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We study surface groups Γ in SO(4, 1), which is the group of conformal automor-

phisms of S3, and also the group of isometries of H4. We consider such Γ so that its limit

set ΛΓ is a quasi-circle in S3, and so that the quotient (S3−ΛΓ)/Γ is a circle bundle over a

surface. This circle bundle is said to be conformally flat, and our main goal is to discover

how twisted such bundle may be by establishing a bound on its Euler number.

We have two results in this direction. First, given a surface group Γ which admits

a nice fundamental domain with n sides, we show that (S3 − ΛΓ)/Γ has Euler number

bounded by n2. Second, if Γ is purely loxodromic acting properly discontinuously on H4,

and Γ satisfies a mild technical condition, then the disc bundle quotient H4/Γ has Euler

number bounded by (4g − 2)(36g − 23) where g is the genus of the underlying surface.

Both results are proven using a direct combinatorial approach. The above are not tight

bounds, improvements are possible in future research.
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Chapter 1: Introduction

Let E be the total space of a circle bundle over a closed surface Σg of genus g with

g ≥ 2. If we fix g, the topological type of E is classified by its Euler number, denoted

by e(E). Gromov, Lawson, and Thurston [1], Kuiper [2], and Kapovich [3] constructed

examples of flat conformal (SO(4, 1), S3) structures on circle bundles E with non-zero

Euler number. These examples are constructed using fundamental domains in S3 that are

bounded by a “necklace” of 2-spheres which are arranged along an unknotted embedding

of a circle. It’s interesting that the arrangement of these spheres determines the topology

of E.

All constructed examples of flat conformal structures on E satisfy the inequality

|e(E)| ≤ |χ(Σg)| = 2g − 2. (1.1)

It is conjectured in [1] that this inequality is a necessary condition for the existence of a

flat conformal structure on E. We will refer to this as the GLT conjecture. If it is true,

it would be an example of the general principle that existence of geometry on a manifold

often restricts its topology.

The case when g = 1 was established by Goldman in [4]. In this article we consider

the case g ≥ 2, in particular the case where the conformally flat manifold E is a quotient

of the domain of discontinuity of a surface group Γ. Partial results are obtained in some



nice cases. These are presented in chapter 4.

Representations of fundamental groups of closed surfaces (surface groups) into a

Lie group G is a well-studied subject. This is especially true when G is Isom(H2) and

Isom(H3). Here we study the natural higher dimensional analogue: surface groups in

G = Isom(H4). Just as in lower dimension cases, we want to study the space of “nice”

surface groups called quasi-Fuchsian groups. Following [5] we define:

Definition 1.1. A surface group in Isom(Hn) (for n ≥ 2) is quasi-Fuchsian if its limit set

is a topological circle in ∂∞(Hn) = Sn−1.

Indeed, all known examples of conformally flat circle bundles are constructed as

quotients of a domain in S3 by a quasi-Fuchsian surface group which admits a finite sided

fundamental domain. In non-trivial cases (where e(E) 6= 0,) the limit set of one of these

group is a fractal topological circle.

The manuscript is organized as follows. In chapter 2, we present background mate-

rial in flat conformal geometry. In section 3.1 we describe the combinatorial construction

of a circle bundle, section 3.2 discusses examples and an algorithm to compute the Euler

number using the fundamental domain. In chapter 4 we show two approaches to bound

the Euler number of a conformally flat circle bundle in nice cases.
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Chapter 2: Preliminaries on flat conformal geometry

Let us recall some basic concepts and notations. Let (X, g) be a Riemannian man-

ifold. Isometries from X to itself are maps preserve the Riemannian metric g. These

maps form a group which we call Isom(X), the group of isometries on X . The group of

orientation preserving isometries is denoted Isom+(X).

Two Riemannian metrics g, h on X are conformally equivalent if there is a positive

function λ on X such that gx(u, v) = λ(x)hx(u, v) on each tangent space. A class of con-

formally equivalent metrics on X is called a conformal structure. Given two Riemannian

manifolds (X, g) and (Y, h), a local diffeomorphism X → Y is called a conformal map

if the pull back metric h∗ on X is conformally equivalent to g.

For the sphere Sn, the conformal maps from Sn to itself form a group which we

will name Möb(Sn).

We will now introduce the hyperbolic space and its conformal sphere boundary at

infinity. More details can be found in [6]. For m ≥ 2, we let Rm,1 be Rm+1 with a

Lorentzian metric of signature (m, 1). That is, in metric is given by the quadratic form

B(x) = −x2
0 + x2

1 + ...+ x2
m. Let SO(m, 1) be the group of (m+ 1)× (m+ 1) matrices

of determinant 1 preserving this quadratic form.



The hyperbolic m space, denoted Hm is defined to be the level set

H := {x ∈ Rm,1|B(x) = −1} ⊂ Rm,1

with the inherited metric on each tangent space. This is the hyperboloid model of the

hyperbolic space. The hyperboloid H is asymptotic to the light-cone

L := {x ∈ Rm,1|B(x) = −x2
0 +

m∑
i=1

x2
i = 0} ⊂ Rm,1.

The projectivization of L identifies with {x ∈ Rm,1|∑m
i=1 x

2
i = 1, x0 = 1} = Sm−1. This

is a sphere of dimension m − 1 and it is naturally the boundary at infinity of hyperbolic

space Hm. Unless otherwise noted we give Sm−1 the standard spherical metric inherited

from R.

It can be shown that SO(m, 1) acts on Hm by hyperbolic isometries, and also on

Sm−1 by conformal automorphisms. That is, Möb(Sm−1) = Isom(Hm) = SO(m, 1).

An element A ∈ Möb+(Sm−1) can be classified by the dynamics of its action on

Hm ∪ Sm−1:

1. Loxodromic: this is when A has two fixed points (one attracting and one repelling)

on Sm−1, and it leaves invariant a geodesic in Hm whose ideal end points are the

fixed points of A. All loxodromic actions on Sm−1 = Rm−1 ∪ {∞} are conjugate

to x 7→ R(λx) for x ∈ Rm−1, 1 6= λ ∈ R a scalar, and R a matrix in SO(m− 1)

representing a rotation.

2. Parabolic: this is when A has exactly one fixed point on Sm−1. We can think of

a parabolic element as a limit of loxodromic elements when the two fixed points

come together. All parabolic actions on Sm−1 = Rm−1 ∪ {∞} are conjugate to
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x 7→ Rx+ t forR ∈ SO(m− 1) a rotation matrix, and t ∈ Rm−1 a non-zero vector

of translations.

