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This dissertation is focused on contextualizing spatio-temporally forest cover loss in 

the DRC for the period 2000-2015 as it relates to the shifting cultivation dynamic and 

the rural complex mosaic. Impacts of forest loss on forest ecosystems, carbon release 

and biodiversity habitat differ depending on where and when it occurs relative to the 

rural complex. This was done by mapping the rural complex and disaggregating forest 

cover loss due to cyclical, livelihood shifting cultivation within three areas: 1) the 

baseline established rural complex (ERC) for 2000 and new 2000-2015 primary forest 

loss occurring as either 2) rural complex expansion (RCE) or 3) isolated forest 

perforations (IFP) further into core forest. Finally the influence of large-scale 

commercial land uses on forest cover loss is also assessed, from a spatial perspective.  



  

Between 2000 and 2010 the rural complex grew by 10% from 12% to 13% of 

the DRC’s land area, at an average yearly rate of 1%, while perforated forest grew by 

74%, from 0.8% to 1.5% of DRC’s land area in 2010 at an average yearly rate of 0.7%. 

Core forest decreased by -3.8% at an average yearly rate of -0.4% per year, from 38% 

to 36.6% of the 2010 land area. Of particular concern is the nearly doubling of 

perforated forest, representing greater spatial intrusion of forest clearing within core 

forest areas.   

The land cover and land use (LCLU) components of the ERC were estimated 

by photo-interpreting high resolution imagery selected using a simple random sampling 

scheme. In the ERC 76% of land was already actively used for shifting cultivation. 

Therefore, together with remnant patches of primary forest (11%), an estimated 87% 

of the ERC was available for future shifting cultivation. Assuming a 4.6% clearing rate, 

this allowed estimating a ~18 year reuse rate of land in the ERC. Only 2% of the ERC 

area was occupied by large-scale commercial land use. This led to positing that 

commercial land uses might be more prevalent further away from settlements into core 

forest, where lower population density leads to less competition for natural resources.  

This hypothesis was tested by extending the probabilistic sampling analysis to 

new primary forest cover loss occurring outside of the ERC during the period 2000-

2015. The map of the rural complex developed in Chapter 2 was validated, confirming 

larger proportions of primary forest and smaller proportions of shifting cultivation 

further away from the ERC and into core forest areas. LCLU proportions were 

established for both the RCE and IFP areas. Finally a concentric buffer distance 

analysis around sample points was used to quantify large-scale commercial land uses 



  

at the landscape scale, such as logging, mining and plantations that might be 

influencing shifting cultivation-driven forest cover loss. 

In the RCE the proportion of commercial land use was 0.4%, whereas it was 

0.5% in IFPs; less than the proportion of commercial land use found in the ERC (2%). 

At the same time, results of the concentric buffer distance analysis show that 12% of 

sample points in the RCE and 9% of sample points in the IFP had commercial land uses 

within 5km. Commercial land uses are possibly more prevalent closer to the ERC 

because while there is more competition for land, there are also roads and communities 

that allow for the transportation of goods and provide labor.  

These results support the conclusion that large scale LCLU change dynamics in 

the DRC, such as commercial operations for export, are currently dwarfed by the 

reliance of rural populations on shifting cultivation. The vast majority of forest cover 

loss in the DRC remains due to smallholder farming not associated with commercial 

land uses. However, large-scale agroindustry or resource extraction activities lead to 

increased forest loss as their worker populations and communities rely on shifting 

cultivation for food, materials and energy.  The spatial analysis of the rural complex 

allows us to peer into the future of forests in the DRC, as where isolated perforations 

lead, the rural complex soon follows and as the rural complex expands, so do 

commercial land uses.  

 

 

 

 



  

 
 
 
 
 
 
 
 
 
 

FOREST COVER DYNAMICS OF SHIFTING CULTIVATION IN THE 
DEMOCRATIC REPUBLIC OF CONGO   

 
 
 

By 
 
 

Giuseppe Molinario 
 
 
 
 
 

Dissertation submitted to the Faculty of the Graduate School of the  
University of Maryland, College Park, in partial fulfillment  

of the requirements for the degree of 
Doctor of Philosophy 

2019 
 
 
 
 
Advisory Committee: 
Dr. Matthew C. Hansen, Chair 
Dr. Christopher O. Justice 
Dr. Peter V. Potapov 
Dr. Compton J. Tucker 
Dr. Joseph Sullivan 

 
 
 
 
 
 
 



  

 
 
 
 
 
 

© Copyright by 
Giuseppe Molinario 

2019 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

ii 
 

Preface 
Material from Chapters 2 and 3 was published in two jointly authored articles of which 

Giuseppe Molinario is the primary author. Material from Chapter 4 was submitted for 

publication in an article for which Giuseppe Molinario is the primary author. All 

external contributions are identified with citations, references, and/or footnotes. All 
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1 
 

 Introduction 
 

1.1 Background of the Research 
 

Mapping forest cover change in the Democratic Republic of Congo (DRC) is 

essential as the forest provides livelihoods for local populations, biodiversity habitat 

and both regional and global ecosystem services while experiencing at the same time 

the highest annual rate of forest cover loss among Central African countries (Justice et 

al 2001, Duveiller et al 2008, Maniatis 2008, Hansen et al 2008, Potapov et al 2012, 

DeWasseige et al 2012, Mayaux et al 2013).  

The vast majority of forest cover loss in the DRC is attributed to shifting 

cultivation (Mayaux et al 2004, Defourny et al 2011, Potapov et al 2012, Tyukavina et 

al 2018). Shifting cultivation, also known as swidden agriculture or slash and burn, is 

an agricultural practice in which small clearings are carved out of the forest to create 

new fertile fields. This farming practice results in the rural complex; a characteristic 

land cover mosaic enveloping roads, rivers and settlements, and composed of clearings, 

active and fallow fields, primary and secondary forest and other artisanal and 

commercial land uses (Mayaux et al 1999).  

The population in the DRC is predominantly rural and relies for their livelihood 

on traditional small-holder shifting cultivation, small livestock, hunting, and gathering 

of Non Timber Forest Products (NTFP). Clearing size is generally small, ranging from 

0.25ha in areas such as the Ituri forest (Wilkie et al 1998) to 1.4ha nationally  (Potapov 

et al 2012), in line with average global estimates of 1ha (Aweto 2013).  
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However, shifting cultivation is not the only cause of forest cover loss in the DRC, 

as a number of proximate causes and underlying socio-economic drivers create a 

mosaic of land cover and land uses that can be hard to separate (Rudel and Roper 1996, 

Mather et al 1998, Geist and Lambin 2002). In the DRC, these proximate causes 

include the harvest of woody biomass and production of charcoal for energy, 

agricultural plantations and both artisanal and large-scale logging and mining (Geist 

and Lambin 2002, DeWasseige et al 2012, Ickowitz et al 2015).  

Forest cover loss in the DRC has been mapped for over a decade using satellite 

imagery from the Advanced Very High Resolution Radiometer (AVHRR) and the 

Moderate Resolution Imaging Spectroradiometer (MODIS) sensors (Mayaux et al 

1999, Defries et al 2000, Achard et al 2002, Hansen et al 2010, Ernst et al 2013). The 

term “rural complex” was initially coined by Philippe Mayaux, and mapped as a 

homogenous area distinct from primary forest (Mayaux et al 1999). However, only 

recently advancements in greater spatial and temporal resolution, powered by the mass-

processing of Landsat imagery, allowed for more granular land cover classification 

accuracy of the constituent components of the rural complex, such as secondary forests 

and fallows (Potapov et al 2012, Hansen et al 2013). This enables the quantification of 

the periodicity of fallows, a key indicator of land use intensity in rural complex 

landscapes, and the distinction of forest cover loss observed based on whether it occurs  
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inside the rural complex or outside of it; either expanding it or occurring in greater 

isolation.  

Some land uses are very difficult to distinguish from the rural complex mosaic of 

shifting cultivation using remote sensing alone, for example the extraction of wood fuel 

and charcoal production, which are thought to contribute significantly to forest 

disturbance and degradation especially in peri-urban areas (Allen 2003, Grau et al 

2008, DeWasseige et al 2012, Douglas 2012). Peri-urban environmental degradation 

will be a major factor in the environmental and economic development path of the 

DRC, as population increase and urbanization will have consequent impacts on the 

forest ecosystem that provides most if not all fuel, food and resource needs for the 

population of cities (Allen 2003, Simon 2008, Douglas 2012, Tyukavina et al 2018). 

Hunting and gathering of NTFP are impossible to observe at large extents from 

satellite remote sensing, as these have a very small forest cover loss footprint, mostly 

associated with overnight camps. However, they have a considerable impact on the 

ecological integrity of the forest by increasing human access and disturbance of the 

interior forest and are constituent components of livelihoods in the rural complex 

(Nagendra et al 2004).  

The DRC has one of the lowest per capita Gross National Income (GNI) in the 

world, estimated in 2016 at $460, compared to the Sub-Saharan average of $1,516 

(World Bank 2018). An estimated 63.6% of the population is living in poverty (World 

Bank 2018) making the country rank 176th out of 187 countries in the Human 

Development Index (UNDP 2017). In 2016, the DRC’s Gross  Domestic Product 

(GDP) growth fell drastically to 2.4%, its lowest point since 2001 (World Bank 2017).  
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Further, a surge in violent conflict in 2017 has worsened an already critical 

humanitarian situation, adding to decades of brutal conflict and bringing the number of 

Internally Displaced People (IDPs) to 4.3 million (UNOCHA 2018).  

Revisited projections of future global poverty highlight a paradox; where the DRC, 

one of the countries with the most abundant natural resources in the world will remain 

one of the poorest (Kharas and Rogerson 2017). This bleak outlook in fact occurs 

despite the country’s vast reserves of mineral deposits, potential for commercial 

plantations and forests that are economically valuable not only for logging but also for 

conservation in payment for ecosystem services (PES) schemes like Reduced Emission 

from Degradation and Deforestation (REDD+) (DeWasseige 2015).  

Socio-economic drivers of forest cover loss in the DRC include changing 

economic opportunities, infrastructure development leading to access to markets, 

changing population dynamics, migration, conflict, political, religious, gender, tribal 

and cultural traditions, among others (Geist and Lambin 2002, Lambin et al 2001, 2003, 

Ickowitz 2006, DeWasseige et al 2014, Pollini 2014). Many drivers are associated with 

economic development but are also of major environmental concern, like infrastructure 

development for example, which can increase the viability of unplanned forest 

exploitation in previously inaccessible intact forest areas (Geist and Lambin 2002, 

Walker 1987, Wilkie et al 2000).  

The gender dynamic is particularly important in the dynamic of shifting cultivation, 

as it is the men who traditionally open new fields in the forest, whereas women do more 

of the farming itself (Ickowitz et al 2015, Pollini 2014). Clearing of new forest in many 

places therefore remains also a cultural norm, for men to claim new land and fulfill 
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their role.  Most women get access to use land only through their husbands or the village 

chief and land tenure is secured when traditional leaders allocate user rights among 

families and clan lines (Pollini 2014). 

Conflict has prevented the safe operation of industries and transportation of 

goods and led to forest degradation by pushing farmers away from roads, and further 

into the core forest, in the attempt to avoid contact with militias (Nackoney et al 2014, 

Butsic et al 2015). Conflict has also led to increasing demographic pressure through 

migration and displacement (Butsic et al 2015). For example, during the Rwandan 

genocide, when hundreds of thousands of IDPs took refuge across the border in the 

eastern DRC, where they settled seeking shelter and sustenance. The burgeoning 

population density greatly increased forest loss and degradation, as shifting cultivation, 

hunting and gathering of NTFP and fuelwood extraction provided livelihoods for 

refugees (Butsic et al 2015).  

Shifting cultivation, hunting and gathering of NTFP can spill out of the established 

rural complex because of any one of the above factors, which apply pressure on rural 

populations and lead them to choose which forest patch to clear, field to crop and path 

to take. On top of that, commercial investments in large-scale plantations, logging and 

mining operations will compete for land.  

Remote forests are much less susceptible to anthropogenic degradation 

(Mollicone et al 2007) as population, and therefore deforestation rates, drop with 

increased distance to roads (Broadbent et al 2008, Potapov et al 2008, Southworth et 

al 2011, Potapov et al 2017). Roads, including logging roads, facilitate contagious 

development, but also contagious environmental degradation if they are not planned 
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and their impacts not fully integrated with their social and environmental costs (Ibisch 

et al 2016, Damania and Wheeler 2015). Forest intactness is therefore a good indicator 

of the conservation value of a forest landscape  (Luyssaert et al 2008, Balmford et al 

2002, Potapov et al 2017). Forest fragmentation, and the erosion of core forests has 

important implications for the forest ecosystem, from increased edge effects to loss of 

biodiversity habitat (Skole and Tucker 1993, Broadbent et al 2008). In the DRC, like 

in many countries, forest degradation from transforming unmanaged intact forests into 

managed non-intact forests is as important a source of Greenhouse Gas Emissions 

(GHGs) as from deforestation (Maniatis and Mollicone 2010) adding an estimated 6%-

132% of emissions from forest lands (Bucki et al 2012).  

Understanding the land cover and land use change (LCLUC) dynamics in the 

DRC is increasingly important in light of new sustainable development pathways such 

as payment for ecosystem services (PES). The United Nations Framework Convention 

on Climate Change (UNFCCC) Reduced Emissions from Deforestation and 

Degradation (REDD+) funding mechanism is a PES scheme which gives developing 

countries a financial incentive to conserve forests in order to reduce greenhouse gas 

emissions from forest clearance. To participate, however, countries need to provide 

monitoring, reporting and verification (MRV) systems that ensure the accuracy of the 

reported avoided deforestation. Therefore land managers need to accurately separate 

and map the extent and growth of the rural complex footprint, and isolated forest 

perforations, in order to correctly map the “permanent agricultural area” of 

communities, and because forest loss has different impacts on the forest ecosystem 

depending on where it occurs. Furthermore, mapping isolated forest perforations allows 
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us to peer into the future of the forests of the DRC, as the rural complex eventually 

incorporates and replaces them, with a more permanent anthropogenic footprint.  

In this context, land use planning is of utmost importance in balancing 

economic development, sustainable resource use and conservation. However, the 

capacity to sustainably manage natural resources is limited in the DRC; as war, poverty 

and collapsed government and infrastructure have created a fundamental deficit of 

institutional and human capacity which has crippled the country.  International aid 

programs like USAID’s Central Africa Regional Program for the Environment 

(CARPE) have been strengthening the institutional capacity for land use planning and 

laying the foundations for the scientific investigation of LCLUC and its integration in 

decision-making processes. This is particularly important given the reliance of the 

population on the forest ecosystem and the estimates of massive population increase 

(Tyukavina et al 2018). Well-informed strategic land use planning will continue to be 

a crucial tool for sustainable development in the DRC.  
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Figure 1.1: FACET DRC map.  The white markers show the locations of Inongo and Djolu, where field 
data were collected in 2011/2012. 
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Figure 1.2: The footprint of the rural complex is visible in FACET (Potapov et al 2012) as a homogenous 
and patterned mosaic of land cover separate from core primary forest. 
 

1.2 Previous Efforts in Mapping the Rural Complex 
 

In 1997 Philip Mayaux (Joint Research Center), Pierre DeFourny (UCL) and Carlos 

Evrard coined the term “Secondary forest and rural complex” after developing AVHRR 

satellite remote sensing based maps in which a halo of secondary forest was found 

along settled roads and rivers, carved out of the primary humid tropical forest block of 

the DRC (Mayaux et al 1999). Previous legends called the rural complex area simply 

“degraded forest” which did not capture the complexity of land cover and land use 

within it due to the agricultural land cover mosaic (Laporte et al 1995). The TREES 

map produced relied on AVHRR observations and represented the first step into 
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investigating in more detail the rural complex and shifting cultivation dynamic in the 

DRC. In their paper, Mayaux et al. compared the TREES map with previous IGBP Dis-

cover maps as well as earlier vegetation maps of Africa from White (1983). The rural 

complex was clearly visible in the TREES map (Figure 1.7). 

Subsequently the work done for the TREES project evolved into the global 

mapping of  land cover in the Global Land Cover map for 2000 (GLC2000). GLC 2000 

is a SPOT-based (Satellite Pour l’Observation de la Terre) global land cover map, 

downgraded to 1km resolution to achieve higher consistency across regions. In the 

GLC2000 map, the separation of the rural complex from surrounding primary forest 

was clearer than in previous map products (Mayaux et al 2004) (Figure 1.5).  

Both TREES and GLC2000 are classified map products, meaning that they have a 

land cover classification legend that allows the separation of land cover into discrete 

classes. On one hand, this allows for the clear distinction of classes on the map, but on 

the other, it introduces a number of decisions made by the authors on how to best derive 

the separations of those classes. The opposite approach in satellite remote sensing 

mapping is the production of maps that contain continuous values, as for example the 

percent tree cover products first produced with AVHRR (Defries et al 2000) and then 

the MOD44B product from MODIS (Hansen et al 2003). In these maps the rural 

complex is visible as a homogenous area, yet it clearly contains a heterogeneity of tree 

cover by percentage (Figure 1.3 & Figure 1.4).  

An enormous advancement in spatial, temporal and classification resolution 

occurred in 2012, when Potapov et al. (2012) published the Forêts d'Afrique Centrale 

Evaluées par Télédétection (FACET) map for 2000-2005-2010. The methodology for 
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FACET relied on the development of metrics based on decision tree algorithms in a 

supervised classification scheme building on metrics developed more than a decade 

earlier in vegetation continuous fields products from AVHRR (Hansen and DeFries 

2004).  Some of these methods relied heavily on the use of the Normalized Difference 

Vegetation Index (NDVI) (Tucker 1979). This map used Landsat imagery to show at 

60m resolution the separation of primary and secondary forest, as well as primary and 

secondary forest loss (Figure 1.6). On top of that, this forest-cover-specific map 

identified non-forest and woodlands, and allowed for the subsequent mapping of 

swamp forest (Bwangoy et al 2010). As a result of this unprecedented spatial resolution 

in a wall-to-wall map for the DRC, forest cover loss observations and the distinction 

between primary and secondary forest and their respective cover losses in time, it was 

possible to develop the granular rural complex maps presented in Chapter 2 that 

enabled this entire dissertation research.   
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Figure 1.3: AVHRR percent tree cover map for the year 2000 at 1km resolution  (Defries et al 2000). 
Zoom for the town of Buta (2°48'30.0"N, 24°44'49.1"E). 
 

