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Abstract

In the first part of this paper, under the assumption of noiseless transmission, we develop
two entropy-coded subband image coding schemes. The difference between these schemes is
the procedure used for encoding the lowest frequency subband: predictive coding is used in one
system and transform coding in the other. Other subbands are encoded using zero-memory
quantization. After a careful study of subband statistics, the quantization parameters, the
corresponding Huffman codes and the bit allocation among subbands are all optimized. It is
shown that both schemes perform considerably better than the scheme developed by Woods
and O’Neil [2]. Roughly speaking, these new schemes perform the same as that in [2] at half
the encoding rate. In the second part of the paper, after demonstrating the unacceptable
sensitivity of these schemes to transmission noise, we will develop a combined source/channel
coding scheme in which rate-compatible convolutional codes are used to provide protection
against channel noise. A packetization scheme to prevent infinite error propagation is used
and an algorithm for optimal assignment of bits between the source and channel encoders
of different subbands is developed. We will show that, in the presence of channel noise,
these channel-optimized schemes offer dramatic performance improvements over the schemes
designed based on a noiseless channel assumption; they also perform better than that of [2]
even in the absence of channel noise. Finally, the robustness of the proposed schemes against
channel mismatch will be studied.
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I. Introduction

The concept of subband coding (SBC) was first introduced by Crochiere et al. [1] in the
context of speech coding. Since then, this technique has received considerable attention as a
powerful source coding technique. Recently, Woods and O’Neil [2] extended this concept to
the encoding of monochrome images in which a fullband image is split into 16 equally divided
subbands, by means of a two-dimensional (2-D) separable quadrature mirror filter (QMF)
bank, each of which is encoded by a separate DPCM encoder. A bit allocation procedure
is used to distribute the encoding bits among subbands in order to minimize the overall
reconstruction mean squared-error (MSE). The development of the subband image coding
scheme in [2] is considered an important accomplishment in image coding because it resulted
in a coding scheme that performs better than other well-known schemes such as adaptive
discrete cosine transform (DCT), vector quantization (VQ) and differential VQ for most bit
rates of interest. In addition, it was established in [2] that the SBC has good subjective error
properties and is appropriate for progressive image transmissions. These encouraging results
have led to a significant amount of research activity on subband image coding.

In another recent paper, Gharavi and Tabatabai [3] have introduced a SBC scheme in
which a QMF bank is used to split an image into 7 unequally divided subbands; the lowest
frequency subband is encoded by DPCM and the others by zero-memory quantizers. The
zero-memory quantizers have a center dead zone to eliminate the picture noise included in
the higher frequency subbands. Extensions to color image coding were also considered in [3].

In [4] and [5] the application of VQ to encoding of subbands is considered. Here, VQ
is used to encode vectors consisting of samples from different subbands. In [5], for the
asymptotic case of high bit rates, the coding gain of VQ over scalar quantization (SQ) is
computed analytically. Safranek et al. [6] and Kim et al. [7] also used VQ in SBC of images,
where the VQ is applied within a subband in contrast to [4], [5].

The focus of this paper is twofold: (i) development of more efficient SBC coding schemes
for noiseless channels and (ii) study of channel error effects on the performance of SBC and
the development of a combined source/channel coding scheme for SBC of images. Under
the assumption of a noiseless channel, in an effort to develop more efficient subband coding
schemes, we have tried to combine SBC ideas with other well-known coding techniques. It is in
this vein that we have considered two different entropy-coded subband image coding schemes.
In both schemes, all subbands except the lowest frequency subband (LFS) are quantized by
zero-memory quantizers. In the first scheme (System A), the LFS is quantized by a predictive
quantizer (DPCM) while in second scheme (System B) it is encoded by a 2-D DCT encoder.
The quantizer outputs in both systems are entropy coded by means of Huffman codes. The
performance results obtained after optimizing the system parameters are very encouraging as
they suggest important performance improvements over the nonadaptive scheme in [2], and
therefore, over all other schemes against which comparisons were made in [2]. However, these
systems can be very sensitive to transmission noise. In fact, we will demonstrate that without
some corrective measures, the two schemes developed here will be unacceptably sensitive to
channel noise effects (much more than the scheme in [2]). To circumvent this problem, we
have developed a combined source/channel coding scheme in which rate-compatible punctured
convolutional codes are used for channel error protection. These systems perform dramatically
better than their counterparts designed based on a noiseless channel. In all cases considered,
the average performance of the channel-optimized systems is better than the performance of

2



the scheme in [2] over a noiseless channel.

The rest of this paper is organized as follows. Section II includes a brief discussion about
the QMF bank. In Section III, the statistical properties of subbands are studied. The results
of Section III provide the motivation for two SBC schemes described in Section IV. In this
section, the two coding schemes are described and simulation results, including comparisons
with the scheme in [2], are presented. Section V includes a study of the sensitivity of the
systems in Section IV over a noisy channel. In Section VI, a combined source/channel coding
scheme is described and simulation results over a variety of conditions are presented. Finally,
Section VII contains a summary and conclusions.

II. Basic Structure of Subband Image Coders

In this section, we will briefly describe the structure of subband image coding systems; the
reader is referred to [2] and [3] for details. The basic idea behind SBC is that of analyzing
the original fullband image into a number of narrow-band images that are encoded and
transmitted separately; the decoded subbands will then be used to synthesize a replica of the
original image.

The analysis and synthesis are accomplished by using a QMF bank designed to eliminate
the aliasing effects of bandpass filtering. Furthermore, 2-D QMF’s can be separated into a
cascade of two 1-D QMF’s in each direction, which makes the actual implementation of the
filters quite easy [2], [3]. The block diagrams of the 2-D separable QMF bank and the inverse
QMF bank used for the analysis and synthesis of subbands are illustrated in Fig. 1. The
analysis is performed by row filtering and 2-to-1 decimation followed by column filtering and
2-to-1 decimation. In Fig. 1, Hy(z) indicates the transfer function of the 1-D QMF; for
this filter we have used the 32-point 1-D QMF designated as 32D in [8]. The filtering was
executed by spatial convolution in which the symmetric extension method proposed in [9] is
used instead of the usual circular convolution to avoid the boundary effects. The superiority
of this method is discussed in [9].

By applying the QMF bank, we can split the original fullband image into four equally-
divided subbands referred to as the “I1I”, “Ih”, “hl” and “hAh” subbands. Here, “I” and “h”
are used to denote low and high frequencies, respectively. Each of these subbands is once
more split into four equally-divided subbands by using the same QMF bank resulting in
a total of 16 equally-divided subbands. The notation used to denote these 16 subbands is
“vw—zy”, where “vw” denotes the subband corresponding to the first stage and “zy” denotes
the subband corresponding to the second stage. For example, ‘Il — hl” is used to denote the
‘hl” subband obtained from the second stage analysis of the “II” subband of the first stage.

Each of the 16 subbands will be encoded by an appropriately designed encoder and
transmitted to the receiver. The design of the encoder for different subbands is the major
objective of this paper and will be discussed in the subsequent sections. In the receiver, the
received signal is decoded and synthesized into the reconstructed image. For the synthesis, the
decoded version of each of the 16 subbands is filtered, after 1-to-2 interpolation, by the same
QMF in the column direction. The higher frequency subband is then subtracted from the
lower frequency subband to generate a subband of double bandwidth. The same operation is
repeated in the row direction to reconstruct four subbands. The same procedure is repeated
on these four subbands to reconstruct a replica of the original image [2].
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ITI. Statistical Properties of Subbands

In this section we summarize the results of our study of the statistical properties of
the subbands. This includes the computation of the mean value, variance and correlation
coefficients of each of the subbands. Also, in an effort to design “good” encoders, we study
the shape of the distribution of subbands (for the LFS, we consider the distribution of the
prediction residual or the 2-D DCT coefficients).

A. Mean Values, Variances and Correlations

To gain some insight about the statistical properties of the subband data, we have
computed the mean, variance and correlation coefficients (row and column directions) of the
different subbands for a variety of images. These results for a 512 x 512, 8-bit gray scale image
called “LENA” (original image in Fig. 6.a) are summarized in Table I. It can be observed
from these results that:

1. More than 95% of the total energy is contained in the LF'S.

2. The mean value of all subbands except the LF'S is very small compared with the standard
deviation implying that in quantizing the subbands the mean value can be assumed to
be zero.