3. Elliptic: this is when A has one or more fixed point(s) in Hm. In this case, the

differential of the action of A at the fixed point p ∈ Hm can be represented as a

matrix in SO(m).

(See [5], [7], and [6] for more details on this classification.) One can easily show that lox-

odromic elements form an open set in Möb+(Sm−1) using Brouwer fixed point theorem.

The following are well known facts in lower dimensions. For n = 1, we have

Möb+(S1) = Isom+(H2) ∼= PSL(2,R) the group of projectivized 2× 2 real matrices of

determinant 1. For n = 2, we haveAut(CP 1) = Möb+(S2) = Isom+(H3) ∼= PSL(2,C)

the group of projectivized 2× 2 complex matrices of determinant 1.

The basic objects in conformal geometry are subspheres inside Sm−1. These objects

arise naturally as the boundaries of totally geodesic hyperbolic subspaces inside Hm.

Under actions of elements of Möb(Sm−1), one subsphere must be mapped to another

of the same dimension. Also, given two subspheres of the same dimension in Sm−1,

there always exist conformal transformations taking one to the other. Moreover, under a

stereographic projection (Sm−1−∞)→ Rm−1 these subspheres are mapped to Euclidean

subspheres and in Rm−1. We now reserve the words “circle” and “sphere” only for these

natural geometric objects in Sm−1. From this point we restrict our attention to the case

m = 4. In all figures, S3 will be presented as its stereographic projection model R3∪{∞}.

Definition 2.1. A loxodromic transformation A ∈ Möb+(S3) is said to be non-rotating

if up to a conjugation there is a λ ∈ R+ so that A(x) = λx for all x ∈ R3 = S3 −∞.
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Otherwise we say that A is rotating.

2.1 Further classifications of elliptic transformations

Let A ∈ Möb+(S3) be an elliptic transformation. We say A is regular elliptic if

it fixes exactly one point in H4, thus it has no fixed points in S3. For example, if we let

S3 = {(z, w) ∈ C2 : |z|2 + |w|2 = 1}, then the transformation (z, w) 7→ (eiθz, eiψw) for

θ, ψ 6= k2π would be a regular elliptic transformation.

IfA is not regular elliptic, that is, it fixes two points in H4, thenA fixes the geodesic

connecting those two points. So the differential of A at a fixed point can be represented

as dpA ∼

 1 0

0 R

 with R ∈ SO(3). But any SO(3) rotation has a fixed axis, so

dpA ∼


1 0 0

0 1 0

0 0 T


with T ∈ SO(2). Thus if A is not regular elliptic, then A fixes a totally geodesic plane

inside H4 along with its ideal boundary - a circle in S3. In this case, we say that A is

singular-elliptic.

This is an important class of Möbius transformations. The centralizer of almost ev-

ery 1-parameter subgroup of Möb+(S3) contains a singular-elliptic subgroup. (1-parameter

subgroups generated by certain parabolic elements may have trivial centralizer.) Also,

among all 1-parameter subgroups of Möb+(S3), the singular-elliptic ones have the largest

centralizers, which can be shown to be isomorphic to SO(2)× PSL(2,R).
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2.2 Möbius Annulus

Let C be a circle in S3. We denote Fix(C) the subgroup of Möb+(S3) that fixes ev-

ery point on C. Then Fix(C) contains only singular-elliptic elements, and it is isomorphic

to SO(2). Its action on S3 is rotation around the axis C.

Consider Inv(C), the subgroup of Möb+(S3) that leaves a circle C invariant. That

is, elements of Inv(C) mapping C to itself. Clearly Fix(C) ↪→Inv(C) a normal subgroup.

Let Conf+(C) be the group of conformal automorphisms ofC. Then Inv(C)→Conf+(C) ∼=

Isom+(H2) ∼= PSL(2,R) is a surjective map defined by restricting the elements of

Inv(C) to act on C. So we have an exact sequence

0→ Fix(C) ↪→ Inv(C)→ Conf+(C)→ 0.

In fact there is a splitting Conf+(C) ↪→ Inv(C) and the image commutes with Fix(C) .

So we have Inv(C) ∼= Fix(C)× Conf+(C) ∼= SO(2)× PSL(2,R).

Now let S be a 2-sphere in S3. We would still have a similar exact sequence like

above. And since Fix(S) is the trivial group, we get Inv(S) ∼= Conf+(S) ∼= PSL(2,C).

We can then think of a 2-sphere in S3 as a copy of CP 1 with PSL(2,C) acting on it.

LetH be a connected subset of a 2-sphere S with boundary being a circle, that is,H

is a half sphere. Then Inv(H) is a subset of Inv(S) ∼= PSL(2,C) that fixes a half-sphere.

So Inv(H) ∼= PSL(2,R) the isometry group of H2. We can then think of H as a copy of

the hyperbolic plane.

An important object to study is defined below:
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Definition 2.2. A Möbius annulus is a 2-sphere minus two disjoint half-spheres.

Let A be a Möbius annulus, and denote Inv∗(A) the subgroup of Möb+(S3) that

leaves A and its two boundary components invariant. (Elements of this group will not

swap the two boundary components of A.) Let ∂1A and ∂2A be the two boundary com-

ponents which are both circles. Suppose that half-sphere H contains A with ∂H = ∂1A.

Then we have Inv∗(A) ⊂ Inv(H) ∼= PSL(2,R), and Inv∗(A) preserve a disk in H . So

Inv∗(A) ∼= SO(2)

a subgroup of elliptic elements in PSL(2,R).

Consider a Möbius annulus in the plane given by

Al = {z ∈ C | 1

el
< |z| < 1} for l > 0

which is considered to be a subset of the Poincare unit disk model of the hyperbolic

plane. If 0 < l1 < l2 < 1 then Al1 is not equivalent to Al2 . This is because conformal

automorphism of the unit disk cannot change hyperbolic area.

We now claim that every Möbius annulus in S3 is conformally equivalent to Al

for some l. Given any Möbius annulus A, it is contained in a halfsphere H such that

∂H = ∂1A. Since H can be mapped conformally to the unit disk, this map takes ∂1A

to {|z| = 1} and takes the other boundary component ∂2A to some circle inside the unit

disk. A composition with some element of Inv(H) will take ∂2A to a circle centered at 0

with radius 1/el. So A is equivalent to Al for some l > 0. Thus we have the following:

Remark 2.3. There is a one parameter invariant given by l > 0 for Möbius annulus A.

