interactions at intersections (Cantarella et al. (1991)) and driver 

behavior (Nielsen (1996)), 

• Heuristic expansions of these models, which do not guarantee convergence. 

Allsop (1974) was among the first authors who considered the interactions between 

route choice and traffic control. Allsop (1974) considered two research areas: traffic control 

and traffic assignment and proposed an integration by using mathematical formulation for 

both areas. He asserted that a common network definition was needed, and developed an 

approach where traffic assignment variables were considered as functions of traffic control 

parameters. The assumptions that Allsop (1974) made included the following: all major 

intersection possessed signal control, demand was fixed/static, travel time increased strictly 

monotonically with flow, and a fixed cycle time was used. A simple example was used to 
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illustrate the interaction between traffic assignment and control, while the Webster’s 

method was used to optimize traffic control. 

Allsop and Charlesworth (1977) developed an iterative approach using TRANSYT 

program which was used for signal settings and for estimating the relationship between 

link travel time and traffic flow. For a certain network Allsop and Charelsworth (1977) 

used two initial assessments that can lead to two different solutions of the combined control 

and traffic assignment problem. Later, Charlesworth (1977) continued the research in this 

direction but changed the cycle time and found the same results. 

Smith (1979) considered the interaction between Webster’s delay model and 

driver’s route–choice decisions on a simple case (three one – way links that for two routes 

from x to y). Smith (1979) simplified the model by assuming the lost times were zero and 

the cycle time was a fixed variable, as well as a steady demand from x to y. The paper 

showed that Webster’s method could significantly reduce network capacity. 

Nielsen et al. (1993) demonstrated a new method that could automate the task of 

adding data for intersection delay modelling to a network, which was developed while 

combining intersection delay model with assignment model. The developed method was 

tested on the Copenhagen metropolitan area and it used a sequential procedure to interpret 

the information in a pre-existing network database by implementing a set of ‘expert system 

rules’. These rules used the existing geographic and attribute information in the link-node 

based traffic database. 

Nielsen et al. (1998) examined the behavior of stochastic user equilibrium (SUE) 

traffic assignment with consideration of intersection delays and tested a version of SUE 

which included intersection modelling on a full-scale network to examine the convergence 
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and uniqueness of the solution. Nielsen et al. (1998) also analyzed if this approach yielded 

a better description of the traffic flows than the link-based SUE. The whole network with 

turns at intersections was considered as a link-node topology, which allowed the usage of 

all-or-nothing method for finding the paths. There were two types of links: real links and 

other links which represent turning movement. The model was tested on a full-scale 

network of Copenhagen (2369 nodes, 6108 links, 12073 pseudo-nodes and 19111 turns) 

and the results obtained were compared with the traffic survey of route choice which was 

done by Vejdirektoratet (1990). 

A higher definition of intersections in networks is needed when detailed forecasts 

are implemented, such as travel surveys. Meneguzzer (1995) explained the framework 

which combined detailed models of intersection operation with user-optimal route choice 

model. The framework considered detailed information on intersection geometry and 

control to develop the cost functions, and it could be applied in urban road networks for 

the assessment of alternative intersection control strategies or to help with a detailed 

analysis and forecast.  

According to Dickson (1981), if a set of signal parameters is available which can 

change the travel time-flow relationship on the links, it is possible to influence the 

equilibrium flows on the network. By exploring a simple example (one intersection, with 

travel time on links being a linear function of the flow plus a delay at the intersection for 

which the author assumed a simple delay formula), the author showed that with fixed set 

of flows and with the optimal signal settings, that can be obtained by iterative procedure 

that author applied, may lead to an increase in total network travel time. 
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Yang and Yagar (1995) combined traffic assignment with signal control in 

saturated networks, while considering queueing and congestion levels and assuming: 

• a fixed level of demand,  

• driver’s sufficient and perfect knowledge of queueing delays and travel times via 

all routes,  

• cycle times and  

• green times.  

The model is a bi–level programming problem where a lower-level problem is a 

network equilibrium which basically predicts how drivers will react to a specific traffic 

signal, while an upper-level problem determines signal splits to optimize a system objective 

function. Traffic delay at intersections was divided into signal delay and queueing delay, 

and sensitivity analysis was executed to obtain the derivatives of link flows and queue 

delay concerning signal splits, thus telling the authors how queueing network equilibrium 

behaved when signal settings were changed.  

Dafermos (1971) examined how traffic assignment decision rules affect flow 

patterns. This paper recognized that traffic flow in many networks was controlled by 

conditions that lied outside the range of assumptions of the standard flow-dependent model.  

On another note, many researchers dealt with extending a static framework of 

traffic assignment to the quasi-dynamic and dynamic cases, where at real time, control and 

guidance were being provided in response to real time traffic information. Gartner and 

Stamatiadis (1998) explored the extension by having both O-D demand and the control 

actions as time dependent variables, thus integrating these two interlaced variables. Gartner 

and Al-Malik (1996) presented the optimization model that accounted for both route choice 
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behavior and optimal signal settings at the intersections. Signal settings were expressed as 

flow variables, and it was shown that the user and system optimum was possible to 

calculate. 

Smith (1980) promoted a combined assignment-control model based on P0 policy 

(maximize the ‘travel capacity’ of the road network, assuming all drivers look for the best 

route) which considered signal settings on route choice. Furthermore, Ghali and Smith 

(1994) conducted the necessary computation and found out that P0 policy better performed 

than the two policies: delay minimization at each intersection, and Webster’s 

equisaturation method where green times needed to equalize the degree of saturation on 

intersection approaches. 

The critical role of traffic control systems in the operation of urban street networks 

was also recognized by Gartner and Malik (1996). To develop an effective signal strategy, 

it was necessary to evaluate and optimize signal timings and to optimize the traffic flow 

patterns, which presented combined model that could be used to develop advance traffic 

strategies that would lower congestion and avoid bottlenecks. Flow dependent traffic signal 

control model was developed which was used to model the interrelated activities between 

signal control and route choice. Model used delay equation developed by Webster while 

Frank Wolf algorithm was used to solve the traffic assignment problem. Two example 

networks were presented with the results obtained from the optimization model. Both 

system optimum and user optimum can be computed, and the model presented can also be 

applied to traffic-adaptive signals with minor modifications. 

Often when there are many suggested projects but not enough resources, money or 

time the projects need to be implemented in a certain order. Project selection is the process 
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of assessing each project and selecting those with the highest priority. Priority can be based 

on: 

• Benefits: a measure of positive outcomes when implementing a certain project. 

Types of benefit include: 

o Biodiversity, 

o Economic, 

o Social and cultural, 

o Fulfilling obligations/commitments as a part of national, regional, 

international or worldwide plans and agreements 

• Feasibility: a measure of likelihood of a successful project (if the project will 

achieve its goal/objective). 

Organizations and people involved in selecting projects and project management are: 

• Agency management, 

• Stakeholders, 

• Project Manager 

Selecting and scheduling projects is a difficult and time-consuming task. Many 

studies in the past dealt with this topic, among many approaches used, two approaches 

were:  

• Integer programming: Weingartner (1966), Cochran et al (1971), Clark et al (1989), 

• Dynamic programming: Weingartner (1966), Nemhauser and Ulman (1969), 

Moring and Esogbue (1971), Erlenkotter (1973) 

One of the many notable papers about interrelated projects is Weingartner’s (1966), 

which used an integer programming approach to solve the problem of interrelations. 
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Mehrez et al (1983) used a multi-attribute function to specify the decision maker’s 

preference with a zero-one budget model to solve the problem of selection of interrelated 

multi objective long–range projects. 

Thompson (1976) suggested a capital budgeting model for individual project 

selection that followed the capital asset pricing model. Approaches discussed in the paper 

were mathematical programming with inter-related project sets and market value 

maximization point of view with independent projects. The first approach treated the 

objective function in an unsatisfactory way, ignoring the market mechanism for dealing 

with risk as developed in portfolio theory. Furthermore, Thompson (1976) asserted that a 

programming approach was useful when considering project interrelationships, but it must 

relate to the market value maximization approach. Thompson (1976) also presented a way 

of relating the two approaches using a single-period model with project inter-relationship 

and market value determined by the capital asset pricing model. Martinelli (1993) explored 

a heuristic method for selecting and scheduling interdependent waterway investment 

projects by comparing their combinations. Martinelli (1993) began with an initial sequence 

of projects which was adjusted with the help of a heuristic that swapped the projects if the 

costs were improving.  

A network design problem is a decision-making problem in urban transportation 

planning to select improvements or additions to an existing network to decrease traffic 

congestion. This definition is the most common in literature, but this problem is also named 

Urban Transportation Network Design Problem (UTNDP) or Road Network Design 

Problem (RNDP). Urban Transportation Network Design Problem considers the reactions 

of travelers. 
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The aoad network design problem (RNDP) is a subset of Urban Transportation 

Network Design Problem and it is mostly concerned with street networks while assuming 

all vehicle flows are homogenous. RNDP can be classified into following groups: 

1. Discrete network design - only deals with discrete decisions: constructing new 

roads, adding roads, lanes, determining the direction of one-way streets 

2. Continuous network problems-concerned with continuous design decisions: 

expanding the capacity of the streets, scheduling traffic signals, determining tolls. 

3. Mixed network design problems-combination of the previous two. 

In the literature, RNDP has been generally formulated as a bilevel programming 

problem, where the upper level is the design problem (decision-maker’s problem) and the 

lower level problem decide whether to travel and which routes to take. 

