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Department of Aerospace Engineering

A high resolution computational methodology is developed for the solution

of the Compressible Reynolds Averaged Navier Stokes (RANS) equations. This

methodology is used to study the formation and evolution of tip vortices from

fixed wings and rotary blades. The numerical error is reduced by using high

order accurate schemes on appropriately refined meshes. For vortex evolution

problems, the equations are solved on multiple overset grids that ensure adequate

resolution in an efficient manner. For the RANS closure, a one equation wall-

based turbulence model is used with a correction to the production term in order

to account for the stabilizing effects of rotation in the core of the tip vortex.

A theoretical analysis of the accuracy of high resolution schemes on stretched

meshes is performed as a precursor to the numerical simulations. The developed

methodology is validated with an extensive set of experimental measurements

ranging from fixed wing vortex formation studies to far-field vortex evolution on



a two bladed hovering rotor. Comparisons include surface pressure distributions,

vortex trajectory and wake velocity profiles. During the course of these valida-

tions, numerical issues such as mesh spacing, order of accuracy and fidelity of

the turbulence model are addressed. These findings can be used as guidelines

for future simulations of the tip vortex flow field.

A detailed investigation is conducted on the generation of tip vortices from

fixed wings. Streamwise vorticity is seen to originate from the cross-flow bound-

ary layer on the wing tip. The separation and subsequent roll-up of this bound-

ary layer forms the trailing vortex system. The initial development of the vortex

structure is observed to be sensitive to tip shape, airfoil section and Reynolds

number.

While experimental comparison of the computed vortex structure beyond a

few chord lengths downstream of the trailing edge is lacking in the literature, for

a single bladed hovering rotor, good validations of the vortex velocity profiles

are achieved upto a distance of 50 chord lengths of evolution behind the trailing

edge. For the two bladed rotor case, the tip vortex could be tracked upto 4 rev-

olutions with minimal diffusion. The accuracy of the computed blade pressures

and vortex trajectories confirm that the inflow distribution and blade-vortex

interaction are represented correctly.

Finally, utilizing a surface boundary condition to represent a spanwise jet, the

effect of tip blowing on the vortex structure is investigated. The interaction of

the jet with the cross-flow boundary layer is shown to reduce the vortex strength

with a marginal loss in performance.

Overall, this level of consistent performance has not been demonstrated pre-

viously over such a wide range of test cases. The accuracy achieved in the



validation studies establishes the viability of the methodology as a reliable tool

that can be used to predict the performance of lift generating devices and to

better understand the underlying flow physics.
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Chapter 1

Introduction

Tip vortices are formed whenever a finite lifting body such as an airplane wing

or a helicopter blade moves relative to a fluid. Lift is generated primarily as

the result of a difference in pressure between the upper and lower surfaces. This

inequality drives the flow from the lower surface (high pressure) to sweep over

to the upper surface (low pressure). Figure 1.1 shows the flow streamlines near

the tip region of a simple fixed wing. Fluid particles from the lower surface of

the wing are seen to be accelerated over the wing-tip. These particles cannot

move indefinitely in the spanwise direction along the upper surface because of

the gradual equalization of the pressure and the presence of free-stream flow,

and are hence swept downstream of the wing in a swirling fashion. The result-

ing concentrated rotational flow structure is called the tip-vortex. The vortex

continues to evolve downstream of the trailing edge, entraining vorticity from

the wing boundary layer. The tip vortex and the wing boundary layer together

constitute the so-called trailed wake system.

Within a few chord-lengths downstream of the trailing edge, the circulation

strength of the tip vortex approximately equals that of the wing. Accordingly,
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Figure 1.1: Fixed wing: Streamtraces near tip region

since airplane wings and helicopter blades are required to generate large lift (and

are hence associated with large circulation strengths), practical tip vortices are

found to be very strong. The swirl velocities in a tip vortex are of the same order

of magnitude as the free-stream velocity (or blade-tip speed in a helicopter). For

instance, a tower fly-by test conducted by Page et al. [1] revealed that the peak

swirl velocity in the wake of a Boeing 757 airplane reached 100m/s. In addition

to the high strength, tip vortices are also known to be very persistent [2].

The formation and evolution of the trailed wake is highly dependent on the

loading conditions on the lifting surface. In turn, the velocities induced by the

wake significantly affect the loading. In the case of helicopter blades, the trailed

wake from the preceding blades is known to considerably affect the structural

characteristics and response [3]. Hence, there is a huge incentive to study tip

vortices and trailed wakes in general.
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1.1 Technological relevance

Tip vortices are found in a multitude of physical applications that include lift-

generating surfaces. Typical examples include marine propellers, turbomachin-

ery blades etc. The scope of this thesis is, however, restricted to airplane and

helicopter wakes and the following paragraphs briefly describe the relevance of

tip vortices and their study for these vehicles.

1.1.1 Airplane wakes

The presence of the strong tip vortex near the wing surface causes a significant

downwash, reducing the effective angle of attack. This results in an induced

drag on the wing. For a typical transport aircraft, induced drag contributes to

around 35% of the total drag [4]. Further, the high energy contained in the tip

vortices ultimately comes from the engine power. In typical airplane wakes, tip

vortices primarily decay as a result of sinusoidal instabilities1that are mutually

excited by the pair of counter-rotating vortices from either wings. However, it

takes hundreds of span lengths for these instabilities to take effect [2] and as a

result, the tip vortices remain sufficiently strong for an undesirable amount of

time. This proves to be a severe hazard to other aircraft as can be seen from

Fig. 1.2. The strong tip vortices can induce severe rolling moments or even cause

structural damages to following aircraft. The Federal Aviation Administration

(FAA) recommends a separation distance of at least 5 miles between airplanes

[2]. This can restrict the capacity of airports and air-traffic in general.

1This is termed the Crow instability and was initially suggested by S.C. Crow [5].
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Figure 1.2: Schematic of the hazard created by airplane wakes. [6]

.

1.1.2 Helicopter wake system

Unlike an airplane wing, helicopter blades constantly operate in the wake trailed

from the preceding blades and itself. The interaction of the wake with the blade

(this phenomena is commonly known as Blade Vortex Interaction or BVI [7])

has profound effects on the aerodynamics and structural dynamics of the rotor

system. The situation is exacerbated by the fact that these interactions can occur

before the vortex has undergone any significant decay. The velocities induced

by the unsteady wake results in impulsive changes in the flow encountered by

the rotor blades, and can cause high noise and vibration levels. Fig. 1.3 shows

a schematic of the wake generated by a typical helicopter in low speed forward

flight. The shaded circles represent interactions of the blade with the tip vortices.

Fig. 1.4 shows a schematic of direct interaction of the wake with the rotor blades

in different flight conditions.

In flight conditions like hover, climb/descent and low-speed forward flight,
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Figure 1.3: Schematic of Blade Vortex Interaction (BVI) in low-speed forward

flight. [7]

Figure 1.4: Schematic of blade-wake Interaction in (a) low-speed level flight and

(b) descending flight. [7]
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multiple turns of the wake remain under the rotor at all times and the resulting

induced inflow has a significant effect on the performance. In addition to the

effects on the main rotor, the trailed wake can interact with the fuselage, tail

rotor etc. The complexity engendered by the returning wake makes the design

prediction of helicopter performance very difficult.

The above discussions highlight the importance and need to understand the

physics of airplane and helicopter wakes. Also, in both cases, it is apparent that

reducing the strength of tip vortices without a significant loss of performance

can prove to be very beneficial. Although the study of tip vortex flow-fields has

been an extremely active area of research over the past century in the form of

analytical, experimental and computational studies, comprehensive understand-

ing of the intricate details of vortex formation and evolution is more qualitative

than quantitative. The broad objective of this thesis is to develop a high fidelity

numerical methodology that can help in understanding the process of vortex

formation, roll-up and evolution. This is supplemented with theoretical studies

and further numerical simulation of vortex control strategies.

1.2 Background

While studying tip vortices, it is important to make the distinction between the

physics in the near-field and the far-field:

The near-field is generally considered to be the region near to and including

the blade, where the vortex originally forms and rolls up, entraining the turbulent

boundary layer shed from the surface.

The far-field can be considered to be the region where the vortex is fully
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rolled up and is fairly independent of initial conditions [8].

However, the demarcation between the above-mentioned regions is subjective

and ultimately depends on the type of problem being analyzed.

1.2.1 Physical Understanding

The physics of the flow is extremely complex in the near-field region since the

process is largely turbulent (under flight conditions, the chord based Reynolds

numbers for typical airplanes and helicopters can be expected to be in the range

of 106 − 107 [3]), highly three dimensional and involves high flow gradient re-

gions involving multiple flow separations [9]. As mentioned earlier, the pressure

difference accelerates the flow from the lower surface around the wing tip. This,

combined with the free-stream flow, results in the formation of the tip vortex as

shown in fig. 1.1. But this is an inviscid description and masks the actual near-

field physics. In practice, the viscous nature of the flow introduces additional

effects as shown in fig. 1.5. The cross-flow streamlines (fig. 1.5a) show transport

of fluid particles from the lower surface to the upper surface. As seen from fig.

1.5b, the associated boundary layer tends to separate once the pressure gradient

weakens on the top surface. In addition, a weaker secondary vortex of opposite

sense (to the tip vortex) is formed. These phenomena have also been observed,

for instance, in the experiments of Chow et al. [9]. These structures continue

to evolve on the upper surface of the wing and are ultimately convected down-

stream of the trailing edge. As observed by Devenport et al. [10], the primary

and secondary vortices orbit around each other and ultimately merge into one

coherent vortex. Part of the wake shed by the wing is also entrained into the

tip vortex. The formation and structure of the wake system is very sensitive to
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(a) Cross-flow Streamlines

(b) Streamwise Vorticity

Figure 1.5: Vortex formation along spanwise section of a simple fixed wing
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loading conditions, surface geometry etc.

In the far-field, the vortex is fully rolled-up and is found to be largely ax-

isymmetric [10]-[13]. Many studies on wing tip vortices [9, 10] have reported

largely reduced turbulence levels in the vortical core even in the near-field. This

has been attributed to the near-solid body rotation that exists in the inner core.

Analytical studies, based on linear stability theory of isolated vortices ([14] and

references therein), have also supported this argument by showing the damping

of imposed small disturbances in the core. The decay rate is primarily governed

by the axial and tangential velocities that exist in the vortical core [15, 16] and

in cases with small axial velocities (in relation to the tangential velocities), the

major diffusion mechanism seems to be laminar rather than turbulent.

In the case of rotary wing tip vortices, different turns of the wake interact with

each other [3] and could possibly merge together, a process that could change

the turbulence structure drastically [17]. The magnitude of noise and vibration

on a helicopter rotor is very sensitive to the core structure of the vortex and

also to the distance and attitude of different turns of the wake with respect to

the blades [7]. Under some flight conditions, the core of the returning tip vortex

could be so close to the blade that it can mutually exchange vorticity with the

blade boundary layer.

1.2.2 Numerical simulations - Levels of Analysis

As mentioned in the preceding paragraphs, the physics involved in wake for-

mation and evolution is complicated and hence any attempts to numerically

simulate the process can be expected to be arduous. Any fluid dynamic mod-

eling of the problem has to involve the compressible Navier-Stokes equations
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[18] or some approximation of the same. Usually, the cost of the computation

decreases with increasing levels of approximation.

Turbulent flows are known to exhibit a wide range of length and time scales.

The largest length scales can be expected to be of the order of some characteris-

tic length of the surface, and the smallest length scales (η) are known to be the

Kolmogorov scales [19]. The ratio of these scales is known to be given by the

relation L
η
≈ Re

3
4 . Hence it becomes obvious that for large Reynolds numbers,

the disparity of these length scales is tremendous. Turbulence theory is based

on the fact that most of the energy resides in the largest scales and this energy

is cascaded down to the smallest scales and eventually dissipated [19]. Hence,

computations have to account for the whole range of scales. The cost of com-

puting the surface pressures and wake roll-up for a simple fixed wing of aspect

ratio 10 using different approximations is shown in table 1.1 - the procedure is

shown in Appendix A.

Direct Numerical Simulations (DNS):

In DNS, all the scales of the flow are attempted to be resolved and there

are no further modeling assumptions. Since the possible range of scales is very

large, DNS is impractical in the foreseeable future even for moderate Reynolds

numbers. A review of DNS applications can be found in [20].

Large Eddy Simulations (LES):

The idea of LES arises from the fact that the small scales mainly serve to

drain energy from the larger scales and their effect could be modeled. The initial

work in LES centered around the pioneering paper of Smagorinsky [22], in which

he argued that only the large scales are affected by geometry and flow conditions

and the smaller scales are more universal in nature and can hence be modeled.
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Method Modeled Resolution Requirements

Turbulent scales Surf pts Wake pts Time steps Tot. Ops.

DNS No modeling 1016 1017 108 1025

LES Sub-grid 1012 109 108 1020

LES with All Near-wall, 1010 109 107 1017

Wall-layer model Sub-grid

RANS All 107 107 104 1011

Euler Equations - 107 107 103 1010

Inv. Vortex Method2 - 102 102 103 105

Table 1.1: Different levels of modeling and approximate cost of computation for

a simple fixed wing at Re ≈ 5 × 106, AR = 10.

The larger eddies are resolved without modeling. Hence, the original Navier

Stokes equations are spatially filtered, thus separating the resolved components

from the modeled ones.

LES has been successfully applied to a variety of wall-bounded flows at mod-

erate Reynolds numbers [23] and to wake flows at high Reynolds numbers. How-

ever, it has been well established [24] that LES becomes prohibitively expensive

when applied to wall-bounded flows at large Reynolds numbers, because of the

presence of small, but dynamically important eddies that exist near the wall. In

addition to a fine discretization in the direction normal to the wall, resolution of

these eddies requires fine discretizations in other spatial directions also. As seen

from table 1.1, LES gives considerable savings (compared to DNS) in the wake,

but not in the near-wall regions. Spalart [25] claims that an accurate LES over

2Involves O(N log N) computations per time-step
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a simple fixed wing at flight Reynolds numbers will not possible in the next 40

years.

LES with wall-layer models:

In order to circumvent the near-wall resolution requirements in LES, hy-

brid methods that use Reynolds-averaged3treatment of the near wall region have

been developed. Reference [24] presents an excellent review of such methods. In

this case, all scales in the inner-layer of the near-wall boundary layer are mod-

eled (typically using Reynolds averaged models) and coupled to an off-wall LES

computation, where the larger eddies are still computed exactly. This reduces

near-wall resolution requirements in directions other than the wall-normal. The

savings in grid requirements are seen in table 1.1. Some issues still exist in cou-

pling the two regions, particularly in specifying proper interface conditions [24].

Though encouraging results have been achieved on simple configurations, there

do not seem to be extensive tests on wall-layer models in complex configurations.

Reynolds Averaged Navier-Stokes (RANS) Equations:

In this approach, the flow quantities are divided into a mean part and fluc-

tuating part. The resulting equations are time or ensemble averaged, resulting

in a set of equations for the mean flow that also involves the averaged turbulent

quantities. These equations are presented in Chapter 3. The averaging is per-

formed over all the turbulent scales and this results in a tremendous saving in

grid requirements (as seen in table 1.1 for instance), but at the expense of more

modeling requirements. The inherent deficiency of the RANS models is the fact

that some of the turbulent scales (especially the large ones) depend specifically

on the geometry and hence cannot be universally modeled (unlike the smaller

3Description of Reynolds averaging follows
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more isotropic scales that are modeled in LES). Research in RANS models have

been the focus of much attention in the past four decades and computations

have been performed over simple and complex configurations over a wide range

of Reynolds numbers. Typically, with a good knowledge of the flow-field under

question along with empirical inputs to turbulence models, good validations have

been obtained even for complex configurations.

Euler Equations:

The Euler equations represent the inviscid limit of the Navier-Stokes equa-

tions. In typical fixed-wing and helicopter applications, the Reynolds number

is high enough that much of the flow-field can be treated in an inviscid fashion

and the Euler equations can prove to provide good insight. The scope of these

equations is nonetheless limited because they cannot account for near-wall effects

(especially when the flow is separated), drag prediction and diffusion effects on

the tip vortex. However, accurate solution of these equations can be considered

to be a necessity since the same algorithms are usually used to discretize the

inviscid terms in the Navier-Stokes equations [26].

Vortex and Potential-based methods:

The first studies on tip vortices were based on a vortex-filament description

of lifting surfaces based on Prandtl’s lifting line and lifting surface theories [27].

These vortex based methods are insightful, relatively inexpensive and are still

very widely used in predicting lift distributions [6, 28] and even vortex roll-up

[6, 29, 30]. These methods have proved to be extremely useful in rotor-wake

modeling, especially in predicting vortex core positions [31], but rely heavily on

empirical input. For instance, the free wake model of Bhagwat[32] assumes a

vortex filament representation of the wake and hence relies on empiricism for
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the vortex release locations, initial vortex strengths, core structure, viscous and

turbulent diffusion.

1.2.3 Issues in Numerical simulation

In this work, numerical solution of the RANS equations will be used to study

tip vortex flow fields. Over the past 20 years, there has been much research

in numerical techniques for the solution of RANS equations and these methods

have been applied to fixed and rotary wing tip vortex simulations [26, 33–35].

However, the fidelity and accuracy of the various methodologies have not been

found to meet the industry requirements because of a variety of factors:

Numerical errors:

Even if one assumes that the governing equations exactly model the physical

phenomena, numerical solution is bound to generate errors. In the case of time

dependent partial differential equations like the Euler and Navier-Stokes equa-

tions, discretization errors can be viewed4as arising from numerical dispersion

and numerical dissipation [36]. Numerical dispersion causes waves of different

wave-lengths to propagate at different speeds and can result in spurious oscil-

lations in high-gradient regions and shocks. Numerical dissipation acts as an

artifical diffusion mechanism and is the primary factor that causes inaccuracy in

most tip vortex calculations. Unlike non-linear features like shocks, tip vortices

have no re-steepening mechanisms and hence artificial decay of the vortex will

result in an irrecoverable loss of information. Typically, the use of high order

accurate schemes is essential to reduce numerical errors in tip vortex simulations

[38].

4In a linear sense
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Grid requirements:

The afore-mentioned numerical errors can be reduced by using High order

accurate numerical schemes in conjunction with adequate mesh resolution. In

RANS-based tip vortex simulations, two different types of grid spacings are

required:

In the near wall region, the normal distance between a point on the surface

and the first off-surface point should be roughly one wall-unit5and the stretching

in the normal direction should be small. This is required in order to accurately

represent the wall shear stress in the laminar sub-layer and the buffer layers [39].

For a wing at a chord based Re ≈ 5 × 106, a wall unit would correspond to

a physical spacing of ≈ 5 × 10−6c. In addition, the spacing in the non-normal

direction is also required to be orders of magnitude larger.

In the wake region, a fine mesh spacing is required to resolve the tip vortex.

Based on inviscid computations on an isolated tip vortex, it is estimated that

[38] at least 15 points are required across the vortical core. In addition, studies

[38, 40] have also hinted at the importance of maintaining reasonable cell aspect

ratios.

In practical computations, a compromise has to be achieved between main-

taining the required resolution, while keeping the overall computational cost

manageable.

RANS closure: The averaging of the Navier Stokes equations introduces

the need for turbulence models. The most popularly used closure models are

the linear eddy viscosity models like k − ε [41], Spalart-Allmaras [42] etc. In

this approach, the Reynolds stress is related to the mean strain rates assuming

5one wall unit is defined as ν√
τw

ρ

.
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isotropy. Though simple, this has turned out to be the only feasible solution to

turbulence modeling for complex flows and configurations.

One of the deficiencies of linear eddy viscosity closures is that these models

cannot implicitly account for effects like streamline curvature and solid body

rotation, which are known to be significant in tip vortex flows. On the other

hand, more complex RANS closures like the so-called Second Moment Closure

(SMC) [43] models can naturally account for these effects since Reynolds stresses

are inherently related to flow gradients. Even though the SMC models appear to

be physically appealing and have been shown to successfully model representative

problems [44], consistent superiority of these models has not been established for

complex problems [45]. In addition, practical implementation of these models is

known to be difficult because of their inherent complexity and lack of numerical

robustness [46].

As a result, there have been recent efforts addressing this deficiency of linear

eddy viscosity models in that simple variants have been proposed to sensitize

these models to streamline curvature [45–47]. In the present work, incorporation

of such changes is seen to be critical to successful numerical predictions.

1.3 Motivation and Objective

The RANS equations currently represent the highest level of fluid-dynamic ap-

proximation that can be utilized in the numerical simulation of flow at Reynolds

numbers relevant to flight applications. With the development of computational

power over the past two decades, these simulations have been applied in the

solution of complex flow-fields at high Reynolds numbers. In the case of tip
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vortex simulations however, a multitude of issues serve as serious hindrances,

and as a result, a successful prediction methodology has proved to be elusive to

researchers.

As a case in point, the review of work conducted at United Technologies

Corporation by Egolf et al. [40] is considered: Figure 1.6 shows the results of

a simulation of the tip vortex trailed from a small scale wing at a Reynolds

number of 140000 and an angle of attack of 5o using 2 × 106 grid points with

a Baldwin-Lomax turbulence model. It is evident that even with spatially high

order accurate schemes, there is a significant underprediction of the swirl velocity

and an overprediction of the radius of the vortical core. An important point to

note is that these comparisons have been made very near to the trailing edge

(less than 3 chord lengths). In a practical case, the wake structure has to be

computed for much longer. For instance, to capture even one revolution of the

rotor wake in a typical helicopter rotor, more than 60 chord lengths6of vortex

evolution is required.

As explained in the preceding section, the issues involved in tip vortex sim-

ulations can broadly be classified under discretization effects and RANS closure

effects. There has been considerable volume of work regarding the use of high or-

der accurate schemes on fine meshes (for instance, [38, 40, 48] etc.) in an attempt

to reduce discretization errors. Since the major source of error is the numerical

diffusion resulting from the discretization of the inviscid terms, these studies

have concentrated either on idealized isolated vortex problems or assuming in-

viscid conditions. In addition, none of the afore-mentioned studies addressed

the issue of vortex formation. In cases where the RANS equations are used, the

6Typical helicopter have blade aspect ratios ≈ 10.
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(a) Peak to peak cross flow velocity

(b) Vortex core radius

Figure 1.6: Tip vortex from fixed wing at Re = 1.5 × 106 and α = 5o. X axis

represents streamwise distance from trailing edge.
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study seems to be restricted to the very near field and experimental validations

beyond a few chord lengths aft of the trailing edge are not presented. Partic-

ularly, in the case of rotary blades, comparisons of tip vortex structure with

experimental measurements beyond 3 chord lengths do not seem to have been

published. Most practical rotor calculations [35, 49, 51] use mesh spacings that

are so coarse that accurate resolution of tip vortices becomes an unrealistic goal.

Only a few studies [47, 52, 53] have questioned the capabilities of the baseline

turbulence model to reasonably predict diffusion of the vortical core.

In summary, while both numerical and RANS modeling issues have been ad-

dressed in specific and in most cases, idealized situations, a comprehensive study

of their effects on vortex formation and evolution in a practical problem is found

to be lacking. In addition, comparisons of the computed tip vortex structure with

experimental data is found to be particularly scarce in the literature. For rotary

blades, this is compounded by the fact that reliable experimental measurements

in the far-wake are difficult to come by.

The primary motivation for this thesis originates from the above-mentioned

situation. In this work:

• High order accurate methods are used with enhanced grid resolution and

applied to practical tip vortex problems in a RANS framework.

• With the aid of numerical validations with a wide range of experimental

data sets encompassing fixed and rotary wing vortex formation and evolution,

the fidelity of the numerical methodology and possible deficiencies of the RANS

closure model are explored.

• Once a measure of confidence has been established, the methodology is

used to understand the physics of vortex formation and evolution in detail.
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• Using the baseline validations as reference points, the effect of changes in

geometry and loading conditions are evaluated.

• These baseline configurations are also used as a test-bed to examine differ-

ent strategies aimed at modifying the structure and reducing the strength of tip

vortices.

• The attempt at physical understanding is supplemented with analytical

and linear stability studies of isolated tip vortices in the far-field.

1.4 Previous Work

The primary focus of this thesis is to develop a RANS-based methodology to

computationally simulate tip vortex flow fields. The broader objective is to fur-

ther the understanding of the basic flow physics for existing fixed and rotary

wing configurations and to evaluate various strategies of flow control. In ac-

cordance with this overall objective, a brief review of the various methods and

aspects of tip vortex studies that are relevant to the current work is presented

in the following paragraphs.

1.4.1 Analytical Studies

Theoretical analyses of tip vortices essentially invoke a host of assumptions and

approximations to the Navier-Stokes equations such that simplified solutions

can be studied. Most existing analyses use the assumption of axisymmetric flow

[55]-[60]. While this assumption is valid in the far-field (invariably confirmed

by experiments [10]-[13]), it is clearly not valid in the near-field because of the

presence of the boundary layer shed from the surface [9].

20



Assuming laminar flow, Batchelor [56] derived an axisymmetric similarity

solution for a steady incompressible isolated vortex and showed that, to leading

order, the tangential velocity distribution is the same as that for a Lamb-Oseen

vortex [62]. Further, assuming that axial gradients are much smaller than radial

gradients, he showed that inviscid flow tends to accelerate the axial flow while

viscous effects tend to decelerate the flow. Thus, one can expect an axial velocity

excess (in relation to the free-stream) for inviscid flow and an axial velocity

deficit when viscous effects are dominant. Moore and Saffman [8] extended the

above analysis to the near-field by using the light loading (or small axial velocity

perturbation) approximation. They were able to relate the vortex structure of a

rectangular wing to the Reynolds number and angle of attack.

Hoffman and Joubert [55] used an isotropic eddy viscosity assumption to

represent the turbulence field and used dimensional reasoning to show the loga-

rithmic radial variation of circulation near the edge of the vortical core. Iversen

[57] used the mixing length analogy of Prandtl and derived a similarity solution

using empirical inputs and predicted the structure of a turbulent vortex as a

function of the Vortex Reynolds number Γo

ν
. Phillips [58] studied the turbu-

lent roll-up of a vortex sheet and was able to make detailed predictions of the

structure of the tangential velocity and Reynolds stress profiles. In addition, he

predicts two modes of decay of the peak tangential velocity with time depending

on the relative size of the vortical core to that of the wing span.

