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In this thesis phase transitions of the high temperature superconductor YBa2Cu3O7−δ

(YBCO) have been investigated in both zero and non-zero magnetic field. Current-

Voltage characteristics of thin films and single crystals have been studied to de-

termine the transition temperature and critical exponents. We optimized our film

samples to ensure that they are of single phase, c-axis oriented and homogeneous.

High-quality crystal samples were provided by Dr. Kouji Segawa and Dr. Yoichi

Ando.

In the zero-field transition, finite-size effects, which can obscure the phase

transition by introducing ohmic tails below the transition temperature, are observed

in the current-voltage curves of even the thickest film (2400 Å) at low currents.

The data at high currents are not affected by finite-size effects so that we can use

derivative plots to determine Tc and the dynamic critical exponent z. The current-

voltage curves of crystals’ data, however, are not affected by finite-size effects even

in the lowest current measured as expected. z determined from YBCO crystals are



consistent with the one determined from YBCO films: z = 1.5±0.2. This is a strong

evidence that the dynamic universality class of high-temperature superconductors

belongs to model-E dynamics in zero field. The static critical exponent ν determined

from the melting line (Tc − Tg(m)) ∼ H1/2ν0 is 0.68 ± 0.1 for crystal and 0.62 ± 0.1

for thin films.

The phase transitions in the mixed state (non-zero field) are more complicated.

In the phase transition of YBCO thin films in field, finite-size effects are again

observed. The presence of magnetic field leads to anisotropic vortex loops so that

finite-size effects are enhanced. We observe a magnetic field H dependence of the

crossover current density Jmin as well as the exponent z. At H > 1 T, Jmin and

z stay relatively constant. z ' 2 at high field implies a crossover from model-E

dynamics to model-A dynamics. Finally, we will discuss E−J characteristics of the

first-order melting transition of untwinned YBCO single crystals.
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3.10 Derivative plot for a 1500 Å YBCO film in zero magnetic field. . . . . 69

3.11 Derivative plot at high-current regime. . . . . . . . . . . . . . . . . . 71

3.12 Tc − Tg vs. H in double-log scale of a YBCO thin film . . . . . . . . . 73

3.13 Predicted conductivity with Gaussian fluctuations. . . . . . . . . . . 74

3.14 Schematic of the two-channel model. . . . . . . . . . . . . . . . . . . 75

3.15 Extrapolating the normal background from ρ vs. T of YBCO crystal. 76

3.16 E vs. J (solid curves) and E vs. ∆J (dotted curves) of a YBCO film
(sample su113) on the same plot. The separation of each isotherm is
0.50 K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.17 E vs. J and E vs. ∆J of of the isotherm 91.775 K on the same plot. 79

3.18 E vs. J (solid curves) and E vs. ∆J (dotted curves) of YBCO crystal
(sample C1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.19 Comparison of the derivative plots of two different bridges in the same
YBCO film. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.20 Comparison of the E vs. J between the data from a YBCO crystal
with and without exchange gas. . . . . . . . . . . . . . . . . . . . . . 87

ix



4.1 Resistivity vs. Temperature of a YBCO film (su113) at various mag-
netic fields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.2 E − J curves for sample su113 at 5 T magnetic field. . . . . . . . . . 97

4.3 Conventional data collapse for sample su113 at 5 T field. . . . . . . . 98

4.4 ∂log(E)/∂log(J) vs. J for su113 at 5 T field. . . . . . . . . . . . . . . 100

4.5 A schematic of a fluctuation of a single vortex line. . . . . . . . . . . 102

4.6 Jmin vs. H of sample su113. . . . . . . . . . . . . . . . . . . . . . . . 106

4.7 Jmin vs. thickness for three different films. . . . . . . . . . . . . . . . 108

4.8 z vs. H of sample su113, su114 and su120. . . . . . . . . . . . . . . . 110

4.9 Resistivity as a function of temperature of an untwinned YBCO single
crystal at magnetic field. . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.10 Hysteresis of the resistivity of a untwinned YBCO single crystal at 5
T. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.11 ρkink as a function of magnetic field. . . . . . . . . . . . . . . . . . . . 116

4.12 E − J curves of a untwinned YBCO single crystal at H = 4 T. . . . . 118

4.13 Derivative plot of the same curves from Fig. 4.12. . . . . . . . . . . . 119

4.14 Crossover current density Jmin as a function of sample thickness d in
zero magnetic field and high magnetic field. . . . . . . . . . . . . . . 121

x



List of Abbreviations

CSR Center for Superconductivity Research
OFHC Oxygen free high conductivity copper
XRD X-ray diffraction
PLD Pulsed laser deposition
YBCO YBa2Cu3O7−δ

PCCO Pr2−xCexCuO4

BSCCO Bi2Sr2CaCu2O8+δ

xi



Chapter 1

Introduction

High temperature superconductivity was discovered by Johannes Georg Bed-

norz and Karl Alexander Müller in 1986 [1], for which they won the Nobel Prize in

physics the following year. Compared to conventional superconductors [2], which

were first discovered at Kammerlingh-Onnes’ laboratory in 1911, the high temper-

ature superconductors have higher transition temperatures (Tc), longer penetration

depths (λ) and shorter coherence lengths (ξ). The phase transition of bulk conven-

tional superconductor is well explained by the Ginzburg-Landau theory. However,

the phase transition of high-temperature superconductor is still not understood in

both the zero magnetic field and non-zero magnetic field.

1.1 Phase Transitions

A phase transition [3] is the transformation of a thermodynamic system from

one state of matter to another. At the transition point, two phases or more can

coexist in equilibrium with each other.

One of the most common examples of a phase transition occurs in fluid systems,

as shown in Fig. 1.1 [4]. The solid and gas phases are in equilibrium along the

sublimation curve, the solid and liquid phases are in equilibrium along the fusion

curve and the liquid and gas phases are in equilibrium along the vapor pressure

curve.

1
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Figure 1.1: Phase diagram for a solid-liquid-gas system.
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1.1.1 First-order and Continuous Phase Transitions

When a phase transition occurs, the Gibbs free energy must change contin-

uously. However, the derivative of the free energy may not be continuous at the

transition point. Phase transitions can be labelled by the lowest derivative of the

free energy that is discontinuous at the transition.

Phase transition which are accompanied by a discontinuity in the first deriva-

tive of the free energy with respect to a thermodynamic variable (such as temper-

ature or volume) are called first-order phase transitions as shown in Fig. 1.2(a).

Phase transitions that have a continuous first derivative of the free energy (but are

discontinuous in the higher-order derivatives) are called continuous phase transitions

as shown in Fig. 1.2(b).

Typical first-order phase transitions include the vapor-liquid, vapor-solid, and

liquid-solid transitions (except at the critical point), the superconducting to normal

transitions of type I superconductors in magnetic field and the superfluid transitions

in liquid 3He. Typical continuous phase transitions include the superconducting to

normal transitions in the absence of magnetic field and the superfluid transition in

liquid 4He.

1.2 Superconductivity

Superconductivity is characterized by zero linear electrical resistance and the

exclusion of the interior magnetic field (the Meissner effect).

Since its discovery in 1911, much work has been done to understand supercon-

3



G (or A) G (or A)

S S

T T

T T

Tc Tc

(a) (b)

(c) (d)

Figure 1.2: (a) Temperature dependence of the Gibbs free energy G or Helmholtz

free energy A. The system undergoes a first order phase transition at T = Tc as

illustrated by the discontinuity of the slope at Tc. (b) Same as (a) except that

the phase transition is continuous. (c)-(d) show the entropy obtained from the

temperature derivative of G or A.
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ductivity. In 1935, F. and H. London [5] proposed two equations which relate the

current to the microscopic electric and magnetic fields (here we use the notation in

Tinkham [6])

E =
∂

∂t
(ΛJs) (1.1)

H = −c∇× (ΛJs) (1.2)

where E and H are the electric and magnetic fields, Js is the supercurrent density,

ns is the number density of superconducting electrons and

Λ =
4πλ2

c2
=

m

nse2
(1.3)

is a phenomenological parameter. The purpose of these two equations is to describe

the zero resistance and the exclusion of the magnetic field.

In 1957, John Bardeen, Leon Cooper, and Robert Schrieffer [7] proposed the

BCS theory. They received the Nobel Prize for Physics in 1972 as a result. In BCS

theory, it was shown that even a weak attractive interaction (interaction between

the electrons and crystal lattice) between electrons can cause an instability of the

ordinary Fermi-sea ground state. Cooper pairs can then be formed by the electrons

with opposite spin. The pairing opens a gap in the continuous spectrum of allowed

energy states of the electrons and the gap leads to superconductivity.

Seven years before the BCS theory, Ginzburg and Landau [8] proposed a com-

plex pseudowave-function ψ as an order parameter based on Landau’s previously

established theory of second-order phase transitions. The superconducting “Cooper

pairs” can then be described by the wave function, ψ = |ψ|eiϕ, which is also referred

5
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Figure 1.3: Phase diagram of a type I superconductor.

as the “order parameter”. We will discuss the Ginzburg-Landau theory in more

detail in later sections.

1.2.1 Phase Diagrams of Type-I and Type-II Superconductor

Superconductors can be classified into two categories depending on the GL

parameter

κ =
λ

ξ
(1.4)
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For type-I superconductors (mercury, lead, tin, etc), κ < 1/
√

2. The type I super-

conductors have a simple phase diagram which is shown in Fig. 1.3. The coexistence

curve, Hc(T ), which separates the normal and superconducting phases, is defined by

Hc(T ) which varies approximately as (1 − T/Tc)
1/2 near Tc. Below the coexistence

curve, the material is in the superconducting state or Meissner state. The linear

resistance is strictly zero and the material is a perfect paramagnet with a penetra-

tion depth λ (usually on the order of 500 Å). At Tc, the phase transition from the

normal state to superconducting state is second-order. However, the transition is

first-order in the presence of a magnetic field.

For type-II superconductors, κ > 1/
√

2. A simplified schematic phase diagram

is shown in Fig. 1.4. The type-II superconductors undergo a continuous transition

at zero magnetic field. There is a third phase, called the“mixed state”, which is

separated from the normal state by Hc2(T ) and from the superconducting(Meissner)

state by Hc1(T ). Contrary to the case in type-I, the transitions from the mixed state

to superconducting state and from normal state to mixed state both are continuous.

Inside the mixed state, the magnetic flux penetrate the materials in the form of

vortices. Each vortex carries a quantized amount of magnetic flux, Φ0 = h/2e =

2.07 × 10−15 T−m2. The vortex is composed of normal state electrons which form

the core of vortex and superconducting electrons which circulate outside the core.

The core has a size of ξ, the superconducting coherence length. The supercurrents

decay for distances much greater than λ from the core.

In the GL theory of the mixed state, the vortices form a triangular array of

patterns called the Abrikosov lattice [9]. When there is no vortex pinning, there

7
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will be dissipation when a current is applied due to the motion of moving vortices

since the inside of a vortex is normal. In this sense, the mixed state is not truly

superconducting and has finite linear resistivity even in the limit I → 0.

One of the earliest models of the motion of vortices is given by Bardeen and

Stephen [10]. The theory is based on a local model that is a generalization of the

London theory. Even in the presence of vortex pinning (such as defects), the theory

of flux creep [11] proposed by Anderson and Kim predicts that thermal energy may

allow flux lines to jump from one pinning point to another in response to the driving

force of the current. The resulting flux creep leads to finite resistance in the mixed

state.

After the discovery of high temperature superconductors, Fisher, Fisher and

Huse (FFH) [12] proposed that the vortex-lattice phase is unstable against the intro-

duction of quenched-disorder or random pinning and may be replaced by a vortex-

glass state which has long range spin-glass order. Thermal fluctuation will cause

the formation of dislocation loops of the vortex line and the vortex-glass phase can

melt into the vortex liquid phase as shown in Fig. 1.5.

1.2.2 YBa2Cu3O7−δ

YBa2Cu3O7−δ (YBCO) was discovered in 1987 [13], the first superconductor

to have a Tc above the boiling point of nitrogen.

Fig. 1.6 shows the crystal structure of YBCO. It has a perovskite structure

with oxygen vacancies (The oxygen vacancy determines the carrier concentration).

9



T

H

T
c

Superconducting state

Vortex glass Vortex liquid

Normal

H
c1

(T)

H
g
(T)

H
c2

(T)
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Fisher, Fisher and Huse [12]. Note that Hc2(T ) is no longer a phase transition, but

marks a broad crossover from the vortex liquid to normal state.
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Figure 1.6: The unit cell of YBCO.

The unit cell is orthorhombic with a = 3.818 Å, b = 3.89 Å, and c = 11.68 Å. Each

unit cell consists of two CuO2 planes separated by an atom of yttrium, a CuO chain

along the b direction above these planes and two barium atoms lying between the

CuO2 planes and the CuO chains. YBCO is a hole-doped superconductor since the

oxygen vacancies supply carriers with positive charge.

In our experiment, we use the samples with optimal doping where Tc is highest.

The reason is that the samples with optimal doping are more homogenous in Tc since

small changes in doping do not affect Tc as much as they do for over- and under-

11



doped samples.

1.3 Critical Phenomena and Critical Exponents

Critical phenomena [4] occur in continuous phase transitions. These phenom-

ena include scaling and power law divergences of some physical quantities, such as

the divergence of specific heat C ∼ |t|−α at constant volume of PVT system at the

critical point and the magnetic susceptibility χ ∼ |t|−γ in the ferromagnetic phase

transition.

To describe critical phenomena, we first define an expansion parameter:

t ≡
∣∣∣∣∣
T − Tc

T

∣∣∣∣∣ (1.5)

which is a measure of the distance from the critical point in terms of reduced vari-

ables. Critical phenomena occur because the correlation length ξ, diverges at the

critical point, t → 0, ξ →∞.

Near the critical point, scaling theory says that thermodynamic functions can

be written as

f(t) = Atλ(1 + Bty + · · ·). (1.6)

The critical exponent for the function f(t) is then defined:

λ = lim
t→0

ln(f(t))

ln(t)
. (1.7)

If λ is negative, f(t) diverges at the critical point as in Fig. 1.7(a) . If λ is

positive, f(t) goes to zero at the critical point as in Fig. 1.7(b). The λ = 0 case can
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Figure 1.7: Examples of the various types of behavior near t = 0.
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correspond to a logarithmic divergence as in Fig. 1.7(c), or a cusp-like singularity

in Fig.. 1.7(d).