Inputs to RNDP can be enumerated as follows: 

• Network topology, 

• Travel demand between each O/D pair 

• Street characteristics, such as capacity, free flow travel time, travel time function 

• The set of candidate projects  

• The available budget 

• The cost of each candidate project 

LeBlanc (1975) first used a branch-and-bound algorithm to solve the discrete 

network optimal design problem of a fixed investment budget. Link addition was 

considered on a given road network, with projected increase in demands for road travel 

between various pairs of nodes. The decisions considered building new links to counter 

congestion or to increase the capacity of some existing links as well as the various possible 
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types of network improvement. An important part of tackling this problem was predicting 

the number of vehicle flows along the links of a road network in some future period. 

Assumptions on driver’s behavior were necessary to do this prediction. These assumptions 

were based on Wardrop’s principles. Leblanc (1975) showed that the discrete network 

design problem can be solved by a sequence of shortest route problems and one-

dimensional searches. The technique was tested on a numerical example, network used was 

the Sioux-Falls network, and the results showed the efficiency of the technique. 

Abdulaal and LeBlanc (1979) presented a network design model with continuous 

investment decision variables. The budget constraint, after being converted to travel time 

units, was incorporated into the objective function. Continuous network design problem 

with convex investment costs increased the practical capacity of the arcs that were 

proposed for improvement. This could be desirable if the purpose was to improve or 

maintain the transportation network instead of just constructing new roads (links), and 

computational results obtained by Abdulaal and LeBlanc (1979) corroborated this. The 

additions to practical capacity were higher for congested links. 

When considering improving or adding new links to an existing network, the 

method of exhaustive enumeration has the crucial disadvantages of being limited to 

relatively small sets of projects. To overcome this disadvantage, many authors in the past 

have studied a 0-1 mixed integer approach for this problem. Commonly, 0-1 decision 

variables were ascribed for each proposed new link or improvement. Branch and bound 

and branch and backtrack procedures for 0-1 network problem were explored in various 

publications. Boyce et al. (1973) considered a problem of selecting links for improvement 

to minimize the shortest path distances between all O/D pairs, while considering budget 
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constraints on total link length. Modification of the branch-and-bound procedure was 

assessed for optimal variable selection. 

Tzeng and Tsaur (1994) used multiple criteria decision making for a metropolitan 

network improvement plan. A bilevel multiple objective network design model was 

considered: minimizing government budget and minimizing user’s total travel time. Link 

improvements were considered in an existing network and in fixed travel demand. To 

formulate a continuous network design problem, a multiple objective mathematical 

programming was used, and it was tested on the network of metropolitan Taipei.  

Tzeng and Tsaur (1994) proposed a continuous network design model with a 

nonlinear objective function, while the improvements affected the equilibrium flow 

assignment. The origin-destination trip matrix was assumed to be fixed. Feasible 

alternatives to bottleneck link under existing network structure and travel demands were 

being sought in the paper. Alternatives included an increase in link capacity.  Multicriteria 

decision making was employed to select and evaluate a compromise alternative from a set 

of feasible projects, thus solving the discrete network design problem. The concept of bi-

level programming was used to solve project searching stage of the problem.   

The term “Swarm Intelligence” was first used by Beni, Hackwood and Wang (1988, 

1989, 1991, 1992, 1991, 1992) in the context of cellular robotic systems, where many 

simple agents occupy one or two – dimensional environments to generate patterns and self 

– organize through nearest – neighbor interactions. Bonabeau et al (1999) extended this 

term to include any attempt to design algorithms or distributed problem – solving devices 

inspired by the collective behavior of social insect colonies and other animal societies.   
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Complex collective behavior is one of the main characteristics of the animal realm 

and it is based on the biological needs of individuals to stay together. Different animals, 

from bacteria to ants and caterpillars exhibit such a behavior. These animals not only 

increase their probability of surviving since predators usually attack only isolated 

individuals, but can build objects, organize, maintain order and communication among the 

colony which is highly adaptable and flexible. Bonabenau et al (1999) stated that this 

flexibility enabled these colonies to be robust and to endure and survive in conditions that 

suffered great disorders. In biology, insect interaction was highly explored and described, 

such as secretion of pheromones by ants, or dancing of bees while gathering food for the 

colony. This type of communication greatly contributes to the creation of collective 

intelligence (group intelligence), and many researchers dealt with this type of intelligence 

in recent decades: Beni (1988), Beni and Wang (1989,1991), Beni and Hackwood (1992), 

Bonabeau et al (1999).  

Swarm intelligence is the branch of artificial intelligence which explores 

individuals’ actions in different decentralized systems (multi agent systems). These multi 

agent systems are constituted from physical individuals (robots) or virtual (artificial) ones 

that communicate, cooperate, collaborate, exchange information and knowledge, and 

perform tasks in their environment. 

Deneubourg et al (1990), Franks et al (1992), Beckers et al (1992), Nonacs and 

Soriano (1998), Vienne et al (1998) postulated that basic rules of behavior constitute the 

ant self – organization. Self – organization relies on four basic ingredients (Bonabeau et al. 

(1999)): 
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• Positive feedback (amplification) – rules of thumb that promote the creation of 

structures (examples are recruitment and reinforcement). Two examples of 

recruitment in the animal realm are ants relying on pheromone trail in search for 

food and bees dancing for the same reason.  

• Negative feedback serves as a counterbalance for positive feedback, and stabilizes 

the collective pattern. 

• Self – Organization is based on fluctuations (random walks, task – switching). 

Randomness is crucial for the development of structures and in finding new 

solutions. It can also be an initial point from which structures grow. 

• All cases of Self – Organization are based on multiple interactions and SO requires 

a minimal density of mutually tolerant individuals who make use of their own 

activities as well as others’ activities. 

Most of the ant species have a certain number of “Scouts” that leave the colony in 

search for food (Deneubourg et al (1990)), and those who have been successful in finding 

food secrete pheromone and leaving a trail of it behind them. Pheromone provides 

information to other ants about the path they need to take. As the number of ants on a 

certain path increase so does the level of pheromone on that same path, thus increasing the 

signal to other ants in search for food. Secretion of pheromones is a characteristic of the 

processes that are self – enhancing and quickly converging. The mechanism of pheromone 

evaporation exists to prevent the “explosion” of information. The decision which path to 

take mostly depends on the behavior of other ants that leave the pheromone trail behind 

them. At the same time one ant’s behavior and path selection is influencing the other ants 
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that must yet choose the path which they will take. In other words, the decisions of one ant 

depend on the decision and behavior of other ants.  

Many researchers have used ant systems to solve many problems that are classified 

as NP hard problems. Probably the first authors who considered an ant system in 

optimization were Dorigo et al (1992). 

The most notable artificial systems based on swarm intelligence are Ant System 

and Ant Colony Optimization (Colorni et al (1991), Dorigo et al (1992), Dorigo (1992), 

Dorigo et al (1996), Dorigo and Gambardella (1997a, 1997b), Bonabeau et al (1999)). 

Dorigo et al. (1992,1996,1997,1991,1999,2004) introduced ACO (Ant Colony 

Optimization) algorithm in the early 1990’s. These algorithms were, as previously stated, 

inspired by the observation of the real ant colonies.  

Blum (2004) dealt with the biological aspects of ant colony optimization algorithms 

and showed how they could be transferred into algorithms that could be used for 

optimization. This author presented this type of optimization in general, and presented 

some of the variants of this type of algorithm. An ACO algorithm initially was used for 

solving the traveling salesman problem (TSP) and was later used for many other problems 

in optimization, specifically for NP hard problems. Most of the problems that were solved 

fall into one of the following categories: routing assignment, scheduling and subset 

problems.  

The ACO metaheuristic was successfully used in tackling the following problems: 

• Routing problems (Dorigo, Maniezzo, and Colorni (1991), Dorigo and 

Gambardella (1997a, 1997b), Stützle and Hoos (1998)),  

• Sequential ordering (Gambardella and Dorigo (2000)), 
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• Vehicle routing (Gambardella, Taillard, and Agazzi (1999), Reimann, Doerner, and 

Hartl (2004)), 

• Assignment problems 

o Quadratic assignment (Colorni et al (1994)), 

o Frequency assignment (Maniezzo, and Carbonaro (2000)), 

• Scheduling problems (Stützle (1998), den Besten, Stützle, and Dorigo (2000), 

Gagne, Price, and Gravel (2002), Merkle, Middendorf, and Schmeck (2002), Blum 

and Sampels (2004)), 

• Subset problems 

o Set covering (Leguizamón, and Michalewicz (1999, 2000)), 

o Weight Constrained Graph Tree Partition Problem (Cordone and Maffioli 

(2001)), 

o Arc – Weight l – Cardinality Tree Problem (Blum and Blesa (2003)), 

o Multiple knapsack problem (Leguizamón, and Michalewicz (1999, 2000)), 

o Maximum Independent Set problem (Leguizamón, and Michalewicz (1999, 

2000)), 

o Maximum Clique Problem (Bui and Rizzo Jr (2004)), 

• Shortest Common subsequence problem (Michael and Middendord (1998)), 

• Bin Packing (Levine and Ducatelle (2003)), 

• Machine learning problems 

o Learning the structure of Bayesian networks (De Campos, Fernandez – 

Luna, Gamez and Puerta (2002)), 

o Data mining (Parpinelli, Lopes, and Freitas (2002)) 
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• Network routing 

o Connection – oriented network routing (Schoonderwoerd, et al (1997), 

White et al (1998)) 

o Connectionless network routing (Di Caro et al (1997), Subramanian et al 

(1997)) 

o Optical network routing (Navaro, Sinclair (1999)) 

Tabu Search was first suggested by Glover (1986), while Hansen (1986) further 

explored this technique. Tabu search originated as a method for implementing the 

oscillating assignment strategy. Glover (1986) asserted that this type of technique, from an 

artificial intelligence point of view, slightly deviated from a normal human behavior.  Four 

main developments were crucial in developing Tabu search: 

• Strategies that combined decision rules based on logical restructuring and non – 

monotonic (variable depth) search, came from a study of decision rules for job shop 

scheduling problems.  