 
Figure 1.4: MODIS MOD44B percent tree cover product for the year 2010 at 250m resolution (Hansen 
et al 2003, DiMiceli et al 2017).  Zoom for the town of Buta (2°48'30.0"N, 24°44'49.1"E). 
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Figure 1.5: GLC 2000 map showing clearly the distinction between primary forest and the rural complex 
(Mayaux et al 2004). Zoom for the town of Buta (2°48'30.0"N, 24°44'49.1"E). 
 

 

Figure 1.6: FACET map 2000-2010 at 60m resolution using Landsat satellite imagery (Potapov et al 
2012). Zoom for the town of Buta (2°48'30.0"N, 24°44'49.1"E). 
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Figure 1.7: Comparison of national vegetation maps, White’s 1983 map the IGBP map and the TREES 
map from Mayaux et al. (1999) (Mayaux et al 1999). Detail of the north-western part of the DRC.  
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1.3 Research Goals and Objectives 
 

The goal of this dissertation research is to improve the understanding of the 

forest cover dynamics of shifting cultivation in the DRC in order to inform land use 

planning decisions at the local, regional and national level. My approach is aimed at 

investigating the spatial context in which forest cover loss occurs in the DRC. First by 

mapping the landscape spatial patterns of forest fragmentation and the rural complex 

footprint through time, then by defining a baseline of the proportions of land under 

shifting cultivation and quantifying its cycle of reuse of fallows and finally quantifying 

LCLU proportions in areas of new primary forest loss outside the rural complex and 

the area of large scale commercial land use that might be influencing shifting 

cultivation-driven forest cover loss.  

The major research objectives are therefore the following:  

• Objective 1: To map the rural complex, separate from it isolated forest 

perforations that occur in core forest and define different typologies of 

forest cover according to their spatial relationship to these anthropogenic 

footprints for the period 2000-2010; 

• Objective 2: To quantify the area and rates of disturbed land inside the 

baseline established rural complex for the year 2000, in order to define its 

fallow periodicity, indicating land use intensity; 

• Objective 3: To quantify the LCLU proportions in the areas of primary 

forest loss 2000-2015 outside of the rural complex: either expanding the 

rural complex footprint or in isolated forest perforation areas, and to 

quantify the presence of commercial land uses in these areas.  
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1.4 Organization of the Dissertation 
 

The dissertation research is articulated into three research components that 

investigate the objectives defined above. Objective 1 is addressed in Chapter 2, 

objective 2 is addressed in Chapter 3 and objective 3 is addressed in Chapter 4.  

In Chapter 2: I developed forest fragmentation maps for 2000, 2005 and 2010 

and subsequently reclassified them in order to regroup individual land cover patches. 

The resulting forest fragmentation map is a necessary processing step that adds granular 

classification detail to binary forest/non-forest remote sensing observations from 

FACET, separating standing primary forest into “patch, edge, perforated, fragmented 

and core forest”. Then, I developed the rural complex footprint map that specifically 

targets the holistic separation of the homogenous areas of the rural complex and of 

isolated forest perforations, yielding separate classes of: established rural complex 

(ERC) for 2000 and rural complex expansion area (RCE) and isolated forest 

perforations (IFP) for 2000-2010*. (*I subsequently updated these maps to 2015).   

Using the resulting classes, in Chapter 3: I stratified Global Forest Change 

(GFC) forest cover loss pixels (then updated to 2000-2015), and sampled them by 

photo-interpreting very high resolution satellite imagery to estimate the area and 

proportions of the constituent land cover components of the established rural complex 

for 2000. With the area proportions of the LCLU within the stratum, I was able to 

estimate the average stable-state recycling rate of land in the shifting cultivation cycle. 

Very little commercial land use area was found in the ERC, so I posited that more 

commercial land use would be found in the RCE and IFP areas.  
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In Chapter 4: I pursued sampling new primary forest loss, now updated to the 

2000-2015 period, separating loss expanding the rural complex (RCE), from that 

occurring in isolation (IFP). I estimated the area and proportion of LCLU in these two 

strata, including shifting cultivation land cover types and commercial land uses. Then 

I extended the analysis at the landscape-level, looking for commercial land-uses co-

located with the sampled forest cover loss up to a distance of 5km from the sample 

points. 

 

 

Figure 1.8: Research structure of the dissertation. 
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 Mapping the Rural Complex in the DRC 2000-2010 
 

2.1 Introduction 
 

Forest clearing in the DRC was characterized using a spatial model developed 

in a Geographical Information System (GIS), applying morphological image 

processing to the FACET product. This process allowed the creation of forest 

fragmentation maps for 2000, 2005 and 2010, classifying previously homogenous 

primary forest into separate patch, edge, perforated, fragmented and core forest 

subtypes. Subsequently I used spatial rules to re-classify the above fragmentation-

focused map into a rural complex footprint map, where all the above classes are 

remapped into three classes: the established rural complex (ERC) (2000), the rural 

complex expansion areas (RCE) (2005 and 2010) and isolated forest perforations (IFP) 

(2005 and 2010).   

The research presented here was published in 2015 (Molinario et al 2015), for 

the reference period 2000-2010, however, subsequently it was updated to 2015, using 

forest cover loss observations from the Global Forest Change (GFC) product en lieu of 

FACET forest cove loss observations.  

In the DRC there is a shifting cultivation component to every land use, as 

cleared forest provides the necessary food for local subsistence of the rural 

communities involved in logging, commercial agriculture or mining activities as well 

as for urban populations. Hunting, charcoal production and the harvesting of fuelwood 

and other NTFP are also part of a “rural mix” that cannot be observed remotely and 

separately from shifting cultivation. Meyer and Turner (1992) point out that linking 
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deforestation to its drivers is a “formidable task” as the complexity of connections 

between various underlying and proximate causes of forest cover loss varies greatly, 

and locally (Rudel and Roper 1996).   

The observation of clearings can be used as a proxy indicator of the presence 

and intensity of these non-remotely resolvable, but important, small-holder land-use 

activities. The research in this chapter deals only with clearings that are observable with 

satellite remote sensing at 60m resolution, the vast majority of which is from shifting 

cultivation(Potapov et al 2012, Tyukavina et al 2018).  

The investigation of landscape spatial pattern is valuable because there are 

strong links between ecological pattern and ecological function (Gustafson 1998), 

patterns of change often have characteristic signatures (Forman 1995) and the spatio-

temporal analysis of patterns allowed making inferences about how they relate to 

underlying driving processes (Turner 1990, Gustafson 1998). Many metrics of 

landscape spatial pattern exist, however, some are best suited to characterize specific 

ecological processes within unique landscapes (Gustafson 1998, McGarigal and Marks 

1995, Li and Reynolds 1995), many are functionally equivalent (O’Neill et al 1988) 

and some metrics developed for specific applications might not be portable to other 

ecological contexts (Gustafson 1998).  
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Figure 2.1: Lorena and Lambin, 2009 illustrate some of the patterns of the forest/non-forest interface in 
the Amazon. 

 

Two characteristics commonly measured are landscape composition and spatial 

configuration: landscape composition quantifies the number of land cover classes in a 

landscape and their relative proportions; spatial configuration measures individual 

patches in their spatial neighborhoods, often using categorical maps to identify 

homogenous patches that have relatively abrupt transitions with adjacent areas (Figure 

2.1) (Gustafson 1998). Landscape composition and spatial configuration of land cover 

in the DRC were both measured using morphological image processing. 

 

2.1.1 Field Observations 

 
Fieldwork completed in the summers of 2011 and 2012 gathered first-hand 

information on land cover and land use change in the rural complex in two areas of the 

DRC: Djolu, in Equateur Province, and Inongo, in the Mai-Ndombe district of the 

Bandundo Province (shown in the reference map in Figure 1.1) The support and 
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knowledge of local experts proved invaluable in understanding variations in the stages 

of fallows and secondary forest. Field observations helped develop the research 

hypothesis and methods of this dissertation and allowed a first-hand understanding of 

the ecological differences of secondary and primary forest, as many of them can only 

be seen from the ground, inside the canopy.  

The understory of secondary forest is more densely populated with smaller 

trees, and there are more lianas and other vines. It is apparent why a mature secondary 

forest, or primary forest, would be easier to cut and clear, rather than clearing a 

secondary forest or fallow. While the tree trunks might be of larger diameter, there are 

less of them, and they are more valuable for building materials and other uses. 

 The secondary forest class contains a significant percentage of structurally 

smaller vegetation (non-forest) ranging from substantially overgrown fallows (about 

10 years old) which contain some trees, palms and bamboo and in general early 

regrowth types that are around or shorter than 5m in height that are hard to map 

(Potapov et al 2012).  

The two areas visited exhibit different LCLUC dynamics associated with 

divergent demographics, access to markets, land cover, land use practices and socio-

cultural factors. Field data collected during fieldwork in 2011 and 2012, including 

georeferenced quantitative and qualitative observations and geotagged photographs 

were instrumental in framing the concepts of this research in its proposal phase, 

understanding the shifting cultivation dynamic of the rural complex and aiding photo-

interpretation of high resolution satellite imagery. 

 



 

 

22 
 

Fieldwork methodology:  

Fieldwork methodologies were designed and then implemented in the territories 

of the villages of Djolu, Yokembe and Ingungu in Equateur province and on the west 

bank of Lac Mai Ndombe in Bandundu province (Figure 1.1). Fieldwork in Djolu was 

done with the assistance of the Observatoire Satellital des Forêts d'Afrique Centrale 

(OSFAC) and the African Wildlife Foundation (AWF), while fieldwork in Inongo was 

done in partnership with OSFAC and the DRC ministry of forestry (Service Permanent 

d'Inventaire et d'Aménagement Forestier (SPIAF)) and logistical support from ERA-

Congo. Both field campaigns were financially supported by USAID.  

Approximately 300 data points were collected consisting of qualitative 

observations characterizing land cover which improved my understanding of the 

spatio-temporal cycle of shifting cultivation. Quantitative measurements of the size of 

fields, fallows and forest patches in which the samples occurred were also taken. These 

measurements were taken using a Nikon digital laser rangefinder and clinometer. 

Approximately 1,000 geo-tagged (GPS) photos were also taken in each cardinal 

direction at the observed locations. Data collection was planned in a GIS by allocating 

a random sample of points stratified by FACET classes. These points were then reached 

by the field team by the fastest path possible, using off-road motorcycles on both 

existing paths and making new ones. Observations were taken both for planned samples 

as well as ad-hoc ones every 200-300 meters of travel.  
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Figure 2.2: A cleared forest stand near Inongo, Mai-Ndombe Province (1°55'57.6"S 18°17'25.3"E) 
(Photo credit: Giuseppe Molinario). 
 

 
Figure 2.3: Fieldwork near Inongo, recording the land cover of a sample site that corresponded with a 
recent clearing. (1°55'57.6"S 18°17'25.3"E) (Photo credit: Giuseppe Molinario). 
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Figure 2.4: A secondary forest stand cleared and burned, near Inongo. (1°55'57.6"S 18°17'25.3"E) 
(Photo credit: Giuseppe Molinario). 
 

 
Figure 2.5: A pit used for milling wooden planes from logs felled nearby from artisanal logging, near 
Inongo, Mai-Ndombe District (1°55'57.6"S 18°17'25.3"E) (Photo credit: Giuseppe Molinario). 
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Figure 2.6: Characteristics of sample points in field work were recorded for future analysis and 
reference. Land cover observed, dimensions of the clearing (if a clearing was observed), near Inongo, 
Mai-Ndombe District (1°55'57.6"S 18°17'25.3"E) (Photo credit: Giuseppe Molinario). 
 

 
Figure 2.7: One of the challenges of fieldwork in the DRC was transportation. Here a log bridge over a 
stream near Djolu, a challenge to cross on motorcycle. (0°40'20.5"N 22°27'40.0"E) (Photo credit: 
Giuseppe Molinario). 
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Figure 2.8: Fieldwork in Inongo included daily lake crossings with motorcycles on a pirogue, near 
Inongo, Mai-Ndombe District (1°55'57.6"S 18°17'25.3"E) (Photo credit: Giuseppe Molinario). 
 

 
Figure 2.9: The parasolier tree, with a distinctive canopy that is sometimes distinguishable in high 
resolution satellite imagery as well. Near Djolu, Equateur Province (0°40'20.5"N 22°27'40.0"E) (Photo 
credit: Giuseppe Molinario). 
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2.1.2 Scale, Data and Area of Interest:  

 
The maps developed are national in scale, but provide locally relevant 

information that is useful for comparisons at the subnational level. This was a priority 

goal of the dissertation, and one of its major challenges.  It would have been easier to 

focus on a smaller geographical extent with more homogenous land cover and land use. 

Previously, quantitative information about shifting cultivation, the rural complex, and 

forest fragmentation, was only available at the local and landscape scale and in a limited 

number of case studies, for example Nackoney et al (2013) and Wilkie et al (1998). 

This proved to be a major limitation in adopting the maps and results from these studies 

in national or even regional land use planning policies and investments made by 

governments, NGOs and agencies, such as USAID.  The limited knowledge of the 

shifting cultivation forest dynamics in the DRC was also mostly qualitative, making 

the comparison of shifting cultivation related forest cover loss over different areas, 

impossible, if not inaccurate (Ickowitz 2006, Russell et al 2011, Ickowitz et al 2015). 

The goal of quantifying shifting cultivation and the rural complex, numerically and 

nationally, was born out of this need. 

 Spatial resolution was kept throughout the dissertation the same as the input 

year 2000 primary forest and secondary forest baseline classification from FACET. 

The Global Forest Change (GFC) forest cover loss observations that were later added 

were down-sampled from 30m, to 60m resolution. The objective was to work at a scale 

coarse enough to allow generalization and predictability; minimizing unnecessary 

“noise” given sometimes by higher resolution observations (Levin 1992, Mertens and 

Lambin 1997) but not so coarse as to lose essential detail for the analysis (Levin 1992, 
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Turner et al 1989). The analysis and output maps are the same spatial scale of the input 

data, but thematically finer, as they apply a series of buffering and grouping methods 

to classify patches of forest in the context of its spatial neighbourhood. 

Throughout the dissertation the area of interest (AOI) is the region of largely 

contiguous primary and secondary humid tropical forest within the DRC. In this area, 

the rural complex is easily observable because of its separation from primary forest, as 

the abundant primary forest can be freely exploited in expanding smallholder 

agriculture. In many areas the primary forest resource is exhausted and most farming 

is done only within a sparse secondary forest mosaic, particularly in regions typically 

found along the forest/savanna interface in a belt of high population densities from 3-

5 degrees latitude south (Figure 1.1). The study is focused on the spatial dynamics of 

primary forest appropriation into the rural complex and not of those areas having 

already exhausted their primary forest resource.  

As a consequence, I developed spatial rules to treat areas inside the primary 

forest block AOI differently from areas outside it. A great deal of work went into 

defining the AOI: I buffered by 10km all primary forest patches larger than 1,000ha 

(10km2), automatically filling holes, connecting land islands and manually simplifying 

the area to obtain a contiguous polygon bounding the core humid tropical forest zone 

(Figure 2.10).  
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Figure 2.10: The AOI bounding the study are for the entire dissertation research. 
 
 

2.1.3 Definitions of Forest and Forest Cover Loss 

 
There is some debate over the exact relationship between shifting cultivation and 

‘deforestation’, but its relationship with forest cover loss is well understood; with forest 

stands being cleared and replaced with fields in a rotating cycle of land use. Some 

authors have doubted the role of shifting cultivation as the major source of deforestation 

in the DRC, arguing that shifting cultivation is not a single practice, but rather a set of 

diverse agricultural practices with varying impacts on the forest ecosystem (Ickowitz 

2006, 2011, van Vliet et al 2012).  The definition of terms such as deforestation, forest 

degradation and forest cover loss is often at the core of these disagreements, while 

empirical observations from remote sensing show unambiguously that most forest 

cover loss in the DRC occurs in small patches associated with shifting cultivation, 
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fuelwood and charcoal production (Defourny et al 2011, Mayaux et al 2013, Potapov 

et al 2012).  

I chose the same definitions of ‘Forest’ and “Forest cover loss” as FACET, in 

which forest is defined as land with ≥ 30% canopy cover for trees ≥ 5 meters tall, 

woodlands have between 30% and 60% tree cover and primary and secondary forest 

have more than 60% canopy cover (Potapov et al 2012). Primary forest displays 

characteristics of older, mature forest and secondary forest of younger, regrowing 

forest. Forest cover loss is defined as stand replacement as a result of disturbance such 

as agriculture clearings as well as other anthropogenic and natural disturbances. Forest 

disturbance is a land-cover subset of ‘deforestation’, which the United Nations 

Framework Convention on Climate Change (UNFCCC) defines as the direct human-

induced conversion of forest to non-forest, not including short-term modifications that 

remove trees in short-term land cover modifications (such as shifting cultivation, when 

there are long regenerative fallows and sparse clearings) (FAO 2007). For the UN Food 

and Agriculture Organization (FAO) Forest Resource Assessment (FRA) 

‘deforestation’ is either the conversion of forest to another land use, or the “long-term 

reduction of tree canopy cover”, explicitly including shifting cultivation (FAO 2015, 

FAO 2007). Stand replacement disturbance is therefore usually referred to as a land 

cover modification: a short-term change in the structure of the existent forest land cover 

(Lambin et al 2001), however, ‘agricultural expansion’ is understood as a land use 

conversion (Lambin et al 2003).   

The distinction between modification and conversion depends on the temporal 

persistence of the disturbance which keeps a given area in its not forested state. A 
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crucial element missing in the investigation of forest cover loss in the DRC is therefore 

the quantification of the spatio-temporal context which forest cover loss occurs in, and 

contributes to: whether disturbance occurs within an established agricultural landscape, 

or if it occurs instead through the appropriation of natural, undisturbed, primary forest. 

Only monitoring over longer time-periods can quantify the persistence with which this 

anthropogenic footprint occupies past primary forest areas.  

2.1.4 The Cycle of Shifting Cultivation & the Rural Complex 

 
Shifting cultivation is a characteristic agricultural practice employed in most 

tropical environments, where heavily weathered soils retain little or no nutrients. 

Typically lacking fertilization, farmers clear regenerated fallows and secondary or 

primary forest areas to prepare land for new crops, using the ash from burning cleared 

vegetation to enrich otherwise infertile soil   (Miracle 1967, Nye and Greenland 1964, 

1960).  In these landscapes low population densities allow for the rotational use of land 

in shifting cultivation; the result is a mosaic of active and fallow fields  and secondary 

forest regrowth (Conklin 1961, Ruthenberg et al 1971).   