Cotel [59] used Bradshaw’s analogy [63] between streamline curvature and

stratification to explain the possible re-laminarization in the vortex core. Ra-

masamy and Leishman [60] extended Iverson’s similarity solution to account for

the relaminarization and were able to correlate the tangential velocity profiles
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with experiments.

1.4.2 Experimental Studies

Experimental work on tip vortices from fixed and rotary wings have mainly

concentrated on mean flow measurements in the far-field. However, these mea-

surements are complicated by the the phenomenon of apparently random me-

andering [10, 11, 79, 81, 82] of the vortical core. Meandering (or Wandering) has

been attributed to a variety of reasons including free-stream turbulence [74], in-

termittency [75], amplification of vortex instabilities [76], perturbation due to

the rolling up shear layer [77] etc. As a result of wandering, any time-averaged

Eulerian point measurement becomes a weighted average in both space and time

[79] and hence the measured data has to be corrected [10, 81]. Use of uncorrected

data gives an apparent ”smeared-out” version of the actual flow-field and may

contribute to large errors. Empirical wandering correction models have been

suggested in [10, 81, 82]. Most experimental measurements prior to the 1990s do

not account for the effect of wandering and should be interpreted with caution.

While the far-field vortex studies are affected by meandering, near-field studies

are complicated by the fact that the flow gradients and turbulence intensities

are large. In the following paragraphs, a few experiments that are relevant to

the present study will be briefly surveyed:

Fixed wing studies: Singh et al. [76] used hot wire measurements to study

the structure of a vortex trailed from a square-tipped rectangular wing. An ini-

tial axial velocity excess was observed and it quickly decelerated into a deficit

within a downstream distance of 5 chord lengths. Measurements up to a max-

imum downstream distance of 85 chord lengths showed a decay of the peak
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swirl velocity and turbulence levels at a rate proportional to approximately t−
1
2 .

Bandyophadhyay et al. [75] found that the Rossby number (ratio of axial velocity

excess or deficit to the peak tangential velocity) was the controlling parameter

for the turbulence structure in the vortex core. They found evidence of high in-

termittency in the vortical core and a low Rossby number was found to promote

relaminarization.

Green and Acosta [79] measured the instantaneous flowfield around a low

Reynolds number rounded tip rectangular wing. A low frequency instability was

noticed in the axial and tangential velocity fields, with the axial field showing

much larger amplitude fluctuations (25% of the free-stream velocity). Davenport

et al. [10] made an extensive set of hot-wire measurements on a NACA 0012

wing. The vortex wandering was found to increase linearly with distance from the

trailing edge. The raw measurements, when corrected for wandering suggested a

core structure that was predominantly laminar. They attributed the measured

high Reynolds stress levels in the core to wandering effects. Very little decay

of mean quantities was observed within a downstream distance of 5-30 chord

lengths.

Chow et al. [9] performed a comprehensive study of the near-field of a low

aspect ratio NACA 0012 wing at a Reynolds number of 4.6×106 and an angle of

attack of 10o. Extensive measurements were made on the mean flow velocities,

static pressure and turbulent quantities upto a distance of 0.68 chord lengths

behind the trailing edge. As a result of the high Reynolds number, a very large

axial velocity excess 0.77U∞ was measured near the wing trailing edge. A rapid

decay of the turbulent quantities was observed with downstream distance.

Rotating blade studies: Measurement in the near-field of a rotating blade
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flow-field is further complicated by the blade motion and hence, most of the

existing data sets do not present detailed information very close to the blade

surface.

Tangler et al. [109] conducted a comprehensive study of the effects of tip

shape, airfoil section, tip Mach number and collective pitch on the tip vortex

structure of a hovering rotor. For the range of collective pitch that was tested,

the swirl velocity was found to be of the order of 20% − 50% of the tip speed.

Caradonna and Tung [83] performed hot wire velocity measurements in the wake

of a two bladed hovering rotor. The measured peak swirl velocities were found to

reach a maximum of 40% of the tip speed and the initial vortex core radius was

found to be around 4% of the blade chord. In addition, pressure measurements

were made on the blade surface.

Martin and Leishman [11] measured the swirl and axial velocities in the

vortex system trailed from an isolated blade in hover. The measured data in

select planes over one rotor revolution was corrected for wandering. The peak

swirl velocity was found to decay at a rate that was much slower than that for

the measured axial velocity deficit. The effects of blade tip shape modification

were also evaluated. Ramasamy and Leishman [60], MacAlister [13] measured

velocity profiles for an isolated rotor in hover. They were able to show that the

swirl velocity and circulation profiles are approximately self-similar.

1.4.3 Numerical Computations

Numerical simulation of flow over fixed and rotary wings has been an extremely

active area of research over the past 20 years. Most of this research has, however,

concentrated on on-surface load distributions. In rotary wings, most compre-
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Authors Type Equation Max. downstream loc.

Mansour [33] Fixed wing RANS On-blade

Srinivasan et al. [89] Fixed wing RANS On-blade

Dacles-Mariani et al. [47] Fixed wing RANS 0.678 c

Lockard et al. [90] Fixed wing Euler 5 c

Spall [91] Fixed wing Euler 10 c

Egolf et al. [40] Fixed wing RANS 4 c

Russell et al. [94] Hovering rotor RANS 3 c

Tang [96] Hovering rotor Euler 30 c7

Table 1.2: Summary of previous work on numerical comparison of vortex profiles

with experiments

hensive analyses use a prescribed/Lagrangian wake model to simulate the tip

vortex induced inflow [84]. More recently, overset meshes [49–51, 85] have been

used to “capture” the wake instead of modeling the same. Even though these

calculations showed reasonable comparison of integrated coefficients (and some-

times surface pressures) with experimental/flight test data, only the “overall”

effects of the wake were captured as a result of excessive numerical dissipa-

tion. Thus, the internal structure of the tip vortex is not addressed. While

there have been many attempts in explicitly addressing grid requirements and

numerical dissipation ([38, 48, 52, 86–88]), the following survey (though not all

encompassing) concentrates only on those computational works that present

validations of tip vortex structure with experiments. Table 1.2 presents a sum-

mary of the following review.

7Only peak swirl velocity compared with experiments
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Fixed wing computations: Mansour [33] used the RANS equations to

study the transonic flow-field of a swept wing. The vortex roll-up in the tip

region was resolved and the contribution of the boundary layer circulation to

the tip vortex circulation was confirmed. However, the grid resolution and nu-

merical accuracy was insufficient to achieve good comparison with experiments.

Srinivasan et al. [89] performed a RANS study of the effects of wing planform

and tip shape on vortex roll-up using the ARC3D code with a Baldwin-Lomax

turbulence model. When compared with experiments, the qualitative features

showed good agreement, but surface pressures near the wing tip showed poor

comparison.

Dacles-Mariani et al. [47] validated the experiments of Chow et al. [9] using

a RANS formulation with the Baldwin-Barth turbulence model. They studied

the effects of numerical schemes, grid requirements and turbulence model modi-

fications in resolving the vortex formation and rollup. They were able to demon-

strate that using 15 points per vortex core diameter, fifth order spatial accuracy

for inviscid terms and a modification of the turbulence model, the mean flow

characteristics could be reasonably captured. They however concluded that the

use of isotropic turbulence closure could be deficient in accurately representing

the turbulence field.

Lockard and Morris [90] solved the inviscid Euler equations using a fourth

order central differencing scheme to validate the measurements of Devenport et

al. [10]. Even with the use of a 2 million grid point mesh, the vortex was found

to diffuse rapidly. The core-size was found to grow to more than 2 times the

experimental value within a few chord-lengths of evolution. The disagreement

was attributed to numerical dissipation and also to the inviscid approximation.
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Spall [91] conducted an inviscid simulation of the afore-mentioned test case

of Devenport et al. using a second order accurate scheme with highly refined

meshes in the tip vortex region. The peak swirl velocity was over-predicted

and the core-radius was smaller compared to the experiments. The numerical

diffusion was found to be small in that the peak swirl velocity diminished by

15% over a distance of 10 chord lengths.

Egolf et al. [40] present a review of research at the Universal Technologies

Research Center (UTRC) on tip vortex simulation. A comprehensive study was

made on the numerical diffusion in terms of mesh spacing, mesh alignment and

order of accuracy. For an idealized vortex problem, it is shown that numerical

diffusion can be negligible using a ninth order accurate scheme with approxi-

mately 12 points in the vortical core. In addition, the mesh points had to be

aligned with the vortex axis. However, practical tip vortex simulations using

the RANS equations were found to be very dissipative, probably because of the

ill-effects of the Baldwin-Lomax turbulence model. (fig. 1.6).

Rotary blade computations: Compared to fixed wing calculations, it is

very difficult to come across numerical validation of tip vortex structure with

experiments for rotating blades. A significant contributor to this fact is the

scarcity of accurate and reliable experimental measurements. A few of these

works [26, 50, 92] compare the trajectory of the vortex core, such as the radial

contraction and downward convection with experiments. Actual comparisons

of the details of the vortex structure are very rare. Russell et al. [93, 94] have

performed RANS simulations using the Baldwin-Lomax turbulence model to val-

idate the experimental hover measurements of MacAlister et al. [97]. Computed

vortex velocity profiles are compared with measurements at distances of 0.5 and
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3 chord lengths behind the trailing edge. The axial velocity excess is overpre-

dicted and the swirl velocity is underpredicted. The computed core radius is

seen to be larger by 60% compared to the measurement at the 3 chord length

downstream location. Usta [34] used upto eighth order accurate symmetric TVD

schemes [95] (for inviscid terms) with the Spalart-Allmaras turbulence model to

simulate the Caradonna and Tung [83] 2 bladed hovering rotor. Though high

order schemes performed better than the low order schemes in predicting blade

surface pressures, numerical diffusion was found to reduce the vortex strength

significantly. Tang [96] used a high order accurate Euler solver with adaptive

mesh refinement and compared the evolution of the peak swirl velocity with

wake-age for the isolated hovering rotor test case of Martin and Leishman [11].

The use of high order accuracy and mesh adaption was seen to reduce numer-

ical dissipation. No details of the vortex velocity profile were compared with

experiments.

1.4.4 Tip Vortex Control

The maximum swirl velocity associated with a trailing vortex usually scales as

vθ,max ≈ Γo

2πrc
, where Γo is the circulation or strength of the vortex and rc is

the core radius (usually defined as the radius at which vθ is a maximum). The

primary objective in trailing vortex control is the reduction of vθ,max since it

directly contributes to increased wake hazard. One can achieve this by:

Increasing the diffusion - Increased turbulent activity in the core can cause

a higher core growth rate and hence, lower swirl velocity. However, turbulent

diffusion does not diminish the circulation.
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Decreasing the circulation - By having cross diffusion and cancellation with

a counter-rotating vortex, the circulation strength of a given vortex can be di-

minished.

Inducing instabilities - It is known that tip vortex flows are unstable to small

perturbations because of the presence of an axial velocity deficit. If these in-

stabilities can be excited, the coherence of the vortex can be reduced. Over

the past three decades, a large number of vortex alleviation concepts have been

investigated through experiments, numerics and theoretical analyses. A few of

these concepts will be outlined in the following paragraphs.

The earliest attempts used splines, wing-tip mounted propellers or spoilers

to inject large amounts of turbulence into the vortex core [98, 99]. The idea was

to diffuse the vortex by making the core turbulent and also to make it more

susceptible to instabilities, eventually causing a breakdown of the core. In its

simplest form, the swirl velocity induced by an isolated straight line vortex (of

circulation strength Γo) is given by, vθ = Γo

2πr
[1−exp −r2

4t(ν+ε)
], where ν is the laminar

viscosity and ε is the turbulent eddy viscosity. Then, rc ≈ 2.241
√

(ν + ε)t. The

main focus was thus, to increase the turbulence intensity. These devices proved

to be effective in reducing the swirl velocities several chord lengths downstream

of the wing, but the net decay far away was not greatly influenced. Further,

some of these devices caused significant drag penalties.

Rossow [100] proposed a method which modifies the spanwise lift distribution

in such a way that the trailed wake system is dispersed in a non-hazardous

manner. The ideal spanwise loading should be such that the trailed vortex sheet

does not roll up into concentrated vortical structures, and is instead dispersed as

a single unit. Using the Betz rollup theory, he showed that a saw-tooth shaped
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lift distribution theoretically gives a vortex sheet that translates downwards as a

single unit. In a 40× 80ft wind tunnel test, this loading was obtained by using

a set of 7 flaps (on each wing), the deflections of which control the spanwise lift

distribution. For moderate angles of attack, a highly mitigated tip vortex was

observed. An extensive set of flight tests were conducted on a Boeing 747 (using

the in-board and out-board flaps) and the resulting tip vortex strengths were

determined using the loads and rolling moments encountered by a Lear Jet flying

behind the 747. With proper flap deflections, the tests indeed showed that more

diffuse tip-vortices were formed. It was concluded however, that the airplane

performance and efficiency were adversely affected because of the requirement

of the flap deflections.

Quackenbush et al. [101] proposed the use of active surfaces to create peri-

odic control vortices which promote the de-intensification of the primary vortex

wake systems of submarines. Termed vortex leveraging, they show by means

of computations that the control vortices interact with the primary tip vortices

causing mutual instabilities between the two tip vortices. Eventually the trailed

vortex system is weakened. Liu et al. [102] have done some preliminary studies

of using spoilers and upper surface blowing as a means of reducing the tip vortex

strength of a hovering rotor. Other methods include using wing fins, spanwise

blowing [103] and sub-wings [104]. A more complete survey of these techniques

can be found in Rossow [100] and references therein.

Ortega [105] presents a novel idea in trailing vortex mitigation: Using a

towing tank, a study was performed on the trailed vortex system of a wing shaped

as shown in fig. 1.7. The triangular shaped flap region creates a vortex that

counter-rotates with the tip-vortex and the subsequent interaction drastically
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Figure 1.7: Wing with triangular flaps [105] - Flap vortices counter-rotate with

Tip vortices and ultimately weaken them

reduces the intensity of the tip-vortex. As discussed in his work, though this

is a very promising concept, the creation of the strong counter-rotating vortex

results in a higher induced downwash and structural problems could result from

the outboard loading and weight. Orlandi et al. [106], based on direct numerical

simulations, suggest that perturbing trailing vortices by temperature variations

can initiate some instabilities that can destroy the coherence and strength of a

pair of counter-rotating trailing vortices.

Many studies in helicopter tip vortex control have concentrated on the modi-

fication of the tip shape ([107]-[109]) in such a way that the loading would result

in a more diffuse trailed vortex system. Fluidic control opportunities were ex-

plored by Gowanlock et al. [110], in which discrete jets were introduced at the

tip of a single blade in hover. Experimental results show a reduction in swirl

velocity and reduced coherence of the tip-vortex. More recently, the effect of

spanwise blowing at the tip was investigated experimentally by Han et al. [111]
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for a single hovering blade. In their test, air was bled at the leading edge and

injected at the tip through a set of 4 circular orifices. Their conception was that

this would inject turbulent structures directly into the core of the tip vortex and

thus diffuse it. They were able to demonstrate a 50% reduction in swirl velocity

within a wake age of 90o. Data on the effect on lift and drag coefficients are not

currently available. Liu et al. [102] performed some preliminary numerical stud-

ies of using upper surface blowing. Their scheme was to disrupt the spanwise

bound circulation and thus, reduce the tip vortex strength.

Other methods that are specific to helicopter BVI control like Higher Har-

monic Control (HHC) [112] and Individual Blade Control (IBC) [113] essentially

use control inputs that are tuned at particular frequencies and are phased such

that the level of noise and vibration is reduced. Though these concepts were

relatively successful experimentally, implementation on a helicopter would be

difficult given the complexity and sometimes, the size of the control system.

1.5 Scope and organization of the thesis

The review of the literature highlights the difficulties in achieving a detailed

understanding of vortex formation and evolution. In particular, it becomes evi-

dent that past computational efforts in tip vortex simulations have been found

to be very lacking in terms of accurate validation of the numerical results with

experiments. The overall objective of this work is to develop a high fidelity

RANS based computational methodology that can be used as a reliable tool to

help understand the process of tip vortex formation and evolution. In princi-

ple, this methodology can also be used as a tool to evaluate control effects and
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configuration changes that can enhance the performance of lifting surfaces in

general.

In Chapter 2, a study is performed on the theoretical aspects of axisymmetric

vortices in the far-field. The objective of the study is to better understand the

characteristics of realistic tip vortices in terms of their persistence and control.

In Chapter 3, the formulation of the RANS-based computational method-

ology is presented. Various issues that pertain to the present simulations are

discussed.

Chapter 4 presents the simulation of the formation and roll-up of a tip vor-

tex generated by a fixed wing in a wind tunnel. With the aid of validation with

experimental data, issues such as grid requirements, solver accuracy and turbu-

lence model modifications are addressed. The effect of airfoil thickness and tip

shape on vortex rollup is also studied. Next, simulations of the evolution of a

fixed wing tip vortex in the extended near-field are performed.

Chapter 5 is devoted to the computational study of the flow-field of lifting

rotors in hover. Detailed comparisons with experimental data are presented for

the case of single and two bladed rotors. In addition, the effect of the loading

distribution on tip vortex formation and evolution are studied in detail.

In Chapter 6, the methodology is used to simulate the effects of flow control

in the form of blowing at the wing tip. Results are evaluated on fixed wings and

helicopter rotors.

The final chapter summarizes the main observations on the various aspects

of the methodology and simulations. Recommendations are suggested for future

work.
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Chapter 2

Theoretical Studies on Tip Vortices

The main objective of this thesis is to develop an accurate methodology to com-

pute tip vortex flows using the RANS equations. In this chapter, certain aspects

of tip vortices that are of a more theoretical nature are addressed. A brief review

of literature on the vortex structure in the far-field is followed by an examina-

tion of the relationship between the swirl and axial velocities. Finally, a linear

analysis is performed on the stability of realistic tip vortex velocity profiles. The

objective of this study is to better understand the role of axial velocity and the

mechanisms of persistence and destabilization of tip vortices.

2.1 Tip vortex structure in the far-field

Many experimental studies [10]-[13] on fixed and rotary wings have shown that

the tip vortex structure is largely axisymmetric within a few chord lengths down-

stream of the trailing edge. From these studies it is also evident that vorticity

is concentrated in an extremely small radius and the swirl (vθ in fig. 2.1) and

axial velocities (vx) are much larger than the radial velocity (vr).
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Figure 2.1: Schematic showing a tip vortex in the far-field and its velocity com-
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Figure 2.2: Typical measured axisymmetric swirl velocity distribution [10] 10

chords downstream of a fixed wing. Schematic of regions that define the vortex

structure is also shown.
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2.1.1 Swirl velocity

Using the light-loading assumption (which states that the deviation of axial

velocity from the free-stream value is negligible), axisymmetry and incompress-

ibility (along with density ρ = 1), the Reynolds-averaged tangential momentum

equation [18] becomes

1

2π

∂Γ

∂t
=

ν

2πr

∂

∂r

[

r3 ∂

∂r

(

Γ

r2

)]

− 1

r

∂

∂r
(r2 < v′rv

′

θ >) (2.1)

where, Γ = 2πrvθ is the local circulation and < v′rv
′

θ > is the Reynolds stress.

Based on different modeling assumptions for the Reynolds stress, a variety of

solutions to eqn. 2.1 have been attempted in the literature (for instance, [55,

57, 58, 60, 61]). Phillips [58], in particular, has rigorously analyzed the above

equation and with the aid of some dimensional reasoning, divides the vortex

structure into three regions:

(I) The innermost part, in which viscous effects must be present to bring

the tangential velocity to zero at r=0. In addition, near r=0, to leading order,

the rotation is close to solid body and the Reynolds stress goes to zero like r2.

In this region, the stabilizing effects of flow-rotation are believed to promote

relaminarization.

(II) An intermediate region, located near the point of maximum swirl velocity,

which acts like a buffer region between the nearly potential outside flow and the

solid body rotation in the interior. In this highly strained turbulent region,

Hoffman and Joubert’s logarithmic law [55] for circulation is found to apply.

(III) The outer region, in which the flow is turbulent, but the swirl velocity

decays as 1/r (akin to a potential vortex) and the Reynolds stress goes to zero

as 1/r2.
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Successful vortex models are seen to account atleast qualitatively for these

effects. For instance, Ramasamy and Leishman [60] use a mixing length model

for the Reynolds stress terms with an intermittency function to reduce the eddy

viscosity in region I and portions of region II. Along with a set of 3 empirical

constants to model the Reynolds stress, their similarity solution to eqn. 2.1 was

found to match a wide range of experimental measurements.

A typical measured swirl velocity distribution (from [10]) is shown in fig. 2.2.

2.1.2 Axial velocity

The dynamic necessity of axial velocity was first established by Batchelor [56].

He derived a simplified expression by treating the inviscid axisymmetric equa-

tions, accounting for the viscous terms using a “head loss” ∆H. Assuming small

axial gradients (compared to radial gradients), axisymmetric flow and small ra-

dial velocity (compared to axial and swirl velocities), the equations1governing

incompressible flow can be written in the form:

∂p

∂r
= ρ

v2
θ

r
and

p

ρ
+

1

2
(v2

x + v2
θ) + ∆H =

p∞
ρ

+
1

2
U2
∞

Assuming an isolated vortex, the axial velocity is then given by [56]:

v2
x(r) = U2

∞
+

∞
∫

r

Γ

2π2r2

∂Γ

∂r
dr − 2∆H

If one assumes a monotone non-decreasing circulation (which is indeed the case

in tip vortex flows), one should expect an axial velocity excess (relative to free-

1Radial and Axial momentum equations respectively.
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stream) for inviscid flow (∆H = 0) because the integrand is guaranteed to be

positive at all radial positions.

The driving mechanism for the development of axial velocity is thus the

low pressure that exists in the core. This low pressure is a consequence of the

centrifugal forces due to the swirling flow - in order to maintain the total pressure

constant, the axial velocity has to be in excess of the free-stream.

For viscous flows, the presence of the loss of head competes with the inviscid

acceleration mechanism. In the case of large Reynolds numbers and high angles

of attack, the inviscid mechanism wins out and an axial velocity excess has

been reported in some near-field experiments. For instance, Chow et al. [9]

used Re = 4.6 × 106 and α = 10o and found a peak axial velocity of 1.77U∞.

Under moderate angles of attack and low Reynolds numbers, the viscous losses

are usually high enough and the majority of experiments have reported axial

velocity deficits. Heyes et al. [146] found an axial velocity of 0.86U∞ for a wing

at Re = 2.2 × 105 and α = 10o.

This behavior is quantified by the observation of Spalart [2], in which he ra-

tionalizes that the presence of a deficit or excess is dependent on the “circulation

parameter” Γo/(U∞b), where Γo is the far-field circulation strength of the vortex

and b is the semi-span. A larger value of the parameter resulted in an excess.

For the afore-mentioned Chow case, the value of this parameter is found to be

≈ 0.2 and for the Heyes case, ≈ 0.1. Anderson et al. [114] present a wide range

of test cases for which this parameter has been evaluated and experimental axial

velocity measurements are reported.

Axial velocity profiles are seen to be curve-fit by Gaussian distributions [3].

A typical measured axisymmetric axial velocity profile is shown in fig. 2.3. In
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Figure 2.3: Typical measured axisymmetric axial velocity distribution [10] 10

chords downstream of a fixed wing.

this case, an axial velocity deficit is evident in the vortical core.

Unlike the swirl velocity, which, as discussed in the previous chapter, is a

hazard to other aircraft and is responsible for noise and vibration in helicopters,

the effects of axial velocity are subtle. Though the axial velocity defect/excess

is usually smaller in comparison to swirl velocity its presence dictates to a large

extent, the stability and decay of the swirl velocity. In addition, axial flow is even

known to play a significant role in vortex breakdown [115].

2.2 Mechanisms of decay of tip vortices

Knowledge of the decrease of the peak swirl velocity and the increase in the core-

radius of the tip vortex is crucial in determining the potential hazard caused by it.

Of the variety of mechanisms that contribute to the decay of tip vortices, laminar

and turbulent diffusion seem to have been addressed extensively in literature,

the latter in an empirical manner. Laminar (or molecular) diffusion is given by
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Lamb’s solution [62] to eqn. 2.1 (without the turbulent terms): In this case, the

rate of growth of the core-radius is given by:

rc(t) =
√

r2
o + 4ανt, (2.2)

where α = 1.25643 is the Lamb’s constant and ro is the core-radius at time t = 0.

Correspondingly, the swirl velocity is given by:

vθ =
Γo

2πrc

[

1 − e−αr̄2

r̄

]

(2.3)

where, r̄ = r/rc. Squire [64] modified the laminar core-growth model by intro-

ducing a constant eddy viscosity, thus altering the core-radius growth to

rc(t) =
√

r2
o + 4α(1 + δ)νt, (2.4)

where, δ ≥ 0 is a parameter used to represent the turbulence. As discussed by

Ramasamy and Leishman [60], the core-growth predicted by a variety of vortex

models can be represented in the above framework. Experimentally measured

core-radius evolution is generally found to be fit well by using an appropriate δ

in eqn. 2.4. Note that in the above expressions, substituting x = U∞t would

convert the temporal problem to a steady spatial one.

However, any vortex model based on eqn. 2.1 has a fundamental deficiency

as pointed out by Uberoi [66]. The effect of axial velocity has been ignored in

this equation2. Uberoi integrated the steady incompressible axisymmetric RANS

equations and obtained an expression for the flux of axial momentum, which is

given by:

U∞

d

dx





∞
∫

o

Γrdr



 =
d

dx
[(vx − U∞)(Γ − Γo)rdr] − 2νΓo, (2.5)

2This is invariably done because it is otherwise difficult to obtain a similarity solution to

eqn. 2.1.
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The term on the left hand side of this equation represents the rate of change of

the angular momentum flux. The first term on the right hand side represents

the convection of angular momentum (in the radial and axial directions). The

second term on the right hand side represents the diffusion of angular momentum.

Using experimental data, Uberoi showed that the convection term was more than

an order of magnitude larger than the viscous term even in the far-field. He

rightly points out that such convection effects could be mistaken for turbulent

diffusion when axial velocity is neglected. Hence, when simple one-dimensional

vortex models are formulated to describe experimentally observed core growth

and associated phenomena, the effect of neglect of axial velocity could result in

spurious Reynolds number dependence.