• Systematic violation and restoration of feasibility, which became imprinted on 

associated strategies of tabu search that was included in a method for solving 

integer programming problems by reference to corner polyhedral relaxations. 

• Flexible memory based on recency and frequency, which involved an exact 

approach for integer programming problems.  

• Selective process for combining solutions, applied to a systematically maintained 

population which involved surrogate constraints methods being introduced for 

integer programming. 
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Tabu search has been effectively applied to many combinatorial optimization 

problems in many fields including planning and scheduling problems, telecommunications, 

parallel computing, transportation, routing and network design, optimization on structures, 

optimization on graphs, neural networks and learning, Manufacturing, and financial 

analysis. 

In the field of transportation, routing and network design there are many researchers 

who applied the principles of tabu search to solve such problems. Sun et al. (1998) 

developed a tabu search process for the fixed charge transportation problem, using recency-

based and frequency-based memories and a network implementation of the simplex method 

as the local search method. Tabu search obtained optimal and near-optimal solutions much 

faster than the (exact) simplex algorithm for simple problems. The same authors (1998) 

also proposed a heuristic procedure based on tabu search to solve the transportation 

problem with exclusionary side constraints. Attractiveness of a move was evaluated by net 

changes in total cost and in total infeasibility, and strategic oscillation is used to implement 

the intensification and diversification functions.  This procedure found optimal or near 

optimal solutions using a small fraction of the CPU time. 

Gendreau, Hertz, and Laporte (1986) developed a tabu search heuristic for the 

vehicle routing problem with capacity and route length restrictions. The developed 

procedure considered adjacent solutions which were obtained by repeatedly removing a 

vertex from its current route, and reinserting it into another. Results, which were gathered 

from many benchmark problems and compared with a dozen of other procedures, indicated 

better performance for Tabu Search.  
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Barnes and Carlton (1995) presented a reactive tabu search procedure for solving 

the vehicle routing problem with time windows, while Chiang and Russell (1977) 

developed a reactive tabu search method for the VRPTW that dynamically changes the list 

of forbidden moves to avoid cycles. 

Rochat and Semet (1994) considered a real-life vehicle routing and distribution 

problem for a Swiss company producing pet food and flour. The main constraints that the 

authors considered are accessibility and the time windows at customers, the capacity of the 

vehicles, the total duration of the route and the driver’s breaks. Computational results 

showed that procedure yielded better solutions than the solutions of constructive heuristics, 

with reasonable CPU time. 

Rochat and Taillard (1995) proposed a probabilistic TS procedure to diversify, 

intensify and parallelize almost any local search for almost any vehicle routing problem 

making it more robust.  

Voss (1990), Domschke et al. (1992), Daduna and Voss (1995) gave a dynamic 

tabu search approach for the quadratic semi-assignment problem in a series of applications 

for modeling and solving a schedule synchronization problem in a mass transit system, the 

goal being to minimize the overall transfer waiting passenger time. The outcomes showed 

better schedules were produced than those obtained by previous approaches, which were 

based on simulated annealing. 

Chiang and Kouvelis (1994) addressed the flow path design issue of AGVs and 

concentrated on the design of unidirectional flow paths (vehicles were restricted to travel 

only on one direction along a given segment of flow path), and developed different versions 

of TS and SA procedure. 
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Crainic, Gendreau and Farvolden (1996) presented an efficient TS approach to find 

feasible solutions to realistically sized capacitated multicommodity fixed cost network 

design problems. This method was the first attempt to develop an efficient TS procedure 

for a mixed integer programming problem. Results obtained showed the robustness of the 

procedure in terms of relative importance of the fixed costs and capacities, size and the 

number of commodities. 

Based on this literature overview, we can see that, firstly only link improvement 

and link addition but not intersections were considered in the network improvement model, 

while the improvement of intersections in this thesis is also considered. Secondly, traffic 

assignment models that consider intersections exist in the literature. Such traffic 

assignment models are incorporated into this thesis. Thirdly, ant colony optimization 

algorithms were used to solve many engineering problems. Research presented in this 

thesis tries tackle the problem of how to schedule network improvements (link and 

intersection improvements) using this type of algorithm along with two other known 

metaheurstics: Tabu Search, and Simulated Annealing.  

Chapter 3      Evaluation model 

Traffic assignment can be formulated as the problem of finding the equilibrium 

flow pattern over a given graph representation of a transportation network, the associated 

link performance function and an origin-destination matrix. A specification of how 

travelers choose a route is needed to solve the problem. Moreover, a reasonable assumption 

is that every traveler will try to minimize its own travel time when traveling from origin to 

destination. Another assumption is that the travel time may change with the flow on each 

link and that all individuals behave identically. User Equilibrium (stable condition) is 
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achieved when no traveler can improve its travel time by changing route. Assignment of 

traffic flows on network links is a result of equalizing transportation demand (O/D matrix) 

and transportation supply (link and node capacity, management actions). Notable 

publications that dealt with traffic assignment include Florian (1976), Sheffi (1985), Ran 

and Boyce (1994,1996). However, they did not consider intersections in traffic assignment. 

This thesis applies the convex combination algorithm developed by Frank and 

Wolfe (1956)) to evaluate link and intersection expansion projects upon their 

implementation in the network. This algorithm is an iterative algorithm that is used for 

solving traffic assignment problem which is a nonlinear programming problem with 

convex objective function and linear constraints. Current travel time for link a, 𝑡𝑎
𝑛−1 is 

given and the nth iteration of the Frank Wolfe algorithm can be written as follows: 

1. Initialization: perform all or nothing assignment assuming 𝑡𝑎
𝑛−1, which yields flows 

𝑥𝑎
𝑛, set counter n = 1, 

2. Update: Set link travel time (BPR function) 𝑡𝑎
𝑛 = 𝑡𝑎(𝑥𝑎

𝑛) = 𝑡0(1 + 0.15 (
𝑣

𝑐
)

4

) 

3. Direction finding: Perform all or nothing assignment based on {𝑡𝑎
𝑛}, which will 

yield a set of (auxiliary) flows {𝑦𝑎
𝑛} 

4. Line search: find ∝𝑛 that solves the following problem: 

 max
0≤𝑥≤1

∑ ∫ 𝑡𝑎

𝑥𝑎
𝑛+𝛼(𝑦𝑎

𝑛−𝑥𝑎
𝑛)

0

(𝜔)𝑑𝜔

𝑎

 (2) 

 

5. Move: set 𝑥𝑎
𝑛+1 =  𝛼(𝑦𝑎

𝑛 − 𝑥𝑎
𝑛), ∀ 𝛼 

6. Convergence test: if a convergence criterion is met, stop. Otherwise, set n = n + 1 

and go back to step 1. 
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A major concern with the Frank Wolfe algorithm is that it does not consider 

intersection interactions. Therefore, in this study, pseudo links are introduced for each of 

the movement at signalized intersection. The evaluation model determines traffic flow 

volumes on each of the link and intersection (pseudo-link), as well as travel time, speed, 

delay and waiting time. 

 



 

29 

 

Chapter 4      Problem formulation 

The problem considered here is an NP hard problem with the non-convex objective 

function. The problem grows rapidly as the number of candidate projects increases, and is 

classified as a combinatorial optimization problem. Such problems involve finding values 

for discrete variables in such a way that the optimal solution is found with respect to the 

objective function. Many practical problems can be classified as combinatorial 

optimization problems (such as the shortest-path problem, optimal assignment of 

employees to tasks). Dorigo et al (2004) formulated a combinatorial optimization problem 

П as a triple (S, f, Q), where S was a set of candidate solutions, f was the objective function 

which assigned an objective function value f (s) to each candidate solution s ∈ S, and Ω 

was a set of constraints. The solution belonging to the set   𝑆̃ ⊆ 𝑆 of candidate solutions 

that satisfied the constraints Ω were called feasible solutions. The goal, according to Dorigo 

et al (2004), was to find a globally optimal feasible solution s*.  

A naïve and straightforward approach when trying to solve a combinatorial 

optimization problem would be an exhaustive enumeration of all possible solutions. If we 

opt for this approach, the computational time increases rapidly as the problem grows in 

complexity. It is useful, when solving this type of problem, to know how difficult it would 

be to find an optimal solution.  

Dorigo et al. (2004) asserted that the difficulty of combinatorial problems is that of 

NP – completeness, and they could be classified as following: 

• The class P for which an algorithm’s output in polynomial time was the correct 

answer (“yes” or “no”), 
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• The class NP for which an algorithm exists that verifies for every instance, 

independently of the way it was generated, in polynomial time whether the answer 

‘yes’ is correct. 

Algorithms can be classified as:  

• Exact algorithms–they are guaranteed to find the optimal solution and to prove its 

optimality for every finite size instance of the problem. In the case of NP hard 

problems, in the worst-case scenario, exact algorithms need a lot of time to find the 

optimum. 

• Approximate (heuristic) algorithms can obtain good, or near – optimal solutions at 

relatively low computational cost and time without being able to guarantee the 

optimality of solutions. These types of methods can be further classified as: 

constructive or local search methods. 

According to Dorigo et al. (2004) a metaheuristic is a set of algorithmic concepts 

that can be used as a general heuristic method to solve problems that are different in nature, 

with few modifications.  

