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ABSTRACT: Presented is an application of genetic algorithms to the problem of composing music, in which
GAs are used to produce a set of data filters that identify acceptable material from the output of a stochastic
music generatoil he algorithmic composition systamriationsis described and musicadamples of its out-

put are gien. Also discussed briefly is the systempplication to microtonal music.

INTRODUCTION: Search and the genetic algorithm

Contemporary algorithmic composition ranges from traditional stochastic methods seen in M aad-Jam F
tory (Zicarelli, D.) to compbe rule-based systems such as EMI (Cope, D. 1987, 1992) and Cyphe, (Ro
R.). This paper describes a composition process that combines the best of dhasmeiaes, achigng the
simplicity of a stochastic process and the determinism of a rule-based system.

A popular vay to sole a problem, answer a question, or in generavel@rsuitable structure to fit a set of
requirements, is to cast the problem or questionsesaih problem a technique central to artificial intelli-
gence. The goal is to look through the entire set of possible solutions to find one that satisfies the original
criteria; the trick is to structure the set of all possible solutions so that one doegeniat tlzeck wery solu-
tion, alloving the search to complete in a finite amount of time.

One can think of the composition of music as just such a problem: consider the set of all possible compo-
sitions as the solution space, with the problem at hand being, “find a composition that soufid$gosak
lution space is unstructured in that good solutions may ketogerfectly avful ones; if you change avie
key notes in a piece it may beconae fess interesting, though on the agd it appears virtually identical. An
unstructured solution space neaksearching through it unpredictable and therefofiedtt

Enter the genetic algorithm (Holland, J.), atremely efective technique for searching enormous, possi-
bly unstructured solution spaces. The algorithgirewith randomly-generated solutions to a problem and
uses the equalent of biological recombination to find better solutions, ultimately ending up with an optimal
set. The solutions are representedthipmosomesstrings ofallelesrepresented by strings of numbers, and
the recombination of chromosomes is simply a matter of creatmgtni@gs with alleles tadn from the par-
ent chromosomes. Since solutions arelved by trying out answers and combining the answers thid w
best, the technique is particularly well-suited to solving “fuzzy” problems where the solution domain is poor-
ly behaved, or where there is no cleaayto judge the solutions objectiy.

The technique has been used in music before: (Holnd®91) describes the application of genetic algo-
rithms to thematic transformation, (Biles, J.) describes a genetic-based jazz soloist, anit{Horpde-
scribes a genetic algorithm for creating interestiryghmms. The biggest problem seems to be the size of the
search space; successful GA-music studige had restricted goals, because the problem domain ggs lar
quickly and therefore carergence to a satia€tory solution may takextremely long. Horner deals with mor-
phing one melody into anothdBiles generates single melodies on top @kgichord progressions, and
Horowitz deals with rigthms that span only one measure. Titigsegiment restricts the focus of the search
differently; instead of reducing the size of the problem domain, this GA deals with lailding blocks.

IMPLEMENTATION: Variations

The project bgins with an attempt to reduce the autb@ompositional processes to wf@mple rules that
can be easily transformed into a computer program. TheMalipis a &ir approximation:

1.Define a set of primary motives to be used in the composition.

2.Compose plases by layering and sequencingvmaotives one at a time

3.Create n&v motives by selectingoim the primary motives and motivesealdy in the ptase then po-
ducing variations on the selection.

4.Join the phases tgether into lager statements.

These rules form the basis of the seafitevsystenvariations, depicted in Fig. 1. The composition of mo-
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The composer and ear are genetic agentg;areeolved until the cooperate to produce “good” music, an
only then is material generated. Each phrase is composed ore ataitime. When a meé is added to the
working phrase, the ear module is consulted; if it disagmmahe motie is remeed. When there are enoug
usable phrases, a number of structure chromosomes are produced by the arranger module, dicth&ng
shorter phrases will be put together to form gdapiece. The resultant pieces are auditioned and the succe
structure chromosomes alled to recombine to producemehromosomes. The process thus creates m
that gets “better” as more generations of recombination and auditions go on.

Figure 1. The algorithmic composition systesmriations

tives, aluation of the music, and arranging of the piece are done by genetic agerdsmleserear and
arranger modules. The composer module produces music, the ear module filters outacisagishaterial,

and the arranger module imposes an order on wéwaiteleft. The human operator judges the agents on their

ability to produce pleasing music, and recombines successful agents to produce better agents.

To male the genetic search problem feasible, one can either reduce the size of the problem domain and deal

with simpler music, or one can impose a certain amount of orderakadwith laiger huilding blocks. Instead
of working at the note ie=l, this eperiment deals with the hightavel structures of phrases and mesf. The
system composes angaduates small phrases, then arranges those phrasesgetcstatements. Order is im-

posed by ensuring that all notes in the resultant piece belong temmglated to each other through recog-
nizable transformations such as transpositiorersion, and aried meterThis restriction guarantees that a
certain amount of thematic cohesion is inherent in the resultant piece, therefore more attention and compute

cycles can be placed on harmonic progression.