2.3 The Axial momentum flux

In the previous section, Uberoi’s expression for the decay of tangential momen-

tum was presented. In this section, an equivalent expression for the axial mo-

mentum flux will be derived. The objective is to deduce a relationship between

the axial momentum and swirl velocities, so that a clear understanding of their

decay mechanisms can be obtained. The only assumptions that will be made

are that of incompressible axisymmetric flow. In addition, similar to Uberoi, the

assumption that the Reynolds stress < v′rv
′

θ >→ 0 atleast as fast as 1/r2 → 0 as

r → ∞. Such a behavior is predicted by Philips as mentioned in the previous

section.

Assume that the axial velocity can be represented by vx = U∞ + ux, with

vx(x, z) being the axial velocity excess or deficit. Integrating the axial momen-
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tum equation and using the continuity and radial momentum equations, the

following expression was derived:3

d

dx





∞
∫

o

(ux(U∞ + ux)+ < v′x >
2)rdr



 =
d

dx





∞
∫

o

(
< v′r >

2 + < v′θ >
2 +v2

θ

2
)rdr





(2.6)

This equation relates the rate of change of mean momentum and fluctuating

kinetic energy in the axial direction to the energy in the other directions. Inte-

grating this equation in the axial direction between two stations, say x1 and x2,





∞
∫

o

(ux(U∞ + ux)+ < v′x >
2)rdr





x2

x1

=





∞
∫

o

(
< v′r >

2 + < v′θ >
2 +v2

θ

2
)rdr





x2

x1

(2.7)

More insight is obtained by considering the laminar part (only the mean flow

quantities) of the equation: Then, the change in the axial momentum flux is

equal to the change in the swirling kinetic energy. Hence, the decay of the axial

flux is intimately related to the decay of the swirling flow.

Saffman [65] derived an equivalent expression for laminar flow using the light

loading assumption (vx/U∞ << 1) and his following quote is applicable in this

general case also: “The axial flux decays under the action of viscosity and can be

interpreted physically as the transfer of induced drag from the kinetic energy of

the transverse motion to the axial momentum deficit.” This discussion further

establishes the need and significance of understanding the axial velocity structure

of the tip vortex.

3A similar expression for laminar flow was derived in [67]. This derivation follows the same

steps, but includes the turbulent quantities.

42



2.4 Linear stability analysis of axisymmetric vor-

tices

To perform a linear stability study, the continuity and momentum equations are

linearized about a mean axisymmetric flow (U, V,W ) in the radial, tangential

and axial directions. Therefore,

vr(r) = U(r) + u, vθ = V (r) + v, vx = W (r) + w, (2.8)

Note that this corresponds to parallel flow and this assumption is justified only

if the changes in the axial direction are much smaller than that in the radial

direction. Even though the basic flow is axisymmetric and parallel, the imposed

disturbances (u, v, w, p) are not restricted to be and are given by [68]:

{u, v, w, p} = {iF (r), G(r), H(r), P (r)}ei(αx+mθ−ωt) (2.9)

where, α is the axial wavenumber, m is the azimuthal wave number and ω is

the growth rate of the disturbance. Substituting this into the NS equations

defines an eigenvalue problem for the growth rate. If the imaginary part of ω

(represented by ωi) is positive, the particular flow configuration is temporally

unstable, otherwise it is stable.

The full equations and the boundary conditions can be found in Appendix

B. In the following discussion, the vortex Reynolds number Rev = Γo

ν
is used

for non-dimensionalization instead of the usual chord based Reynolds number

definition.
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2.4.1 Summary of Previous work

The above eigenvalue problem has been solved by several researchers ([68, 70,

72]) for the Batchelor’s q-vortex (which has a Lamb-Oseen swirl velocity pro-

file and a Gaussian axial velocity distribution), defined by U(r) = 0, V (r) =

q(1 − e−r2
)/r,W (r) = e−r2

. In this case, the swirl ratio q relates the magni-

tude of the swirl velocity to the axial velocity excess or deficit. It is easy to

see that the ratio of the peak swirl velocity to the axial velocity difference is

0.639q. Note that the swirl velocity profile of the q-vortex is the same as Lamb’s

vortex. The following have been previously observed (and summarized from the

aforementioned references):

1. For the case with no axial velocity, the vortex is found to be stable for all

Reynolds numbers. This can also be inferred from Rayleigh’s centrifugal stability

condition [71] which states that parallel swirling flows with monotone increasing

circulation are stable.

2. The introduction of axial velocity (excess/deficit) is found to be a de-

stabilizing influence. However, for a given Reynolds number, such instabilities

are seen to be damped out and the vortex is stable if the amount of swirl is

significant enough (q > qcritical). For instance, at a Reynolds number Rev =

10000, all disturbances were seen to be damped if q > 3.235. For inviscid flow,

qcritical ≈ 1.5.

3. The most critical modes are found to be the ones corresponding to the

azimuthal wave number m = −1. These modes consistently present the largest

unstable band of Reynolds numbers and in addition, are the only modes that

are unstable for the Gaussian jet or wake (q=0).

4. The addition of viscosity was seen to de-stabilize some modes which were
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otherwise found to be stable in the inviscid regime.

5. Though the addition of swirl is found to be stabilizing for large q, addition

of incremental swirl to an otherwise non-rotating jet/wake was seen to initially

amplify the instabilities. These instabilities reach a peak value at a particular q

and are then seen to be damped as q approaches qcritical.

2.4.2 Current Investigations

The previous investigations were focused on the q-vortex, which is a solution of

the laminar axisymmetric equations. Though it is representative of the overall

features of tip vortices, the velocity profiles do not match well with experimental

measurements beyond the core-region. In this work, swirl velocity profiles that

match well with measurements will be analyzed for linear stability. The objective

of this study is to ascertain whether changes in the velocity profile outside the

core significantly affect the stability properties. In addition, the effect of the

radial gradient of axial velocity will be analyzed. All the computations will be

focused on the most critical mode m = −1.

The swirl velocity profile used in this study was chosen to be the function

V (r/rc) = qr/rcM(n; 1; r/rc), where M is the confluent Hypergeometric function

[73]. This function was chosen because it is a similarity solution to a laminar

axisymmetric vortex given by Kirde (the expression can be found in Chapter 13

of [65]) and the free-parameter 0 ≤ n ≤ 1 was seen to give profiles that match

measured profiles as seen from fig. 2.4. It is evident that in the core-region,

the velocity profiles are not much different from each other, and even the Lamb-

Oseen profile (same as the n = 1 Kirde profile to plotting accuracy) matches well

with experiments. Outside the core-region, the measured profile shows a much

45



0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

r/r
c

(v
θ)/

(v
θ) m

ax
n=1 

n=0.75 

n=0.5 

n=0.25 

Figure 2.4: Hypergeometric velocity profile for different values of the parameter

n. The open symbols correspond to a measured velocity profile, previously shown

in fig. 2.2
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open symbols correspond to a measured velocity profile, previously shown in fig.

2.3
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smaller radial gradient compared to the Lamb-Oseen profile. It is seen that for

this case, n = 0.75 matches the measurements well. When this velocity profile

is compared to that of a q-vortex, it is ensured that both profiles have the same

peak swirl velocities at the core-radius r/rc = 1.

For this study, the Gaussian axial velocity profile W (r/rc) = exp[−s(r/rc)
2]

is used. The free parameter s > 0 is adjusted to set the steepness of the velocity

profile as shown in fig. 2.5.

Sensitivity to changes in swirl velocity profile

In this section, fixing the axial velocity profile at s = 1, stability analysis will

be performed on different swirl velocity profiles. These velocity profiles are

significantly different from each other only in the potential flow region as was

observed in fig. 2.2.

Figure 2.6 shows the topography of the instabilities for the q-vortex at Rev =

105. Iso-levels of the maximum amplification rate (imaginary part of ω) are

shown as a function of the axial wavenumber α and swirl ratio q. As mentioned

in the previous section, a slight instability exists for the case with no swirl

(q=0). When a small level of swirl is added (q < 0.4), the instabilities seem

to be amplified, the maximum amplification being attained at q ≈ 0.5. Larger

values of the swirl (q > 0.5) act as a stabilizing mechanism and the growth

rate of instabilities is seen to be reduced. For very large values of the swirl,

the instabilities can be expected to be damped as discussed in [72]. It has to

be mentioned that in practical cases, for instance, the experiments of Chow et

al. [9], Heyes et al., q > 2, and hence addition of swirl can be assumed to be a

stabilizing influence.
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Figure 2.6: Contours of constant amplification rate ωi of the most unstable mode

for the q-vortex (Gaussian axial velocity with s = 1) at Rev = 105. Outermost

contour is 0.025, contour spacing=0.0125

Figure 2.7 condenses the results of fig. 2.6 into a 2D plane for ease of compar-

ison with other cases. It is evident from figs. 2.7-2.9 that the effect of the change

in velocity profile outside the core region proves to be a minor influence on the

stability properties. This behavior was found to be consistent over a range of

Reynolds number evaluations also.

Sensitivity to changes in axial velocity profile

To evaluate the sensitivity to changes in the axial velocity profile, the swirl

velocity profile was held constant to Kirde’s profile with n = 0.75 and the free

parameter s in the Gaussian axial velocity profile was varied. As seen from figs.

2.9 and 2.10, the radial gradient of the axial velocity profile has a significant
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Figure 2.7: ωi of the two most unstable modes for the q-vortex (Gaussian axial

velocity with s = 1) at Rev = 105
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Figure 2.8: ωi of the two most unstable modes for the Kirde profile with n = 0.50

(Gaussian axial velocity with s = 1) at Rev = 105
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Figure 2.9: ωi of the two most unstable modes for the Kirde profile with n = 0.75

(Gaussian axial velocity with s = 1) at Rev = 105

effect on the stability properties. The growth rate of the instabilities ωi is seen

to increase when the axial velocity profile is steeper (larger s) inside the core.

Implications for persistence and control of trailing vortices

A few chord lengths downstream of the trailing edge, the swirl velocity in a real-

istic tip vortex can be expected to be larger than the axial velocity deficit/excess

[9–11, 146]. The swirl ratio is thus large and hence, the rotational effects act to

stabilize the flow. Figure 2.11 shows the structure of the most unstable mode for

a particular combination of parameters at a moderate swirl ratio q = 2. For this

case, the amplification rate ωi = 0.01082824. Termed “centre modes” [72], these

modes are seen to be concentrated within a narrow radius inside the core. This

behavior was noticed for all the velocity profiles at moderate and large swirl

ratios. At larger Reynolds numbers, the modes were seen to be concentrated

within a much smaller radius. This, to an extent explains the dependence of the

stability properties on the velocity profiles in the core region.
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Figure 2.10: ωi of the two most unstable modes for the Kirde profile with n =

0.75. Gaussian axial velocity with different s at Rev = 105

Figure 2.11: Amplitude of the perturbation eigenfunctions for the Kirde profile

with n = 0.75 and Gaussian axial velocity with s = 1. Rev = 105, q = 2.0, α =

0.25, m = −1
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Based on Direct Numerical Simulations (at small Reynolds numbers), Jacquin

and Pantano [14] advocate the presence of a dispersion buffer, a region that

exists in the external part of the core when the swirl ratios are significant (q >

1). According to their findings, perturbations that originate in the internal

part of the core (such as the afore-mentioned centre-modes) are transformed

into non-amplified propagating waves when they reach the dispersion buffer.

These instability waves are thus diffused and virtually no angular momentum

is exchanged with the flow that exists outside outside the core. This appears to

be a key mechanism4behind the persistence of the strength of trailing vortices

during the evolution. For low swirl ratios (q < 1), the dispersion buffer was seen

to vanish and the vortex was observed to decay at a rapid rate.

Hence, based on these discussions, a good strategy for vortex control could

involve reducing the swirl ratio or in other words, increasing the axial velocity

deficit (or excess) in relation to the swirl velocity. As will be seen in Chapter 6

(using RANS simulations), this is possible.

2.5 Summary

In this chapter, certain theoretical aspects involving the evolution of tip vortices

in the far-field were addressed. In particular, the role of axial velocity on the

4In addition, Cotel et al. [59], and Ramasamy et al. [60], based on an idealized experiment

and an analysis of measured data, surmise that the effect of flow rotation is to induce an

apparent “stratification radius” that usually exists within the core. Below this radius, even

the smallest turbulent eddies from the exterior flow do not possess enough energy to engulf

the interior of the vortical core. Thus, molecular diffusion is the only transport mechanism in

the vortical core.
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evolution and stability of tip vortices was examined. For an axisymmetric vortex,

the axial momentum flux is seen to be intimately related to the kinetic energy

of the transverse motion. Further, a linear stability analysis established the

destabilizing effects of axial velocity (or in contrary, the stabilizing effects of the

swirl velocity).
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Chapter 3

Computational Methodology

In this work, the numerical solution of the Reynolds Averaged Navier-Stokes

equations are used to study the tip vortex flow-field around wings and helicopter

blades.

3.1 The RANS Equations

The 3 dimensional unsteady compressible RANS equations along with the Boussi-

nesq assumption for isotropic eddy viscosity (a more detailed discussion can be

found in sec. 3.7) are given by:

∂Q

∂t
+
∂Fi

∂x
+
∂Gi

∂y
+
∂Hi

∂z
=
∂Fv

∂x
+
∂Gv

∂y
+
∂Hv

∂z
+ S, (3.1)

where Q is the vector of conserved variables, Fi,Gi,Hi are vectors representing

the inviscid fluxes, Fv,Gv,Hv are vectors that represent the viscous fluxes, and

S represents the vector that accounts for body forces if they are present. The
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vector of conserved variables1is given by:
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
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(3.2)

where, ρ is the density, (u, v, w) are the components of the velocity in the

Cartesian directions and e is the total energy per unit volume, that can be

written in terms of the velocities and pressure p as:

e =
p

γ − 1
+

1

2
ρ(u2 + v2 + w2) (3.3)

The flux vectors are given by:
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(3.5)

1These quantities are Reynolds averaged [19].
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Fv =



















































0

τxx

τyx

τzx

uτxx + vτxy + wτxz − k ∂T
∂x



















































(3.7)

Gv =



















































0

τxy

τyy

τzy

uτyx + vτyy + wτyz − k ∂T
∂y



















































(3.8)
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(3.9)

With the assumption of isotropic eddy viscosity (refer sec 2.7), and Stokes’ hy-

pothesis [18], the mean and Reynolds stresses can be combined and represented

by:

τij = 2(µ+ µt)

[(

∂ui

∂xj
+
∂uj

∂xi

)

− 1

3

∂uk

∂xk
δij

]

(3.10)
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with µ and µt represent the molecular and turbulent eddy viscosities. For the

energy equation, T is the temperature and k is the coefficient of thermal conduc-

tivity and is related to the viscosity using the Prandtl number Pr and a turbulent

Prandtl number Prt as:

k =
µCp

Pr
+
µtCp

Prt

(3.11)

For all the computations, Pr = 0.72 and Prt = 0.9 are assumed. The equations

are finally closed by using the Sutherland’s law [18] to represent the variation of

molecular viscosity with temperature and the equation of state for a perfect gas

p = ρRT .

For all the simulations in this dissertation, no body forces are assumed. The

source term vector S will be utilized when the equations are solved in the rotating

frame for the hovering rotor problem (sec. 3.6).

In the numerical solution involving non-Cartesian geometries, grid clustering

will be required along certain non-Cartesian directions, whereas, very coarse

spacings will suffice along other orthogonal directions. In such cases, casting the

equations in the natural coordinate system of the flow will prove to be convenient.

Hence, the equations have to be transformed from the ‘physical space’ of the

mesh points (x,y,z) to a ‘computational space’ (ξ(x, y, z), η(x, y, z), ζ(x, y, z)).

In general, this transformation would involve time if moving grids are used. In

this thesis however, computations are restricted to fixed wings and rotary blades

in hover and the geometry is assumed to be rigid, thus the time-dependence of

the transformation drops out. The transformed equations in conservation form

are given by:

∂Q̂

∂t
+
∂F̂

∂ξ
+
∂Ĝ

∂η
+
∂Ĥ

∂ζ
= Ŝ (3.12)
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where,

Q̂ =
1

J
Q (3.13)

F̂ =
1

J
[ξx(Fi − Fv) + ξy(Gi − Gv) + ξz(Hi − Hv)] (3.14)

Ĝ =
1

J
[ηx(Fi − Fv) + ηy(Gi − Gv) + ηz(Hi − Hv)] (3.15)

Ĥ =
1

J
[ζx(Fi − Fv) + ζy(Gi − Gv) + ζz(Hi − Hv)] (3.16)

Ŝ =
1

J
Ŝ (3.17)

with J being the Jacobian of the coordinate transformation.

3.2 Numerical solution

For all the numerical simulations, the Transonic Unsteady Rotor Navier-Stokes

(TURNS) [26] flow solver was used as a reference code. This code has been

extensively used over the past 15 years to study a variety of fixed wing [89]

and rotary blade [26, 84, 92] problems. In this work, several modifications and

additions were made to the structure and capabilities of the baseline TURNS

solver and the new solver is called Over-TURNS2. The methodology of the base-

line TURNS solver will be briefly explained in the following sub-section and the

enhancements in Over-TURNS will be detailed afterward.

3.2.1 Baseline TURNS flow solver

The baseline TURNS code solves the compressible RANS equations on 2 or 3

dimensional single block structured grids. A finite volume methodology [116] is

generally employed in the flow solver. In this framework, the governing equations

2Overset TURNS
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Figure 3.1: Schematic showing computational cell

are integrated over each computational cell. The resulting integral form of the

equations are globally conservative. Whenever strong gradients and particularly,

discontinuities are present in the flow the conservative integral form is preferred

because such features can be mathematically defined in the differential form

[117].

After integration in each computational cell, the governing equations 3.1 are

given by:

∂Q̄

∂t
= − ∂

∂x

[

(F̄i − F̄v)V
]

− ∂

∂y

[

(Ḡi − Ḡv)V
]

− ∂

∂z

[

(H̄i − H̄v)V
]

+ S̄V,

(3.18)

where, the over-bar denotes the integral average of the quantity in the cell and

V is the volume of the cell. Assuming Aξ∆η∆ζ, Aη∆ξ∆ζ and Aζ∆ξ∆η to be

the area vectors in the coordinate directions at the cell interfaces, the equation
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can be written in the form of 3.12, but with

Q̂ = Q̄V (3.19)

F̂ = [Fi − Fv,Gi − Gv,Hi − Hv] .Aξ (3.20)

Ĝ = [Fi − Fv,Gi − Gv,Hi − Hv] .Aη (3.21)

Ĥ = [Fi − Fv,Gi − Gv,Hi − Hv] .Aζ (3.22)

Ŝ = S̄V (3.23)

The semi-discrete conservative approximation can be written as:

dQ̂

dt
= −

F̂j+ 1
2
(t) − F̂j− 1

2
(t)

∆ξ
−

Ĝk+ 1
2
(t) − Ĝk− 1

2
(t)

∆η
−

Ĥl+ 1
2
(t) − Ĥl− 1

2
(t)

∆ζ
+ Ŝ(t)

(3.24)

where, (j, k, l) are the indices corresponding to the (ξ, η, ζ) directions in the

transformed coordinate system and (j ± 1
2
, k± 1

2
, l± 1

2
) define the cell-interfaces

of the control volumes as shown in fig. 3.1 (2D cell shown for simplicity). Note

that eqn. 3.24 is space-time decoupled space-discrete version of eqn. 3.18 and

can be solved as a set of ordinary differential equations in time. The spatial

discretization (consisting of the inviscid and viscous fluxes) therefore, reduces

to evaluating the interfacial fluxes F̂j+ 1
2
, Ĝk+ 1

2
, Ĥl+ 1

2
for every cell (j, k, l) in the

domain. It has to be mentioned that the above scheme is not truly multidi-

mensional. Truly multidimensional schemes (for instance, the ADER approach

of Toro et. al. [118]) would involve mixed spatial flux derivatives rather than

the simple differencing mentioned above, but their application has thus far been

restricted to model problems.

The inviscid part of the interfacial flux is computed using upwind schemes

[119]. Upwind schemes have the advantage that the wave propagation property

of the inviscid equations is accounted for (albeit approximately) in the flux cal-
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Figure 3.2: Schematic of one dimensional piecewise reconstruction (thick lines).

culation. To evaluate the interfacial fluxes, the Monotone Upstream-Centered

Scheme for Conservation Laws (MUSCL) [119] approach is used. This proce-

dure involves two steps: First, the solution (which is available as cell averages)

is reconstructed in each cell, thus defining values on either side of the cell in-

terface as shown in fig. 3.2. The ‘left’ value qL represents the interface value

from the cell ‘j’ and the ‘right’ value qR represents the interface value from cell

’j-1’. In general, the reconstruction can be defined to any order of accuracy.

The baseline TURNS code uses the third order accurate Koren’s reconstruction

[120]. The vectors qL and qR are composed of the so-called primitive variables.

For example, qL is given by:

qL =


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


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
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(3.25)

Then, treating the left and right states as defining a local Riemann-problem
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[117], the interfacial flux is obtained using any flux splitting scheme. The baseline

TURNS code uses the Roe flux difference splitting [121] in which, the interfacial

flux is given by:

F(qL,qR) =
F (qL) + F (qR)

2
− |Â(qL,qR)|q

R − qL

2
(3.26)

For the viscous fluxes, only the Thin Layer terms are considered. In this

approach, derivatives that have a strong dependence on the surface normal di-

rection are retained and all other terms are neglected. The remaining derivatives

are computed using second order differencing. The algebraic turbulence model

of Baldwin and Lomax [122] is used to represent the turbulent eddy viscosity.

The time integration of eqn. 3.24 is performed using either the first order

implicit Euler method [123] or the second order implicit Backwards Difference

method [123]. Since these are implicit methods, the Lower-Upper Symmetric

Gauss Siedel (LUSGS) [124] scheme is used for inversion. The LUSGS inversion

is used along with Newton sub-iterations [125] in order to remove factorization

errors and to recover time accuracy.

The area vectors and cell volumes, or equivalently, the spatial metrics and

the jacobians are computed using the finite volume formulation developed by

Vinokur et. al. [116]. The following sections detail the modifications and en-

hancements made to the baseline TURNS code.

3.3 Inviscid differencing

As mentioned in the previous chapter, numerical diffusion is the primary factor

that causes large inaccuracies in tip vortex calculations. Numerical error arises

in the discretization of both the inviscid and viscous fluxes in eqn. 3.24, but the
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errors due to the inviscid discretization can be expected to be more significant

for applications considered in this dissertation because the Reynolds numbers

are very high (O(106)). Hence the inviscid contribution to the total flux can be

expected to be orders of magnitude larger than the viscous contribution.

In this work, a high order MUSCL [119] inviscid differencing is implemented.

The spatial accuracy of MUSCL-type schemes is completely determined by the

accuracy of representation of the interface values. This becomes very convenient

in the finite volume framework because the interfacial fluxes naturally occur in

the semi-discrete form (eqn. 3.24). In order to find the interfacial fluxes, the flow

variables are piecewise reconstructed in each cell along coordinate lines in each

of the 3 transformed directions. A schematic of the piecewise reconstruction

in the ξ direction is shown in fig. 3.2. The cell averaged values (represented

by an over-bar) are used to locally reconstruct the solution and thus, identify

the interfacial values. For higher (than second) order accurate schemes, the cell

center values are not the same as the cell-averaged values and this fact has to

be taken into consideration. Also, in regions of large gradients, simple high

order reconstructions may yield oscillatory solutions because of a manifestation

of the the Gibbs phenomenon [126]. To avoid this, high order slope-limited

[120] and Weighted Essentially Non-oscillatory (WENO) [127] are used. The

different inviscid differencing schemes used in this dissertation are outlined in

the following:

3.3.1 Third order differencing using Koren’s limiter

In this scheme, Koren’s differentiable limiter [120] is used to limit the high order

reconstruction, so that the resulting scheme is third order accurate in smooth
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regions and is progressively lower order accurate (down to first order at a solution

discontinuity) in high gradient regions. Given cell averaged values {q̄i+1, q̄i, q̄i−1},

the cell reconstruction is such that the interface value qL
i+1/2 is given by3:

qL
i+ 1

2
= q̄i + φi

[

1

3
(q̄i+1 − q̄i) +

1

6
(q̄i − q̄i−1)

]

(3.27)

where, φ is a differentiable limiter which is defined by:

φi =
3∆q̄i∇q̄i + ε

2(∆q̄i −∇q̄i)2 + 3∆q̄i∇q̄i + ε
(3.28)

where, ε is a small number used to prevent division by zero and ∆ and ∇ are

forward and backward difference operators defined by ∆q̄i = (q̄i+1 − q̄i) and

∇q̄i = (q̄i − q̄i−1).

3.3.2 High order WENO schemes

The slope-limiter approach in the afore-mentioned third order scheme causes the

reconstruction to drop to low order accuracy in high gradient regions. WENO

schemes, on the other hand, use a convex combination of stencils such that a

high order of accuracy is achieved in all flow regions. The convex combination

is chosen such that in high gradient regions, the smoothest stencil is assigned

the maximum weight, resulting in a (k+1)th order accurate reconstruction for a

(2k+1) point stencil. In a smooth region, (2k+1)th order accuracy is approached.

The interface values are given by:

qL
i+ 1

2
=

k
∑

r=0

wrv
L
r (3.29)

3qR
i− 1

2

= q̄i − φi

[

1

3
(q̄i+1 − q̄i) + 1

6
(q̄i − q̄i−1)

]
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where, wr are the weights and vL
r are the interpolations from the various stencils.

Further,

wr =
αr

∑k
s=0 αs

, with (3.30)

αr =
dr

(βr + ε)2
(3.31)

where, dr are optimal weight coefficients, βr are smoothness indicators and ε =

10−6. Hence, a (2k + 1) point scheme can be obtained by suitably defining vL
r ,

dr and βr.

