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Process Information Need Information SourcesInformation Filtering Stable and Speci�c Dynamic and UnstructuredInformation Retrieval Dynamic and Speci�c Stable and UnstructuredDatabase Access Dynamic and Speci�c Stable and StructuredInformation Extraction Speci�c UnstructuredAlerting Stable and Speci�c DynamicBrowsing Broad Unspeci�edEntertainment Unspeci�ed Unspeci�edTable 1: Examples of information seeking processes.1 IntroductionWith the growth of the Internet and other networked information, research in automaticmediation of access to networked information has exploded in recent years. This reportreviews existing work on text �ltering, a type of \information seeking." Here we use\information seeking" as an overarching term to describe any processes by which usersseek to obtain information from automated information systems [27]. Table 1 showscommon types of information seeking processes. In the \information �ltering" processthe user is assumed to be seeking information which addresses a speci�c long-terminterest. In this report we will describe general approaches to the information �lteringproblem and speci�c techniques that are tailored for \text �ltering," the case in whichthe information sought is in text form.Information �ltering systems are typically designed to sort through large volumesof dynamically generated information and present the user with sources of informationthat are likely to satisfy his or her information requirement. By \information sources"we mean entities which contain information in a form that can be interpreted by auser. We commonly refer to information sources which contain text as \documents,"but in other contexts these sources may be audio, still or moving images, or evenpeople. The information �ltering system may either provide these entities directly(which is practical when the entities are easily replicated), or it may provide the userwith references to the entities.This description of information �ltering leads immediately to three subtasks: col-lecting the information sources, selecting the information sources, and displaying theinformation sources. Figure 1 depicts this subdivision, one which is applicable to a widevariety of information seeking processes. The same three tasks are also fundamentalto a process commonly referred to as \information retrieval" in which the system ispresented with a query by the user and expected to produce information sources whichthe user �nds useful. \Text retrieval," the specialization of information retrieval toretrieve text, has an extensive research heritage. In one of the classic works on infor-mation �ltering, this observation led Belkin and Croft to suggest that the information�ltering process would be an attractive application for techniques that had alreadydeveloped for information retrieval systems [2].The distinction between process and system is fundamental to understanding the2



Collection Selection DisplayFigure 1: Information seeking task diagram.di�erence between information �ltering and information retrieval. By \process" wemean an activity conducted by humans, perhaps with the assistance of a machine.When we refer to a type of \system" we mean an automated system (i.e., a machine)that is designed to support humans who are engaged in that process. So an information�ltering system is a system that is intended by its designers to support an information�ltering process. Much of the confusion that arises on this issue can be traced back tocreative applications of techniques that were designed originally to support one type ofinformation seeking process (e.g., information retrieval) to another (e.g., information�ltering).Any information seeking process begins with the users' goals. The distinguish-ing features of the information �ltering process are that the users' information needs(or \interests") are relatively speci�c (a point we shall come back to when we de�nebrowsing), and that those interests change relatively slowly with respect to the rate atwhich information sources become available. Although the information retrieval pro-cess is also restricted to speci�c information needs, historically information retrievalresearch has sought to develop systems which use relatively stable information sourcesto respond to collections of (possibly) unrelated queries. So a traditional informationretrieval system can be used to perform an information �ltering process by repeat-edly accumulating newly arrived documents for a short period, issuing an unchangingquery against those documents, and then 
ushing the unselected documents. But theinformation �ltering process is distinguished from the information retrieval process bythe nature of the user's goal. Figure 2 depicts this distinction graphically. While thegrand challenge for information seeking systems is to match rapidly changing infor-mation with highly variable interests, information retrieval and information �lteringboth explore important areas of this problem space for which a number of practicalapplications exist.It is useful to highlight the distinction between information �ltering and informationretrieval because systems designed to support the information �ltering process canexploit evidence about relatively stable interests to develop sophisticated models ofthe users' information needs. Information �ltering can be viewed as an application ofuser modeling techniques to facilitate information seeking in dynamic environments. Insummary, the design of information �ltering systems can be based on two establishedlines of research, information retrieval and user modeling.1.1 Collection and DisplayThis report describes the design of systems to support the text �ltering process withparticular emphasis on the information selection component. Because such an emphasismight leave the reader with the mistaken impression that collection and display arelesser challenges, we pause brie
y to describe the relationship between selection andthe other two components depicted in �gure 1.3
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Figure 2: Information seeking processes for relatively speci�c information needs.Dynamic information can be collected actively (e.g., with autonomous agents overthe World Wide Web), collected passively (e.g., from a newswire feed) or some com-bination of the two. Early descriptions of the information �ltering problem implicitlyassumed passive collection (c.f. [7, 18]). As the amount of electronically accessible in-formation has exploded, active collection has become increasingly important (c.f. [44]).Active collection techniques can bene�t from a close coupling between the collectionand selection modules because they exploit both user and network models to performinformation seeking actions in a network on behalf of the user. In a fully integratedinformation �ltering system, some aspects of user model design are likely to be commonto the two modules. That commonality would provide a basis for sharing informationabout user needs across the inter-module interface. But because the purpose of thecollection module is to choose whether to obtain information before that informationis known while the purpose of the selection module is to choose information to retainfor display to the user once that information has been collected, the user model for theselection module is not likely to be identical to the user model for the collection mod-ule. In the succeeding sections we will generally limit the discussion to systems whichuse passive collection techniques, both because this choice allows us to concentrate onthe selection component and because there has been little reported on how the twocomponents can be integrated.Such a clean division is not possible for the interface between the selection andthe display components, however. The goal of an information �ltering system is toenhance the user's ability to identify useful information sources. While this can beaccomplished by automatically choosing which sources of information to display, expe-rience has shown that user satisfaction can be enhanced in interactive applications byusing techniques which exploit the strengths of both humans and machines.A personalized electronic conference system that lists submissions in order of de-creasing likelihood of user interest is one example of such an approach. The automaticsystem can use computationally e�cient techniques to place documents which are likelyto be interesting near the top of the list, and then users can rapidly apply sophisticatedheuristics (such as word sense interpretation and source authority evaluation) to selectthose documents most likely to meet their information need. If the system has pro-4



duced a good rank ordering, the density of useful documents should be greatest nearthe top of the list. As the user proceeds down the list, selecting interesting documentsto review, he or she should thus observe that the number of useful documents is de-creasing. By allowing the human to adaptively choose to terminate their informationseeking activity based in part on the observed density of useful documents, human andmachine synergistically achieve better performance than either could achieve alone.In other words, in interactive applications an imperfectly ranked list (referred to as\ranked output") can be superior to an imperfectly selected set of documents (referredto as \exact match" selection) because humans are able to adaptively choose the setsize based on the same heuristics that they use to choose which documents to read. Thechoice of a ranked output display design imposes requirements on the selection module,however. Because the display module must rank the documents, the selection modulemust provide some basis (e.g., a numeric \status value") from which the ranking can beconstructed. Display design is a rich research area in its own right, but our discussionof the issue is focused solely on aspects of the display design that impose requirementson the selection module.1.2 Other Information Seeking ProcessesWe have already mentioned information retrieval, but there are other information seek-ing processes for which the decomposition in �gure 1 is appropriate. One of the mostfamiliar is the process of retrieving information from a database. The distinguishingfeature of the database retrieval process is that the output will be information,1 whilein information �ltering (or retrieval), the output is a set of entities (e.g., documents)which contain the information which is sought [3]. For example, using an library cat-alog to �nd the title of a book would be a database access process. Using the samesystem to discover whether any new books about a particular topic have been addedto the collection would be an information �ltering process. As this example shows,database systems can be applied to information �ltering processes, and we will presentexamples of this in section 4.Another process that can be described using �gure 1 is information extraction.The information extraction process is similar to database access in that the goal is toprovide information to the user, rather than entities which contain information. It isdistinguished from the database access process by the nature of the sources from whichthat information is obtained. In the database access process information is obtainedfrom some type of database (e.g., a relational database), while in information extractionthe information is less well structured (e.g., the body of an electronic mail message).Information extraction techniques are sometimes found in the selection module of atext �ltering process, helping to represent texts in a way that facilitates selection.One interesting variation on the information extraction and database access pro-cesses is what is commonly referred to as \alerting." In the alerting process the infor-mation need is assumed to be relatively stable with respect to the rate at which theinformation itself is changing.2 Monitoring an electronic mailbox and alerting the user1While it is common to draw a distinction between information and data in which the concept of \infor-mation" includes some basis for its interpretation, our focus on selection makes it possible to combine thetwo concepts and refer to both as \information."2Recall that in an information �ltering process it is the information sources, rather than the information5