We denote this by mod(A) and we call it the modulus of A.
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Fig. 2.1: Conformally equivalent Möbius annuli.

x

(a)

α
ξ α

ξ
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Fig. 2.2: (a) circle arcs in A connecting x to every point in the other boundary component, (b)

circle arcs α, ξ with i(α, ξ) = 0 and (c) with i(α, ξ) = 1.

Definition 2.4. Let A be a Möbius annulus and x and y be two points on the boundary

components ∂1A and ∂2A respectively. We say x, y is a singular pair on the boundary of

A if there is a non-contractible circle C subset of the closure cl(A) so that C contains

both x and y.

Lemma 2.5. (See Figure 2.2.) We call a connected segment of a circle a circle arc. Let

∂1A and ∂2A be the boundary components of a Möbius annulus A. Then:

1. Every point from ∂1A can be connected to any point on ∂2A by a circle arc on A;

2. if x, y are a singular pair on ∂A, then there are two non-homotopic circle arcs

connecting x and y.
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3. if x, y are on two different components of ∂A but are not a singular pair, then all

circle arcs connecting x and y belong to the same homotopy class (rel. endpoints.)

Proof. As suggested in figure 2.2 we can find a family of circle arcs in cl(A) connecting

a point on ∂1A to any other point on ∂2A. Without loss of generality, we assume the

annulus A is given by A = {z ∈ C | e−l < |z| < 1}. Let α be an oriented circle

arcs on A connecting the two boundary components. Using polar decomposition, let

r : C → (0,∞) be the function giving the distance between 0 and a point on C, and let

θ : C → R be the multivalued function representing the angle. We have dθ is a closed

1-form on C− {0}. For any curve γ not passing thru 0, the winding number of γ is

w(γ) =
1

2π

∫
γ

dθ.

This allows us to define the winding number of a curve on a Möbius annulus A

because Inv∗(A) ∼= SO(2) in the planar picture are Euclidean rotations around 0. This is

well-defined up to an orientation on the annulus. Since α : [0, 1] → cl(A) is a circle arc

connecting two boundary components, α is part of a circle Cα ⊂ C that’s not centered

at 0. So there is a point zmin on Cα that’s closest to 0, and a point zmax on Cα that is

furthest from 0. It’s easy to see that zmin, zmax and 0 lie on a straight line in the plane, and

zmin, zmax uniquely determine the circle Cα. So α is a subset of a half circle connecting

zmin and zmax. We use the notation 1
2
Cα to refer to this half circle. We have the winding

number w(1
2
Cα) = ±1

2
or 0, and thus any subsegment α ⊂ 1

2
Cα has winding number

|w(α)| ≤ 1/2. We have equality if and only if α = 1
2
Cα and the endpoints of α are

zmin, zmax.

Now let α, β be two circle arcs with the same endpoints on ∂A. Note than αβ−1 is a
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closed loop with integer winding number, and |w(αβ−1)| = |w(α)−w(β)| ≤ 1
2

+ 1
2

= 1.

We have α and β are not homotopic only when |w(αβ−1)| = 1. This happens only when

α and β are two halves of the same circle C ⊂ A, which means the end-points are a

singular pair. Otherwise, w(αβ−1) = 0 and α, β are homotopic rel. end points.

Definition 2.6. Given a Möbius annulus A, we define a radial orientation on it to be an

equivalence class of bijective conformal maps A → {z ∈ C | e−mod(A) < |z| < 1} where

two maps are equivalent if they are related by a composition with an SO(2) rotation.

The difference between two such orientation is an inversion on C that exchanges

the two boundary components of {z ∈ C | e−mod(A) < |z| < 1}. Basically, a radial

orientation of A defines which boundary component of A is the inner and which is the

outer one.

Definition 2.7. Given a Möbius annulus A which is conformally equivalent to {z ∈

C | e−l < |z| < 1}, the natural S1-fibration of A is a continuous map f : A → [e−l, 1]

such that the fibers are circles :f−1(x) = {z ∈ C : |z| = x}.

Definition 2.8. A marking on a radially oriented Möbius annulus A is a homotopy class

[α] (rel. end points) of curves α : [0, 1] → cl(A) such α(0) is in the inner boundary

component and α(1) is in the outer one, and that the winding number |w(α)| ≤ 1/2. The

pair (A, [α]) is then called a marked annulus.

Note that the definition of winding number is in the proof of lemma 2.5. The lemma

implies that each marking has a circle arc representative (not unique). Moreover, a mark-

ing [α] on a radially oriented Möbius annulus is completely determined by one end-point

of α and the winding number w(α), a real number in [−1/2, 1/2].
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Chapter 3: Conformal structures and fundamental domains

We will first define the flat conformal structure on a manifold. Following Thurston’s

more general notion of (G,X) structures as in [8] , we let G = Möb(S3) and X = S3.

Let M be a 3-manifold. Then a (Möb(S3), S3) structure on M is an atlas with charts

from open sets of M to S3, and transition maps are restrictions of actions by Möb(S3)

elements. We will call this a flat conformal structure on M .

This more rigid type of manifold structure allows us to extend charts along curves

and define a developing map on the universal over dev : M̃ → S3 which is a local

diffeomorphism. We also get a holonomy representation ρ : π1(M)→ Möb(S3) which is

equivariant with respect to dev. That is, for A ∈ π1(M) acting by deck transformation on

M̃ , dev(A.p) = ρ(A).dev(p). From an equivariant pair (dev, ρ) one can construct an atlas

as in the definition. So a flat conformal structure can be seen as a pair (dev, ρ) satisfying

the above conditions.

3.1 Circle bundles, combinatorial construction

The 3-manifolds in which we are interested are total space of oriented circle bun-

dles with structure group Homeo+(S1). Let E be the total space of such circle bundle.

Homeomorphisms of the circle can be extended to the unit disc, so we have an associ-



ated disc bundle. The Euler number of E can be viewed as the self-intersection number

of a section of the associated disc bundle. This is the point of view taken in [1] as they

estimate the Euler number of conformally flat circle bundles coming from tesselations by

regular polyhedrons.

There is another equivalent formulation of the Euler number coming from the fun-

damental group of circle bundle E which we will present below. Regard the surface Σg as

a 4g-gon D2
A whose edges are paired and identified and a standard way. Its fundamental

group can then be presented as

π1(Σg, p) = 〈A1, ..., A2g |W (A1, ..., A2g) = 1〉

where W is the word obtained by listing the oriented edges of the 4g-gon in order, that is

W (A1, ..., A2g) = [A1, A2]...[A2g−1, A2g]. Here Ai are (homotopy classes of) loops based

at p in Σg. These loops are joined only at p and their concatenation W (A1, ..., A2g) is a

deformation retract of Σg − {a point}.