The objective function used in this research minimizes the total costs: supplier cost, 

which was defined as the present value of all project costs, and user cost, defined as the 

delay multiplied by the value of time, during the analysis period subject to budget 

constraint. Supplier’s costs are represented by the first and third term of the equation, while 

the user’s costs are represented by the second and fourth term. The objective function can 

be formulated as follows: 
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𝑍 = ∑
𝑣

(1 + 𝑟)𝑗
∑ 𝑤𝑖𝑗

𝑛𝑙

𝑖=1

+

𝑇

𝑗=1

∑
𝑣

(1 + 𝑟)𝑗
∑ 𝑐𝑖𝑥𝑖(𝑡)

𝑛𝑝𝑙

𝑖=1

+

𝑇

𝑗=1

∑
𝑣

(1 + 𝑟)𝑗
∑ 𝑑𝑖𝑗

𝑛𝐼

𝑖=1

𝑇

𝑗=1

+ ∑
𝑣

(1 + 𝑟)𝑗
∑ 𝐶𝑖𝑋𝑖(𝑡)

𝑛𝑝𝐼

𝑖=1

𝑇

𝑗=1

 

(3) 

where: 

wij-waiting time on link i in year j, 

ci-present worth of the cost of link project i, 

npl-number of link projects (link improvements), 

nl-total number of links, 

nI-total number of intersections, 

npI-number of intersection projects (intersection improvements), 

Ci-present worth of the cost of intersection project i, 

v-value of time, 

r-interest rate, 

The present worth of the cost of intersection project i consists of capital cost of 

improvement and cost of pavement maintenance. It can be written as: 

 𝐶𝑖 = ∑
1

(1 + 𝑟)𝑗
(𝐶𝑐𝑖

+ 𝐶𝑝𝑖
)

𝑇

𝑗=1

= ∑
1

(1 + 𝑟)𝑗
(𝐴𝐼𝑖

⋅ 200 + 𝐴𝑖 ⋅ 50)

𝑇

𝑗=1

 (4) 

where: 

𝐶𝑐𝑖
-capital cost of improvement of intersection i, value is 200 $/ft2 

𝐶𝑝𝑖
-cost of pavement maintenance of intersection i, value is 50 $/ft2 

𝐴𝐼𝑖
-area of the land that is needed to improve intersection i, 

𝐴𝑖-overall area of the intersection i 
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The objective function is bound by the following cumulative budget constraint (Jong, 

Schonfeld, 2001): 

 

∑ 𝑐𝑖𝑥𝑖(𝑡) ≤ ∫ 𝐵(𝑡)𝑑𝑡,    0 ≤ 𝑡 ≤ 𝑇
𝑡

0

𝑛𝑝

𝑖=1

 (8) 

{
𝑥𝑖(𝑡) = 0   𝑖𝑓 𝑡 < 𝑡𝑖 

𝑥𝑖(𝑡) = 1   𝑖𝑓  𝑡 > 𝑡𝑖
 

where 𝑡𝑖 is the time when project i is finished and 𝑥𝑖(𝑡) is a binary variable specifying 

whether project i is finished by time t. Since in most realistic problems the cumulative 

budget constraint is binding, i.e. there is never enough funding for all the available projects 

that are worth implementing, the optimized project sequence represented by the set of all 

𝑡𝑖s uniquely determines the schedule of projects (Jong and Schonfeld (2001), Shayanfar et 

al. (2016)). 

Solution representation 

Solutions obtained by heuristics are represented as the sequence of projects that 

should be implemented, each project occurring after its predecessors and before its 

successors, which is shown in figure 4.1. 

 
Figure 4.1 Solution representation 

Objective function 

The objective function minimizes the present worth of the total cost subject to 

budget constraint. 
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Stopping criterion 

Two stopping criteria were considered in this research: number of iterations and 

running time of the algorithms. Each algorithm was tested for 200 iterations. 

Chapter 5      Delay at signalized intersections 

Delay relates to the amount of lost travel time, fuel consumption, and the frustration 

and discomfort of drivers. It can be estimate in several ways such as measurements in the 

field, simulation, and analytical models. The last method is the most practical and 

convenient.  Numerous analytical models have been developed using numerous 

assumptions for different conditions in traffic.  

Many stochastic steady state models use two major simplifications (Roess et al. 

(2015)): 

• The assumption that the arrival rate is uniform. Actual arrivals are random even 

when an isolated signalized intersection is concerned. However, inter-vehicle 

arrival times would vary around an average rather than being constant 

• Another assumption is that the queue is forming up at a point location.  

All analytic models of delay begin with a plot of cumulative vehicles arriving and 

departing versus time at a given location. Stable flow throughout the analysis period can 

be seen on figure 5.1. No signal cycle fails and during every green phase, the departure 

function at some point intersects the arrival function. Total aggregate delay is defined as 

the area of a triangle between the two curves: the departure curve and the arrival curve. 
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Figure 5.1 Delay in case of stable flow 

In figure 5.2 we can see that some signal phases fail. Because of this some vehicles 

are not served, and must to wait for the next green phase. In this case, departure function 

intersects with the arrival function after some time and there is no residual queue. In this 

case the analysis period is a stable one. Besides uniform delay, another component of delay 

emerges: overflow delay. This delay represents the area between the dashed line and the 

arrival curve. Dashed line also represents the capacity of the intersection. 

 

Figure 5.2 Individual cycles fail, operation is stable 
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The worst possible case can be seen in Figure 5.3. In this case, every green interval 

fails for a period that is significant. The residual queue, because of this, is growing 

throughout the analysis period. 

 

Figure 5.3 Demand exceeds capacity for a significant period 

Delay can be quantified in many ways. Forms of delay that are mostly used can be 

seen on figure 5.4, and are as follows (Roess et al. (2015)): 

1. Stopped time delay-time a vehicle is stopped in queue while waiting to traverse 

the intersection; 

2. Approach delay-includes the previous delay and the time that is lost because of   

deceleration from the approach speed to a stop, plus the time lost in accelerating 

again; 

3. Travel time delay-represents the difference between the expected driver’s travel 

time through intersection and the actual time. 

4. Time-in-queue delay-total time from a vehicle joining an intersection queue to 

when a discharge across the STOP line on departure. 



 

36 

 

5. Control Delay – this type of delay is a consequence of a control device, either a 

traffic light or STOP sign. This concept was developed in the 1994 Highway 

Capacity Manual, and is included in the current version of the HCM as well 

(Highway Capacity Manual 2010). 

 

Figure 5.4 Types of Delay 

Time delay models generate more realistic results when estimating the delays at 

signalized intersections. They are a combination of steady state and the deterministic 

models. Time dependent delay models are better in predicting the delay for under saturated 

and oversaturated conditions. 

Numerous delay models have been developed during the last few decades, 

including: Webster delay model (1958), Akcelik delay model, HCM (Highway Capacity 

Manual 1994, 2010) delay models, Australian, and Canadian. The delay model used in this 

thesis is the Akcelik’s delay model and is expressed with Equations 5 and 6 as (1988, 

1990): 
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𝑑 = 0.5
𝐶(1 − 𝜆)2

(1 − 𝜆𝑥)
+ 900𝑇𝑥𝑛[(𝑥 − 1)

+ √(𝑥 − 1)2 +
𝑚(𝑥 − 𝑥0)

𝑐𝑇
] 

(5) 

and: 

 𝑥0 = 𝑎 + 𝑏𝑠𝑔 (6) 

where: 

d-average overall delay, 

C-cycle time (sec), 

𝜆-proportion of the cycle which is effectively green for the phase under consideration, 

x-v/c ratio, 

T-flow period in hours, typical value is 0.25h 

c-capacity in vehicles per hour, (this is the capacity of a link’s approaching lane) 

m, n, a, b-calibration parameters, 

s*g-capacity per cycle, 

Parameters n, m, a and b according to Akcelik’s papers (1988, 1990) have the 

following values respectively: 0, 8, 0.5, and 0. Therefore, the equations (5) and (6) become: 

 𝑑 = 0.5
𝐶(1 − 𝜆)2

(1 − 𝜆𝑥)
+ 900𝑇[(𝑥 − 1) + √(𝑥 − 1)2 +

8(𝑥 − 0.5)

𝑐𝑇
] (7) 

 𝑥0 = 0.5 (8) 

The link interactions among different traffic movements can be categorized as 

follows: 

• Direct interactions (within-phase interactions) that occur during the same phase. 

Examples are: left turns against an opposing flow, and all-movement single-lane 
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intersection approaches in which blocking effects on through traffic caused by left 

turns are often observed. 

• Indirect interactions (between-phase interactions) caused by one of more traffic 

movements to other traffic movements. 
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Chapter 6     Optimization techniques 

Ant Colony Optimization (ACO) metaheuristic 

In the past, experiments indicated how ants managed to find the shortest path 

between the two points. Deneubourg et al. (1990) conducted an experiment with the ants 

by separating the nest from the food source with a double bridge and the length of both the 

bridge was equal, which figure 6.1 shows. 

Ants, although significantly blind, exhibit a remarkable space orientation and can 

reach their food supplies using the shortest path. One of the metaheuristics that have gained 

increased popularity in recent years, beside the Genetic Algorithm, Tabu Search and 

Simulated Annealing, is the Ant Colony Optimization. 

At the start of the experiment all ants were in the nest, and there were no 

pheromones deposited on the bridges. One assumption was that there was some probability 

that defined the choice of route of each ant that was increasing as the level of pheromone 

increased. 

            A pheromone serves as an indication to other ants about which path to take and as 

the number of ants on one path increases so does the level of deposited pheromone, and 

thus the signal that other ants receive when searching for food.  Randomly, one of the two 

paths will have a slightly higher number of ants that will lead to the increase in the level 

of pheromone, thus increasing the probability of choosing the path and eventually will 

lead to all ants using only one path. 
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Figure 6.1 A two-bridge experiment 

Similarly, many authors experimented with posting an obstacle, and in these cases, 

ants exhibited a remarkable characteristic of finding the shortest path very quickly as well.  

Ant colony optimization was used in solving traveling salesman problem (TSP). 