3. The correlation properties of the LF'S are similar to that of the original image. Therefore,
conventional image coding techniques can be used to encode the LFS.

4. All subbands except the LF'S have small correlation coefficients; this implies that little
gain should be expected from exploiting the inter-pixel redundancies in these subbands.
Furthermore, we have investigated the cross-correlation between the subbands, and have

found out that there is negligible cross-correlation between any pair of subbands. Based on
these observations, we have decided to consider predictive quantization or 2-D DCT coding
of the LFS and zero-memory quantization for other subbands.

B. Shape of the Distribution

Since the shape of the distribution plays an important role in the design of quantizers for
different subbands, we have compared the empirical distribution of the subbands against that
of the so-called Generalized Gaussian Distribution (GGD). The probability density function
(pdf) associated with the GGD is given by [10]

o) = | SE ] exp (=t )]} (12)

where

2o B) = 67 [%3] , (1b)

o > 01is a shape parameter describing the exponential rate of decay, 8 is the standard deviation
of the distribution and I'(-) is the gamma function. The GGD with o = 2.0 coincides with
the Gaussian pdf while for « = 1.0 it becomes the Laplacian pdf. The GGD with « in the
range 0.1 < a < 1.0 provides a useful model for broad-tailed densities [10].

Westerink et al. [11] reported that the distribution of subband data (except LFS) is
approximated by the GGD with o = 0.5 and that the prediction residual of the LFS is ap-
proximated by the GGD with o = 0.75. It is not mentioned in [11], however, how these
results are obtained. We have adopted the Kolmogorov-Smirnov (KS) test [12] as a distance
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measure between the variance-normalized empirical distribution and the probability distri-
bution function of the GGD with # = 1.0. The KS test was carried out for 12 different 8-bit
monochrome images listed in Table II, which consist of 6 images of size 256 x 256 and 6
images of size 512 x 512. We have searched for the best value of & (in the sense of minimiz-
ing the KS distance) in the range 0.4 < a < 2.0. For each image, the best value of « for
all subbands except the LFS as well as the best o« for the prediction residual of the LFS is
listed in Table III. Also, the best a obtained from the cumulative histograms (generated by
accumulating the variance-normalized histograms of all images) is included in Table III. It
can be concluded from these results that « = 0.7 is a good approximation for the shape of
the pdf of all subbands except the LFS; for the prediction residual of the LFS, a = 0.6 is
found to be best. Therefore, the pdf’s under consideration are more broad-tailed than the
Laplacian pdf which was assumed in [2] and [3]. In this sense, our results agree with those
in [11], although there are some discrepancies in the specific values of «.

Since in our studies we will consider the 2-D DCT coding as a candidate for encoding the
LF'S, we have also conducted the KS test on the DCT coefficients of the LFS for blocksizes of
4 x4, 8 x8and 16 x 16. We have considered the DC coeflicient separately as its distribution
appears to be considerably different from that of other coefficients. The results of the KS
test for the DCT coefficients, summarized in Table IV, indicate that the best value of « is
approximately 2.0 for the DC coefficient while it varies for other coefficients depending on
the blocksize. For other coeflicients, « = 0.6,0.8 and 1.0 were found to be best for blocksizes
of 4 x 4, 8 x 8 and 16 x 16, respectively.

The values of « obtained in these tables will be used in the design of quantizers in the
next section.

IV. Coding Schemes and Performance Results
In this section we describe the details of our two coding schemes and present simulation
results obtained in encoding actual images.

A. Basic Approach

Our results in the previous section indicate that the LFS has statistical characteristics
similar to those of the fullband image and hence conventional image coding techniques (pre-
dictive coding or transform coding) can be used for encoding it. All other subbands appear
to have little intra-subband and inter-subband correlation and therefore zero-memory quanti-
zation should be adequate for encoding them. Based on these observations, we have confined
attention to two encoding schemes described below.

1) System A: In this system the LFS is encoded by a predictive quantization scheme (DPCM)
while the other subbands are quantized by zero-memory quantizers.

2) System B: In this system the LFS is encoded by a 2-D DCT coding scheme; the encoding
of other subbands is similar to that of System A.

Recall from the results in Section IIL.B that the pdf of all subbands except the LFS
is broad-tailed corresponding to the GGD with @ = 0.7; the same holds for the pdf of the
prediction residual of the LFS with « = 0.6. Similarly, the pdf of the 2-D DCT coefficients of
the LFS are broad-tailed (the value of a depends on the DCT blocksize) with the exception
of the DC coefficient which is almost Gaussian. In [10] the performance of zero-memory
quantization schemes were studied for the class of GGD’s. It was concluded that for broad-
tailed distributions (a < 1.0) (i) significant performance gains (in a rate-distortion theoretic
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sense) can be obtained if optimum entropy-constrained quantizers (OECQ’s) are used instead
of Lloyd-Max quantizers (LMQ) and (ii) the rate-distortion performance of OECQ’s is closely
approximated by that of uniform-threshold quantizers (UTQ’s). The added advantage of the
UTQ over the OECQ is the simplicity of design and implementation. !
In view of the fact that the distributions of the subband data are quite broad-tailed
and the conclusions in [10], it is reasonable to expect performance gains if the LMQ’s of [2]
are replaced by appropriately designed UTQ’s. In both systems proposed above, UTQ will
be used directly in quantizing all subbands except the LFS. In System A, a UTQ will be
used to encode the prediction residual of the LFS, while in System B, UTQ’s will be used to
encode the 2-D DCT coefficients. In order to achieve an average bit rate close to the output
entropy, the output of the UTQ’s are encoded using Huffman codes (HC’s). Therefore, the
main design issues are:
1. the design of (UTQ,HC) pairs 2 to obtain performance close to the optimum performance
theoretically attainable for the given value of «;
2. the optimal distribution of bits among the subbands. 3
In the following we will elaborate on the design of (UTQ,HC) pairs and the bit allocation
algorithm.

A.1. Entropy-Coded Quantization of Memoryless Sources

Consider a memoryless source distributed according to the GGD with a given parameter
a. As indicated before, the performance of an N-level UTQ on this source can be easily
obtained; if the number of quantization levels is sufficiently large, the performance will be
very close to that of the OECQ [10]. An example of the performance of UTQ’s with different
number of levels (N=3,5,9,17,33,65,129) for the GGD with & = 0.6 is illustrated in Fig. 2
(solid curves). For each N, the rate-distortion performance curve is obtained by varying
the stepsize of the UTQ. Notice that the number of levels required for the UTQ to achieve
performance close to the lower envelope depends on the encoding rate. For example, for the
encoding rate of 1.5 bits/sample, N = 5 gives a performance far from the best performance
(the lower envelope of all curves), whereas N = 9 gives a performance reasonably close to this
lower envelope. Larger values of N do not result in a significant improvement, though they
add to the complexity. Here, the encoding rate is the output entropy of the UTQ. However,
in a practical situation, the output of the UTQ should be encoded by means of a noiseless
source coding scheme to achieve an average encoding rate close to its entropy. In this paper,
we consider the Huffman coding scheme. The performance of the UTQ’s combined with HC’s
is also included in Fig. 2 (dotted curves). The order of the HC’s used for N=3,59 and 17
is 5, 3, 2 and 2, respectively; for N > 33 lst-order HC’s were used. The selected choices
of the order of the HC is a compromise between the performance of HC and its encoding
complexity. It is evident from the curves in Fig. 2 that the average bit rates of the HC’s are
very close to the UT(Q output entropy.

1 An N-level UTQ is a symmetric quantizer with equi-spaced quantization thresholds in which the recon-
struction levels are the centroids of the respective quantization intervals.

2 The design of the UTQ involves the determination of the number of levels [N and the stepsize A\, while
the design of the HC involves the determination of the order of the code as well as the actual coding table.

8 Note that now the encoding rates used for different subbands are not limited to integer values (in contrast
with the LMQ). This, in turn, introduces an additional degree of freedom which can result in performance

improvements.