Suppose D2
B is a different polygon with n sides which are paired and indentified

to get the same surface Σg. (n is an even number ≥ 4g.) Let WB(B1, ..., Bn/2) be again

the word obtained by listing the oriented edges in order. Here Bi are paths in Σg and not

necessarily loops. Then W (A1, ..., A2g) ' WB(B1, ..., Bn/2) are homotopic loops, since

they are both deformation retracts of Σg − {a point}.

Let C be the fiber loop over p and we pick a base point p̂ ∈ C ↪→ E. Since

E is oriented, the fiber bundle restricted to a loop Ai is a torus embedded in E. We

can choose loops Âi in E based at p̂, so Âi are (non-unique)“lifts” of Ai. So we have

relations [Âi, C] = 1 coming from the embbeded tori. There are 2g tori coming from
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the 2g generating loops on the surface. We cut along these tori and we are left with

a circle bundle over a disc which must be trivial. We give this trivial bundle a natural

boundary and get PA ∼= cl(D2
A) × S1 a closed solid torus (however we remember the

gluing identification∼). Note that PA has 4g boundary pieces, each a topological annulus,

which are paired up and identified to recover the circle bundle E, that is E = PA/ ∼.

Thus we call PA a fundamental region forE. We have PA is combinatorially equivalent to

D2
A. Under the quotient/identification map PA → (PA/ ∼) = E, the boundary ∂PA ∼= T 2

is mapped to the bundle restricted over the loop W (A1, ..., A2g). This is a non-injective

piecewise immersion of ∂P .

From the above combinatorial construction we can compute the fundamental group

of E using van Kampen theorem, so we have

π1(E) =
〈
Âi, C | [Âi, C] = 1,W (Â1, ..., Â2g) = Ck

〉
.

We define this number k to be the Euler number e(E) of circle bundleE. Note that k does

not depend on the choice of generators Âi. If we choose a different lift Â′i overAi, then Â′i

is also in the torus over Ai, and Â′i ' ÂiC
ai for some integer ai. We have W (Â1, ..., Â2g)

contains Âi and Âi
−1

exactly once, and C commutes with everything, so replacing Âi

with Â′i does not change the relation. Thus e(E) = k is well-defined. This also shows

that even though individual lifts Âi over Ai are not unique, the lift W (Â1, ..., Â2g) of

W (A1, ..., A2g) is unique up to homotopy.

We can repeat the above construction with respect to the other fundamental region

D2
B for Σg; thus we get PB ∼= cl(D2

B) × S1 with n sides which are annuli, and the sides

are paired and glued to recover the same circle bundle E. Similarly, PB is combinatori-

14



ally equivalent to an n-gon fundamental region for Σg. Again ∂PB ∼= T 2 is mapped to

the bundle restricted over the loop WB(B1, ..., Bn/2). Similar to above, we choose lifts

B̂i over Bi and get WB(B̂1, ..., B̂n/2) a lift of WB(B1, ..., Bn/2) . We must also have

WB(B̂1, ..., B̂n/2) ' Ck.

Now would be a good place to remark on the Milnor-Wood inequality. In [9], it is

shown that that for a circle bundle E over a closed surface Σg (with g ≥ 1), the following

are equivalent:

• |e(E)| ≤ |χ(Σg)| = 2g − 2.

• E is induced by a representation φ : π1(Σg)→ Homeo+(S1).

• There is a foliation of the total space with leaves transverse to the fibers.

A foliation on E transverse to the fibers when restricted to the interior of the fun-

damental region int(P ) ∼= D2 × S1 must be the product foliation. Each leaf is a closed

disc whose boundary is a circle and this creates a foliation on the torus boundary of P . So

an equivalent condition for the Milnor-Wood inequality for E = P/ ∼ is: the boundary

identifications (∼) preserve a product foliation on the boundary of P (mapping leaf to

leaf.)
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3.2 Structures with fundamental domains

We will only consider conformal structures on E with holonomy representation

ρ : π1(E)→ Möb(S3) that factors into

π1(E) → Möb(S3)

↓ ↗

π1(Σg)

In other words, the fiber generator C ∈ π1(E) is mapped to ρ(C) = 1. Let Γ =

ρ(π1(E)) ⊂ Möb(S3) be the image of ρ, so Γ is isomorphic to a fundamental group

of a surface, Γ is said to be a surface group in Möb(S3).

D

B1 B2
B3

P0 = D × SO(2)

Embed H into S3

Rotate
around

∂H

Fig. 3.1: Example 1, Fuchsian example illustration. In this picture, infinity is inside P0.
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Example 1. An easy example of a conformally flat manifold can be described as

follows. Take a hyperbolic surface that has fundamental domain D with a standard

identification pattern; embed the unit disk model of H2 into S3 as a half-sphere H;

then rotate H by the singular-elliptic group Fix(∂H). The domain D under Fix(∂H)-

action will sweep out a polyhedron in S3 which we denote by P0, and we have P0 =

S3 − ∪ni=1Bi where Bi are open balls. So the faces of P0 are all aligned, that is, the

spheres ∂B1, ∂B2, ..., ∂Bn are all orthogonal to the same circle ∂H . (Note that by

open ball we mean the open connected region in S3 that’s bounded by a 2-sphere.)

This example is basically obtained from a totally geodesic embedding H2 ↪→ H4

along with an embedding of Fuchsian group Γ0 ↪→ PSL(2,R) ↪→ Möb+(S3). P0 is

a fundamental domain for the action of Γ0 on S3 = ∂∞H4. Moreover, (S3 − ∂H)/Γ0

is conformally flat trivial bundle over a surface.

Example 2. The first examples of non-trivial circle bundles with flat conformal struc-

tures were constructed by Gromov-Lawson-Thurston [1], Kapovich [3] and Kuiper

[2]. All these examples are constructed by fundamental domains and/or tesselations

of H4.

Next, some definitions.

Definition 3.1. A polyhedron in S1 is either a circle arc bounded by 2 points or the whole

circle. A polyhedron P ⊂ Sm is a closed region with non-empty interior int(P ) such

that:

• cl(int(P )) = P ,
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• the boundary ∂P is a union of polyhedra in Sm−1 such that the intersection between

two of them are either empty or polyhedra in Sm−2.

The codimension 1 pieces of the boundary are called faces and the codimension 2 pieces

are called edges.

Definition 3.2. Let P ⊂ Sm be a polyhedron of dimension m. We use {Pm−k} to de-

note the set of codimension k polyhedra on the boundary of P . We can also call it the

combinatorial (m− k)-skeleton of ∂P .