1.3.1 Mean-Field Theory

In Ginzburg-Landau theory, the order parameter ψ is slowly varying in space,

the free energy density can be expanded in the form (here we use the notation in

Tinkham [6]):

f = fn0 + α|ψ|2 +
β

2
|ψ|4 +

1

2m∗
∣∣∣
( h̄

i
∇− e∗

c
A

)
ψ

∣∣∣
2
+

h2

8π
(1.8)

where fn0 is the free energy density of the normal state, m∗ = 2m and e∗ = 2e. Note

that in Eq. 1.8 h is the magnetic field; see Ref. [6] for a discussion of the subtleties

of magnetic fields and no-standard notation in superconductors. If ψ = 0, this will

reduce to the free energy of normal state:

f = fn0 +
Hh2

8π
. (1.9)

First, we consider the case of zero external magnetic field. The difference

between the normal and superconducting free energy density is

4f = fs − fn = α|ψ|2 +
1

2
β|ψ|4, (1.10)

where α changes sign at Tc. By minimizing the free energy with respect to the order

parameter, we find that |ψ|2 = 0 (for T > Tc and α > 0) in the normal state and

that the density of superconducting carriers is (for T < Tc and α < 0)

|ψ|2 = −α

β
. (1.11)
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Figure 1.8: Ginzburg-Landau free-energy functions for T > Tc (α > 0)and for
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The corresponding free energy density below Tc is then

4f = −α2t2

β
≡ −H2

c

8π
. (1.12)

Since α(T ) changes sign from positive to negative at Tc, we can make a Taylor

series expansion of α(T ) about Tc, keeping only the first order term:

α(T ) = α
′(T − Tc

Tc

)
= α

′
t. (1.13)

If we assume that β is a constant, Eq. (1.11) becomes:

|ψ|2 ∝ |t| (1.14)

from which we may correlate |ψ|2 with ns, since ns ∝ λ−2 ∝ |t| is the density of

superconducting electrons in the London theory.

Eq. (1.11) is the solution for minimizing the free energy without imposing any

boundary conditions. We denote it as ψ∞. The GL differential equation can be

written as:

αψ + β|ψ|2ψ +
1

2m∗ (
h̄

i
∇− e∗

c
A)2ψ = 0. (1.15)

In the case of zero external field, A = 0, Eq. 1.15 becomes

h̄2

2m∗|α|
d2f

dx2
+ f − f 3 = 0 (1.16)

where f = ψ/ψ∞. If we define f = 1 + g, by solving Eq. 1.16 to first order in g, we

find that

g ∼ e±x/ξ(T ) (1.17)

where ξ(T ) =
√

h̄2

2m∗|α(T )| ∝ 1
(1−t)1/2 is the coherence length which is the characteristic

length scale over which the order parameter ψ varies. By comparing with the general
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form for the coherence length ξ ∼ |1−t|−ν , we come to the conclusion that the mean-

field static critical exponent is ν = 1
2
.

1.3.2 Thermal Fluctuations and the Critical Regime

Although the Ginzburg-Landau theory is successful in explaining the physical

properties of conventional superconductors, it fails to explain some other second

order phase transitions such as the superconducting to normal phase transition of

high temperature superconductors in zero magnetic field and the vortex-glass phase

transition.

In the Ginzburg-Landau theory, thermal fluctuations are ignored. In any ma-

terials, there are always thermal fluctuations in the order of kBT . As the system

approaches Tc, fluctuations in ψ, of energy kBT , occur around the equilibrium value

of ψ. This means that above Tc, regions of the material of size ξ can go supercon-

ducting while below Tc, regions of normal material appear.

If the thermal fluctuations in the GL order parameter, δψ, remain small in com-

parison to the order parameter, ψ, they can be treated as perturbations to Ginzburg-

Landau theory. Such small perturbations are called Gaussian fluctuations[14]. How-

ever, since ψ goes to zero as T approaches Tc, there is a temperature range close to

Tc which δψ is in the order of ψ. In this range, called the critical regime, thermal

fluctuations cannot be treated as perturbations and the Ginzburg-Landau theory

breaks down [15].

In the critical regime, the energy density of thermal fluctuations is of the order
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of condensation energy. Since the typical size of fluctuation is ξ, the energy density

of a fluctuation in a 3D system can be approximated by kBT/4
3
πξ3. Let

kBT/
4

3
πξ3 >

µ0H
2
c

2
. (1.18)

The upper critical field of Hc2 is

Hc2 =
Φ0

2πµ0ξ2
. (1.19)

The thermodynamic critical field Hc can be related to Hc2 by

Hc =
Hc2√
2κ

(1.20)

Combine Eq. 1.18, Eq. 1.19 and Eq. 1.20, we can derive the critical regime:

|T − Tc| < 72
πµ0κ

4

Φ3
0Hc2(0)

k2
BT 3

c . (1.21)

For YBCO, κ ≈ 120, Tc ≈ 90 K and µHc2(0) ≈ 100 T. From Eq. 1.21, |T −Tc| < 0.5

K which is the critical regime where Ginzburg-Landau theory fails [15, 16, 17, 18].

1.3.3 Universality and the 3D-XY Theory

Universality [19] is the observation that there are properties for a large class

of systems that are independent of the details of the systems. Thermodynamic

phase transitions are characterized by order parameters. If phase transitions have

order parameters with the same dimensions and samples have the same spatial

dimensions, we say that they belong to the same universality class. Thus, behaviors

close to the critical points are expected to be the same, which leads to the same

critical exponents.
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The order parameter of the normal to superconducting phase transition is

ψ = |ψ|eiϕ, the dimension of which is n = 2. It belongs to the 3D-XY universality

class, which is a three-dimensional lattice of spins rotating in a plane. Numerical

simulation results generated from the 3D-XY model can be applied to the study of

normal to superconducting transitions.

The Hamiltonian of the XY model can be written as [20]:

H = −J
∑

<i,j>

si · sj. (1.22)

It is a special case of the n-vector model with spins rotating in the 2D plane (n=2).

For n = 1, the n-vector model becomes the Ising model with spins confined only in

one dimension. For n = 3, it becomes the Heisenberg model with spins rotating in

three dimensions. The free energy is minimal in the ordered state, when all spins are

aligned. Therefore on a 3D lattice at low temperatures there is a phase transition

to an ordered state with non-zero magnetization.

Numerical simulations for the static exponent ν yield [21, 22]

ν = 0.672± 0.002 (1.23)

which is different from the result from the mean field approach, ν = 1
2

[6].
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Chapter 2

Experiment

2.1 Overview

Our goal was to determine the critical exponents from DC measurements on

high temperature superconductors such as YBCO. We did this in zero magnetic field

and non-zero magnetic field using both thin-film and single-crystal samples.

There are two parameters that characterize the continuous superconducting

to normal phase transition in zero field. The first is the temperature-dependent

correlation length, ξ(T ), which close to Tc varies as

ξ(T ) ∼
∣∣∣T − Tc

Tc

∣∣∣
−ν

(2.1)

which defines a static critical exponent ν. A second parameter is the correlation

time τ(T ), which close to Tc varies as

τ ∼ ξz ∼
∣∣∣T − Tc

Tc

∣∣∣
−zν

(2.2)

which defines a dynamical critical exponent z. In the case of vortex-glass phase

transition, we replace ξ by ξg ∼
∣∣∣T−Tg

Tg

∣∣∣
−ν

, the glass-correlation length, where Tg is

the vortex-glass transition temperature.

FFH [12] proposed the general scaling function in the fluctuation-dominated

critical regime

E

J
= ξD−2−zχ±(JξD−1, ωξz, Hξ2) (2.3)
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where χ+ stands for a function above Tc (or Tg) and χ− stands for a function below

Tc (or Tg), E is the electric field, J is the applied current density, ω is the frequency,

H is the magnetic field and D is the dimension of the system. We tested the scaling

function by measuring the E vs. J nonlinear behavior around Tc (Tg) and we got

consistent values of dynamic critical exponent z in YBCO films and crystals.

2.2 YBCO Films

Film growth

Much of our data was taken using optimized YBCO films. We grow our films in

the pulsed laser deposition (PLD) lab in the Center for Superconductivity Research.

PLD is one of the thin film deposition techniques. Other methods include

molecular beam epitaxy (MBE) [23], chemical vapor deposition (CVD) [24], and

sputter deposition [25]. The first film deposited using the PLD technology was

in 1965 by Smith and Turner (see ref. 27). However, until the 1980’s, the laser

deposited films were inferior to those obtained using other techniques. The break-

through came in 1987 when Dijkkamp and Venkatesan [27] were able to laser deposit

a high quality thin film of YBa2Cu3O7−δ. Fig. 2.1 shows a schematic diagram of the

PLD setup (from CSR website).

In the making of YBa2Cu3O7−δ thin films, a laser beam is first emitted from

the laser. It travels through an aperture and then is reflected by a mirror. The beam

is focused inside a vacuum chamber through a convex lense into a tight spot (a few

square millimeters in area) to achieve greater energy densities at the target site. The

21



Figure 2.1: Schematic of a pulsed laser deposition setup. The figure is from CSR

website.
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beam strikes the YBCO target at an angle around 45◦. The beam’s pulse energy

is absorbed within a few nanometers of the target’s surface layer, which is heated

to thousands of degrees. The layer is then ignited into a plasma plume containing

atoms, molecules, and ions of the target. The plume interacts with the background

gas chemically and physically and finally forms a thin film by condensing onto a

substrate which is glued on the heater.

Our group has been making YBCO thin films for five years and we are able to

make high quality films with high Tc and sharp transitions. The laser we are using

is an ultra-violet Kr-F laser with λ = 248 nm and energy of 430 mJ per pulse. We

set the heater temperature to be 850◦C and the deposition is in a 150 mbar oxygen

environment. After the deposition, we cool the film in a rate of 30◦C/min to room

temperature in a 200 Torr oxygen background.

The most common substrate materials used for deposition of YBCO thin films

are given in Table 2.1. LaAlO3 substrates usually feature crystal twinning which

results in the largest surface roughness amongst the three. NdGaO3 substrates have

a much smaller dielectric constant and a smaller lattice mismatch to YBCO than

the SrTiO3 substrates, so NdGaO3 should be an ideal choice for thin-film growth.

However, YBCO films grown on the NGO substrates tend to have much larger

resistivity than films grown on STO substrates. Fig. 2.2 shows a comparison of

the measured resistivity of YBCO films on STO and NGO substrates. Because of

their low resistivity, we often uses films grown on the STO substrates for the DC

experiment.

Unlike the untwinned YBCO single crystals which we will introduce in section
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Substrate and orientation Lattice mismatch 4a
a

(%) Lattice mismatch 4b
b

(%)

LaAlO3(100) 0.78 2.6

SrTiO3(100) -2.3 -0.51

NdGaO3(110) <0.1 <0.1

Table 2.1: Lattice mismatches of several substrates used for deposition of YBCO.

2.3, the YBCO thin films we grow using the PLD method are heavily twinned. This

is because the optimally-doped YBCO is orthorhombic and so the material is likely

to be twinned. YBCO single crystals can be detwinned using the simultaneous heat

and uniaxial pressure (section 2.3). The approach has been proved to be futile in

YBCO thin films. Recent study [28] has shown that detwinning in YBCO thin films

can be achieved by suspending a portion of a YBCO thin film above the underlying

substrate. Since disorder induced by twin boundaries will not change the universality

class of the phase transition in zero-field transition, we did not put the effort in the

detwinning of the thin films.

After the films are prepared, we use ac susceptibility and x-ray diffraction to

examine the quality of the samples. We have to make sure that the samples to be

used in the DC measurements have high Tc, are c-axis oriented and homogenous.

Results from bad samples are meaningless.

AC susceptibility

AC susceptibility is a standard tool for determining the physics of supercon-

ductors, in particular measuring the critical temperatures and inhomogeneities of
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Figure 2.2: Resistivities of YBCO thin films grown on STO and NGO substrates
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the samples.

The magnetic susceptibility χ is defined as

χ =
M

H
(2.4)

where is H is the applied magnetic field and M is the magnetization of the material.

In an ac applied magnetic field H = H0e
iωt, the material’s susceptibility can

be specified as a complex constant

χ = χ
′ − iχ

′′
(2.5)

where χ
′

measures the amount of magnetic flux penetrating the sample and χ
′′

measures how the magnetization can lag the applied field (only positive values of

χ
′′

are physically possible).

In an ac susceptibility measurement, a small AC drive magnetic field is im-

posed on the DC field, causing a time-dependent moment in the sample. The time-

dependent moment induces an emf in the pickup coils. Fig. 2.3 shows the schematic

of an ac susceptibility apparatus. A small ac signal is applied to the drive coil. The

sample is placed between the drive coil and pick up coil. By measuring the induced

voltage in the pickup coil, we can get the temperature dependence of χ
′

and χ
′′

respectively.

We use a Princeton Applied Research Model 5210 lock-in amplifier to detect

the signal at the pick up coil. Fig. 2.4 shows ac susceptibility data for the sample

su113 which is a YBCO film grown on an STO substrate. The real part of the

susceptibility decreases sharply through the transition. This is because below Tc,

superconductors expel the magnetic flux (χ
′ → −1) and the amount of flux reaching
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Figure 2.3: Schematic diagram of ac susceptibility measurement.
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the pick up coil is greatly reduced. The imaginary part χ
′′

has a peak at the

transition. Tc can be defined as the temperature at the maximum of the peak.

The width of the superconducting to normal transition can be determined by the

full width at half maximum of the peak. The narrower the peak, the sharper the

transition, indicating better homogeneity of the sample. However, if there is more

than one peak or the peak has a large width, it means that the sample has bad quality

in that parts of the sample are a-axis oriented or the sample is inhomogeneous.

X-ray diffraction

X-ray diffraction is an excellent tool to analyze the crystalline structure of our

films. It can help us investigate the formation of material phases and the orientation

in thin films.

Fig. 2.5 shows a schematic diagram of the four-circle Siemens D5000 diffrac-

tometer setup we used in characterizing our films. The radiation is emitted from

the X-ray tube, diffracted by the film and received by the detector. The diffraction

angle (2θ) of the reflected beam always doubles the incident angle (θ). When the

Bragg condition is satisfied,

2d sin θ = nλ (2.6)

we expect constructive interference. In Eq. 2.6, d is the interplanar spacing, θ is the

incidence angle, n is the diffraction order and λ is the X-ray wavelength.

During a θ−2θ scan, θ is changed, for a fixed d (which is 3 Å for YBCO films),

there are certain values of θ which satisfies the Bragg condition and constructive

interferences show up as large peaks.
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Figure 2.4: AC susceptibility of sample su126 with real (solid) and imaginary (with

circles) parts. The transition temperature determined from the figure is around

91.45 K and the transition width (full width of half maximum) is 0.2 to 0.3 K.
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Figure 2.5: Schematic of a X-ray setup.
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Fig. 2.6 shows a θ − 2θ XRD scan of a c-axis oriented film on STO substrate.

The only clearly visible peaks are (n00) of YBCO and the substrate peak which

indicate a good c-axis orientation.

Patterning

After we get high quality YBCO films, we use optical lithography and chemical

etching to make the pattern to be used in the DC transport experiment. The

photoresist we use is Shipley S-1813. We spin photoresist on the films at 5000 rpm

for 50 seconds, and then bake it on a hot plate at 90 ◦C for 1 minute. This produces

a 1.0 µm thick layer of photoresist. We then put a film on the mask aligner and

place a chrome mask on top of the films. We expose the film using UV light with

intensity of 8 mW/cm2 for 12.5 seconds. After the exposure, we develop the pattern

in CD-30 for 7 seconds and a pattern of photoresist will show up on top of the film.