At this point, we need to select a set of (UTQ,HC) pairs to get a good approximation to
the lower envelope of the rate-distortion performance of the UTQ’s. To do this, for a fixed
average bit rate, say r, we choose a combination of UTQ and HC that results in a small MSE
without using a large N. In this way, we will obtain a compromise between performance and
complexity. This is repeated for all values of r that are integer multiples of 0.1 bits/sample.
The performance of this finite set of (UTQ,HC) pairs for the GGD with a = 0.6 is illustrated
in Fig. 3. In this figure, the lower envelope of the performance curves of all UTQ’s is also
included for comparison purposes. It can be seen from these results that this selected set of
(UTQ,HC) pairs has a rate-distortion performance very close to the best performance.

The (UTQ,HC) pairs depicted in Fig. 3 are all obtained for o = 0.6. This process is
repeated for a = 0.7, 0.8, 1.0 and 2.0. From now on, we will use the notation d(r; @) to denote
the variance-normalized MSE associated with the (UTQ,HC) pair selected for operation at r
bits/sample when the source is GGD with parameter a. Notice that this function is defined
only for integer multiples of 0.1.

The next step in designing the system is the appropriate allocation of bits among the
subbands. For system A, the bit allocation includes the predictive quantizer for the LFS
and the zero-memory quantizers of other subbands. For System B, the bit allocation is over
the zero-memory quantizers for the 2-D DCT of the LF'S and the zero-memory quantizers of
other subbands. In what follows we will elaborate on the bit allocation algorithm.

A.2 Bit Allocation
The overall MSE incurred in a subband coding scheme with K subbands is given by

K
D= ZDi(Ti)7 (2&)

in which D;(r;) is used to denote the distortion-rate performance of the encoder operating
on the ith subband at r; bits/sample. The encoding rate is given by *

K

1 . .
R = e Z; ri, bits/pixel. (2b)

In [2] a bank of predictive coding schemes was used to encode the subbands. The bit allocation
algorithm used in [2] is based on the Lagrange multiplier techniques in which it was assumed
that the distortion rate performance of the predictive encoders are given approximately by

Di(r;) =4.5- a 2727 Here, o g is used to denote the variance of the prediction residual
associated W1th the 1th subband Based on this assumption, the following bit allocation was
obtained

1 £\T
Ty = Tave + § 10g2 0-;,?:/ (H Uz,i) ’ 1= 1’ 2’ T ’I(’ (3)
i==]

4 In this paper we have assumed that all subbands have the same number of pixels. If this is not the
case, the 1;’s should be multiplied by appropriate weighting coeflicients to account for the variability in the
number of pixels per subband.



where 744, i1s the design average bit rate. This result, however, is sub-optimal because it
assumes an approximate relationship between the MSE and the bit rate of each of the pre-
dictive quantizers. Furthermore, this methods suffers from rate truncation problem as the
r;’s must be nonnegative and integer.

In what follows we will describe an alternate approach for bit allocation in which the
actual distortion-rate performances of the different quantizers are used for bit allocation.
The algorithm is based on an integer programming algorithm described in a recent paper by
Shoham and Gersho [13]. Since the distortion and rate are computed differently for Systems
A and B, we will consider the two systems separately.

1) System A

In System A the LF'S is encoded by a predictive quantizer while the other subbands are
encoded by zero-memory quantizers. In view of our observations on the distribution of the
prediction residual of the LFS and that of the other subbands, it is easy to show that the
overall MSE can be written as

K
Dy = op1d(r1;0.6) + Z ord(r;;0.7), (4a)

1=2

in which it is assumed that the LFS is the 1st subband and az,l denotes the variance of the
prediction residual of the LFS. The encoding rate in this system is given by

1
Ro= 2 > or (4b)

2) System B

In System B the LF'S is encoded by 2-D DCT; the encoding of the other subbands is the
same as that in System A. Again based on observations on the distribution of the 2-D DCT
coefficients (Section III.B), we can express the MSE by

K
1. .
Dp = 77{60,0d(r0,032:0) + > lpd(rigan)} + Y otd(ri; 0.7), (5a)
(4,k)#(0,0) =2

where L is the blocksize of the 2-D DCT, a7, is the value of the shape parameter corresponding
to blocksize L, 62 i & is the variance of the (j, k)th transform coeflicients and r; 1 is the encoding
rate assocmted with the (UTQ,HC) pair used for encoding the (J, k)th transform coefficient.

The encoding rate in this case is given by

|l
b‘
|

! 1

1 K
T/? rir + Z T ? . (5b)
] =2

7=0 0

e
I

Recall that a4 = 0.6, ag = 0.8 and a4 = 1.0.

Now that the relationship between the overall distortion and encoding rate and the
rate of individual UTQ’s used in Systems A and B are determined, the bit allocation al-
gorithm developed in [13] can be used straightforwardly to allocate bits (in multiples of
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0.1) to the UTQ’s used in the subband encoder. We will refer the reader to [13] for the
details of the algorithm. For a prescribed design average rate, this algorithm results in a
K-dimensional rate vector (r},---,r%) for System A, and a (L? + K — 1)-dimensional rate
vector (750, 5T 111573 " ,7% ) for Systems B. Notice that the actual average bit rate
may be slightly different from the design rate.

The rest of the coding scheme is straightforward. The LFS is encoded by means of a
predictive quantization scheme or a 2-D DCT coding scheme; in both cases UTQ’s followed
by HC’s are used to encode the data. The other subbands are encoded by UTQ’s followed by
appropriate HC’s. In the receiver, the received codewords are decoded to obtain the quantized
data. After reconstructing the LF'S using the appropriate decoding scheme, a replica of the
original image is reconstructed by using the 2-D separable inverse QMF bank on the decoded
subbands. The block diagram of the two proposed systems is illustrated in Fig. 4.

B. Details of the Actual System Configuration
Having described the basic components of System A and System B, in what follows, we
will present some additional details about the two systems.

1) System A

Since predictive quantization is used for the LFS in System A, we need to specify the
predictor we have adopted. The predictor used is a linear predictor which predicts the value
of the current pixel as a weighted summation of three neighboring pixels. Specifically, the
predicted value of the pixel X;; (ith row and jth column), say X ;, is X',-,j = aX; ;-1 +
bX;_1,; + ¢X;_1,j—1 , where a, b, and ¢ are the predictor coefficients. We have optimized
the value of a, b, and ¢ for each image so as to minimize the mean squared prediction
error. This can be done by solving the so-called Yule-Walker equations [14]. If we use the
linearly separable auto-correlation functions, the optimal values of a, b, and ¢ are a = p,,b =
Pe, and ¢ = —pppe , where p, and p. are the correlation coeflicients in the row and column
directions, respectively. Note that we have assumed that either the values of the correlation
coefficients or the values of optimal predictor coeflicients have to be transmitted to the receiver
as side information.

We have to use two sets of (UTQ,HC) pairs in this system, one for the prediction residual
of the LFS and the other for the higher frequency subbands. For both sets the allowed range
of the average bit rate is from 0.0 to 5.0 bits/pixel in multiples of 0.1 bit/pixel. The exceptions
are 0.1 and 0.2 bits/pixel because to achieve these bit rates we need HC’s of order higher
than five which makes the complexity of the HC prohibitive.

2) System B
In this system, the 2-D DCT is applied to the LFS. The (L x L) 2-D DCT and 2-D
inverse DCT (IDCT) are described by [14]

L—1L—1
. j(2m + 1) 7rk(2n +1)
4G, = FalGe(k) 3 3 etmmyeos T ntl)
o L=1L-1
77 (2m + 1) 7rk(2n +1)
z(m,n) = ]z; kZO o(7)a(k)B(j, k) cos === 57

where 6(j, k) represents the 22D DCT of z(m,n), and «(0) = 1/v/2, a(j) = 1 for j # 0.
The DC coefficients of the DCT are encoded by a (UTQ,HC) pair designed for the GGD
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with o = 2.0, while the higher order coefficients are quantized by (UTQ,HC) pairs optimally
designed for the GGD with a = ar. In addition, the mean values of the DC coeflicients are
transmitted separately. The allowed range of the average bit rate for the DC coefficients is
from 2.0 to 8.0 bits/pixel, in multiples of 0.1. For other data including the higher order DCT
coefficients and the higher frequency subbands, the allowed range is as in System A.