The cycle of shifting cultivation in the DRC varies depending on many factors 

(Ickowitz 2006, Miracle 1967) which qualitatively make it appear not as single practice 

but rather a set of agricultural practices characterized by multiple environmental and 

socio-economic variables. These variables modulate localized spatio-temporal cycles, 

which subsequently have diverse impacts on the forest ecosystem (Ickowitz 2006, 

2011, van Vliet et al 2012).  Indeed many of the variables mentioned in Chapter 1 play 

a role in shaping the specific farming practices occurring in a given area, and even 
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among different farmers of the same area (Figure 2.11) (Conklin 1961, Ickowitz 2006, 

Miracle 1967). These qualitative factors are essential in formulating an accurate 

characterization of shifting cultivation in a given area, but cannot be accurately 

depicted or compared at the national scale. In this study trading local qualitative 

knowledge for quantitative wall-to-wall remote sensing observations afforded the 

ability to compare observations of land change throughout the country.  

 

 

Figure 2.11: Conklin (1961) illustrates the various factors which drive variability in shifting cultivation 
systems. 

 

A conceptual model of shifting cultivation in the DRC was developed based on 

literature review and field observations (Figure 2.12). In line with the objectives of this 

dissertation, the conceptual model framed the sequence of land cover and land use 

rotation keeping in mind the remote sensing perspective: conscious of the qualitative 
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variables that nuance the rotational cycle, but focusing on remote sensing-observable 

forest clearing.  

For this purpose, generally the cycle starts when a forest stand is cleared to 

make an initial agricultural field and larger trees are either left standing, felled and used 

as timber or left on the ground to decay.  The resulting woody residue is left to dry, 

with some portion collected for fuelwood (Miracle 1967). After a period ranging from 

weeks to months, the slashed area is burned to clear all remaining dry vegetation and 

release the stored nutrients in the form of wood ash, which subsequently fertilizes the 

soil as well as reducing its acidity, allowing for nutrients to be more readily available 

to plants (Miracle 1967, Etiégni and Campbell 1991, Demeyer et al 2001, Giardina et 

al 2000). Combustion of vegetation residue itself, while not previously considered to 

have an effect on soil fertility, is now understood to have an impact both on the nutrients 

left in ash and on the biochemistry of soil, depending on combustion temperature 

(Giardina et al 2000).  Ash from vegetation is rich in calcium, with properties similar 

to agricultural lime and while it contains almost no nitrogen, it is rich in both 

phosphorous and potassium (N-P-K) as well as many other chemicals   (Etiégni and 

Campbell 1991). Ash left on the ground swells when in contact with water, binding it 

to the soil and allowing for chemicals to leach into the ground (Etiégni and Campbell 

1991).  

Farmers generally prefer clearing mature secondary forest or primary forest as 

the trees in these areas are easier to fell than those in primary forests, and there is lower 

density of weed seed then in younger fallows.  In some areas, primary forest is usually 

cleared either when mature secondary forest is not available, or as a way to claim new 
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land rights (Wilkie et al 1998). After burning, fields are prepared and sown; the main 

crop cultivated in the DRC being cassava (Manihot esculenta) with other popular crops 

including corn, sorghum and upland rice. Fruit tree orchards and cash crops such as 

peanuts, coffee and palm are also common (Miracle 1967, Russell et al 2011).  

In sparsely populated areas subsequent fallows are long enough for the natural 

system to recover and a second clearing of a fallow field results in a similar level of 

productivity as the first one. Reducing fallow periods for the same field instead 

eventually leads to dwindling crop productivity and soil fertility  (Nye and Greenland 

1964). Increased demand for food production therefore leads to either higher reuse rates 

of fallows and secondary forest, increased expansion into primary forest, or more rarely 

in agricultural intensification, if the resources are available for mechanization or 

fertilization and there is access to markets.  
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Figure 2.12:  A conceptual model of the spatio-temporal cycle of shifting cultivation in the DRC. 
 
 

If left alone, after a number of years, a fallow field will revert to secondary 

forest. The successional evolution of secondary regrowth in the DRC has been 

characterized as having three main stages: 

• In the first, an abandoned field or mature fallow is defined as having heliophyte 

plant species 10-20 cm in diameter and 3-15 meter high with grassy undergrowth 

and vines.  

• Young secondary forest follows and is characterized by tree heights of 15-20 meters 

and diameters of 20-50 cm. The species found in these fallows do not regenerate 

once the forest canopy closes because of the absence of light on the forest floor. 

Among the many species that characterize this stage, the Musanga cecropioides, 
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also known as parasolier (umbrella tree, in French) because of the shape and 

configuration of its broad leaves, is probably the best known and easiest to spot 

because of its abundance in young secondary forest.  

• Mature secondary forest follows, and is the hardest to characterize, as it can display 

characteristics of either young secondary forest or primary forest.   Canopy height 

ranges from 30-40 meters but it can have a more heterogeneous surface than 

primary forest, allowing some light to reach the understory. 

The amount of time it takes for the forest to reach these stages is variable depending on 

species composition, soils, rainfall, topography and disturbance. (Lebrun and Gilbert 

1954, SPIAF 2007). 

Mature secondary forest can have the appearance of primary forest when 

observed from clearings outside the forest or with satellite remote sensing, however, 

the species composition and the forest structure can differ enough to allow a distinction 

to be made from first-hand observation within the forest itself (SPIAF 2007).  

Presumably, at some point in time along the ecological succession continuum, 

mature secondary forest and primary forest in the DRC become indistinguishable from 

direct observation even within the forest itself (SPIAF 2007).   

“La forêt secondaire représente l’ensemble de types forestiers qui 
succèdent à la régénération et qui constituent la phase transitoire à 
l’établissement de la forêt primaire.” (SPIAF 2007)  

(Translation: Secondary forest represents the set of forest types 

that succeed regeneration and which constitute the transitional phase in 

the establishment of the primary forest). 
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Figure 2.13: An aerial view of the rural complex near Djolu, Equateur province, showing the interface 
with primary forest (0°40'20.5"N 22°27'40.0"E) (Photo credit: Giuseppe Molinario). 
 

 
Figure 2.14: An aerial view of the rural complex near Djolu, Equateur province. (0°40'20.5"N 
22°27'40.0"E) (Photo credit: Giuseppe Molinario). 
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Figure 2.15: An aerial view of the rural complex near Djolu, Equateur province, illustrating the rural 
complex mosaic around a trunk road and settlement. (0°40'20.5"N 22°27'40.0"E) (Photo credit: 
Giuseppe Molinario). 
 

2.1.5 Preliminary Data Exploration 

 
Preliminary data exploration was performed in the proposal stage of this 

dissertation and it ultimately informed the direction that the investigation took in this 

and subsequent chapters. First, the question of scale was addressed, to understand what 

was the ideal scale to investigate the spatial patterns of the shifting cultivation dynamic. 

By aggregating FACET 60m pixels into 300m, 600m, 1.5 km, 3 km, 6 km, 12 km and 

24 km spatial resolution grids, the comparison of the relative amounts of primary and 

secondary forest and their loss, per unit of area (cell/pixel), became possible.  

For example, there are 625 60m (FACET) pixels within a 1.5km aggregated 

cell and of these 625 pixels, x are primary forest loss, y are secondary forest loss, and z 

are swamp forest loss, etc. At first, there was no certainty that it was computationally 
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possible to apply the methods of the Landscape Fragmentation Tool (LFT) at the 

nominal 60m resolution as this tool had only been previously used on small 

geographical extents (Parent et al 2007). From this analysis it emerged that the spatial 

patterns of the rural complex retained their morphology up until at least 600m pixels; 

10x the nominal 60m resolution of the FACET product. This also indicated that 

although during dissertation work on the first chapter (in 2015) the GFC product 

became available (30m resolution), it was more than adequate to continue the 

investigation at 60m spatial resolution.  

 

Figure 2.16: Cell size comparative analysis in the data exploration phase.  
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Figure 2.17: a) Standard FACET forest cover loss compared to b) the derived “Expansion vs. Reuse” 
forest cover loss map. 
 

Second, the proportions of clearings in primary forest (RCE & IFP) versus 

secondary forest (cyclical reuse of secondary forest) per unit of area were mapped for 

the DRC for 2000-2005 and 2005-2010 (Figure 2.17). The proportional loss map 

illustrates differences in quantity of forest loss expansion into primary forest versus 

reuse of secondary forest. These were the first maps that illustrated spatially, at the 

national level, the forest dynamics of shifting cultivation and the rural complex; 

showing in which areas secondary forest was reused and in which new primary forest 

was cleared. For example in Figure 2.18:  

a) Beni/Butembo, showing frontier deforestation,  

b) Kisangani, showing secondary forest loss, and a north-east axis of primary forest 

conversion and fragmentation, 
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c) Buta, showing frontier and corridor primary forest cover loss,  

d) Bumba, showing minimal primary forest loss,  

e) Djolu and neighbouring villages showing the lattice of trunk roads and low primary 

forest cover loss,  

f) Lac Mai Ndombe with no secondary forest loss. 

This map separated reuse of secondary forest from novel clearings in primary 

forest (both RCE & IFP), but it highlighted a major issue, in that there were no existing 

methods to differentiate and separate RCE areas from IFPs. The separation of RCE 

from IFP areas was successfully achieved developing the more nuanced methodology 

that is described in this Chapter.  

 

Figure 2.18: Expansion vs reuse per unit area: a) Beni/Butembo, b) Kisangani, c) Buta, d) Bumba, e) 
Djolu, f) Lac Mai Ndombe. 
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2.2 Methods 

2.2.1 Data 

The FACET input data uses optical satellite remote sensing in a per-pixel time-

series approach which leverages the automated processing of over 8,000 Landsat 

ETM+ images. FACET overcomes persistent cloud cover and give us an unprecedented 

synoptic wall-to-wall coverage of forest cover type and loss at the DRC national level 

for the period 2000-2005-2010 (Potapov et al 2012). FACET is also a methodological 

precursor to the GFC product which is a global, yearly, 30m resolution, forest cover 

and loss product for 2000-2017 and is at the core of the World Resource Institute’s 

(WRI) Global Forest Watch initiative (GFW) (Hansen et al 2013).  Unlike GFC, 

FACET separates primary and secondary forest classes, a key characteristic necessary 

for mapping the baseline established rural complex area. 

2.2.2 Forest Fragmentation Map 

A forest fragmentation map was created using a GIS model with the Landscape 

Fragmentation Tool (LFT) (Parent et al 2007) based on research on morphological 

image processing by (Vogt et al 2007). For the purposes of this discussion the term 

forest represents primary forest cover and not secondary forest or woodland cover. The 

LFT applies a series of raster processing operations in a GIS environment to classify 

primary forest into separate fragmentation classes (Table 2). An edge distance 

parameter is applied to the input dataset and used to perform separation and inclusion 

operations between patches of forest and non-forest, resulting in a nuanced forest 

fragmentation-specific classification. Literature review, visual inspection and expert 

knowledge from fieldwork enabled choosing a 240m edge distance (four 60m FACET 
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pixels) as it best represented my understanding of the spatial separation between the 

established rural complex areas and isolated forest perforations while being in line with 

edge distance parameters reviewed (Broadbent et al 2008).  

The expansion of the rural complex and isolated forest perforations can degrade 

the forest through forest fragmentation, resulting in formerly intact forest ecosystems 

being impacted by edge effects created by clearings. Edge effects are pervasive 

processes in tropical forests that can lead to changes in forest ecology and habitat 

fragmentation as well as increasing access to interior forest (Broadbent et al 2008, 

Gascon et al 2000, Murcia 1995, Skole and Tucker 1993). The width of edges and the 

specific characteristics of edge effects depend on the ecology of the forest, local 

environmental variables, the abruptness of the edge and its temporal permanence 

(Harper et al 2005). Most effects occur close to the forest/non-forest boundary (Murcia 

1995) and decrease in frequency and severity with distance (Broadbent et al 2008).  

However, edges are not always anthropogenic as they are often a consequence 

of natural features, such as rivers, or the interaction with grasslands and woodlands at 

the perimeter of the primary forest block. Striving to account only for the active 

anthropogenic edges occurring inside the primary forest block was a primary concern.  

Edges at the forest perimeter can be maintained by active or historical anthropogenic 

disturbance, climatic differences, substrate and fire. Remotely sensed fire observations 

which have been used to indicate anthropogenic activity linked to agriculture and 

pasture management have not been used extensively in the DRC (Giglio et al 2003, 

Morisette et al 2005, Molinario et al 2014, Amraoui et al 2010, Justice et al 2002). 

Differentiating natural disturbances from anthropogenic ones by GIS modelling their 
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proximity to other forest disturbances, assuming anthropogenic disturbances do not 

occur in isolation. The rules developed in the GIS model therefore allowed for natural 

non-forest areas to exist within primary forest, e.g. savanna. While these areas are 

absent of active forest disturbance, they are used for transportation between inhabited 

areas. 

The LFT requires a ternary input mask of forest, non-forest and no-data. This 

input is derived from FACET classes, where primary forest becomes fragmented, and 

other classes can either fragment primary forest or have no anthropogenic 

fragmentation effect on it (no-data) (Table 1) Previously the absence of wall-to-wall 

national-scale input data had prevented this level of automation and granularity in the 

analysis of forest fragmentation in the DRC.  

First, the input data was pre-processed and tiled (Figure 2.19 and Table 1), then 

processed with the customized LFT code and finally the output tiles mosaicked back 

into a single national-scale raster. Fragmented and core forest classes (classes 4-7) were 

modelled following two additional spatial rules: retaining patch connectivity if they 

had a minimum viable corridor width of 480m (2x240m) and if rivers between patches 

were < 60m wide. This allowed for land patches separated by small streams or 

fragmented river banks to stay connected to each other, whereas large bodies of water 

were allowed to separate them and fragment forest under the assumption that they could 

be natural barriers to the dispersal of many terrestrial species. Spatial rules were used 

to add back individual FACET classes that the LFT output had classified as ‘no-data’ 

(Table 3): water and no-data were added back as they were, while non-forest, secondary 
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forest and forest loss were separated by the presence of active anthropogenic areas, 

becoming either class 2 or 3 in the forest fragmentation maps.  

The map developed is the first automated forest fragmentation map for the 

DRC, with a classification granularity that can be useful for local and country level 

investigations on the impact of disturbance on forest intactness. This is complimentary 

to the Intact Forest Landscape (IFL) map (Potapov et al 2008) which identifies areas 

of intact core forest at larger scales (at national, regional and global extents) and work 

on “hinterland” forests (Tyukavina et al 2015).  

 

Figure 2.19: A spatial model of the rural complex based on FACET input data. 
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Table 1. LFT input classes. 
Class 
code Class name FACET data 

0 No-data FACET classes which have no fragmentation effect on primary forest in the 
context of anthropogenic activity.  

1 Fragmenting 
land cover 

FACET classes that fragment primary forest. The fragmenting class includes 
only patches of: secondary forest, non-forest and woodlands, if within 5 
pixels (300m) of any subsequent forest loss (2000-2010 change). Non-forest 
and woodlands also if they are a) within the AOI, b) within 5 pixels of the 
secondary forest that’s within the 5 pixel buffer of forest change.   

2 Forest being 
fragmented FACET Primary forest only. 

 
Table 2. LFT output classification. 

Class 
Code Class Name Description 

0 No-data Everything that is not primary forest 

1 Patch Forest Primary forest completely enclosed within the input 
fragmenting class (within the core rural complex). 

2 Edge Forest 
Primary forest within 240m of the edge of the large 
contiguous patches of the fragmenting class: (around the core 
rural complex). 

3 Perforated Forest 
Primary forest within 240m of smaller isolated forest 
perforations (primary forest surrounding isolated forest 
perforations) 

 Fragmented Forest 
and Core Forest (below): 

Four classes of primary forest,  separated using forest patch 
size and connectivity rules: 

4 Small Fragmented Forest  Primary forest patch < 1,000ha 

5 Medium Fragmented 
Forest 1,000ha > Primary forest patch < 10,000ha 

6 Large Fragmented Forest 10,000ha > Primary forest patch <50,000ha 

7 Core Forest Primary forest patch > 50,000ha 

 
Table 3. Forest Fragmentation classification for 2000, 2005 and 2010. 

Class Code Class Name 

0 No-data 
1 Water 
2 Natural and Older Derived NF,  SF and WD 
3 Core  Interior  of  Rural  Complex and Forest  Perforations 
4 Patch Forest 
5 Edge Forest 
6 Perforated Forest 
7 Small Fragmented Forest <1,000ha 
8 Medium Fragmented Forest >1,000ha and <10,000ha 
9 Large Fragmented Forest >10,000 and <50,000ha 

10 Core Forest >50,000ha 
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Figure 2.20: a. Forest fragmentation map 2010, b. Forest fragmentation map of the area of Kisangani, 
c. Detail northeast of Kisangani, d. FACET map of the same area as c.  
 

2.2.3 The Rural Complex Footprint Map 

The rural complex footprint maps for 2000, 2005 and 2010 were obtained by 

reclassifying the forest fragmentation maps (Figure 2.21). The rural complex footprint 

map group individual patches and classes in order to separate homogenous macro-areas 

of rural complex from those of more isolated forest perforations. The rural complex is 

a combination of several land cover classes previously identified in the model: some 

directly from FACET (some non-forest, secondary forest, woodland forest and forest 

loss) and some primary forest classes obtained from the output of the LFT (patch forest, 

edge forest, and some perforated forest). Using spatial rules of contiguity and minimum 

area threshold, contiguous areas of perforated primary forest that are proximate to the 

rural complex are aggregated with the rural complex, whereas smaller, more isolated 

perforations are kept separate. The assumption is that contiguous areas of forest 

perforation should not be considered as strictly isolated phenomena, as they previously 
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have. Of the thresholds tested, a 625 pixel (3.75ha/ 0.0375km2) area was used to 

separate groups of contiguous perforated forest. Isolated forest perforations areas are 

obtained by adding those classes that pertain to the actual perforation (some FACET 

non-forest, secondary forest, woodland forest and forest loss) to some of the LFT-

identified ‘perforated forest’.  

 

 
Figure 2.21: a. Forest fragmentation map for 2000, b. for 2005, c. and for 2010, d. Rural complex 
footprint map for 2000-2005-2010.   
 
Table 4. Rural complex footprint map classification. 