3 point WENO scheme

vL
0 =

1

2
q̄i +

3

2
q̄i+1

vL
1 =

−1

2
q̄i−1 +

3

2
q̄i

d0 =
2

3
, d1 =

1

3

β0 = (q̄i+1 − q̄i)
2

β1 = (q̄i − q̄i−1)
2

5 point WENO scheme

vL
0 =

1

3
q̄i +

5

6
q̄i+1 −

1

6
q̄i+2

vL
1 =

−1

6
q̄i−1 +

5

6
q̄i −

1

3
q̄i+1

vL
2 =

1

3
q̄i−2 +

−7

6
q̄i−1 −

11

6
q̄i

d0 =
3

10
, d1 =

3

5
, d2 =

1

10

β0 =
13

12
(q̄i − 2q̄i+1 + q̄i+2)

2 − 1

4
(3q̄i − 4q̄i+1 + q̄i+2)

2

β1 =
13

12
(q̄i−1 − 2q̄i + q̄i+1)

2 − 1

4
(q̄i−1 + q̄i+1)

2

β2 =
13

12
(q̄i−2 − 2q̄i−1 + q̄i)

2 − 1

4
(q̄i−2 − 4q̄i−1 + 3q̄i+2)

2

65



7 point WENO scheme

vL
0 =

3

12
q̄i +

13

12
q̄i+1 −

5

12
q̄i+2 +

1

12
q̄i+3

vL
1 =

−1

12
q̄i−1 +

7

12
q̄i +

7

12
q̄i+1 −

1

12
q̄i+2

vL
2 =

1

12
q̄i−2 +

−5

12
q̄i−1 +

13

12
q̄i +

3

12
q̄i+1

vL
3 =

−3

12
q̄i−1 +

13

12
q̄i−2 −

23

12
q̄i−3 +

25

12
q̄i−4

d0 =
4

35
, d1 =

18

35
, d2 =

12

35
, d3 =

1

35

β0 = q̄i(2107q̄i − 9402q̄i+1 + 7042q̄i+2 − 1854q̄i+3)

+ q̄i+1(11003q̄i+1 − 17246q̄i+2 + 4642q̄i+3) + q̄i+2(7043q̄i+2 − 3882q̄i+3) + 547q̄2
i+3

β1 = q̄i−1(547q̄i−1 − 2522q̄i + 1922q̄i+1 − 494q̄i+2)

+ q̄i(3443q̄i − 5966q̄i+1 + 1602q̄i+2) + q̄i+1(2843q̄i+1 − 1642q̄i+2) + 267q̄2
i+2

β2 = q̄i−2(267q̄i−2 − 1642q̄i−1 + 1602q̄i − 494q̄i+1)

+ q̄i−1(2843q̄i−1 − 5966q̄i + 1922q̄i+1) + q̄i(3443q̄i − 2522q̄i+1) + 547q̄2
i+1

β3 = q̄i−3(547q̄i−3 − 3882q̄i−2 + 4642q̄i−1 − 1854q̄i)

+ q̄i−3(7043q̄i−2 − 17246q̄i−1 + 7042q̄i) + q̄i−1(11003q̄i−1 − 9402q̄i) + 2107q̄2
i

3.3.3 Theoretical analysis of accuracy of high order up-

wind schemes

The above mentioned schemes are non-linear because the coefficients in the nu-

merical scheme depend on the local solution. As a result of the non-linearity,

theoretical evaluation of the performance of these schemes is not possible unless

simplifications are made. In the case of smooth solutions (for instance, in the

core of the tip vortex), the above mentioned schemes can be expected to oper-
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ate near their optimal limits. In such a case, a linear analysis can be justified

since the coefficients reduce to constants. Under optimal conditions the Koren’s

limiter φ = 1 and for the WENO schemes, wr = dr and the resulting schemes

would be the same as the linear high order upwind schemes. Fourier analysis

[126] would then be a very useful technique to evaluate the accuracy.

In this method, the numerical discretization of the derivatives of the har-

monic function eikx is analyzed. The exact first derivative of this function is

ikeikx, whereas the discretized scheme would yield an expression that can be

cast in the form ik∗eikx. The quantity k∗, termed the modified wave-number

can then be used as a measure of the accuracy of the scheme with regard to

the dispersive and dissipation errors. For a uniform grid, given a numerical

scheme
(

du
dx

)

j
≈ 1

∆x

∑n
s=−m asuj+s, the modified wavenumber is easily seen to be

k∗∆x = −i
∑n

s=−m ase
iks∆x. Fig. 3.3 shows the dispersion characteristics of the

various schemes. The high order schemes exhibit much better spectral resolution

characteristics.

A more quantitative picture can be obtained by comparing the attainable

error (%Error = abs(real(k∗∆x)−k∆x)
k∆x

× 100) using a given number of points per

wavelength as seen from fig. 3.4. The ninth order (optimal) WENO scheme is

seen to give an error of < 0.01% using approximately 8 points per wavelength.

Fig. 3.5 and 3.6 show the dissipation errors involved with upwind schemes. Pure

central differencing on uniform meshes assures zero Fourier-analytic dissipation

errors, but it is well known that these schemes are unstable when applied to

hyperbolic problems unless a certain amount of artificial dissipation is added

[37].

The above analysis is routine and pertains to the performance of the linear
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Figure 3.7: Schematic of geometrically stretched mesh with stretching ratio r.

schemes on uniform meshes. However, in practice, it will not be feasible to

maintain constant spacing in all mesh regions. For instance, the ratio of the

mesh spacing at the free-stream boundary to that at the wall can easily reach

O(106). Hence it is crucial to evaluate the schemes on stretched meshes. The

above analysis is extended to geometrically stretched meshes with stretching

ratio r as shown in fig. 3.7. A similar (in scope), but global analysis of L2 norm

of error on non-uniform grids (with an assumption of total number of grid points

and analytic mapping functions) can be found in [129]. The advantage of using

geometrically stretched meshes is that the analysis can be made completely local.

Consider a discretization in the transformed space ξ:

(

du

dx

)

j

=
dξ

dx

du

dξ
(3.32)

=
uξ

xξ

(3.33)

=

∑n
s=−m asuj+s

∑q
s=−p bsxj+s

(3.34)

Now, assuming u = eikx,

(

du

dx

)

j

=

∑n
s=−m ase

ik(xj+s)

∑q
s=−p bsxj+s

(3.35)

ik∗eikxj = eikxj

∑n
s=−m ase

ik(xj+s−xj)

∑q
s=−p bsxj+s

(3.36)
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Figure 3.8: Dispersion relation with a mesh stretching ratio r = 1.1

Let δx = xξ be the local cell length. For instance, the cell length can be computed

using the same stencil as was used to determine uξ. The modified wave number

is given by:

k∗δx = −iδx
[

n
∑

s=−m

ase
ik(xj+s−xj)

]

(3.37)

= −i
n
∑

s=−m

ase
ikδx

xj+s−xj
δx (3.38)

Unless mentioned otherwise, δx is calculated using the same stencil as uξ - i.e.,

xξ = δx =
n
∑

s=−m

as(xj+s − xj) (3.39)

The spatial difference terms are computed by:

xj+s − xj+s−1

δx
=
rs−1∆x

δx
(3.40)

As seen from figs. 3.8 and 3.9, the accuracy is adversely affected when mesh

stretching is introduced. A significant fact to be noted is that the formal accuracy
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Figure 3.9: % Error in Dispersion relation with a mesh stretching ratio r = 1.1

(as ∆x → 0), for all the schemes on stretched meshes is just first order as

evidenced by the slopes in fig. 3.9. However, in practical cases, one would

expect to have an O(10) points per wave length and it is evidenced that the

higher order schemes are more accurate (than the first order scheme) in this

region. Figs. 3.10 and 3.11 show the degradation in accuracy of the fifth order

scheme with stretching in the forward (r > 1) and backward (r < 1) directions.

Though the global trends are similar, backward stretching of the grid seems to

be more detrimental, especially in the vicinity of the O(10) points per wave

length region. It has to be mentioned that in solving say, the NS equations,

both stretching and contraction have to be considered since the stencils used to

compute values to the left and right of the cell interface (qL and qR in eqn. 3.26)

are usually mirror images of each other.

Figure 3.12 shows the performance of the fifth order upwind scheme when
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different methods are used to determine the metrics xξ. It is seen that if different

stencils are used to discretize uξ and xξ, then the overall accuracy is formally ze-

roth order and the error saturates regardless of the number of points used. Even

the use of a xξ stencil that is wider than the uξ stencil is ultimately inconsistent

and formally zeroth order. This also suggests that there is no benefit in defining

xξ more accurately than uξ. It was also observed (not shown here) that even the

use of analytically exact xξ will not be advantageous and the resulting scheme

would still be formally zeroth order accurate. However, the use of metric terms

higher than third order is seen to improve the accuracy in the practically feasible

range (< 102 points per wavelength).

As seen from the comparison between figs. 3.5 and 3.13, the numerical dis-

sipation error is aggravated on non-uniform grids. The high order schemes even

exhibit slight theoretical instability (imaginary part of kδx > 0) for large stretch-
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Figure 3.13: Diffusion error for different linear upwind upwind schemes for a

stretching ratio r = 1.1

ing ratios. Hence, even upwind schemes do not guarantee enough damping on

stretched meshes. Figure 3.14 confirms the formal first order accuracy of the

diffusion error.

Sometimes, central difference schemes are preferred over upwind schemes

since the symmetry of the stencil assures zero dissipation in a Fourier analysis.

It is easy to see that this property does not hold if non-uniform meshes are used.

Further, an empirical amount of artificial dissipation is required to stabilize

central difference schemes.

As evidenced especially from fig. 3.11, numerical accuracy is severely de-

graded for large stretching ratios, and hence the mesh spacings in this thesis

have been carefully monitored in the regions of interest. In the wall region, the

stretching is kept to r < 1.1 and in the tip vortex roll-up region, a constant mesh

spacing r ≈ 1 is striven for at least in the cross-stream plane.
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Figure 3.14: Diffusion error for different linear upwind upwind schemes for a

stretching ratio r = 1.1

3.3.4 Performance of high order upwind schemes

In this section, the performance of upwind schemes will be evaluated based on

numerical solution of vortex convection. The model problem involves isentropic

convection of a two dimensional vortex in a uniform inviscid flow-field [128]. The

initial conditions are set up such that:

• The spatial entropy gradient is zero,

• They correspond to an exact solution to the 2D Euler equations,

The exact solution to the above problem would then be a pure advection of

the vortex at the free-stream velocity without any decay. Hence, the effects of

numerical diffusion and dispersion can be evaluated.

The two dimensional Euler equations are a subset of equation 3.1 and are
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given by:

∂U

∂t
+
∂F

∂x
+
∂G

∂x
= 0

where,
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,

with e = p/(γ − 1) + ρ(u2 + v2)/2.

For all the cases, a grid with (0 <= x <= 10,−5 <= y <= 5) is used.

Periodic conditions are assumed on all four grid boundaries. This is done in

order to remove any effects of boundary inaccuracies and also to keep the domain

small. As mentioned earlier, perturbations are added to the free-stream such that

there is no entropy gradient in the flow-field.

Free-stream conditions are (ρ = 1, u = 0.5, v = 0, p = 1/γ). The perturba-

tions are given by:

(δu, δv) =
β

2π
e

1−r2

2 (−(y − yo), (x− xo)) (3.41)

ρ =

[

1 − (γ − 1)β2

8γπ
e1−r2

]
1

γ−1

(3.42)

p =
ργ

γ
(3.43)

where, β = 5 is the vortex strength and r is the distance from the vortex origin

(5,0). The domain and initial pressure contours are shown in fig. 3.15. The

vertical component of velocity and the pressure along the y = 5 line is shown in

fig. 3.16. Primitive variable (eqn. 3.25) based spatial reconstruction is applied.

An explicit third order Runge-Kutta scheme [130] is used for time advancement.
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Figure 3.15: Computational domain and initial pressure contours for isentropic

vortex convection

The objective of this exercise is to study the spatial discretization properties and

hence the time-steps are chosen such that the error due to time integration is

negligible. The CFL numbers in the x and y directions are respectively given

by: νx = ∆t
∆x
max(|u| + a) and νy = ∆t

∆y
max(|v| + a).

Initial tests were performed on a uniformly spaced 41 × 41 mesh. The mesh

spacing is thus 0.25 units, corresponding to 8 points per core diameter. A non-

dimensional time-step ∆t = 0.05 was used, which resulted in νx = 0.4 and

νy = 0.3. A further reduction in time-step did not affect the solution, thus

ensuring time-step independence. Figure 3.17 shows the evolution of the peak-

to-peak velocity (vmax − vmin) computed using the various schemes. The third

order schemes are found to be extremely dissipative while the seventh and ninth
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Figure 3.16: Initial conditions along the y = 5 line

order schemes are seen to perform well even for such a coarse discretization.

The dissipative nature of the fifth order WENO scheme, in relation to the un-

limited fifth order upwind scheme suggests that the smoothness indicators βr

in eqn. 3.32 do not perform well. Figure 3.18 compares the vertical velocity

during different stages of evolution with the exact solution for the fifth order

WENO scheme. A gradual decay is evident. Figure 3.19 shows the low extent

of numerical diffusion for the seventh order WENO scheme. The % error in the

computed pressure at the centre of the vortex is shown in fig. 3.20. The higher

order schemes are able to compute the pressure to much less than 1% accuracy.

On the use of a uniformly spaced 81×81 mesh (16 points per core diameter),

the fifth order WENO scheme performs much better as seen in fig. 3.21. For

these computations, a non-dimensional time step ∆t = 0.025 was used. The

vortex is convected with negligible numerical diffusion. The corresponding error

in the computed pressure in the vortex center is found to be 2% after convecting
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Figure 3.17: Evolution of peak-to-peak velocity as a function of traversed core-

radii for 41 × 41 uniformly spaced mesh.

400 core-radii. The seventh and ninth order schemes show errors < 0.1% after

400 core-radii of travel (fig. 3.22). The use of a uniformly spaced 61 × 61 mesh

(12 points per core diameter) is also seen (fig. 3.23) to yield solutions within

plotting accuracy.

From the above calculations, it appears that ≈ 10 points per core diameter

are probably required to accurately reconstruct and resolve a tip vortex-like

flow field using high order schemes. On the other hand, the third order scheme

is found to be extremely lacking when used with such coarse discretizations.

The above findings have been used as guidelines for the actual 3D tip vortex

simulations.
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Figure 3.18: Vertical velocity profile along the y = 5 line using the fifth order

WENO scheme on the 41 × 41 uniformly spaced mesh.

Figure 3.19: Vertical velocity profile along the y = 5 line using the Seventh order

WENO scheme on the 41 × 41 mesh after 160 core radii of travel
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Figure 3.20: % error in computed pressure at the core center for the 41 × 41

uniformly spaced mesh.

Figure 3.21: Vertical velocity profile along the y = 5 line using the fifth order

WENO scheme on the 81 × 81 uniformly spaced mesh.
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Figure 3.22: % error in computed pressure at the core center for the 81 × 81

uniformly spaced mesh.

Figure 3.23: Vertical velocity profile along the y = 5 line using the fifth order

WENO scheme on the 61 × 61 uniformly spaced mesh.
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3.4 Viscous terms

In the baseline TURNS code, the Thin-layer approximation is used while dis-

cretizing the viscous terms (eqns. 3.7-3.9). In this approximation, only the terms

that have a very strong dependence on the derivative in the wall-normal direc-

tion are considered. The basis for this argument is the fact that for attached

flows, the boundary layer is very thin and the streamwise and spanwise gradients

are much smaller than the wall-normal gradients. This approximation is valid

in the near-wall region for high Reynolds number attached flows. Further, the

grid lines have to be orthogonal to each other. However, for tip vortex flows,

a) In the near-wall region, the flow is not attached: Secondary and tertiary

flow separation can be expected near the tip region,

b) In the tip vortex roll-up region, strong gradients exist in all three direc-

tions.

Under these conditions, the Thin-layer assumption fails and one has to con-

sider the full viscous terms. A complete listing of the viscous terms after coor-

dinate transformation can be found in [131]. Numerical discretization of these

terms involves expressions of the form:

∂

∂ξ

(

α
∂β

∂η

)

(3.44)

These terms are computed using second order accurate central differencing. For

instance, the above expression would be discretized as:

1

∆ξ

([

αj+ 1
2

βk+1 − βk

∆η

]

−
[

αj− 1
2

βk − βk−1

∆η

])

(3.45)

where,

αj± 1
2

=
αj + αj±1

2
(3.46)

84



3.4.1 Analysis of accuracy

In this section, akin to inviscid differencing on stretched meshes, an analysis of

viscous differencing on stretched meshes will be presented. Consider a discretiza-

tion of the second derivative in the transformed space ξ:

(

d2u

dx2

)

j

=
[

ξx (ξxuξ)ξ

]

j
(3.47)

=

[

1

xξ

(

uξ

xξ

)

ξ

]

j

(3.48)

=
1

(xξ)j

n−1
∑

s=−n

as

(

uξ

xξ

)

j+ 1
2
+s

(3.49)

=
1

(xξ)j

n−1
∑

s=−n

as

(

∑n−1
t=−n atuj+1+s+t

∑n−1
t=−n atxj+1+s+t

)

(3.50)

For instance, a second order accurate4scheme is given by {a−1, a0} = {1,−1}. A

fourth order scheme results when {a−2, a−1, a0, a1} = { 1
24
, −27

24
, 27

24
, −1

24
}.

Now, assuming u = eikx,

−(k∗)2eikxj =
eikxj

(xξ)j

n−1
∑

s=−n

as

(

∑n−1
t=−n ate

ik(xj+1+s+t−xj)

∑n−1
t=−n atxj+1+s+t

)

(3.51)

Let δx = xξ be the local cell length as in the inviscid differencing (sec 2.3.3).

Then the modified wave number is given by:

k∗ =

[

− 1

δx

n−1
∑

s=−n

as

(

∑n−1
t=−n ate

ik(xj+1+s+t−xj)

∑n−1
t=−n atxj+1+s+t

)]
1
2

(3.52)

Therefore,

k∗δx =



−
n−1
∑

s=−n

as





∑n−1
t=−n ate

ikδx
(xj+1+s+t−xj)

δx

∑n−1
t=−n at

xj+1+s+t

δx









1
2

(3.53)

4Second order accuracy is achieved on a uniform mesh.
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Notice that the same discretization stencil and coefficients have been used to

difference uξ and xξ. This is not necessary.

Figure 3.24 and 3.25 show the error in the real part of the modified wave

number, which corresponds to the diffusion error. It is evident that the inac-

curacies of using a stretched mesh are not as prominent for the second order

scheme. A Taylor series expansion reveals the leading error terms for the second

order scheme to be: to be:

∆x

3

d3u

dx3

[

r − 1

r

]

+
(∆x)2

12

d4u

dx4

[

r3 + 1

r3 + r2

]

(3.54)

and accordingly the dispersion (third order derivative) and diffusion (fourth order

derivative) terms are scaled by the respective coefficients. These coefficients are

shown in fig. 3.26 and are seen to be smooth and well-behaved near r = 1. The

fourth order scheme is more accurate in the feasible discretization range (< 100

points per wavelength).

The dispersion error is shown in fig. 3.27 for a stretching ratio r = 1.2.

3.5 Calculation of spatial metrics

As seen from the analysis of the inviscid and viscous discretizations, accurate

calculation of the spatial metric terms is critical to achieve overall high order ac-

curacy on non-uniform meshes. In the present work, a finite volume formulation

is used and hence the metric and jacobian terms will be replaced by areas and

volumes. Given a structured distribution of mesh points in three dimensional

space, high order accurate schemes are used to determine the edges of the cell

volume. Figure 3.28 shows a schematic of a 2D volume (for simplicity of presen-

tation). The filled circles represent the original grid point distribution and the
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Figure 3.24: Diffusion properties of central difference schemes for discretization

of second derivative.
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87



0.5 1 1.5 2
−1

−0.5

0

0.5

1

1.5

2

2.5

3

r

(r3+1)/(r3+r2)
(r−1)/r

Figure 3.26: Coefficients of the leading error terms for second order differencing.

10
0

10
1

10
2

10
3

10
4

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Points per wavelength

ab
s(

im
ag

(k
*  ∆

 x
))

2nd order (r=1.2)
4th  order (r=1.2)

Figure 3.27: Dispersion Error for central difference schemes.
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Figure 3.28: Schematic of 2D mesh point distribution and control point defini-

tion.

89



rr x∆rr

j j+1j−3 j−2 j−1 j+2

x∆x
∆x

r
∆x
r

j−1/2 j+1/2

d1 d2

Figure 3.29: Non-uniform mesh and exact δx.

empty circles and squares represent the boundaries of the control volume. The

cell area (shaded) is computed as a sum of the four quadrilaterals defined by

the mesh and control points. In the three dimensional case, the corresponding

eight hexahedra are used to compute the volume. The fluxes F̂j± 1
2

and Ĝj± 1
2

are evaluated at the points represented by empty squares.

In a finite volume sense, accurate metric calculation boils down to using high

order accurate numerical schemes to identify the location of the control points.

The accuracy properties of such schemes will now be demonstrated for a case

shown in fig. 3.29. For this case, the exact location of the edges of the control

volume boundaries are shown and the corresponding cell length is given by

xj+ 1
2
− xj− 1

2
= δx = d1 + d2 =

∆x

1 +
√
r

+

√
r∆x

1 +
√
r

= ∆x (3.55)

Without any loss of generality, ∆x = 1 will be assumed. Second, fourth and

sixth order schemes can be easily derived using Taylor series expansions.

In certain portions of a mesh, for instance, near the leading and trailing

edges of a body conforming blade mesh, the mesh spacings could rapidly change

and the associated slopes could be discontinuous. Using high order schemes to
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Figure 3.30: Accuracy of different numerical schemes to compute half points.

identify the interfaces could then become inaccurate (akin to the oscillations

produced near solution discontinuities in uniform meshes). Hence, the slope-

limited quartic scheme of Huynh [132] has been used.

Figures 3.30 and 3.31 compare the above-mentioned numerical schemes in

identifying the half points xj± 1
2
. It is seen that the second order scheme is

extremely inaccurate and can hence introduce large inaccuracies in the overall

solution as well. The Quartic and sixth order methods yield an error < 0.01%

for moderately stretched meshes. For all the computations in this work, the

Quartic scheme is used to evaluate the half point locations. The slope limiter is

turned off in all the meshes except for the blade mesh.

3.6 Rotating reference frame

For computation of unsteady flows involving moving bodies, the governing equa-

tions are usually solved in the inertial frame of reference. This requires compu-

tation of the metric terms and connectivity information of the overset grids (if
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Figure 3.31: % Error in computing cell lengths using different numerical schemes.

any) at every time-step. This additional cost can be avoided for hovering rotors

if the equations are solved in the rotating reference frame [26]. To account for

the non-inertial reference frame, the fluxes in equation 3.1 become:
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where, U = {u, v, w} is the vector of physical velocities (in the inertial frame),

and Ug = {ug, vg, wg} = Ω× r is the rotational velocity vector. Ω is the angular

velocity vector and r is the relative position vector from the axis of rotation. In

addition, the relative acceleration terms have to be included as a source term

vector S in eqn. 3.1:
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3.7 Turbulence modeling

The Reynolds Averaged Navier-Stokes (RANS) equations can be derived from

the Navier-Stokes (NS) equations by decomposing the flow quantities into a mean

component and a Reynolds averaged component [18]. The motivation behind this

averaging is two-fold:

• Usually, in engineering and physical processes, one is interested in the mean

(or phase averaged) quantities,

• In the numerical solution, it is not required to resolve all the turbulent

scales and hence the problem becomes tractable.

However, the averaging introduces new terms that have to be modeled rather

than resolved. For instance, the averaged (incompressible) momentum equations
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become:

ρ

[

∂ui

∂t
+ uj

∂ui

∂xj

]

= − ∂p

∂xi

+
∂

∂xj

[

τij − ρ < u′iu
′

j >
]

(3.60)

where ′ denotes fluctuating quantities and < . > represents Reynolds averaging.

The turbulence modeling problem is to close the above equation by approximat-

ing the so-called Reynolds stress term ρ < u′

iu
′

j >. There has been extensive

research over the past 4 decades on turbulence modeling, but there does not seem

to be one superior model that consistently gives good predictions for different

flow configurations [39]. In their most general form, turbulence models can be

represented in the form [43], [46]

< u′iu
′

j >= a
2

3
δijk − pSij − q(SikWkj −WikSkj) − r(S2

ij −
1

3
|S|2δij) (3.61)

where, a is a constant, and p, q, and r are functions of mean flow quantities, Sij =

1
2
(∂jui +∂iuj) is the mean rate-of-strain tensor and Wij = 1

2
(∂jui−∂iuj)+ εjikΩk

is the vorticity tensor (including the angular velocity of frame rotation Ω).

The most tractable and frequently used models for complex flows invoke the

linear eddy viscosity hypothesis, in which, only the first order terms are retained

(q=0, r=0). In this case, the function p is determined either algebraically (such

as in Baldwin-Lomax models [122]), or using one equation (e.g. Spalart-Allmaras

[42], Baldwin-Barth [133]) or two equation (e.g. k − ε, k − ω [41]) partial dif-

ferential equation (PDE) based models. The advantage of these models is that

these are simple, relatively inexpensive and most importantly, numerically sta-

ble. However, since the higher order terms in eqn. 3.61 are dropped, these

models cannot inherently model effects like streamline curvature, flow rotation

etc5[44]. The more complicated Second Moment Closure (SMC) models retain

4All the un-primed quantities are averages.
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the functions q and r, and are hence physically more appealing in modeling

problems that involve the afore-mentioned effects along with anisotropic mech-

anisms. Although the SMC models have been shown to be superior in some

specific situations [44, 134], they do not show sustained improvement over the

linear eddy viscosity models. In addition, the complexity of these models and

associated computational stiffness has limited the range of application.

The baseline TURNS code uses the algebraic Baldwin-Lomax [122] turbu-

lence model. This model relates the turbulent viscosity to the instantaneous

flow-field and is thus quasi-steady. The applicability of this model, is however

restricted to steady and attached flows (as seen, for instance in [135]). Of the un-

steady PDE based models, the one-equation Spalart-Allmaras (SA) turbulence

model was chosen for implementation in this thesis. Though relatively recent,

this model has gained enormous popularity in the Aerospace flow problems as it

was developed with such applications in mind. Further, a strong emphasis was

applied on its numerical implementation and behavior during the development

process. This turbulence model has been validated for a variety of applications

involving adverse pressure gradients and flow separation [39, 42, 136].