C. Simulation Results

Coding simulations were carried out for an 8-bit, 512 x 512 monochrome image (referred
to as “LENA”) selected from the images in Table I. This image is illustrated in Fig. 6.a. All
simulations are based on K = 16 as in [2]. We have simulated Systems A and B described in
this paper. Also, for comparison purposes we have simulated the system described by Woods
and O’Neil in [2], hereafter referred to as the W-O scheme. In most cases, simulation results
for design bit rates of 0.25, 0.5, 1.0, and 2.0 bits per pixel (bpp) are obtained.

The performance results in terms of peak signal-to-noise ratio (PSNR) for System A,
System B with blocksize 4 x 4 and the W-O scheme are summarized in Table V and Fig.
5. It is evident from these results that the PSNR performance of System A and System B
are almost identical; at very low bit rates System B offers a slight PSNR improvement over
System A. Both System A and System B result in a significant improvement over the W-O
scheme. This improvement in PSNR is approximately 3.5 dB at 0.25 bpp and larger than 4.5
dB at all other bit rates. °

For comparison purposes the reconstructed “LENA” for the three different schemes are
presented in Figs. 6-8 for design bit rates of 0.25, 0.5 and 1.0 bpp. These results indicate that
the subjective performance improvements offered by Systems A and B are quite significant.
An interesting observation is the relative subjective performance of System B as compared
to System A at 0.25 bpp. In this case, despite the very small PSNR improvement, the
subjective improvement is quite noticeable and, in fact, the reconstructed image obtained
from System B is clearly less “blotchy” in the flat (low activity) regions as compared to
the image obtained from System A. In search of a reason for this clear discrepancy between
objective and subjective performance results, we computed the average bit rates that was
allocated to the LFS in System A and System B. Surprisingly, even this allocated bit rate
to the LF'S was the same and equal to 2.5 bpp. Thus, the only explanation for this superior
subjective performance of System B, can be the inherent superiority of DCT coding over
predictive quantization of images. We should add here that this subjective difference in
performance was less noticeable at higher bit rates. A plausible explanation is that at higher
bit rates the performance of DCT coding and predictive quantization become closer. Also,
we should note that the “blockiness” effect inherent in DCT coding systems is not present
here. This is because the allocated number of bits for LFS is quite large (at least 2.5 bpp).

We have also studied the effect of changing the 2-D DCT blocksize in System B. The
results for different bit rates and blocksizes of 4 x 4, 8 x 8 and 16 x 16 are summarized in
Table VI. It is clear from these results that no significant performance improvement can be
obtained by increasing the blocksize. Indeed, in a few cases the increased blocksize results in
a performance degradation. The reason for this rather surprising behavior, we feel, resides in

5 Note that the actual average bit rates are somewhat different from the design rates specified in the bit
allocation procedure. In fact, in all cases considered in Table V the actual bit rates of Systems A and B are
below that of the W-O system. Taking this difference into account, the PSNR performance improvements at
equalized bit rates are as high as 5.5 dB.
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the following two observations. First, we should note that in our implementation of System B
there is an explicit limitation on the largest number of bits allocated to the DCT coefficients
(8.0 bpp for the DC coeflicient and 5.0 bpp for others). We have observed that for blocksizes of
8 x 8 and 16 x 16, often times the assigned number of bits is equal to the upper limit indicating
that perhaps these coefficients need to receive a larger number of bits - implying that the bit
allocation is sub-optimal. The second observation is that the inter-pixel correlation in the
LFS is smaller than that of the original image (due to the decimation process); consequently,
the advantage of increased blocksize should be less pronounced. In view of these results, for
the rest of the paper we will limit ourselves to a 4 x 4 blocksize for System B.

Before we close this subsection, we should mention that the performance of two other
subband encoding schemes, namely those described in [3] and [6], are also included in Fig. 5.
The performance results which are taken from [3] and [6] are also for the 512 x 512 “LENA”
image and hence the comparisons are meaningful. It is evident from these results that Systems
A and B perform better than both schemes. The comparisons with the results in [5] is not as
simple because the image used in [5] is the 256 x 256 version of “LENA” for which a PSNR of
approximately 27.9 dB at 0.5 bpp is reported (see Fig. 7 in [5]). However, we have simulated
the performance of our systems on the 256 x 256 “LENA”. The PSNR values are 30.94 dB
at 0.48 bpp for both Systems A and B - approximately, 3 dB improvement.

D. Side Information

We conclude this section by evaluating the amount of side information which is to be
transmitted to the receiver side.

Apart from the encoded data, the subband variances need to be transmitted as side
(overhead) information. In addition, for System A the predictor coefficients need to be
transmitted while in System B the variances of the DCT coefficients and the mean of the
DC coefficient need to be transmitted. Note that if the variance information is available
in the receiver, the bit allocation procedure can be repeated there and hence no additional
information for the parameters of the (UTQ,HC) pairs is necessary.

Assuming that we need two bytes (16 bits) for each real-valued parameter, 36 bytes (16
subbands and 2 correlation coefficients) need to be transmitted for System A. This corre-
sponds to 0.004 bpp for a 256 x 256 image and 0.001 bpp for a 512 x 512 image. In System
B, in addition to the variances of the subbands, the variances of the DCT coefficients and
the mean of the DC coefficient need to be transmitted. Therefore, for an L x L blocksize,
the side information is 2(L? + 16) bytes. For the chosen blocksize of 4 x 4, this amounts to
0.008 bpp and 0.002 bpp for 256 x 256 and 512 x 512 images, respectively. Therefore, for all
cases of interest the amount of side information is less than 0.01 bpp - a negligible amount.

V. Transmission Error Effects

In Systems A and B, variable-length coding is used extensively. It is well-known that,
due to the sequential nature of decoding of such codes, channel errors could results in loss
of synchronization, and hence, severe degradation in system performance. Furthermore,
predictive coding (used in System A and the W-O scheme) is known to suffer from channel
error propagation problems. Finally, in 2-D DCT coding (used in System B), channel errors
propagate throughout the block. These facts indicate that the subband coding schemes
studied in Section IV may suffer from serious difficulties in the presence of transmission (or
storage) noise. Of course, due to the extensive use of variable-length coding in Systems A and
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B, one would expect a greater sensitivity to channel noise in Systems A and B as compared
to the W-O scheme. ¢ In this section we will present simulation results for the performance
of Systems A and B as well as the W-O scheme in the presence of channel noise.

To prevent the infinite propagation of decoding errors, we have packetized the codeword
sequences before transmission. In what follows, we describe the details of the packetization
scheme.

A. Packetization Scheme

The main motivation in packetization of codewords is to confine the propagation of
channel noise to within a packet. To do so, we must make certain that our packets contain
information about a fixed (or known in the receiver) number of pixels so that packet-to-packet
error propagation is prevented. Since the pixels are encoded by variable-length codes, the
packets cannot be of fixed length. However, in devising our packetization scheme we will try
to keep the average packet length fixed so that fair comparisons can be made between different
systems. It is important to remember that the severity of error propagation is directly related
to the packet length.

In the packetization scheme adopted in this work, the packets consist of two parts:
(1) a length-indicator indicating the length of the information portion (in bits) and (ii) the
information portion consisting of a sequence of binary codewords. While the length of the
length-indicator is fixed, that of the information portion of the packet could vary - hence
resulting in warieble-length packets. Furthermore, all codewords transmitted in a packet
belong to the same subband. 7 To be more precise, let us consider a packet used for encoding
the ¢th subband. Let us suppose that the pixels in this subband are encoded by means of
HC’s of order n; at a design bit rate of r;. Suppose the average length of the information
portion of the packet is [, bits. Then, the number of codewords in this packet is given by

s = [—2] (6)

i,

where [2] is used to denote the smallest integer greater than or equal to z. Because [, is
fixed and r; and n; are known from the results of the bit allocation procedure, n, ; can be
determined in the receiver side. Therefore, in encoding the :th subband, each packet contains
the information for np ; = n;n, ; pixels. 8
As for the decoding process, the following rules are applied:
1. Decoding of codewords in a packet starts and ends in that packet so that the decoding
errors do not propagate beyond the packet boundaries.
2. Decoding of codewords in a packet associated with the sth subband terminates when one
of the following three conditions is met:
a. Ny,; codewords are decoded,

6 The W-O scheme also uses variable-length codes for encoding some subbands (see {2]); however, the LFS
is encoded by fixed-length codes. Since the LFS has the highest variance among all subbands, the channel
noise effects in the LFS should result in the most dramatic degradations in system performance.