Class Code Class Name 
0 No-data 
1 Water 
2, 3, 4 Rural Complex 2000; 2005; 2010 
5, 6, 7 Perforated Forest 2000; 2005, 2010 
8 Natural and Older Derived NF,  SF and WD 
9 Small Fragmented Forest <1,000ha 
10 Medium Fragmented Forest >1,000ha and <10,000ha 
11 Large Fragmented Forest >10,000 and <50,000ha 
12 Core Forest >50,000ha 
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Figure 2.22:  Model of the LFT to forest fragmentation to rural complex footprint. 
 
 

2.2.4 Yearly Forest Cover Loss 

The GFC product became available subsequently to the development of the 

methods for this dissertation. The methods developed here rely on the use of a baseline 

separation of primary and secondary forest, which is still only available from the 

FACET product. The increased temporal resolution of the GFC product however was 

an asset that was later incorporated in the methods for subsequent chapters. In this 

chapter, the GFC was used to stratify yearly 2000-2012 (the period available at the 

time) GFC forest cover loss a posteriori to the analysis. GFC observations increase the 

spatial resolution from 60m to 30m, the temporal resolution from 3 to 12 time steps 

and also include vegetation regrowth observations. The GFC-plotted loss observations 

within the stratification were the following:  
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• GFC 2000-2004 in classes from year 2000,  

• GFC 2005-2009 in those from 2005,  

• GFC 2010-2011 on those from 2010.  

 

 
 
Figure 2.23:  a. FACET, b. Forest fragmentation map (FF) c. Rural complex footprint map. (RCF). 
 

2.3 Results 
 

Results give us changes in area of edge, perforated, patch, fragmented and core 

forest as well as the baseline area of the established rural complex, the area of growth 

of rural complex expansion and the area of isolated forest perforations. Mapped 

typologies of forest cover dynamics are presented and discussed in the next section. 
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The results presented here are disaggregated by second level administrative units, 

Congo Basin Forest Partnership (CBFP) landscapes and protected areas from the World 

Database of Protected Areas (WDPA). 

2.3.1 Forest Fragmentation Results 

 
In 2000 core forest accounted for 86,868,974 ha (38%) of DRC land area (1 ha 

= 0.01 km2). In 2010, of that core forest, 3,291,142 ha (3.8%) were sectioned off to 

smaller areas, becoming patch, edge, perforated and fragmented forest. Patch forest 

increased by 12.4%, edge forest by 2% and perforated forest by 53%.  Of the 11 second-

level administrative units, in 2010 Equateur had the most core forest, followed by 

Province Orientale, Nord-Kivu and Maniema. Maniema also had the most fragmented 

forest, followed by Province Orientale and Kasai-Occidental. The largest losses of core 

forest in the study period were in Nord-Kivu (-3.1%), Equateur (-2.5%) and Sud-Kivu 

(-2.4%).  

In 2000 the 6 CBFP landscapes accounted for 32,754,657 ha (36.6%) of core 

forest. Of that core forest 912,234 ha (2.8%) had been lost by 2010, 0.7% less than the 

country average. The landscape with the highest percentage of core forest is Salonga-

Lukenie-Sankuru (93%) followed by Ituri-Epulu-Aru (87%).  Virunga had the highest 

percentage of core forest loss, while the lowest was in Salonga-Lukenie-Sankuru. 

Fragmented forest increased in all but one landscape, caused by the loss of viable forest 

corridors, eroded by expanding edge forest as well as increased forest perforation areas. 

Virunga and Ituri-Epulu-Aru had the highest rates of growth of perforated forest area, 

showing a higher-than-average move away from established rural complexes. Patch 
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forest grew in all landscapes and by almost 50% in Ituri-Epulu-Aru, an important 

dynamic which highlights isolated forest patches completely enclosed by the rural 

complex but not reported as different from primary core forest in products such as 

FACET. These isolated forest patches can have fundamentally different ecological 

functions and habitat characteristics than core primary forest.  

Of the protected areas (PA), 15 have no core or fragmented forest. Of the 

remaining 21 with core forest, all of them lost some during the study period, 10 of them 

losing more than 2%. PAs contained 13,240,495 ha of core forest in 2000 and lost 

174,578 ha (1.3%) to fragmented classes by 2010. Perforated forest increased by over 

10% in 10 PAs. Patch forest increased in 28 PAs, more than 50% in 6 of these, and 

doubling in 2 of them. 

2.3.2 Rural Complex Footprint Results 

 
The rural complex grew by 10.2% between 2000 and 2010, a yearly average 

rate of 1%, from 11.9% to 13.1% of the DRC total land area. This change added 

2,771,238 ha of rural complex to the country. The area of established agriculture is 

growing, although with high variability throughout the country. Nord-Kivu and Sud-

Kivu had the highest rural complex growth, probably because of the growth in 

population densities, and seven other provinces had over 10% rural complex growth. 

Kinshasa, Bandundu and Bas-Congo, as expected, saw much lower rural complex 

expansion rates due to the nearly exhausted primary forest resources there. In Katanga 

the isolated forest perforation area grew greatly in proportion to the low baseline rural 
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complex and isolated perforation areas in 2000. Sud-Kivu, Province Orientale, Nord-

Kivu, Maniema and Equateur all had perforated forest growth between 83% and 110%. 

 The rural complex grew in all the CBFP landscapes. Lac Tele-Lac Tumba had 

the largest 2010 rural complex footprint area (17.8%), followed by Maiko-Tayna-

Kahuzi-Biega and Maringa-Lopori-Wamba. The highest relative rural complex 

footprint growth occurred in Ituri-Epulu-Aru (34.5%). Lac Tele-Lac Tumba had the 

highest forest perforation area, covering 2.24% of the landscape in 2010 while the 

highest forest perforation area growth occurred in Ituri-Epulu Aru. 

Among PAs, the highest rural complex expansion occurred in the 

Bombolumene Hunting Reserve (45.4% of its areas in 2000) followed by Lomako-

Yokala Natural Reserve, Kahuzi-Biega National Park and Tumba-Lediima Nature 

Reserve all in the 22%-25% range. If normalized by the amount of standing core and 

fragmented forest, the rural complex footprint growth seen in parks with a higher ratio 

of rural complex area to core forest area, such as Virunga National Park, is higher than 

it would seem otherwise, indicating larger impacts in those areas where rural complex 

expansion has more likelihood of eroding and fragmenting core and fragmented forest. 

Perforated forest more than doubled in at least 12 PAs. 

2.3.3 Yearly Forest Cover Loss Contribution to Forest Fragmentation and the Rural 

Complex Footprint  

 
The higher spatial resolution of GFC confirms that most loss occurs within the 

mosaic of secondary succession in the agricultural rural complex (86.4%), as 

previously reported (Potapov et al 2012). This clearing occurs by either reusing 
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secondary forest and fallows or clearing patch and edge forest. Of the remaining forest 

loss 7% occurred within previous isolated forest perforations, either as the disturbance 

itself or within the perforated primary forest around the disturbance, only 1.6% in 

fragmented forest and about 5% in core forest.  

 
Figure 2.24: a. FACET, b. Rural complex footprint 2000, 2005, 2010, c. - h. GFC loss in the rural 
complex footprint map classes from 2000 to 2012 (in 2 year increments for illustration). 
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Figure 2.25: Yearly GFC forest cover loss stratified by core and fragmented forest loss. 
 
 

2.4 Discussion 
 

Mapping the extent of the established rural complex and separating it from 

isolated forest perforations is not possible using only a per-pixel approach. Identifying 

these areas requires spatial models that incorporate spatial context, like the density of 

forest cover loss pixels per given area, and the proximity to other clusters of forest 

cover loss pixels. These models are created in a GIS environment and have to be driven 

by the current understanding of land use dynamics in the specific area of study. In this 

case, the result is a classification that is useful in characterizing the historical change 

that has occurred in the DRC and understanding the disaggregated and contextualized 

impacts that ongoing forest cover loss has on forest fragmentation 

Results confirm that most loss occurs in the rural complex; an area which is 

growing with great variability throughout the country. They also indicate that there is 

a proportionally faster growth of isolated forest perforations than that of the rural 
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complex.  This is concerning as more core forest is fragmented as a result of clearing 

occurring deeper in the forest. During the last decade there has been a growing number 

of shifting cultivators moving away from established areas. In the east of the country 

the rural complex and isolated forest perforation are both growing and moving 

westward driven by the need for land, food and fuel for growing populations. Growing 

isolated forest perforations throughout the country are either caused by shifting 

cultivators driven to go further from their established villages, or clearing to provide 

food, fuel and materials for local populations involved in commercial or artisanal 

natural resource extraction (DeWasseige 2015, Nackoney et al 2014, Ickowitz et al 

2015).  

Core forest in the DRC shrunk by 3.8% and 12.4% of primary forest became 

patch forest: that’s primary forest that is completely enclosed by anthropogenic 

activity. This illustrates how the actual impact of clearing on forest ecology and habitat 

is higher and with greater variability than previously understood. The context of where 

the clearing occurs is as important as the per-pixel detection itself in correctly 

quantifying the impact that clearing has, as relatively small areas of clearing can have 

large impacts on the environment by eroding wildlife corridors or isolating forest 

patches.  

At the CBFP (CARPE) landscape level, those with the highest ratios of existing 

rural complex or forest perforations to standing core forest and fragmented forest are 

not surprisingly the most impacted by change. Virunga, Ituri-Epulu-Aru and Maringa-

Lopori-Wamba had the largest losses in core forest and expansion of the rural complex 

and isolated forest perforation areas. Likewise, protected areas in peri-urban areas were 
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the most impacted by forest cover loss as they don’t have much core forest to begin 

with and have large existing markets nearby. These areas present a different dynamic 

than remote areas, feeding and fuelling urban areas as well as local populations (Allen 

2003, Simon 2008). 

Different typologies of contextualized forest cover loss indicate what is likely 

to be the impact and temporal persistence that clearing has on the forest (Figures  

Figure 2.26 and Figure 2.27). Whether or not a clearing is part of a more 

spatially pervasive phenomenon is a good indicator of how long it will take for those 

areas to return to a primary-like forest state if the disturbance were to cease.  

 
Figure 2.26: Types of forest cover loss diversified by its contribution to the rural complex and isolated 
forest perforations. 
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Figure 2.27: Different typologies of forest cover loss in the central-eastern part of the DRC. 1. 
Forest fragmentation map for 2010 and 2. Rural complex footprint map for 2000-2005-2010.  
 
Type a: Frontal rural complex expansion 

Some areas experience frontal expansions of the rural complex, which modify 

land cover for longer periods of time than more isolated forest perforations, impacting 

forest ecology and habitat in important ways (Mertens and Lambin 1997, Lorena and 

Lambin 2007). Nord-Kivu and Sud-Kivu have the highest rural complex growth, 

probably due to the large influx of Rwandan refugees which escaped the Rwandan 

genocide, as well as a large number of internally displaced persons (IDPs) that were 

forced from their native villages during the Congo war (DeWasseige et al 2012, 

Nackoney et al 2014). In certain areas, such as west of Beni, the density of isolated 

forest perforations is such that new rural complex landscapes are developed. This is 

probably caused by existing and changing socio-economic drivers of agricultural 

expansion which are also associated with increase in population density (Lambin et al 

2001, 2003, Draulans and Van Krunkelsven 2002). The increase in population density 
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without the intensification of food production, together with the disruption of local 

livelihoods and collapse of infrastructure and socio-economic structures, has led to the 

increase of slash and burn agriculture in a frontal expansion of the rural complex 

moving westwards towards previously intact primary forest areas (Geist and Lambin 

2002, Forced Migration Review 2010, Defourny et al 2011, Potapov et al 2012, Hansen 

et al 2013, DeWasseige et al 2014) 

Type b: Rural complex expansion radiating from existing villages and towns 

Shifting cultivation expansion emanating from established rural complex areas 

and towns happens throughout the DRC, such as the area south of Kisangani. In these 

areas there is relatively low forest perforation, and most clearing activity is within the 

rural complex and at the interface with primary forest. Unlike frontal rural complex 

expansion, these areas are often directional and quite distinct from isolated forest 

perforation occurring further away from the villages.  

Type c: Rural complex expansion connecting existing linear features 

In many areas existing roads and paths are expanded and connected for both 

transit of goods and for shifting cultivation (Wilkie et al 2000, Lubamba et al 2013). 

The road between Bwafalinga and Opienge is an example of a transit route that is 

expanded during the period 2000-2010. The expansion of shifting cultivation and 

villages along transportation routes increases the habitat-fragmentation potential of 

those existing edges, and the permeation of people into intact forest tracts.   
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Type d: Lower impact shifting cultivation  

Many areas have shifting cultivation clearings occurring within the established 

rural complex and within a primary forest right at its interface. The example shown is 

of the western side of Lubutu. In areas such as these, livelihood farming continues 

traditionally with relatively low environmental impact (Mather 1992, Defourny et al 

2011, Ickowitz 2011). 

Type e:  Expansion of isolated Forest Perforations 

These areas don’t have extensive established areas of forest disturbance and 

represent land frontiers that are opened up either by shifting cultivators or logging or 

mining operations. In the case of logging and mining operations, most observable forest 

cover loss is still due to the shifting cultivation necessary to extract resources and feed 

worker populations. Sometimes these areas of clearing follow the development of new 

transportation routes such as logging roads, and in other cases previously isolated forest 

perforations are used as stepping stones to access the forest and connect trade routes 

and villages; as farmers and hunter-gatherers increase and expand forest access, such 

areas ultimately become connected to existing rural complex areas (Wilkie et al 2000, 

Russell et al 2011, Lubamba et al 2013). 

Type f: Minimal change 

The area between Kisangani and Opienge is an example of an area with 

relatively undisturbed core forest. In these areas there is little environmental pressure, 

change or growth in the study period and when shifting cultivation occurs traditionally 

it does so with an ecologically healthy period of regeneration of fallows and secondary 
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forest and low rates of loss of primary forest (Defourny et al 2011, DeWasseige et al 

2014). Primary forest fragmentation and habitat loss might not be a concern, however 

poaching, hunting and collection of NTFP products can still be an important issue. In 

some areas the abandonment of previously inhabited rural complex areas is visible, 

such as the area north of the road between Lubutu and Kisangani. 

2.5 Conclusion 
 

Results of this Chapter illustrate a changing forest disturbance dynamic within 

the DRC, at national, subnational and landscape scales. Specifically, more forest loss 

is occurring as isolated forest perforations associated with shifting cultivation that is 

associated with a number of changing land uses and socio-economic factors such as 

population density also caused by migration. When these forest perforations are 

observed to be occurring with high density per unit of area, they should not be 

considered isolated phenomena, as they have been previously, and should instead be 

contextualized as part of an expanding rural complex footprint. This contextualization 

is key to understanding the actual impacts of forest cover loss in the DRC.  

Results indicate that some areas of shifting cultivation fragment habitats and 

impact biodiversity and forest ecology much more than other areas, and in specific 

observable patterns. At the national scale 6 typologies of forest cover loss emerged, 

differentiated by their impact of forest fragmentation and growing the rural complex 

mosaic. Particularly, small-holder livelihood shifting cultivation can either have a 

smaller, more sustainable impact, or have a bigger impact when associated with the 

expansion of existing rural complex, the creation or connection of transportation routes 
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between villages, and the expansion in fronts of disturbance such as in the East of the 

DRC.  

Previously, the extent and implications of forest cover loss from shifting 

cultivation in the DRC had been debated (Ickowitz 2011, Russell et al 2011), partially 

because of the lack of quantitative and explicit maps that illustrated differences in the 

appropriation of primary forest.  Authors have also highlighted the need for more 

research linking subsistence agriculture with land cover change (Justice et al 2001, 

Zhang et al 2006, Defourny et al 2011). 

The forest fragmentation map developed in this study is the first automated map 

of its kind for the DRC (or for any area this large, to my knowledge) and is 

complementary to existing products such as the Intact Forest Landscape (IFL) (Potapov 

et al 2008) which identify larger areas of contiguous intact forest (minimum area of 

50,000ha [500km2]) and allow regional and international comparisons because of its 

coverage. The granularity and automation of the presented fragmentation maps might 

make them more adequate for local investigations of the impact of disturbance on the 

intactness of forest in the DRC. In PES, such as REDD+, the accurate mapping of 

baseline land cover, such as the agricultural area used for livelihood farming, and its 

rates of expansion, is essential to calculate realistic future scenarios of land use that 

consider the necessary agricultural expansion for livelihood farming.  

Mapping the contextualized spatial footprint of forest disturbances required 

additional steps beyond the per-pixel observation of forest cover loss and resulted in 

the creation of an added-value product which researchers, land managers and decision 

makers can use to compare areas, link forest cover loss to its proximate causes, drivers 
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and impacts (Fortin and Drapeau 1995)) and more accurately predict future changes 

(Turner et al 1993).  

However, the investigation in this Chapter highlighted a gap in the 

understanding of shifting cultivation and the rural complex in the country; we now have 

an accurate map of the areas of the rural complex and isolated forest perforations, yet 

we still did not have the quantification of the constituent land cover types making up 

the rural complex, the quantification of the temporal cycle of shifting cultivation 

reusing previously cleared land and the proportion of commercial land uses that make 

up the rural complex.  
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 Proportions of Land Cover and Land Use Classes 
within the Established Rural Complex of the DRC - 2000 

 

3.1 Introduction 
 

Forest clearing to make room for fields, only becomes a concern for longer term 

impacts on the forest ecosystem when the density of clearings and the frequency with 

which they occur surpasses the availability of land to regenerate in an optimal way. 

Therefore, not all shifting cultivation has negative impacts on the forest ecosystem with 

attendant negative repercussions on long term sustainability (Ickowitz 2006, van Vliet 

et al 2012, Moonen et al 2016). For example, treating shifting cultivation univocally, 

without accounting for local variation and the successional land cover types derived 

from it could overestimate the decrease in carbon stocks from deforestation by 46% 

(Akkermans et al 2013) and misinform development strategies. In Chapter 2: the 

complexity of the relationship between shifting cultivation and the forest ecosystem 

was shown quantitatively to go beyond a binary causality of shifting cultivation with 

“deforestation”. 

To quantify the LCLU area proportions within the baseline established rural 

complex (ERC) for 2000 and the mean temporal recycling rate of land under shifting 

cultivation a simple random sample of 1,000 points in the ERC was photo-interpreted, 

using 3,106 high resolution satellite images that were obtained from the National 

Geospatial-Intelligence Agency (NGA), together with 406 images from Google Earth, 

spanning the period 2008-2016. Leveraging recent advances in data availability, such 
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as free high resolution imagery available thanks to the Nextview license of the NGA, 

it was possible to increase the quantitative understanding of the shifting cultivation 

cycle and the ERC of the DRC.  