After development, we use chemical etching to remove the YBCO that is not

covered by the photoresist. The advantage of chemical etching is that it is easier

to operate, takes less time and does not affect the composition of the unexposed

sample. We use 0.5% (in volume) of phosphoric acid (H3PO4) solution in water. In

most cases, the etching rate is 100Å per second. However, if we etch the sample

for too long, the sample will be over-etched and the bridge of the pattern will be

thinner than expected.

Fig. 2.7 shows a photograph of the pattern after photolithography and chemical

etching. The black region is the YBCO film and the gray region is the STO substrate.

The current will flow from “I+” to “I−” and the voltage will be measured at “V+”

and “V−”. This is a typical four-probe pattern.
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Figure 2.6: X-ray diffraction pattern for a YBCO thin film (sample mcs89) [17]. 00n

stands for peaks of YBCO, holder stands for peaks of sample holder and S stands

for peaks of substrate.
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STO

Figure 2.7: Photograph of a YBCO’s bridge pattern for sample ro68. The bridge

dimensions are 8× 40µm2.
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2.3 YBCO Crystals

We received untwinned optimally-doped YBCO crystals from Dr. Kouji Segawa

and Dr. Yoichi Ando in Central Research Institute of Electric Power Industry. The

YBCO single crystals were grown in Y2O3 crucibles by a conventional method

[29, 30]. Before detwinning, the crystals are annealed to be tuned to the targeted

oxygen content (optimally-doping at δ = 0.05). The crystals are always quenched

at the high temperature annealing. Detwinning is performed at temperature below

220 oC under a uniaxial pressure of 0.1 Gpa.

After detwinning, the crystals are left at room temperature for at least 7

days for the oxygen to equilibrate. During this process, the oxygen content does

not change, however, the oxygen atoms tend to order locally to form longer Cu-O

chains. The typical Tc of the optimally-doped YBCO crystals can be higher than

93 K with a transition width of 0.5 K.

Fig. 2.8 shows the photograph of a YBCO crystal sample with four probe

contacts. The contacts are made by gold wires attached to the crystal using silver

paste. Because of difference in contact area, the contact resistance of the current

contacts is less than 0.5 Ω and contact resistance of the voltage contacts is less than

5 Ω. The current flows through the a-axis. We present ρaa vs. T in Fig. 2.9.

2.4 DC Measurements in Zero Magnetic Field

Experimental Setup

We have excellent probes to perform the DC transport experiments (measuring
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Figure 2.8: Photograph of a YBCO crystal sample with contacts. The picture is

from reference [29]
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Figure 2.9: Resistivity vs. temperature of an untwinned YBCO optimally-doped

single crystal (sample C1).
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voltage vs. current) in zero field. Fig. 2.10 shows a photograph of the experimental

setup. The sample is placed in the probe which is suspended in a cryostat filled with

liquid nitrogen (for YBCO). The bath cools the sample to where the phase transition

occurs. The cryostat is surrounded by three layers of µ-metal shields to reduce the

ambient field to less than 10−7 T which is essential to our zero field measurements.

The effect of ambient field on the experiment has been extensively discussed by M.C.

Sullivan et al. [31]. Magnetic fields as small as the earth’s magnetic field 50 µT can

change the shape of I − V curves and induce ohmic tails at low currents below Tc.

The whole setup is placed inside a screen room and has low pass filters both

inside the probe and at the wall of screen room. The double T filters inside the

probe have 3 dB point at 3 KHz and the Pi filters at the wall of the screen room

have 3 dB point at 5 KHz. Theory predicts that noise will cause ohmic tails at low

current densities. Strachan [18] and Sullivan [17] have measured I−V curves for the

same sample with and without filtering. They have found that at high currents, the

two sets of I − V curves collapse. However, at low currents, they have seen ohmic

tails in the isotherms taken without filtering that are not present in the isotherms

taken with filtering. By installing low-pass filters, we can reduce the ohmic tails

caused by the noise.

The currents to the sample are applied by a Keithley 224 current source and

the voltages are measured by a Keithley 182 nano-voltmeter. The temperature of

the sample is regulated by the Neocera LT-21 temperature controller. The precision

of the temperature control is 1 mK.

Fig. 2.11 shows photographs of the probe. The high-Tc superconducting films
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Figure 2.10: Photograph of the setup of the zero-field measurement.
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Figure 2.11: (a) Head of the probe. (b) Bottom end of the probe.
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are thermally anchored on a block of OFHC (oxygen free high conductivity) copper

(sample stage). The thermometer and heater are placed inside the copper block.

The thermometer is Cernox 1080 model made by Lakeshore. The heater is home-

made, consisting of twisted-paired high-resistance wire winding around a small cop-

per cylinder. The whole sample stage is put inside an inner can made of brass. The

inner can has vacuum separate from the outer can which means that we can put

exchange gas into the inner can and have the temperature controllers set the sample

and the inner can at the same temperature. In this exchange gas method, we can

greatly reduce the heating occurring in the sample.

Measurement Technique

We use four-probe measurements in the DC transport experiment. This method

allows us to measure the voltage across the sample without the interference of the

contacts. We first apply current I to the sample and set the desired temperature of

the sample using the temperature controller.

Once the temperature of the sample is stable, we measure the voltage ∆V1

using the Keithly 182. This ∆V1, however, includes the voltage drop across the

bridge of the sample (∆V ) in addition to thermal emfs (∆Vemf). A thermal emf

is caused at a junction of two dissimilar metals. In our setup, the solder joints

between the different metal wires are inevitable and the thermal emf is usually in

the order of 1 µ V. By applying current I in the opposite direction and taking

another measurement ∆V2, we can eliminate the thermal emf effect.

After switching the sign of the current, the intrinsic voltage across the sample

40



10
−6

10
−4

10
−8

10
−6

10
−4

10
−2

I (A)

V
 (

V
)

 

 

91.0K

88.6K

Figure 2.12: I − V curves for sample su058.

bridge can be derived from

∆V =
∆V1 −∆V2

2
=

(∆V + ∆Vemf )− (−∆V + ∆Vemf )

2
. (2.7)

Vemf can be cancelled out by the reverse polarity measurement.

Suppose we take n measurements, the average of the voltage measurements is

V̄ and the standard deviation is σV̄ . In order to get a precise voltage, we repeat

the reverse polarity measurements until either of the following two conditions have

been met. The first condition is that σV̄

V̄
< 1000 and the second condition is that
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σV̄ < 1 nV. In this way, we can make very precise measurements over many decades

in current and voltage. In Fig. 2.12, we present the V̄ vs. I curves from 91.0 K to

88.6 K of sample su058. The spacing between each isotherm is 0.2 K.

Low frequency measurements

Heating can distort the I-V curves at high current. To reduce the heating, we

can either reduce the contact resistance by depositing gold on the contacts or reduce

the width and length of bridges so that we could pass a smaller current through the

contacts while maintaining E and J (a more detailed discussion on the relation of

the dimensions of the bridges of film with heating can be found in Chapter 3).

There is another method using the swept-AC technique which can reduce the

heating. It was originally used in the transport measurement to study the vortex-

glass phase transition by Koch et al. in [48, 62]. The schematic setup is shown

in Fig. 2.13. Instead of the discrete method we introduced earlier, this method

applies an AC sinusoidal current. Suppose the frequency of the AC current is ω

and the relaxation time of the sample is τ . If ωτ >> 1, which means the sinusoidal

wave oscillates faster than the relaxation rate of the sample , the sample will be

at a relatively constant temperature over the whole current range (The high and

low currents are at the same temperature). The ac method thus ensures that all

current-induced heating is averaged to a steady temperature offset (∆T ) applying

to the whole curve.

The disadvantage of the AC method is that we cannot get good resolution

at low currents due to the limitation of our setup. The data at high currents look

smooth but are too noisy to perform a derivative plot (Chapter 3). A comparison of
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Figure 2.13: Schematic of low frequency measurement setup.
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the high currents results between ac sweep method and DC discrete method can be

found in [18] (page 75). The two sets of I − V curves start to deviate just below 1

mA for the same YBCO film. It tells us that I−V curves above 1 mA are distorted

by the heating effects.

2.5 DC Measurements in Magnetic Field

The DC transport measurements in magnetic field up to 9 T are performed

in the “Blue” magnet. The “Blue” magnet is a Cryomagnetic cryogenic system

consisting of a dewar made by Precision Cryogenic Systems with magnet inside and

an insert made by Janus. A schematic diagram is shown in Fig. 2.14

We use the same sample probe as we used in the DC measurements in zero

magnetic field. The helium vapor flows through the needle valve from the helium

bath to the sample space to cool the sample. The sample space temperature can be

controlled by changing the He gas flow and by a Lakeshore temperature controller

which controls the temperature of the vaporizer. The superconducting magnet can

provide a magnetic field of 9 tesla without pumping the helium bath and a maximum

field of 11 tesla by lowering the helium bath temperature down to 3 K.
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Chapter 3

The Superconducting Phase Transition of YBCO in Zero

Field

The high critical temperatures (Tc), large penetration depths (λ), and short

coherence lengths (ξ) of high-temperature superconductors make it possible to mea-

sure critical fluctuations in these materials, in contrast to conventional supercon-

ductors. In spite of nearly two decades of work, however, experimental results are

not consistent, and do not always agree with theory.

It is generally accepted that ν should be close to 0.67 in a superconductor

in zero magnetic field, since the phase transition belongs to the three dimensional

XY universality class [19]. There are some specific heat [33, 33, 35] and thermal

expansivity [34] data which agree with theory, although there are others [36, 37]

which do not. The exponent ν has also been inferred from DC and high-frequency

electrical measurements. Some of these measurements [43, 54] agree with the XY

model, and others [44, 53, 52] do not, yielding values of ν between 1.1 and 1.5.

The situation for the dynamical exponent z is even more uncertain. Fisher,

Fisher, and Huse [12] argue that motion of vortex loops should be diffusive, so

that model A dynamics [19], which give z = 2, should apply. Other theoretical

considerations yield that z = 1.5 [38], as for model E and model F dynamics [19].

Lidmar [39] and Weber [40] argue that z should be around 1.5 by Monte Carlo
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simulation. Experimental results vary even more widely. Yeh et al. [42] found z ≈ 2

from YBa2Cu2.98Au0.02O6.97±0.02 single crystal and epitaxial films in [42], but later

found z ≈ 3 in twinned superconducting YBa2Cu3O7−δ crystal in [43]. Booth et al.

[44], using microwave conductivity scaling, found that z ≈ 2.6. Moloni et al. [45]

found that z ≈ 2.3 and later found z ≈ 1.25 for under-doped YBa2Cu3O7−δ films.

Although the critical exponents should be universal, there is at present no

consensus in the field. We test universality by doing DC measurement on both

YBa2Cu3O7−δ crystals and films. We show that z and ν obtained from film data

agrees very well with the z obtained from crystal data.We argue that the wide ranges

for both z and ν reported in the literature, are due to the finite-size effects present

in films.

3.1 The Zero-Field Transition

In the zero-field transition of high temperature superconductors, thermal fluc-

tuations dominate the critical regime. The correlation length, ξ, also the typical

size of a fluctuation, diverges at Tc as [12]

ξ = ξ0

∣∣∣T − Tc

Tc

∣∣∣
−ν

. (3.1)

The fluctuations are dynamic and they pop in and out of existence. The typical life

time of a fluctuation is τ , also diverging at Tc as [12]

τ ∼ ξz. (3.2)
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The scaling function for the nonlinear dc conductivity is in the form of [12]

E

J
= ξD−2−zχ±(JξD−1). (3.3)

3.1.1 Scaling Theory

The assumption underlying the scaling theory is that physical properties de-

pend only on ξ and τ if the system is very close to the critical temperature Tc. We

will use a dimensional analysis to derive the scaling behavior of E and J as shown

in Eq. 3.3.

We know that

E = −∂A

∂t
∼ A

τ
(3.4)

where A is the vector potential. Using dimensional analysis, we can postulate that

A ∼ Φ0

ξ
. (3.5)

Combining Eqs. 3.4 and 3.5 we arrive at

E ∼ Φ0

ξτ
∼ ξ−1−z. (3.6)

We thus conclude that Eξ1+z is an appropriate dimensionless scaling variable.

We next try to find how J scales with ξ. We follow the argument in [18] and

[17]. The typical fluctuation region in a D dimensional space is in a size of ξD. The

power dissipated in this volume is proportional to JEξD. We equate this to the

thermal energy over the lifetime of a fluctuation, kBT/τ ,

JEξD ∼ kBT

τ
. (3.7)
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Combining Eq. 3.6 and Eq. 3.7, we can conclude

J ∼ Tξ1−D. (3.8)

The appropriate scaling combination is JξD−1.

Having obtained the scaling of E and J with ξ, we can write a scaling ansatz

as

Eξ1+z = F±(JξD−1) (3.9)

for temperatures above (+) and below (-) the critical temperature Tc where F± is

an appropriate scaling function.

Eq. 3.9 can also be written as

E

J
= ξD−2−zχ±(JξD−1) (3.10)

where we follow the convention of dropping the T ≈ Tc in Eq. 3.8. The scaling

function behaves as χ+ → constant as J → 0 implying a finite resistivity and

χ− ∼ e−a/J due to vortex-loop unbinding, as seen in the following section.

We then introduce two useful arguments from the scaling function. In the

limit of T → Tc, ξ → ∞. The ξD−1 term in the right hand side of Eq. 3.10 will

diverge. In order to make the left hand side of the equation remain finite, we have

to require that χ ∼ (JξD−1)x to cancel the ξD−2−z term. This will lead to

ξD−2−z+x(D−1) ∼ constant (3.11)

and

x =
2 + z −D

D − 1
. (3.12)
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Combining Eq. 3.10 and Eq. 3.12, we can find the power law relationship of E vs. J

at Tc

E ∼ J
z+1
D−1 . (3.13)

Above Tc, as J → 0 (in the low current limit), JξD−1 → 0 and χ+ becomes a

non-zero constant

ρ =
E

J
= ξD−2−zχ+(0) ∼

∣∣∣T − Tc

Tc

∣∣∣
ν(D−2−z)

. (3.14)

3.1.2 Vortex-Loop Unbinding

In the Meissner state, according to the mean field theory, there is no dissipation

occurring which is linear in the current density up to a critical current density.

However, due to thermal fluctuations, the system can dissipate energy when the

applied current is less than the critical current. The fluctuations take the form

of vortex loops. The nucleation and subsequent growth of vortex loops leads to a

nonlinear E − J relation in the Meissner state.

According to FFH [12], below Tc, when a current is applied to the sample,

the vortex loops will feel a force of JΦ0 per unit length. This Lorentz force will

either compress or expand the loops depending on the orientations of the loops.