Time is discrete in the case of artificial ants. Pheromone intensity is 𝜏𝑖𝑗(𝑡), where i and j 

are nodes that constitute a certain path. At the start of the experiment, t = 0 and the variable 

𝜏𝑖𝑗(𝑡) is equal to some small value (c).  At time t every ant moves from the starting node 

to some other node, and at time t + 1 ants arrive at new nods. The probability that an ant k 

which is located at node i will at time t go to node j will be 𝑝𝑖𝑗
𝑘 (𝑡) which can be formulated 

as follows (Deneubourg et al. (1990)): 

 𝑝𝑖𝑗
𝑘 (𝑡) = {

[𝜏𝑖𝑗(𝑡)]𝛼[𝜂𝑖𝑗]𝛽

∑ [𝜏𝑖𝑗(𝑡)]𝛼[𝜂𝑖𝑗]𝛽
ℎ∈Ω𝑖

𝑘(𝑡)

,      𝑗 ∈ Ω𝑖
𝑘(𝑡) 

0,                                               𝑗 ∈ Ω𝑖
𝑘(𝑡)

 (9) 

where: 

Ω𝑖
𝑘(𝑡)-set of permissible nods that can be visited by ant k (this set is being updated 

for every ant after each ant’s movement), 

𝜂𝑖𝑗 =
1

𝑑𝑖
 -‘visibility’, 

To the Nest To the Food Source 
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α, β-parameters that define the relative importance of the intensity of pheromones 

and visibility. 

Visibility is based on local information, and by increasing of importance of 

visibility, the probability of choosing the node that is in proximity of the node where the 

ant is located is also increasing. Similarly, by increasing the importance of the amount of 

pheromone deposited, the probability of choosing the link which was used by many ants is 

also increasing.  

Ant movement is considered an action in which an ant travels from one node to 

another during the time interval. Bonabeau et al. (1999) asserted that n ants would move n 

times during the time interval (t, t + 1), and the whole cycle was comprised of m iterations.   

Colorni et al. (1994), Dorigo et al. (1992), in their research proposed a way to 

calculate the pheromone quantity on each link: 

 𝜏𝑖𝑗(𝑡) ← 𝜌𝜏𝑖𝑗(𝑡) + Δ𝜏𝑖𝑗(𝑡) (10) 

where: 

𝜌-coefficient such that 1-𝜌 is the intensity of evaporation of pheromone during one 

cycle, (0 < 𝜌 < 1), 

Total increase of the pheromone quantity after one cycle on link (i, j) can be 

calculated (Deneubourg et al. (1990)): 

 Δ𝜏𝑖𝑗(𝑡) = ∑ Δ𝜏𝑖𝑗
𝑘

𝑛

𝑘=1

(𝑡) (11) 

where: 

 Δ𝜏𝑖𝑗
𝑘 (𝑡)-pheromone quantity left by ant k on link (i, j) during the cycle 

The variable Δ𝜏𝑖𝑗
𝑘 (𝑡) can be calculated (Deneubourg et al. (1990)): 
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Δ𝜏𝑖𝑗
𝑘 (𝑡) = {

𝑄

𝐿𝑘(𝑡)
,   If 𝑘th ant goes though link (𝑖, 𝑗) during the cycle

0,                                                                               otherwise

 (12) 

where: 

Q -constant 

Lk (t)-length of the route that was developed by the kth ant during the cycle 

Artificial ants cooperate to find good solutions and this cooperation stems from 

leaving the pheromone trails that other ants can follow, if they so choose.  

Development of artificial systems should not be solely based on imitation of natural 

systems alone. On the contrary, these systems should act as a source of different ideas how 

to tackle complex problems and how to develop artificial systems. Multi-agent systems 

represent systems that consist on many individuals that use communication, cooperation, 

knowledge to perform certain tasks in their environment. 

Dorigo et al. (1999) tried to improve the ant system and developed ant colony 

optimization which, at that time, was a new heuristic technique for solving complex 

combinatorial optimization problems.  

In the case of ACO, the level of pheromone on links is changing based on local 

rules and global rules of changing the pheromone level. Local rules of pheromone change 

say that artificial ant deposits the pheromone on each link that he visits while searching for 

food, and this rule can be written as (1999): 

 𝜏𝑖𝑗(𝑡) ⟵ (1 − 𝜌)𝜏𝑖𝑗(𝑡) + 𝜌𝜏0 (13) 

where: 

𝜌-parameter that can take value 0 < 𝜌 < 1, 

𝜏0-amount of pheromone which ant deposits on link (i,j) 
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A global rule of pheromone change is applied only when all the ants create a route 

to food source, and it can be written as: 

 𝜏𝑖𝑗(𝑡) ⟵ (1 − 𝛼)𝜏𝑖𝑗(𝑡) + 𝛼Δ𝜏𝑖𝑗(𝑡) (14) 

where: 

Δ𝜏𝑖𝑗(𝑡) = {
(𝐿𝑔𝑏(𝑡))−1, if (𝑖, 𝑗) ∈ best created route of all the route to the food source

0,                                                                                                                  otherwise
 

𝐿𝑔𝑏(𝑡)-length of the best route to the food source discovered from the beginning, 

𝛼-parameter which regulates the evaporation of the pheromones (0 < 𝛼 < 1) 

The pseudo code of ant colony optimization proposed by Dorigo et al. (1999) can 

be written as follows: 

Procedure ACO_Meta_Heuristic 

 While (termination_criteria_not_satisfied) 

  Schedule_activities 

   ants_generation_and_activity; 

   pheromone_evaporation; 

  end schedule_activities 

 end while 

end procedure 

procedure ants_generation_and_activity 

 while (available_resources) 

    schedule_the_creation_of_a_new_ant(); 

    new_active_ant(); 

 end while 

end procedure 
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procedure new_active_ant() 

 initialize_ant(); 

 M = update_ant+memory(); 

 While (current_state ≠ target_state) 

    A = read_local_ant_pheromone_table (); 

    P = compute_transition_probabilities (A, M, problem_cosntraints); 

    next_state = apply_ant_decision_policy(P, problem_constraints); 

    move_to_next_state(next_state); 

    if (online_step – by – step_pheromone_update) 

  deposit_pheromone_on_the_visited_acr(); 

  update_ant_pheromone_table (); 

    end if 

       M = update_internal_state (); 

 end while 

 if (online_delayed_pheromone_update) 

    Evaluate_solution (); 

    Deposit_pheromone_on_all_visited_arcs (); 

    Update_ant_pheromone_table (); 

 end if 

end procedure 

Basically, the simulated ants exchange information on the quality of the solutions found 

using a way of communicating similar to that of real ants. An ant from one solution chooses 
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the next solution via a stochastic mechanism: If one of the next solutions has not been 

previously visited, it can be selected with a probability that is proportional to the 

pheromone associated with that solution. 

 Moreover, the amount of pheromone deposited depends on the quality of the 

solution found. Pheromone information is used by subsequent ants as a guide towards 

promising regions of the search space. Pheromone update aims to increase the values of 

pheromone associated with promising solutions. Furthermore, at the end of each iteration, 

depending how good the solutions are, the pheromone values are modified to bias ants in 

future iterations to construct good solutions. 

Tabu Search 

Root of the word “Taboo” comes from the island of Tonga. The natives of that 

island in the Pacific Ocean used this word to denote holy things and objects that cannot be 

touched. Taboo technique was suggested by Glover (1986) and significant contributions 

gave Hansen (1986). This type of heuristic begins in the same way as ordinary local or 

neighborhood search and goes iteratively from one solution to another until some 

terminating criteria is met. This procedure is based on the following: 

1. The use of flexible attribute-based memory structures designed to permit evaluation 

criteria and historical search information to be exploited more thoroughly than by 

rigid memory structures or by memoryless systems 

2. An associated mechanism of control-for employing the memory structures-based 

on the interplay between conditions that contain and free the search process 

(embodied in Tabu restrictions and aspiration criteria), 
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3. The incorporation of memory functions of different time spans, from short term to 

long term, to implement strategies for intensifying and diversifying the search. 

Short-term memory process is the foundation of this procedure. It constitutes an 

aggressive exploration that seeks to make the best move possible, subject to available 

choices to satisfy limitations or constraints. Constraints are imposed to prevent the reversal 

and/or repetition of certain moves by marking the certain moves as forbidden (tabu), 

making the primary goal of these restrictions to allow the method to go beyond the points 

of local optimum while making sure that the quality of the solutions is high at each or most 

of the steps. An important stage in this procedure is choosing the best admissible candidate. 

Every move from the list of candidates is evaluated per turn.  

A Tabu search procedure can be summarized as follows: 

1. Begin with a starting current solution. Obtain the solution from initialization or 

from an intermediate or long-term memory component 

2. Create a candidate list of moves. Each move generates a new solution from the 

current solution. 

3. Choose the best admissible candidate. Admissibility is based on the Tabu 

restrictions and aspiration criteria. Designate the solution obtained as the new 

current solution, and record it as the new best solution if it improves the fitness 

function. 

4. Stopping criterion. Stop if a specified number of iterations has elapsed in total or 

since the last best solution was found. 
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a. Stop. Terminate globally or transfer. A transfer initiates an 

intensification or diversification phase embodies in an intermediate or long-

term memory component. 

b. Continue. Update Admissibility conditions. Update Tabu restrictions and 

aspiration criteria. 

Simulated annealing 

Simulated annealing is a random search technique used to tackle complex 

combinatorial optimization problems, which is motivated by an analogy to the statistical 

mechanics of annealing in solids. The annealing process involves tempering certain alloys 

of metal, glass, or crystal by heating above its melting point (this leads to a high energy 

state of the atoms, and a high possibility to re-arrange the crystalline structure), holding its 

temperature, and then cooling it very slowly (the atoms have a lower and lower energy 

state and a smaller possibility to re-arrange the crystalline structure) until solidification is 

achieved, which produces high-quality materials with superior structural integrity. 