7 In System B, each of the transform coeflicients is treated as a subband. Hence each packet contains
codewords from only one transform coefficient.
8 Al packets used for encoding the tth subband contain Np ; pixels except possibly the last one which

contains only the remaining pixels.
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b. the decoding process reaches the end of a packet (known from the length-indicator),
c. a bit-string which cannot be decoded is encountered; in this case, decoding is stopped
immediately, and all pixels that cannot be decoded are reconstructed as zero.
In what follows, we will present simulation results for the performance of the three
schemes considered in Section IV when the channel is noisy.

B. Simulation Results over Noisy Channels

We assume that the channel is a memoryless binary symmetric channel (BSC) with a
bit error rate (BER) of P.. For our simulations in this section we have considered P, =
102, 1072, 107*, and 10~°. To make certain that our results are meaningful, for each
encoding scheme, bit rate and channel BER, we have repeated our simulations 50 times
and computed the average PSNR (AVE-PSNR), maximum PSNR (MAX-PSNR), minimum
PSNR (MIN-PSNR) and the standard deviation of the PSNR (STD-PSNR). Simulations are
carried out for “LENA” encoded by Systems A and B and the W-O scheme ? at design bit
rates of 0.25, 0.5 and 1.0 bpp. The simulation results are summarized in Table VII. A few
important observations about these results are in order.

1. System A is extremely sensitive to channel errors. Also, the STD-PSNR of System A is
fairly large (especially for low BER’s) implying that even at low channel BER’s, there
is a possibility of severe performance degradation (e.g., & 14 dB difference between
AVE-PSNR and MIN-PSNR for System A at 1.0 bpp with P, = 1075).

2. System B is also very sensitive to channel errors. However, it performs considerably bet-
ter than System A. In all cases considered the MIN-PSNR of System B was significantly
larger (4-8 dB) than that of System A; the AVE-PSNR of System B was also larger than
that of System A, especially for large values of the channel BER. Finally, the STD-PSNR
of System B is smaller than that of system A.

3. The W-O scheme exhibits the highest degree of robustness in the presence of channel
noise. In most cases, the effect of channel noise is negligible for P, < 10~2. Also, contrary
to our observation for Systems A and B, the STD-PSNR in this case is very small. In
almost all cases, the W-O system performs better than System B with the exception of
a few cases where the channel noise is very small (P, = 10"5).

In Fig. 9, an example of reconstructed images from the three systems is presented for
an encoding rate of 0.5 bpp and P, = 1073; these images correspond to those cases in our
simulation which result in the minimum PSNR. Clearly, the subjective performance of the
three systems closely follow the trend suggested by the PSNR results of Table VII.

The results of Table VII (also supported by Fig. 9) suggest that Systems A and B,
despite their superior performance for noiseless channels, exhibit an unacceptable level of
sensitivity to channel errors and hence should not be used over noisy channels (at least over
the range of channel BER’s considered here). In the next section, we will describe a combined
source/channel coding methodology to reduce this severe sensitivity to channel noise.

VI. Combined Source/Channel Coding

Systems A and B exhibit a high degree of sensitivity to channel noise because they have
been designed to minimize the source coding distortion assuming a noiseless channel. It is
a well-known fact that, in general, the more efficient the source coding scheme is, the more

9 In all our simulations for noisy channels the average packet length is 1024 bits.
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sensitive it will be to channel noise unless some corrective measures are taken. Specifically,
it is shown in [15] for zero-memory quantizers and in [16] and [17] for predictive coding and
transform coding of images, that in the presence of channel noise, increasing the accuracy of
source encoder could result in an overall performance degradation.

One possible method for mitigating the channel error effects is use of error control coding,.
In this manner, of all bits used for encoding the image, some will be used in source coding
while the rest will be kept to provide protection against channel noise. In [16] and [17], an
approach in which specific source encoders and channel encoders are combined is considered;
in this approach the rates of the source code and channel code are adjusted so as to minimize
the MSE. In [15], an approach for channel-optimized quantization is developed in which source
coding accuracy is traded for reduced sensitivity to channel noise.

In this paper, we will consider an approach similar to that of [16] and [17]. In our
subband coding systems, an important question is how to distribute the bits among the
source coding and channel coding operations for the different subbands so as to minimize
the overall distortion caused by quantization noise and channel noise. The main difficulty in
doing this stems from the fact that variable-length codes are used in Systems A and B. In
this case, the analysis of channel error effects and its impact on the overall distortion is a
formidable task (if not impossible).

Another important problem in our systems is that of bit allocation among the different
subbands. Clearly, the bit allocation used under the noiseless channel assumption need not
be optimal for noisy channels. To be able to determine the optimal bit allocation, we need
to be able to determine the distortion-rate performance of the UTQ’s followed by a HC and
an error correcting code (ECC). Again, due to the inherent problems of packetized variable-
length codes, the analytical computation of these distortion-rate performance results is not
possible.

In what follows, we will describe a simulation-based procedure to determine the best
(UTQ,HC,ECC) triple for encoding a memoryless source over a BSC at a given encoding rate.
This procedure will lead to the determination of the distortion-rate performance functions
that we need for optimal bit allocation among subbands.

A. Selection of (UTQ,HC,ECC) Triple and Bit Allocation

For the discussion in this subsection we will assume that the source is memoryless with
a distribution corresponding to the GGD with parameter « and that the channel is a BSC
with a BER given by P.. Let us suppose for the time being that the ECC is to be selected
from a prescribed family of ECC’s. We will specify this family in the next subsection and
provide justification for this choice.

For the given source and channel, consider a (UTQ,HC) pair (as selected in Section
IV) with an average bit rate of r, followed by an ECC with rate r. and let d(r,,r.; o, Pp)
denote the MSE incurred in encoding and transmission of the source. Since the analytical
computation of d is impossible, we have resorted to simulation 1° to determine its value for
selected choices of rg, ¢, a and P,. Notice that the overall encoding rate is given by r = r, /Te.

Now consider a fixed encoding rate . Among the available pairs of (rs,7.), there may be

* *

several that result in the encoding rate r. Let us denote by (r%,r}) the pair that minimizes

10 As before, to obtain the MSE we have averaged our simulation results over 50 runs.
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d(rs,7e; a, P,); denote this minimum distortion by d.(r; a, P, ). In other words,

de(rya, Pe) = min d(rs,re; a, P.). (7)

Te,Tc) | T [Te=T

The function d.(r;a, P.) determines the distortion-rate performance of the encoding
scheme used for a source with parameter a and a BSC with BER P,, after the appropriate
selection of the (UTQ,HC,ECC) triple is made. Notice that for a fixed encoding rate r,
identifying the pair (r¥,r%) is equivalent to determining the optimal balance between the
source coding accuracy and the channel error protection.

Having determined the a?(rs,rc; a, P.) functions by simulation, we have computed the
functions d.(r; a, P.) for values of a as in Section IV, P, = 1072,1072 and 10~* and a finite
number of values of r. 1 An example of the function d.(r;a, P.) is provided in Fig. 10 for
a = 0.6 and three different values of P,. In this figure, different symbols are used to determine
the rate of the optimum channel code used. Also, for comparison purposes, the distortion-
rate performance of the (UTQ,HC) pairs of Section IV obtained for a noiseless channel is
also included in this figure (dotted curve). The deviation between these performance curves
and the one for the noiseless channel is merely the result of the channel noise. Obviously, the
deviation is wider for more noisy channels.

Once the channel-optimized distortion-rate performances are determined the bit alloca-
tion procedure of Section IV can be used in a similar manner to obtain the optimum bit
allocation among the subbands.