Compressing the vortex loop will cause no net dissipation, so we only study the case

where the current expands the loop. The effective potential due to the Lorentz force

is

−πJΦ0(R
2 − ξ2

GL) (3.15)

which can be derived from integrating −Florentzdr = −2πJΦ0rdr, where R is the
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radius of the loop. Thus, the free energy of a circular vortex loop lying in a plane

normal to the current, of radius R > λ and having the appropriate sign of the

orientation, is

Uloop ≈ 2πRε− JΦ0πR2, (3.16)

where 2πRε is the self energy of the vortex loop (we assume here that ε is the energy

per unit length of vortex line).

The critical radius at which Eq. 3.16 has a maximum is

Rc =
ε

JΦ0

(3.17)

as seen in Fig. 3.1. If the radius of the vortex loop is above this critical radius as in

Eq. 3.17, the loop will expand towards infinity. Since the loop has a normal core,

such expansion will cause dissipation of energy. The resulting free energy barrier is

Uc =
πε2

JΦ0

. (3.18)

Vortex loops with radius larger than the critical radius Rc are produced at a

rate proportional to the Boltzmann factor e
− Uc

kBT . Some of these vortex loops will

annihilate with loops of the opposite orientation. In equilibrium, the creation rate

equals the annihilation rate and the number density of the vortex loops which cause

dissipation is proportional to

nf ∝ e
− Uc

2kBT = e
− πε2

2Φ0kBTJ = e−
JT
J (3.19)

with the characteristic current scale set by thermal fluctuations given by

JT = πε2/2Φ0kBT. (3.20)
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Figure 3.1: Schematic diagram of the potential barrier for vortex-loop. Vortex loops

with radius less than Rc will tend to shrink while ones with radius greater than Rc

will expand towards to infinity and cause dissipation.
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The resistivity of the superconductor will be proportional to the number density of

these excitations

ρ ∝ e−
JT
J . (3.21)

3.1.3 Finite-Size Effects

In the previous section, we discussed the dissipation caused by the vortex loops

unbinding in the Meissner state. The expanding of the radius of certain vortex loops

to infinity causes the nonlinear behavior of E vs. J but the resistivity still converges

to 0 as J → 0. In reality, samples have finite sizes. Thus, there is always a cut

off in the expansion of vortex loops. We will show that, because of the finite size

effects, below a crossover current density, the samples (especially films) have finite

linear resistance even below Tc. Finite size effects, neglected by much earlier work,

can cause misinterpretations of the experimental data.

Dekker et al. [47] observed the crossover from the critical scaling behavior to

an ohmic resistance at low currents near the 3D phase transition from normal to

vortex-glass phase as well as for the transition into the Meissner phase. They argued

that the crossover takes place when the growth of correlation length, ξg(ξ), is limited

by film thickness. They also made an observation that at lower field, deviation from

the critical behavior is more pronounced than in higher field. However, I believe that

it is not the correlation length but the vortex loop that is cut off by the thickness of

the sample. In Chapter 4 I will also show that finite size effects are more pronounced

in higher magnetic fields.
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Woltgen et al. [48] studied finite-size effects in the vortex-glass transition. In

their paper, they asserted that for YBCO films with thickness less than 1000 Å,

the transition is obscured by the finite thickness of the sample and that for thicker

samples, the finite size effects are absent. M. C. Sullivan et al. [50] studied the case

in the zero-field transition. By studying the YBCO films with thickness up to 3000

Å, they concluded that finite-size effects are present even in the thickest sample.

Both papers used the length scale proposed by FFH [12]

LJ =

√
ckBT

Φ0J
. (3.22)

This comes from Eq. 3.7, and is usually interpreted as the size of fluctuations probed

in the samples with current density J . Here c is a dimensionless constant of order

1.

In our YBCO films, the length l and width w are much larger than the thickness

d, so the thickness is the limiting length. According to Sullivan [17], if d > LJ , we

are only looking at fluctuations smaller than the thickness of the film which means

we are probing 3D fluctuations. On the other hand, if d < LJ , we probe only

fluctuations that are limited in size along the c-axis. These fluctuations are 2D

fluctuations. From this argument, we can determine a crossover current

Jmin =
ckBT

Φ0d2
. (3.23)

When J < ckBT
Φ0d2 , we will expect the system to deviate from the 3D critical scaling and

to become two dimensional. Experimental data [50] are consistent with a crossover

current density Jmin that has a linear relation with d−2.
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The argument above does not have a clear physical picture behind it. We will

start with a vortex loop model and hope to better understand finite size effects.

From the previous section, the critical radius of a vortex loop at current density J is

Rc = ε
JΦ0

and the resulting free energy barrier is Fc = πε2

JΦ0
. If we consider a typical

thermal fluctuation with energy of kBT , then

2πRε = kBT. (3.24)

Combining Eqs. 3.17 and 3.24 , we find when a typical thermal fluctuation is equal

in size to the critical radius,

R∗
c ∼

√
kT

JΦ0

. (3.25)

Comparing Eq. 3.22 to Eq. 3.25, we arrive at a refined picture of the meaning of

LJ . When J is very small, Rc is very large, and only a small number of high-energy

vortex loops “blow out” because they have R > Rc. As J is increased, smaller and

smaller loops are affected by the current. At some point, J is large enough, and Rc is

small enough, that roughly half of the loops that occur due to thermal fluctuations

“blow out”. At this point, currents have become a significant perturbation on the

system. LJ is thus not just a length scale probed by a current, but it is the current-

dependent length scale at which roughly half the thermally-generated vortex loops

“blow out”. It separates a current-dominated regime from an equilibrium thermal-

fluctuation dominated regime. (A more detailed discussion can be seen in Appendix

A.)

This crossover occurs in bulk, but will not be observed in a thin film unless

LJ < d, the film thickness. If d >> LJ , the free energy can still approximated by Uc
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in Eq. 3.18, so we will still see the exponentially vanishing dissipation as in Eq. 3.21.

However, if d < LJ , the cut-off vortex loops will become vortex-antivortex pairs as

in Fig. 3.2(b), the resulting free energy barrier will become

F ≈ 2dε1 − JΦ0r (3.26)

where ε1 is the energy per unit length of the vortex line and r is the spacing between

the vortices. When r > min(d, λ), similar to the argument in Repacci [51], we

will expect the ohmic response even in the “Meissner” state at low enough current

density.

In conclusion, below Tc, when the applied current density J is less than Jmin,

the resistivity of the sample will change from the exponential vanishing behavior

in Eq. 3.21 to a constant. Overlooking the finite-size effects will lead to incorrect

determination of Tc and critical exponents.

3.2 Data and Analysis

Given a set of I − V curves, each taken at a different temperature around

Tc, how are we going to determine the critical exponents from the data? First, I

am going to introduce the conventional analysis which has been used in previous

literature. I will then show that this method can apply to the data taken from the

YBCO crystals but fails when applied to the data taken from YBCO films because

of finite-size effects.

Fig. 3.3 shows a schematic diagram of what is expected for the E vs. J in a

double log plot. From Eq. 3.13, we expect the isotherm at Tc (the critical isotherm)
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Figure 3.2: Schematic of the critical size of vortex loops with respect to the film

thickness. (a) The critical size of the vortex loop is smaller than the film thickness

d. We expect 3D scaling when J > Jmin. (b) The critical size of the vortex loop

is larger than the film thickness. We expect ohmic behavior even in the Meissner

state.
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Figure 3.3: Schematic of expected E - J isotherms. The dashed line indicates ohmic

behavior (with the slope of 1 on a log-log plot). The isotherm at Tc is a straight

line in the log-log plot with a slope of (z + 1)/2 for D = 3. Isotherms below Tc have

negative curvatures illustrating the vanishing linear resistance. Isotherms above Tc

have positive curvatures with nonlinear behavior at high currents and ohmic tails

at low currents.
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in Fig. 3.3 to be a straight line because of the power law behavior, Eq. 3.13. The slope

of the critical isotherm is z+1
2

given that D = 3. We can thus determine z from fitting

the power law behavior. Isotherms below Tc have negative curvatures illustrating

the vanishing linear resistance. Isotherms above Tc have positive curvatures with

nonlinear behaviors at high currents and ohmic tails at low currents. Fitting the

ohmic resistance RL as in Eq. 3.14 with t = T−Tc

Tc
, we can get ν since we have

determined Tc and z from the critical isotherm.

Sometimes, for real experimental data, it is difficult to determine which isotherm

is closest to Tc since the data tends to be noisy at low current. The conventional

analysis often chooses the first isotherm without ohmic tail as the critical isotherm.

It is possible that this “critical” isotherm will have ohmic behavior at very small

current density which is not observed simply because of the resolution of the exper-

imental setup. Low frequency noise and finite size effects, which both contribute to

spurious ohmic behavior at low current density, may mislead us into choosing too

low a value for Tc [49, 50].

We can use another method as seen in [17, 18, 51] to determine Tc and z. This

is done by taking the logarithm of Eq. 3.3 and then taking the partial derivative

with respect to log J

(∂ log E

∂ log J

)
T

= 1 +
∂ log χ±(x)

∂x

x

∂ log J
. (3.27)

where x = ξD−1J . At T = Tc, Eq. 3.27 becomes

(∂ log E

∂ log J

)
Tc

=
z + 1

D − 1
(3.28)

and the critical isotherm is a straight line parallel to the J axis.
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Figure 3.4: Schematic of the expected d log(E)/d log(J) vs. J plot. The critical

isotherm is a straight line parallel to the horizontal axis. Isotherms above Tc are

monotonic decreasing functions while the ones below Tc are monotonic increasing.

Fig. 3.4 shows a schematic diagram of the expected d log(E)/d log(J) vs. J .

At Tc the intercept is z+1
2

which will help us determine the value of z. The isotherms

above Tc are monotonically decreasing and the isotherms below Tc are monotonically

increasing.

The derivative plot cannot help us find the static exponent ν, but the Tc and

z determined from the derivative plot are less ambiguous than results from the
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conventional analysis.

3.2.1 Crystal Data

A plot of ρ vs. T of an untwinned YBCO crystal is in Fig. 2.9 (sample C1).

The applied current is along the a-axis. From the figure, the resistivity at 96 K is

around 70 µΩ and the transition temperature is estimated to be close to 93.8 K.

The dimensions of the crystal are: w = 371 µm, l = 700 µm and d = 103 µm. The

sample was grown, and contacts were made using silver paint by Dr. Kouji Segawa

of Central Research Institue of Electric Power Industry, Tokyo, Japan.

We first determine the critical exponents using the conventional analysis. In

Fig. 3.5 we present the E vs. J curves of the crystal in double log scale. From the

figure, all isotherms above the dashed line have positive curvature and have ohmic

response in the limit of zero current, and all isotherms below the dashed line have

negative curvature and vanishing linear resistance. We check this by fitting the

E vs. J curves to a second-order form of log(E) = a0 + a1 log(J) + a2[log(J)]2. The

coefficient a2 can be used to measure the sign of the curvature of each isotherms.

a2 is positive above 93.839 K and negative below 93.833 K. Thus, the dashed line

separates the superconducting and normal states of the sample. The power law

fitting of the dashed line is E ∼ J1.23±0.08. From Eq. 3.13(using D = 3), we get

z = 1.46± 0.16. (3.29)

In Fig. 3.6, we show the derivative plot of the data shown in Fig. 3.5. We find

that the derivative plot of the crystal data looks similar to the schematic derivative
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plot shown in Fig. 3.4. The dashed line we draw in Fig. 3.6 separates the two

phases into the isotherms above Tc and isotherms below Tc. The isotherms below

the dashed line are nearly monotonically increasing and approach 1 (ohmic behavior)

at low current. The ones above the dashed line are nearly monotonically decreasing,

indicating vanishing linear resistance. The intercept of the dashed line is 1.23± 0.1

and is expected to be (z+1)/2 from Eq. 3.28. Thus z determined from the derivative

plot is

z = 1.46± 0.2 (3.30)

which is nearly identical to the result by the conventional analysis, Eq. 3.29.

We find the exponent ν from the low-current resistance

RL ∝ (T/Tc − 1)ν(z−1) (3.31)

according to Eq. (3.14). We make a log(RL) vs. log(T/Tc − 1) plot in Fig. 3.7. ν

determined from this method is sensitive to the choice of Tc. If we set Tc to be

93.836 K, ν ≈ 0.85 from the power law fit whereas ν ≈ 0.70 if we set Tc = 93.837 K.

From FFH [12],we know that the difference between the critical temperature

Tc and the first-order melting transition Tm is

Tc − Tg ∼ H1/2ν0 (3.32)

where ν0 is the zero-field statical exponent. We show Tc − Tm vs µ0H in double

log scale in Fig. 3.8 and find ν0 = 0.68 ± 0.1 from a power law fit. The result is

consistent with the statical critical behavior of 3D-XY system.
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Figure 3.5: E - J isotherms for a YBCO single untwinned crystal (sample C1) in

zero field. The dotted line has a slope of one indicating ohmic behavior. The dashed

line separates the isotherms above Tc and below Tc with opposite sign of curvatures.
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mK.
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ν = 0.85± 0.2.
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3.2.2 Film Data

In Fig. 3.9, we present the E vs. J in a double-log scale of a 150 nm thick

YBa2C3O7−δ c-axis oriented optimal-doped film (sample su113). The isotherms

differ by 0.05 K from 92.075 K to 91.225 K. Unlike what we did in Fig 3.5, we

cannot find a single straight line in Fig. 3.9 that separates the isotherms into two

groups which are either concave or convex exclusively. For example, the isotherm of

91.80K has negative curvature above 7 × 107 A/m2 which means that the electric

field E converges to 0 more quickly than the applied current density J . However,

it has positive curvature below 7 × 107 A/m2 and exhibits ohmic behavior at even

lower current density.

If we were using the conventional analysis, we would choose Tc = 91.525 K to

be the critical isotherm since it is the first isotherm that separates the isotherms

with low current ohmic tails from the ones without. The power law fit of this

“critical” isotherm is E ∼ J3 which gives the dynamic exponent z ≈ 5. However, it

is still possible that this isotherm will have ohmic behavior at lower current density

and that we did not observe the ohmic response because of the resolution of the

nano-voltmeter. To examine whether this candidate critical isotherm (91.525 K)

has power law behavior, we can refer to the derivative plot shown in Fig. 3.10.

If the isotherm of 91.525 K is indeed the critical isotherm, it is expected to be a

horizontal straight line in the derivative plot. However, in Fig. 3.10, the isotherm is

monotonically decreasing above 2× 107 A/m2, and monotonically increasing below

2×107 A/m2. So, if the experimental setup were to allow us to measure even smaller
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voltage, we would expect the 91.525 K isotherm would bend down toward 1 (ohmic

behavior) in the derivative plot at smaller current density just like the 91.625 K

isotherm.

Recall that because of the finite size of the film, below a certain crossover

current density, Jmin, the film will have ohmic response even below the transition

temperature Tc. The expected crossover current density Jmin for a 1500 Å thick

film is of order 107 A/m2. From Fig. 3.10, if we only look at the data above 7× 107

A/m2 shown in Fig. 3.11, the derivative plot actually looks similar to the expected

derivative plot (Fig. 3.4) from the scaling function. Tc determined from the high-

current density data alone is around 91.825 K and dynamic exponent z is 1.54±0.1,

which agrees with the result from the crystal data.