Definition 3.3. A polyhedron P ⊂ Sm is convex if P = Sm − ∪Bi where each Bi is a

ball with boundary an (m− 1)-sphere. That is P is the intersection of a collection of half

spaces.

Faces

Edges

P

B2 B3

Fig. 3.2: A solid torus polyhedron P with n = 8 faces. In this picture, infinity is in S3 − P .

Following [10] we define the following:

Definition 3.4. A cornerless polyhedron is one whose boundary contains only codimen-

sion 1 and codimension 2 pieces.
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Let Q be a (2-dimensional) polygon with n edges and hence n vertices. Let ∼Q be

an identification of the edges of Q such that Q/ ∼Q is topologically a closed orientable

surface. Let ΣQ = Q/ ∼Q be this topological surface. There is an equivalence relations

on the set of edges {Q1} and on the set of vertices {Q0} of Q induced by the above

identification; abusing notation we will call this equivalence relation ∼Q as well.

Let P be a (cornerless) solid torus polyhedron with n faces so that the faces are

Möbius annuli. Let ∼P be an equivalence relation on the set of faces {P 2} and the set of

edges {P 1} of P . We say that (P,∼P ) and (Q,∼Q) are combinatorially equivalent if and

only if there’s a bijective map f : {P 2} → {Q1}, f : {P 1} → {Q0} such that P k
i ∼P P k

j

exactly when f(P k
i ) ∼Q f(P k

j ) for k = 1, 2 and i, j ∈ Z/nZ.

Note that even though Q/ ∼Q is well defined, P/ ∼P is not well-defined if we only

have the combinatorial information: equivalence relations on the set of faces {P 2} and

on the set of edges {P 1}. We would need actual homeomorphisms between paired faces

to define P/ ∼P as a manifold using quotient topology.

Remark 3.5. The natural S1-fibration of ∂P is a continuous map ∂P → ∂Q that extends

the natural S1-fibration on each face of P . See definition 2.7.

Definition 3.6. The domain of discontinuity of Γ ⊂ SO(4, 1), denoted by ΩΓ, is defined

to be the largest open subset of S3 on which Γ acts properly discontinuously. The limit

set ΛΓ of Γ is defined to be S3 − ΩΓ.

Theorem 3.7. Let P ⊂ S3 be a corneless solid torus polyhedron with n faces and suppose

P is a fundamental domain for a surface group Γ ⊂ Möb+(S3) acting on S3 − ΛΓ.

Additionally suppose that the face-pairing transformations in Γ define an equivalence

19



relation ∼P on the set of faces and the set of edges of P combinatorially equivalent to

∼Q on the set of edges and the set of vertices of a polygon Q that results in an orientable

closed surface. Conclusion: Then E = (S3 − ΛΓ)/Γ is a conformally flat circle bundle

over a closed surface, and there is a loop γ ⊂ ∂P composed of n circular arcs such that

[γ] = e(E) ∈ π1(P ) ∼= Z (with appropriate orientation for the generator of π1(P )).

Proof. Following [1](section 5 and 7) we have ΛΓ is a topological circle in S3, and S3 −

ΛΓ is homeomorphic to a solid torus.

The fundamental domain condition implies that we have a tesselation of S3 − ΛΓ

by action of Γ on P . The side-pairing Möbius tranformations are unique, and they realize

∼P , thus manifold E = P/ ∼P can be defined. Moreover E = P/ ∼P= (S3 − ΛΓ)/Γ a

conformally flat manifold because P is a fundamental domain for Γ.

We can define a fibration S1 → P → Q extending the natural S1-fibration ∂P →

∂Q. Note that the side-pairing Möbius tranformations preserve the natural S1-fibration of

∂P . In addition, (P,∼P ) is combinatorially equivalent to (Q,∼Q), so we get a fibration

S1 → (P/ ∼P ) → (Q/ ∼Q). Therefore E is a circle bundle over the closed surface

ΣQ = Q/ ∼Q.

Now we will describe an algorithm to construct the loop γ. LetA1...An be the faces

of P and E1, ..., En be the edges so that for i ∈ Z/nZ we have Ai,Ai+1 are adjacent and

share an edge: Ei+1, which means Ai contains edges Ei, Ei+1 for i ∈ Z/nZ. (The faces

and the vertices of P are cyclically ordered.) Suppose edges Ei1 , ..., Eim are identified

under face pairing Möbius transformations. We pick a point pi1 ∈ Ei1 . The identification

maps give us pik ∈ Eik for k = 2, ...,m. Note that these are lifts of the same point in E.
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We can do the above for every other equivalence class of edges. Now we have a point pi

on each edge Ei for i = 1, ..., n. Face Ai contains edges Ei, Ei+1 for i ∈ Z/nZ, so we

connect pi to pi+1 by a circle arc γi : [0, 1]→ Ai. This is possible by lemma 2.5. Suppose

Ai is identified with Aj by the Möbius transformation Bi,j , then we have Bi,j(pi) = pj+1

and Bi,j(pi+1) = pj . Then let γj = Bi,j(γ
−1
i ) which is a circle arc connecting pj to pj+1.

We can repeat this process until there is a circle arc on each face connecting p1, ..., pn,

and therefore the concatenation γ = γ1γ2...γn is a closed loop.

Consider the quotient map p : P → (P/ ∼P ) = E, and the induced p∗ : π1(P ) →

π1(Q), and also the quotient map q : Q → Q/ ∼Q= ΣQ and the induced q∗ : π1(Q) →

π1(ΣQ). Let c be a loop in P so that [c] generates π1(P ). By construction, p∗([c]) ∈ π1(E)

is the generator corresponding to the fiber of E. Let a1, ..., an be the edges of the polygon

Q corresponding to A1, ...,Aj under the equivalence. If Ai,Aj are identified faces then

p(γi) = p(γ−1
j ) in E, and also p(ai) = p(a−1

j ) in ΣQ. We have p(γi) is a lift of q(ai)

for i = 1, ..., n. So following the discussion in section 3.1 we have p∗([γ]) = [p(γ)] =

[p(γ1)...p(γn)] = p∗([c])k = p∗([c]k) for some integer k. Thus [γ] = [c]k ∈ π1(P ) since

p∗ is injective. Moreover e(E) = k as defined, the theorem follows.

As a corollary, with the same hypothesis as in theorem 3.7, we get |e(E)| < n2.

The proof will be in chapter 4.