Before we present the simulation results for this combined source/channel coding scheme,
in what follows we will describe the class of ECC’s we have used in our systems.

B. Error Correction Coding Scheme

The ECC used in our system is a specific form of convolutional codes known as the
rate-compatible punctured convolutional (RCPC) code. The RCPC code was introduced by
Hagenauer [18] as an extension of the punctured convolutional code which was originally
introduced by Cain et ¢l. [19] mainly for the purpose of obtaining simpler Viterbi decoding
for rate K/N (K3 1) codes. The main advantage of the RCPC codes is that its rate (and hence
the error correction capability) can be easily changed by varying the number of punctured
bits in the puncturing matrix; therefore, with the same hardware, a variety of channel coding
rates can be obtained. This is a desirable characteristic in our system as we wish to vary the
rate of the ECC for each subband so as to obtain the best balance between the source coding
rate and the channel coding rate. We should mention that this idea was first used in subband
coding of speech [20] for adapting the degree of error protection to the error sensitivity of
different coder bit streams.

The RCPC code is defined by a generator tap matriz of a convolutional code with the

1 The actual computation of the dc(r; «, Pe) function is slightly different from the above. Because there
is only a finite number of ry’s and 7.’s available, we have actually considered the set of all possible points

[d(rs, Tey O Pe), rs/rc] in the distortion-rate plane and selected those that lie on the lower boundary of
this set of points.
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constraint length L.

T
g= N, Gik ) (8a)

!

which generates the mother code of rate 1/N, and also by puncturing matrices with the

puncturing period P,

— P, —

1
all)= N, aij(£) , £=1,2,...,(N. — 1)P, (8b)

l

which determine the patterns of punctured bits. The nominal rate of the RCPC codes is
given by
R.= P./(P. + ¢), £=1,2,..., (N. - 1)P, (9)

which covers the range between 1/N, and P./(P. + 1). In all of our studies, we have used
the RCPC code shown in Table 1 in [18] with N. = 4, L. = 5, and P. = 8. The generator
tap matrix g and the puncturing matrices a(¢) for £ = 1,2,...,8 are shown in Figs. 11 and
12, respectively.

It should be noted that R, in (9) is not strictly equal to r. used in (7) as the rate of the
convolutional code. This is because L, — 1 dummy bits should be added to the end of the
source encoder output to return the state of the trellis to the all-zero state. Consequently, r.
is given by

re = [lpRe = (Le = 1)/l (10)

It should also be noted that when the combined source/channel coding scheme is used,
the number of Huffman codewords per packet will be different from that in (6); in this case,
the number of codewords in the packet associated with the sth subband is given by

Nw,; = [_rc,ilp/(rs,i : nz)-la (11)

where r,; and r.; are the source and channel coding rates selected for encoding the ith
subband and n; is the same as in (6).

C. Simulation Results

In this section we will present simulation results for the performance of Systems A and
B modified by the combined source/channel coding approach. From now on, the channel-
optimized versions of System A and System B (with blocksize 4 x 4) will be called System C
and System D, respectively. We have studied the performance of Systems C and D at design
bit rates of 0.25, 0.5 and 1.0 bpp for channel BER’s of 1072, 10™® and 10™*. In all cases, the
same packetization scheme with {, = 1024 was used. All subsequent simulation results are
based on the 512 x 512 “LENA” image.
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To provide some insight as to how the encoding rate is divided between the source coding
and channel coding operations, in Table VIII we have included the average bit rate used for
channel coding for different overall encoding rates. Notice that the percentage of bit rate
dedicated to error control coding is larger for noisier channels - as one should expect. Also,
in this table we have included the PSNR results corresponding to the case that the system
is designed for a noisy channel but applied to a noiseless channel. These results provide an
upper bound on the system PSNR over noisy channels. The difference between these upper
bounds and the PSNR’s of Table V are due to the lower rate used for source coding in Table
VIIIL

The performance of Systems C and D in terms of AVE-PSNR, MIN-PSNR, MAX-PSNR
and STD-PSNR are summarized in Table IX for different channel BER’s and encoding rates.
The following important observations can be made.

1. Both System C and System D provide dramatic improvements over Systems A and B.
The improvement of System C over System A is in the range 7 - 27 dB in AVE-PSNR.
The improvement of System D over System B varies between 3 and 21 dB in AVE-
PSNR. Typically, these improvements are larger at higher encoding rates and for noisier
channels.

2. In all cases for both System C and System D, the MAX-PSNR coincides with the upper
bound on PSNR listed in Table VIII. This means that bit errors caused by the noisy
channel are sometimes perfectly corrected by the RCPC codes.

3. Almost in all cases, System D performs better than System C. Furthermore, System D
exhibits a higher degree of robustness against channel noise. Typically, the difference
between MAX-PSNR and MIN-PSNR is smaller in System D than in System C; the
same holds for STD-PSNR. Since in both systems the same type of channel code is used,
this superiority of System D must be due to the inherent robustness of 2-D DCT against
transmission noise (similar to our observations in Section V).

4. Systems C and D perform better than the W-O scheme in the presence of channel noise
(see Table VII). What is perhaps most interesting is that the performance of Systems C
and D over a noisy channel is even better than that of the W-O scheme in the absence
of channel noise. This has been our justification for not considering a channel-optimized
version of the W-O scheme.

In Figs. 13 and 14 we present reconstructed images corresponding to MIN-PSNR and
MAX-PSNR obtained from Systems C and D for the design rate of 0.5 bpp at two different
values of channel BER, namely, P. = 10~2 and 103, It is important to mention that the
average quality of the reconstructed images in our simulations are usually closer to the image

corresponding to MAX-PSNR rather than MIN-PSNR. This is especially true in System D.

D. Channel Mismatch

In designing Systems C and D it is assumed that the channel BER is known. In many
practical situations the exact value of the BER is not known or the BER varies with time.
In such situations it is important to know the amount of performance loss caused by channel
mismatch. Let us denote by PSNR(P, 4, Pe ), the AVE-PSNR caused by a system designed
for a channel with BER P, 4 and applied to a channel with BER P, ,. The PSNR(P, 4, P, )
results for different values of P, 4 and P, , for both System C and System D are presented in
Table X. These results are for an encoding rate of 0.5 bpp. We have observed that the trend
of performance loss is the same for other bit rates.
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The following important conclusions can be made:

1. System D is much more robust with respect to channel mismatch than System C.

2. Practically in all cases, the AVE-PSNR of the mismatched case with P, , < P, 4 coincides
with the MAX-PSNR of the matched case (i.e., when the system is designed and applied
to a channel with BER P, 4). This implies that in such cases, all channel errors are
corrected by the RCPC codes used in the system.

3. To design the system, overestimating the channel BER is better than underestimating it.
For example in System D, |[PSNR(1072,107%) — PSNR(1073,107%)| = 1.17 dB, while
|PSNR(1073,107%) — PSNR(1072,10~2%)| = 6.59 dB.

E. Side Information

As in Section IV, we need to evaluate the amount of side information necessary to be
transmitted to the receiver for Systems C and D. In addition to the amount of side information
evaluated in Section III, the following two items need to be transmitted:

1. the length-indicator of the packets, and
2. the additional bits for error protection of side information.

It is easy to show that the packet length can never be larger than 2% bits; hence, 14
bits are enough to encode the length-indicator. 2 As for additional bits for protection
of side information, we assume that a rate 1/3 RCPC code is powerful enough to render
the side information error-free when the channel error probability is less than 10~2. Under
this assumption, the amount of side information of Section IV grows by a factor of three
amounting to 0.013, and 0.023 bpp for Systems C and System D, respectively, for an image
of size 256 x 256; for an image of size 512 x 512, the side information reduces by a factor of
four. The length-indicator of a packet should also be protected because this information is
indispensable for channel decoding. Assuming that 14 bits is used for the length-indicator,
after error protection, 42 bits or six bytes are needed for the length-indicator. This increases
the bit rate by 100 x (6 x 8/1024) = 4.7 % corresponding to an increase of 0.012, 0.023, and
0.047 bpp for design average bit rates of 0.25, 0.5, and 1.0 bpp, respectively. In Table XI,
we have summarized the increases of the average bit rate incurred by the side information.
These numbers have to be added to the total bit rates tabulated in Table VIII to calculate
the actual overall bit rates.