Because of finite-size effects, we cannot use the ohmic tails above Tc to deter-

mine the static critical exponent ν. The ohmic tails have contributions from finite-

size effects and yet it is not known how to subtract such contributions. However,

from FFH [12], close to Tc, similar to the case in the first-order melting transition

in untwinned YBCO single crystal, the difference between the critical temperature

Tc and glass transition temperature Tg has a power law relation with H as

Tc − Tg(H) ∼ H1/2ν0 (3.33)

where Tg(H) is the vortex-glass transition temperature at H and ν0 is the zero-field

static exponent. A detailed discussion about the vortex-glass transition temperature

can be found in Chapter 4.

We show Tc − Tg(H) vs. H in double-log scale in Fig. 3.12. The dashed line
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Figure 3.11: Derivative plot for a 1500 Å YBCO film (sample su113) in zero magnetic

field at high-current regime. The isotherms are from 92.025 K to 91.275 K with
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intercept of 1.27.
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is a power law fit to the data with a slope of around 0.81. Combined with Eq. 3.33

gives

ν0 = 0.62± 0.1. (3.34)

Finally, we have found consistent values for both exponents z and ν from crystals’

data and films’ data. The results show that the zero-field transition for YBCO is

3D-XY like and has a model-E dynamics.

3.2.3 Discussion

Normal channel substraction

In the previous data analysis by Strachan [53] and Sullivan [17], the current

density J used in the scaling function Eq. 3.3 is not the applied current density. In-

stead, they used the so-called fluctuating current density ∆J . The ∆J is associated

with the fluctuation-enhanced conductivity ∆σ in the form

∆J = ∆σE. (3.35)

The idea of fluctuation-enhanced conductivity actually comes from Gaussian

fluctuations [6] (fluctuations as perturbations). Above the mean-field transition

temperature Tc0, fluctuation-enhanced conductivity is expected to add to the con-

ductivity due to the electrons in the normal state as shown in Fig. 3.13.

The applied current density J can be written as

J = σE = σnE + ∆σE (3.36)

where σn is the conductivity due to the normal background and σ = σn + ∆σ is the
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Figure 3.12: Tc− Tg vs. H in double-log scale of a YBCO thin film (sample su113).

The insert is the melting line for the film up to 6.5 T.
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Figure 3.13: The solid line represents the predicted conductivity with Gaussian

fluctuations. σn is the normal state conductivity and ∆σ is the fluctuation-enhanced

conductivity.
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Figure 3.14: In the two-channel model , current is assumed to flow through the two

parallel channels, the fluctuating channel and normal channel.

overall conductivity. Thus, fluctuating electrons and the normal electrons are two

different parallel channels for the current to flow through, as shown in Fig. 3.2.3.

The normal channel is assumed to be just a simple resistor, the resistivity of

which is assumed to be linear in T . The resistivity of the YBCO crystal (sample

C1) ρ vs. T is shown in Fig. 3.15. The dotted line is the linear fit to the normal

state resistivity above 140 K, ρn(T ) = aT + b. The current through the fluctuation

channel can be found

∆J = J − E

aT + b
. (3.37)

The question naturally arises, is it valid to subtract the normal background

below Tc? First, We don’t see any reason to subtract the normal channel below Tc,
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Figure 3.15: The solid curve is the ρ vs. T of untwinned single YBCO crystal (sample

C1). The dotted line is the normal background which is the linear fitting of the solid

curve above 140 K.
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since the linear resistance of the sample below Tc is expected to vanish. Second,

subtracting the normal background is appropriate for Gaussian fluctuation ([6]),

but not justified in the critical region. From the FFH’s derivation [12] of the scaling

function 3.3, the current density is specified as applied current density J , not the ∆J

flowing through the fluctuation channel. Last, from Fig. 3.13, at or below the mean

field transition temperature Tc0, the resistivity is strictly zero which is contrary to

the behavior predicted by Eq. 3.3 and the experimental data: ρ → 0, as J → 0.

Fig. 3.16 shows E vs. J and E vs. ∆J of a YBCO film (sample su113). The

dotted curves are the isotherms with ∆J and the solid curves are the isotherms with

J . From the figure, below 91.825 K and at low current density, the dotted isotherms

almost coincide with the solid isotherms since E
ρn

is a small term compared with

J = E
ρ

when ρn À ρ at lower T and lower current density J . At higher current

density or higher temperature, deviations between the two sets of isotherms are

observed since ρn and ρ are comparable at higher T or higher J . The sharp upturn

at high ∆J of the dotted isotherms greatly distorts the power law behavior and can

not be explained by heating alone. The derivative analysis, ∂log(E)
∂log(∆J)

vs. ∆J gives

us Tc = 91.775 K and z = 2.3 ± 0.2 (Model A dynamics) whereas ∂log(E)
∂log(J)

gives us

Tc = 91.825 K and z = 1.5± 0.2 (Model E dynamics).

To explain why two sets of isotherms give such different results, we compare

the isotherms at T = 91.775 K as shown in Fig. 3.17. At J > 5× 107A/m2, where

there are no finite size effects present, the E vs. J shows downward curvature which

illustrates the vanishing linear resistance. This implies that this isotherm is actually

below the transition temperature Tc and in the superconducting state. However, the
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E vs. ∆J shows upward curvature which can mislead us by saying that this isotherm

(91.775 K)is still in the normal state. The explanation of the changing of the sign

of the curvature is that the deviation is larger at higher current density than the

deviation at lower current density as seen in Fig. 3.17 of the two horizontal arrows.

Thus, Tc determined from E vs. ∆J will be lower and the corresponding dynamic

exponent z will be higher.

In Fig. 3.18, we present E vs. J and E vs. ∆J of the YBCO crystal (sample

C1) in the same plot. The dotted curves are the isotherms with ∆J and the solid

curves are the isotherms with J . At low current density, the dotted isotherms almost

collapse with the solid isotherms. At higher current density, we notice that there are

only small deviations between the dotted isotherms and solid isotherms. By doing

the conventional analysis, Tc values determined from both two sets of isotherms are

essentially the same. The dynamic exponent z determined from the E vs. ∆J is

1.7± 0.3 where as z determined from E vs. J is 1.5± 0.2. This is because although

subtracting the normal background can change the power law behavior at high

current density, it does not create or eliminate ohmic tails at low current density.

Heating

Heating can be a very big problem in our experiment. At low enough ap-

plied current, the effect of heating is negligible and the sample will be at a fixed

temperature T0. However, at high applied current, the sample will be heated to

T1 = T0 + ∆T . The voltage across the sample is V (I, T1) instead of V (I, T0) and

V (I, T1) > V (I, T0). Thus, the heating of the sample at high current density can

create extra nonlinear behavior and distort the shape of the I − V curves. This
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can give misleading results since we determine the dynamic exponent z from the

high-current data.

Strachan [18] has systematically discussed the effect of heating of the sam-

ple. Strachan divided the sources of heating into two categories: heating from the

sample itself and heating from contacts. He also found ways to quantify the rise of

temperature due to heating.

Sullivan revisited the problem in [17] in which he found that for a typical 2000

Å film, at 1 mA, the leads and contacts dissipate a power of order 10−8 W, three

orders of magnitude less than the power generated in the self-heating of the bridge.

So the heating generated from the leads and contacts is negligible compared to the

self-heating of the sample.

When the current is flowing through the sample, it can create heat, the power

of which is given by P = IV where V is the voltage across the sample. This power

will raise the sample’s temperature from T0 to T0 + ∆T . Remember that in the

scaling function Eq. 3.3, the scaling variables are E and J . So it is the relation

between E and J that we are interested in, not the V and I. We wish to study how

the geometry of the pattern affects heating while keep E and J fixed.

The possible sources of thermal gradients are the YBCO/substrate interface,

the leads/bridge interface and the substrate/copper-block interface. First, let us

consider the case that the thermal gradients are at the YBCO/substrate interface.

The power P generated by the current is

P = V I = (EJ)lwd (3.38)
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where l is the length, w is the width and d is the thickness of the bridge. Assuming

for simplicity that the sample temperature does not depend on position, the heat

flowing out of the sample into the substrate is given by

P ≈ G1∆T1 (3.39)

where G1 is an interface conductance, related to an interface thermal conductivity

κ1 by

G1 = κ1lw. (3.40)

Combining Eqs. 3.38 through 3.40 yields

∆T1 ≈ EJd

κ1

∝ d (3.41)

which is proportional to the thickness of the film. We cannot reduce the effect of

heating, in this case, by changing the length and width of the bridge for fixed E, J

and d.

Second, if we assume that most of the thermal gradients are located at the

leads/bridge interface, then the thermal conductance G2 = κ2wd. The temperature

rise ∆T2 due to κ2 is then

∆T2 ≈ EJl

κ2

∝ l (3.42)

In this case, we can reduce the self-heating of the sample by reducing the length of

the bridge l while keeping E and J fixed.

At last, in the extreme case, if we assume that most of the thermal gradients

are located at the substrate/copper-block interface, than the thermal conductance

is independent of the dimensions of the bridge. The temperature rise ∆T3 due to
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the substrate/copper-block conductance, is

∆T3 ≈ P

G3

∝ lw (3.43)

which is proportional to the product of the length and the width of the bridge. In

this case, we can reduce the self-heating of the sample by reducing the length and

width of the bridge simultaneously while keeping E and J fixed.

In reality, the effect of the self-heating is more complex and the temperature

rise may be a combination of ∆T1, ∆T2 and ∆T3. To show how the geometrical

difference of the bridges can affect the self-heating of the sample, we present a

comparison of the derivative plots of two different bridges as seen in Fig. 3.19. Both

bridges (20× 100 µm2 and 100× 500 µm2) are in the same YBCO film and in series

with each other.

From Eqs. 3.42 and 3.43, the temperature rise on the 100 × 500 µm2 bridge

should be at least 5 times larger the one on the 20 × 100 µm2 bridge at the same

current density J assuming κ1 À κ2, κ3. In the low current density regime, we see

that the two sets of isotherms overlap with each other since heating is negligible at

low current densities. In the high current densities, more heating in the 100 × 500

µm2 bridge makes the isotherms (dotted curves) deviate from the solid curves. A

rough estimate of the difference in temperatures of the two sets of isotherms in the

high current density regime is 60 mK to 120 mK around 8× 107 A/m2.

Since we are using the high current density data to determine the transition

temperature Tc and dynamic exponent z of the YBCO films, failure to account for

the higher heating effect on longer or wider bridges may give us misleading results.

84



10
5

10
6

10
7

10
8

1

1.5

2

2.5

3

3.5

J (A/m2)

dL
og

(E
)/

dL
og

(J
)

 

 

91.44K

91.86K

90.96K

91.56K

Figure 3.19: Comparison of the derivative plots of two different bridges in the same

YBCO film. The set of solid isotherms is from the 20 × 100 µm2 bridge and the

set of dotted isotherms is from 100 × 500 µm2 bridge. The spacing between the

isotherms is 60 mK.
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For instance, from Fig. 3.19, Tc and z determined from the data from 20× 100 µm2

bridge (sample mcs146) are 91.56 K and 1.6 respectively. Heating bends the curves

up at high current densities; for the data from the 100 × 500 µm2 bridge (sample

mcs146) this makes us choose a lower Tc = 91.62 K and a larger z = 2.2.

Strachan [18] and Sullivan [17] have quantified the rise of the temperature for

the 8 × 40 µm2 bridge in a 2000 Å thick YBCO film to be less than 10 mK at

108 A/m2 much less than the spacing of the isotherms. Since most of the bridges

I made are of this dimension, we are safe to determine Tc and z from the data on

those bridges in the high current density regime which is less than 108 A/m2.

We now turn to heating effects in the YBCO crystals. Unlike YBCO films,

which have good thermal conductivity between the YBCO and substrate, the YBCO

crystals are not well thermally linked with the sapphire beneath them. Besides, the

spacing between the isotherms of crystal data is usually several milikelvin, compared

with 50 milikelvin in the films, and heating which can only causes the crystal to

deviate a few milikelvin from the base temperature can give misleading results.

To reduce the heating effect of the crystal, we can use the exchange gas method.

We fill the inner can with helium gas. The inner can temperature is set at the same

temperature as the sample. The power generated from the current can thus be

dissipated through the helium gas. In Fig. 3.20, we present a comparison of the

E vs. J plots between the YBCO crystal data taken with and without exchange

gas. Larger heating effects are observed for the data without exchange gas at high

current density regime. Although the deviation is only 6 mK, dynamic exponent

z determined from the data without exchange gas is 1.8, compared to z = 1.5
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determined from the one with exchange gas.
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Chapter 4

The Superconducting Phase Transition of YBCO in

Magnetic Field

4.1 Vortex-Glass Phase Transition

So far we have discussed the topic of the phase transition of the high-temperature

superconductors in zero magnetic field. Now we discuss the phase transition in non-

zero magnetic field. Before the discovery of the high-temperature superconductors,

it was generally believed that there is no phase transition in a magnetic field. The

Anderson-Kim theory of “flux creep” [11] proposed that thermal fluctuation can

allow flux motion even when pinning exists. The result is the existence of finite

resistance ρ ∼ e−
U
T with U being the activation energy at all temperatures at fields

larger than Hc1 even in the limit of zero current.

After the discovery of high-temperature superconductors, it was first believed

that there is flux-creep. The early experimental data on Bi2.2Sr2Ca0.8Cu2O8+δ crys-

tals [55] and YBa2Cu3O7−δ films [56] showed flux-creep related phenomenon. In

[55], Palstra et al. found a current-independent resistance which is thermally acti-

vated and can be described by an Arrhenius law, ρ = ρ0 exp (−U0/T ) in the mixed

state. In [56], Zeldov et al. found a current-dependent thermally activated electrical

resistivity of the YBCO films in the mixed state in the form of ρ = ρ0 exp (−U/T )
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where the activation energy U scaled with current density as ln (J0/J).

In contrast, FFH [12] proposed a true superconducting state in field in which

vortex flow is impeded due to random pinning or other imperfections in the material.

Their argument [12] is that the introduction of random pinning will destroy the

crystalline long-range order of the vortex lattice phase [57]. A vortex-glass phase

will appear to replace the vortex-lattice phase with vanishing linear resistivity in

the limit of zero current and long-range phase coherence. In the vortex-glass phase,

the material is in a true superconducting state. The name vortex-glass comes from

an analogy to the long-range order in spin glasses [58].

A phase diagram containing a vortex-glass phase is shown in Fig. 1.4. The

lower critical field of Hc1(T ) separates the Meissner phase and the vortex-glass

phase. The upper critical field Hc2(T ) is no longer a coexistence curve for the

phase transition; there is instead a broad crossover from the normal phase to the

vortex-liquid phase. There is a continuous phase transition, called the vortex-glass

phase transition, between the vortex-liquid phase and the vortex-glass phase. The

phase coexistence curve is Hg(T ) (Hc1 < Hg < Hc2).