whenever mail from a speci�c user arrives is one example of an information alertingprocess. Presenting mail from that user �rst in a sorted list would be an example ofinformation �ltering.Database retrieval, information extraction, and alerting techniques all inform text�ltering practice, and three bene�t from advances in text �ltering research. We donot intend to comprehensively review those research areas, but we do occasionallymention how relevant technologies developed to support those processes can be appliedto support the information �ltering process.Finally, \browsing" is another information seeking process for which the decom-position shown in �gure 1 is appropriate. Since browsing can be performed on eitherstatic or dynamic information sources, browsing has aspects similar to both informa-tion �ltering and information retrieval. \Sur�ng the World Wide Web" is an exampleof browsing relatively static information, while reading an online newspaper would bean example of browsing dynamic information. The distinguishing feature of browsingis that the users' interests are assumed to be broader than in the information �lteringor retrieval processes. Precisely what is meant by \broader" is di�cult to de�ne, how-ever, and the distinction is often simply a matter of judgement. In order to sharpenthe distinction for the purpose of this report, we propose an operational de�nition ofbrowsing. When an interest is so broad that it cannot be represented e�ectively inan information �ltering (or retrieval) system, we will refer to the information seekingprocess as browsing rather than as �ltering or retrieval. In other words, we proposethat researchers seek to characterize the broadest interests for which their information�ltering systems are useful, and then refer to the limitations they discover in that wayas the dividing line between �ltering and browsing for their system.2 TerminologyIn a �eld as diverse as information �ltering it is inevitable that a rich and sometimescon
icting set of terminology would emerge. Sometimes this is simply the result ofdi�ering perspectives, other times new terminology is needed to convey subtly di�er-ent meanings. For example, \information retrieval" is sometimes used expansively toinclude information �ltering. But it is also commonly used in the more restricted sensethat we have de�ned. Information �ltering is alternatively referred to as \routing"(with a heritage in message processing) as \Selective Dissemination of Information" or\SDI" (with a heritage in library science), as \current awareness," and as \data min-ing." Sometimes routing is used to indicate that every document goes to some (andperhaps exactly one) user. Information �ltering is sometimes associated with passivecollection of information, and is sometimes meant to imply that an all-or-nothing (i.e.,unranked) selection is required. SDI is sometimes used to imply that the pro�les whichdescribe the information need are constructed manually. The use of \current aware-ness" is sometimes meant to imply selection of new information based solely on thetitle of a journal, magazine, or other serial publication. And \data mining" is some-times taken to imply that vast quantities of information are available simultaneously.All of those interpretations have a historical basis, but it is not uncommon to �ndthese terms used to describe systems which lack the distinguishing characteristics ofitself , which change. 6



their historical antecedents. We shall avoid this problem by referring to all of thesevariations as \information �ltering."Taylor de�ned four types of information need (visceral, conscious, formalized, andcompromised) that re
ected the process of moving from the actual (but perhaps unrec-ognized) need for information to an expression of the need which could be representedin an information system [39]. In common use, however, application of the terminologyis unfortunately not nearly so precise. The visceral information need is often referredto as an \interest" or simply as an \information need." But it is occasionally referredto as a topic, a term that is sometimes (e.g., in the TREC evaluation we describe insection 4) used to describe the formalized (i.e., the human expression of) the informa-tion need. And in some experimental work, the visceral information need is referredto as a \query" even though \query" is the traditional term for Perry's concept ofa compromised information need that could be submitted to an information retrievalsystem. In this report, we use \interest" and \information need" interchangeably torefer to the visceral information need, and reserve the use of the terms \topic" and\query" for their more speci�c meanings.In an information �ltering system, the system's representation of the informationneed (i.e., the compromised information need) is commonly referred to as a \pro�le."Because the pro�le �lls the same role as what is commonly called a \query" in infor-mation retrieval and database systems, sometimes the term \query" is used instead of\pro�le" in information �ltering as well. It would not be technically correct to call thepro�le a \user model" because a user model consists of both a representation of theusers interests and a method for interpreting that representation to make predictions.But that usage occasionally appears as well. We shall avoid confusion on this subjectby using only the term \pro�le" when referring to the compromised information needin the context of information �ltering.3 Historical DevelopmentLuhn introduced the idea of a \Business Intelligence System" in 1958 [25]. In Luhn'sconcept, library workers would create pro�les for individual users, and then thosepro�les would be used in an exact-match text selection system to produce lists of newdocuments for each user. Orders for speci�c documents would be recorded and usedto automatically update the requester's pro�le. Foreshadowing later concerns aboutprivacy, he also observed that a set of pro�les could be used to identify which usershad expertise in speci�c areas.Luhn's early work identi�es every aspect of a modern information �ltering system,although the micro�lm and printer technology of the day resulted in signi�cantly dif-ferent implementation details. In describing the function of the selection module as\selective dissemination of new information" he coined the term which described this�eld for nearly a quarter century.A decade later, widespread interest in Selective Dissemination of Information (SDI)resulted in creation of the Special Interest Group on SDI (SIG-SDI) of the AmericanSociety for Information Science. Houseman's 1969 survey for that organization iden-ti�ed 60 operational systems, nine of which served over 1,000 users each [18]. Thesesystems generally followed Luhn's model, although only four of the 60 implemented7



automatic pro�le updating, with the rest about evenly split between manual mainte-nance of the pro�les by professional support sta� or by the users themselves. Twofactors had led organizations to make this investment in SDI: the availability of timelyinformation in electronic form, and the a�ordability of su�cient computing capabilityto match those documents with user pro�les. These are the same factors motivating in-formation �ltering today, although distribution of scienti�c abstracts on magnetic tape(the dominant source of external information at the time) has been replaced by nearlyinstantaneous communications across large networks of interconnected computers.Denning coined the term \information �ltering" in his ACM President's Letterthat appeared in the Communications of the ACM in March of 1982 [7]. Introducingthe new ACM Transactions on O�ce Information Systems, Denning's objective wasto broaden a discussion which had traditionally focused on generation of informationto include reception of information as well. He described a need to �lter informationarriving by electronic mail in order to separate urgent messages from routine ones, andto restrict the display of routine messages in a way that matches the personal mentalbandwidth of the user. Among the possible approaches he identi�ed was a \content�lter." The remaining six techniques (hierarchical organization of mailboxes, separateprivate mailboxes, special forms of delivery, importance numbers, threshold reception,and quality certi�cation) all required the cooperation of the other users, and hencewould better be studied from a more global perspective the receiver's local scope ofaction represented by the information seeking model in �gure 1. We shall have moreto say on Denning's other approaches in section 5.3.2.Over the subsequent decade, occasional papers on information �ltering applicationsappeared in the literature. While electronic mail was the original domain about whichDenning had written, subsequent papers have addressed newswire articles, Internet\News" articles,3 and broader network resources [9, 19, 30, 43]. The most in
uentialpaper of this period was published in the Communications of the ACM by Maloneand others in 1987 [26]. There they introduced three paradigms for information selec-tion, cognitive, economic, and social , based on their work with a system they calledthe \Information Lens." Their de�nition of cognitive �ltering, the approach actuallyimplemented by the Information Lens, is equivalent to the \content �lter" de�ned ear-lier by Denning, and this approach is now commonly referred to as \content-based"�ltering. They also described an economic approach to information �ltering, a gen-eralization of Denning's \threshold reception" idea, that had implications beyond thescope of the information seeking system model in �gure 1. We describe the economicissues related to information �ltering brie
y in section 5.3.3.The most important contribution of Malone and his colleagues was to introducean alternative approach which they called social (now also called \collaborative") �l-tering. In social �ltering, the representation of a document is based on annotationsto that document made by prior readers of the document. They speculated that byexchanging this sort of information, communities of shared interest could be automat-ically identi�ed.4 If practical, social �ltering would provide a basis for selection of3Internet \News" (more properly USENET News) is not a news source in the traditional sense, but rathera form of distributed electronic conference support system in which submissions (referred to as articles) arepropagated to central repositories at participating institutions.4The principal di�erence between social �ltering and Denning's more limited concept of \quality certi�-cation" is that annotations can be combined more 
exibly in social �ltering.8