VII. Summary and Conclusions

In this paper, we have developed new schemes for subband image coding over noiseless
and noisy channels. For the noiseless channel situation, we have developed two encoding
schemes. The difference between the two schemesis in coding of the lowest frequency subband:
the first scheme uses DPCM while the second uses 2-D DCT coding. Both schemes use zero-
memory quantization for other subbands. An important feature of these schemes is that
the output of all quantizers are entropy coded. The justification for using entropy-coded
quantization resides in the statistical results on the shape of the distribution of subbands
which suggest a significant gain for entropy-coded quantization over conventional Lloyd-Max
quantization followed by fixed-length coding. Both schemes perform better than the non-
adaptive scheme in [2] (and hence other schemes against which comparisons were made in [2]).
The difference is significant both subjectively and objectively. The objective performances

12 1n all our simulations, the length of the packet has been less than 211 bits.
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of the DCT- and DPCM-based schemes are more-or-less the same, although at low bit rates,
the DCT-based scheme offers a subjectively noticeable improvement over the DPCM-based
scheme.

For noisy channels, due to the extensive use of variable-length codes and the concomi-
tant error propagation problems, our schemes exhibit an unacceptable level of sensitivity
to channel noise. To combat this difficulty, we have developed a combined source/channel
coding scheme in which the schemes designed for the noiseless channel are combined with
appropriately designed rate-compatible punctured convolutional codes. Simulation results for
a variety of encoding rates and channel bit error rates indicate that the channel-optimized
schemes perform dramatically better than their counterparts designed for the noiseless chan-
nel. They also perform better than the scheme developed in [2].

Fig. 15 illustrates the performance of the W-O scheme as well as Systems A, B, C and
D at the encoding rate of 0.5 bpp. Clearly, Systems A and B exhibit a great sensitivity to
channel noise, despite their very good performance for noiseless channels. Systems C and D
both perform better than W-O. In fact, their worst performance (at P. = 1072) is still better
than the best performance (at P, = 0.0) of W-O. System D performs better than System C
and exhibits a better robustness against channel noise. In view of these results, we conclude
that the best scheme among those considered here is System D. The DCT blocksize used in
System D is 4 x 4, for which the complexity of implementation is quite manageable.

Possible avenues for further research include: (i) the study of intra-band entropy-
constrained VQ [21] for encoding the subbands, (ii) the development of an extension of
System B in which an adaptive 2-D DCT coding, similar to that of [22], is used for encoding
the LFS and (iii) the study of system performance for bursty and fading channels.
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TABLEI

STATISTICS OF 16 SUBBANDS OF "LENA"

Image Mean Value | Variance Co;r::)l;tion Cog(f)tl”lucrilc::t
Original 124.0 2290 0.969 0.984
u-u 124.1 2223 0.862 0.934
U-th -0.010 10.86 -0.121 -0.488
U-hl -0.008 31.96 -0.401 0.201
-hh 0.015 8.101 -0.209 -0.379
th-{l -0.006 0.586 0.064 -0.028
th-lh 0.009 1.325 -0.017 0.293
th-hi 0.004 0.486 0.021 -0.095
th-hh 0.024 1.536 -0.019 0.341
hi-[L -0.019 1.610 -0.161 0.114
hi-lh 0.007 0.872 -0.125 -0.120
hi-hl -0.020 5.405 0.280 0.150
hi-hh -0.001 2412 0.285 -0.196
hh-{L 0.003 0.371 -0.031 -0.049
hh-lh 0.004 0.521 -0.054 0.089
hh-hi 0.001 0.468 0.074 -0.082
hh-hh | -0.008 0.860 0.148 0.227
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TABLE I1
STATISTICS OF 12 IMAGES USED IN KOLMOGOROV-SMIRNOV TEST

Correlation Coefficient

Image Size | Mean |variance
Name Value Row Column
GIRL 588 | 1579 | 0970 | 0958
COUPLE 334 | 1000 | 0931 | 0952
WOMAN | 2% | 992 | 273¢ | 0934 | 0968

MOON 256 127.2 824 0.907 0.906

HOUSE 138.1 2131 0.974 0.951
TREE 129.2 4551 0.967 0.925
LENA 124.0 2290 0.969 0.984

PEPPER 120.2 2903 0.973 0.976

BABOON | 312 | 1206 | 1790 0.865 0.752
SAILBOAT| 512 | 1252 | 4296 0.973 0.970

AIRPLANE 179.2 | 2154 0.960 0.961

TIFFANY 211.1 858 0.920 0.922
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TABLE II1
RESULTS OF KOLMOGOROV-SMIRNOV TEST FOR ALL
SuBBANDS EXCEPT LFS AND PREDICTION RESIDUAL OF LFS

Best Value of a
Size
Image All Subbands| Prediction
Name Except LFS |Residual of LFS
GIRL 0.65 0.55
COUPLE 0.60 0.50
WOMAN | 256 0.60 0.60
MOON X 1.15 0.80
256
HOUSE 0.70 0.55
TREE 0.75 0.80
Average for
2565256 0.70 0.60
LENA 0.75 045
PEPPER 0.80 0.50
BABOON | 512 0.85 1.05
X
AILBOAT . .
S 0O 512 0.85 0.55
AIRPLANE 0.65 0.50
TIFFANY 0.60 0.55
Average for
512%512 0.75 0.55
A
for AL 0.70 0.60
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TABLE IV
RESULTS OF KOLMOGOROV-SMIRNOV TEST
FOR 2-D DCT COEFFICIENTS OF LFS

DCT Blocksize
4 8 16
Test Data \Loeff.
6 Images DC 20| 20 | 20
of Size
256x256 Others 0.60 | 0.85 | 1.50
6 Images DC 20| 2.0 2.0
of Size
512x512 Others 0.60 | 0.75 | 0.90
DC 20| 20 2.0
All Images
Others 0.60 | 0.75 | 1.00
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TABLEV
BIT RATE AND PSNR VALUES (IN dB) FOR
RECONSTRUCTED "LENA"

Design Rate
0.25 0.5 1.0 2.0
System
Actual
0.24 0.45 0.89 1.94
System A Rate
PSNR 32.00 | 35.16 | 38.55 43.82
Actual

SystemB | ‘R’ | 024 | 045 | 089
(4x4)

PSNR 32.19 | 3532 | 38.53

Actual
Rate 0.25 0.51 1.04 2.19

W-0O
PSNR 28.65 | 29.94 | 34.01 38.61

TABLE VI
BIT RATE AND PSNR VALUES (IN dB) FOR
RECONSTRUCTED "LENA" FROM SYSTEM B

Design Rate
Size
i Actual
dscd Rate 0.24 0.45
PSNR 32.19 35.32
Actual
0.23 0.44
858 Rate
PSNR 32.19 35.26
Actual
: 0.24 0.45
16x16 Rate
PSNR 32.07 35.11
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TABLE VII
PSNR PERFORMANCE RESULTS (IN dB) FOR "LENA" AT
DESIGN BIT RATE OF (a) 0.25 BPP, (b) 0.5 BPP, (c) 1.0 BPP

Channel BER 1x102 | 1x103 | 1x10% | 1x10”

System
AVE-PSNR 9.86 14.24 23.21 30.64
System A | MAX-PSNR 10.69 16.23 31.99 32.00
MIN-PSNR 9.17 11.82 16.48 20.58
STD-PSNR 0.40 1.00 3.08 3.02
AVE-PSNR 14.33 21.12 28.40 31.54
System B | MAX-PSNR 15.40 24.07 31.93 32.19
(“4x4) MIN-PSNR 1342 | 1852 | 2355 24.53
STD-PSNR 0.54 1.50 2.49 1.57
AVE-PSNR 22.93 27.62 28.54 28.64
WO MAX-PSNR 24.09 28.03 28.65 28.65
MIN-PSNR 21.86 27.10 28.36 28.54
STD-PSNR | 0.51 0.22 0.06 0.04

(@)
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TABLE VII (CONTINUED)