Estimating the area of the constituent land cover components of the ERC it was 

possible to infer the mean temporal rotation rate of land in shifting cultivation at the 

national level. Before, this rate had been established  anecdotally or determined 

empirically for a limited number of case studies, but not at the quantitatively at the 

national level (Lebrun and Gilbert 1954, Conklin 1961, Miracle 1967, Ickowitz 2006, 

SPIAF 2007, Akkermans et al 2013). 

Results yielded the area estimates and proportion of area of the ERC that is 

occupied by shifting cultivation land cover types, like clearings, active fields, fallows 

and secondary forest, as well as others such as roads and settlements and primary forest. 

These sample estimates allowed the quantification of the ERC occupied by commercial 

land uses, such as plantations, mining and logging, which were found to be only a very 

small proportion. The land cover components of the rural complex occur in variable 

proportions, depending on several factors that modulate the demand for food 

production and other natural resources, the availability of land and the social and 

economic cost/benefit of cropping in a given area (Miracle 1967, Ruthenberg et al 

1971, Mayaux et al 1999).  

Once estimated the area available for shifting cultivation in the ERC the average 

temporal rotation period was determined. It would take 18 years for all land available 

for shifting cultivation in the established to be cleared once, without spilling out into 

primary forest. Additional pressure on land would there fore result in either the 
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cultivation of non-preferred land types within the rural complex (such as wetland 

forest), or expansion of agriculture into nearby primary forests, with attendant impacts 

on emissions, habitat loss and other ecosystems services. 

 

3.2 Data & Methods 

3.2.1 Study Area and Data  

The ERC area of the DRC is the target region from which a simple random 

sample of points was selected. Land cover in these points was photo-interpreted using 

high resolution satellite imagery (Figure 3.1). More precisely, the ERC is the area of 

the rural complex that has not expanded during the period 2000-2014. This target 

region was created by updating the rural complex map produced in Chapter 2 

(Molinario et al. 2015) by adding forest cover loss data through 2014 from the Global 

Forest Change (GFC) data of Hansen et al. (2013). A sample of 1,000 points was then 

randomly selected within the target region with a uniform probability density for 

selection over the entire region (Figure 3.2).  

A number of steps were involved in acquiring and preparing the satellite 

imagery used for photo-interpretation of the sample points. High resolution imagery 

was acquired freely, under the conditions of the NextView license, from the 

Commercial Imagery (CI) archive of the National Geospatial-Intelligence Agency 

(NGA) through the NASA Goddard Space Flight Center (GSFC) (Neigh et al 2013). 

The entire archive acquired for the DRC is composed of 31,224 images. One of the 

challenges of working with this archive is that it is composed of data from various 

sensors, with heterogeneous naming conventions, metadata, number and characteristics 
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of bands and spatial and temporal resolutions. The archive was composed of mainly 

DigitalGlobe imagery: WorldView 1, WorldView 2, WorldView 3 and Orbview 5 

(a.k.a. GeoEye 1). The spatial resolution of imagery varied from 0.5 meter pixels 

(WorldView 1) to 1.65 meter pixels (Orbview5).   The sample intersected 3,106 images, 

or 17% of the entire archive acquired (Figure 3.3); 95% of the images used spanned the 

2008 - 2016 period.  

Google Earth imagery was used to supplement photo-interpretation when NGA 

imagery was available, and was used in lieu of it when it was not. Google Earth imagery 

varied in spatial resolution, with only Landsat-resolution imagery covering many of the 

sample points; in those cases the sample point was flagged as no-data as photo-

interpretation was not possible.  

 

Figure 3.1: The baseline established rural complex target region 2000-2014 was extracted from the rural 
complex footprint maps (b) that were reclassified from the forest fragmentation maps (a), both published 
by Molinario et al. (2015) and augmented with GFC data from Hansen et al. (2013). In this example the 
target region is represented by the grey area in b). 
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Figure 3.2: a) The baseline rural complex (2000-2014), b) a simple random sample of 1,000 sample 
points (only n=808 had data) and a detail c) of the area of Kisangani. 
 
 

 
Figure 3.3: a) Image footprints overlapping the sample points. Sample points not intersecting the image 
archive were either photo-interpreted with Google Earth or flagged as no-data. b) A zoom box of the 
area of Kisangani.  
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Figure 3.4: An example that illustrates the different spatial resolution of satellite imagery mentioned in 
the article, centered on   0°49'49.43"N  22° 1'47.54"E between the villages of Linza and Yangendji. a) 
Landsat image viewed in false color (30m)[12/30/2009], b) FACET (60m)[2000-2010], c) Orbview 5 
[GeoEye 1] (1.6m)[4/7/2010], d) Worldview 1 (0.5m)[1/13/2015 and the enlargements of the same 
images e) to i). 
 
 
Table 4. Temporal distribution of the latest available imagery for the interpreted sample points. 

Year 
Number of sample 

points 
% of all interpreted 

sample points 
Pre 2008   15   1.9% 

2008 - 2014 220 27.2% 
2014 - 2016 546 67.6% 

No Date   27   3.3% 
Total 808 100% 

 

3.2.2 Methods 

The images were footprinted, intersected with the sample points and photo-

interpreted. The intersecting imagery was orthorectified using code developed by the 

Polar Geospatial Center (PGC) of the University of Minnesota (PGC 2017). A Digital 

Elevation Model (DEM) created using data from the Shuttle Radar Topography 
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Mission (SRTM) (SRTM 2014) was used, with no-data pixels filled with the Advanced 

Spaceborne Thermal Emission Reflection Radiometer (ASTER) DEM data (ASTER 

2009). Using the same PGC code, the imagery was converted from the native National 

Imagery Transmission Format (NITF) to Tagged Image File Format (TIFF). The 

imagery was then manually photo-interpreted using ENVI software.  

The sample points did not overlap any of the available NGA imagery in 39% 

of the cases. In other cases, while the imagery was available, the sample point might 

have been covered by cloud, cloud shadow, or bad-data artefacts. In those cases, 

Google Earth was used in lieu of it. However, as even in Google Earth high resolution 

imagery was not always available, ultimately 19% of the sample points were flagged 

as no-data (192 sample points). The remaining n=808 sample points (81% of the 

original sample) were photo-interpreted to determine the land cover of the pixel 

containing the sample point.  In the rare cases in which a sample point had multiple-

date high resolution images available, the most recent one was used to make the 

interpretation of its latest land cover.  

The sample points were assigned a land cover label according to a 14-class 

legend (Table 5) developed empirically from preliminary photo-interpretation, 

literature review and expert opinion based on observable land cover characteristics 

(Styger et al 2007, Lebamba et al 2009, Akkermans et al 2013). The sample points 

were also assigned a rating for interpretation confidence of high, medium or low. The 

confidence of the photo-interpretation varied as a function of several characteristics of 

the observed land cover, for example the spatial structure of canopy (primary forest 

having larger crowns, greater tree height as evidenced by adjacent shadows, and a more 
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differentiated canopy than secondary forest) as well as the color of the canopy (primary 

forest having darker foliage compared to secondary forest). The photo-interpreter used 

expert judgment that included experience of two field campaigns in the DRC forest to 

interpret the imagery and assign confidence flags to the photo-interpretations, as 

illustrated in Table 6 and further addressed in the Discussion section. Examples of the 

imagery photo-interpreted can be seen in Figures Figure 3.5, Figure 3.6 and Figure 3.7. 

In photo-interpreting the sample, the legend in Table 5 was used, conforming with the 

class definitions of Potapov et al. (2012), in which forest is defined as land with ≥ 30% 

canopy cover for trees ≥ 5 meters tall, woodlands have between 30% and 60% tree 

cover, and primary and secondary forest have more than 60% canopy cover. 

The sample-based estimate of the proportion of area land cover class 𝒊𝒊 within 

the rural complex is: 

𝒑𝒑𝒊𝒊 =
𝒏𝒏𝒊𝒊
𝒏𝒏

 
 
Where 𝒏𝒏𝒊𝒊 = number of sample points identified as class i and n=sample size. 

The estimated area of class 𝒊𝒊 is given by the following equation: 

𝑨𝑨𝒊𝒊 =  𝑨𝑨𝒕𝒕𝒕𝒕𝒕𝒕 × 𝒑𝒑𝒊𝒊  
 

Where 𝐴𝐴𝑡𝑡𝑡𝑡𝑡𝑡= 127,796 km2 is the total area of the established rural complex. 

Both the estimator of the proportion of area (pi) and the estimator of the area (Ai) of 

each class are unbiased estimators ((Cochran 1977), Chapter 3). The formula for 

estimating the variance of the estimated proportion is the following:   

𝑽𝑽(𝒑𝒑𝒊𝒊) =  
𝒑𝒑𝒊𝒊(𝟏𝟏 − 𝒑𝒑𝒊𝒊)
𝒏𝒏 − 𝟏𝟏
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The standard error formula for the estimated proportion of area of class i is: 
 

𝑺𝑺𝑺𝑺(𝒑𝒑𝒊𝒊) =  �𝑽𝑽(𝒑𝒑𝒊𝒊) 
 

The standard error for the estimated area of land cover class i is: 
 

𝑺𝑺𝑺𝑺(𝑨𝑨𝒊𝒊) = 𝑨𝑨𝒕𝒕𝒕𝒕𝒕𝒕 × �𝑽𝑽(𝒑𝒑𝒊𝒊) 
 

The standard errors quantify the uncertainty or precision of the sample-based 

estimates.  Clearly the standard error decreases as a function of the square root of the 

sample size n (e.g., a four-fold increase in sample size will halve the standard error) 

and the standard error also depends on pi. The sample size of n=1,000 was based on 

the expectation that for pi=0.10 (10% of the area represented by a class), the standard 

error would be approximately 0.01 (or 1% of the area represented) and this standard 

error was deemed acceptably small for my purposes.  

Table 5. The 14 land cover classes attributed to the sample points: class name, description and the land 
cover type with which it potentially can be confused in photo-interpretation.  

Class Code Class Name Description Potential confusion 
with: 

1 No-data 

No imagery available with sufficient 
resolution, or no-data within that 
imagery, or obscuration of the sample 
by clouds or cloud shadows or bad data 
artefacts 

None 

2 Water Rivers, streams, ponds and lakes None 

3 Roads and 
settlements 

Roads, paths, communal areas along 
roads, buildings, huts None 

4 Grassland Natural grassland/savanna areas  Active and fallow 
agriculture 

5 Clearing A forest or fallow field that has been 
recently cleared None 

6 Active 
agriculture 

A field where crops are currently 
grown Fallows 

7 Young fallow A field recently left fallow Active agriculture 

8 Old fallow An overgrown fallow field Young fallow and 
secondary forest 

9 Commercial 
agriculture 

Plantation land use associated with tree 
crops such as palm oil None 
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10 Secondary forest 

A forest stand with over 60% tree cover 
of trees ≥ 5 meters tall; canopy consists 
of small, relatively uniform tree crowns  
resulting in a bright spectral response 

Mature secondary 
forest and primary 

forest 

11 Mature 
secondary forest 

A forest stand with over 60% tree cover 
of trees ≥ 5 meters tall; canopy consists 
of varying crown size and vertical 
distribution resulting in a moderately 
dark spectral response  

Secondary forest and 
primary forest 

12 Primary forest  

A forest stand with over 60% tree cover 
of trees ≥ 5 meters tall; canopy consists 
of highly varying crown size and 
vertical distribution resulting in greater 
canopy shadowing and a dark spectral 
response 

Secondary forest and 
mature secondary 

forest 

13 Wetland forest 

A forest stand with over 60% tree cover 
of trees ≥ 5 meters tall located in 
proximity to water bodies and 
associated floodplains 

Primary forest and 
secondary forest 

14  Other  Other land cover type N/A 
 
 

 
Figure 3.5: An example of the rural complex seen at 50cm resolution in a panchromatic Worldview 1 
image. 
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Figure 3.6: The same area seen with a multispectral Orbview 5 image in a false color combination. 
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Figure 3.7: Examples of sample points interpreted in classes 3-14, not including: 1) no-data and 2) 
water. 
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3.3 Results 
 

Based on the sample data, an estimated 76% of the established rural complex is 

composed of a land cover mosaic that is the product of current and past shifting 

cultivation: clearings, active fields, fallow fields and secondary forest. This means that 

if added to primary forest, 87% of the established rural complex is available to be 

farmed in future shifting cultivation (Figure 3.8).    

The sample points were categorized into three confidence groups: 40% of all 

sample points were high confidence, 49% were medium confidence, and 11% were low 

confidence. Since 192 sample points were no-data, only 808 points comprise the subset 

of the sample on which the results are tabulated. The disaggregation of each land cover 

type by confidence group (Table 6) shows which land cover types potentially have 

more confusion in their photo-interpretation. For example, 85% of settlements and 

roads are high confidence, while only 22% of active agriculture is high confidence, 

whereas 64% of active agriculture sample points are medium confidence and 15% are 

low confidence.   

While the majority of non-forest land cover sample points within the rural 

complex were anthropogenic, in some cases they were part of natural non-forest land 

cover such as river banks, landslides and even an Inselberg in the Ituri forest. In other 

cases, such as in grasslands, the non-forest land cover may have been part of a historic 

anthropogenic land cover modification. 
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Table 6. The estimated percentages of each land cover class and distribution of each class disaggregated 
by interpreter confidence rating. The % of total area is 100*pi and the SE for the % of area is 
100*SE(pi).*  

 High 
Confidence 

Medium 
Confidence Low Confidence  

Full Sample 𝑺𝑺𝑺𝑺 𝑨𝑨𝒊𝒊 SE(Ai) 
Class ( 𝒊𝒊 ) Cnt % of 

class Cnt % of 
class  Cnt % of  

class Cnt % 
Area 

% 
Area 

(km2) 
(km2) 

Water 1 100 0  0 0  0 1 0.1 0.1 158 158 

Road/Settled 17 85 1 5 2 10 20 2.5 0.6 3,163 699 

Grassland 42 84 7 14 1 2 50 6.2 0.8 7,908 1,084 

Clearing 20 54 13 35 4 11 37 4.6 0.7 5,852 940 

Active Ag. 18 22 53 64 12 14 83 10.3 1.1 13,128 1,366 

Young Fallow 6 11 30 57 17 32 53 6.6 0.9 8,383 1,114 

Old Fallow 52 33 81 51 27 17 160 19.8 1.4 25,306 1,793 
Commercial 
Ag. 15 83 3 17 0  0 18 2.2 0.5 2,847 664 

Sec. Forest 98 41 128 53 14 6 240 29.7 1.6 37,959 2,056 
Mature Sec. 
Forest 8 22 25 68 4 10 37 4.6 0.7 5,852 940 
Primary 
Forest 30 34 46 53 11 13 87 10.8 1.1 13,760 1,394 
Wetland 
Forest 13 76 4 24 0 0 17 2.1 0.5 2,689 646 

Other 2 40 2 40 1 20 5 0.6 0.3 791 353 

Grand Total 322 40 393 49 93 11  808 100 
 

127,796 
 

*The values in the table are rounded.  
 
 

 

Figure 3.8: Distribution of area of land cover classes within the rural complex.  An estimated 76% of 
the rural complex is already part of the cycle of shifting cultivation, and of the remaining area an 
estimated 11% is primary forest.  This means that 87% of the rural complex is the estimated area 
available for agriculture.  “mtr” = mature,  “yng” = young.  
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Table 7.  Estimated percentage of area of each land cover class disaggregated by year of imagery used. 

 Pre 2008 2008-2013 2014-2016 
No Date 

  

  % of  % of  % of   

Class Count  class 
time 

period Count class 
time 

period Count class 
time 

period Count 
% of 
class 

Total 
Count 

Water 0 0 0 0 0 0   0  0 0 1 0.1   1 
Road/Settled 1 5 7 8 42 3 10 53 2 1 0.1  20 
Grassland 0 0 0 13 28 5 33 72 6 4 0.5  50 
Clearing 1 3 7 11 31 4 24 67 4 1 0.1  37 
Active Ag. 2 3 13 26 32 10 53 65 10 2 0.3  83 
Young 
Fallow 0 0 0 16 32 6 34 68 6 3 0.4  53 

Old Fallow 5 3 33 29 19 12 119 78 22 7 0.9 160 
Commercial 
Ag. 0 0 0 3 17 1 15 83 3 0 0  18 

Sec. Forest 5 2 33 63 27 25 169 71 31 3 0.4 240 
Mature Sec. 
Forest 0 0 0 17 47 7 19 53 3 1 0.1  37 
Primary 
Forest 1 1 7 26 31 10 56 68 10 4 0.5  87 
Wetland 
Forest 0 0 0 8 47 3  9 53 2 0 0  17 

Other 0 0 0 0 0 0  5 100 1 0 0   5 

Grand Total 15 2 100 220 27 100 546 68 100 27 3 808 

 
 

3.3.1 Distance Sub-Population Estimates 

Estimates of the proportion of area represented by the land cover classes are 

produced for each of three subregions defined by distance to the edge of established 

rural complex. The subregions were defined so that all three represented approximately 

an equal area (i.e., each subregion had an equal number of sample points). This resulted 

in the first subregion being defined as within 180m of the rural complex edge, the 

second subregion covering the area between 180m and 725m from the edge, and the 

third subregion being the area beyond 725m of the edge (Table 8). There is a clear trend 

that shows more clearings and fallow fields in the interior of the rural complex (>725m 

distance subregion), further from the interface with primary forest.  Active agriculture 

and secondary forest, however, have similar proportions throughout the rural complex 

while the proportion of mature secondary forest is less in the innermost region 
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(>725m). The proportion of primary forest is almost double in the subregion within 

180m of the edge of the established rural complex as it is in the other two subregions, 

indicating its prominence in the land cover mosaic in this permeable interface area. 

 
Table 8. Estimated land cover percentages for three subregions defined by distance to the established 
rural complex edge (<=180 m, 180 to 725 m, and > 725 m).   