By successfully lowering the temperature and running this algorithm, we can 

simulate the material coming into equilibrium at each newly reduced temperature, and thus 

effectively simulate the physical annealing.  

Thermodynamic behavior and the search for the global minima for a discrete 

optimization problem is connected by the simulated annealing technique. At each 

iteration of the algorithm the objective function generates values of two solutions (current 

one and the newly created one) that are compared. The search starts with a random state 

and in a polling loop we move to neighboring states. Improved solutions are always 

accepted, while some of the non-improving solutions are accepted to possibly escape 
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local optima in search of global optima. The probability of accepting non-improving 

solutions depend on temperature parameter, which typically does not increase along with 

each iteration of the algorithm. 

Starting from an initial solution (S), the value of the objective function is 

calculated for the new solution (S’) in the neighborhood. The algorithm then attempts to 

move to a neighborhood solution based on a specified criterion. In minimization 

problems, transition is allowed when: Δ=f(S’)-f(S)<0. A transition to the new solution is 

also allowed based on the probability function exp(-Δ/T), where T is the temperature 

(control parameter). Allowing such transitions enables diversification and enables the 

algorithm to escape local optimum. After each iteration, the temperature decreases with a 

cooling function (T=T*α) where α is a constant parameter by which the temperature 

decreases after each iteration. The algorithm stops when the stopping criterion is met. 

Chapter 7      Case study 

The Sioux Falls network configuration is used for a case study. Sioux Falls is 

situated in Minnehaha County in South Dakota. It has 24 nodes and 76 links and in the 

figure below we can see the graphical representation of the Sioux Falls network.  

The Sioux Falls network presented in this paper has been used to examine and 

compare results on the networks, starting with the paper from LeBlanc et al. (1975). After 

we run the traffic assignment model, lanes and intersections (nodes) that have critical 

volume/capacity (high volume of vehicles) are identified and set as an initial set of project 

improvements. The model allows volume-capacity ratios to exceed 1.0, due to the BPR 

function used as a link performance function. Project alternatives that were being 

considered are link expansions, which is assumed to be in both directions between the two 
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connecting nodes because the O/D table is symmetrical, and vertical, horizontal or vertical 

and horizontal improvements of intersections. These assumptions save not only costs but 

also the use of construction equipment. The input data, besides the volume for each origin-

destination pair is the link free flow travel time. 

Figure 7.1 showa the map of Sioux Falls city in South Dakota, with all the major 

arterials labeled. In figure 7.2 we see the coded graphical representation of the Sioux Falls 

network based on the map from figure 7.1. 

 
Figure 7.1 Map of the Sioux Falls, South Dakota 
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Figure 7.2 Graphical representation of the Sioux Falls network 

Nodes 8, 11 and 16 represent intersections in the Sioux Falls network. Intersections 

were added by adding pseudo-links, each one for each movement for each link, i.e. for 

intersection 8, link 47 we have 3 pseudo-links for 3 separate movements (two turning 

movements, and through movement). Overall, for these three intersections 36 pseudo-links 

added to the network. In table 7.1, we can see the pseudo links for intersections, last digit 

represents the movement (2 is for left turning movement, 4 is for through movement and 6 

is for right turning movement), and their capacity and free flow travel time (t0).
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Table 7.1 Pseudo – links for intersections 8, 11, and 16, their capacity and free flow 

travel time 

1st node 2nd node 
Pseudo Link 

ID 
Capacity t0 Intersection 

4 14 10004 731 2.652 

11 4 10 10002 736 3 

4 12 10006 736 3.876 

6 16 16004 734 1.302 

8 6 9 16006 734 1.302 

6 7 16002 734 1.302 

7 9 17004 757 1.5 

8 7 6 17006 734 1.302 

7 16 17002 756 1.5 

8 17 22004 756 1.002 

16 8 10 22006 728 2.7 

8 18 22002 756 1.614 

12 4 36002 736 3.876 

11 12 10 36004 736.32 3 

12 14 36006 731 2.652 

14 12 40002 731 2.652 

11 14 4 40004 731 2.652 

14 10 40006 731 2.652 

16 9 47002 756 2.892 

8 16 6 47004 734 1.302 

16 7 47006 756 1.5 

17 10 52002 728 1.002 

16 17 8 52004 756 1.002 

17 18 52006 756 1.002 

18 17 55002 784 1.002 

16 18 10 55004 728 1.614 

18 8 55006 756 1.614 
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Table 7.2 Origin/Destination demand table

 

As we can see from table 7.2, there are no trips originating and ending at nodes 8, 11, 16, because we consider them as 

intersections in the Sioux Falls network. In table 7.3, the values of delays on intersection pseudo-links are presented, the volumes 

on each of the link and their pseudo v-c ratios. 

O\D 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 0 200 120 360 180 240 300 0 360 840 0 180 360 180 300 0 300 120 180 180 60 240 180 120

2 200 0 6 18 6 30 12 0 18 36 0 12 18 6 12 0 18 6 6 12 6 12 6 6

3 120 6 0 18 6 18 6 0 12 18 0 18 12 6 6 0 6 0 6 6 6 6 6 6

4 360 18 18 0 30 30 30 0 48 72 0 42 36 30 30 0 30 6 18 24 12 24 30 18

5 180 6 6 30 0 18 12 0 48 60 0 12 12 12 18 0 18 6 12 12 6 12 12 6

6 240 30 18 30 18 0 24 0 24 48 0 18 18 12 18 0 36 6 18 24 6 18 12 6

7 300 12 6 30 12 24 0 0 36 114 0 48 30 18 30 0 60 60 30 36 18 36 12 6

8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

9 360 18 12 48 48 24 36 0 0 168 0 42 36 36 60 0 60 12 30 42 24 42 36 12

10 840 36 18 72 60 48 114 0 168 0 0 126 114 132 240 0 234 42 108 156 78 162 108 54

11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

12 180 12 18 42 12 18 48 0 42 126 0 0 84 42 48 0 42 12 18 30 24 48 42 30

13 360 18 12 36 12 18 30 0 36 114 0 84 0 36 42 0 36 6 24 42 36 78 48 48

14 180 6 6 30 12 12 18 0 36 132 0 42 36 0 45 0 42 6 24 30 24 72 66 24

15 300 12 6 30 18 18 30 0 60 240 0 48 42 45 0 0 90 18 48 66 48 156 60 30

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

17 300 18 6 30 18 36 60 0 60 234 0 42 36 42 90 0 0 42 102 102 42 102 36 18

18 120 6 0 6 6 6 60 0 12 42 0 12 6 6 18 0 42 0 24 100 6 24 6 6

19 180 6 6 18 12 18 30 0 30 108 0 18 24 24 48 0 102 24 0 78 30 78 24 12

20 180 12 6 24 12 24 36 0 42 156 0 30 42 30 66 0 102 100 78 0 78 150 42 30

21 60 6 6 12 6 6 18 0 24 78 0 24 36 24 48 0 42 6 30 78 0 114 42 36

22 240 12 6 24 12 18 36 0 42 162 0 48 78 72 156 0 102 24 78 150 114 0 132 72

23 180 6 6 30 12 12 12 0 36 108 0 42 48 66 60 0 36 6 24 42 42 132 0 4.8

24 120 6 6 18 6 6 6 0 12 54 0 30 48 24 30 0 18 6 12 30 36 72 4.8 0
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Table 7.3 Values of delay [sec/veh], volume [veh] and v – c ratios for pseudo links for intersections 8, 11, and 16 

 

The value of delay for intersection 16 which is 24.231 seconds. The values of delay for the other two intersections are 

20.756 sec and 20.37 sec for intersections 8 and 11, respectively. These values were obtained using the following formula: 

𝑑𝐼 =
∑ 𝑑𝐴𝑣𝐴

∑ 𝑣𝐴
 

 

 

 

Pseudo Link Delay Volume v/c Pseudo link Delay Volume v/c Pseudo Link Delay Volume v/c

47002 17.97558 30.00016 0.039637 52002 27.64979792 473.9998 0.650886 40002 20.85631 222 0.303496

47004 21.64109 263.9999 0.359287 52004 19.34905034 132.0003 0.174402 40004 18.64288 83.99998 0.114836

47006 20.77005 222 0.293312 52006 18.5155287 72 0.095128 40006 19.44368 138 0.18866

24004 18.10124 39.8841 0.05265 55002 18.55803339 72 0.09178 27002 21.19155 240 0.328104

24002 18.56317 78 0.106153 55004 18.22056692 54 0.074152 27004 19.72321 156 0.211863

24006 17.97557 29.99998 0.039637 55006 19.52566035 144 0.190256 27006 17.542 0 0

17004 18.09034 72.16643 0.051511 22004 19.13900122 117.4108 0.155126 10004 18.81465 95.99994 0.131241

17006 26.32588 60.00023 0.604255 22006 17.51455175 0 0 10002 17.542 0 0

17002 20.46663 474.9461 0.26953 22002 19.61531938 150 0.198184 10006 19.91571 168 0.22816

16004 18.48216 39.02082 0.098214 29002 18.22056744 54.00004 0.074152 36002 19.62853 150 0.203715

16006 18.31556 443.9997 0.081657 29004 18.22056692 54 0.074152 36004 21.52258 258.416 0.350954

16002 27.49526 204 0.646371 29006 29.63141306 515.9998 0.70856 36006 20.85631 222 0.303496

Intersection 11Intersection 8 Intersection 16
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As we can see from figure 7.3, the values of delay increases as the v/c ratio increases 

as well, for the pseudo link 36004. This pseudo link was chosen because of the high values 

of delay that change as the O/D volumes change from 10% to 100% in 10% increments. 