Example 3. First let us describe a new non-trivial example with Euler number com-

putation. A new feature is that there will be side-pairing Möbius transformations that

are loxodromic without rotation.
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Let S1, S2, ..., S25 be open Euclidean spheres in R3 = S3 − {∞} centered at
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, respectively. We choose r1 to be the radius for Si

for odd i between 1 and 25, and r2 to be the radius for Bi for even i between 1

and 25. It is possible to choose r1, r2 so that only adjacent spheres intersect. For

i = 1, ..., 24 we let Ei+1 = Si ∩ Si+1 which are all Euclidean circles. Notice that

by construction, the radii of Ei are the same and its value depends on r1, r2. Let

r be the radius of Ei, technically r is a function r(r1, r2). Let E1 be the image of

E2 under the reflection


x

y

z

 7→

−x

y

z

. Let E26 be the image of E25 under

the reflection


x

y

z

 7→


16− x

y

z

. Let S0 = S28 be the sphere centered at
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
−d

0

0

 that contains E1, and let S26 be the ball centered at


8 + d

0

0

 that con-

tains E26. Note that S0 and S26 are symmetric from the mid point


4

0

0

. Let S27

be a sphere centered at


4

0

0

 with radius R so that S27 only intersect S26 and S0,

and let E27 = S26 ∩ S27, E0 = E28 = S27 ∩ S0. For i ∈ Z/28Z let Ai be the

Möbius annulus contained in Si, bounded by Ei, Ei+1. If d is large enough, we can

choose radius R such that mod(A25) = mod(A27), so R is completely determined by

r1, r2, d. Let P = P (r1, r2, d) be the conformal polyhedron bounded by A1, ...,A28.

Let θ = θ(r1, r2, d) be the sum of inner dihedral angles at each edge of P . We have

θ(1
2
, 1

2
, 8) = 0 and θ(3

4
, 3

4
, 8) > 2π. So we can choose r1, r2, d such that θ = 2π.

Let p1 ∈ E1 such that the z-coordinate of p1 is r. That is, p1 is the point in E1 with

maximum z-coordinate. Given pi ∈ Ei, choose pi+1 ∈ Ei+1 such that the winding

number w(γi) = 0 for any circle arc γi ⊂ Ai connecting pi to pi+1. So we can choose

circle arc γi connecting pi to pi+1 so that it is orthogonal to both Ei, Ei+1. We can

check that γ = γ1...γ28 form a closed loop and [γ] generates π1(P ).

We now have marked annuli (Ai, γi) for i ∈ Z/28Z. There are unique Möbius trans-

formations identifying these marked faces in standard identification pattern, that is,
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Fig. 3.3: Example 3 illustration.

(A1
A1−→ A3), (A4

B1−→ A2), (A5
A2−→ A7), (A8

B2−→ A6), etc.

We can check that the edges E1
A1−→ E4

B1−→ E3

A−1
1−→ E2

B−1
1−→ E5

A2−→ ...
B−1

7−→ E1 form

a geometric cycle of edges as defined in [10], and by the main theorem in the same

paper we have the face-pairing transformations generate a surface group Γ where P is

a fundamental domain for Γ. (In order to check the geometric cycle of edges condition

we can construct two other piecewise-circle-arc loops around ∂P compatible with

side identification maps, this shows that the return map fixes 3 points on E1 which

must be singular-elliptic with rotation angle θ = 2π which must then be the identity.)

Moreover, by theorem 3.7 we get (S3−ΛΓ)/Γ is a conformally flat circle bundle with
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Euler number 1 over a surface of genus 7.

In this example we have Γ = 〈A1, B1, ..., A7, B7 |
∏

[Ai, Bi] = 1〉 where Ai are

loxodromics without rotation. This allows for more freedom of deformations as will

be described below.

3.3 Deformations of surface groups

LetG be a Lie group. For anyA ∈ G we define CG(A) be the centralizer ofA inG.

Note that CG(A) ⊂ G is a Lie subgroup which contains 1-parameter subgroups through

A (assuming A is in the identity component of G).

Let Γ ⊂ G be a surface group with standard generators

Γ = 〈A1, B1, ..., Ag, Bg |W (A1, B1, ..., Ag, Bg) =
∏

[Ai, Bi] = 1〉.

We will now describe algebraic deformations of surface group Γ which corresponds to

earthquake/grafting in the level of representations.

Non-separating simple closed loops. Let C ∈ CG(A1) not the identity, and let B′1 =

B1C. Then A1B
′
1A
−1
1 B′−1

1 = A1B1CA
−1
1 C−1B−1

1 = A1B1A
−1
1 B−1

1 . Then

Γ′ = 〈A1, B
′
1, A2, B2..., Ag, Bg |W (A1, B

′
1, ..., Ag, Bg) = 1〉

is another surface group in G. In most cases, Γ′ is not a conjugate of Γ.

Separating simple closed loops. Let k be an integer between 1 and g− 1. (Think of k as

the genus of a component of Σg with a separating simple closed loop removed.) Let C ∈

CG(
∏k

i=1[Ai, Bi]). For i = 1, ..., k, let A′i = CAiC
−1 and B′i = CBiC

−1. Let A′i = Ai
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and B′i = Bi for i = k + 1, ..., g. We can check that
∏k

i=1[A′i, B
′
i]) =

∏k
i=1[Ai, Bi]) and

thus

Γ′ = 〈A′1, B′1, ..., A′g, B′g |
∏

[A′i, B
′
i] = 1〉

is another surface group.

Definition 3.8. We call the above operation an algebraic earthquake on surface group

representations.

A1
B1

(a)

(c)(b)

Fig. 3.4: Example 4 illustration. (a) Fundamental domain D of a Fuchsian surface group, (b) the

domain after an earthquake B′1 = B1C where C is in the R+ factor of CG(A1), (c) the

domain after a grafting B′1 = B1C where C is in the SO(2) factor of CG(A1).
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Example 4. Let ρ : π1(Σg) → G = Isom+(H3) ∼= SO+(3, 1) be a Fuchsian rep-

resentation and let Γ = ρ(π1(Σg)) with standard generators. We have Γ is purely

loxodromic preserving a totally geodesic H2 ↪→ H3, so in particular A1 is loxodromic

without rotation. We have CG(A1) ∼= R+ ⊕ SO(2) where the R+ factor corresponds

to the 1-parameter group of non-rotating loxodromics containing A1, and the SO(2)

factor correponds to the elliptic elements having the same fixed points (2 points in

S2) as A1. Indeed deforming Γ using the R+ factor corresponds to an earthquake,

and using the SO(2) factor corresponds to a grafting along the free homotopy class of

ρ−1(A1) which is represented by a non-separating simple closed loop on the surface.