information items, regardless of whether their content could be represented in a waythat was useful for selection. The balance between content-based and collaborative�ltering is an important unresolved issue, and we will have much more to say on therelative merits of the two approaches in the sections that follow.Large-scale government-sponsored research on information �ltering also began inthis period. In 1989 the United States Defense Advanced Research Projects Agency(DARPA) sponsored the �rst of an ongoing series of Message Understanding Confer-ences (MUC) [23, 17].5 The principal thrust of those conferences has been use of infor-mation extraction techniques to support the selection of messages. In 1990, DARPAlaunched the TIPSTER project to fund the research e�orts of several of the MUCparticipants [12]. TIPSTER added an emphasis on the use of statistical techniques topreselect messages that could then be subjected to more sophisticated natural languageprocessing. In TIPSTER, this the preselection process is known as \document detec-tion." In 1992 The National Institute of Standards and Technology (NIST) capitalizedon this research by co-sponsoring (with DARPA) an annual Text REtrieval Conference(TREC) focused speci�cally on text �ltering and retrieval [13].So for the �rst decade after Denning identi�ed networked information as an im-portant application for �ltering technology, information �ltering was either addressedepisodically or included as part of a broader research e�ort. Finally, in November of1991, Bellcore and the ACM Special Interest Group on O�ce Information Systems(SIGOIS) jointly sponsored a workshop on \High Performance Information Filtering"that brought together a substantial quantity of research to establish a basis for theexplosive growth the �eld has experienced in the past �ve years. Forty contributorsexamined the area from a wide variety of perspectives, including user modeling, infor-mation selection, application domains, hardware and software architectures, privacy,and case studies. A year later, in December of 1992, expanded versions of nine pa-pers from that workshop appeared in a special issue of the Communications of theACM [1, 2, 4, 10, 11, 24, 31, 36, 37].4 Case StudiesThe recent surge of interest in information �ltering has actually contributed to the 
oodof information, since there is now more being published in the �eld than any singleindividual could hope to read. In part this results from the coincident adoption of theWorld Wide Web as a rapid means for the dissemination of academic work. Presentlythere are literally hundreds of documents about information �ltering accessible throughthat medium.6 In this section we describe the two dominant research paradigms,content-based and social �ltering, and examine issues related to each. We have selectedsystems to discuss which highlight the most important approaches that have been usedand the signi�cant issues which have been raised.5The �rst two Message Understanding Conferences were known as \MUCK-I" and \MUCK-II." Subse-quent conferences adopted the shorter acronyms \MUC-3," etc.6Network-accessible resources on information �ltering that are known to the authors are collected athttp://www.ee.umd.edu/medlab/�lter 9



4.1 Content-Based FilteringWith a research heritage extending back to Luhn's original work, the content-based�ltering paradigm is the better developed of the two. In content-based �ltering, eachuser is assumed to operate independently. As a result, document representations incontent-based �ltering systems can exploit only information that can be derived fromdocument contents. Yan implemented a simple content-based text �ltering systemfor Internet News articles in a system he called SIFT [46].7 Pro�les for SIFT areconstructed manually by specifying words to prefer or avoid, and must be updatedmanually if the user desires to change them. For each pro�le, twenty articles are madeavailable each day in a ranked output format. Articles can be selected interactivelyusing a World Wide Web browser. For users lacking interactive access, clippings (the�rst few lines of each article) can instead be sent by electronic mail. In that caseselections must be done without user interaction, so users are o�ered the option ofde�ning a pro�le for an exact match text selection technique.SIFT o�ers two facilities to assist users with pro�le construction. Users are initiallyo�ered an opportunity to apply candidate pro�les against the present day's articles todetermine whether appropriate sets of articles are accepted and rejected. If a sub-stantial amount of information on that interest is present on Internet News that day,iterative re�nement allows the user to construct a pro�le which will move the appropri-ate articles to the top of the list. To facilitate maintenance of pro�les over time, wordswhich contributed to the position of each article in the ranked list are highlighted (atechnique known as \Keyword in Context" or \KWIC") when using a World WideWeb browser to access the articles. By examining the context of words which occurwith meanings that were unforeseen at the time the pro�le was constructed, users canselect additional words which appear in the same context to add to the list of wordsto be avoided.Yan developed SIFT to study e�cient algorithms for information �ltering. In hisimplementation, large collections of pro�les are compared to every article arriving onInternet News by a central server. E�ciencies are obtained by grouping pro�les in waysthat permit parts of the �ltering process to be performed on groups of pro�les ratherthan individually. SIFT makes no distinction among the words appearing in an article,so words appearing in the newsgroup name (i.e., the speci�c conference), the author'selectronic mail address, the article title, the body of the article, included text, or the\signature" information that is routinely added to every document by some users areall equally likely to result in a high rank for a document.Stevens developed a system called InfoScope which used automatic pro�le learningto minimize the complexity of exploiting information about the context in which wordswere used [38]. Also designed to �lter Internet News, InfoScope deduced exact-matchrules and o�ered them for approval (possibly with modi�cations) by the user. Thesesuggestions were based on simple observable actions such as the time spent readinga newsgroup or whether an individual message was saved for future reference. Byavoiding the requirement for explicit user feedback about individual articles, InfoScopewas designed to minimize the cognitive load of managing the information �lteringsystem.7At the time of this writing, free interactive access to SIFT is available at http://sift.stanford.edu, butrelocation to http://www.reference.com has been announced.10



While SIFT treats Internet News as a monolithic collection of articles, InfoScopewas able to make �ne-grained distinctions between newsgroups, subjects, and evenindividual authors. Implementation of such extensive deconstruction led Stevens tointroduce a facility to reconstruct levels of abstraction in a way that was meaningful tothe user. InfoScope implemented this abstraction at the newsgroup level, suggesting tocombine related sets of newsgroups that were regularly examined by the user to forma single \virtual newsgroup." By de�ning �lters for virtual newsgroups with possiblyoverlapping sources, users were thus provided with a powerful facility to reorganize theinformation space in accordance with their personal cognitive model of the interestingparts of the discussions they wished to observe.InfoScope was not without its limitations, however. The experimental systemStevens developed was able to process only information in the header of each arti-cle (e.g., subject, author, or newsgroup), a restriction imposed by the limited personalcomputer processing power available in 1991. In addition, his goal of exploring thepotential for synergy between user and machine for pro�le management led him tochoose a rule-based exact match text selection technique. Since users are often able toverbalize the selection rules they apply, Stevens reasoned that users would have lessdi�culty visualizing the e�ect of changing rules than the e�ect of changing the typesof pro�les commonly found in ranked output systems. InfoScope's key contributions,machine-assisted pro�le learning, the addition of user-controlled levels of abstraction,and implicit feedback, make it an excellent example of a complete content-based infor-mation �ltering system intended for interactive use.Because of their low cost, large volume, and ease of recognizing new information,Internet News and electronic mail have been popular domains for information �lteringresearch. Unfortunately, these domains are poorly suited to formal experiments be-cause reproducible results are di�cult to obtain. For this reason, very little is knownabout the e�ectiveness of either SIFT or InfoScope. Stevens reported that eight of tenexperienced Internet News readers preferred InfoScope to their prior software in hisinitial study, and that all �ve users in the second evaluation reported that fewer un-interesting articles were presented and more interesting articles were read in a secondhalf of a 10 week evaluation than in the �rst. Because SIFT was developed to studye�ciency rather than e�ectiveness issues, even less information is available about itse�ectiveness. Yan does report, however, that in early 1995 SIFT routinely processedover 13,000 pro�les and was adding approximately 1,400 pro�les each month [46]. Eventhough one user may create several pro�les, this level of user acceptance makes a pow-erful statement about the utility of even the simple approach used by SIFT.Learning more about the e�ectiveness of a text �ltering technique requires thatthe technique be evaluated under controlled experimental conditions. And becausethe performance of text �ltering techniques varies markedly when di�erent informa-tion needs and document collections are used, comparison of results across systems isfacilitated when those factors are held constant. The TREC evaluation has providedan unprecedented venue for exactly this type of performance evaluation. Conductedannually since 1992, the most recent conference (TREC-4) attracted participation from24 universities and 12 corporations [14].NIST provides each participant with �fty topics and a large set (typically thou-sands) of training documents and relevance assessments on those documents8 for each8Relevance assessments for the TREC \routing" (text �ltering) training documents generally are derived11