Cpannel BER 1x102 | 1x103 | 1x10%4 | 1x107d

System
AVE-PSNR 746 | 13.17 23.73 31.89
System A | MAX-PSNR 827 | 1586 | 34.66 35.16
MIN-PSNR 697 | 1029 | 1827 2137
STD-PSNR 0.32 1.16 3.41 431
AVEPSNR | 1390 | 2032 | 2981 34.77
SysemB | MAX-PSNR | 1494 | 2456 | 3504 35.32
(4x4) MIN-PSNR | 1312 | 1733 | 2358 28.18
STD-PSNR 0.45 1.62 2.97 1.44
AVEPSNR | 23.08 | 2852 | 2077 29.93
wo | MAXPSNR | 2438 | 2007 | 29.94 29.94
MIN-PSNR | 2088 | 2729 | 2057 29.78
STD-PSNR 0.60 0.32 0.08 0.04

®

27



TABLE VII (CONTINUED)

Channel BER
1x1072 | 1x1073 1x104 | 1x1073
System
AVE-PSNR 743 12.83 23.92 34.59
System A | MAX-PSNR 8.64 16.72 36.57 38.55
MIN-PSNR 6.65 9.77 17.81 20.29
STD-PSNR 0.34 148 445 4.96
AVE-PSNR 14.03 20.65 31.01 37.49
SysemB | MAXPSNR 1532 23.82 35.74 38.53
(4x4) MIN-PSNR 13.03 18.59 23.23 27.88
STD-PSNR 0.51 145 3.05 1.88
AVE-PSNR 21.92 29.81 33.33 33.94
MAX-PSNR | 2371 31.08 33.94 34.01
W-0
MIN-PSNR 20.16 28.14 32.11 33.12
STD-PSNR 0.72 0.65 0.38 0.17

©
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TABLE VIII
DISTRIBUTION OF BITS BETWEEN SOURCE CODING AND CHANNEL CODING
FOR "LENA" AT DESIGN RATES OF (a) 0.25 BPP, (b) 0.5 BPP, (c) 1.0 BPP

29

System Channel BER | 1,10-2 1x103 | 1x104
Total Bit Rate 0.26 0.25 0.25
System C |Channel Bit Rate (%)] 0.11 (42%) | 0.05 (20%) | 0.05 (18%)
PSNR 29.66 30.92 31.03
Total Bit Rate 0.25 0.24 0.24
System D {Channel Bit Rate (%) | 0.11 (45%) | 0.06 (26%) | 0.04 (15%)
PSNR 30.10 31.02 31.65
(@)
System Channel BER | 4,102 1x103 | 1x10
Total Bit Rate 0.49 046 0.46
System C |Channel Bit Rate (%)| 0.22 (45%) | 0.11 (24%) | 0.08 (17%)
PSNR 32.49 33.86 34.35
Total Bit Rate 0.48 0.46 0.45
System D |Channel Bit Rate (%) | 0.22 45%) | 0.11 25%) | 0.07 (15%)
PSNR 32.73 34.10 34.56
(b)
Systen? Channel BER | 4,102 1x103 | 1x104
Total Bit Rate 0.91 0.88 0.87
System C |Channel Bit Rate (%)| 0.42 46%) | 0.20 (23%) | 0.14 (16%)
PSNR 35.39 37.14 37.56
Total Bit Rate 0.91 0.89 0.88
System D |Channel Bit Rate (%) | 0.41 (45%) | 0.22 24%) | 0.14 (16%)
PSNR 35.60 37.05 37.59
(©




TABLE IX
PSNR PERFORMANCE RESULTS (IN dB) FOR "LENA" IN THE

PRESENCE OF CHANNEL NOISE AT DESIGN BIT RATE OF
(a) 0.25 BPP, (b) 0.5 BPP, (c) 1.0 BPP

Channel BER
1x102 | 1x1073 | 1x10™*
System
AVE-PSNR | 27.16 29.60 | 30.91
MAX-PSNR | 29.66 | 30.92 31.03
System C
MIN-PSNR | 18.98 2040 | 27.15
STD-PSNR 3.28 2.40 0.56
AVE-PSNR | 29.96 | 30.94 31.49
MAX-PSNR | 30.10 31.02 | 31.65
System D
MIN-PSNR | 28.62 | 2946 | 30.52
STD-PSNR 0.27 0.25 0.30

(@
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TABLE IX (CONTINUED)

Channel BER 2 3 4
Ix10™“ | 1107 | 1x10°
System
AVE-PSNR | 30.74 | 3291 34.30
MAX-PSNR | 3249 | 33.86 34.35
System C
MIN-PSNR | 21.60 | 26.59 33.97
STD-PSNR 2.96 1.93 0.08
AVE-PSNR | 32.38 | 3390 | 34.46
MAX-PSNR | 3273 | 34.10 | 34.56
System D
MIN-PSNR | 26.39 | 29.00 33.78
STD-PSNR 0.92 0.72 0.17

(b)
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TABLE IX (CONTINUED)

Channel BER 5 3 4
1x107™ | 1x10™ | 1x10”
System

AVE-PSNR | 34.34 35.73 | 37.50
MAX-PSNR | 35.39 | 37.14 | 37.56

System C
MIN-PSNR | 24.87 22.61 37.12
STD-PSNR 2.52 3.15 0.11
AVE-PSNR | 3524 | 36.71 37.53
MAX-PSNR | 35.60 37.05 | 37.59

System D
MIN-PSNR | 32.10 32.88 | 37.12
STD-PSNR 0.58 0.66 0.10

©
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TABLE X
CHANNEL MISMATCH PERFORMANCE RESULTS
AT 0.5 BPP; (a) SYSTEM C, (b) SYSTEM D

Fe.d 2 3 -4
1x1072 | 1x1073 | 1x10 0.0
Pe,a
AVE-PSNR | 3074 | 18.71 932 | 7.46
MAX-PSNR | 3249 | 2265 | 1142 | 827
1x1072
MIN-PSNR | 21.60 | 16.31 7.66 | 6.97
STD-PSNR 2.96 1.29 087 | 0.32
AVE-PSNR | 3249 | 3291 | 29.16 |13.17
MAX-PSNR | 3249 | 3386 | 34.10 | 15.86
3
1x10
MIN-PSNR | 3249 | 2659 | 2091 | 1029
STD-PSNR 0.0 193 | 476 | 1.16
AVE-PSNR | 3249 | 3386 | 34.30 | 23.73
MAX-PSNR | 3249 | 3386 | 3435 |34.66
4
1x10
MIN-PSNR | 3249 | 3386 | 33.97 | 18.27
STD-PSNR 0.0 0.0 | 008 | 341
0.0 PSNR 3249 | 3386 | 3435 |35.16
(@)
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TABLE X (CONTINUED)

Fe.d 2 3 4
1x1072 | 1x1073 | 1x10 0.0
Pe,a
AVE-PSNR | 3238 | 2579 | 18.78 | 13.90
MAX-PSNR | 3273 | 2837 | 2082 | 14.94
2
1x10
MIN-PSNR | 2639 | 2287 | 16.76 | 13.12
STD-PSNR | 092 | 133 117 | 045
AVE-PSNR | 3273 | 3390 | 32.54 | 2032
MAX-PSNR | 3273 | 34.10 | 3449 | 2456
1x1073
MIN-PSNR | 3273 | 29.00 | 2347 |17.33
STD-PSNR 00| 072 ] 242 1| 162
AVE-PSNR | 3273 | 34.10 | 3446 | 29.81
MAX-PSNR | 3273 | 34.10 | 34.56 |35.04
4
1x10
MIN-PSNR | 3273 | 34.10 | 3378 | 23.58
STD-PSNR 0.0 00 | 017 | 297
0.0 PSNR 32,73 | 34.10 | 34.56 | 3532
(b)
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TABLE XI

THE AMOUNT OF SIDE INFORMATION (BPP)

Design Rate
Image 0.25 0.5 1.0
Size System
256 System C 0.025 0.036 0.060
o5t SysemD | 0035 | 0046 | 0070
512 System C 0.015 0.026 0.050
X
512 SystemD | 0.018 0.029 0.053
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Figure 3: Rate-Distortion Performance of the Selected Set of (UTQ, HC) Pairs; 0=0.6.
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