The same analogy works for the case of earthquake/grafting along a separating simple

closed loop ρ−1(
∏k

i=1[Ai, Bi]).

A question still remains: does algebraic earthquake completely generalize classical

earthquake and grafting? More specifically, given the free homotopy class of a simple

closed loop, do different choices of the standard generator set for Γ yield essentially

different algebraic earthquake deformations?

Example 3 (continued). In the example constructed, Ai are non-rotating loxodromic

generators. In particular, A25
A7−→ A27 is non-rotating loxodromic. So upto a con-

jugation of the whole surface group, A7 acts as a scaling on R3: A7~x = λ~x. Let

P ′ be the image of P under this conjugation, so A′25 and A′27 are “concentric”. So

CG(Ai) ∼= R+ ⊕ SO(3). Consider an algebraic earthquake using the SO(3) part of

CG(A7): we compose B7 with such a rotation. This deformation of Γ can be realized

as a deformation of P ′: rotating A′26. We can rotate A26 until it is tangent to another
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face, this represent a path in the space of representations to a group with accidental

parabolic.
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Chapter 4: Bounding the Euler number

The goal of this chapter is to bound the Euler number of a circle bundle which

admits flat conformal structures. The first approach is by using a fundamental domain

and applying theorem 3.7. The second approach relies on the formulation of the Euler

number of a disc bundle over a surface as the self-intersection number of a section which

may be constructed to be piecewise geodesic.

4.1 Fundamental domain approach

Definition 4.1. Let X be a metric space. For x ∈ X, ε > 0, we denote Bε(x) = {y ∈

X | d(x, y) < ε} which we call a ball of radius ε centered at x. For a subset S ⊂ X , we

denote Nε(S) =
⋃
x∈S Bε(x) which is called the ε-neighborhood of S.

We now prove the following:

Theorem 4.2. With the same hypothesis as in theorem 3.7, we get |e(E)| < n2 where n

is the number of faces of the fundamental polyhedron.

Proof. Let γ be the piecewise-circle-arc loop on ∂P as constructed in theorem 3.7. The

strategy is to construct a nearby piecewise-circle-arc loop β ∈ S3 − P , so that the Euler

number e(E) can be computed (up to a sign) as a linking number lk(γ, β).



First, let’s construct β. As before, letAi, ...,An be the faces of P , and let E1, ..., En

be the edges of P such that Ai contains Ei, Ei+1 for i ∈ Z/nZ. Let Bi be the bisecting

2-sphere between Ai and Ai−1, note that Bi contains Ei.

Ai

Bi

Bi+1

Si,ε

Fig. 4.1: Illustration of the thickened annulus Ai

Let Si be the 2-sphere containing the Möbius annulus Ai. We know that each

Si = {x ∈ S3 | dS(x, xi) = ri}, a metric 2-sphere, where xi ∈ S3, ri ∈ R>0 and dS

is the standard spherical metric. Also, Si = exp (S(0, ri)) where S(0, ri) is a sphere

of radius ri centered at 0 in TxiS
3. If p ∈ int(Ai) ⊂ Si such that p = exp(v) for

v ∈ TxiS
3, we have for small ε > 0, exp((1 + ε)v) is either in int(P ) or not in P . If

exp((1 + ε)v) ∈ int(P ), we let Si,ε = exp (S(0, (1− ε)ri) ⊂ TxiS
3) a sphere slightly

“smaller” than Si. Otherwise, we let Si,ε = exp (S(0, (1 + ε)ri) ⊂ TxiS
3). We choose ε

small enough so that Si,ε intersects Bi and Bi+1 transversely.

For each annulus Ai, there is an associated thickened annulus Ai in S3 − P . More

specifically, Ai is a polyhedron bounded by Si, Si,ε, Bi, Bi+1. Since P has finitely many

faces, we can choose ε small enough so that the interior int(Ai) is contained in S3−P for

all i. Let Fi,0 and Fi,1 be the boundary pieces of Ai which are contained the the spheres
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Bi, Bi+1. These are closed annuli. Let int(Fi,0), int(Fi,1) be the interior of these annuli as

subset of Bi, Bi+1 respectively. The polyhedron Ai is a thickened Möbius annulus, it has

the property that for any two points qi ∈ int(Fi,0) and qi+1 ∈ int(Fi,1) can be connected

by a circle arc lying completely in int(Ai).

For i ∈ Z/nZ we choose qi ∈ int(Fi,0) ∩ int(Fi−1,1). We can connect qi, qi+1 by a

circle arc βi such that βi ⊂ int(Ai) ⊂ S3 − P . Thus β = β1, ..., βn is a loop composed

of n circle arcs. Moreover, β generates H1(S3 − P ).

By theorem 3.7 we have e(E) = [γ] ∈ π1(P ) ∼= H1(P ). Consider S3 − β ⊃ P ,

there is a deformation retract S3 − β to P , thus ∼= H1(S3 − β) ∼= H1(P ) and we have

e(E) = ±[γ] ∈ H1(S3 − β). Therefore e(E) = ±lk(γ, β).

Let us consider now the linking number computation by a planar link diagram which

can be obtained by projecting γ, β to a generic plane in R3 ⊂ S3. Each circle arc belongs

to some circle; a pair of circles is projected to a pair of ellipses. Consider the crossings

between these two ellipses, there are at most two (+) crossings and two (−) crossings.

Both γ, β are composed of n-circle arcs, thus in the link diagram of γ, β, there are at

most 2n2 crossings having the same sign. Therefore e(E) ≤ n2. Equality cannot be

achieved since we can always find segments γi and βj and a generic projection so that

their projected images cross no more than once. Therefore we have e(E) < n2.

We will now provide comments on the possibility of a linear bound. Note that in

the construction of β above, we can choose its vertices q1, ..., qn arbitrarily close to the

vertices p1, ..., pn of γ. Consider γ, β as loops in R3. Replacing each circle arc segment of

γ and β with a straight segment we obtain (Euclidean) polygonal unknots γ′ and β′ with
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the property that |lk(γ′, β′) − lk(γ, β)| ≤ 2n. So in the interest of establishing a linear

bound for lk(γ, β), we can work with piecewise linear unknots instead. To show a linear

bound on e(E), it suffices to prove the following:

Conjecture 4.3. Let γ be a piecewise linear unknot with vertices pi, ..., pn. Let ε > 0

be small enough such that Nε(γ) is a tubular neighborhood. Then there is a constant c

such that for every choice of qi ∈ Bε(pi), the piecewise linear unknot β constructed by

connecting q1, ..., qn (in order) has the property: lk(γ, β) < cn.