3.7.1 Spalart Allmaras (SA) turbulence model

In the SA model, the Reynolds stresses are related to the mean strain by the

isotropic relation, < u′iu
′

j >= −2νtSij, where νt is the turbulent eddy viscosity,

which is obtained by solving a PDE for a related variable ν̄. Note that, in

relation to eqn. 3.61, a = q = r = 0.

5Since the neglected terms represent exact production terms due to mean flow gradients

and system rotation.
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The equation for the working variable ν̄ in a fully turbulent flow6is given by:

∂ν̄

∂t
+ V.(∇ν̄) =

1

σ

[

∇. ((ν̄ + ν)∇ν̄) + cb2(∇ν̄)2
]

+ cb1S̄ν̄ − cw1fw

[ ν̄

d

]2

(3.62)

The eddy viscosity νt is related to ν̄ by the relation,

νt = ν̄fv1, (3.63)

where fv1 is a function of ν̄ and the molecular viscosity ν and is defined as:

fv1 =
χ3

χ3 + c3v1

(3.64)

with χ = ν̄
ν

and cv1 = 7.1. The function fv1 is essentially an empirical damping

function (equivalent to the well-known Van-Driest damping [18]) that attenuates

the eddy viscosity in the viscous sub-layer. In other words, ν̄ ≈ νt everywhere,

except in the sub-layer, where an attempt is made at ensuring a linear profile

with the correct log-law intercept.

The left hand side of the equation 3.62 accounts for the convection of the

working variable at the mean flow velocity V. The first term on the right hand

side represents the diffusion, followed by the production and destruction terms.

In the production term,

S̄ = S +
ν̄

κ2d2
fv2 with (3.65)

S = |ω| = ∇× V (3.66)

fv2 = 1 − χ

1 + χfv1

(3.67)

In the destruction term,

fw = g

[

1 + c6w3

g6 + c6w3

]
1
6

(3.68)

6In the original model, transition is accounted for by specifying the trip line. In this

dissertation, all computations assume fully turbulent flow.
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g = r + cw2(r
6 − r) (3.69)

r = min(
ν̄

S̄κ2d2
, 10.0) (3.70)

where, d is the distance to the nearest wall. The various constants in the turbu-

lence model are:

σ =
2

3
(3.71)

cb1 = 0.1355 (3.72)

cb2 = 0.622 (3.73)

cw1 =
cb1
κ2

+
1 + cb2
σ

(3.74)

cw2 = 0.3 (3.75)

cw3 = 2.0 (3.76)

κ = 0.41 (3.77)

(3.78)

3.7.2 Initial and Boundary Conditions

Unless specified by the experiment, the initial and free-stream values of the

ν̄ is set to the ν̄ = 0.1ν as suggested in [42]. At the far-field boundaries, a

characteristic treatment is used, i.e., depending on the direction of the local

velocity vector, ν̄ is either extrapolated from the interior or set to the free-

stream value. At a solid surface, ν̄ = 0 is set, thus satisfying the Reynolds-stress

boundary condition. Across wake cuts, a high order averaging similar to eqn.

3.93 is used.
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3.7.3 Numerical solution

The turbulence model equations are solved in an uncoupled manner with the

NS equations. In this approach, the NS equations are advanced incrementally in

time, with the eddy viscosity held fixed within each time-step. Correspondingly,

after every time-step of the NS solver, the mean flow-field variables are held fixed

and the turbulence field is advanced one-time step. This makes the implemen-

tation of the turbulence model easier than the coupled approach. The implicit

second order backward difference scheme is used with Newton sub-iterations for

time integration.

3.7.4 Spatial discretization

The convection terms are discretized using a second order upwind scheme. For

instance,

Ui

(

∂ν̄

∂ξ

)

i

=
(Ui + |Ui|)

2

[1.5ν̄i − 0.5ν̄i−1]

∆ξ
+

(Ui − |Ui|)
2

[1.5ν̄i+1 − 0.5ν̄i]

∆ξ
(3.79)

The diffusion terms are cast in a modified form (equation 26 in [42]) and dis-

cretized using second order central differences.

3.7.5 Implicit inversion

The semidiscrete form of eqn. 3.62 in transformed coordinates can be represented

as:

dν̄

dt
= R (3.80)
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where, R represents the convection, diffusion and source terms. A linearized

Euler implicit scheme would then yield the update at time n+ 1,

[I + ∆tδξA
n + ∆tδηB

n + ∆tδζC
n + ∆tSn]∆ν̄n = ∆tRn (3.81)

ν̄n+1 = ν̄n + ∆ν̄n (3.82)

where, ∆ν̄n = ν̄n+1 − ν̄n, S is the source jacobian and A, B, C are the jacobians

of the combined inviscid and viscous fluxes in the ξ, η, ζ directions respectively.

δ is the associated upwind difference.

An Alternating Direction Implicit (ADI) factorization would yield a system

given by:

[I + ∆tδξA
n] [I + ∆tδηB

n + ∆tSn] [I + ∆tδζC
n] ∆ν̄n = ∆tRn (3.83)

Even though ADI factorization reduces the N 3 × N3 system to a 3(N × N)

system, convergence was seen to be very slow and the allowable time-step size

was found to be very restrictive. The factorization error is seen to be O(∆t)2

and this has a detrimental influence on the convergence characteristics. Hence, a

different factorization called the Diagonally Dominant ADI (DDADI) [137] was

implemented. In this case, the diagonal terms in the factored forms are made

more dominant by adding the diagonal contributions in all the directions. In

each direction, the difference of the jacobians are decomposed into diagonal and

off-diagonal parts. For instance, δξA
n = Ld

ξ + Lo
ξ. Then, defining an operator

D = I + ∆t(Ld
ξ + Ld

η + Ld
ζ + Sn) (3.84)

the DDADI factored form is given by,

[

D + ∆tLo
ζ

]

D−1
[

D + ∆tLo
η

]

D−1
[

D + ∆tLo
ξ

]

∆ν̄n = ∆tRn (3.85)
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Figure 3.32: Convergence of the turbulence variable ν̄ using different Factoriza-

tion schemes.

The factorization error in this case is O(∆t) [137] and hence improved con-

vergence rates can be expected. In addition, the allowable time step sizes were

found to be much higher than the ADI for both steady and unsteady flows. Fig-

ure 3.32 shows the convergence of the working variable ν̄ for an Onera M6 [138]

wing grid of size 269 × 35 × 67. A Local time-stepping with ∆t = 1.0 (non-

dimensionalized by mean chord and free-stream speed of sound) is used for both

computations. The flow conditions correspond to α = 4.08o, M∞ = 0.8359 and

Re = 18.3× 106. The DDADI method is clearly seen to reduce the computation

cost and converges to a slightly lower residual error. The computational cost

can be further reduced using grid sequencing, but the objective here is just to

compare the two factorization schemes.
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Figure 3.33: Flow visualization by experiment [139]. Wake of a single bladed

hovering rotor at ψ = 140o

3.7.6 Rotational correction

Many experimental studies on fixed wing tip vortices [9, 10] have reported largely

reduced turbulence levels in the vortical core even in the near-field. This has

been attributed to the near-solid body rotation that exists in the inner core.

Analytical studies, based on linear stability theory of isolated vortices ([14] and

other references therein), have also supported this argument by showing the

damping of imposed small disturbances in the core.

Vizualization in a hovering rotor flow-field also hints at low turbulence levels

in the core of the tip vortices. One such approach [139] utilizes the dynamic

movement of seed particles that are introduced into the rotor flowfield. Figure

3.33 shows relatively smooth circular bands of seed near the core region, which

can be attributed to reduced levels of turbulent mixing.

While using turbulence models, in order to accurately represent the physics,

one has to ensure that the model does indeed replicate this behavior. Standard

one-equation turbulence models like the Spalart-Allmaras and Baldwin-Barth
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[133] model the production term based on the magnitude of the strain-rate tensor

or on the magnitude of the vorticity vector. This is empirical and is known

to perform well for wall bounded flows. However, the core region of the tip

vortex is highly vortical and axisymmetrically strained, but as mentioned earlier

suppresses turbulence. This issue was also addressed in [47]. The S-A model

uses a production term, which in the wake region, reduces to:

P = cb1Sνt, (3.86)

Computations were performed with S = |ω| and S = |ω| + 2min(0, |D| − |ω|),

where |ω| and |D| are the magnitudes of the vorticity and strain tensors respec-

tively. The former was suggested in the original paper [42] and the latter version

was used in [47], and attempts to suppress the turbulent production in regions

(like tip vortices) where the vorticity is much larger than the strain-rate. The

modification appears to be passive in thin shear layers. Figure 3.34 shows the

extremely large turbulence levels predicted in the vortical core by the vorticity-

based S-A model for the single bladed hovering rotor test case of Martin et al.

[11]. Figure 3.35 reveals a much reduced core turbulence level. It is also evident

from the figures that the predicted turbulence level in the wake region is similar

for both models.

3.8 Overset mesh capability

In order to represent complex geometries and flow features, a single structured

mesh will not be sufficient enough. In such cases, either of the following common

approaches are used:

• Unstructured meshes.
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Figure 3.34: Turbulent eddy viscosity (normalized by laminar viscosity) pre-

dicted by the S-A model with production based on vorticity (ψ = 90o)

Figure 3.35: Turbulent eddy viscosity (normalized by laminar viscosity) pre-

dicted by the S-A model with production based on strain and vorticity (ψ = 90o)
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• Multiblock structured meshes.

• Overlapping chimera structured meshes.

Unstructured meshes are generally considered to be easily adaptable to com-

plex configurations, but they require more memory and are less efficient com-

pared to structured meshes (for a given configuration). In addition, it is more

difficult to design efficient high order algorithms in an unstructured mesh frame-

work. Overset structured grids have the advantage in that different grids can be

generated independent of each other and can be placed in the region of interest

without any distortion. Unlike block structured grids, the grid interfaces need

not be matched and this greatly simplifies the grid generation process. Such

a flexibility is invaluable in problems like rotorcraft applications, in which sur-

faces could be in relative motion to each other. The penalty to pay however, is

the additional work is required in identifying points of overlap between meshes

and interpolation of the solution in this overlap region. Additionally, there is a

possibility of a loss of the conservation property of the numerical scheme. How-

ever, these errors can be minimized by proper selection of mesh structure and

placement.

A sample application is shown in fig. 3.36. An overset grid is used to ac-

curately resolve the downstream evolution of the tip vortex. In order to reduce

numerical diffusion errors, very fine smoothly spaced cells are required and this

is easily achieved as shown.

Once the overlapping meshes are generated, the chimera methodology in-

volves four distinct steps namely,

• Hole cutting,

• Identification of hole fringe points,
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Figure 3.36: Sample application of overset grid to resolve the evolving tip vortex

from a fixed wing.

• Identification of chimera and overlap fringe points,

• Finding donor cells and interpolation factors.

For all the above steps, the procedure of searching and finding the cell inside

which a given point lies, is crucial. This “stencil walking” procedure is explained

in [141]. For purposes of description, a simple geometry as shown in fig. 3.37

will be used. The inner circular mesh will be termed the overset mesh and the

outer mesh is called the background mesh.

3.8.1 Hole cutting

Hole cutting is required when portions of a grid overlap with a solid body region

of other grids. Hole-cut portions of a grid are blanked out and the flow equations

are not solved at these points. Fig. 3.37 shows the hole points of the background

grid in the vicinity of the solid surface. Hole cutting has been an active area of
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Figure 3.37: Schematic of hole cutting. Solid circles: Hole points (blanked).

Patterned circles: Hole fringe points (interpolated for).

research over the past decade and many algorithms [142, 143] have been devised.

In this work, for fixed wing cases, hole cutting is not required since overset

meshes are used only to resolve the tip vortex. For rotor problems, the blade

mesh is itself overset in a background mesh and hence the background mesh

needs to be hole cut. Instead of using a generalized method, the simplified

geometry of the background mesh is utilized. The background mesh consists

of identical planes that are rotated in the azimuthal direction. A sample plane

is shown in fig. 3.38. The blanked out hole points in the background grid are

evident. (A spanwise plane of the overset blade grid is also shown). Knowing the

approximate dimensions of the solid body, a rectangle enclosing the solid body

is defined in each azimuthal plane of the background grid. All the points inside

this rectangle are checked as to whether they lie inside the overset grid. The

points that do not are labeled as hole points. Using the neighbor information,
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Figure 3.38: Sample application of hole cutting in a hovering rotor simulation.

this hole region is extended at least one layer outwards.

3.8.2 Identifying hole fringe points

Once the hole points are identified, the hole fringe points have to be determined.

These points receive information from the overset grid and have to necessarily

isolate the hole points from the rest of the grid. The number of fringe layers

depends on the stencil of the spatial scheme. For instance, if a fifth order upwind

scheme is used, at least three hole fringe layers are necessary. Fig. 3.37 shows

one layer of hole fringe points.

3.8.3 Identifying chimera and overlap fringe points

Chimera points are defined as those boundary points on the overset mesh that

require information from the background mesh. These are usually explicitly

specified by the user. Overlap fringe points are those points that transfer infor-
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Figure 3.39: Schematic of chimera boundary points (solid circles) on the overset

grid and fringe points (patterned circles) on the background grid.

mation back to the background mesh. These points, therefore lie close to the

chimera boundary points. Fig. 3.39 shows the chimera and overlap fringe points.

Figure 3.40 shows a schematic of identifying the fringe points. Once the chimera

points are known, a set of the so-called tracer points are identified by moving

n fringe layers inside the overset mesh. These points are finally discarded and

are just meant to act as reference points. Now, the fringe points are identified

as the primary nodes of the cell in the background grid inside which the tracer

points lie. Usually, n > 2 is utilized.

3.8.4 Finding donor cells and interpolation factors

At the chimera, hole fringe and overlap fringe points, information is interpolated

from the donor cell of the other grid. The donor cell is found using the previously

mentioned “stencil walking” procedure. Once the donor cell is identified, the
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Figure 3.40: Procedure for identifying overlap fringe points (open circles).

Chimera points (filled circles) and tracer points (patterned squares) are also

shown.

interpolation factors in the three coordinate directions are found using tri-linear

mapping.

It has to be mentioned that the use of chimera meshes makes it difficult to

rigorously ensure the conservation property. However, the resulting errors can

be minimized by making sure discontinuous features like shocks and shear layers

do not cross the overlap boundaries. Another important factor that dictates the

accuracy of chimera-based methods is the relative cell sizes of different grids in

the overlap region.
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Figure 3.41: Spanwise 2-D section of a sample wing

3.9 Grid generation

In order to accurately represent the wing surface geometry, body conforming

curvilinear grids are required. In this study, 2D meshes are generated at each

spanwise section of the wing or blade and are stacked in the spanwise direction.

As mentioned in sec. 2.3.3, the stretching ratios are carefully monitored. A

representative section for a fixed wing is shown in fig. 3.41. A C-mesh topology

is used for each section since it is well suited to smoothly cluster grid points

near the trailing edge and in the wake. In addition, to resolve the tip vortex

formation and rollup, the required clustering can be naturally achieved as shown

in fig. 3.42. Near the tip region, the spanwise sections are rotated and collapsed,

thus defining a C-O topology.
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Figure 3.42: Sample clustering of grid points to resolve vortex roll-up.

3.9.1 2D mesh generation

The 2D meshes are generated using the hyperbolic grid generation code written

by Tim Barth at NASA Ames Research Center. A few modifications were made

to this code in order to obtain smooth grids with the required clustering. Given

the surface definition in the η direction, this code ”marches” in the η direction

to generate grid points as shown in fig. 3.43. The governing equation for the

unknowns r = (x, y)T at any given instant η is given by
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
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(3.87)

where, the super-script o denotes quantities known at an earlier instant ηo. ∆So

is the known local cell area at the earlier instant and ∆S is the user-specified

cell area. The above equation can be represented as

rη = q(η, ηo, ξ, ξo) (3.88)
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Figure 3.43: Schematic of body surface (thick line) and marching direction η.

Since explicit schemes will introduce restrictions on the step size, implicit time-

marching is used. The implicit scheme7at an “instant” (.)1 is given by:

r1 = ro + αq(η1, ξ1) + (1 − α)q(ηo, ξo) (3.89)

The parameter α ≥ 0 controls the level of implicitness of the scheme, with α = 0

corresponding to a fully explicit scheme and α = 1 corresponding to the Euler

implicit scheme.

Hyperbolic grid generation schemes can be expected to perform poorly near

convex surfaces since the characteristic lines tend to cross-over. This situation,

for instance, arises when the wake cut is required to be aligned with the predicted

tip vortex trajectory as seen from fig. 3.44. A possible way of circumventing this

as suggested by the original author of the code is to take a weighted combination

of the local cell area along with that of a reference polar grid to specify ∆S. This

7In practice, extra dissipation terms are added.
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Figure 3.44: Grid-lines collapsing as a result of surface convexity.

can be represented as

∆Sj,k =

[

(1 − ν) + ν
(∆Sj,k)airfoil

(∆Sj,k)circle

]

(∆Sj,k)circle, (3.90)

ν being a smooth function with ν ≈ 1 for small k and ν ≈ 0 for large k.

However, it is very difficult to choose a general weighting function and this

usually results in a cross-over of grid-lines as shown in fig. 3.45. The approach

followed in this dissertation is to use an exponential weighting function ν along

with increased numerical dissipation. The numerical dissipation is increased by

smoothly varying α in eqn. 3.89 from α = 1 to a large value, say α = 4 with

marching distance from the wall. A value of α > 1 over-damps the numerical

scheme causing the grid spacing to spread out as shown in fig. 3.46. A penalty

to be paid is an expected loss of orthogonality of the grid lines, but it is found

to be negligible in practice.
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Figure 3.45: Grid-lines crossing over as a result of specified areas weighted with

polar reference grid

Figure 3.46: Addition of implicit dissipation and weighting resulting in a

smoother grid.
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Figure 3.47: C-O mesh for a round tip configuration

Figure 3.48: C-O mesh for a square tip configuration

3.9.2 3D meshes

In order to represent the tip shape accurately, the spanwise-stacked 2 dimensional

meshes are rotated around the tip and collapsed at the mean camber-lines. Figs.

3.47 and 3.48 show chord-wise grid planes near the tip region for representative

round and square-tip shapes. Grid points are clustered in the spanwise and

normal directions in order to accurately resolve the tip vortex.

In order to obtain accurate results from the flow solver and to take advantage

of the mesh structure, the grid points have to be clustered in regions of interest
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and grid-lines have to be at least approximately aligned with the flow features. In

the case of the fixed wing, the tip vortex can be approximately expected to follow

the free-stream direction and hence the C-mesh wake cut is aligned as seen from

fig. 3.42. For rotary blades in hover, the flow-field is essentially cylindrical and

hence the streamwise planes are rotated in the azimuthal direction as explained

in chapter 4.

3.9.3 Overset meshes

In order to better resolve the evolution of the tip vortex in the wake region,

overset and background meshes are used. The structure and placement of these

meshes will be introduced for specific cases in Chapters 4 and 5.

3.10 Boundary Conditions

3.10.1 Wall boundary condition

At the solid wall, the density (ρ) is extrapolated from the interior of the do-

main. For viscous calculations, the no-slip condition requires that the velocity

at the wall equal the grid velocity. For inviscid flows, the contravariant veloc-

ity components (U, V,W ) are extrapolated to the surface. Then, to satisfy the

no-penetration condition, the contravariant component of velocity in the wall-

normal direction (η) is set such that the physical velocity (Q) equals the grid

velocity. The pressure (p) is then obtained from the normal momentum equation,

which is given by:
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pξ(∇ξ.∇ζ) + pη(∇η.∇ζ) + pζ(∇ζ.∇ζ) = −∂τ (ρQjet.5ζ) − ρU(∇ζ.∂Q
∂ξ

)

−ρV (∇ζ.∂Q
∂η

) − ρW (∇ζ.∂Q
∂ζ

) (3.91)

where, Qjet is the Cartesian vector of the surface blowing velocity (if present).

3.10.2 Far-field boundary conditions

Ideally, the far-field boundaries should be placed far enough such that the pre-

vailing conditions are very close to free-stream. This allows for the use of simple

linearized boundary conditions in order to ensure that no spurious wave reflec-

tions occur at the boundary. For fixed wing computations, the boundaries are

placed at approximately 20-30 chord lengths away from the airfoil surface. To de-

termine the boundary conditions, characteristic-based Riemann invariants [37]

are used. In this approach, based on the direction of the velocity vector and

the sonic velocity, the corresponding Riemann invariants are extrapolated either

from the interior or from the free-stream.

For a hovering rotor, the wake vortices stay under the blade at all times and

the resulting induced velocities can be expected to be significant at distances

of a few rotor radii. For computational efficiency, the far-field boundaries are

held to less than two rotor radii away from the blade surface. In this case, the

linearized characteristic free-stream boundary condition cannot be used since the

flow velocities are large. For instance, simple momentum theory [3] states that

the asymptotic downwash velocity from a hovering rotor is approximately
√

2CT

times the tip speed. In this work, the point-sink boundary condition approach
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of Srinivasan et. al. [26] is used. The details of this boundary condition is

explained in sec. 5.1.2.

3.10.3 Inboard wing / blade boundary conditions

For fixed wing calculations, unless mentioned, symmetry conditions are applied

at the root. In this method, ghost cells are created outboard of the symmetry

plane. In these cells, the flow variables are set such that there is no flux crossing

the symmetry plane. Assuming that the plane of symmetry is perpendicular to

the y-direction, the values in the ghost cell (represented by a subscript ”g”) are

given by:

ρg = ρ2 ug = u2 , vg = −v2 , wg = w2 , pg = p2 (3.92)

where the subscript ”2” denotes the cell to the ”right” of the symmetry plane.

For hovering rotor calculations, the flow variables are simply extrapolated

from the interior of the domain using an appropriate high order method.

3.10.4 Vortex outflow boundary conditions

In this work, fine smoothly spaced meshes are used to accurately resolve tip

vortices. These meshes are approximately aligned with the axis of the tip vortex

and are overset in a coarser background mesh. Figure 5.3 shows a typical vortex

mesh for a hovering rotor. The boundary planes of the vortex mesh receive

information (via interpolation) from the background mesh. It is observed from

calculations that the vortex is highly dissipated in the background mesh and

hence interpolating the solution on to the final plane of the vortex mesh can be

expected to result in an inaccurate solution. To avoid this, two types of vortex

118



outflow boundary conditions were attempted.

a) Characteristic vortex outflow: In this case, Riemann invariants were used

to determine the flow variables at the boundary of the overset grid. Since the

flow is subsonic and uni-directional, information pertaining to one characteristic

variable needs to be obtained from outside the vortex mesh. This information

is provided from the solution interpolated from the background mesh. This

approach is found to work better than interpolating entirely from the background

mesh.

b) Simple extrapolation: In this approach, a high order scheme is used to

extrapolate the solution from the interior of the mesh on to the boundary plane.

This approach is simple and is found to perform as well as the characteristic

outflow method and is applied to all the computations that involve vortex meshes

in this dissertation.

3.10.5 Wake cut boundary condition

For all the wing and blade grids, a C-O topology is used. In this topology, grid

surfaces collapse on to each other in the wake-cut region (fig. 3.42) and in the

tip region (fig. 3.47). Along these surfaces, explicit fourth order averaging is

used. The formula is given by:

qj,bc =
1

6
(−qj−2 + 4qj−1 + 4qj+1 − qj+2) (3.93)

3.11 Convergence Acceleration

Convergence acceleration is required in order to efficiently solve the governing

equations. This is especially important in achieving rapid convergence to steady
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state. After spatial discretization, assuming the right hand side of eqn. 3.24 is

represented by R(Q), the resulting implicit Euler scheme can be represented by:

[

I − ∆t

(

∂R

∂Q

)n]

∆Qn = ∆tR(Qn) (3.94)

This system of equations is iterated to steady state using an LUSGS [124] al-

gorithm to solve the resulting linear system at every time-step. Convergence is

said to have been achieved if a suitable norm of the residual vector ∆Qn reaches

a required level.

The spatial errors are composed of a wide variety of frequencies, ranging from

the order of the smallest mesh size to the order of the largest grid dimension.

Usually, the low frequency errors are damped at a much smaller rate than the

higher frequency errors and this proves to be very detrimental to convergence.

Most iterative methods (like Gauss-Siedel etc.) are usually efficient only in

reducing the high frequency errors. The problem is exacerbated by the fact

that the NS equations become inherently stiff at lower Mach numbers. In order

to address this problem, a variety of convergence acceleration devices have been

designed over the past few decades. In particular, [140] presents a comprehensive

review of of multigrid methods, the concepts of which have been utilized.

In this work, simple grid sequencing is used in order to obtain better con-

vergence properties. In this method, starting from a very coarse grid, the flow

equations are solved on successively finer grids. The coarse grids are obtained by

removing every other point in each direction, thus resulting in one eighth of the

grid points of a higher level in three dimensions. The objective is to progressively

remove the low frequency8errors.

8The fine grid low frequency errors appear as higher frequencies on the coarse grids and

can hence be more effectively damped.
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Figure 3.49: Convergence to steady state using single grid level and two grid

levels.

Usually, the flow-field is initialized everywhere with free-stream conditions

and this gives rise to large initial transients that propagate to all parts of the

flowfield and also reflect at the boundaries. Starting on the coarsest grid can

then be extremely advantageous since these transients only need to be computed

on a fewer number of grid points and are ultimately damped faster.

A sample convergence history for the Onera M6 wing grid of size 269×35×67

is shown in fig. 3.49. A Local time-stepping with ∆t = 1.0 is used for both

computations. The flow conditions correspond to α = 4.08o, M∞ = 0.8359 and

Re = 18.3×106. For the grid sequenced case, 250 iterations are performed on the

coarse grid and the rest on the finer grid. A drastic improvement in the rate of

convergence is observed. Fig. 3.50 shows the evolution of the lift coefficient. As

a consequence of using the coarse grid, the initial development of the transient is

much faster: the peak lift coefficient is attained in 90 iterations compared to 200
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Figure 3.50: Lift convergence history for Onera-M6 wing case.

iterations on the fine grid. Subsequently, by the time the solution is transfered to

the finer grid, much of the transient energy seems to have been damped out, thus

improving the overall convergence. For comparison purposes, the same time-step

has been used for both cases - in practice, the coarse grid allows for much larger

time-steps since the problem is less stiff.