information need. Participants train their text �ltering systems, using this data as ifit represented explicit feedback on the utility of each training document to a user, andthen must register their pro�les with NIST before receiving the evaluation documents.The pro�les are then used by the text �ltering systems which generated them to rankorder a previously unseen set of evaluation documents, and the top several thousanddocuments are submitted to NIST for evaluation.In order to achieve reproducible results, it is necessary to make some very strongassumptions about the nature of the information �ltering task. In TREC it is assumedthat human judgements about whether an information need is satis�ed by a documentare binary valued (i.e., a document is relevant to an information need or it is not) andconstant (i.e., it does not matter who makes that judgement or when they make it).Relevance, the fundamental concept on which this methodology is based, actually failsto satisfy both of those assumptions. Human relevance judgments exhibit signi�cantvariability across evaluators, and for the same evaluator across time. Furthermore,evaluators sometimes �nd it di�cult to render a binary relevance judgment on a spe-ci�c combination of a document and an information need. Nevertheless, performancemeasures based on a common set of relevance judgements provide a principled basisfor for comparing the relative performance of di�erent text �ltering techniques.The TREC �ltering evaluation is based on e�ectiveness measures that are com-monly used for text retrieval systems. The e�ectiveness of exact match text retrievalsystems is typically characterized by three statistics: \precision," \recall," and \fall-out." Precision is the fraction of the selected documents which are actually relevant tothe user's information need, while recall is the fraction of the actual set of relevant doc-uments that are correctly classi�ed as relevant by the text �ltering system. When usedtogether, precision and recall measure selection e�ectiveness. Because both precisionand recall are insensitive to the total size of the collection, fallout (the fraction of thenon-relevant documents that are selected) is used to measure rejection e�ectiveness.Table 2 illustrates these relationships.In TREC, almost all of the �ltering systems produce ranked output. Accordingly,precision and fallout at several values of recall are reported, and \average precision"(the area under the precision-recall curve) is reported for use when a single measureof e�ectiveness is needed [34]. Average precision is computed by choosing successivelylarger sets of documents from the top of the ranked list that result in evenly spacedvalues of recall between zero and one. Precision is then computed for each set, and themean of those values is reported as the average precision for an individual informationneed. The process is repeated for several information needs, and the mean of the valuesobtained is reported as the average precision for the system on that test collection.Clearly, larger values of average precision are better.Only the selected documents must be scored to evaluate precision, but it wouldbe impractical to evaluate recall and fallout by scoring every document in the TRECcollection. The solution is to estimate recall and fallout by scoring a sample of thedocument collection. The approach chosen for TREC, known as \pooled relevanceevaluation" is to evaluate every document chosen by any participating system andthen assume that all unchosen documents are not relevant. Since documents are chosenusing a wide variety of text �ltering and retrieval techniques in TREC, it is felt thatthe pooled relevance methodology produces a fairly tight upper bound on recall andfrom TREC text retrieval evaluations conducted in prior years.12



Actually isSelected as Relevant Not RelevantRelevant Found False AlarmNot Relevant Missed Correctly RejectedPrecision = FoundFound + False AlarmRecall = FoundFound + MissFallout = False AlarmFalse Alarm+Correctly RejectedTable 2: Measures of text selection e�ectiveness.an extremely tight lower bound on fallout.Although TREC investigates only the performance of the selection module, and thatevaluation is necessarily based on a somewhat arti�cial set of assumptions, the resultingdata provides a useful basis for choosing between alternative selection techniques. Inthe TREC-3 evaluation, for example, 25 text �ltering systems were evaluated andaverage precision was observed to vary between 0.25 and 0.41.4.2 Social FilteringThe Tapestry text �ltering system, developed by Nichols and others at the Xerox PaloAlto Research Center (PARC), was the �rst to include social �ltering [11, 40]. Designedto �lter personal electronic mail, messages received from mailing lists, Internet Newsarticles, and newswire stories, Tapestry allowed users to manually construct pro�lesbased both on document content and on annotations made regarding those documentsby other users. Those annotations were explicit binary judgements (\like it" or \hateit") that could optionally be made by each user on any message they read.Like InfoScope, Tapestry pro�les consisted of rules that speci�ed the conditions un-der which a document should be selected. One important di�erence was that Tapestryallowed users to associate a score with each rule. Tapestry then generated ranked out-put by comparing the scores assigned by multiple rules. Tapestry implemented thissophisticated processing e�ciently by dividing the �ltering process into two stages us-ing a client-server model. In the �rst stage, a central server with access to all of thedocuments applies a set of simple rules, similar to those used by SIFT, to determinewhether each document may be of interest to each user. The more sophisticated rulesin each pro�le are then executed in each users workstation (the client) to develop theranked list.Experience with several small scale trials of social �ltering suggests that a criticalmass of users with overlapping interests is needed for social �ltering to be e�ective.Tapestry was restricted to a single site because both the content and the software13



were subject to proprietary restrictions, so only limited anecdotal evidence of the so-cial �ltering aspects of Tapestry's performance are available. The GroupLens projectof Miller and others at the University of Minnesota is presently the most ambitiousattempt to reach a critical mass on a dynamic information source [32].GroupLens is designed to �lter Internet News, a freely redistributable text source.Like Tapestry, GroupLens is built on a client-server model. GroupLens uses two typesof servers, content servers (which are simply standard Internet News servers) and an-notation servers (which have been developed for the project). The design permits boththe content and annotation servers to be replicated so that each server can e�cientlyservice a limited user population. Modi�ed versions of some popular (and freely redis-tributable) Internet News client software are made available in order to encourage thedevelopment of a large user population, and implementers of other client software arepermitted to incorporate the GroupLens protocol in their products.9GroupLens annotations are explicit judgements on a �ve-valued integer scale. Un-like Tapestry, however, the annotations need not be assigned an a priori interpretation.Users may register annotations with their annotation server using whatever semanticsfor the �ve values they wish. The annotation servers collect annotations from theiruser population, use correlation information to predict their user evaluations of un-seen articles, and provide those predictions to client programs on request. The initialGroupLens trial began in 1996 using a limited number of newsgroups and a singleannotation server. Results are not yet available, but the project's important contribu-tions, distributed annotation servers, pro�le learning for social �ltering, and a designwhich encourages development of a large user base, provide an excellent prototype forfuture work on social �ltering.One limitation of the existing experimental work on social �ltering is user motiva-tion. In GroupLens, users annotate documents in order to improve the performanceof their �lter's ability to learn from other clients who have annotated the same docu-ments. This creates a bit of a \chicken and the egg" problem, though, since there is noincentive for the �rst user to annotate anything. If content-based and social �lteringare integrated in the same system, however, then a synergy between the two techniquescan develop. Tapestry demonstrated one way in which the two approaches can be com-bined when manually constructed pro�les are used. The URN system, developed byBrewer at the University of Hawaii, illustrates a more automatic method by which suchsynergy can be achieved.URN was an Internet News �ltering system in which users could provide two typesof information to support pro�le learning. The �rst was by making explicit binaryjudgements about the utility of the document. Those judgements were then used asa basis for a typical content-based ranked output system. What makes URN uniqueis that users can also collaboratively improve the system's initial representation of thedocument by adding or deleting words which they feel represent (or, for deletions,misrepresent) the content of the document. In URN these changes are propagated toall other users, allowing the user community to collaboratively de�ne the structure ofthe information space. Since user-speci�ed words are given preference by URN whendeveloping representations for new documents, users have an incentive to improve theset of words which describe existing documents.9The GroupLens protocol and GroupLens client software can be obtained fromhttp://www.cs.umn.edu/Research/GroupLens 14