 <= 180m 180m >= 725m >725m  

Class  Cnt 

% area 
within 
class 

% area 
within 

subregion Cnt 

% area 
within 
class 

% area 
within 

subregion Cnt 

% area 
within 
class 

% area 
within 

subregion Total 

Water 0 0 0 0 0 0 1 100 0  1 
Road/Settled 3 15 1 11 55 4 6 30 2 20 
Grassland 17 34 5 20 40 7 13 26 5 50 
Clearing 6 16 2 12 32 5 19 51 7 37 
Active Ag. 29 35 9 21 25 8 33 39 12 83 
Young 
Fallow 16 30 5 16 30 6 21 39 8 53 

Old Fallow 52 33 16 46 29 17 62 38 23 160 
Commercial 
Ag. 5 28 2 6 33 2 7 38 3 18 

Sec. Forest 77 32 23 90 38 34 73 30 27 240 
Mature Sec. 
Forest 14 38 4 14 38 5 9 24 3 37 
Primary 
Forest 40 46 12 24 28 9 23 26 8 87 
Wetland 
Forest 6 35 2 6 35 2 5 29 2 17 

Other 0 0 0 3 60 1 2 40 1 5 

Grand Total 265 33 100 269 33 100 274 34 100 808 

 

3.4 Discussion  
 

The footprint of the rural complex needs to be accurately mapped among other 

reasons because it is an area of high carbon dynamics. Tyukavina et al. (2013) 

estimated that aboveground carbon loss of secondary forests was greater than that of 

primary forests in DRC.  As the rural complex is the site of rotational clearing 

secondary regrowth, it should be a focus of any PES program aimed at avoiding 

deforestation and degradation, such as REDD+.  To this end, previous work modelling 

and mapping the spatial patterns of the rural complex in the DRC (Molinario et al 2015, 
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Harris et al 2017) leveraged novel wall-to-wall per-pixel satellite remote sensing-based 

inputs (Hansen et al 2013). In doing so, it became obvious that higher resolution 

imagery was necessary to quantify the proportions of the constituent land cover and 

land use components of the rural complex in all its areas; the stable, established, region 

that is investigated here, as well as the areas actively expanding into primary forest  that 

are investigated in Chapter 4 (Molinario et al 2015). Using the data and methods 

outlined, a simple random sample of the ERC stratum proved to be sufficient to produce 

an enhanced, quantitative estimation of the land cover and land use components of the 

ERC and assessing the mean rotational rate of its land under shifting cultivation.  

Several challenges arose when photo-interpreting the sample points.  One of the 

difficulties was that 19% of the sample points had no available imagery to allow an 

interpretation. This was sometimes due to the fact that imagery was not available 

neither in the NGA archive nor on Google Earth, while in other cases available imagery 

was too coarse, had bad-data artefacts, or was obscured by cloud cover and cloud 

shadow. Cloud cover, in particular, is a consistent problem in tropical environments 

(Ju and Roy 2008, Kovalskyy and Roy 2013) and it can only be overcome by 

mosaicking all available cloud-free observations from different dates (Potapov et al 

2012, Hansen et al 2013) or having more frequent observations from optical sensors. 

Integrating cloud-piercing synthetic aperture radar data (SAR) data such as Sentinel-1 

would aid in the land cover mapping of tropical areas  (Wulder et al 2008, Malenovský 

et al 2012), but would need to be demonstrated as suitable for this application.   

A key issue with high resolution satellite imagery is that these data remain rare 

despite improvements in the availability of imagery. Planet’s acquisition of Terra Bella 
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and RapidEye and concurrent launch of 88 cube-sats (Butler 2014, Planet 2017a, 

2017b) combined with the free availability of DigitalGlobe’s archive to United States 

Government-affiliated researchers (Neigh et al 2013) offers the possibility of enhanced 

earth observation monitoring at higher spatial resolutions but the operational capacity 

of these systems needs to be demonstrated. The temporal resolution of high spatial 

resolution data is pledged to be on-par with the daily return rates of medium resolution 

imagery (e.g. MODIS) after the operationalization of Planet’s constellation of ~100 

microsatellites. Thus far, most land cover mapping and monitoring within reasonable 

timeframes (e.g., annually) is currently feasible using medium spatial resolution 

sensors such as Landsat and Sentinel-2 (NASA 2017, ESA 2017). The larger data 

volumes of wall-to-wall, cloud free, high resolution imagery for the tropics would also 

pose significant limitations. Costs are also a limitation, compared to publicly free 

global imaging systems such as Landsat (Wulder et al 2012).  The future accessibility 

of very high spatial resolution, given that such data exists exclusively within a 

commercial model, is not guaranteed with implications on the ability of governments 

and civil society to operationally monitor land resources. 

For these reasons, high resolution imagery remains limited for wall-to-wall 

scientific research in the tropics, lending itself primarily for sample-based or localized 

case studies. In this study, two-thirds of the available NGA data were acquired between 

2014 and 2016, however all available data was used. This period to represents a 

snapshot in time of the established rural complex for circa 2015.  If the study was 

repeated at decadal time-scales, for example, it would be possible to document changes 
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to the land use components of the rural complex, with implications for the sustainability 

of Congo’s swidden agricultural system. 

Another issue was the confusion in the photo-interpretation of certain land 

cover types, despite the use of the highest resolution data currently available (50 cm). 

This interpretation confusion was most prominent among certain land cover types; for 

example, active fields were often flagged as low confidence, because mature crops in 

the shifting cultivation cycle (generally second or third year crops) were hard to 

distinguish from young abandoned fallows. Similarly, mature secondary forest was 

often flagged as low confidence because it was sometimes difficult to distinguish from 

primary forest. In some cases, it was a certain tell-tale spatial pattern that showed an 

area of ‘brighter’ forest closer to the edge of an active agricultural area that helped 

classify the sample point as secondary forest. In most cases, both panchromatic and 

multispectral high resolution imagery for the same sample point were not available. 

When they were, the strengths of the two types of imagery were leveraged: the spatial 

resolution of the panchromatic image to assess the spatial pattern of the sample point, 

and the spectral information of the multispectral image to interpret the land cover of 

the sample point. False-color band combinations were used to enhance photo-

interpretations of sample points that had confusion, when multispectral imagery was 

available in the NGA archive. All the multispectral imagery in Google Earth was true 

color imagery; only available in the visible spectrum bands.  

All results should be interpreted with these caveats in mind. There is important 

variability within the national averages reported. While these findings offer the best 

and most up-to-date quantification of the constituent land cover components of the rural 
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complex, they are not intended to replace the higher accuracies of in-depth localized 

case-studies, in which one could address the highly nuanced qualitative socio-

economic factors that drive the specific mixture of land cover and land use in a specific 

area (Rudel and Roper 1996, Mather et al 1998, Geist and Lambin 2002). Despite that, 

the estimate of a 5% clearing proportion of the established rural complex nationally 

echoes the estimate of 4.9% bare soil reported in a Landsat-based investigation of the 

successional cycle in the area of Kisangani (Akkermans et al 2013).  

The estimates produced for the subregions defined by distance to the established 

rural complex edge showed that quantitatively the composition of land cover within 

these subregions fit the spatial and temporal model of the shifting cultivation cycle in 

the DRC previously published in Molinario et al. (2015), which was based on extensive 

literature review, expert opinions and field-work. The shifting cultivation dynamic at 

the edge of the rural complex is dependent on the appropriation of primary forest, 

whereas in the interior of the rural complex, primary forest is no longer readily 

available, and fallows and secondary forest must be reused.   

3.5 Conclusion 
 

The research in this Chapter contributes quantitative estimates of the area and 

proportion of land use and land cover classes within the established rural complex of 

the DRC that were not previously available at the country level. At the current annual 

clearing rate (5%), it takes ~18 years for all the available land for shifting cultivation 

in the established rural complex to be cleared at least once. When land use pressure 

increases, the increased demand for food and other resources can only lead to either 
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intensification or extensification of the extraction of natural resources. For agriculture, 

such intensification is possible only through fertilization or mechanization,  expansion 

of shifting cultivation in less-preferred areas of the rural complex (such as wetland 

forest), or expansion outside of the rural complex, either at its edges or in more isolated 

forest perforations (Molinario et al 2015). Results and the discussion of their limitations 

and caveats, indicate that the land cover and land use maps that are used to establish 

the baseline emissions in projects such as REDD+ need to map carefully the boundaries 

of the established “permanent” agricultural areas, as these are permeable, shifting, and 

contain a variety of successional stages of forest regrowth and forest degradation within 

them.   

In a small number of cases, the sample points were part of a commercial land 

cover change dynamic, such as plantations. The estimate of the area of the ERC 

occupied by commercial land uses is 2.2%. However, neither logging nor mining were 

found in the sample, which suggests that logging and mining dynamics are largely 

absent in the established rural complex. It should be expected that plantations, logging 

and mining occur further from the historically inhabited agricultural core area of the 

rural complex, where the extractive resource base is located or where competition for 

land is less intense. Results pertain only to the land uses that are discernible in the 

photo-interpretation of high resolution satellite imagery. Whether the observation of a 

clearing or an active field is linked to land uses such as palm-oil plantations, logging 

concessions, or mines, or the production of foodstuffs and gathering of fuel for distal 

populations in urban areas, was not determined, but should be the object of future 

research.  
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 Contextualizing Landscape-Scale Forest Cover Loss 
Outside of the Established Rural Complex – 2000-2015 

 

4.1 Introduction 
 

In Chapter 3: (Molinario et al. 2017) estimated that only 2% of the established rural 

complex (ERC) area was occupied by large-scale commercial operations, positing that 

new, rural complex expansion (RCE) areas and isolated forest perforations (IFP) may 

be more likely associated with extractive commercial land uses. In order to test this 

hypothesis we set out to establish the proportion of forest cover loss outside of the 

(ERC). I set out to quantify the proportions of LCLU classes within the new forest 

cover loss areas occurring outside of the established rural complex, as either rural 

complex expansion (RCE) or isolated forest perforation (IFP) during the period 2000-

2015.  

I photo-interpreted very high resolution satellite images in a stratified random 

sampling design. First I interpreted sample points within the RCE and IFP strata, and 

then I photo-interpreted the landscapes around them, within concentric distance 

buffers.  The concentric distance buffers around each sample point were at a distance 

of 100m, 500m, 1000m and 5000m. 

The motivation to contextualize forest cover loss and degradation holistically 

stems from the understanding that it is not sufficient to observe forest cover loss at the 

pixel-level, but it’s also necessary to quantify the spatial and temporal characteristics 

of the successional vegetation types that replace a patch of cleared forest (Akkermans 

et al 2013) and to identify what other proximate and underlying drivers influence land 

cover and land use change (LCLUC) (Butsic et al 2015). Several authors cite how the 
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influence of commercial land uses, settlements and transportation routes can reach far 

beyond their physical boundaries (Wilkie and Carpenter 1999, Asner et al 2006, 

Moonen et al 2016).  

Massive population growth is predicted and their reliance on shifting cultivation 

has led to projections that estimate dwindling if not vanishing forest resources in the 

country by the end of the century (Tyukavina et al 2018). Ultimately, the expansion of 

the rural complex is particularly important to model and understand because almost all 

cleared land appropriated into the rural complex mosaic is not returned to pristine forest 

areas till decades later, if at all (van Vliet et al 2012).  

 
Both artisanal and large scale commercial operations for logging, mining and 

plantations have an influence on land use change that goes beyond the area that is 

traditionally and conservatively understood as their footprint, which is the land area 

visibly occupied by that operation itself. These artisanal and commercial activities 

provide essential economic benefits and development pathways, but also have 

important social and environmental impacts that need to be understood and planned 

(Lambin et al 2001, Rudel et al 2005).  These operations draw in worker populations, 

their families and at times an entire network and community of supporting providers of 

services, ranging from general stores to prostitution (Acker 2005, Geenen 2011, Butsic 

et al 2015).  
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4.2 Data & Methods 

4.2.1 Data  

The FACET map (Potapov et al 2012) together with forest cover loss observed 

in the GFC product (Hansen et al 2013) provided the necessary data to map the baseline 

ERC for 2000 in Chapter 2, and the growth of and separation of rural complex 

expansion (RCE) and isolated forest perforation (IFP) areas in subsequent epochs 

(2005, 2010, 2015). This map was initially published in (Molinario et al 2015), and 

then updated from 2010 to 2015 with GFC forest loss observations in place of 

deprecated FACET forest loss observations. This map was used to determine where 

new forest cover loss had occurred during the period 2000-2015 and to characterize 

these areas as either RCE or IFP.  DigitalGlobe (DG) imagery obtained from Google 

Earth (GE) was used for photo-interpretation of the sample points within the RCE and 

IFP.  The National Geospatial Intelligence Agency (NGA) very high resolution satellite 

imagery archive archive available through the NextView license agreement (Neigh et 

al 2013) was considered, but ultimately declined, for filling in the sample points for 

which photo-interpretation was not possible, due to the absence of data in Google Earth. 

The reason being that the NGA archive is predominantly composed of panchromatic 

imagery, which is sufficient for photo-interpreting the land cover at each sample point 

(as was done in Molinario et al. 2017), but is excessively time consuming to use when 

attempting to photo-interpret the land cover within the landscape-scale buffers. 
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4.2.2 Methods 

Sampling Design 
 
The RCE and IFP areas sampled are within the area of interest (AOI) published 

in (Molinario et al 2015), defining the humid tropical forest block of the DRC. This 

map was updated from the initial 2000-2014 time period presented in Chapter 2, to 

2015, using new forest cover loss observations available from GFC. Sample points 

were chosen by simple random sampling from a population of GFC forest cover loss 

pixels (30m) within the RCE and IFP areas, then converted to vector points. For each 

of the two areas, 500 sample points were initially selected and photo-interpreted using 

high spatial resolution imagery (Figures Figure 4.2 and Figure 4.3). The list of sample 

points was randomly ordered and photo-interpreted in that random order. Imagery was 

not available for photo-interpretation of all sample points, an issue revisited in the 

Discussion section.  

 
Image Interpretation Protocol 

 
 

The legend for photo-interpreted land cover categories is shown in Table 1 and 

is composed of an initial set of classes photo-interpreted in the previous study of 

Molinario et al. (2017), plus an additional set of classes necessary for the novel 

landscape-scale photo-interpretation. A land cover category was assigned to each 

sample point (Figures Figure 4.4 and Figure 4.5), and the presence and spatial 

dominance of additional land cover types was assigned to each of four concentric 

circular buffers around each sample point at 100m, 500m, 1km and 5km (Figures 

Figure 4.6 and Figure 4.7). For each buffer area, the photo-interpreter recorded the first 
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five most dominant land cover types in the buffer, yielding a matrix of up to 21 photo-

interpreted land-cover observations for each sample point and its associated buffered 

areas (1 land-cover class for the sample point, and up to 20 classes in the four circular 

buffer areas). Not all sample points would have 20 recorded classes.  For example, if a 

clearing was the interpreted class at the sample point, a building was observed in the 

100m buffer area surrounded by primary forest, and nothing else throughout all the 

other buffer areas, the photo interpreter only recorded the presence of these land cover 

types: sample point – clearing, 100m buffer – settlement and primary forest, 500m 

buffer – primary forest, 1km buffer – primary forest and 5km buffer – primary forest. 

In the cases where there were more than 5 land cover types within the buffers, only the 

5 most  spatially dominant classes were recorded. This was done by visually separating 

each circular buffer into 4 quadrants, and interpreting the size (dominance) of each land 

cover type detected (Figure 4.6). 

 

The class “rural complex” was used from the 100m buffer outwards, when all the land 

cover types associated with the rural complex were detected within the buffer (i.e., 

clearings, active and fallow fields, secondary and primary forest). Because of the 

minimum patch size of all these individual typologies of land cover, it was rare for 

them to all be present within the smallest buffer of 100m, whereas this land cover 

mosaic was frequently found in all other buffer sizes. The presence of some land uses 

such as larger commercial land uses, roads, settlements and well established rural 

complex mosaics was easy to identify in the available multi-spectral imagery, even 

when photo-interpreting at smaller scales. 
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Figure 4.1: The methods of this chapter can be summarized in three steps. *Step 1) builds upon the map 
published by (Molinario et al 2015). In Molinario et al.  2017 the area of each LCLU type within the 
established rural complex for 2000 was estimated; Step 1) pertains to new forest loss during 2000-2015 
that occurred outside of the established rural complex. 
 

 
Figure 4.2: a) The separation of GFC forest cover loss pixels in three areas: 1) in the baseline 
“established rural complex” for the year 2000 which was sampled in Molinario et al (2017), 2) in the 
rural complex expansion area (RCE) and 3) in isolated forest perforations (IFP). Buta (2°49’01.93’’N, 
24°45’56.12’’E); and b) a closer detail for illustration. 
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Figure 4.3: The stratification at the country level is visible in a), in b) the simple random sample point 
distribution in the RCE and IFP and in c) a detail of Kisangani illustrates the sample distribution in the 
two mapped areas. The black area, within the AOI represents primary forest, and is colored this way 
simply to help visualization of the sample points.   
 

 

Figure 4.4: Sample 1036: The photo-interpretation of this point is labeled as “clearing”, although 
visualizing the 100 m radius circular buffer area aids the interpretation by adding context to the sample 
point. In this instance a number of shifting cultivation mosaic land cover types: clearings, active and 
fallow fields, secondary forest (3° 4'52.34"N, 20°38'17.95"E). 
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Figure 4.5: Examples of land cover visually interpretable in the imagery on Google Earth: On the left, 
an area is being burned to clear vegetation residue and fertilize the soil, next to areas of active agriculture; 
on the right a patch of secondary forest that has been cleared. 
 

 
Figure 4.6:  a) and b) (oblique view) Example of the photo-interpretation of a sample point and its 
buffers: In this example (point 1055), the imagery is from 2014, the centroid is “young fallow” and the 
first slot of the interpreted land cover in each buffer shows the dominance of: young fallow in the 100m 
buffer, primary forest in the 500m, 1km and 5km buffer. The presence of other land cover types is noted 
in order of their spatial dominance, or presence, in the buffer.  (Located at 4°29'15.23"S, 23°39'28.05"E). 
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Figure 4.7:  a) and b) illustrate the goal of contextualizing forest cover loss within its broader land cover and land use landscape. 
In a) a large trunk road and settled area is within 5km of the sample point, in b) a large gold mine is within 5km of the sample 
(Sample point 1036 located at 3° 4'52.34"N, 20°38'17.95"E; sample point 249 located at 4°20'4.63"N, 23°42'6.38"E). 
 
  
Table 9. The legend of land cover classes that can be attributed to each sample point and their buffers 
in photo-interpretation. 

Class 
Code 

Class Name Description 
Potential 
confusion: 

Observed 
at what 
scale? 

1 No-data 
No imagery available with sufficient resolution, 
or obscuration of the point by clouds, shadows 
or bad data  

None All 

2,3,4 
Water, rivers, ponds  Water, rivers and ponds None All 

5,6,7 Roads, paths, 
settlements Major roads, paths and settled areas  All 

8 
Clearing Forest or fallow field that has been recently 

cleared None All 

9 Active Agriculture Field where crops are currently grown Fallows 500m< 

10,11 Young & old Fallows Field either recently left fallow or overgrown Active ag. 500m< 

12 
Secondary Forest 

Forest stand with over 60% tree cover of trees 
≥ 5 meters tall; canopy consists of small, 
relatively uniform tree crowns  resulting in a 
bright spectral response 

Primary 
forest All 

13 
Rural Complex 

Land cover mosaic of roads, rivers, settlements, 
clearings, and active agriculture, secondary and 
primary forest patches.  