The traffic assignment model was run with 3 intersections and with added pseudo links for 

all Sioux Falls network for different values of  O/D tables (from 10% to 100% with a 10% 

increment). Most of the links have a value of v/c ratio below 0.5, which indicates that the 

traffic assignment works well, and assigns the traffic and volumes to other links, 

distributing almost evenly the volumes throughout the network. This can also be said for 

the pseudo links. The most congested intersection pseudo link is 36004, the through 

movement from link 36 and the delay there is approximately 21 sec/veh with the value of 

v-c ratio of 0.889 at most (when the values of the flow from the O/D matrix reach 140%).  

 

Figure 7.3 Delay vs v-c ratio for pseudo link 36004 

Figure 7.4, shows the overall intersection delay for the three intersections as the 

function of the percentage of increase of the original O/D volumes. As we can see, the 
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intersection delay increases as the percentage of volume increases and the two intersections 

with the highest increase in delay are intersections 8 and 16. 

 

Figure 7.4 Intersection delay vs. percentage increase of the original volume of 

the O/D table 

Two intersections that are being considered for improvement are 8 and 16 based on 

the value of delay. More specifically, both intersections will be widened vertically and 

horizontally. Moreover, links considered for improvement are 30, 51, 62 and 29. The links 

were chosen because of the high v-c ratio, which is above 0.6. The projects that are 

considered, with their costs and descriptions are shown in table 7.4. 
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Table 7.4 Project ID and descriptions 

Project 

ID 
Project Description Project cost ($) 

1 Improvement of link 69&65 1,800,000 

2 Improvement of link 30&51 4,800,000 

3 Improvement of link 62&64 3,900,000 

4 Improvement of link 68&63 4,200,000 

5 
Horizontal improvement of intersection 8 

(improvement of pseudo link (16,47) 
921,600 

6 
Vertical improvement of intersection 8 

(improvement of pseudo link (17,24) 
921,600 

7 
Horizontal improvement of intersection 16 

(improvement of pseudo link (22,52) 
921,600 

8 
Vertical improvement of intersection 16 

(improvement of pseudo link 29,55) 
921,600 

 

Using the ACO and TS metaheuristic, the sequence of these projects that will be 

implemented will be identified. Two variables that are important for the problem are: the 

cost of the project and his time it takes to complete it. The time of the completion of the 

projects is one variable, and costs of the projects were calculated using the objective 

function that was presented in chapter 4. The baseline interest rate is assumed to be 2% per 

year (0.02 in other words) in calculations and the number of years is 20. Table 7.5 shows 

the parameters of the algorithms used.  

Table 7.5 Parameters used for metaheuristics 

ACO 

Number of iterations 50 

Number of ants 50 

Initial pheromone 0.000000000372 

Evaporation rate 0.7 

SA 

Temperature start 10000 

Cooling factor 0.001 

TS 

Number of iterations 50 
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In figure 7.5, we see how the cost function changes over successive iterations. The 

maximum number of iterations was at first set at 200, but later was changed to 50 because 

the algorithm did not show any improvement at all after the 50 iterations.  

The parameters used to calculate the values of costs for each of the projects 

individually are:  

• ci=3,000,000 $/lane mile,  

• Ai-area needed for improvement is 2880 ft2 (12 ft is the width of the lane), 

• overall area of the intersection is 6912 ft2. 

 

 

Figure 7.5. Total Cost vs. number of iterations for the ACO 

From figure 7.5, we can see that ACO algorithm finds the best value of the cost 

function relatively fast (after 40 minutes of running time). 
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Figure 7.6 Cost vs. Iteration number for simulated annealing 

Figure 7.6 shows the behavior of the simulated annealing for the first 1000 

iterations. The best value of the cost function is found around the 43rd minute.  

 

 

Figure 7.7 Cost vs Iteration number for Tabu Search heuristic procedure 

Figure 7.7 shows the performance of the Tabu Search procedure, and that the 

optimal solution of the cost function is obtained after approximately 44 minutes. 

 



 

59 

 

Table 7.6 Projects schedule and the value of the cost function for implemented 

algorithms 

Algorithm 
Project 

schedule 
Cost ($) 

ACO 8,6,7,5,2,1,3,4 7,202,111,619.36 

SA 8,6,7,5,2,1,3,4 7,202,111,619.36 

TS 8,6,7,5,2,1,3,4 7,202,111,619.36 

Table 7.6 shows the schedule of projects and the value of the cost function. Results 

that are obtained with heuristic algorithms are not guaranteed to be optimal, and it is 

difficult to assess the quality of the obtained solution. To check the algorithms a complete 

enumeration test was conducted for a small number of projects. There are 40 320 possible 

permutations of the projects (8 projects) and each of the permutation has its own value of 

the objective function. Table 7.7 shows the number of possible permutations, the minimum 

and maximum value of the objective function. As can be seen from the table, the minimum 

values correspond to the minimum value of the objective functions obtained by Simulated 

Annealing (SA), Ant Colony Optimization (ACO) algorithm, and Tabu Search (TS). 

 

Table 7.7 Number of possible permutations and minimum and maximum value of 

the objective function 

Number of possible 

permutations 

Smallest value of the 

cost function ($) 

Highest value of the 

cost function ($) 

40320 7,202,111,619.36 45,945,312,044.59 

Figure 7.8 shows the values of the objective functions for the generated 40320 

solutions. 
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Figure 7.8 Value of the cost function for the 40320 exhaustively generated solutions 

Figure 7.9 shows the running time of three heuristic procedures. We can see that 

the ACO has the lowest running time and the sensitivity analysis will be conducted for 

ACO because it has the lowest running time. 

 

 

Figure 7.9 Running time for ACO, SA and TS heuristic procedures 
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To further test the goodness of solutions obtained by the heuristic procedure, we 

increase the number of projects considered for implementation to 12, thus increasing the 

number of possible permutations of projects to more than 400 million. The projects being 

considered are summarized in table 7.8. 

 

Table 7.8 Project ID’s and their descriptions 

Project 

ID 
Project Description 

Project cost ($) 

1 Improvement of link 69&65 1,800,000 

2 Improvement of link 30&51 4,800,000 

3 Improvement of link 62&64 3,900,000 

4 Improvement of link 68&63 4,200,000 

5 
Horizontal improvement of intersection 

8 (improvement of pseudo link (16,47) 

921,600 

6 
Vertical improvement of intersection 8 

(improvement of pseudo link (17,24) 

921,600 

7 
Horizontal improvement of intersection 

16 (improvement of pseudo link (22,52) 

921,600 

8 
Vertical improvement of intersection 16 

(improvement of pseudo link 29,55) 

921,600 

9 Improvement of link 9&10 3,000,000 

10 Improvement of link 29&48 3,300,000 

11 Improvement of link 42&71 2,700,000 

12 Improvement of link 5&22 6,900,000 

Table 7.9 shows the order of the projects that should be implemented, and the value 

of the objective function obtained by three heuristic procedures. 

Table 7.9 Project schedule and the value of the objective function for different 

heuristic procedures for the testing purposes 

Algorithm Project schedule Cost ($) 

ACO 8,6,7,5,12,1,2,4,11,9,10,3 7,890,249,717.66 

SA 8,6,7,5,12,1,2,4,11,9,10,3 7,890,249,717.66 

TS 8,6,7,5,12,1,2,4,11,9,10,3 7,890,249,717.66 

Table 7.10 presents the maximum, minimum, average value and the value of 

standard deviation of the 50 000 randomly generated solutions. 
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Table 7.10 Minimum, maximum, average value and the value of standard deviation 

Minimum Maximum Mean Std. deviation 

8,526,207,979 537,461,226,823 90,386,329,436 48,043,531,069 

In case of 12 projects, complete enumeration is harder, because it takes a lot more 

time than in the case of 8 projects. Therefore, we apply the Kolmogorov-Smirnov (K-S) 

goodness of fit test (Chakravart, Laha, and Roy, (1967)) which is used to decide if a sample 

comes from a population with a specific distribution, and to estimate the probability that 

better or much better solutions can be found. 

The K-S test compares two cumulative frequency distributions. A cumulative 

frequency distribution (CDF) is useful for finding the number of observations above or 

below a value in a data sample. It can be calculated by taking a given frequency and adding 

all the preceding frequencies in the list. The observed CDF and empirical CDF allow us to 

find the point at which these two distributions show the largest divergence, and the test 

uses this parameter to identify two-tailed probability estimate p to determine if the samples 

are statistically similar or different. There are two hypotheses: 

• H0-null hypotheses-there is no difference between the observed distribution of the 

sample and the empirical distribution,  

• HA-research hypotheses-there is a difference between the observed distribution and 

the empirical distribution. 