In URN each user maintains a separate content-based user model, while the an-notation server e�ectively maintains a single collaboratively-developed model of thedocument space. This approach lacks the sophistication of the separate user modelsbased on shared annotations found in GroupLens, but URN's integration of content-based and social �ltering techniques illustrates one way in which these two paradigmscan be combined.5 Text Filtering TechnologyIn this section we identify techniques which can be synthesized to produce e�ectiveand e�cient text �ltering systems. These techniques are drawn from a large number of�elds, and our presentation will consider each �eld in turn. The essence of text �lteringpractice, however, is not the techniques themselves, but rather the way in which thetechniques drawn from these �elds are integrated to support a text �ltering process.5.1 Information RetrievalAs Belkin and Croft observed, content-based text selection techniques have been ex-tensively evaluated in the context of information retrieval [2]. Every approach to textselection has four basic components:� Some technique for representing the documents� Some technique for representing the information need (i.e., pro�le construction)� Some way of comparing the pro�les with the document representations� Some way of using the results of that comparisonThe objective is to automate the process of examining documents by computing com-parisons between the representation of the information need (the pro�le) and the rep-resentations of the documents. This automated process is successful when it producesresults similar to those produced by human comparison of the the documents them-selves with the actual information need. The fourth component, using the results ofthe comparison, is actually the role of the display module in �gure 1. We include ithere to emphasize the close coupling between selection and display.In each of the text �ltering systems we describe in this report, the selection moduleassigns one or more values to each document, and the display module then uses thosevalues to organize the display. Figure 3 illustrates the representation and comparisonprocess implemented by those systems. The domain of the pro�le acquisition functionp is I , the collection of possible information needs and its range is R, the uni�ed spaceof pro�le and document representations. The domain of the document representationfunction d is D, the collection of documents, and its range is also R. The domain ofthe comparison function c is R � R and its range is [0; 1]n, the set of n-tuples of realnumbers between zero and one. In an ideal text �ltering system,c(p(info need); d(doc)) = j(info need; doc); 8info need 2 I; 8doc 2 D;where j : I�D 7! [0; 1]n represents the user's judgement of some relationships betweenan interest and a document, measured on n ordinal scales (e.g., topical similarity ordegree of constraint satisfaction). 15
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Figure 3: Text �ltering system model.As we saw in section 4, the representation can exploit information derived fromthe content of the document, annotations made by others, or some combination ofthe two. Although syntactic and semantic analysis of documents is possible, content-based text �ltering systems typically use representations based on the frequency withwhich terms occur in each document.10 One reason for this choice is that it lendsitself to e�cient implementation. But a more compelling reason is that because nodomain-speci�c information is needed to form the representation, a demonstration ofacceptable performance in one application is easily translated into similar performancein another.Although content-based text �ltering systems typically start with this term-frequencyrepresentation, they generally apply some type of transformation to that representationbefore invoking the comparison function c in �gure 3 The nature of the transformationdepends strongly on which characteristics of that representation the comparison func-tion c is designed to exploit, however. For this reason, we describe the transformationstogether with thir associated comparison functions in the following paragraphs.For an exact match text �ltering system the range of the comparison function c isrestricted to be either zero or one, and it is interpreted as a binary judgement aboutwhether a document satis�es the pro�le. In this case, a step function that detects termpresence is applied to the term-frequency representation when that representation is10We use \terms" rather than \words" because the \terms" which are considered may be parts of words(e.g., overlapping three letter subsequences known as trigrams), single words, or combinations of words(e.g., idiomatic phrases). Common \stopwords" that have little use in subsequent processing are typicallyeliminated during term selection. 16



constructed so that the resulting boolean vector can be easily compared to the booleanexpression speci�ed by the pro�le. Exact match text �ltering systems typically providean unranked set of documents which will (hopefully) satisfy the information need. Theexact match approach is well suited to autonomous systems which must take actions(such as storage decisions) without user interaction.Two common approaches to ranked output generation are the vector space methodand the probabilistic method, although variations abound. In the vector space methodthe range of c is [0,1], and the value is interpreted as the degree to which the contentof two documents is similar. Both the pro�le and the documents are represented asvectors in a vector space, and a comparison technique based on the assumption thatdocuments whose representations are similar to the pro�le will be likely to satisfy theassociated information need is used. The angle between two vectors has been foundto be a useful measure of content similarity, so the square of the cosine of that angle(easily computed as the normalized inner product of the two vectors) is used used torank order the documents.Experience has shown that the vector space method's e�ectiveness can be improvedsubstantially by transforming the raw term-frequency vector in ways which amplifythe in
uence of words which occur often in a document but relatively rarely in thewhole collection. One common scheme, known as \term-frequency|inverse documentfrequency" weighting, assigns term i in document k a value computed as:t�dfik = Occurrences of term i in document k�log2( Number of documentsNumber of documents with term i)In a text �ltering system, advance knowledge of the inverse document frequency por-tion of that equation is clearly not possible. Estimates of that information based onsampling earlier documents can, however, produce useful inverse document frequencyvalues for domains in which term usage patterns are relatively stable.Rather than estimate similarity, the probabilistic method seeks to estimate the prob-ability that a document satis�es the information need represented by the pro�le. Theprobabilistic method is thus a generalization of the exact match technique in which weseek to rank order documents by the probability that they satisfy the information needrather than by making a sharp decision. To develop this probability, term frequencyinformation (weighted to emphasize within document frequency and to deemphasizeacross-document frequency) is treated as an observation, and the distribution of thebinary event \document matches pro�le" conditioned by that observation is computed.Bayesian inference networks have proven to be a useful technique for computing thisconditional probability [41]. Since it is possible to construct a Bayesian inference netwhich computes the cosine of the angle between two vectors, the vector space methodcan be interpreted as a special case of the probabilistic method [42].Since the comparison function can produce a multiple-valued result, the displaymodule can be designed to exploit the results of both exact match and ranked outputtechniques. For example, an electronic mail system could reject documents sent byspeci�c users and then rank the remaining documents in order of decreasing contentsimilarity to a prototype document provided by the user. The combination of thepro�le and the comparison technique in a ranked output text �ltering system can bethough of as specifying a point of view in the document space. Multiple rank orderingscan be combined to produce richer displays that combine multiple points of view,17



a research area often referred to as \document visualization" or \visual informationretrieval interfaces."Although only the vector space method actually uses vector operations such asthe inner product, all three of these approaches exploit \feature vectors" in which thefeatures are based on the frequency with which terms appear within documents andacross the collection. The annotations provided by social �ltering techniques are anadditional source of features that can be exploited by a comparison function. Becauseannotations can be used even when useful content-based features are di�cult to con-struct, information retrieval systems designed for information that is not in text formhave explored matching techniques for feature vectors composed of annotations.One such application which appears to have reached the critical mass necessaryfor e�ective use of annotations is a home video recommendation service developed byHill and his colleagues at Bellcore in which users' tastes in movies were matched usingtechniques similar to those implemented in GroupLens [16]. Populated with a largeand relatively stable set of movie titles, stable interests could be matched against thatdatabase for some time before exhausting the set of movies that might be of interestto a user. This is an interesting case in which the unlabeled corner of the graph in�gure 1 is worth exploring.Hill's system allowed users to provide numeric evaluations (on a scale of one to ten)for movies they had already seen, and then matched those ratings with evaluations ofthe same movies that had previously been provided by other users. Movies were sortedby category (e.g., drama or comedy), and within a category correlation coe�cientsbetween the feature vectors were computed. A set of users with the largest correlationswas then selected and regression was performed based on evaluations from those usersto predict scores for unseen movies in each category. In this case the pro�le was theset of annotations provided by the user, the \document" features were the annotationsprovided by others, and the comparison function was a two-step process of featureselection followed by regression.In addition to showing how annotations can be viewed as features, this exampleillustrates an important limitation of the information retrieval techniques we have de-scribed. In information �ltering applications, pro�les based on multiple documents(such as the multi-movie evaluation within a category used in Hill's system) are com-mon. But information retrieval research has explored only relatively simple ways ofcombining this information to form pro�les. Relevance feedback, an information re-trieval technique in which feature vectors are formed from the content of multipledocuments, has shown good results. But the \one query at a time" model which un-derlies much information retrieval research precludes consideration of techniques suchas the regression used by Hill and his colleagues.5.2 User ModelingMachine learning, the study of algorithms that improve their performance with ex-perience, o�ers a source of techniques that are designed to exploit multiple traininginstances to improve selection e�ectiveness [22]. Machine learning is one componentof \user modeling," a discipline which is concerned with both how information about18