 >100m  

14 Primary forest 

Forest stand with over 60% tree cover of trees 
≥ 5 meters tall; canopy consists of highly 
varying crown size and vertical distribution 
resulting in greater canopy shadowing and a 
dark spectral response 

Sec. forest  All 

15, 
16, 17 Wetland, gallery and 

woodland forests 

Wetland forest: a stand with over 60% tree 
cover of trees ≥ 5 meters tall proximate to water 
bodies & associated floodplains; Gallery forest: 
were once wetland forest, and remain unaltered 
as they are wet and low-lying, usually 
surrounded by derived savanna/grassland or 
rural complex landscapes. Woodland forest: is 

Primary 
and sec.  
forest 

All 
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more sparse, at the edges of the humid tropical 
forest, interfacing savannas 

18 Grassland Natural and derived grassland/savanna areas Active ag. 
and fallows 

All 
 

19 
Croplands 

Agriculture that is semi-permanent, with larger 
field area and more regular boundaries; not 
usually found in the rural complex mosaic.  

Active ag. All 

20 Commercial 
Agriculture 

Plantation land use associated with crops such 
as palm oil None All 

21 Mines 

Clearings and operations that have the 
appearance of mines: terraces, pits and ponds 
clustered together with sometimes worker 
camps nearby 

Clearings All 

22 Logging Logging concessions, roads, skid trails.  Clearings All 

23 Other  
Other features that are rare and do not fit in any 
other class, like natural landslide area, 
Inselbergs, etc. 

n/a All 

 
 

4.2.3 Estimating Proportion of Area  

The results of the photo-interpretation were used to estimate the proportion of 

each land cover class within each of the two RCE and IFP areas, and the proportion of 

area of large-scale commercial land uses such as plantations, logging and mining co-

located within 100m, 500m, 1 km and 5 km buffers of the sample points. The estimated 

proportions were converted into estimates of the area of each land cover class, and the 

standard error of each estimated land cover class was also computed. The formulas are 

below.  

 
The estimated proportion of area of land cover class 𝑖𝑖 is: 
    𝑝𝑝𝑖𝑖 = 𝑛𝑛𝑖𝑖

𝑛𝑛
       

 (1) 
Where 𝑛𝑛𝑖𝑖 = number of sample points identified as class i and n=sample size. The 

estimated area of class 𝑖𝑖 is given by the following equation: 

    𝐴𝐴𝑖𝑖 =  𝐴𝐴𝑡𝑡𝑡𝑡𝑡𝑡 × 𝑝𝑝𝑖𝑖       
 (2) 
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Where: 
• RCE 𝐴𝐴𝑡𝑡𝑡𝑡𝑡𝑡=  46,779  km2 (the total area of the RCE in the AOI in 2015) and, 
• IFP 𝐴𝐴𝑡𝑡𝑡𝑡𝑡𝑡= 25,428 km2 (the total area of the IFP in the AOI in 2015). 

 
Both the estimator of the proportion of area (pi) and the estimator of the area (Ai) of 

each class are unbiased estimators (Cochran 1977, Chapter 3). The formula for 

estimating the variance of the estimated proportion is the following:   

     𝑉𝑉(𝑝𝑝𝑖𝑖) =  𝑝𝑝𝑖𝑖(1−𝑝𝑝𝑖𝑖)
𝑛𝑛−1

     
 (3) 
The standard error formula for the estimated proportion of area of class i is: 
    𝑆𝑆𝑆𝑆(𝑝𝑝𝑖𝑖) =  �𝑉𝑉(𝑝𝑝𝑖𝑖)     
 (4) 
The standard error for the estimated area of land cover class i is: 

 𝑆𝑆𝑆𝑆(𝐴𝐴𝑖𝑖) = 𝐴𝐴𝑡𝑡𝑡𝑡𝑡𝑡 × �𝑉𝑉(𝑝𝑝𝑖𝑖)    
 (5) 

The standard errors quantify the uncertainty or precision of the sample-based estimates.  

Clearly the standard error decreases as a function of the square root of the sample size 

n (e.g., a four-fold increase in sample size will halve the standard error) and the standard 

error also depends on pi.  

 

4.3 Results 
 

The total rural complex expansion (RCE) area in 2015 was 46,779 km2 and the 

total area of isolated forest perforations (IFP) was 25,428 km2. These areas are 

composed of GFC-observed forest cover loss areas in the period 2000-2015, together 

with “edge” primary and secondary forest and non-forest as mapped holistically and 

shown in (Figure 4.2) (Molinario et al 2015). Between 2000 and 2015, 36,905 km2 of 

GFC loss occurred in the baseline established rural complex for 2000 (81% of all GFC 
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loss for the period), predominantly in secondary forests, 7,338 km2 (16%) occurred as 

primary forest loss in the RCE area and 1,137 km2 (3%) in   IFP.  

The estimated proportions of the constituent land cover and land use components of 

the the RCE and the IFP areas for 2000-2015 are shown in Table 2. The dominant land 

cover in the RCE is primary forest (34%), followed by secondary forest (29%), old 

fallows (14%) and clearings (9%). In the IFP, the dominant land cover is primary forest 

(41%), followed by secondary forest (22%), old fallows (10%) and clearings (9%). In 

the RCE, compared to the IFP, there is less primary forest (-7.5%), more secondary 

forest (+6.7%), more old fallows (+4%) and slightly less clearings (-0.3%) (See Table 

10). The total percentage of shifting cultivation land cover components (secondary 

forest, fallows, clearing and active agriculture) in the RCE is 64% and in the IFP it is 

51%. If we add the proportions of primary forest, respectively in the RCE and IFP the 

proportion of available land for future shifting cultivation is theoretically 98% in the 

RCE and 92% in the IFP. Clearings account for 9% of both the RCE and IFP. 

 
Table 10. Estimated area percent area of land cover classes in the RCE and IFP. 

 
 RCE 𝑺𝑺𝑺𝑺 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨    SE IFP 𝑺𝑺𝑺𝑺 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 SE 

 
RCE-
IFP 
(%) 

Class ( 𝒊𝒊 ) Class 
Code 

Cou
nt 

% 
Area 

% 
Area 

(km2) (km2) Coun
t 

%  
Area  

% 
Area 

(km2) (km2)  

Primary For. 
14 93 33.9 2.86 15,878  1338 91 41.4 3.32 10518 844 

-7.5 

Sec. Forest 
12 78 28.5 2.73 13,317  1275 48 21.8 2.78 

5548 708 6.7 

Old Fallow 
11 37 13.5 2.06 6,317  966 21 9.5 1.98 

2427 504 4 

Clearing 
8 24 8.8 1.71 4,097  799 20 9.1 1.94 

2312 493 -0.3 

Active Ag. 
9 21 7.7 1.61 3,585  752 10 4.5 1.40 

1156 357 3.2 
Young 
Fallow 

10 16 5.8 1.42 2,732  663 13 5.9 1.59 
1503 404 -0.1 

Grassland 
18 3 1.1 0.63 512  294 3 1.4 0.78 

347 199 -0.3 
Road 
&Settled 

 5,6,7 1 0.4 0.36 171 170  4 1.8 0.90 
462 229 -1.4 

Commercial 
Ag. 

20 1 0.4 0.36 171  170 - - 0.00 0 0 
0.4 

Wetland For. 
15 - - 0.00 -    0 8 3.6 1.26 

925 321 -3.6 
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Woodland 
For. 

17 - - 0.00 -    0 1 0.5 0.45 
116 115 -0.5 

Logging 
22 - - 0.00 -    0 1 0.5 0.45 

116 115 -0.5 

Grand Total 
 274 100%  46,779  170 220 100%  25,428 

 
  

 
 
 
The results of the LCLU proportions within the buffers of the sample points are fairly 

similar in composition (Table 3). In the 100m buffer of the IFPs, compared to that of 

the RCE area, active agriculture is more dominant and surrounded by a less established 

(younger) shifting cultivation mosaic (less clearings, active agriculture, fallows and 

secondary forest). When considering their most proximate surroundings, as expected, 

the land cover adjacent to the IFPs is more pristine with less signs of anthropogenic 

activity. In the 100m buffer of the IFPs, we do find more settlements, more logging, 

wetland forest and woodlands, but less commercial agriculture, than in the buffer areas, 

however, many of these LCLU classes with smaller proportions are within the 

uncertainty bounds defined by the standard errors (Table 11).  

 

In the buffered area of the IFP, compared to that of the RCE, there is more primary 

forest throughout and there is less rural complex mosaic, including roads and 

settlements, more grassland and more wetland forest. The inverse relationship between 

proximity to the rural complex and forest intactness is what would be expected and 

validates our stratification map (Molinario et al 2017) (Table 11). 
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Table 11. Percent land cover estimates for the sample points, compared to dominant land cover in the 
concentric circular buffer areas around them.  

  RCE IFP 

Class  Code Point 100m 500m 1km 5km Point 100m 500m 1km 5km 
All primary forest 
types 

14,15,
16,17 

33.9 45.1 70.9 78.5 73.8 45.5 54.1 87.3 87.7 87.7 

Secondary forest  12 28.5 20.4 5.5 1.1 - 21.8 15.0 0.5 0.5 0.5 
Old fallows  11 13.5 10.2 0.7 - - 9.5 7.7 - - - 
Clearings  8 8.8 8.7 2.2 - - 9.1 7.3 0.5 0.5 - 
Active fields  9 7.7 3.6 - - - 4.5 2.7 0.5 0.5 - 
Young fallows  10 5.8 3.6 - - - 5.9 3.6 - - - 
Grasslands, der. 
Savannas & 
cropland 

18,19 1.1 0.4 0.4 0.4 0.4 1.4 1.4 3.2 2.7 2.7 

Roads, paths, 
settlements  

5,6,7 0.4 0.4 1.1 0.4 - 1.8 2.3 0.5 - 0.5 

Rural complex (all 
elements of the RC 
mosaic) 

13 - 7.3 18.2 18.9 23.6 - 5.5 6.4 6.4 6.4 

Commercial ag. 20 0.4 0.2 1.4 1.8 2.4  0.4 0.2 0.4 0.6 

Mines 21  0.0 0.0 1.4 2.6  0.0 0.6 1.0 1.8 

Logging 22  0.0 0.2 0.0 1.0 0.5 0.6 0.6 0.6 1.4 

Tot. Commercial 
land uses 

20,21,
22 

0.4 0.2 1.6 3.2 6.1 0.5 1.0 1.4 2.0 3.8 

other 23 - - - - 0.4 - - -  - 

Total             

 

The estimated proportion of area in the RCE with commercial land uses within 5km is 

11.5% whereas in the IFP it is 8.8% (Table 11). Many sample points that occurred in 

primary forest were proximate to large anthropogenic disturbances, whether the rural 

complex, plantations, mining or logging (Figures Figure 4.8,Figure 4.9, Figure 4.10 

and Figure 4.11). When mining was detected it was within rural complex landscapes 

(Figures Figure 4.12 and Figure 4.13). 
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Figure 4.8: Point 201 (oblique view) is primary forest, with a palm oil plantation within 5km 
(4°20’51.24” S, 20°24’19.54” E). 
 

 
Figure 4.9: Point 238 is in a vast palm oil plantation big enough to occupy most of its 1km buffer 
(6°37’54.61” S, 20°53’44.84” E). 

 
Figure 4.10: Point 1255 is secondary forest, on an old logging road that has regrown, the network of 
abandoned logging roads are highlighted on the right for illustration (1°53'47.77"N, 21°58'36.09"E). 
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Figure 4.11: Point 1255 in closer detail.  The abandoned and regrown logging road clearly visible 
(1°53'47.77"N, 21°58'36.09"E). 

 
Figure 4.12: Gold mines (Oblique view) within 5km of sample 249, outlined in red, near Seridi, in the 
Bas-Uele Province, Bondo territoire (4°20'4.63"N, 23°42'6.38"E). 
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Figure 4.13: Another example of a Gold mine within 1-5km of sample 273. (Oblique view). 
 

 

Figure 4.14 Sample point 1014 is part of the Isolated Forest Perforation strata, however, it is part of a 
gallery forest landscape at the edges of the tropical humid forest block, where isolated forest perforations 
within core forest, become “isolated forest patches” within derived savanna landscapes (6°37’54.61’’N, 
20°53’44.84’’). 
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Figure 4.15: An Inselberg landscape in the Ituri Forest in the buffer of sample 83 (2°48’54.57’’N, 
29°08’18.94’’). (Oblique view). 
 
 
 
 

4.4 Data Issues 
 

High resolution satellite imagery acquisitions are needed to accurately interpret 

land cover. Planet labs  aspirations to acquire and provide such imagery (Planet 2017a, 

2017b), as well as datasets from DigitalGlobe (Neigh et al 2013) could prove to be 

useful for the photo-interpretation of land cover over large areas (Finer et al 2018). 

However, the cost of acquiring and processing commercial high resolution imagery 

needs to outweigh the limitations of coarser resolution free imagery such as Landsat. 

Novel cloud-based solutions for accessing high resolution imagery include 

DigitalGlobe’s EV-WHS under the auspices of the NextView license agreement that 

make imagery available to US-government affiliated researchers through the National 

Geospatial Intelligence Agency (NGA). However, this platform does not facilitate 
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efficient use for fast photo-interpretation of hundreds of sample points in the cloud as 

it is oriented instead towards a standard manual “select and download” paradigm. Other 

platforms like DigitalGlobe’s GBDX might fulfill these requirements, but at a cost, and 

while nascent initiatives like Radiant Earth Foundation’s earth observation platform 

will provide free imagery, their efficiency for photo-interpretation and adequacy of the 

available image archive is yet to be tested (Lesiv et al 2018). The photo-interpretation 

protocol, could also be improved in speed for larger sample populations using specific 

and custom tools (Bey et al 2016). 

Google Earth imagery was more frequently available in higher radiometric quality, 

spatial and temporal resolution in areas close to larger settlements and trunk roads. In 

more isolated areas, imagery was often Landsat-scale only, sometimes either extremely 

bright or dark with cloud and haze cover. The percentage of sample points with no data 

in the rural complex area was 45.2%, whereas in isolated forest perforations no data 

occurred for 56% of the sample points Figure 4.18. However, if we consider only the 

samples within 10km of the established rural complex, then the no data proportion 

becomes 45.1% in the RCE as opposed to 53.3 % in the IFP, for a total no data 

percentage in the sample of 48.8% (Figure 4.17).  Furthermore, the imagery available 

in the RCE was also more recent; 57.6% of it taken since 2015, versus only 45.1% in 

the IFPs. It seems that GE has more recent imagery closer to settlements. This should 

be noted and addressed in sample-based studies that use the GE platform to photo-

interpret land cover.  
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Figure 4.16: The distribution of no-data sample points within the sample appears to be geographically 
random and not clustered.  
 

 
Figure 4.17: IFP sample points by distance to the established rural complex: a) IFP w/data, b) IFP w/o 
data. The red line shows the 15km mark.  
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Figure 4.18: The IFP samples with no-data are on average a third further from the established/settled 
areas as the IFP samples for which there is data. There is more data in Google Earth the closer to 
settlements in the DRC.  
 

 
Figure 4.19: Number and percentage of sample points with, and without data allowing photo-
interpretation. 
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Figure 4.20: Temporal distribution of imagery available in Google Earth for photo-interpretation. 
Imagery available for samples closer to settlements was newer, while for samples further from 
settlements it was older.  
 

Finally, our purpose was to describe the RCE and IFP holistically, and not to 

monitor individual LCLUC transitions at the pixel level. For example, a 2015 GFC 

forest cover loss pixel used to select the area to sample could then be photo-interpreted 

with imagery from 2014. For our purposes this is acceptable. The collective sum of all 

the interpretations allows us to trade space for time, and assert the quantitative LCLU 

proportions of the RCE and IFP, for the 15 year period of the study. If for example, the 

process was to be repeated subsequently at decadal intervals, the results would inform 

the decadal change of LCLU composition of the studied areas. 
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4.5 Discussion 
 

Results support the conclusion that currently shifting cultivation remains the 

primary driver of deforestation in the DRC, and although commercial land uses are 

present, their impacts are dwarfed by the reliance of the population on shifting 

cultivation for food and the rural complex mosaic for food, building materials and 

energy needs. These results echo what was recently found by Tyukavina et al. (2018).  

Comparatively, in Chapter 3 it was estimated that in the ERC the percentage of land 

used in the shifting cultivation cycle was 76% and 11% was primary forest, meaning that 87% 

of the established rural complex is available for future shifting cultivation.  With the derived 

annual clearing rate of 4.6%, the theoretical reuse rate for all land to be cycled through the 

shifting cultivation cycle once, was ~18 years (Molinario et al 2017). With the above 

proportions quantified, and assuming the 2000-2015 clearing proportion to be indicative of a 

theoretical annual clearing rate, land in the RCE would take approximately 11 years to be 

cleared once (98%/9%) and in the IFP 10 years (93%/9%). The difference lies in the almost 

double clearing rate compared to the ERC, which is to be expected as the sampling population 

in this Chapter was comprised of GFC forest cover loss pixels, whereas the areas sampled in 

Chapter 3 for the ERC contained mostly secondary forest as well as forest cover loss and non-

forest pixels that were mapped using FACET’s classification. If we assume a lower clearing 

rate, equal to the one found in the established rural complex (4.6%). Then the reuse period of 

land in the RCE would be 21 years and 20 in the IFP, compared to 18 in the established rural 

complex. This means that with proportions of primary forest as high as 41% in the IFP, and 

with average clearing rates of 4.6%, the temporal reuse period of land would still not be long 

enough for all fallows to reach primary-forest like maturity (30-50 years) (Conklin 1961, 

Miracle 1967, (SPIAF) 2007), and farmers will have to farm more frequently secondary forest 

and older fallows. Even if all land in the RCE and IFP was available for shifting cultivation, if 
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we consider clearing rates somewhere between 4.6% and 9% then it would take between 21 

and 11 years for all land available to be cleared once.  

In addition to the analysis of the LCLU inside the RCE and IFP, our results show 

also the landscape-scale presence of large scale commercial land uses. While only 0.4% 

-0.5% of the RCE and IFP sample points are strictly co-located with commercial land 

uses like mining, logging or plantations, 8.9%-11.7% of them have large scale 

commercial land uses within 5km. Commercial land use operations such as logging, 

mining and plantations have broad repercussions on the forest ecosystem as these 

activities attract affiliated communities by giving them a new economic incentive. 