The afore-mentioned grid sequencing corresponds to a uni-directional multi-

grid approach. In more complex cases, (for instance, hovering rotor computa-

tions), a full cycle was used as schematized in fig. 3.51. This is required since

the high frequency errors can only be resolved on the finer grids and the coarser

mesh might not be able to sense the effect of these modes. To transfer infor-

mation from the coarse grid to a point on the fine grid, simple averaging of 8

neighboring points was used.
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Figure 3.51: Schematic of grid sequencing cycle.
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3.12 Summary

In this chapter, the computational methodology for the solution of the RANS

equations was presented. The improvements to an existing solver in terms of

high order accuracy, turbulence modeling, convergence acceleration and overset

capability were detailed. In order to better resolve the flow features, appropri-

ately refined structured grids are used in an overset framework.
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Chapter 4

Computation of Vortex Formation and

Evolution from a Fixed Wing

In this chapter, extensive validation studies will be conducted on the vortex

formation in the very near field of a fixed wing. The primary objective of this

study is to determine the numerical resolution and to evaluate the fidelity of the

turbulence model. Once the requirements in mesh spacing and order of numerical

accuracy are determined, these will be used as guidelines for further simulations

in this thesis. In addition to the these validation studies, the physics of vortex

formation will be studied in detail and the effect of various flow and geometry

conditions will be evaluated. Finally, results will be presented on the evolution

of the tip vortex in the extended near-field of a fixed wing.
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4.1 Vortex formation: Validation with experi-

ment

4.1.1 Details of experiment

The experimental test case corresponds to a rounded tip wing in a 32 × 48in.

wind tunnel section as shown in fig. 4.1. The relevant test conditions are shown

in table 4.1. The experiments were conducted by Chow et al. [9] at NASA Ames

research center. It is thus a very low aspect ratio wing with the wind tunnel

walls close to the surface. However, the Reynolds number is large and as will

be shown later, the effects of the low aspect ratio and the proximity of the wind

tunnel walls are minimal with regard to the details of the vortex formation.

This test case was chosen because of the availability of a comprehensive set of

measurements in the wake region and on the wing surface. Static pressure, mean

velocity and Reynolds stress data are available at select axial planes, starting at

a distance of x/c=0.591 ahead of the trailing edge to x/c=0.678 from the trailing

edge. Surface pressure measurements are available from a total of 444 pressure

taps located in 12 chordwise rows. The flow is tripped at the leading edge so

that a fully turbulent assumption is valid.

4.1.2 Grid and boundary conditions

The baseline grid for this test case was provided by Zilliac [145]. This grid

consists of 115 × 189 × 115 in the streamwise, spanwise and normal directions

respectively, filling the test section volume exactly. The grid distribution was

smoothed and refined for use in this work. A sample axial grid plane near the
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Airfoil NACA 0012

Chord length (c) 1.22 m

Aspect Ratio 0.69

Mach Number 0.15

Chord Reynolds Number 4.6 × 106

Angle of attack 10o

Table 4.1: Test conditions

Figure 4.1: Experimental test section dimensions [9]
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Figure 4.2: Axial plane of a sample grid

1.812 c

(Test section) (Extended domain)

Characteristic BC

15 c

Figure 4.3: Schematic of domain extension for application of outflow BC. Dotted

lines show (approximate) location of axial planes.
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wing trailing edge (along with contours of computed streamwise vorticity) is

shown in fig. 4.2. A spacing of 5 × 10−6c is used in the wall normal direction.

The inflow boundary is treated using characteristic Riemann conditions as

explained in sec. 3.10.2. The airfoil surface and wind tunnel walls are treated

as viscous walls. The treatment of the outflow boundary is however, more com-

plicated because of the presence of the tip vortex. Since the outflow plane is

very close to the wing trailing edge, a simple characteristic boundary condition

cannot be used since it will generate spurious reflections as a result of the strong

tip vortex crossing the outflow boundary. Unlike acoustic waves, vorticity waves

are typically very strong and hence designing a non-reflective boundary condi-

tion is not straight forward. As an alternate method, simple extrapolation was

attempted, but it was found that spurious reflections were generated and the

velocities at the inflow plane were typically higher than freestream.

A more successful strategy involved using large stretching ratios downstream

of the test section outflow plane and applying the characteristic boundary condi-

tions at a virtual freestream plane. A schematic is shown in fig. 4.3. The coarse

mesh spacing artifically diffuses the vortex and a virtual buffer zone is created.

It was found that an extension of the domain by 15 chordlengths (using 30 extra

planes) was sufficient and the velocity vectors in the inflow plane were within 1%

of the freestream. For all the computations presented in this study, an extension

of 15 chords is used.

4.1.3 Numerical Comparison

In order to explore and evaluate the effect of numerical and turbulence model

errors, various test runs were made. Before the results from all the test runs are
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presented, the “highest fidelity” numerical result will be compared in detail with

experiments. This calculation is performed on the 148 × 189 × 115 grid using

the seventh order WENO scheme for inviscid discretization with the rotational

correction added to the turbulence model. Subsequently, the other test runs will

be compared. For all the results presented, the origin of the coordinate system

is assumed to be at the trailing edge of the wing at the root section.

Figures 4.4-4.8 compare the contours of the computed swirl velocity
√
v2 + w2

along axial planes with experiments. In order to ensure a one-to-one comparison,

the computed solution is interpolated on to the experimental data locations

before the contours are plotted. At the farthest upstream location (fig. 4.4),

there is no evidence of the tip vortex and very low levels of crossflow velocity are

observed. Further downstream (fig. 4.5), the magnitude of swirl is large enough

that the tip vortex is observed in its initial form. The computed swirl velocity

is slightly diffused compared to the measurements. Figures 4.6-4.8 show the

evolution of the swirl velocity beyond the trailing edge of the wing. Qualitatively

and quantitatively, the computed results are similar to that of the experiments.

Fig. 4.9 shows the vertical velocity (w) along a horizontal (spanwise) line passing

through the center of the vortical core. Again, the computed velocity profiles

match well with experiments, except at the x/c = −0.296 station, where the

sharp negative peak is not captured (similar to fig. 4.5).

Fig. 4.10 shows the evolution of the peak magnitudes of the axial velocity

u, vertical velocity w, total velocity
√
u2 + v2 + w2, swirl velocity and minimum

static pressure with downstream distance. There is a slight underprediction of

the axial and total velocities and an overprediction of the swirl velocity. However,

the computed static pressure at the vortex center (fig. 4.10c) shows an error upto
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27% when compared to experiments. A similar level of disagreement has been

reported in [47]. A representative profile is shown in fig. 4.11.

Fig. 4.12 shows the pressure distribution on the wing surface. At an in-

board section (y/c=0.5) the pressure distribution closely resembles that of a 2

dimensional airfoil. Very close to the tip, a second suction peak appears near

the trailing edge, which is a consequence of the tip vortex rolling up on the wing

surface. Traversing along the tip surface, (refer fig. 4.1 for definition of γ), the

suction peak near the leading edge is seen to reduce and the pressure at the top

and bottom surfaces gradually equalize. The agreement of the computed results

with the experiment is a direct consequence of correctly capturing the strength

of the evolving tip vortex.

The contours of the Reynolds shear stress < v ′w′ > are compared with exper-

imental measurements in fog. 4.13. It becomes evident that although the peak

levels of the computed Reynolds stress compare well with experiments, there

appears to be an overall phase shift. This phase shift can be explained by exam-

ining the strain rates ∂v
∂z

+ ∂w
∂y

in fig. 4.14. The computed strain-rate aligns itself

with the computed Reynolds stress, which is a consequence of the isotropic eddy

viscosity approximation. However, the experimental strain rate (calculated by

smoothing the measured velocity and differentiating) does not align itself with

the Reynolds stress, indicating anisotropic effects as explained in [9].

4.1.4 Validation studies

Grid convergence

To evaluate grid convergence, the computations were performed on 3 different

grids. The results thus far were generated using the finest grid (148×189×115),
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(a) Experiment

(b) Computation

Figure 4.4: Crossflow velocity magnitude (normalized by free-stream velocity)

at x/c = −0.591
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(a) Experiment

(b) Computation

Figure 4.5: Crossflow velocity magnitude at x/c = −0.296
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(a) Experiment

(b) Computation

Figure 4.6: Crossflow velocity magnitude at x/c = 0.005
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(a) Experiment

(b) Computation

Figure 4.7: Crossflow velocity magnitude at x/c = 0.246
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(a) Experiment

(b) Computation

Figure 4.8: Crossflow velocity magnitude at x/c = 0.678
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(a) x/c=-0.591 (b) x/c=-0.296

(c) x/c=-0.114 (d) x/c=-0.005

(e) x/c=0.246 (f) x/c=0.678

Figure 4.9: Vertical velocity (w/U∞) along a horizontal cut through vortex core
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(a) Vertical and axial velocities
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(b) Swirl and total velocities
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(c) Static pressure at vortex center

Figure 4.10: Evolution characteristics of the tip vortex
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Figure 4.11: Static pressure coefficient along a line passing through the vortex

center at a station x/c = 0.462 from trailing edge

termed Grid 3. Two coarser levels of grids were used:

- Grid 1, using every other point of Grid 3 in the cross-stream direction

(factor of 4 reduction in grid points),

- Grid 2, the points of which were interpolated for from Grid 3, such that for

every 3 points along a cross-stream grid line in Grid 3, two points were extracted.

Given a grid-line of Grid 3, quartic interpolation was used to parameterize the

line and extract the required points. Thus, this grid results in a 1.5.5 = 2.25

factor reduction in grid points as compared to Grid 3.

As seen from fig. 4.15, the solution on the intermediate (Grid 2) and fine

grid (Grid 3) are relatively close to each other compared to the more erroneous

coarse grid (Grid 1) solution, implying grid convergence. Further, the surface

pressure distributions were no different (to plotting accuracy) for Grid 2 and
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(a) y/c=0.500 (b) y/c=0.625

(c) y/c=0.667 (d) γ = 45o

(e) γ = 67.5o (f) γ = 90o

Figure 4.12: Pressure distribution on wing surface. Circles: Experiment, Lines:

Computation
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(a) Experiment

(b) Computation

Figure 4.13: Contours of primary Reynolds stress < v ′w′ > at x/c = 0.462 from

trailing edge
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(b) Computation

Figure 4.14: Contours of strain-rate ∂v
∂z

+ ∂w
∂y

at x/c = 0.462 from trailing edge
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Grid 3.

Effect of inviscid discretization

Fig. 4.16 compares the effect of high order inviscid discretization on the vortex

evolution. As expected, the seventh order WENO discretization results in the

least numerical diffusion error. However, the computed surface pressure distri-

bution showed minimal variation between the different schemes.

4.1.5 Turbulence model effects

As mentioned in sec. 3.7.6, the production term in the original Spalart-Allmaras

model is based solely on vorticity and this can be extremely unphysical in tip

vortex flows where the solid body rotation is known to suppress turbulence.

Hence, the rotational correction needs to be added to the production term. Fig.

4.17 compares the vortex evolution with and without the rotational correction.

It is immediately evident that even for such short spatial lengths, the vortex

significantly diffuses due to the excessive eddy viscosity predictions. Fig. 4.18

confirms this argument. The Reynolds stress contours are plotted with the same

levels as in fig. 4.13. The peak values of Reynolds stress were found to be more

than 10 times that of the experimentally determined values.

4.2 Physics of Vortex Formation

As seen in figs. 4.4-4.8, even though significant levels of cross-flow is present in

axial planes before the quarter chord point, the evolving tip vortex is initially

evident only further downstream. As seen in fig. 4.19, a very thin attached
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Figure 4.15: Grid convergence study: Seventh order WENO for all grids.
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(a) Peak swirl velocity
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Figure 4.16: Effect of inviscid discretization: Grid 3 (fine grid) used for all

computations.
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Figure 4.17: Effect of turbulence model correction. WENO5 Inviscid differencing

for both cases.
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Figure 4.18: Contours of primary Reynolds stress < v ′w′ > at x/c = 0.462 from

trailing edge. Turbulence model with no rotational correction.
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boundary layer is observed on the pressure (lower) surface, indicating crossflow.

This boundary layer acts a feeding sheet of vorticity and begins to thicken as it

crosses the mean chord line since the driving pressure gradient begins to weaken.

As marked in the figure, the boundary layer subsequently separates1and the

feeding sheet lifts off the surface. This feeding sheet then rolls up under the

action of is own induced velocity and the prevailing adverse pressure gradient

tapers off as one approaches the inboard section of the wing.

The crossflow velocity at the bottom edge of the vortex core induces a near-

wall flow on the top surface (the associated boundary layer is evidenced by the

blue patch of negative vorticity) in the outboard direction. Closer to the tip, this

region is affected by the velocities induced by the feeding sheet and ultimately

thickens in extent, appearing as a secondary vortical region that counter-rotates

with the evolving tip vortex.

These primary and secondary structures continue to evolve on the surface

until the trailing edge is reached. Off the trailing edge, this counter rotating

patch is ingested by the tip vortex as shown in fig. 4.20. The presence of a

secondary vortex have been confirmed in the experiment as well as a few others

such as Devenport et al. [10], Martin et al. [11]. The interaction of the secondary

vortex with the primary vortex severely strains the primary vortex such that the

core appears to be elliptical very near to the trailing edge. This explains the

apparent ”oscillations” in the vertical and swirl velocities in fig. 4.10. A more

detailed inspection of the flow very close to the trailing edge reveals the presence

of a tertiary vortex which co-rotates with the primary tip vortex. This tertiary

vortex is smaller and much weaker compared to the secondary vortex and is

1The separation is of a secondary nature since the main flow is in the axial direction.
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Figure 4.19: Computed axial vorticity magnitudes at a section x/c = −0.15 from

the trailing edge. (Positive vorticity is in the anti-clockwise sense)

located approximately in between the secondary vortex and the feeding sheet.

With these observations in mind, the following section is dedicated solely to the

detailed study of vortex formation.
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Figure 4.20: Iso-surfaces of axial vorticity (ωx) near trailing edge. Green surfaces:

ωx = +50, Blue surfaces: ωx = −10. Vorticity is normalized by free-stream

velocity and chord.
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Airfoil Tip Re CL CD Vθmax rc Vaxialmax

0009 Round 4.6 × 106 0.8186 0.0356 0.806 0.0303 1.475

0012 Round 4.6 × 106 0.8616 0.0298 0.824 0.0307 1.437

0015 Round 4.6 × 106 0.8227 0.0369 0.841 0.0301 1.315

0012 Flat 4.6 × 106 0.8675 0.0301 0.643 0.0500 1.289

0009 Round 4.6 × 105 0.7898 0.0420 0.679 0.0367 1.213

0012 Round 4.6 × 105 0.8013 0.0396 0.654 0.0456 0.923

0015 Round 4.6 × 105 0.8013 0.0390 0.774 0.0309 1.302

0012 Flat 4.6 × 105 0.8018 0.0399 0.552 0.0577 1.035

Table 4.2: Comparison of different cases for wing in free-stream. For all cases,

AR = 4.3, α = 10o and M∞ = 0.15. Velocity and core radii information at

x/c = 0.5 behind trailing edge

4.3 Vortex formation from a fixed wing in free-

stream

The validation studies in the previous section involved a low aspect ratio wing

(AR=0.69) in a wind tunnel. In this section, vortex formation studies will be

conducted on a larger aspect ratio wing (AR=4.3) in free-stream. A range of flow

and geometry effects will be explored, while maintaining discretizations similar

to that of the previous section. The first 3 columns of table 4.2 summarizes the

different test runs. For all the computations, inviscid differencing is done using

the 7th order WENO upwind scheme. The rotational correction is added to the

baseline SA turbulence model.
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4.3.1 Physics of vortex formation

Fig. 4.21 shows the evolution of axial vorticity from the rounded tip 0012 wing

at Re = 4.6 × 106. It is evident that the cross-stream flow sweeps smoothly

over the tip until the quarter-chord location (x/c = −0.75) and slightly beyond

(x/c = −0.65). Further downstream, the crossflow boundary layer is seen to

further thicken (x/c = −0.5) and ultimately separate and lift off the tip (x/c =

−0.25). This separation is a consequence of the adverse (spanwise) pressure

gradient experienced by the crossflow as it traverses over the mean camber line.

A clearer picture emerges from fig. 4.22, in which the spanwise pressure

distribution is plotted along different streamwise sections: For x/c ≤ −0.65, the

adverse pressure gradient seems to be mild enough for the cross flow boundary

layer to remain attached on the surface. Further downstream (x/c ≥ −0.5), the

adverse pressure gradient gets stronger and the boundary layer detaches from

the surface. The boundary layer separation causes the roll up of the feeding

sheet into a tip vortex (fig. 4.21 e) and as a consequence, a region of counter

rotating vorticity is developed as explained in sec. 4.2. Figure 4.23 shows the

portion of the surface over which crossflow separation is present. Qualitatively

and quantitatively, the details of vortex formation were found to be similar to

that observed in the low-aspect ratio wind tunnel case. The axial velocity excess

was however, found to be ≈ 20% lower in the free-stream case. A possible reason

for this could be the absence of the constraining effect of the wind-tunnel walls.

4.3.2 Effect of airfoil thickness

Figure 4.24 (along with fig. 4.21) shows the evolution of the tip vortex on

wings with different airfoil sections. Thinner airfoil sections exhibit advanced
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(a) x/c=-0.75 (b) x/c=-0.65

(c) x/c=-0.50 (d) x/c=-0.25

(e) x/c=-0.10 (f) x/c=0.50

Figure 4.21: Formation and rollup of the tip vortex. Axial vorticity contours

for NACA 0012 wing with Rounded tip at Re = 4.6 × 106. All axial distances

referenced to trailing edge.
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Figure 4.22: Spanwise pressure distribution at different streamwise sections for

NACA 0012 wing with Rounded tip at Re = 4.6 × 106

Figure 4.23: Region of crossflow boundary layer separation: NACA 0012 wing

with Rounded tip at Re = 4.6 × 106
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(a) NACA 0009, x/c = −0.25 (b) NACA 0015, x/c = −0.25

(c) NACA 0009, x/c = −0.1 (d) NACA 0015, x/c = −0.1

Figure 4.24: Axial vorticity contours for different airfoil sections for wing with

Rounded tip at Re = 4.6 × 106.

separation since the adverse pressure gradients are larger due to the shorter

distance of traverse across the tip. The advanced separation causes the feeding

sheet to lift off the surface and results in a more rapidly rolled-up tip vortex

compared to the thicker sections. Figure 4.25 shows the corresponding separation

regions.
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(a) NACA 0009 (b) NACA 0015

Figure 4.25: Effect of airfoil shape on crossflow boundary layer separation. Re =

4.6 × 106

4.3.3 Effect of Tip Shape

For a rounded tip shape, it is observed that along a streamwise plane, the sep-

aration point is related to the magnitude of the adverse pressure gradient along

the tip surface. As a consequence, it is seen from figs. 4.23 and 4.25 that cross-

flow separation always occurs on the suction (upper) surface of the wing tip.

However, for a flat tip, separation can be expected to be fixed by the geometry

since the flow has to turn more abruptly over the wing-tip.

This situation is evident from figs. 4.26 and 4.27, which correspond to a

wing with a NACA0012 airfoil section, but with a flat tip. Even at the quarter

chord location, initial traces of the evolving tip vortex are observed (fig. 4.26a).

Crossflow separation is observed at two different points along the tip section and

hence the resulting tip vortex is much more diffuse. As seen in table 4.2, the

peak swirl velocity is smaller compared to the rounded tip and the core-radius

is larger. This is qualitatively consistent with the observations of [114], in which

the core-radii of square tipped wings were found to be around 30 − 40% higher
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(a) x/c = −0.75 (b) x/c = −0.50

(c) x/c = −0.25 (d) x/c = −0.1

Figure 4.26: Axial vorticity contours for NACA 0012 wing with Flat tip at

Re = 4.6 × 106.

than that of round tips.

4.3.4 Effect of Reynolds number

A smaller Reynolds number would mean that the decelerating viscous forces are

larger than the inertial forces that primarily drive the flow. As a result, one would

expect increased cross-flow separation and more diffuse tip vortices. Figure 4.28,

when compared to figs. 4.21 and 4.23 show the more diffuse nature of the evolving

157



Figure 4.27: Region of crossflow boundary layer separation: NACA 0012 wing

with Flat tip at Re = 4.6 × 106

(a) Axial vorticity at x/c = −0.1 (b) Cross-flow separation region

Figure 4.28: NACA 0012 wing with rounded tip at Re = 4.6 × 105.

tip vortex and the increased separation extent at the lower Reynolds number.

Table 4.2 also shows the decreased swirl velocity and increased core radius at

the lower Reynolds number.

4.4 Vortex Evolution

The previous sections were focused on the properties of vortex formation from

a fixed wing in the very near field. In this section, vortex evolution properties
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Airfoil section NACA 0012

Tip shape Rounded (circular)

Chord length (c) 0.15 m

Aspect Ratio 1.0

Mach Number 0.1

Chord Reynolds Number 2.2 × 105

Angle of attack 7.5o

Table 4.3: Test conditions for Vortex Evolution

(upto 10 chord lengths downstream of the trailing edge) will be studied. The test

case chosen for this study corresponds to that of the wind tunnel experiments

conducted by Heyes et al. [146]. In the original experiment, the test section

dimension was 0.45m × 0.3m and the length was 1m. The relevant geometry

and flow parameters for the half-span wing are given in table 4.3.

Axial and swirl velocity measurements along with vortex core location is

available in a data plane that is one chord downstream of the trailing edge.

This test case was chosen since a set of steady and oscillatory blowing tests were

conducted on the baseline configuration. The steady blowing measurements used

for further validation in vortex control simulations are presented in Chapter 6.

A key difference between the experiment and the simulation is that the latter

assumes the wing to be in free-stream. As will be seen, comparison of the

computed vortex velocity profile with the experimental results suggest that the

details of the vortex formation are not different.

The computations in the previous sections were focused on the near field. In

order to accurately resolve the vortex evolution many chord lengths downstream,
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a single structured mesh will be highly inefficient since the clustering of grid

points in the cross-stream direction will have to extend to the grid boundaries.

In order to avoid this and also to ensure equal spaced grid points (in the cross

stream direction), an overset grid is placed approximately in the region of the

wake where the tip vortex is expected to be present. Fig. 3.36 shows streamwise

planes of the main and overset grids (every other grid point is shown in either

direction). The dimensions of the main grid are 227×100×115 in the streamwise,

spanwise and normal directions. The farfield is at a distance of 25 chord lengths

from the surface. The overset grid has 199 axial planes of size 133 × 133. The

cross-stream grid spacing is 0.0075c, assuring atleast 10 points per vortex core-

length. This grid spans an axial distance of 0.25 ≥ x/c ≤ 15.25 behind the

trailing edge.

Figure 4.29 compares the solution along a line in the fringe region of both

meshes at x/c = 0.3 and confirms the accuracy of the chimera interpolation.

Unless mentioned, all the results use the 5th order WENO differencing for in-

viscid fluxes. As opposed to vortex formation studies, the application of the 7th

order WENO scheme for longer spatial evolution problems resulted in small scale

oscillations in the vortex evolution properties. Hence it is not used in further

calculations.

Figure 4.30 compares the computed vertical and axial velocities on a hori-

zontal line passing through the vortex center at an axial plane that is 1 chord

downstream of the trailing edge. The vertical velocity is seen to be accurately

represented while the axial velocity defect is slightly underpredicted. The defect

in axial velocity is a consequence of the low Reynolds number, implying larger

viscous deceleration compared to all previous test cases.
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(a) Vertical velocity

(b) Static pressure co-efficient

Figure 4.29: Comparison of solution on background grid (line) with overset grid

(circles) at x/c = 0.3
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(a) Vertical velocity

(b) Axial velocity

Figure 4.30: Comparison of computed velocity profile (line) with experiment

(circles) at x/c = 1.0
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As seen in Chapter 2, for an axisymmetric vortex, the core radius (rc) and

peak swirl velocity (Vθmax) can be represented by:

rc(t) =
√

(r2
c)o + 4να(1 + δ)t and Vθmax(t) =

(Vθmax)o(rc)o

rc(t)
(4.1)

A laminar vortex would correspond to δ = 0 and other diffusion effects (like

turbulence) can be represented by δ > 0. Figure 4.31 shows that the data can

be fit by using δ = 4. This lies in the range predicted by [57] and is a useful

parameter when comparing different data sets and also to quantify the diffusion

rate. Note that the computed data (symbols) shows apparent “oscillations” in

the core-size. This was found to be purely an artefact of post-processing: Due

to the discreteness of the grid, the location of the core center and periphery were

found to switch across nearby points.

Figure 4.32 shows the vertical velocity along the vortex core at different

spatial locations. The velocity profiles appear to remain qualitatively similar.

The small “bump” that is visible to the right of the vortex center is a result of

the shear layer that is rolling-up. Figure 4.33 shows the evolution of the vorticity

magnitude and the vortex center in reference to the cross-stream boundaries of

the overset grid. From this figure it is apparent that vortex sheet wraps around

the tip vortex and decays rapidly. Physically, the stabilizing effects of rotation

can be expected to minimize diffusion in the vortical core.

Figure 4.34 shows the computed vortex properties using 1) Same grid, but

3rd order inviscid differencing and 2) Coarser grid (every other point in the cross-

stream direction of vortex grid), but with fifth order WENO inviscid differencing.

It is seen that both these approaches yield highly diffuse solutions in the initial

stages of evolution, but beyond x/c > 3, the decay rate is approximately equal to

that of the high order solution on the finer grid. This implies that the numerical
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(a) Peak swirl velocity

(b) Core radius

Figure 4.31: Tip vortex evolution properties compared to that of an axisymmet-

ric model vortex
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methodology is not accurate enough to resolve the vortex in its initial state, but

as it diffuses artificially, the core-radius and other features become large enough

to be resolved with less numerical error.

4.5 Summary

In this chapter, extensive validation studies were presented on the formation and

evolution of a tip vortex in the near-field of a fixed wing. Overall, the computed

results showed agreement with the experimental measurements when high order

schemes were used along with a simple modification of the turbulence model.