Similar to the phase transition in zero field, the vortex-glass phase transition

has a diverging correlation length at Tg (transition temperature of the vortex-glass

transition)

ξg ∼ |T − Tg|−ν (4.1)

and a diverging relaxation time (critical slowing down)

τg ∼ ξz
g . (4.2)
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Since the vortex-glass phase transition is second order, the scaling form Eq. 3.10

we discussed in Chapter 3 should also apply here, with substitutions of the vortex-

glass correlation length, critical exponents and scaling functions. Thus the expected

scaling form for a vortex-glass transition can be written as

E

J
= ξD−2−z

g χ±(JξD−1
g ) (4.3)

where χ± are two universal functions which characterize the system above (+) and

below (−) the glass transition temperature.

At the vortex-glass transition temperature, we still expect a power law E − J

curve

E ∼ J (z+1)/(D−1). (4.4)

For T near Tg, the E − J characteristics should approach this power law behavior

at high current densities, crossing over to ohmic behavior at low current densities

for T > Tg as

RL ∼ ξ(D−2−z)
g , (4.5)

and to an exponentially vanishing resistance for T < Tg.

The dynamic exponent z estimated in FFH [12] ranges from 4 to 7 since it is

expected by FFH that it should be larger than the z = 4 for the 6D conventional

spin glass and smaller than the z = 6± 1 for the 3D Ising spin glass. Monto Carlo

simulations of the gauge glass model in 3D by Olson et al. [59] give the dynamic

exponent z = 4.2 ± 0.6 and the correlation length exponent ν = 1.39 ± 0.2. Later

data simulations by Vestegren [60] on a vortex-glass transition by a random pinning

model give interesting values of ν = 0.7 and z = 1.5, very close to those of the zero-
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field 3D-XY model with model-E dynamics. Lidmar [61] studied a model describing

vortices in strongly disordered 3D superconductors and found ν ≈ 1.3.

Clearly, there is no agreement on the exponents from simulation results. What

happened on the experimental side? Ever since the publication of the FFH’s paper

[12], extensive experimental results [42, 43, 45, 46, 48, 62, 63, 64, 65] have been

reported with z ranging from 1.25 to 8.3 and ν from 0.65 to 2. Similar to the case

of critical exponents in the zero-field transition, there has been no consensus on the

critical exponents for the vortex-glass phase transition from the experiments.

One of the earliest experimental results to support the vortex-glass phase tran-

sition is by Koch et al. [62]. In their paper, I − V curves of a 0.4 µm YBCO film

were measured up to 4 T and z ' 4.8 and ν ' 1.8 were extracted from the data

using conventional analysis. Although the results seemed to agree with FFH’s pre-

dictions, finite sizes of the film were neglected. As we have discussed in Chapter 3,

finite-size effects in a YBCO film would prevent us from picking the right “critical

isotherm” and critical exponents in the zero-field transition. The crossover current

density Jmin for a 0.4 µm YBCO film is around 108 A/m2 from Eq. 3.23, and the

applied current density ranges from 105 A/m2 to 109 A/m2 in [62]. We can thus

say that the critical exponents z ' 5 and ν ' 1.8 [62] actually are extracted from

the finite-size dominated regime and may not be the true critical exponents. In

addition, Coppersmith et al. in [66] suggested that the measured I − V curves in

[62] could be explained using the flux-creep model.

Many later experimental results did not include finite-size effects in their anal-

ysis. Moloni et al. [45] [46] found high field vortex glass exponents z ' 4.0 and
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ν ' 1.9 for under-doped YBCO films in fields up to 26 T, however, in low fields

(<0.1 T), they claimed that z ' 1.25. Sawa et al. in [63] measured I − V curves

of YBCO films with thickness ranging from 18 nm to 1000 nm and observed an

increase of the exponent z with decreasing thickness (from 4.22 to 9.38).

As we discussed in Chapter 3, crystals are not strongly influenced by finite-

size effects in zero magnetic field. If this is also the case in the vortex-glass phase

transition, we would expect more consensus on the critical exponents from crystals

in the literature. However, crystals’ results are even more varied. Gammel et al.

[64] found that z = 4.3 ± 1.5 and ν = 2 ± 1 from twinned YBCO crystals in fields

from 1 to 6 T. Later experimental results by Yeh et al. in [42] and [43] found that

z = 2±0.2 and ν = 0.9±0.2 in Au-doped YBCO single crystals at low fields (0 to 0.6

T) and that z ' 3 and ν ' 2
3

in twinned YBCO crystals at fields up to 7 T. Smaller

dynamic exponents has been reported by Kim et al. in [67] with z = 1.5±0.1 which

agrees with Model E dynamics [19].

The critical exponents in the vortex-glass phase transition are expected to be

universal constants if the transition exists. The exponents should be independent

of the sample, experimental technique and magnitude of the magnetic field. The

wide range of computational and experimental results have raised doubts on whether

there is a true vortex-glass phase transition [53].

As proposed by FFH [12], one of the key features of vortex-glass phase transi-

tion is that the experimental I−V curves should collapse onto two scaling functions

on either side of the transition. The data collapse has been used extensively to im-

ply the transition and to extract the exponents. However, data collapse from the
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measured I − V curves can be explained using the flux-creep model [66] or the

percolative transition model [68], and simulated data based on models without a

transition [66, 68, 69] collapse onto two universal curves.

Strachan et al. in [53] questioned the vortex-glass transition by showing that

data collapse can be achieved for a wide range of critical exponents and temperatures

for the same sample. Not only did the paper prove that data collapse alone can

not guarantee the existence of a vortex-glass phase transition, but it also partially

explained the reported controversial experimental results.

Does the vortex-glass transition really exist? We will first present our exper-

imental results based on the transport measurements on the optimal-doped YBCO

films with thickness ranging from 700 Å to 2400 Å and extract the dynamic expo-

nent z from the high-current regime. We will also show that finite-size effects exist

in the vortex-glass transition and compare the results with the case in zero-field

transition. In the last section of this chapter, we will discuss the first order melting

transition for untwinned YBCO single crystals in field.

4.2 Experimental Results of YBCO Films

4.2.1 Conventional Method

We present in Fig. 4.1 the ρ vs. T of a YBCO film (sample su113) with

magnetic field parallel to the c-axis. It is obvious that the width of the transition is

broadened by the magnetic field.

We begin with the conventional analysis of the E−J curves of sample su113 at
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Figure 4.1: Resistivity vs. temperature of a YBCO film (su113) at various magnetic

fields. The magnetic field is parallel to the c-axis.
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magnetic field of 5 T. The E−J curves in a double-log plot are shown in Fig. 4.2. The

isotherms are separated by 0.60 K from 86.70 K to 75.90 K. At high temperatures,

the E − J curves are parallel to each other with a slope of 1 (ohmic behavior).

At intermediate temperatures, the E − J curves have nonlinear behaviors at high

currents and cross over to ohmic at low currents. At low temperatures, the curves

have negative curvatures, illustrating vanishing linear resistance.

The transition temperature Tg determined from the conventional analysis is

79.50 K since the isotherm at 79.50 K is the first isotherm without an ohmic tail.

From Eq. 4.4, this isotherm should have a power law behavior. We do a linear fit

at low currents and find the slope is 2.6 which gives

z = 4.2. (4.6)

This is very similar to the z values reported for the vortex-glass transition [62] [64].

The other exponent ν can be found through data collapse. From Eq. 4.3, we

get

V

I

∣∣∣T − Tg

Tg

∣∣∣
ν(1−z)

= χ±
( I

T

∣∣∣T − Tg

Tg

∣∣∣
−2ν)

. (4.7)

By selecting the appropriate z, ν and Tg, all isotherms should fall on two curves, for

above and below Tg, according to FFH [12].

We show the collapse of isotherms from Fig. 4.2 in Fig. 4.3. By keeping z = 4.2

and Tg = 79.50 K fixed and choosing various ν, we find that the data collapse looks

best when ν = 1.2. The ν value is very close to the reported values [62] [64].

However, we have some concerns about the conventional method. The dashed

line which is the fit to the power law behavior in Fig. 4.2 crosses some adjacent
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separated by 0.60 K from 86.70 K to 75.90 K. The transition temperature from

conventional analysis is Tg = 79.50 K. The dashed line at 79.50 K is a power-law fit

at lower currents.
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isotherms, which is not expected. And we can see systematic deviations from the

data collapse in Fig. 4.3.

4.2.2 Derivative Plot

Recall from Chapter 3, that finite-size effects are present in the E − J curves

of the YBCO films in zero magnetic field. They prevent us from extracting the

correct exponents and transition temperature from the data using the conventional

method. We now wonder whether there also exist finite-size effects of the films in

the vortex-glass transition. The best way to study the finite-size effects is again the

derivative plot [50].

In Fig. 4.4, we show the derivative plot for sample 113 from the isotherms in

Fig. 4.2. Clearly, the conventional choice for Tg, 79.50 K, is not a horizontal line

in the derivative plot. Thus this isotherm cannot have the power law behavior sug-

gested by Fig. 4.2 and cannot be the correct Tg if the vortex-glass transition exists.

Importantly, the derivative plot for su113 at 5 T looks similar to the derivative plot

of the same sample in zero field. When 79.50 K< T <83.10 K, the isotherms are

monotonically decreasing to the right of the dashed line in Fig. 4.4 and monotoni-

cally increasing to the left of the line. This makes us believe that the electric fields

converge to zero more quickly than the current density when J > 4× 108 A/m2 and

79.50 K< T <83.10 K, but that vice versa when J < 4× 108 A/m2 and finally the

sample becomes ohmic in the limit of zero current. If we only look to the right of the

dashed line in Fig. 4.4, the derivative plot looks like the expected behavior shown
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in Fig. 3.4. We thus have experimental reasons to believe that when J < 4 × 108

A/m2, finite size effects dominate. The vortex-glass transition may exist but is only

visible when J > 4× 108 A/m2 for sample su113.

As we did in Chapter 3, we can extract Tg and z from the high-current regime

in Fig. 4.4 where there are no finite-size effects. We choose Tg = 83.10 K since it is

the most horizontal line in the high-current regime. The intercept of this line with

the vertical axis is 1.6, combined with

(
d log(E)

d log(J)

)

Tg

=
z + 1

2
(4.8)

we can find

z = 2.2. (4.9)

The dynamic exponent, which is close the value z = 2 of Model-A dynamics [19]

implies that the motion of vortex line is diffusive.

By comparing the results at 5 T with the results at zero field of the same

sample su113, we find that not only the dynamic exponents but also the crossover

current densities are different. In zero field, the data start to deviate from the 3D

scaling at J ' 7× 107 A/m2, whereas the data at 5 T start to deviate from scaling

at J ' 4× 108 A/m2. In Section 4.3.1, we will discuss the possible reasons for the

differences. We will show how magnetic field can affect the dynamic exponent and

the crossover current density of the YBCO films.
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Figure 4.5: A schematic of an excitation of a single vortex line. (a) The initial

configuration of the vortex line. (b) The fluctuation takes the form of a vortex loop.

(c) The final configuration of the vortex line.

4.3 Discussion

4.3.1 Finite-size Effects in Fields

In Chapter 3, we discussed the vortex-loop picture and showed how thermal

fluctuations generate the non-linear behavior in the Meissner state. Now we dis-

cuss how a single vortex line subject to quenched impurities is affected by thermal

fluctuations and show that this process is related to the vortex-loop picture.
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A schematic of an excitation of a vortex line due to thermal fluctuation in the

mixed state is shown in Fig. 4.5. The final configuration of a single vortex line is

shown in Fig. 4.5(c). It can be seen as a superposition of the initial configuration

of a straight vortex line (Fig. 4.5(a)) and a triangular vortex loop (Fig. 4.5(b)).

Thus, the fluctuation is similar to a vortex loop fluctuation in the Meissner phase.

The difference is that the scaling of the displacement of the excitation in magnetic

field is not isotropic as is the vortex loop in zero field. According to [12] and [70],

a single vortex line subject to impurities is equivalent to a “directed polymer in a

random medium” and hence the scaling is anisotropic. Suppose L⊥ is the transverse

displacements of a vortex-line segment and Lz is the length of the loop along the z

direction. Numerical simulations [70] give

L⊥ = aLζ
z (4.10)

with ζ ' 0.6.

Creating the segment of length Lz will cost energy. The elastic energy can be

approximated by

Fk ' ε
L2
⊥

Lz

= γL2ζ−1
z (4.11)

according to FFH [12]. As Lz increases, we expect the elastic energy Fk to increase

or, perhaps stay constant. This means that

2ζ − 1 ≥ 0. (4.12)

Since L⊥ cannot grow faster then Lz, Eqs. 4.10 and 4.12 imply

1

2
≤ ζ ≤ 1. (4.13)
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The ζ = 1
2

corresponds to the case of thermal fluctuations but no pinning in the

mixed state [12] [70] and the ζ = 1 corresponds to the case of isotropic scaling of

the vortex-loop in zero magnetic field.

Similar to the free energy of a vortex loop in Eq. 3.16, we can write the free

energy of the excitation of a single vortex as

F ' γL2ζ−1
z − JΦ0LzL⊥ = γL2ζ−1

z − JΦ0aL1+ζ
z (4.14)

in the presence of an external current density J where LzL⊥ approximates the area

of the loop.

Analogous to the treatment of the critical size of a vortex loop in Chapter 3,

we can find the critical size of the excitation of a single vortex line by taking the

derivative with respect to Lz in Eq. 4.14 and setting it to zero,

Lzc =

[
(2ζ − 1)γ

(1 + ζ)aJΦ0

] 1
2−ζ

. (4.15)

When ζ = 1 and γ = ε, we get the same result (Eq. 3.17) as the critical size of

vortex loop in zero field. The corresponding energy barrier is thus

Fc =
γ

1+ζ
2−ζ

(aJΦ0)
2ζ−1
2−ζ

[(2ζ − 1

1 + ζ

) 2ζ−1
2−ζ −

(2ζ − 1

1 + ζ

) 1+ζ
2−ζ

]
=

c

(JΦ0)µ
(4.16)

where

c = γ
1+ζ
2−ζ

[(2ζ − 1

1 + ζ

) 2ζ−1
2−ζ −

(2ζ − 1

1 + ζ

) 1+ζ
2−ζ

]
(4.17)

and

µ =
2ζ − 1

2− ζ
. (4.18)

The resistivity can thus be written as

ρ ≡ E

J
∼ e

− Fc
2kBT ∼ e−(

JT
J

)µ

(4.19)
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where

JT =
( c

2kBT

) 1
µ 1

Φ0

. (4.20)

Note that when µ = 1 we get the same result as in Eq. 3.21 in the Meissner phase.

If the vortex-loop excitations are the dominant nonlinear dissipative process in the

vortex-glass phase, we will not have linear resistivity in the limit of zero current in

contrast to the flux-creep theory [11].