Often, new rural complex areas are formed when informally mined minerals are 

transported via informal routes (Geenen 2011), such as in the north-east of Kisangani. 

Larger commercial land uses, like mining operations for example, provide 

livelihoods for miners but also for their families and entire support communities that 

are present because livelihoods are possible within a context of extreme poverty. These 

services include: transport, catering, and leisure, so much so that in some cases the 

internal economy is dependent on the mined minerals for business transactions, with 

gold being used also to pay a tax to the village chief (Geenen 2011). The food, energy 

and building material needed for these worker populations come from shifting 

cultivation. Pollini (2014)found that each household managed 1-3 active fields along 

with 5-10 plots that are at different phases of fallow, for about 5-10 ha of land in total. 

This all adds up to a substantial footprint of these commercial operations that goes well 

beyond their clear-cut boundaries.  
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Future research should look at the density of the rural complex; its comparative size 

compared to the settlements it surrounds, as this characteristic can be an indicator of 

degradation of the rural complex area and also an indicator of food security. 

Households closer together participate in inter-household cooperation and are able to 

improve food and nutrition security, whereas more isolated households (households 

with high pressure on productive individuals) are at danger for food insecurity and 

malnutrition (Kismul et al 2015). Populations in the cities attract resources produced 

in rural areas and transported to these larger markets by road and river. A study found 

that 75%-95% of bushmeat harvested in rural areas is consumed by hunters and 

neighbors, whereas 80% of bushmeat hunted within 10km of urban areas was sold to 

markets (Dupain et al 2011).  

Results validate the previously published map of the rural complex, its growth and 

separation from isolated forest perforations (Molinario et al 2015). Indeed, throughout 

the sample buffer area, up to 5km around it, the IFP has more primary forest and less 

rural complex areas, including roads and larger settlements. The rural complex 

expansion has a larger proportion of area of LULC classes associated with longer-term 

shifting cultivation agricultural landscapes, such as: active agriculture, fallows and 

secondary forest. The RCE also has more commercial plantations. The IFP instead has 

a greater proportion of area of primary forest, more individual settlements (bush camps 

and other outposts) and more logging areas. It also has more grassland and wetland 

areas close to it.  

Agriculture intensification is often proposed in the DRC to be a ‘land sparing’ 

alternative to shifting cultivation, but the academic debate regarding this continues 
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(Rudel et al 2009, Ickowitz 2006). Some aid organizations active in the DRC believe 

that supporting small farmers might help reduce the risk of larger scale deforestation 

carried out by loggers, large scale plantations and other investors. This results in aid 

projects proposing alternatives to development.  But while some farmers appreciate 

alternatives offered, others express concern, especially women, who in a series of 

interviews for a USAID project expressed concerns that many alternatives require more 

labor, which they are unable or unwilling to provide. In this study women were found 

to be the main agricultural labor force. Market incentives were found to be the major 

driver of agricultural intensification (Pollini 2014).  

REDD+ aims to curb deforestation and habitat reduction, while at the same time 

providing a source of income for communities, monetizing and therefore, it is thought, 

protecting the common community forests. Yet, national REDD+ policies rarely 

include the complexity of shifting cultivation within rural complex LCLU mosaics, 

adopting a simple land-sparing hypothesis (Pirard and Belna 2012). REDD+ has been 

criticized for being another type of “land grabbing”(Carter et al 2007), sometimes 

referred to as “green-grabbing”: a land acquisition and transaction that works within 

inherently corrupt socio-political systems where the rule of law is not adequately solid 

to guarantee that the monetary and power transactions between private and public 

groups occur transparently and fairly (Fairhead et al 2012). Some authors have asked 

whether REDD+ projects in the DRC are merely a distraction from the goal of avoiding 

future large scale industrial plantations and logging for world markets, such as palm oil 

(Megevand 2013).  
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Multi-scale studies of deforestation, like the one presented here, are seldom 

performed because it is difficult to obtain consistent datasets, particularly at local scales 

(Moonen et al 2016). “Results reveal that given lack of cross scale studies, policy 

makers are lacking context specific relevant information at local scales needed to 

design efficient effective and equitable policies” (Moonen et al 2016). To effectively 

intervene in LCLUC trajectories, a mere description of patterns and identification of 

causal effects does not suffice. (Moonen et al 2016). Therefore, the only way to 

correctly internalize the economic, social and environmental effects of large-scale 

commercial operations such as logging, plantations and mining, is to contextualize 

these within their landscapes, and to attempt to include the forest cover loss and 

degradation that they cause and enable, into their footprints.  

 

4.6 Conclusion 
 

Between 2000 and 2015 the total percentage of shifting cultivation land cover 

components (secondary forest, fallows, clearing and active agriculture) in the RCE was 64% 

and in the IFP 51%. If we add the proportions of primary forest, respectively in the RCE and 

IFP the proportion of available land for future shifting cultivation is theoretically 98% in the 

RCE and 92% in the IFP. Clearings account for 9% of both the RCE and IFP. During the 

study period 81% of GFC-observed forest cover loss occurred in the established rural 

complex, 16% in the rural complex expansion area and 3% in isolated forest 

perforations.  A very small proportion of the rural complex expansion area, and of the 

isolated forest perforation area, is occupied by commercial land uses (0.4% and 0.5%). 

The combined percentage of area (0.9%) of large scale commercial land uses in these 
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areas of new primary forest cover loss is therefore even lower than the 2.2% found in 

the baseline established rural complex for 2000 (Molinario et al 2017). However we 

posit that this finding does not mean that there is considerably lower commercial land 

use in the rural complex expansion area and isolated forest perforations, but rather that 

these land uses are dwarfed by the reliance of DRC’s population on shifting cultivation 

and the lack of infrastructure that allows core forest areas to remain impractical or 

impossible to exploit for natural resources. If we extend the analysis to up to 5km 

distance around sample points, 11.5% of the area of the RCE and 8.8% of the area of 

the IFP has commercial land use within it.  
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 Discussion, Conclusions, & Future Research 

5.1 Main Findings 
 

This dissertation has focused on the secondary succession cycle of shifting 

cultivation in the DRC, and its geographical footprint, the rural complex. Each chapter 

built on the previous one, quantifying and contextualizing spatio-temporally forest 

cover loss from shifting cultivation in the DRC for the period 2000-2015.  

Large scale LCLU change dynamics in the DRC, such as commercial 

operations for export, are currently dwarfed by the reliance of rural populations on 

shifting cultivation. However, large-scale commercial land uses lead to increased forest 

loss beyond just the footprint of the activity itself, as their worker populations and 

communities rely on the forest resources for for food, materials and energy.  The maps 

and the sample-based LCLU estimates confirm that where isolated perforations lead, 

the rural complex follows and brings with it commercial land uses, settlements, roads 

and a semi-permanent agricultural area.  

In Chapter 2 use of Landsat spatial resolution satellite data enabled the mapping 

of the first wall-to-wall forest fragmentation map and rural complex footprint map of 

the DRC. Both in national-scale yet in locally relevant detail. A gap was filled in the 

study of land cover and land use change in the country by relating forest cover loss to 

shifting cultivation and the rural complex in a holistic and unambiguous footprint. The 

rural complex is growing as well as isolated forest perforations and existing core forest 

is becoming fragmented and decreasing in size. Forest loss in some areas was found to 

fragment habitats more than in others, and as such it might impact biodiversity and 

forest ecology disproportionately.  Six different types of rural complex expansion and 
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forest perforation were characterized in the DRC, ranging from rural complex areas 

with minimal disturbance to surrounding primary forest, to areas of frontal and 

pervasive anthropogenic encroachment into core primary forest. Between 2000 and 

2010 the rural complex grew by 10% from 12% to 13% of the DRC’s land area, at an 

average yearly rate of 1%, while perforated forest grew by 74%, from 0.8% to 1.5% of 

DRC’s land area in 2010 at an average yearly rate of 0.7%. Core forest decreased by -

3.8% at an average yearly rate of -0.4% per year, from 38% to 36.6% of the 2010 land 

area. The growth of isolated forest perforations by 74% is particularly concerning, as 

these represent a greater threat to the fragmentation of habitats and provide outposts 

that attract more farmers and eventually result in rural complex landscapes.  

In Chapter 3 the use of a simple random sampling scheme using photo-

interpretation of high resolution imagery provided an elegant and efficient method to 

quantify LCLU within the established rural complex for the year 2000. The results are 

the first quantitative results on the LCLU composition of the rural complex and 

estimates of the proportion of active shifting cultivation within it (76%) and the area 

available for future shifting cultivation (87%). Trading space for time, and assuming 

the average annual clearing rate of 4.6%, I estimated that it would take ~18 years for 

all land in the established rural complex to be cleared once. This sets a baseline of land 

use intensity that can be monitored at regular intervals and can provide further 

parameters to tune models estimating future forest cover loss in the country.   

In Chapter 4 a similar sample-based methodology allowed the estimation of 

LCLU outside of the established rural complex, in primary forest cover loss areas for 

the period 2000-2015. Results validate the map of the rural complex from Chapter 2, 
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estimating that there is less active shifting cultivation and more primary forest in the 

rural complex expansion areas and isolated forest perforations. Interestingly a smaller 

proportion of large-scale commercial land uses was found in the rural complex 

expansion areas and isolated forest perforations compared to the established rural 

complex (<1% compared to 2%). At the same time the concentric buffer distance 

analysis around each sample point reveled that between 9% and 12% of primary forest 

cover loss outside of the established rural complex is within 5km of large scale 

commercial land uses. Perhaps even more informative is the opposite fact, that up to 

91% of the sampled points did not have any large scale commercial land uses within 

5km.  

Previously, the extent and implications of forest cover loss from shifting 

cultivation in the DRC had been debated (Ickowitz 2011, Russell et al 2011), partially 

because of the lack of quantitative data and explicit maps that illustrated the differences 

in its appropriation of primary forest, such as the those developed in this dissertation.   

 

5.2 Considerations and Future Research 
 

Future research should focus in two directions: monitoring ongoing LCLUC in the 

country, building robust indicators of land use intensity and land degradation that can 

be routinely assessed at regular intervals in order to evaluate the current environmental 

conditions in the country, and building accurate and high resolution models that can 

estimate future forest loss and degradation. To do so, existing and historical 

connections between population density, migration, conflict, infrastructure and 
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urbanization and its effects on forest fragmentation and degradation need to be 

understood and mapped.  

This could be done by incorporating into analysis population density maps 

(Afripop, Landscan, or others) and conflict event and internally displaced people (IDP) 

camps growth data (ACLED). A settlement map of the DRC could also prove to be 

instrumental in advancing the research of forest degradation in the DRC. Such 

geographical layers could explain rural complex abandonment that is mapped in this 

study and more accurately map the relationship between settlement size, population 

density and rural complex extent; or in other words, investigating the size of the semi-

permanent agricultural area the settlement has throughout time. Monitoring this 

dynamic through time would indicate areas where settlements and rural complex areas 

have grown together and areas where one has grown but not the other, potentially 

indicating the need or success of land use plans in effect. Going back as far as the 

Landsat archive will allow (1984) would also prove to be very interesting in 

characterizing the rural complex change dynamic.  

Mapping the rural complex footprint and isolated forest perforations, at regular 

intervals in the future will help define the trends of primary forest appropriation into 

the rural complex, and of forest fragmentation. There are plans at the World Resources 

Institute to continue the work presented in this dissertation by developing predictive 

models of forest cover loss and forest degradation in the Congo Basin.  

In Chapter 2 many isolated forest perforations were mapped, and then sampled in 

Chapter 4 with high resolution satellite imagery. Some of these areas had extremely 

remote settlements, sometimes as far as 10-15km from the first observable sign of 
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human presence. These areas could be the object of future research, investigating 

connections with conflict and possibly the need for some ethnic clans and religious 

groups to avoid persecution and relocate to remote areas to ensure their survival.  

The use of forest gain (regrowth) from GFC could also be important in advancing 

the understanding of the land change dynamics of active and inactive rural complex 

areas. This dissertation only used forest cover loss observations to map the rural 

complex, so areas of active regrowth of forest are not mapped and could indicate 

additional dynamics of change in the rural complex footprint.  

Existing research also points at the importance of distance and accessibility to 

markets as a modulating driver for what and how resources are extracted from given 

areas (Bwangoy et al 2010, Potapov et al 2008, Lubamba et al 2013, Defourny et al 

2011), therefore investigating how agricultural areas feed and fuel accessible markets 

is of paramount importance,  especially in peri-urban areas. The dynamic of forest 

cover loss in peri-urban areas will be evermore important with estimated population 

increase and urbanization. Future research should investigate this dynamic, targeting 

where forest cover loss is high and not related to small-scale livelihood farming.  

5.3 Concluding Thoughts 
 

Enormous advances in the wall-to-wall remote sensing of forest cover have 

allowed us over the last 6 years to have a more detailed and synoptic view of the forest 

landscape in the DRC (Potapov et al 2012). The mapping methods developed in the 

DRC for FACET were extended globally, and doubled in spatial resolution in the GFC 

product (Hansen et al 2013). Interactive information from these remote sensing 
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products was made available with unprecedented tools developed by Google and by 

the World Resources Institute (WRI) Global Forest Watch (GFW). As of 2013, the 

world had never had as much detailed and timely maps on forest extent and forest loss, 

at the global level.  

These maps provide the basic building blocks for analyzing and understanding 

forest cover loss in any given location, but cannot by themselves provide spatial context 

to explain whether the loss occurring is part of interconnected dynamics or isolated 

ones. I see therefore the role of satellite remote sensing research groups not only as data 

providers but also as enablers of analyses in novel cloud-based interactive GIS and 

remote sensing platforms like Google Earth Engine, WRI’s Global Forest Watch and 

even nascent initiatives like Radiant Earth Foundation.  

Chapter 2 was published in 2015 in a peer-reviewed paper titled: “Forest cover 

dynamics of shifting cultivation in the Democratic Republic of Congo: a remote 

sensing-based assessment for 2000–2010”, cited 22 times and downloaded over 4,000 

times. Chapter 3 was published in 2017 in a peer–reviewed paper titled:  

“Quantification of land cover and land use within the rural complex of the Democratic 

Republic of Congo”, cited 5 times and downloaded over 2,000 times. Chapter 4 was 

submitted for publication in the fall of 2018, with the title: “Contextualizing 

Landscape-Scale Forest Loss in the DRC 2000-2015”.  

This research was extended by the World Resource Institute to the Republic of 

Congo, and updated to 2015. A blog post on WRI’s Global Forest Watch highlights its 

uses in informing land use planning decisions (de Araujo Barbosa et al 2018) and an 

article written about it on Mongabay (Cannon 2018) highlights the need for holistic 

https://tinyurl.com/y7ckwcau
https://tinyurl.com/yaqw3yg3
https://blog.globalforestwatch.org/data/new-map-helps-distinguish-between-cyclical-farming-and-deforestation-in-the-congo-basin
https://news.mongabay.com/2018/02/maps-tease-apart-complex-relationship-between-agriculture-and-deforestation-in-drc/
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forest cover loss analyses that tease apart cyclical livelihood forest clearing from more 

permanent land use conversions.  

Data and maps from this research were made available online, in a Website and 

WebGIS portal I developed (Molinario 2015). All the code developed (mostly in 

python) for this dissertation was made publicly available on github (Molinario 2018).   

I hope that UMD Global Analysis and Discovery (GLAD) can continue providing these 

satellite-based datasets and maps and that WRI or other organizations can continue 

championing the use of these data in land use planning and LCLUC mapping and 

monitoring. Monitoring and projecting future change in the rural complex footprint and 

isolated forest perforations in the DRC will be key to planning for the dramatic 

population increases that are estimated. .  

This dissertation research provides this necessary context to forest cover loss 

observations in the DRC, while retaining a quantitative, national-scale perspective. It 

provides methods for holistically grouping and separating forest cover loss 

observations that indicate different dynamics occurring. It is clear that it is necessary 

to not only have the per-pixel satellite remote-sensing based wall-to-wall maps of land 

cover, but also the added-value research products that contextualize and explain forest 

cover loss observations quantitatively. The people better positioned to do this type of 

analytical work should work closely with the producers of the remote sensing based 

maps, so that a dialogue and inter-pollination of ideas can flourish. In addition to that, 

providing all the data developed in interactive and open formats (such as Google’s 

Earth Engine, WRI’s GFW and the UMD-GLAD website) allows for stakeholders 

everywhere to be able to investigate the LCLUC issues pertaining to forest cover loss 

http://congo.iluci.org/shiftingcultivation/
http://congo.iluci.org/shiftingcultivation/
https://github.com/gmolinario/rural_complex_model


 

 

120 
 

in their area of interests, for free.  It should be noted that at the very base of all this 

work is the opening of the USGS Landsat archive, without which the synoptic wall-to-

wall mapping of forests would not be possible. Similarly, access to free archives of 

very high resolution satellite imagery would greatly improve the speed and efficacy 

with which researchers can map and monitor forest cover loss.  

 Ultimately, in the DRC, low rates of deforestation mask the real threats to 

forests in the country, with much higher rates than the national average in heavily 

populated regions with a strong agricultural sector and subsistence farming. War, 

poverty and collapsed government and infrastructure have stifled the country and 

created a fundametal insufficiency of institutional capacity for natural resource 

management. Furthermore, massive population increase in the DRC is projected, and 

under a business as usual scenario of land use it is estimated that nearly all the tropical 

humid forest in the country will be gone by the end of the century (Tyukavina et al 

2018). Contextualizing forest cover loss in terms of its contribution to the expansion of 

the human footprint in the DRC takes us a step further in quantifying resulting impacts 

on human development and maintenance of ecosystem services.  
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Glossary & Acronyms 
 

AOI: Area of Interest 

CARPE: Central Africa Regional Program for the Environment 

FACET: Forêts d'Afrique Centrale Evaluées par Télédétection 

FAO: Food and Agricultural Organization of the United Nations.  

GFC: Global Forest Change product 

GSFC: NASA’s Goddard Space Flight Center 

NASA: The United States’ National Aeronautics and Space Administration 

NTFP: Non-timber forest products 

OSFAC: Observatoire Satellital Forêts d’afrique centrale  

PES: Payment for ecosystem services 

REDD+: Reduced Emissions from Deforestation and Degradation  

UNFCCC: United Nations Framework Convention on Climate Change 

USAID: United States Agency for International Development  
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