users can be acquired and used by automated systems.11 The models we consider inthis report are what Rich has called \individual user, long-term user models" [33].5.2.1 Sources of Information About the UserBefore describing how machine learning techniques have been applied to text �lteringit is useful to consider more carefully how information about the user can be acquired.Rich de�ned a distinction between \explicit" models which are \constructed explicitlyby the user" and \implicit" models which are \abstracted by the system on the basisof the user's behavior" [33]. Both implicit and explicit user models are found in text�ltering systems (SIFT, for example, uses an explicit model). The machine learningtechniques we describe in section can be used to create what Rich called implicit models.In order to construct an implicit user model we must be able to observe both theuser's behavior and the salient features of the environment in which that behavior isexhibited. In the case of text �ltering, the salient elements of the environment arethe documents which have been examined by the user. Section 5.1 described howinformation about those documents can be acquired, either from contents or fromannotations made by others.In section 4 we presented several examples of how representations of previously seendocuments can be combined with evidence of the user's interest in those documents topredict interest in future documents. With the exception of InfoScope, every systemwe have described requires the user to explicitly evaluate documents, a technique werefer to as \explicit feedback ."12 Explicit feedback has the advantage of simplicity.Furthermore, in experimental systems explicit feedback has the added advantage ofminimizing one potential source of experimental error, inference of the user's truereaction. But in practical applications explicit feedback has two serious drawbacks.The �rst is that a requirement to provide explicit feedback increases the cognitive loadon the user. This added e�ort works against one of the principal bene�ts of a text�ltering system, the reduced cognitive load that results from an information spacemore closely aligned with the user's perspective. This problem is compounded bythe observation that numeric scales may not be well suited to describing the reactionshumans have to documents. For example, is a document which address the informationneed well but contains little expository text better or worse than a document that iseasily understood but less complete? These di�culties motivate the study of implicitfeedback mechanisms.In his InfoScope system, Stevens observed three sources of implicit evidence aboutthe user's interest in each message: whether the message was read or ignored, whetherit was saved or deleted, and whether it was replied to or not. Because the usersdecision to read or ignore the message was necessarily based on a summary of the samemessage header information that InfoScope used to construct feature vectors, it wouldbe reasonable to assume that the \read or ignore" decision would be nearly as useful11As Karlgren and his colleagues have observed, it is also important to construct systems whose operationconforms with the user's mental model of the information �ltering process [21]. The user models we referto in this report, however, are models constructed by the system which describe some aspect of the user.12There is some potential for confusion here because we are describing the use of explicit feedback toconstruct what Rich has called an implicit user model . In order to minimize confusion, we avoid using theterms \implicit" and \explicit" in isolation. 19



as explicit feedback. InfoScope did, however, allow explicit feedback as well.Morita and Shinoda also investigated implicit feedback for �ltering Internet Newsarticles, using both save and reply evidence but substituting reading duration for Info-Scope's \read or ignore" evidence [29]. In a six week study of eight users, they founda strong positive correlation between reading time and explicit feedback provided bythe user on a four-level scale. Furthermore, they discovered that interpreting as \inter-esting" articles which the reader spent more than 20 seconds reading produced betterrecall and precision in a text �ltering experiment than using documents explicitly ratedby the user as interesting. This surprising result reinforces our observation that userssometimes have di�culty expressing their interest explicitly on a single numeric scale.Since the experimental subjects were asked to read articles without interruption,it is not clear whether such useful relationships can be found in environments wherereading behavior is more episodic. But Morita and Shinoda's results, coupled withthe anecdotal evidence reported by Stevens, suggest that implicit feedback may be apractical source of features to which machine learning algorithms can be applied. Bothimplicit and explicit feedback produce features that are associated with documents.But unlike the feature vectors which describe the document's contents, feature vectorsbased on implicit or explicit feedback describe the user's reaction to the document.5.2.2 Machine LearningComplete feature vectors describing both the document and the user's reaction to itcan be constructed for documents which have been read by adjoining the features thatrepresent the document (e.g., term frequency values) with the vector that represents theuser's reaction to it (e.g., explicit feedback). For new documents, only those featuresthat represent the document will be known, and it would clearly be useful to be ableto estimate the missing information (the user's anticipated reaction to the document).In the �eld known as \machine learning" this is known as the \supervised learning"problem.In the canonical supervised learning problem, the machine is presented with a se-quence of feature vectors (training instances), and then it is required to predict oneor more missing elements in another set of feature vectors.13 Predicting these miss-ing values is an induction process, so induction forms the basis for machine learning.No induction technique can be justi�ed without reference to domain knowledge, how-ever. Because it would be possible to explain any set of observations after the fact,in the absence of some bias in the induction technique, any values could reasonablybe predicted.14 Langley identi�es three ways in which this necessary bias can be in-troduced in a machine learning system: in the representation, in the search technique,and as explicit domain knowledge. [22] The vector space method, in which pro�les arerepresented as a single vector and documents are ranked based on the angular simi-larity of their representation with that vector, combines both representation bias andsearch bias. InfoScope's learning heuristics (e.g., suggest �lters for newsgroups thatare read in at least 2 of the most recent 6 sessions) is an example of domain knowledge13What we describe here is actually a restricted case of the supervised learning problem that is specializedto vector representations.14One possible \after the fact explanation" would simply be that the formerly unknown parameters arerandom variables with some (still unknown) distribution that included the observed values.20



bias.Supervised learning is particularly well suited to exact match �ltering systems whichuse explicit binary feedback, because in that case the training data contains exactlythe same information (whether or not to select a document) that must be estimatedfor newly arrived documents. This is a special case of the \classi�cation" problem, inwhich we wish to sort newly arrived documents into two or more categories (in thiscase, retained and rejected). Supervised learning can also be applied in ranked output�ltering systems that use explicit feedback, assigning as a score for each document thesystem's estimate of the score that the user would assign. When implicit feedback isused, the ranking can be based on the predicted value of some observed parameter(e.g., reading duration). Alternatively, a manually constructed user model can be usedto combine several observed parameters to produce an estimate of utility and then thatestimate can be used to augment the training data.Six classic machine learning approaches have been applied to text �ltering: rule in-duction, instance based learning, statistical classi�cation, regression, neural networks,and genetic algorithms. Stevens' work on InfoScope is an example of rule induction.InfoScope's �lter suggestions were implemented as a decision list of parameters (news-group, �eld and word) which, if present in an article, would result in either selection orrejection of that article. These rules (e.g., select if newsgroup is rec.sewing and \bob-bin" appears in the subject �eld) are learned using heuristics which can be modi�edby the user.Foltz applied an instance based learning technique to selection of Internet Newsarticles [9]. He retained representations of about 100 articles from a training collectionwhich the user designated as interesting, and then ranked new articles by the cosinebetween their representation and the nearest retained representation. In other words,articles were ranked most highly if they were the most similar (using the cosine measure)to some positive example. In a small (four user) study, he found that this techniqueproduced an average precision of 0.55 (43% above that achieved by random selection),and that a further improvement to 0.61 (11%) could be achieved using a dimensionalityreduction technique known as Latent Semantic Indexing (LSI).This dimensionality reduction is an example of \feature selection." Feature selec-tion can be an important issue when applying machine learning techniques to vectorrepresentations. Langley has observed that \many algorithms scale poorly to domainswith large numbers of irrelevant features," [22] and it is not uncommon to have thou-sands of terms in the vocabulary of a text �ltering system. Sch�utze and others at XeroxPARC applied two rank reduction techniques, one using the best 200 terms found witha �2 measure of dependence between terms and relevant documents, and the other us-ing a variation of the LSI dimension-reduction technique used by Foltz [35]. Four eachof these feature selection techniques they evaluated four machine learning techniques,linear discriminant analysis (a statistical decision theory technique), logistic regression,a two-layer (linear) neural network, and three-layer (nonlinear) neural network usingtraining and evaluation collections from TREC.Sch�utze and his colleagues found that using only the LSI feature vectors providedthe best �ltering e�ectiveness with linear discriminant analysis and with logistic regres-sion, and that their implementation of linear discriminant analysis was the better ofthe two techniques. They also found that both the linear and nonlinear networks wereable to equal the e�ectiveness of linear discriminant analysis on the LSI feature vectors,21