These studies are used as guidelines in determining resolution requirements for

the rest of this thesis. The physics of vortex formation was studied in detail.

The effect of tip shape, airfoil section and Reynolds number on vortex formation

were explored.
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(a) x/c=1 (b) x/c=2

(c) x/c=3 (d) x/c=5

(e) x/c=8 (f) x/c=10

Figure 4.32: Vertical velocity across vortex core at different downstream loca-

tions
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(a) x/c=1 (b) x/c=3

(c) x/c=5 (d) x/c=10

Figure 4.33: Computed vorticity magnitude at different downstream locations
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(a) Peak swirl velocity

(b) Core radius (Curve-fit)

Figure 4.34: Vortex evolution properties for different validation runs
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Chapter 5

Computation of Vortex Formation and

Evolution from Rotating Blades

The previous chapter was dedicated to the study of vortex formation and evo-

lution from a fixed wing. In this chapter, the study is extended to single and

two bladed rotary systems under hovering conditions. The single bladed study

is focused on validating the computed vortex velocity profiles with experimental

measurements. The two bladed study is centered around the validation of the

blade surface pressure distribution and vortex trajectory measurements. Taken

together, these studies represent to a large extent, the spectrum of validations

that are of engineering interest in hovering rotor applications.

5.1 Single bladed rotor in hover

The test case chosen for vortex evolution simulation is based on the experiments

conducted by Martin et al. [11] at the hover test chamber at the University of

Maryland. The relevant parameters for this experimental test run are shown

in table 5.1. The single blade is of rectangular planform with a square-tip and
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Airfoil NACA 2415

Blade chord 42.5 mm

Aspect Ratio 9.12

Tip Mach Number 0.26

Chord Reynolds Number at Tip 272000

Collective Pitch 4.5o

Root cut-out 20%

Table 5.1: Test conditions for Single bladed rotor in hover (Experiments reported

in [11])

is untwisted. The experimental set up was such that the wake was allowed

to exhaust 18 rotor radii (in the downward direction) before encountering any

flow diversions. LDV and PIV based swirl and axial velocity measurements are

available at select azimuthal planes, spanning 3o ≤ ψ ≤ 371o.

As mentioned in Chapter 1, tip vortex measurements suffer from the phe-

nomenon of vortex wandering (usually referred to as aperiodicity in rotor wakes).

As a result of this apparently random phenomena, the vortex core position at

each wake age differs from its mean position at different times. Figure 5.1 shows

the measured core locations at specific wake ages at different times and it is

found that the wandering amplitude is of the order of core-radii. As a result,

the use of uncorrected data will give an apparent ”smeared-out” version of the

actual flowfield and hence, corrections have to be made. The experimental data

was corrected for wandering using the empirical technique of Devenport et al.

[10].
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Figure 5.1: Measurements of wandering for single bladed hover case [11]
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Figure 5.2: Blade mesh for hovering rotor: Rotation of chordwise planes in

azimuthal direction.

Figure 5.3: Spanwise section of blade grid (green) and streamwise sections of

vortex grid (red)
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Figure 5.4: Background grid (black) and vortex grid (red)

5.1.1 Grid system

For the computations, a three-grid system is used. A body-conforming C-O

type grid of dimension 161 × 55 × 48 (in the streamwise, spanwise and normal

directions respectively) is used to discretize the blade region. Since the flow field

of a hovering rotor is cylindrical, the spanwise sections of this mesh are roughly

aligned with the local flow direction in the wake region (fig. 5.2). Compared to

a non-rotated mesh, the computed vortex profiles were found to be much less

dissipative as a result of rough alignment with the vortex axis. The grid extends

to a normal distance of slightly more than 2 chord lengths and the normal spacing

at the wall is 1 × 10−5c (< 1 wall unit). Figure 5.3 shows a spanwise section of

the grid near the tip region.

A refined overset grid of dimension 135 × 176 × 101 is used to resolve the

tip vortex (figs. 5.3, 5.4). This grid starts at the trailing edge of the rotor and
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extends to a wake age of around 330 degrees. Each streamwise section (176×101)

of this grid is equi-spaced consisting of square cells of side 0.014c. The placement

and alignment of this grid is based on the predicted wake geometry given by

Landgrebe’s model [147]. As will be seen from the numerical results, this proves

to give a very reasonable estimate of the vortex positions.

In order to account for the far-field boundaries, a cylindrical background

mesh of size 181 × 50 × 60 (in the streamwise, spanwise and normal directions

respectively) is utilized as shown in fig. 5.4. The radius of the outer boundary

of this grid is twice the rotor radius and the top and bottom boundaries are one

rotor radius and two rotor radii away from the blade surface respectively. Figure

5.4 also shows that the part of the background grid that overlaps with the blade

grid is hole-cut. The number of grid points total 3.37 million.

5.1.2 Far-field boundary conditions

As mentioned in sec. 3.10.2, the downwash velocity in the bottom plane of the

rotor can be significant. For this case, momentum theory predicts a downwash of

around 6% of the tip speed. In order to account for this and to properly represent

the inflow at the other far-field boundaries, the point-sink boundary condition

approach of Srinivasan et. al. [26] is used. A schematic of this approach is shown

in fig. 5.5. It is well known from momentum theory [3] that the asymptotic

contraction of the vortex wake of a hovering rotor is approximately R/
√

2 and

the downwash velocity at such a section is approximately 2
√

CT/2. As shown

in the figure, this is used as the outflow velocity1in region marked “Outflow” in

the far-field boundary.

In order to satisfy mass conservation, the rest of the far-field boundary is then
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Outflow

Sink

Inflow

Figure 5.5: Schematic of far-field boundary condition in hover

assumed to be an inflow, the velocities of which are assumed to be induced by a

point sink placed on the rotor hub. The magnitude of this spherically symmetric

induced velocity is given by:

Vinduced

ΩR
=

1

4

√

CT

2

(

R2

x2 + y2 + z2

)

(5.1)

where, {x, y, z} is the position vector relative to the placement of the sink. Lin-

earized Riemann invariants are then used to determine the conserved variables

at the boundary.

5.1.3 Numerical Results

Figure 5.6 shows the vorticity magnitude along selected azimuthal planes in the

overset vortex grid. It is evident that by a wake age of 25o, the vortex has

1This velocity is treated in the characteristic sense.
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rolled up completely and the magnitude of vorticity in the tip vortex is very

much higher than that in the wake. Also, the vortex structure seems to have

approached axisymmetry by the 25o wake age. Overall, the vorticity in the tip

vortex diffuses at a much slower rate than the wake vorticity.

Figure 5.7 compares the computed peak swirl velocity as a function of the

wake age. The computations using the 5th order WENO reconstruction for the

inviscid fluxes agree well with the wandering-corrected measurements of Martin

et. al. [11]. The uncorrected experimental data (simple temporal averaging) is

seen to be highly smeared out. It is also obvious that the mesh resolution in the

overset vortex grid is inadequate for 3rd order inviscid differencing.

The rapid rate of decay of the vortex in the initial wake ages could be at-

tributed to the turbulence ingested from the separating boundary layer as dis-

cussed in the fixed wing vortex formation studies. In addition, the low Reynolds

number and the square tip would also contribute to a larger region of counter-

rotating vorticity.

Figure 5.8 compares the swirl velocity profiles at specific azimuthal locations.

Good agreement is attained with the experimental data except for the ψ =

209o and 295o wake ages, probably indicating excessive artificial diffusion either

from the numerics or from the turbulence model. However, the experimental

(corrected) profile at ψ = 209o (also seen in fig. 5.7) strangely corresponds to a

higher swirl velocity than the previous measured wake age (ψ = 137o).

Figure 5.9 shows the effect of the rotational correction in the turbulence

model. As observed in the fixed wing studies in the previous chapter, the baseline

SA model with no rotational correction proves to be extremely diffusive since it

unphysically predicts maximum turbulence in vortical core. On comparing the
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(a) ψ = 3o (b) ψ = 25o

(c) ψ = 45o (d) ψ = 137o

(e) ψ = 209o (f) ψ = 295o

Figure 5.6: Contours of vorticity magnitude along selected azimuthal planes in

vortex grid
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Figure 5.7: Peak swirl velocity (normalized by tip-speed) as a function of wake

age
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(a) ψ = 3o (b) ψ = 25o

(c) ψ = 45o (d) ψ = 137o

(e) ψ = 209o (f) ψ = 295o

Figure 5.8: Comparison of computed swirl velocity profiles with experiments
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Figure 5.9: Peak Swirl velocity (normalized by tip-speed) predicted by SA tur-

bulence model with and without rotational correction. 5th order Inviscid differ-

encing for both cases.

3rd order solution with rotational correction (fig. 5.7) with the 5th order solution

with no correction (fig. 5.9), it is apparent that turbulence modeling errors are

much larger than numerical diffusion error for this particular fine computational

grid.

Accurate experimental measurement of the axial velocity is difficult because

vortex wandering can make the detection of the peak value (which usually occurs

at the centroid of the core) highly uncertain. The corrected experimental values

are currently unavailable for this experiment and hence comparisons are made
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with just the measured values. As seen from the swirl velocity measurements,

wandering corrections can be significant and hence the comparisons should be

viewed with caution. Figures 5.10 and 5.11 show that the computations predict

a much larger peak axial velocity deficit. At the earliest wake age the compari-

son is reasonable2, but the measurements predict a much larger decay rate than

the computations. The fact that the 3rd and 5th order schemes predict similar

amounts of deficit (within 5%) again suggest that numerical diffusion effects are

relatively small and cannot completely explain the difference between the mea-

surements and computations. Hence, a possible cause that could explain some

of the discrepancy is the isotropic eddy viscosity based turbulence modeling.

5.2 2 bladed rotor in hover

In the previous section, computations were performed on a single bladed hovering

rotor, with significant emphasis on the vortex velocity profiles. In this section,

simulations will be performed on the 2-bladed experimental setup of Caradonna

and Tung [83]. This test case was chosen since it provides detailed blade surface

pressure measurements and vortex trajectory data. This test case has also been

previously validated using the Euler and RANS equations by several researchers

[26, 34, 87].

5.2.1 Experimental configuration

The experimental setup consists of a two bladed rigid rotor in a hover chamber.

The blades are of a rectangular planform and are untwisted with a radius of

2The measured wandering amplitudes are also lower [11].
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Figure 5.10: Peak axial velocity deficit (normalized by tip-speed) as a function

of wake age
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(a) ψ = 3o (b) ψ = 25o

(c) ψ = 45o (d) ψ = 90o

(e) ψ = 295o

Figure 5.11: Comparison of Axial velocity profiles with experimental measure-

ments (Wandering correction not available.)

183



Tip Reynolds number Tip Mach number Collective Pitch Pre-cone angle

1.92 × 106 0.433 12o 0.5o

1.96 × 106 0.44 8o 0.5o

1.92 × 106 0.433 5o 0.5o

Table 5.2: Test cases for 2 bladed rotor in hover. (Experiments conducted by

Caradonna and Tung [83])

1.143m. The aspect ratio of the blade is 6. At a vertical distance of 3m from

the plane of the rotor disc, special ducting was provided in order to limit the

recirculation of the wake inside the test chamber. The blades use a NACA0012

airfoil section along the entire span length. A pre-cone angle of 0.5o was set for

the blades. Of the different experiments conducted, table 5.2 shows the cases

that were chosen for validation in the present study.

5.2.2 Grid and boundary conditions

For the computations, a two grid system was used, the boundaries of which are

shown in fig. 5.12. A blade grid of C-O topology is embedded in a cylindrical

background mesh. If the two blades are similar, the resulting flow-field can be

assumed to be symmetric and hence periodic boundary conditions can be applied

at the initial and final azimuthal planes, thus ensuring that only one blade (or

half of the flow-field) need be modeled. The background grid is clustered in the

region where the tip vortex wake is expected to evolve. This is seen in fig. 5.13,

where a single azimuthal plane is shown. The dimensions of the background grid

are 97 × 151 × 199 in the azimuthal, radial and vertical directions respectively.

The top and bottom boundaries are set at 1 and 2 rotor-radii respectively and the
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outer boundary in the radial direction is at 2 rotor radii. The finest cross-stream

cells in the background mesh correspond to squares of side 0.01c.

Figure 5.14 shows a schematic of the application of the periodic boundary

condition. The flow-field variables are solved for in the planes j = 4 to j =

jmax − 3. Since the 5 point WENO upwind scheme is used, 3 overlap planes

are used at either boundary. The information for these planes are obtained from

the interior of the flow field from the opposite boundary. For instance, Qj=1 =

[T]Qj=jmax−6, Qj=2 = [T]Qj=jmax−5 etc, where, Q is the vector of conserved

variables (ρ, ρV, ρe) and transformation matrix the T preserves scalars (density

and energy) and rotates the momentum vector by an angle 2π
Number of blades

. At

all the outer boundaries, the point-sink characteristic boundary condition is used

(sec. 5.1.2). Simple extrapolation is used at the axis.

The outer boundaries of the blade grid extend to approximately 1 chord-

length from the surface as shown in fig. 5.15. The corresponding hole-cut region

of the background mesh is also evident in this figure. For the 12o and 8o cases,

the returning tip vortex is sufficiently farther away (vertically) from the hole-cut

region that it can be accurately resolved in the background grid (the “miss”

distances are approximately around 0.5c). For these cases, a blade grid of di-

mension 199 × 129 × 111 (in the wrap-around, spanwise and normal directions)

was used. However, for the 5o case, the vortex was found to pass much closer to

the blade surface and the resulting interaction had to be resolved on the blade

grid. For this reason, a much finer blade grid of dimensions 239× 169× 121 was

used. Further discussion on this grid will be provided in sec. 5.2.3. The normal

spacing at the wall surface is set to 1 × 10−5c, which results in y+ < 1 at all

near-blade locations.
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5.2.3 Numerical Results

For all the computations, the 5th order WENO upwind scheme was used for

discretization of the inviscid fluxes and second order central differencing is used

for the viscous fluxes. The Spalart-Allmaras turbulence model with rotational

correction is used for the RANS closure.

12o and 8o cases

Figure 5.16 shows the surface pressure distribution for the 12o collective case

using the original grid system and a coarse grid system that uses every other

point in the cross-stream direction (resulting in one-fourth the number of total

points). In these figures, the local streamwise velocity (U(r)) is used to normalize

the pressure, i.e. Cp = p−p∞
0.5ρ∞U(r)2

, where, U(r) = Utipy/R. It is seen that the

fine grid solution compares well with the experimental measurements at all the

radial locations. The coarse grid solution is noticeably poor in the inboard

stations, which is possibly a result of the very coarse spacing in the spanwise

direction. At the y/R = 0.99 station, (experimental measurements not available)

the secondary suction peak due to the presence of the tip vortex is evident.

The fact that this peak is lower in magnitude in the coarse grid result can be

attributed to a more diffuse resolution of the tip vortex.

Figure 5.17 shows the blade pressures for the 8o collective case (using the

fine grid). Again, the results are of good quality except very close to the suction

peak in the 80% and 89% span stations, where the agreement is off by slightly

higher than 5%.

A good criterion for the identification of flow-field vortices is the so-called q

criterion [148]. q is the second-invariant of the velocity gradient tensor and is
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defined by ∂ui

∂xj

∂uj

∂xi
. It can be shown that q is positive in highly vortical regions

and is negative in highly strained regions of the flow. This becomes a very

useful tool in visualizing vortex dominated flow-fields in that coherent structures

can be identified with very little noise. Alternatively, if one relies on the total

vorticity magnitude, features like boundary layers and wakes will be difficult

to distinguish from tip vortices. Fig. 5.18 shows iso-surfaces of the q variable

(non-dimensionalized by tip speed and chord), clearly showing coherent multiple

passes of the tip vortex.

Figure 5.19 shows the computed velocity vectors along a sample streamwise

plane. The multiple passes of the vortex are clearly visible. The quiescent

conditions that exist outside the slipstream (outboard of the tip vortices) are

evident. For reference purposes, the magnitude of the tip velocity is shown at

the bottom right corner of the picture. This enables a comparison of the relative

magnitudes and sense of the inflow velocities on the blade surface and downwash

velocities in the planes below the blade surface.

Figure 5.20 shows the position of the vortex center compared to the curve-

fitted experimental results. The accelerated downward convection after the first

pass under the blade (ψ = 180o) is well represented. This sudden increase in

downward convection is the result of the downwash from the blade and the

evolving tip vortex on the first passage of the vortex. Overall, the comparison is

reasonable, except for the radial contraction of the wake at large wake age. The

experimental results are seen to converge at 0.86 R, whereas the computational

results were found to converge close to the momentum theory predicted R/
√

2.

The asymptotic contraction in the experiment hints at possible recirculation

effects. However, the downward convection agrees well with experiments for all
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compared wake ages.

5o case

As mentioned earlier in this section, in this case, the tip vortex was seen to pass

close to the blade surface and as a result, had to be resolved within the blade

mesh. The mesh points were refined off the surface in the normal direction and

in the spanwise direction near the region of the first vortex passage. Figure 5.21

shows a wrap-around plane of the blade grid. The clustering in the spanwise

and normal directions are evident. Figure 5.22 compares the computed pressure

distribution on the blade surface with the experimental measurements. Again,

good agreement is achieved with the experimental data, especially at the 89%

spanwise station, which is directly above the first pass of the vortex.

Further evidence of the interaction of the vortex with the blade and its

strength can be seen from fig. 5.23, in which the axial vorticity and vertical

velocity are shown along a plane passing though the quarter chord position of

the blade. The presence of the vortex is clearly seen to disturb the boundary

layer vorticity (fig. 5.23a). Figure 5.23b shows that the vortex induces a signifi-

cant amount of vertical velocity on the blade surface, which in turn would affect

the effective angle of attack of the section. The fact that good agreement is seen

in fig. 5.22d hints that adequate resolution is achieved.

Figure 5.24 shows the tip vortex trajectory and the effect of the blade on

the vortex during the first passage. As the tip vortex is formed and trailed off

the blade surface, there is no downward convection in the initial stages. As

the vortex nears the blade for its first pass, the downward convection tapers

off. When it is directly under the leading edge of the blade, the presence of
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the blade downwash is seen to abruptly change the vortex position in such a

way that the descent rate is increased very rapidly. Figure 5.25 compares the

computed vortex position with curve-fitted experimental measurements. Again,

reasonable agreement is achieved until slightly beyond the first pass, after which

the experimental measurement reaches asymptotic contraction at 0.88R, whereas

the computed wake contracts further.

Figure 5.26 compares the wake positions from the three different cases. Com-

pared to the other cases, the 5o case shows a much sharper change in downward

convection at the first passage. In addition, the downward convection is seen to

be accelerated even at the second pass (ψ = 360o). Unlike the other cases, the 5o

case shows a slight tapering off of the vertical convection and radial contraction

as the vortex approaches the blade. At the first blade passage, these quantities

are seen to be accelerated.

In addition, the 5o case shows significant waviness in its trajectory. A possible

reason for this waviness could be because of the mutual interaction of the different

turns of the wake. Figure 5.27 shows that the different turns are closer to each

other compared to that of the 8o and 12o cases. In addition, the strength of the

vortex is smaller and hence the vortical core is more susceptible to re-alignment.
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Figure 5.12: Blade and periodic background grid boundaries

Figure 5.13: Azimuthal section of background grid (every other point in each

direction)
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Figure 5.14: Schematic showing overlap planes for application of periodic bound-

ary condition.

Figure 5.15: Radial section of background grid showing hole cutting
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(a) y/R = 0.5 (b) y/R = 0.65

(c) y/R = 0.80 (d) y/R = 0.89

(e) y/R = 0.96 (f) y/R = 0.99

Figure 5.16: Comparison of computed blade surface pressure coefficient using

Fine (solid lines) and Coarse (dashed lines) grids with experiment (Circles). for

the 12o collective case.
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(a) y/R = 0.5 (b) y/R = 0.65

(c) y/R = 0.80 (d) y/R = 0.89

(e) y/R = 0.96 (f) y/R = 0.99

Figure 5.17: Comparison of computed blade surface pressure (lines) coefficient

with experiment (circles) for the 8o collective case.
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Figure 5.18: Iso-surfaces of q = 0.5 superimposed by vorticity contours showing

tip vortex evolution for θ0 = 8o
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Figure 5.19: Velocity vectors across a streamwise plane passing though the quar-

ter chord point for θ0 = 8o
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(a) θ0 = 12o

(b) θ0 = 8o

Figure 5.20: Comparison of computed vortex center locations (solid lines) with

curve-fitted experimental results (dashed lines).
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Figure 5.21: Sample wrap-around plane of the blade grid (every other point in

each direction) for the θ0 = 5o case
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(a) y/R = 0.5 (b) y/R = 0.65

(c) y/R = 0.80 (d) y/R = 0.89

(e) y/R = 0.96 (f) y/R = 0.99

Figure 5.22: Comparison of computed blade surface pressure (lines) coefficient

with experiment (circles) for the 5o collective case.
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(a) Axial vorticity

(b) Vertical velocity

Figure 5.23: First pass of vortex at quarter-chord section for θ0 = 5o showing

perpendicular blade vortex interaction
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Figure 5.24: Computed near-blade vortex positions for θ0 = 5o
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Figure 5.25: Comparison of computed vortex center locations (solid lines) with

curve-fitted experimental results (dashed lines) for θ0 = 5o
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Figure 5.26: Comparison of vortex positions for different cases
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Figure 5.27: Comparison of computed vortex trajectory for different cases

203



Chapter 6

Tip Vortex Control

In this chapter, the effects of spanwise blowing as a possible tool for tip vortex

control will be explored, using the fixed and rotary wing simulations of the pre-

vious chapters as baseline conditions. The physics associated with the spanwise

blowing is addressed in detail. In addition, for the fixed wing test case, near-field

experimental validation is presented for spanwise blowing.

6.1 Fixed wing vortex control

The experimental set up [146] for the spanwise blowing configuration is based

on the conditions described in table 4.3. To provide spanwise blowing to the

baseline configuration, provisions were made to supply compressed air to the tip

via a plenum chamber located near the half-span location of the wing. The air

exits along an elongated spanwise slot as shown in fig. 6.1. As shown in fig.

6.1b, the slot geometry is characterized by the length of the slot L, the thickness

δ and the jet angle θjet. The rate of blowing is characterized by the mass blowing
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coefficient, which is given by:

Cµ =
m̂

ρ∞U∞2bc
(6.1)

where, m̂ is the integrated mass rate through the slot and b, c are the half-span

and wing chord respectively (in this case, b=c=150mm).

The baseline (sec. 4.4) and blowing computations were carried out on the

same grid, which ensured at least 12 points across the slot thickness and 85 points

across the length. Modeling in the plenum chamber and the other internal details

of the jet flow will prove to be extremely complicated and expensive and hence,

the jet exit is modeled as a surface boundary condition. This wall boundary

condition was described earlier (see eqn. 3.91 in sec. 3.10.2).

The different spanwise blowing simulations that were performed are detailed

in table 6.1. For all cases, AR=1.0, α = 7.5o, M∞ = 0.1 and Re = 2.2 × 105.

Of these, C1 corresponds to an experimentally tested case and velocity mea-

surements are available one chord downstream of the trailing edge. Numerical

validation of the baseline case with no blowing was presented in Chapter 4.

6.1.1 Numerical results

Figure 6.2 compares the experimental measurements with the computed vertical

and axial velocities along a horizontal line passing through the vortex center one

chord downstream of the trailing edge. Akin to the baseline case (fig. 4.30), the

computed velocities agree well with the experimental measurements.

The vortex structure at two downstream locations in the blowing case is

compared with the baseline calculations in fig. 6.3. At x/c = 1.0, a reduced

swirl velocity and a heightened axial velocity deficit is observed. The disruption
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Case δ/c L/c θjet Ujet/U∞ Cµ CL CD L/D

Baseline - - - - - 0.3398 0.03094 10.98

C1 1/150 0.8 0 0.866 0.00108 0.3542 0.0327 10.83

C2 1/150 0.8 0 0.375 0.00047 0.3465 0.0315 11.00

C3 1/150 0.8 0 0.188 0.00024 0.3431 0.0311 11.03

C4 1/150 0.8 15 0.866 0.00110 0.3538 0.0325 10.89

C5 1/150 0.8 -15 0.866 0.00110 0.3539 0.0326 10.83

Table 6.1: Comparison of different spanwise blowing cases. For all cases, the slit

ends at x/c = −0.17 from the trailing edge

of the cross-flow sweeping across the wing tip caused by the spanwise jet results

in weaker swirl velocities. Further, as will be explained, the spanwise blowing

introduces turbulence directly in the vortical core and this results in strong

decelerating forces, causing a larger axial momentum deficit compared to the

baseline case. Equation 2.1.2 offers a physical explanation for the large axial

velocity: The decelerating forces can be thought of as contributing to a larger

loss of “head” ∆H. As opposed to the baseline case, the large axial velocity

deficit in the control case at x/c = 1.0 would result in an unstable configuration

according to the stability analysis presented in Chapter 2.

Figure 6.4 compares the evolution of the vortex properties for the baseline

and blowing cases. The peak swirl velocity is seen to be lower for the blowing

case initially and is also seen to decay at a more rapid rate. The heightened

axial velocity deficit near the trailing edge is seen to taper off more rapidly

compared to the baseline case, but the defect spreads over a much larger area as

was observed earlier in fig. 6.3.
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The turbulence generated by the jet predominantly arises from the counter-

rotating vortex pair that exists at the jet exit as schematized in fig. 6.5.

The physical mechanism of spanwise blowing is illustrated in figs. 6.6 -6.8,

in which axial vorticity contours are shown along various streamwise sections.

As seen in fig. 6.6a, a counter-rotating vortex pair is formed at the jet exit.

In this case, the upper vortex (CWJ) is in the positive sense (anti-clockwise)

and co-rotates with the eventual tip vortex and the lower (CCWJ) one is in

the “negative” sense. The presence of both these vortices is seen to disrupt the

feeding sheet of vorticity. These vortices are formed (as schematized in fig. 6.5

by the roll-up of the vortex sheets at the top and bottom of the jet face. Figure

6.6b shows that the lower vortex is convected much faster to the top surface

of the wing since it it not shielded from the cross-flow. The slower convection

of the upper vortex also makes it roll up faster. As seen from fig. 6.6c, by the

quarter-chord location, the upper vortex entrains vorticity from the feeding sheet

and slowly develops into the tip vortex. The presence and strength of the tip

vortex results in a secondary counter-rotating region of vorticity (SV), similar

to that seen in the vortex formation studies (sec. 4.2). As seen from fig. 6.7, as

the tip vortex evolves, entraining vorticity from the feeding sheet and the CWJ,

its “edges” are seen to interact with the CCWJ and is hence weakened. The

interaction with the CWJ and the SV also tends to “lift” the evolving tip vortex

off the surface as seen in fig. 6.8a.