Since the vortex-loop excitations exist in both the Meissner phase and vortex-

glass phase, it is natural to make the following conjecture. The finite-size effect

which occurs in the zero-field transition of the YBCO films also exists in the vortex-

glass transition. There should exist a crossover current density Jmin. Above Jmin,

the YBCO films obey the 3D scaling described in Eq. 4.3. Below Jmin, the growth

of the vortex-loop is limited by the thickness of the film and the system deviates

from 3D scaling behavior. The consequence is that even in the vortex-glass phase,

YBCO films will have linear resistivity in the limit of zero current. The vanishing

linear resistivity predicted by Eq. 4.19 is thus only valid in the high-current regime.

From Fig. 4.4, we find that at 5 T, the film deviates from 3D scaling at around

4 × 108 A/m2 whereas in the zero-field transition, the same film deviate from 3D

scaling at 7 × 107 A/m2 from Fig. 3.10. We present Jmin vs. H in Fig. 4.6 for the

sample su113, where we define Jmin to be the current density where the system

deviates from 3D scaling. Jmin increases when µ0H changes from 0 T to 1 T, but

stays relatively constant above 1 T. We have seen the same behavior for samples

with different thickness (800 Å and 2400 Å).
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Figure 4.6: Crossover current density Jmin as a function of magnetic field H of

sample su113. Jmin increases as the magnetic field increases from 0 T to 1 T and

stays relatively stable above 1 T. The thickness of the film is 150 nm.
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We next try to find out what causes the difference between the results at high

field and zero field. At high magnetic field, the scaling of the vortex loop excitation

is not isotropic. From Eq. 4.10, the displacement long z direction Lz grows at a

faster rate than the displacement L⊥ along the ab plane. In the Meissner phase,

the critical size of a vortex loop L in a typical thermal fluctuation scales with J as

L ∝ J−
1
2 . Thus, if Lzc scales with J with an exponent less than −1

2
, it is possible for

the films to experience a higher crossover current density in the field than in zero

field.

Setting the energy of a fluctuation, Eq. 4.11, equal to kBT gives

ε
L2
⊥

Lz

= γL2ζ−1
z = kBT. (4.21)

By solving Eq. 4.21, we arrive the typical size of a vortex loop in vortex-glass

transition

Lz thermal =
(kBT

γ

) 1
2ζ−1 . (4.22)

The current probing length scale in the vortex-glass phase transition can be

found by

Lz thermal = Lzc ≡ LJ . (4.23)

Combining Eqs. 4.15, 4.22 and 4.23 gives

LJ ≈
( kBT

aJΦ0

) 1
1+ζ . (4.24)

The crossover current density Jmin in the vortex-glass transition is thus

Jmin ≈ (2ζ − 1)kBT

(1 + ζ)aΦ0d1+ζ
. (4.25)
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Figure 4.7: Jmin as a function of thickness d for three different films. The dashed

line is a power law fit to the data, with a slope of −1.6± 0.2. The slope of the line

gives 1 + ζ = 1.6± 0.2, as expected.

where d is the thickness of the film. From Eq. 4.25, we expect the crossover current

density Jmin to have a power law relation with film thickness d with an exponent

of −(1 + ζ). We test this power law behavior by plotting Jmin at high fields vs.

thickness in a double-log scale as shown in Fig. 4.7. The dashed line is a power law

fit to the data, which gives Jmin ∼ d−1.6±0.2. Combining with Eq. 4.25 gives

ζ = 0.6± 0.2 (4.26)
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which agrees with the simulation result [70].

4.3.2 Dynamical Critical Exponent z in Field

The dynamic exponent z determined in the high-current regime by derivative

plot for sample su113 at H = 5 T is 2.2± 0.2 where as the result at zero magnetic

field is 1.54 ± 0.1 for the same film. Clearly, our results do not agree with the

prediction by FFH [12], z ' 4 to 7 and some experimental results [48] [62] and [64].

From [19], we know that the dynamic exponent z from model-A dynamics is 2 which

makes us believe that the dynamical universality class of the transition at high fields

corresponds to Model A dynamics.

A question naturally rises: does the exponent z jump from 1.5 to around 2

when an external field is turned on or smoothly crossover to 2 with the increasing of

the external field? To answer this question, we make a plot of z vs. H of three YBCO

films with different thickness as shown in Fig. 4.8. Similar to Jmin in Fig. 4.6, the

dynamic exponent z increases from around 1.5 to around 2.0 as the external magnetic

field increases from 0 T to 1 T for all three samples. Above 1 T, z stays relatively

constant in a range 1.9 to 2.4. Instead of a sharp jump, there is a crossover from

model-E dynamics to the model-A dynamics in the intermediate fields (0 T< H < 1

T).

Given that Jmin and z both have similar behavior in intermediate fields, we

conjecture that thermal fluctuations create both vortex-loops as in the Meissner state

with isotropic scaling (Fig. 3.2) and vortex-loops which are attached to vortex lines
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Figure 4.8: z vs. H of sample su113, su114 and su120. At zero field, the dynamic

exponent z for all three films falls into the range of 1.5 to 1.7. At magnetic fields

above 1 T, z has a range of 1.9 to 2.4. In intermediate fields, all three films crossover

from model-E dynamics to model-A dynamics.
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with anisotropic scaling (Fig. 4.5). The former vortex-loops corresponds to model-

E dynamics whereas the later vortex-loops corresponds to model-A dynamics. z

extracted from the data in the intermediate fields falls into (1.5, 2.0), depending

the relative populations of the two kinds of loops. When the field increases, the

spacing between the vortex lines decreases and fewer excitations take the form of

the loop with isotropic scaling. We expect that above high enough field, z is constant

since nearly all the excitations take the form of the loops with anisotropic scaling.

This qualitative argument explains the crossover from model-E dynamics to model-

A dynamics between zero field and high fields. Using the same argument, we also

can explain the behavior of Jmin shown in Fig. 4.6.

4.4 Experimental Results of YBCO Crystals

If we were able to find the dynamic exponent z from optimally-doped YBCO

crystals in the mixed state, we could compare with the results we found for the

films as discussed above in section 4.2. Unfortunately, the YBCO single crystals we

have are untwinned. According to Tinkham [6], clean samples of high temperature

superconductors, because of their weak disorder, experience a first-order melting

transition from a vortex-solid phase to a vortex-liquid phase instead of a second-

order vortex-glass transition.

There are experiments that support the existence of the first-order melting

transition. DC transport measurements by Safar et al. [71, 72, 73] revealed hysteresis

in resistance vs. temperature curves which is evidence for a first-order transition in
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fields up to 7 T.Magnetization measurements by Welp et al. [74] and Rykov et al. [75]

demonstrated jumps of the magnetization of the untwinned YBCO crystals, again

indicating a first-order phase transition. There is also a specific heat measurement

by Schilling et al. [76] that observed a latent heat. The first-order melting transition

can change its nature to a continuous transition when above a critical point Hcp [77]

or when the doping level is changed [75].

In disordered crystals, such as crystals with twin boundaries [64] or irradiated

crystals [65], the transition is predicted to be continuous from the vortex-fluid phase

to the vortex-glass phase. However, as we discussed in the beginning of this chapter,

there is no consensus on the values of the dynamic exponent z and static exponent

ν.

We have measured the resistivity and current-voltage characteristics of an

untwinned YBCO single crystal (sample C1) using the four-probe method in the

magnet as described in the second chapter. Current was applied to the a axis of the

crystal. The magnetic field can go up only to 9 T, so the transition of the crystal in

field is first-order. The resistivity ρ as a function of temperature T of the crystal at

various magnetic fields H is shown in Fig. 4.9. In zero field, the crystal experiences

a continuous phase transition with a transition temperature of Tc0 = 93.836 K and

the width 4Tc0 less than 100 mK. In non-zero magnetic fields, the resistivity drops

to zero in the form of a sharp “kink” at low temperatures. Looking at H = 5 T

in Fig. 4.9 for example, the resistivity ρ drops continuously above 84.011 K and it

drops sharply from ρkink = 6.92 µΩcm to 0 just below 84.011 K. The width is less

than 30 mK.
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Figure 4.9: Resistivity as a function of temperature of an untwinned YBCO single

crystal at various values of magnetic field. The magnetic field is applied along the

c axis.
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Figure 4.10: Hysteresis of the resistivity of a untwinned YBCO single crystal (sample

C1) at 5 T.
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Fig. 4.10 shows the hysteresis of the resistivity measured while ramping tem-

perature in opposite directions at fixed field H = 5 T. The squares represent the

data ramping the temperature up and the triangles represent the data ramping the

temperature down. We observe a 5 mK width of the hysteresis loop which is strong

evidence of a first-order transition. The hysteresis loop is not due to the thermal

lag of the system since we can not observe any hysteresis in the resistivity at zero

field and small fields such as H = 0.05 T. The width of a noticeable hysteresis loop

at H = 1 T is around 1 mK whereas at H = 8 T, the width of the loop is 4 mK.

In Fig. 4.11, we plot ρkink as a function of magnetic field. ρkink is the resistivity

of the crystal just before the sharp drop which is seen in Fig. 4.9. It can be viewed

as a measure of the strength of the first-order transition. At zero field, the resistivity

is continuous and of course there is no ρkink. ρkink is around 5 µΩcm at small field

H = 0.5 T and 7 µΩcm at H = 5 T. It then rapidly decreases to 2.6 µΩcm at

H = 8 T. A critical point Hcp ' 9 T where ρkink = 0 can be extrapolated from the

data shown in Fig. 4.11. It is expected that above this critical point H > Hcp, the

transition is second order again. The value for the critical point we found is very

close to values reported in the literature: Hcp ' 9.75 T [72] and Hcp ' 10 T [77].

Since the magnetic field of our magnet can not exceed 9 T, we cannot measure

the E−J curves to extract the critical exponents in the regime where the transition

is unambiguously second-order. But we still are able to study the nonlinear E − J

curves of the first-order transition. Fig. 4.12 shows the E − J curves of the crystal

at H = 4 T. The isotherms are from 85.573 K to 85.546 K and the spacing of the

isotherms is 3 mK. Fig. 4.12 does not show the behavior expected of a continuous
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Figure 4.11: ρkink as a function of magnetic field H. A critical point at H ' 9 T

can be extrapolated from the data.
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transition as seen in Fig. 3.3. There is no isotherm with a power law behavior that

separates two groups of isotherms with opposite curvatures. The isotherm of 85.561

K first displays downward curvature (vanishing linear resistance) at high currents

but then crosses over to ohmic at low currents. This looks like the finite-size effects

that we saw in YBCO films.

We showed in Chapter 3 that YBCO crystals do not have finite-size effects

in the zero-field transition. These crystals are untwinned so that finite-size effects

cannot come from the twin boundaries as proposed by Yeh et al. [43]. Before finding

whether the effects are due to finite-size effects or other possible reasons such as flux

creep, we have to extract the crossover current density from our data.

In Fig. 4.13, we show the derivative plots corresponding to the E − J curves

in Fig. 4.12. For 85.561 K≤ T <85.570 K and J > 1.2 × 104 A/m2 , the curves

are monotonicly decreasing but crossover to 1 (ohmic behavior) when J < 1.2× 104

A/m2. We can define Jmin = 1.2 × 104 A/m2 to be the crossover current density

for this 103 µm thick crystal. Note that when T < 85.561 K, the curves do not

crossover to ohmic only because when J < 1.2 × 104 A/m2, the voltage across the

crystal is less than the resolution of our nano-voltmeter and the possible existence

of ohmic behavior due to finite-size effects below Jmin cannot be observed by our

setup.

To understand how the crossover current density Jmin of crystals in field relates

with the ones of the films in nonzero field and zero field we discussed earlier, we

show Jmin as a function of sample thickness d for films in Fig. 4.14. If we extrapolate

the data of films to d = 103 µm (the thickness of the crystal), we get an estimated
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Jmin ' 6× 103 A/m2 as seen from the upper dashed line. The expected value is not

far from our actual experimental result (1.02 × 104 A/m2) which means that even

though the transition of the crystal in field is first-order, it still has a process similar

to the anisotropic vortex-loop in the superconducting state. The typical loop due

to thermal fluctuation cannot exceed the thickness of the crystal at low currents,

leading to a crossover to ohmic behavior as seen from Figs. 4.12 and 4.13.

Why can’t we observe finite-size effects in zero field? If we extrapolate the

zero field film’s data , the estimated crossover current density at d = 103 µm is

around 5 × 102 A/m2, which is much smaller than the current shown in Fig. 3.5.

This means that the crystal data that we used to determine the critical exponents

is not affected by finite-size effects.

The discussion helps explain the controversial results regarding critical expo-

nents in zero and nonzero field. The YBCO crystals used in Gammel et al.[64] and

Yeh et. al [42] [43] are of the same order of thickness of our crystals and their current

range is 102 A/m2 to 105 A/m2. It is thus possible that finite-size effects are present

in their data in the form of ohmic tails below Tg or Tc. Overlooking the finite-size

effects may cause one to choose the wrong transition temperature and may account

for the disagreement of the critical exponents z and ν.
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Figure 4.14: Crossover current density Jmin as a function of sample thickness d in

zero magnetic field and high magnetic field.
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Chapter 5

Summary and future works

5.1 Summary

In this work, we investigated the normal to superconducting phase transitions

in zero and non-zero magnetic field by DC transport measurements.

The samples we used are YBa2Cu3O7−δ (YBCO) films and crystals. High qual-

ity YBCO films were made by pulsed laser deposition and properties of the films

were tested by AC susceptibility, X-ray diffraction and atomic force microscopy. The

transition temperatures of the films are usually above 91.0 K and the widths are

usually 0.2 K to 0.3 K (full width of half maximum of the peak in AC susceptibility

data). The films then were patterned into four-probe bridges by photolithography.

High quality untwinned YBCO single crystals [29, 30] were provided by Dr. Kouji

Segawa and Dr. Yoichi Ando from Central Research Institue of Electric Power In-

dustry, Tokyo, Japan.

In the zero-field DC measurements, the cryostat is covered by µ−metal shield

and the sample probe is equipped with low-pass filters so that the ohmic tails caused

by residual field and current noise can be greatly reduced [31, 49]. Finite-size effects

are observed at low currents in the films’ data and they create ohmic tails in the E−J

curves for isotherms below the transition temperature Tc. Thus, the conventional

data analysis method will give misleading results for Tc and critical exponents z and
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ν. Instead, we use the derivative plot at high currents to determine Tc and z from

the films’ data and found that z = 1.5±0.2. We also found ν = 0.62±0.1 by fitting

the melting line in the mixed state which agrees with the 3D-XY result: ν = 0.67

[21, 22].

The E−J curves of the crystals’ data are not affected by finite-size effects. We

got consistent z ' 1.5 from both the conventional method and the derivative plot

method. We also found the static critical exponent ν = 0.68±0.1 which is consistent

with the result from 3D-XY model. The z and ν values determined from the films’

data and crystals’ data implies that the zero-field transition of high-temperature

superconductors belongs to 3D-XY universality class with model-E dynamics [19].