but that both types of networks performed slightly (but not statistically signi�cantly)better when presented with both sets of selected features simultaneously. Finally, theyfound that a nonlinear neural network resulted in no improvement over their simplerlinear network.Exploring another machine learning technique, Sheth implemented a genetic algo-rithm to �lter Internet News in a system called \Newt." A genetic algorithm usesalgorithmic analogues to the genetic crossover and mutation operations to generatecandidate pro�les that inherit useful features from their ancestors, and uses competi-tion to identify and retain the best ones. Candidate pro�les in Newt were vectors ofterm weights.15 Relevance Feedback based on explicit binary evaluations of articleswas used to improve candidate pro�les, moving them closer in the vector space to therepresentation of desirable articles and further from the representation of undesirableones. In machine learning this approach is referred to as \hill climbing." The crossoveroperator was periodically applied to combine segments of two candidate pro�les whichwere among those that had produced the highest ranks (using a cosine similarity mea-sure) for articles that the user later identi�ed as desirable. A mutation operator wassometimes applied to the newsgroup name to explore whether existing candidate pro-�les would perform well on newsgroups with similar names. All of the candidate pro�lescontributed to the ranking of the documents shown to the user, although those whichconsistently performed well contributed more strongly to the ranking. Hence, the pro-�le itself was determined by the population of candidate pro�les, rather than by anyindividual candidate.Sheth evaluated Newt using a technique referred to in machine learning as a \syn-thetic user." By generating (rather than assessing) user preferences, the syntheticuser technique allows speci�c aspects of a machine learning algorithm's performance(e.g., learning rate) to be assessed. Sheth created synthetic users whose interests weredeemed to be satis�ed whenever at least one word from a list associated with thatsimulated user appeared in an article. Using this technique he found that although in-dividual candidate pro�les were able to learn to satisfy a simulated user quickly, whenthe simulated user's interest shifted abruptly (simulated by changing the list of wordsassociated with the simulated user) individual candidate pro�les were slower to adapt.When evaluating complete pro�les made up of populations of individual candidates,Sheth demonstrated the ability to control the adaptation rate by adjusting parametersof the genetic algorithm. Simulated users lack the sophistication of human relevancejudgements, but the technique is both economical and reproducible, so it is useful forcertain types of evaluations.5.3 Other FieldsThis completes our description of the two major sources of technology for text �lteringsystems: information retrieval and user modeling. Humans pursue the information�ltering process in a social context, though, and the machines that they use mustoperate in some physical context. In this section we brie
y identify the issues raisedby the interaction between the information �ltering process and these larger contexts.15In Newt, terms were segregated by the �eld of the article in which they occurred, so \talk" in the subject�eld could be assigned a di�erent weight than \talk" in the body of a message.22



5.3.1 Networked Computing InfrastructureThe physical context for the information �ltering process is the existing networkedcomputing infrastructure. The relevant portion of the physical context may consistof, for example, isolated workstations monitoring a common newsfeed, a workgroupcomputing environment supported by an intranet, or the entire Internet. With a fewnotable exceptions (SIFT and Tapestry), in our descriptions we have placed more em-phasis on e�ectiveness than e�ciency when describing design features and performanceevaluations. This is not surprising, since most experimental work on text �ltering hassought to demonstrate e�ectiveness and a small user population su�ces for that pur-pose. Even the TREC evaluation, which requires �ltering hundreds of thousands ofpages of text, speci�es only 50 topics each year.Once adequate e�ectiveness has been demonstrated for small user populations, thetask of engineering e�cient implementations for widespread use of such systems re-mains. One alternative is to simply replicate the �ltering system and then provide allof the content to each �ltering system. Tapestry implemented a more sophisticatedapproach, demonstrating that an appropriate division of e�ort between server-side andclient-side computing can improve overall e�ciency.In general, he goal of distributed computation is to optimize the tradeo� betweendistributing the workload and minimizing communication requirements. Yan stud-ied this issue rigorously in conjunction with his work on SIFT, developing optimalassignments of computational tasks among a group of cooperating servers [45]. TheGroupLens project has chosen an alternative approach that exploits an existing in-frastructure for document distribution. By augmenting this infrastructure with dis-tributed annotation servers, GroupLens expects to achieve acceptable e�ciency in amanner compatible with the existing physical and social structure for Internet News.Thus, one of the key issues to be addressed as the number of users scales up is whichconstraints to accept and which to attempt to change.5.3.2 Computer Supported Cooperative WorkThe same type of tension between constrained and unconstrained system design occursat many levels. Adopting an even broader perspective, it is apparent that users operatewithin a social system, and that system imposes social constraints on what is possible.Organizational aspects of networked communications are studied the �eld of ComputerSupported Cooperative Work (CSCW), so text �ltering is an issue for which the CSCWperspective can be informative.Consider, for example, Denning's suggestion that users set up separate mailboxesfor speci�c purposes and that senders direct electronic mail to the appropriate mailbox.In order to be e�ective, this approach would require that the user address messagescorrectly, that receivers organize their mailboxes in a useful manner, and that allof the software systems between the sender and the receiver support this addressingscheme. Standards development processes and competitive market mechanisms aretwo techniques for addressing such issues, and there are numerous examples of thepracticality of such schemes (e.g., Lotus Notes and Internet News). Because many ofthe constraints on such e�orts are social rather than technical, the breadth o�ered bythe CSCW perspective is essential to the success of such endeavors.Once such social conventions are created to add the necessary structure to the23



documents, text �ltering techniques provide a way to exploit that information. Forexample, the current interest in assigning \ratings" to World Wide Web pages tofacilitate parental control of the information available to their children presumes theavailability of technology to exploit that information. The design a system for creating,distributing, and using these ratings is an issue best studied from the perspective ofCSCW because a common task motivates multiple participants. Ratings are, however,simply one type of annotation. So an understanding of how annotations are usedin information �ltering systems can provide useful insight into how those annotationscould be integrated with other sources of information about the contents of a document.5.3.3 Market FormationFor applications which lack a shared objective, economic theory provides a more usefulperspective than CSCW. In a market economy, \cost" or \price" (the value discov-ered by a market) serves as a basis for allocating scarce resources. In the emerginginformation-based economy, both information itself and the tools which manage thatinformation have economic value. This will result in the development of a market fornot merely information and tools, but also for metainformation such as the annotationson which social �ltering is based. The CSCW perspective will certainly be helpful whendesigning common standards for the exchange of price information and monetary in-struments because all participants in a market bene�t from such social structures. Butwhen participants do not share common goals with respect to the use they make of theinformation they obtain, market dynamics provide a more e�ective way of allocatingscarce information resources such as intellectual property and expert annotations.The vast majority of experimental work on text �ltering has exploited freely avail-able information such as Internet News and messages sent to electronic mailing lists,so little reference to the cost of intellectual property can be found in that literature.On the other hand, users of commercial text �ltering systems have developed pro�leconstruction techniques which which recognize di�ering costs for di�erent aspects of ac-cess to intellectual property (e.g., selective purchase of limited redistribution rights) [8].Commercial text �ltering systems typically require explicit pro�les, however, and weare not aware of any research on implicit user models for text �ltering which exploitcost information. Like the ratings we described in section 5.3.2, prices are a type ofannotation, and hence they can be exploited by a social �ltering system. The di�er-ence between prices and other annotations on which social �ltering can be based is thatthere may be a �rmer a priori basis for using cost information than for using othertypes of annotations, and that fact may prove useful when designing user models fortext �ltering.In addition to these technical considerations, market formation also raises broadsocial issues. The creation of markets for information, for annotations, and even for the�ltering systems themselves restricts information access to users for whom the value ofthe information justi�es the cost of obtaining it. Such unrestrained market operationis rarely allowed, however. Governments and other social structures are often chargedwith regulation of economic activity in order to limit the e�ect of inequities that canresult from market economics. The establishment of public libraries, the imposition ofdisclosure requirements for securities transactions, and the regulations which subsidizeuniversal access to the telephone network with revenue generated from other sources24



provide instructive examples of how market forces can be adjusted to accomplish socialgoals. If information truly has value then such issues of equity will undoubtedly arisein information �ltering as well.5.3.4 PrivacyPrivacy becomes an issue when a system collects information about its user, so impor-tant social issues arise on an individual scale as well. In commercial applications, forexample, it may be desirable to restrict access to pro�le information in order to protecta competitive advantage. And users with personal applications may demand that theirpro�le remain private simply on moral grounds.For content-based �ltering systems, the privacy issue has two aspects: preventingunauthorized access to the pro�le and preventing reconstruction of useful informationabout the pro�le. The �rst issue is a straightforward security problem for which avariety of techniques such as password protection and encryption may be appropriatedepending on the nature of the anticipated threat. But preventing reconstruction ofuseful information about the pro�le is a much more subtle problem. In Tapestry, forexample, it would be possible to infer a good deal of information about the pro�leregistered at the server by simply noting which documents were forwarded. An unau-thorized observer who can detect which documents are being forwarded to speci�c userscould conceivably build a second text �ltering system (e.g., a social �lter with an im-plicit user model) and then train it using the observed document forwarding decisions.Preventing such an attack would require that unauthorized observers be denied accessto information about the sources and destinations of individual messages. In the com-puter security �eld, this is known as the \tra�c analysis problem," and cryptographictechniques which address it have been devised (c.f., [5, 6]).In the case of collaborative �ltering, the situation is further complicated by theimperative to share document annotations. A simple approach (which is used byGroupLens) is to allow each user to adopt a pseudonym. While use of pseudonymsmakes it more di�cult to associate annotations with users, tra�c analysis can still beused to determine which users would read a document. Unfortunately, informationabout who is reading speci�c documents is exactly what other authorized users mustknow to perform social �ltering. Furthermore, Hill has observed that users choosingwhich information to examine may �nd it useful to know the identity (not merely thepseudonym) of the users who made the annotations [16]. While encrypted transmissionof annotations to other authorized users is a possibility in such cases, signi�cantlylimiting the user group in that way may prevent a social �ltering system from reachingthe necessary critical mass. This tension between a desire for privacy and the bene�tof free exchange of information may ultimately limit the applications to which social�ltering can be applied.The level of protection which must be a�orded to privacy varies widely acrossapplications. By common agreement, many details of our private lives (e.g., birth,marriage and death) are a matter of public record. On the other hand, in the state ofMaryland it is a crime to divulge the borrowing history of a library patron without acourt order. One can even envision applications in which a user might prefer not toknow information represented in their own pro�le. Where these lines should be drawnis a matter of judgement that must ultimately be resolved by those who control the25