Beyond the downstream end of the jet, the large mass-rate of flow from the

lower surface is seen to tilt the vorticity vector and severely affect the axial com-

ponent of vorticity (the result is seen in fig. 6.8b). Remarkably, the rotational

effects are strong enough that by 1 chord downstream of the trailing edge, the
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tip vortex rolls-up into in a coherent form (fig. 6.8c). However, as compared to

the baseline case and blowing case C2 (fig. 6.9), the vortex structure for case C1

is not entirely axisymmetric since there seems to be an interaction with a region

of counter-rotating vorticity (blue patch inboard of the tip vortex in fig. 6.8c).

As mentioned earlier, the decelerating effects of the interactions and axial

shear cause the large axial momentum deficit.

As seen in table 6.1, the blowing causes higher lift, evidently due to lower

downwash velocities. Also, a larger drag force is noticed, which can be attributed

to the high viscous losses and streamline disruption occurring during the inter-

action process.

Effect of jet velocity

Figure 6.10 shows the effect of blowing intensity on the vortex evolution. The

reduction in swirl and axial velocities does not appear to be a linear function

of the blowing intensity. As seen in table 6.1, the lower blowing rates actually

result in a larger L/D efficiency, presumably due to the lower drag penalty.

Effect of jet exit angle

No significant differences in the vortex structure or lift and drag were noticed

for the θjet = ±15o jet angle cases compared to the θjet = 0 case.

6.2 Rotary blade vortex control

The baseline configuration for the spanwise blowing was chosen to be the same

as that presented in table 5.1. For the blowing cases, four slots on the wing tip,
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(a) Slot dimensions. (Slot at θjet = 0o)

θjet

jetV

δ

To root

(b) Slot angle

Figure 6.1: Spanwise blowing slot geometry
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(a) Vertical velocity

(b) Axial velocity

Figure 6.2: Comparison of computed velocity profile (line) with experiment (cir-

cles) at x/c = 1.0 for blowing case C1 (Cµ = 0.00108).
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(a) Vertical velocity, x/c = 1.0 (b) Vertical velocity, x/c = 10.0

(c) Axial velocity, x/c = 1.0 (d) Axial velocity, x/c = 10.0

Figure 6.3: Comparison of Baseline velocity profiles (solid lines) with blowing

case C1 (dashed lines).
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(a) Vertical velocity

(b) Axial velocity

Figure 6.4: Comparison of Baseline vortex evolution with blowing case C1.
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Cross−stream flow

Spanwise jet flow

Figure 6.5: Schematic of formation of counter-rotating vortex pair in spanwise

blowing.

each approximately of breadth 0.04c and average length 0.07c were used. This

configuration was chosen because it resembles the blowing experimental setup of

Han et. al. [111]. In their experiment, 4 circular slots of diameter 0.067c were

used and hence both configurations approximately have the same exit areas. The

slot placement was also roughly similar. In the experiment, the inlet of the slots

was at the leading edge and hence the internal flow was driven by the dynamic

pressure gradient between the slot inlet and exit. In the present computations,

the effect of the slot is modeled as a surface boundary condition and the slot exit

velocity was prescribed. Hence, the computations do not exactly correspond to

the experiment and hence one-to-one comparisons will not be made. It is worth

mentioning that the experiment was able to demonstrate upto 50% reduction in

swirl velocity within a wake-age of 90o.

The summary of the blowing simulations is given in table 6.2. Figure 6.11

shows the location of the slots along with velocity vectors in two axial planes.
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(a) x/c = −0.95 (b) x/c = −0.85

(c) x/c = −0.75

Figure 6.6: Axial vorticity evolution for blowing case C1. FS: Feeding sheet,

CWJ: Clockwise vorticity from spanwise jet, CCWJ: Counter clockwise vorticity

from spanwise jet, TV: Tip vortex, SV: Secondary vortex (Counter-rotating to

TV).
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(a) x/c = −0.65

(b) x/c = −0.55

(c) x/c = −0.45

Figure 6.7: Axial vorticity evolution for blowing case C1.
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(a) x/c = −0.25

(b) x/c = −0.10

(c) x/c = 1.0

Figure 6.8: Axial vorticity evolution for blowing case C1.
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(a) Baseline

(b) Blowing case C2

Figure 6.9: Axial vorticity contours for baseline case and blowing case C2 at

x/c = 1.0.
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(a) Peak Swirl velocity

(b) Core radius (Curve-fit)

(c) Peak axial velocity deficit

Figure 6.10: Effect of jet velocity on vortex evolution
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Case Ujet/Utip Cµ CT FM

Baseline - - 0.00195 0.302

C1 0.025 0.00014 0.00192 0.294

C2 0.05 0.00027 0.00187 0.283

C3 0.1 0.0005 0.00182 0.274

C4 0.2 0.0011 0.00174 0.268

Table 6.2: Comparison of different spanwise blowing cases for the hovering rotor.

The resulting streamlines (not shown) were found to be clearly distorted as a

result of the spanwise blowing. The velocity vector plots correspond to blowing

case C3. The blowing from the slots appear to serve as effective riblets and

the flow seems to be accelerated in the region between the slots. When this

accelerated flow encounters the mainly streamwise flow on the upper-surface

of the wing, large scale mixing occurs and one can expect increased turbulent

diffusion. As mentioned earlier in the paper, the separated boundary layer at the

tip also contributes to the mixing process. The resulting axial velocity shows

a very high deficit, which can be directly attributed to the diffusion process

described in sec. 6.1.1.

The large axial velocity deficit also cause a re-orientation of the vorticity in

the trailing vortex. This is made clear in the vorticity contour plots shown in fig.

6.12. Consider the baseline case: fig. 6.12a, 6.12c show that the vorticity vector

is mainly oriented in the streamwise direction and the magnitude is nominally

axisymmetric. In the spanwise blowing case, as seen from fig. 6.12b,d show that

the spanwise component is significant and more importantly, asymmetric. The

calculated shear strain rates were also high in this case and these two factors
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Figure 6.11: Velocity vectors near blade surface for spanwise blowing case (ref-

erence frame attached to the blade). Slot locations shown in white.

can result in increased molecular and turbulent diffusion in the core. Figure 6.13

shows the evolution of the vortex properties for different blowing configurations.

Similar to the fixed wing cases, no linear relationships were found between the

blowing velocity and the reduction in vortex strengths. Figure 6.14 compares

sample velocity profiles at a wake-age of 295o.

As seen in table 6.2, the loss in performance in terms of thrust and figure of

merit is not significant compared to the achieved reduction in vortex strength.

Hence, spanwise blowing appears to be a promising concept for vortex control.

6.3 Summary

In this chapter, the effect of spanwise tip blowing was studied on the formation

and development of tip vortices from a fixed wing and a rotary blade. The

physics of vortex formation was found to be complicated. The feeding vortex

sheet from the trailing was observed to heavily interact with a pair of counter-

rotating vortices that originated at the jet exit, resulting in a diffuse vortex

compared to the baseline cases with no blowing. The computations suggest that
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(a) Baseline ωy (b) Control (C3) ωy

(c) Baseline |ω| (d) Control (C3) |ω|

Figure 6.12: Spanwise and total vorticity contours at ψ = 3o for baseline and

blowing cases
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(a) Swirl velocity

(b) Axial velocity

Figure 6.13: Evolution of vortex properties for different spanwise blowing cases
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(a) Vertical velocity

(b) Axial velocity

Figure 6.14: Vortex velocity profiles at ψ = 295o for different spanwise blowing

cases
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this concept holds promise in tip vortex alleviation. However, a myriad of issues

remain:

- The bleeding mechanism was not addressed and the jet exit was modeled as

a surface boundary condition. Though bleeding from the leading edge has been

accomplished experimentally [111], the mass flow rate has not been determined

and hence, it remains to be seen whether the current requirements are practical.

- As with any RANS calculation, without extensive experimental data, the

fidelity of the turbulence model is always an unknown factor. Although the

computations compared well with the experimental measurements downstream

of the trailing edge, a more detailed validation of the vortex formation process

is required to develop full confidence in the methodology. However, the inavail-

ability of experimental data serves to be a hindrance.

- As a result of the problem size, it was not possible to make detailed grid

refinement studies for the blowing cases.
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Chapter 7

Closure

A detailed understanding of tip vortices and trailed wakes in general is imperative

in the design of efficient Aerospace vehicles. The RANS equations represent the

highest level of fluid dynamic approximation that is currently feasible in the

simulation of high Reynolds number flows. However, practical RANS simulations

of tip vortex formation and evolution suffer from:

a) Numerical diffusion, which arises primarily from inaccuracies in the dis-

cretization of the convective term in the NS equations, and

b) Inaccurate turbulence modeling, which is a result of the inavailability of

a perfect closure model to the RANS equations.

In this thesis, the error due to numerical diffusion is reduced by the use

of proper grid resolution (by means of grid clustering and overset meshes) and

high order accurate numerical schemes. None of the available turbulence models

are accurate or efficient enough to completely describe the complex tip vortex

flow-field, but reliable solutions were found to be obtained by adding a simple

correction to the production term in the Spalart-Allmaras turbulence model.

Using a systematic approach, a wide variety of experimental test cases were sim-
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ulated and validated with measured data. The fidelity of the approach allowed

for a detailed study of the underlying physics of vortex formation and evolution.

In addition, a strategy of vortex control, namely, spanwise blowing was evalu-

ated within the framework of the methodology. The simulation studies are sup-

plemented by simplified theoretical studies of axisymmetric vortices and their

stability that are aimed at furthering the understanding of vortex-dominated

flow-fields.

7.1 Key observations and conclusions

7.1.1 Theoretical studies of tip vortices

A linear stability analysis was performed on axisymmetric parallel swirling flow

with axial velocity.

• For realistic tip vortices, the presence of the swirl was observed to act

as a stabilizing influence. The stability characteristics were seen to be largely

insensitive to changes in the swirl velocity profile outside the vortical core.

• The presence of axial velocity was confirmed to be a destabilizing influence

and the instability modes were found to be highly sensitive to the magnitude

and gradient of axial velocity in the core region.

7.1.2 Theoretical numerical studies

A theoretical study was conducted on the accuracy of spatial discretization of

the first and second derivatives using Fourier-stability analysis. The novelty

of this analysis is that it was extended to the study of discretization errors on

geometrically stretched meshes. Based on this analysis, the following conclusions
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were drawn:

• On a uniform mesh, the use of fifth or higher order accurate schemes for

the first derivative guaranteed an error of less than 0.1% when at least 10 points

are used per wavelength of discretization.

• When “stretched” meshes are used, the accuracy was seen to deteriorate

and all the schemes formally become first order accurate. However, for moderate

stretching ratios (less than 10% stretching), higher order schemes were seen to

give reasonable accuracy using O(10) points per wavelength.

• When tested on an idealized inviscid vortex convection problem, fifth and

higher order schemes were found to be maintain the vortex structure and peak-

to-peak velocity within 0.1% error for long convection times when around 10

points were used per core-length of discretization.

The above-mentioned facts were used as guidelines in mesh resolution in the

more complex 3D simulations. For all the calculations presented, the finest grids

used 10 − 25 points per core-length of the tip vortex. Further, in the region of

tip vortex formation and evolution, the fine mesh spacing was maintained along

with very small (or no) stretching in the cross-stream directions.

7.1.3 Near-field fixed wing vortex formation studies

Initial near-field validation studies were performed on a low aspect ratio round

tip NACA 0012 wing in a wind tunnel. For this case,

• Good agreement was achieved with experimental measurement for surface

pressure, swirl and axial velocities as well as other overall qualitative flow fea-

tures.

• Though the magnitude of the primary Reynolds shear stress was predicted
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reasonably, the phasing of these terms was different compared to the measure-

ments, a fact that can be attributed to the isotropy of the turbulence model.

• The use of high order schemes (for the inviscid terms) was seen to be

critical to reduce numerical dissipation for the grids that were used. A simple

modification to the production term of the turbulence model was required to

correctly represent the vortex evolution downstream of the trailing edge.

Once a measure of confidence was achieved with the methodology, the physics

of vortex formation was explored in detail. This study showed that

• Streamwise-oriented vorticity is developed by a feeding sheet comprised of

the cross-flow boundary layer. Initial evidence of the tip vortex is seen when

this boundary layer separates from the surface. The roll-up of this separated

boundary layer forms a system of vortices, which rapidly merge into a single

coherent vortex.

• The use of a thinner airfoil section caused advanced cross-flow separation as

a result of the heightened spanwise pressure gradients. This causes a lifting-off

of the feeding vortex sheet from the wing surface and as a result, the tip vortex

was observed to roll up rapidly.

• At lower Reynolds numbers, the larger viscous deceleration resulted in a

more diffuse vortex with lower swirl and axial velocities.

• When a flat tip shape was used, the cross-flow separation point was seen

to be fixed by the geometry (at either edge) and as a result, the tip vortex was

more diffuse.

The studies up to this point concentrated on vortex formation. In order to

study vortex evolution in the extended near-field, a highly refined overset mesh

was added behind the trailing edge of a fixed wing, with the axis of the mesh
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aligned in the free-stream direction.

• With a uniform cross-stream spacing that resulted in 10-15 points per

core-length and a fifth order scheme, good agreement with experimental data

was achieved 1 chord downstream of the trailing edge and further downstream,

the decay was minimal.

7.1.4 Rotary blade studies

Using cylindrical background grids, single and two bladed hovering rotor systems

were studied.

• For the computations on the single bladed rotor, fair agreement was achieved

with the experimental swirl velocity measurements upto 300o of wake evolution

behind the trailing edge.

• For the 2 bladed rotor, the tip vortex could be tracked upto 4 rotor revolu-

tions behind the trailing edge. Comparisons with experimental surface pressure

measurements and vortex trajectory data established the accuracy and fidelity

of the methodology.

• With the use of appropriately refined meshes, the interaction of the blade

with the first vortex passage was found to be sufficiently resolved.

7.1.5 Vortex control

Finally, the effect of spanwise tip blowing was studied on a fixed wing and a

hovering rotor. The jet exit was modeled as a surface boundary condition.

• For a fixed wing, numerical validation of spanwise blowing with experimen-

tal velocity profile measurements showed excellent agreement.
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• The effect of spanwise blowing was to reduce the magnitude and develop-

ment of the axial and tangential momentum. The mechanism behind this effect

appears to be the interaction of a pair of counter-rotating vortices generated

at the jet exit with the feeding sheet of vorticity. The resulting tip vortex was

found to be much more diffuse compared to the baseline case with no blowing.

• Using moderate blowing ratios upto 30% reduction in peak swirl velocity

was seen to be achieved in both the fixed and rotary wing cases with a marginal

performance penalty. Although the details of the internal jet flow were not ad-

dressed, results suggest that concept holds promise as an effective vortex control

strategy.

Overall, the level of agreement of the computed quantities with the experimen-

tal measurements suggests that the methodology will prove to be a useful tool in

understanding tip vortex flow-fields. This level of consistent performance has not

been demonstrated before over such a variety of test cases. Further, the valida-

tions span a wide range of chord (Re = 2.2×105−4.6×106) and vortex Reynolds

numbers (Rev ≈ 0.8 × 105 − 2 × 106). As mentioned in the introduction, com-

parisons of computed vortex structure with experimental measurements beyond

a few chord lengths downstream of the trailing edge are lacking in the literature.

In addition to the validation studies, the fidelity of the methodology enabled

a detailed study of the underlying flow physics. In a broad sense, the developed

methodology and the lessons learnt in the process can be used as guidelines to

evaluate future implementations of algorithms and turbulence models that can

more accurately and/or efficiently compute the flow-field around general lifting

surfaces.
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7.2 Recommendations for future work

The computational results presented in this thesis represent some of the best

available RANS-based validation studies with experiments. However, there is

tremendous scope for improvement in many aspects of the methodology and

incentive for potential applications.

7.2.1 Methodology

• The extremely complicated nature of the flow, especially during the vortex

formation is a prime example of non-equilibrium1flow. In addition, anisotropic

effects also seem to be important. Current day RANS models, especially linear

eddy viscosity-based models, are not advanced enough to comprehensively ad-

dress these issues. Therefore, a primary suggestion for the continuation of this

work would be to use the same methodology, but with more advanced turbulence

models such as the so-called Second Moment Closure models, which, in theory,

should be able to represent the turbulent effects better.

• At present, the evaluation of the viscous fluxes is second-order, whereas the

inviscid fluxes are computed to much higher order of accuracy. Even though the

flow-field is dominated by inertial forces as a consequence of the high Reynolds

number, a higher order viscous discretization can be expected to improve the

overall accuracy of the flow solver.

• In its present state, run-times for large problems like the hovering rotor

exceed many hundreds of CPU hours (refer Appendix C for further information).

1Non-equilibrium boundary layers are characterized by multiple length scales and/or a

significant imbalance between production and dissipation.
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Hence, parallel processing capability would be invaluable in reducing the run-

time.

• The interpolation across the overset meshes is not guaranteed to be con-

servative. This could affect the solution accuracy especially if information is

passed across high gradient regions such as the vortex/blade mesh interface. A

more rigorous approach could involve matching fluxes across the interface, thus

assuring global conservativeness.

7.2.2 Applications

• All the studies in this work have focused on simple wing/blade sections and

planforms. A wing in a practical set up, for instance would be more complicated

in that a system of flaps/slats or other high-lift devices might be present. In

such a case, the bound circulation distribution would be completely different

and would significantly affect the vortex formation and wake roll-up, with mul-

tiple vortex structures. A possible extension of this work could involve such an

application.

• The present rotor calculations involved hovering flight in which the blade

mesh was fixed in reference to the background mesh. Under forward flight con-

ditions, the relative motion of the meshes introduces extra complications like

dynamic hole-cutting. In addition, efficient time integration schemes have to be

designed. The present methodology is general enough to be extended to such

applications.

• For the blowing configuration, the bleeding mechanism was not addressed

and the jet exit was modeled as a surface boundary condition. Though bleeding

from the leading edge has been accomplished experimentally [111], the mass
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flow rate has not been determined and hence, it remains to be seen whether

the current requirements are practical. A more detailed study could involve

using overset meshes to model the internal details of the slot, thus removing the

uncertainty of the achievable mass rate of flow.
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Appendix A

Resolution Requirements for Various

Numerical Simulations

In this section, a very rough estimate of the resolution required by various levels

of fluid dynamic approximations will be presented. These estimates are purely

for demonstrative purposes and are not meant to be used as guidelines for simu-

lations. Computations of the tip vortex of a sample aircraft wing of aspect ratio

10 operating at a Reynolds number of 5 × 106 will be considered.

The spatial extent of the computational domain beyond the trailing edge will

be assumed to be 5 span lengths, allowing for complete development of the tip

vortex. The domain will be split into two regions:

- The near-wall region that includes the boundary layers and extends to

atleast 1 chord length away from the surface, giving a domain volume of dimen-

sion 10c× 1c× 1c = 10c3.

- The wake region that starts from the trailing edge of the wing and extends

to a streamwise distance of 5 span lengths, giving a domain volume of dimension

2c × 2c × 50c = 200c3. (It is further assumed that the wing boundary layer is

not important in the wake region and the vortex will be resolved within a cross
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stream box of dimension 2c× 2c.)

The characteristic length scale of the body (L) is taken to be the wing chord

(c).

Direct Numerical Simulations (DNS)

For DNS, the total number of points for a unit cube of side c is (L/η)3 ≈

Re9/4. Therefore the total number of points required is ≈ 210Re9/4. The number

of time-steps to compute the flow in a unit cube is ≈ Re3/4. Therefore, to

convect 50 chord lengths of travel and assuming atleast 10 periods to obtain

the time averaged data, the total number of time steps ≈ 500Re3/4. Hence the

total operation count (No. of grid points times the number of time steps) is

105Re3 ≈ 1025.

Note: The estimates are based solely on Kolmogorov scales and can be found

in any text on turbulent flow such as [19].

Large Eddy Simulation (LES)

For LES, in order to resolve the small dynamic eddies in the near-wall region,

the minimum cell sizes are required to be atleast 100 wall units in the streamwise

direction, 20 wall units in the spanwise direction and 1 wall unit in the wall

normal direction [21]. One wall unit would correspond to c

Re
√

Cf /2
[18], where Cf

is the average skin-friction coefficient. For a flat plate, Cf ≈ 0.455
ln2(0.06Re)

= 0.0027

[18]. Therefore, one wall unit ≈ 5 × 10−6c. Hence, the total number of wall

points is 10c3

100×20×1×(5×10−6c)3
≈ 1012.

In the wake region, in order to resolve the eddies, atleast 20 points are re-

quired per vorticity thickness [21]. Assuming the vorticity thickness ≈ 2rc ≈

0.1c, one would require 1
(0.1/20)3

≈ 107 points per unit cube. Thus, for the wake

region, the total number of points ≈ 109. The time-step size would be governed
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by the smallest mesh distance (1 wall unit), and hence the non-dimensional time-

step can be expected to be 5× 10−6. Again, to convect to 50 chord lengths and

to have atleast 10 averaging cycles, the total number of time-steps would be:

500/(5 × 10−6) ≈ 108.

LES with wall-layer models

For LES with wall layer models, savings can be expected in the stream-

wise and spanwise directions in the near-wall region [24]. At a rather coarse

level, spacing requirements would reduce to approximately 600 wall units in the

streamwise direction and 300 wall units in the spanwise direction, resulting in

1010 points in the near-wall mesh. Also, since the near wall eddies do not have

to be resolved, the time-step restriction is assumed to be relaxed by an order of

magnitude.

RANS calculations

In the RANS calculations, except for the requirement of the near-wall normal

spacing (which is the same as the LES), the other mesh spacings are primarily

governed by the required solution accuracy. Hence, using the computations

in this thesis and work done by previous researchers (for instance, [40]) as a

guideline, an extremely fine near-body mesh can be expected to require the

order of 107 points. Assuming 10 points per core-length (2rc) in the cross-stream

direction of the tip vortex region and an average axial spacing of 0.5 c (far away

from the wing surface, the streamwise gradients will be small) the total number

of wake points (50× 2× 2c3)/(0.01× 0.01× 0.5c3) ≈ 107. Also, these are steady

state computations and hence a good implicit solver can be expected to converge

in less than 104 iterations.

Euler equations
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For the Euler equations, typically, a factor of 2 or 3 reduction can be achieved

in number of points required in the wall-normal direction, along with a more

rapid convergence to a steady state.

Inviscid vortex methods

Assume a vortex lattice method with 100 panels (of size 1c × 0.2c in the

spanwise and streamwise directions respectively) to model the wing surface and

10 panels shed in wake region every time-step (typical of refined computations

shown in [27]). To reach a distance of 50c downstream of the trailing edge, 250

time-steps are required.
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Appendix B

Linear Stability Analysis of

Axisymmetric Vortices

As mentioned in sec. 2.4, the incompressible NS equations are linearized about a

mean axisymmetric flow (U, V,W ) in the radial, tangential and axial directions.

Imposing disturbances of the form

{u, v, w, p} = {iF (r), G(r), H(r), P (r)}ei(αx+mθ−ωt), (B.1)

substituting into the NS equations and linearizing, the following equations are

obtained [68]:

The linearized continuity equation is given by:

F ′′ +
F

r
+
mG

r
+ αH = 0 (B.2)

The linearized r, θ and x momentum equations are respectively,

− iF
′′

Rev
+ i

[

U − 1

Revr

]

F ′ +

[

ω + i
dU

dr
− mV

r
− αW +

i

Rev

(

m2 + 1

r2
+ α2

)]

F

+

[

i2m

Revr2
− 2V

r

]

G+ P ′ = 0 (B.3)

− G′′

Rev

+

[

U − 1

Revr

]

G′ +

[

−iω + im
V

r
+ iαW +

U

r
+

1

Rev

(

m2 + 1

r2
+ α2

)]

G
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+

[

2m

Revr2
+
iV

r
+ i

dV

dr

]

F +
imP

r
= 0 (B.4)

− H ′′

Rev
+

[

U − 1

Revr

]

H ′ +

[

−iω + im
V

r
+ iαW +

1

Rev

(

m2

r2
+ α2

)]

H

[

2m

Revr2
+
iV

r
+ i

dV

dr

]

F +
idW

dr
+ iαP = 0 (B.5)

The boundary conditions complete the definition of the eigenvalue problem and

are give by:

F (∞) = G(∞) = H(∞) = P (∞) = 0 (B.6)

if m = 0, F (0) = G(0) = H ′(0) = P ′(0) = 0 (B.7)

if |m| > 1, F (0) = G(0) = H(0) = P (0) = 0 (B.8)

if m = ±1, F (0) ±G(0) = F ′ = H ′(0) = P ′(0) = 0 (B.9)

The above set of equations are numerically solved by mapping the space r =

[0, rmax] to a bounded interval ξ = [−1, 1], using the transformation

r = a
1 + ξ

b− ξ
, with b = 1 + 2

a

rmax
(B.10)

Values of a = 3 and rmax = 100 are recommended in [68] and are found to give

good clustering, while maintaining the outer boundary sufficiently far-off. The

discretization of the above equations is done using Chebychev polynomials as

discussed in [69], [68].
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Appendix C

CPU time per iteration for 3D

Compressible RANS solver

In this section, in order to obtain an estimate of the computational cost, several

of the test cases that were presented in the thesis were evaluated for CPU time.

On average, approximately 11 seconds of CPU time was required per iteration

per million points on a single Intel Xeon processor with 2GB of RAM and a

clock speed of 3.33GHz. Table C.1 shows a break up of the time per iteration

for a representative overset mesh computation.

Procedure Time per iteration

Inviscid RHS 35%

Viscous RHS 26%

LHS and Inversion 20%

Turbulence model 18%

BC and Interpolation < 1%

Table C.1: Typical break-up of CPU time per iteration
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