In our study of the non-zero field transition, the sample probe is placed inside

the “Blue Magnet” which can go up to 9 T. Because of the strong disorder, the

YBCO films experience a second-order phase transition proposed by FFH [12]. The

crossover current density Jmin at which E − J curves deviated from 3D scaling

because of finite-size effects differs with the case in zero field. We attribute this

to anisotropic scaling of the vortex-loop in the mixed state. The scaling of the

vortex-loop in zero field is isotropic. This explanation may also account for the z

dependence on the magnetic field H. In the presence of high magnetic field (H > 1

T), we found that z ' 2 which means that the system crosses over from model-E

dynamics to model-A dynamics [19].

Because of the very weak disorder in the untwinned YBCO single crystals, the

phase transition in the mixed state is a first-order melting transition from vortex-

solid phase to vortex-liquid phase for H < 9 T. We observed hysteresis in the
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resistivity vs. temperature measurements and found a critical point Hcp ' 9 T

which agrees with previous results [71, 77]. We also observed finite-size effects in

the crystal’s data in fields, the Jmin of which agrees with the extrapolation of the

Jmin of films at high fields.

5.2 Future Work

It is believed that the untwinned YBCO single crystals experience a continuous

phase transition at H > 10 T. If DC transport measurements are performed at such

high field, it will be interesting to see whether the E − J characteristics of such

phase transition follows a scaling behavior as seen in Eq. 4.3 and whether the critical

exponents extracted from the data agree with the results from films’ data (z ' 2).

This will help us determine whether the phase transition at high field (> 10 T) is

the vortex-glass phase transition.

DC transport measurements on YBCO single crystals with twin boundaries

might be another good approach since it is believed [12, 6] the disorder from the

twin boundaries is strong enough to make the transition in non-zero field continuous.

Although there has been work [64, 43] on this subject, there is still no consensus

on the exponents. Previous work may have overlooked the finite-size effects of the

crystals in field. As we have seen from the films’ data, magnetic field can enhance

finite-size effects. Although it does not affect the zero-field transition, finite-size

effects may exist in the transition in the mixed state. We don’t have direct evidence

for this, but the extrapolation from films’ data and the finite-size effects we saw in
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the melting transition of the untwinned crystals may suggest its existence.

Pr2−xCexCuO4 (PCCO) is an electron-doped high-temperature superconduc-

tors whose crystal structure is more anisotropic than YBCO and has a transition

temperature Tc of around 20 K, much less than the Tc of YBCO. Calculation from

Eq. 1.21 shows a critical regime in the order of 1 mK for PCCO. Preliminary results

on the DC transport in zero field suggest that the nonlinear E − J curves observed

may be due to the sample inhomogeneity and that we cannot observe the scaling

since the critical regime is experimental inaccessible. However, we still observed the

finite-size effects in low currents. More samples with different thickness d should be

studied to determine the Jmin as a function of d in order to compare to the results

on YBCO [50].
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Chapter A

Currents and Lengths in Superconductors (Lobb’s note)

A.1 Initial considerations

Consider a simple model for fluctuations in superconductors, where I assume

that the only fluctuations are circular vortex loops of radius r. The energy of such

a loop can be written as

Uloop = 2πrε(r) (A.1)

where ε(r) is the energy per unit length of the vortex loop. For a straight vortex,

Tinkham [6] Eq. 5.17 shows that, in Gaussian units,

ε(r = ∞) =

(
Φ0

4πλ

)2

ln

(
λ

ξ

)
. (A.2)

In general, curvature will increase the energy per unit length.

In an infinite superconductor with no applied current, vortex loops of differ-

ent sizes occur with different probabilities as thermal fluctuations. Formally, the

probability of finding a loop of size r in a range dr is given by

P (r)dr =
e
− 2πε(r)

kBT
dr

r
∫∞
ξ e

− 2πε(r)
kBT

r
dr

. (A.3)

Note that vortex loops of all sizes occur.

Suppose we wanted to find the size of a typical vortex loop. One way to do

this is to integrate Eq. A.3 from this typical size, which I’ll call rthermal, to infinity,
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and require that the fraction of loops F with r > rthermal be equal to 1/2,

F =

∫∞
rthermal

e
− 2πε(r)

kBT
r
dr

∫∞
ξ e

− 2πε(r)
kBT

r
dr

≡ 1

2
. (A.4)

In Eq. A.4, I used the approximation that ε(r) is independent of r. Eq. A.4 leads to

rthermal = ξ +
kBT

2πε
ln 2. (A.5)

If the second term on the right hand side of Eq. A.5 dominates, this gives

rthermal =
kBT

2πε
ln 2 → ε =

kBT

2πrthermal

ln 2. (A.6)

Eq. A.6 states that, within a factor of ln 2, the total energy of a vortex loop of size

rthermal is equal to kBT , which is a plausible result.

To check whether the second term on the right side of Eq. A.5 is the dominant

one, combine Eqs.A.2 and A.5. Using κ ≡ λ
ξ
, this leads to

rthermal = ξ

[
1 +

ξ(
16π2kBT

Φ2
o

) κ2 ln 2

2π ln κ

]
= ξ

[
1 +

ξ

ΛT

κ2 ln 2

2π ln κ

]
(A.7)

where ΛT is defined in Eq. (1.1) of Fisher, Fisher, and Huse [12]. The second terms

in Eqs. A.5 and A.7 dominate in the critical regime because ξ diverges while ΛT is

fixed. (It’s nice to see ΛT come up naturally in an expression, by the way.) For

simplicity, I’ll drop the ln 2 in Eq. A.5, and use

rthermal =
kBT

2πε
. (A.8)

Next consider that a current per unit area J is applied to a plane perpendicular

to the area of the loop. The total Lorentz force on the loop is

Fext = 2πrJΦ0. (A.9)
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Taking the minus one times the derivative of Eq. A.1 gives the force that the loop

exerts on itself. Summing the forces and finding the point where the force is equal

to zero leads to a critical loop size

rblowout =
ε

Φ0J
, (A.10)

where, for simplicity, ε(r) is again assumed to not depend on r. Note that Eq. A.4

is not the equation that we generally use for the current-dependent length scale LJ .

Physically, if a vortex loop has r > rblowout, the external current “blow out”

the loop to infinite size; this process leads to dissipation. If r < rblowout, the vortex

loop shrinks and annihilates.

I can interpret Eq. A.5 in a different, but equivalent, way. The presence of a

current density J significantly alters the population of vortex loops with r > rblowout,

and has less effect on the vortex loops with r < rblowout. In this sense, a current

J probes the physics length scales of order rblowout and larger. This is the type of

language that is sometimes used to describe LJ . As I’ll show below, it is probably

not correct to describe LJ in this manner.

What is the physical significance of comparing the various lengths, rblowout

and rthermal, Eqs. A.8 and A.10, to each other? If rthermal ¿ rblowout , the current is

probing a length scale where there are very few vortices. The current thus acts as a

very small perturbation on the system. If rthermal À rblowout , the current is probing

a very short length scale, and a large portion of the intrinsic vortex population is

being disrupted by the current. The point where If rthermal = rblowout thus marks

a crossover in the behavior from current acting as a small perturbation to current
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acting as a large perturbation.

What is the physical significance of comparing the various lengths, rblowout and

rthermal, Eqs. A.8 and A.10, to the film thickness d? It is plausible to say rthermal ¿ d

is the three-dimensional limit, while rthermal À d is the two-dimensional limit, since

in the second case most of the vortex loops are interrupted by the film thickness,

while in the first case they are not. This is true as far as it goes, but it misses the

key point that an applied current probes physics at the scale of rblowout and larger,

as discussed above. Thus, even in the limit rthermal À d, if rblowout is small enough,

it will probe physics on length scales smaller than d, and thus the measurement will

not be affected by the finite thickness of the film.

What is required is that the current probes a significant fraction of the loop

population and also probes lengths on the scale of the film thickness. For this to be

true, it is reasonable to require that

rblowout = rthermal ≡ LJ . (A.11)

Combining Eqs. A.8 and A.10, and A.11 gives

LJ =

(
kBT

2πΦ0J

) 1
2

. (A.12)

This suggests the following physical description for LJ : For any J there is a length

scale LJ , given by Eq. A.12, such that roughly half the equilibrium (zero current)

vortex population is blown out by J, and the other half are not. This is the length that

one should compare to the film thickness for seeing whether or not the measurements

are in the two or three dimensional limit. The requirements are that there be a
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significant fraction of the loops that feel the film thickness, and, in addition, that the

current is probing on the same length scale.

A.2 More realistic model for ε(r)

In this section, I’ll use the analogy between a vortex loop and wire loop to

calculate ε(r). I’ll use SI units because they are easier for this problem, at least for

me. I start with an analogy between a long straight wire carrying a current I1. This

current creates a magnetic field B1 given by

B1 =
µ0I1

2πr
. (A.13)

A parallel wire carrying a current I2 feels a force per unit length given by

f = B1I2 (A.14)

and the energy per unit volume associated with a field B is given by

E

V
=

B2

2µ0

(A.15)

Next, consider a straight vortex. Outside the core but inside the penetration depth,

for ξ ¿ r ¿ λ, there is a circumferential velocity given by

v1 =
n1h

2πm∗r
(A.16)

Where n1 is an integer, h is Planck’s constant, and m∗ is the Cooper pair mass.

(n1 is included to make comparisons clearer, the usual case is n1 = 1). If there is a

second parallel vortex with vorticity n2, the force exerted by the first vortex on the

second is given by

f = j1n2Φ0 (A.17)
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Currents Vortices

µ0
1

m∗n∗

I hnn∗

B v

Table A.1: Translation table for the physical quantities between Circuits and Vor-

tices.

Where j1 is the current/area created by the first vortex, so that j = n∗q∗v, where

n∗ is the Cooper pair density, q∗ = 2e, and v is the superfluid velocity.

Finally, the energy per unit volume associated with a superfluid velocity is

just the kinetic energy,

E

V
= n∗

1

2
m∗v2. (A.18)

Eqs. A.13-A.15 are analogous to Eqs. A.16-A.18, and the physics is the same.

In both cases, there is a 1/r field (B or v) with an energy that is quadratic in the

field. You can use the analogy to map well-understood problems involving currents

and inductances onto problems involving vortices. To do this, we need a translation

table. I used the following one: By substituting quantities in the first column of

table. A.1 into results from circuit theory, you get analogous results for vortices.

For example, substituting the appropriate second-column quantities into Eq. A.13

leads to Eq. A.16.

This is particularly valuable to calculate energies of systems. This is done
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using the inductive energy formula

E =
1

2
LI2 (A.19)

Ramo, Whinnery, and Van Duzer’s book Fields and Waves in Communication Elec-

tronics, second edition, p. 190, gives the formula for the inductance of a wire loop.

The wire has a radius a, and is bent into a loop of radius r, r is the distance from

the center of the loop to the center of the wire The formula is

L = µ0(2r − a)

[(
1− k2

2

)
K(k)− E(k)

]
(A.20)

Where E(k) and K(k) are complete elliptic integrals of the first and second kind,

E(k) =
∫ π/2

0

√
1− k2 sin φ2 dφ, (A.21)

K(k) =
∫ π/2

0

1√
1− k2 sin φ2

dφ (A.22)

and

k2 =
4r(r − a)

(2r − a)2
. (A.23)

Using the translation table, Eqs. A.19, as well as Eqs. A.20-A.24, we can get the

energy of a vortex loop of radius r and thus the energy per unit length ε(r). Note that

the analogy requires that the superfluid velocity varies as 1/r, so that ξ << r << λ.

As an example, I’ll look at Eq. A.21 in the limit a << r, ie, the loop is

much larger than the coherence length. In this limit (see Abraomwitz and Stegun,

Handbook of Mathematical Functions, published by NIST)

E(k) ≈ 1 K(k) ≈ ln
4√

1− k2
(A.24)

132



which leads to

L = µ0r

[
ln (

8r

a
− 2)

]
(A.25)

Using Eqs. A.19 and A.20, and replacing a by ξ this leads to and energy per unit

length of a vortex loop with radius r of

ε = π
h̄2

m∗n
∗
[

ln
r

ξ
+ ln (8)− 2

]
≈ π

h̄2

m∗n
∗
[

ln
r

ξ

]
(A.26)

It is interesting to note that the last form matches Eq. A.2 at r = λ, even though it

was derived assuming that r << λ. Thus, it is probably a good approximation to

use

ε(r) ≈
(

Φ0

4πλ

)2[
ln

r

ξ

]
for ξ << r ≤ λ ε(r) ≈

(
Φ0

4πλ

)2[
ln

ξ

r

]
for r ≥ λ.

(A.27)

133



Chapter B

Literature Review

Table B.1 is a review of experimental and theoretical results for the critical

exponents in zero field; Table B.2 is a review of experimental and theoretical results

for the critical exponents in non-zero field.
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ν z Reference

Theoretical predictions: ν ≈ 0.669 (3D-XY) z = 2.0 [12]

z = 1.5 [38]

Numerical simulations: ν ≈ 0.66 z = 1.5 [39]

z=2.0 [78]

ν ≈ 1.33 [79]

Specific heat:

YBCO crystal (twinned) Gaussian fluctuation [36, 37]

ν ≈ 0.67 [32, 33]

DC transport:

YBCO crystal (Au doped) ν ≈ 0.67 z ≈ 2 [42]

YBCO crystal (twinned) ν ≈ 0.67 z ≈ 3 [43]

YBCO thin film ν ≈ 1.2 z ≈ 2 [17]

ν ≈ 1.1 z ≈ 8.3 [52]

ν ≈ 0.63 (low fields) z ≈ 1.25 [46]

AC conductivity:

YBCO thin film ν ≈ 1.2 z = 2.3− 3.0 [44]

BSCCO thin film z ≈ 2.0 [80]

LSCO thin film ν ≈ 0.67 z ≈ 2.0 [81]

Table B.1: Zero-field critical exponents from theoretical predictions, numerical sim-

ulations and experimental results.
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ν z Reference

Theoretical predictions: ν > 1 z = 4.0− 7.0 [12]

z = 1.5 [38]

Numerical simulations: ν ≈ 0.7 z = 1.5 [82]

ν ≈ 1.3 [41]

DC transport:

YBCO crystal (Au doped) ν ≈ 0.67 z ≈ 2 [42]

YBCO crystal (twinned) ν ≈ 0.67 z ≈ 3 [43]

ν ≈ 2 z ≈ 4.3 [64]

YBCO crystal (irradiated) ν(z − 1) ≈ 5.3 [65]

YBCO thin film ν ≈ 1.8 z ≈ 4.8 [62]

ν ≈ 1.4 z ≈ 4.3 [48]

ν ≈ 1.0− 1.9 z ≈ 3.8− 7 [83]

ν ≈ 1.9 z ≈ 4.0 [45]

AC conductivity:

YBCO crystal (twinned) ν ≈ 0.67 z = 2.8− 3.4 [84]

Table B.2: Vortex-glass critical exponents from theoretical predictions, numerical

simulations and experimental results.
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