information resources that are being used.6 Observations on the State of the ArtEarly information �ltering systems (then known as SDI) were developed to exploit theavailability information in electronic form to manage the process of disseminating sci-enti�c information. When the printed page was the dominant information paradigmfor text transmission, high production costs led to the development of extensive socialstructures (e.g., the peer review process) for selecting information worthy of publica-tion. As long as this situation persisted, the dissemination process managed admirably,and SDI improved its performance. With the introduction of personal computing andubiquitous networking, each participant is now able to also be both a consumer anda producer of information. The drastic reduction in publishing costs has greatly in-creased the importance of �ltering the resulting 
ood of information, but the resultingvariability document quality has also made that �ltering task more di�cult. Automatictechniques are needed to make this wealth of information accessible, since informationthat cannot be found is no better than information which does not exist.Rather than simply removing unwanted information, information �ltering actuallygives consumers the ability to reorganize the information space [38]. For economic rea-sons, information spaces have traditionally been organized by producers and, in somecases, reorganized by intermediaries. In book publishing, for example, authors andpublishers work together to assign titles to books and to announce their availability.Intermediaries such as libraries, book clubs and book stores obtain those announce-ments, select items which are likely to be of interest to their customers, and organizeinformation about their selections in ways that serve the needs of those customers. Be-cause such intermediaries typically serve substantial numbers of customers, economicfactors usually limit them to providing a few (sometimes only one) perspectives on theinformation space.Information �ltering is essentially a personal intermediation service. Like a library,a text �ltering system can collect information from multiple sources and produce anorganization that is useful to the patrons. But by automating the process of organizingthe information space it becomes economically feasible to personalize this organization.Of course, automating this intermediation process eliminates the value that could beadded by human intermediaries who can apply their judgement to improve the orga-nization of the information space.Social �ltering o�ers a way of integrating human and automated intermediation.Human intermediaries have traditionally organized the information space through se-lection and annotation. Selection, however, is simply a special type of annotation(i.e., a document is marked as \selected by the intermediary"). As with price anno-tations, the user may �nd it useful to assign expert annotations an a priori degreeof con�dence because they come from a source with well understood characteristics.Tapestry's pro�le speci�cation language provides an example of how such functionalitycould be incorporated.Social �ltering alone is unlikely to provide a complete solution to users' information�ltering needs. Expert annotations require e�ort and have economic value, so the mar-ketplace will undoubtedly assign them a price. With continued reductions in the cost of26



computing and communications resources, content-based �ltering will o�er a competi-tive source of information on which to base selections. Furthermore, because humansand machines base their evaluations on di�erent features, systems which incorporateboth social and content-based �ltering will likely be more e�ective than those whichuse either technique in isolation. In this light, the work of Sch�utze and his colleaguessuggests that machine learning techniques which e�ectively exploit multiple sources ofevidence can be found [35].Content-based and social �ltering will almost certainly prove to be complementaryin other, less easily measured ways as well. A perfect content-based technique wouldnever �nd anything novel, limiting the range of applications for which it would beuseful. Social �ltering techniques excel at identifying novelty (because they are guidedby humans), but only when the humans who guide them are not overloaded withinformation. Content-based systems can help to reduce this volume of information tomanageable levels. Thus, both content-based and collaborative �ltering contribute tothe other's e�ectiveness, allowing an integrated system to achieve both reliability andserendipity.Social �ltering has yet to realize this potential, however. The di�culty of achievinga critical mass of participants makes social �ltering experiments expensive. One cleardisincentive in present experiments is the additional cognitive load imposed on the userby the requirement to provide explicit feedback. We are not aware of any research inwhich implicit feedback has been applied to social �ltering, but there is some evidencethat such an approach could be successful. Hill and his colleagues have reported thatreaders �nd it useful to know which portions of a document receive the most attentionfrom other readers. In an analogy to the tendency of well-used paper documents toacquire characteristics which convey similar information, they call this concept \readwear" [15]. Coarser measurements such as Morita and Shinoda's reading time metric,or the save and reply decisions explored by Stevens, may also prove to be useful basesfor social �ltering in some applications. If useful annotations can be acquired withoutrequiring explicit feedback, lesser inducements (such as the improvement that couldresult from application of a simple content-based �ltering technique) may be su�cientto assemble the critical mass of users needed to evaluate social �ltering techniques.Another serious impediment to the large scale evaluation of social �ltering tech-niques is the di�culty of constructing suitable measures of e�ectiveness. Recall, pre-cision and fallout are of some use when comparing content-based �ltering techniques,but their reliance on normative judgements of document relevance suppresses exactlythe individual variations that social �ltering seeks to exploit. One feasible evaluationtechnique would be to apply simulated users like those used by Sheth to investigatespeci�c aspects of collaborative behavior. Important issues such as the learning ratesand variability in learning behavior across large heterogeneous populations could be in-vestigated with large collections of simulated users whose design was tailored to explorethose issues.Another alternative is to study situated users (i.e., human users performing self-directed tasks), attempt to provide them with desirable documents, and then measuresomething related to their satisfaction. Those \dependent variables" could certainly bethe sort of explicit feedback commonly required in present social �ltering experiments,but insisting on explicit feedback increases the di�culty of assembling a su�cientlylarge user population. In suitable sources of implicit feedback can be identi�ed, those27



same measures would would be a far better choice for the set of dependent variables.Such an experiment design requires that separate training and evaluation documentcollections be used, a feature easily introduced by withholding implicit feedback fromthe �ltering algorithm during the evaluation period. This approach can be used toevaluate both content-based and social �ltering systems, so it would be a natural choicewhen evaluating systems which applied both types of techniques. It can only be applied,however, after suitable sources of implicit feedback are found. Since implicit feedbackhas the potential for a high payo� in performance evaluation, �ltering e�ectiveness,and user satisfaction, research on that topic should be accorded a high priority.7 ConclusionDesigners of text �ltering systems can bene�t from research in text retrieval, usermodeling and a number of other �elds. Text �ltering is, however, a unique informationseeking process that is distinguished by a focus on satisfying relatively stable interestsin documents containing text. This report has reviewed progress in the �eld withparticular emphasis on the selection component of the �ltering process. Other usefulperspectives are o�ered by Jiang [20], Mock [28], Stevens [38], and Wyle [44].Text �ltering systems must develop representations of both documents and user in-terests, they must be endowed with some way of comparing documents with interests,and they must possess some way of using the results of those comparisons to assistthe user with document selection. Text retrieval research has produced a number ofcontent-based representations that use the frequency with which terms appear in docu-ments, and social �ltering research has produced a complementary set of features basedon shared annotations from other users. When combined with implicit or explicit feed-back from the user about the documents they have examined, those representationsprovide a basis for construction of pro�les which represent the user's interests. Bothtext retrieval and machine learning o�er techniques for comparing document represen-tations with pro�les, and this is an area of active research. Document visualizationis another dynamic research area, but ranked output presently o�ers a simple way ofsynergistically exploiting the strengths of human and machine to facilitate the �lteringprocess.The text �ltering techniques described in this report o�er a range of solutions thatcan help users achieve their information seeking goals. With technology presently inhand, designers can produce e�ective and e�cient systems that will be useful in a num-ber of applications. Furthermore, the present research on applications of user modeling,implicit feedback, shared annotations and document visualization to text �ltering sug-gests that text �ltering technology will have even greater impact in the future. Asthe quantity of online information continues to increase, text �ltering will provide anincreasingly important technique for bringing together producers and consumers ofinformation.AcknowledgementThe authors would like to express their appreciation to Bonnie Dorr, Stuart Stub-blebine, Vigil Gligor and John Riedl for their useful comments.28
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