The sample data were tested for various distributions. It was found that the Lognormal 

distribution best fitted the data, which is shown in figure 7.10.  
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Figure 7.10 Fitted lognormal distribution 

The cumulative probability distribution for the Lognormal distribution can be 

calculated by Eq. 15: 

 𝑝 = 𝐹(𝑥|𝜇, 𝜎) =
1

𝜎√2𝜋
∫

𝑒
−(ln(𝑡)−𝜇)2

2𝜎2

𝑡

𝑥

0

𝑑𝑡 (15) 

This gives us the value of p = 0.000000009796913329673100000000. The solution shows 

us that the solution obtained by the ACO procedure is better than 99.999% of the solutions 

randomly generated in the distribution. Hence, the solution obtained by ACO procedure is 

very good compared to other randomly generated solutions. Table 7.11 shows the estimated 

parameters for Lognormal distribution obtained with the K-S test, as well as the parameters 

of the Kolmogorov-Smirnov test. 
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Table 7.11 Parameters of the Lognormal distribution and the K-S parameters 

Parameter Value 

µ 25.102 

sigma 0.5 

D 0.004 

p-value 0.492 

alpha 0.05 

Chapter 8      Sensitivity analysis 

This chapter studies how the uncertainty about various input parameters of the 

optimization model can influence the overall goodness of solution obtained by the ACO 

procedure. It is useful to conduct sensitivity analysis because it helps us understand the 

model’s behavior. Sensitivity analysis is carried on showing the effects based on ACO 

parameters and network specifications. Factors considered are 

• ACO parameters 

o Ant population size, 

o Problem size, 

o Evaporation rate, 

• Problem parameters 

o Improvement cost, 

o Different demand, 

o Interest rate 

Ant population size 

A crucial parameter of the Ant colony optimization algorithm is the size of ant 

colony. By increasing the colony size, the optimization speed should increase to a certain 

point, however increasing it too much could result in an oversaturation of the system. By 
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having a small size of the colony, the computational time increases. Basically, it all comes 

down to the magnitude of the problem. Simple, straightforward problems could be handled 

using the smaller colony and by using the larger one would sometimes lead to 

oversaturation. On the other side, complex problems, with huge variables and a high 

number of possible solution would require a larger colony to save computation time, but 

not too large. Figure 8.1 shows how the present worth of total cost changes as the colony’s 

population changes. Table 8.1 shows how the sequence of projects changes as the 

population is changed. 

 

Figure 8.1 Colony population (number of ants) vs value of total cost 

Table 8.1 Population size vs sequence of projects 

Population size Sequence 

5 4,5,1,6,7,2,3,8 

10 8,6,7,4,5,1,3,2 

20 8,6,7,5,2,1,3,4 

30 8,6,7,5,2,1,3,4 
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Problem size 

Problem size and computation time are two important and related parameters. 

Computation time increases as the problem size increases as we can see from figure 8.2. 

Problem size, in this case study, is related to the number of projects that are considered for 

implementation. As the problem size increases, so should the size of the ant colony to 

guarantee a reasonable exploration of the solution space. A network with the same 

characteristics is tested, and the only variable that is subject to change is problem size. 

 

Figure 8.2 Problem size vs Running time 

Pheromone evaporation rate 

Evaporation rate of pheromones is a parameter of ACO procedure used to avoid 

unlimited accumulation of pheromone trail over some components of the solution. The 

evaporation rate influences the running time of the algorithm and the value of the total cost.  

Figure 8.3 shows that as we increase the pheromone evaporation rate, the running 

time of the algorithm increases, as expected, because when the evaporation rate is small, 



 

67 

 

the pheromone will evaporate slowly, and the algorithm will converge faster because the 

ants do not explore the solution space that much. On the other hand, if the evaporation rate 

is high, the pheromone will evaporate more quickly, thus ants will explore a much larger 

space of solutions, leading to an increase in overall running time of the algorithm. As we 

can see from the figure 8.4, the total cost is also influenced by pheromone evaporation rate. 

If the rate is low, the algorithm converges more quickly, and the solution obtained could 

be locally optimal. However, setting the rate higher will ensure that the ants search a much 

larger space, thus finding the optimal solution. We can also note that for the values 0.8 and 

0.9 the objective function does not change, but the running time increases slightly. 

 

Figure 8.3 Pheromone evaporation rate vs the running time of the algorithm 
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Figure 8.4 Pheromone evaporation vs the total cost 

Improvement cost 

In this study, the cost of link improvement is a function of its length, and the cost 

of intersection improvement is a separate function. This subsection explores how variation 

of project cost may affect the optimization results by increasing the cost per lane mile and 

the cost per square foot by 5%, 10%, and 20%.  Figure 8.5 shows the optimizing results for 

different costs for lane improvement. We can note that as the cost of lane improvement 

increase, so does the present worth of total cost, and that the increase appears to be linear.  
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Figure 8.5 Cost of link improvement vs present worth of total cost 

Table 8.2 shows the sequence of projects, when the cost of improvement is changed. 

Table 8.2 Cost of link improvement and the sequence of projects 

Cost of Improvement ($) Sequence of projects 

3,000,000 8,6,7,5,2,1,3,4 

3,200,000 8,4,2,5,7,3,1,6 

3,600,000 4,8,7,3,6,5,2,1 

3,800,000 7,8,6,1,4,5,3,2 

A similar analysis was done for intersection improvements. The cost of land per square 

foot is 200$. This influences the cost of intersection improvement. The value is increased, 

similarly, by 5%, 10%, and 20%. Table 8.3 shows the sequence of projects and different 

values of cost of improvement.  

Table 8.3 Cost of intersection improvement and the sequence of projects 

Cost of Improvement ($) Sequence of projects 

921,600 8,6,7,5,2,1,3,4 

950,400 1,6,4,8,2,5,3,7 

979,200 2,8,5,1,3,6,4,7 

1,036,800 7,5,1,8,4,6,3,2 
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The change in total cost function is shown in figure 8.6, and we see that as the cost of 

intersection improvement increases, the present worth of total cost also increases. 

 
Figure 8.6 Cost of intersection improvement vs the present worth of total cost 

Demand variations 

The demand for all origin-destination pairs is changed (multiplied) by a factor a. 

The values of a range from 0.4 to 1.3, and we can see the change in present worth of total 

in figure 8.7. As the demand increases, so does the present value of total cost. Table 8.4 

shows how the sequence of projects is changed as demand changes. 
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Table 8.4 Demand change and the sequence of projects 

Factor a Sequence 

0.4 8,3,4,5,2,7,1,6 

0.5 3,4,2,1,5,7,6,8 

0.6 6,4,3,8,7,5,1,2 

0.7 3,8,5,7,4,6,1,2 

0.8 8,5,2,6,1,4,7,3 

0.9 6,2,4,8,7,1,3,5 

1 8,6,7,5,2,1,3,4 

1.1 4,5,6,3,1,2,7,8 

1.2 4,1,7,8,2,6,3,5 

1.3 7,1,6,2,8,4,3,5 

 

 

Figure 8.7 Factor a vs present value of total cost 

Interest rate 

In this subsection, interest rate is changed to see how it affects the behavior of the 

optimization model, and how that change affects the present worth of total cost. Figure 8.8 

shows the change in present worth of total as the interest rate changes. We can note that as 
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the interest rate increases, the present worth of total cost decreases because future costs are 

more heavily discounted.  

 

Figure 8.8 Interest rate vs present worth of total cost 

Table 8.5 shows the change in sequence of the projects subject to interest rate change. 

Table 8.5 Interest rate change vs project sequence change 

Interest rate (%) Sequence 

0 6,2,3,4,8,7,5,1 

1 1,5,7,2,8,3,4,6 

2 8,6,7,5,2,1,3,4 

3 5,2,6,8,1,7,3,4 

4 3,7,4,2,6,8,1,5 

5 6,7,1,4,2,8,5,3 

 

Chapter 9      Conclusion 

Planning organizations, policy makers and transportation planners deal with the 

problem of selecting and scheduling of projects on a regular basis. This problem 

encompasses several disciplines, such as: economics, management, transportation and 

operations research. In this study traffic assignment is modified to consider intersection 
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interactions by introducing pseudo links for each intersection movement (left, right, 

through). The objective function used is the cost function which incorporates link 

improvement cost, intersection improvement cost, and delay (waiting time) cost with 

budget constraint. Moreover, three different heuristic algorithms were used to optimize the 

schedule of the projects considered for improvement while minimizing the overall cost 

function.  

The contributions of this thesis include: 

• Application of the swarm metaheuristic algorithm along with other two known 

metaheuristic algorithms to compare different approaches for solving the selection 

and scheduling of projects. 

• Case study where we compare the performance of the swarm algorithm with two 

other known heuristics, we present an exhaustive test which shows the goodness of 

solutions obtained by heuristics, and a K-S statistical test is also ran to show the 

goodness of fit of the solution. 

• Consideration of intersection improvements in the selection and scheduling of 

problems that are interrelated.  

All three heuristic procedures yield the best possible solutions which minimizes the 

overall cost function. Ant colony optimization algorithm finds the best possible solution 

earliest (computation time is 40 minutes approximately), while Tabu Search and Simulated 

Annealing find it latter (approximately 43 and 44 minutes for SA and TS). 

The overall objective of this study is to present an example how the project 

selection and schedule can become a combinatorial optimization problem, which becomes 

complex when the number of projects increase. It also aims to show how a new heuristic 
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procedure, specifically, Ant Colony Optimization algorithm can be used in project 

scheduling while optimizing the cost function. The methods presented in this study can be 

easily applied to any other road network with minor changes in coding, or any other 

transportation infrastructure application (waterways, transit). 

Future research might focus on introducing a new type of alternative such as re-

surfacing the pavement. Bus traffic could be traced along with passenger vehicles in the 

traffic assignment method to see how the transit traffic affects the assignment procedure. 

Moreover, different cost rates could be assumed for different types of improvements. For 

example, the cost of intersection improvements ($/ft2) could be higher than the cost of link 

improvements ($/ft), because intersections are more complex components of urban 

transportation networks. Another instance that could be tackled in the future is that 

individual improvements could be grouped to form a project. For example, several link 

improvements could be grouped, or two intersections could be grouped for improvement. 

Furthermore, a more complex traffic assignment could be used to better estimate the 

volumes on intersections and links considering bus traffic, while incorporating more 

detailed evaluation methods (such as simulation models) could help to capture dynamic 

effects in congested networks missed by the Frank Wolfe algorithm. Future work might 

also focus on further researching how the combination of BPR function for link travel time 

and Akcelik’s delay model for pseudo links behaves on a larger network. Also, this 

combination could be compared with some microsimulation model to capture more 

complex interactions, such as intersection turning movements. 
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