The composition process is straightfand. The composer and ear agents start with randomly-generated
characteristics that need to be tailored to suit the tastes of the human ofereg¢athese are in place, com-
position bgins. The human operator defines a set of primarywesto be used in the composition. The com-
poser module create@nations on these mats, using them touild up phrases one meé at a time.
Wheneer a motve is added to a phrase, the ear module is consulted. If the ear module desmppitbe
resulting harmonic content, the magiis reme@ed. The musical output thus adheres to the systems of tonality
defined by the ea’chromosomes. Once there are enough usable phrases, the arranger module creates order-
ings that are thervaluated and recombined to produce better orderings.

Genetic algorithms are used in each of the components, albeiferedifways. The composer module is
a stochastic process that producasations on input material. Its parameters are determined by a set of chro-
mosomes, and its use of genetic algorithms is therefore similar to studies on parameter couplingiHorner
1993). The arranger module &kas input a list of candidate phrases deemed usable and generates orderings
of subsets of the list; not all phrases are usedtényeordering. The “best” orderings are used to create ne
orderings, and so its use of genetic algorithms is similar to the use of GAs owélirgrsalesman problem
(Goldbeng, D.; Grefenstette, J.). The ear module alone is deterministic in itgdelitas a collection of chro-
mosomes, each of which represents fediht system of tonalityrhe initial chromosomes are randomly pro-
duced, and the music $hereate sounds accordingly random. As suceegg@nerations of ear chromosomes
evolve, the ear module becomes better and better at producing coherent tonal systems.

THE EAR: A method for representing systems of tonality
The ear module is the most important piece of the system, amednits a more detailed description.

The module is a collection of chromosomes, each of which acts as a data filter that identifies harmonic com-
binations as “good” or “batiBefore composition kgins, the chromosomes arbred to reflect the musical
tastes of the human operatBirst, a set of randomly-generated ear chromosomes are auditionad welho
they filter material. Thewluation mechanism in this process, as in virtually all other genetic music studies,
is a human judge. Musicak@amnples are created and passed through the ear chromosomes, and the human
operator assigns weights to chromosomes accordinguavid they agree with his or her inclinations. Chro-
mosomes with high marks are moreelikto reproduce and @ their alleles present in thextgeneration.
Successie generations thereforetebit the best traits of pvéous generations. Once there is a satisiry
set of filters, the process st in Fig. 1 bgins.

Chromosome structure

The alleles of the ea’chromosomes represeantid vertical pitch combinations. Theare similar to inter-
val classesyaept that the include a number of pitches from one to twelvEach allele is twedvbits long,
representing a set of semitones that can be played simultandoesiytwo adjacent alleles indicate alid
unidirectional transition. Lik intenal classes, all twebstranspositions of aalid pitch combination (or tran-
sition between t@ combinations) are als@ahd. For example, if two adjacent alleles indicate that
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A piece of music is accepted by an ear chromosome if the chromosomevéndsransition in the piece
valid. The music is first collapsed into a single vetd he ear module checksrtical pitch combinations at
the resolution of an eighth note. Duringegy eighth notewery sounding erticality, whether an attack or sus-
taining pitch, is considered part of the combination. Térécal pitch combination is represented by an inte-
ger; each note in a twedstone octae corresponds to a bit in the first twehits of an intger Therefore, an
transition that is a subset of alid transition is easily and quickly identified bByding the representations
togetherIf the transition is not a subset, then each of its mvglnspositions are compared in turn.

Microtonal applications

The system isx@remely flible. Note that the general representationadidvcombinations is not depen-
dent on the choice of a twehtone octae. One can represent microtonaftical pitch combinations by sim-
ply using a diferent number of bits in the representatioor. &ample a 19-bit allele corresponds to aneeta
divided into 19 semitones. Sincelid combinations ofertical pitches are chosen by identifying which ones
“sound good” rather than by a rule-based method (which may or may nets@age in a microtonal scenar-
i0), theearis a viable approach to composing microtonal pieces. One can also prothreatdional systems
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Figure 2c. Primary motives used toeate the xamples abee

in different rgjisters by changing the current implementation of collapsing all notes into a singteluefare
validation. This methodafls to recognize that dissonant pitches are ldessife when widely separated.

RESULTS: System output, current work

Fig. 2a gves four &cerpts of compositions produced by the system. Fig. 2vsstie ear chromosome and
2c¢ shovs the primary moties used to produce the pieces. Tkamples gie an indication of he the final
motives typically resemble those from whichyttege dened. The transformations tend to recognizalie b
certainly not olious. Current wrk investigates bgond simple transformation of medis, tavard the deel-
opment of moties and thematic material.
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