Proposition 4.4. Let γ be piecewise linear unknot in R3 with vertices p1, ..., pn, and let β

and β′ be two piecewise linear unknots in R3 disjoint from γ with vertices q1, ..., qn and

q′1, ..., q
′
n respectively. Let ε > 0 be small enough such that Nε(γ) is a tubular neighbor-

hood of γ, and Bε(pi) does not contain pj for j 6= i. Suppose that qi, q′i ∈ Bε(pi) for all

i. Then

|lk(γ, β)− lk(γ, β′)| ≤ 3n.

Proof. The goal is to homotope β to β′ in n steps by moving each qi to q′i, and we estimate

the number of times we cross γ along this homotopy. For notational purpose, let ab be

the straight segment connecting two points a, b ∈ R3, let ∆(a, b, c) be the Euclidean

triangle with vertices at a, b, c ∈ R3. By perturbing qi, q′i a small amount without changing

lk(γ, β), lk(γ, β′) we can make sure that for all i, (qi, q
′
i, qi+1) and (qi, q

′
i, qi−1) are not

colinear triples.

Consider the straight path qi(t) = (1 − t)qi + tq′i. let βit be the corresponding

piecewise linear loop obtained by replacing qi with qi(t). So βi0 = β and βi1 is a loop

where we replace qi by q′i. We have ∆(qi, q
′
i, qi+1) = (

⋃
x∈qiq′i

xqi+1) and ∆(qi, q
′
i, qi−1) =
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(
⋃
x∈qiq′i

xqi−1). Let Pi = (∆(qi, q
′
i, qi+1)∪∆(qi, q

′
i, qi−1)) So each intersection point γ∩Pi

corresponds to a place where βit crosses γ as t varies, and each crossing corresponds to

a jump +1 or −1 in the linking number lk(βit , γ) as t varies from 0 to 1. By tubular

neighborhood condition

Pi ∩ γ = Pi ∩ (pi−2pi−1 ∪ pi−1pi ∪ pipi+1 ∪ pi+1pi+2)

which contains at most 4 points. Each intersection point has a sign which depends on

the orientation of Pi and γ. This sign corresponds to the +1 or −1 jump in linking

number. Moreover, we can show that the total number of points of the same sign in

Pi ∩ (pi−2pi−1 ∪ pi−1pi ∪ pipi+1 ∪ pi+1pi+2) is at most 3. So we have

|lk(βi0, γ)− lk(βi1, γ)| ≤ 3.

We homotope β to β′ in n steps, thus

|lk(γ, β)− lk(γ, β′)| ≤ 3n.

The above is not a tight bound, but it is a linear bound which is sufficient for our purposes.

Definition 4.5. Let γ be a piecewise linear knot with vertices p1, ..., pn. A generic pro-

jection w.r.t. γ is a parallel projection π : R3 → R2 such that π(γ) is injective except at

finitely many points, and π(pi) 6= π(pj) for i 6= j.

Definition 4.6. Let γ be a piecewise linear knot (possibly trivial) in R3 and let π : R3 →

R2 be a generic projection with respect to γ. We then denote K(γ, π) to be the knot

diagram of γ under projection π.
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Definition 4.7. Let K be a knot diagram. The Writhe number of K is the sum of signed

self-crossings of K, and it is denoted by Wr(K).

Proposition 4.8. Let γ be piecewise linear unknot in R3 with vertices p1, ..., pn. Let K be

the knot diagram for γ under a generic projection π : R3 → R2. Then for every ε > 0,

every i ∈ Z/nZ, there is a choice of qi ∈ Bε(pi) so that the piecewise linear unknot β

constructed by connecting q1, ..., qn (in order) is such that lk(γ, β) = Wr(K).

Fig. 4.2: (a) self-crossing of K and (b) corresponding 2 crossings between K and K ′.

Proof. Since γ is piecewise linear, its knot diagram K is a projection of γ, so it is also

piecewise linear. HereK contains not only the combinatorial information (the signed self-

crossings), but also geometric information (vertices and straight segments) of γ. We have

π(p1), ..., π(pn) points in R2 are images of p1, ..., pn under the projection. Let γ1, ..., γn be

the segments of γ such that γi contains pi, pi+1. So π(γ1), ..., π(γn) are straight segments

in R2 connecting π(p1), ..., π(pn). Since π is generic we get π(γ1), ..., π(γn) are disjoint

except at the self-crossings.

For each i, let si be the line through π(pi) that bisect the angle between π(γi−1) and

π(γi)
−1. Pick a point x1 ∈ s1 of small distance δ > 0 from π(p1). For i = 1, ..., n − 1,

let xi+1 ∈ si+1 such that the straight segment connecting xi, xi+1 is parallel to π(γi).

For i = 1, ..., n − 1, let bi be the straight segment connecting xi, xi+1. By property of

bisecting line, we have d(bi, π(γi)) are the same and only depends on δ. Thus bn, the
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straight segment connecting xn to x1, is also parallel to π(γn). We say bi intersects bj

non-trivially if bi intersects bj and i 6= j ± 1.

We choose δ small enough such that δ < ε/3, andN2δ(γ) is a tubular neighborhood

of γ, and such that bi intersects bj non-trivially only when π(γi) intersects π(γj) non-

trivially (which correponds to a self-crossing of K). Thus by assigning the same sign to

corresponding self-crossings, b1, ..., bn form a knot diagram K ′ isomorphic to K.

By our choice of δ, we have π−1(xi)∩B2δ(pi) is non-empty, and we pick a point qi

the intersection. Thus we can construct β as a piecewise linear loop connecting q1, ..., qn

in order. Indeed β is an unknot since it is contained in a tubular neighborhood of the

unknot γ. Moreover, the knot diagram K ′ is in fact K(β, π), the knot diagram of β under

the same projection π. Thus we can compute lk(γ, β) as half the sum of signed crossings

between K ′ and K.

For every self-crossing ofK, we have two crossings betweenK andK ′ of the same

sign (see figure 4.2). Therefore lk(γ, β) = Wr(K).

The above two propositions imply that to prove conjecture 4.3, it’s enough to estab-

lish an n-linear bound on

min
projection π

Wr(K(γ, π))

for arbitrary piecewise linear unknot γ with n vertices.
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4.2 Self-intersection number approach

Suppose we have a disc bundle E over a closed surface Σg with a complete hyper-

bolic structure E = H4/Γ. The Euler number of this bundle, denoted by e(E), is then

the self-intersection number of a section Σg
s0
↪→ E. We can combinatorially construct a

piecewise geodesic section as follows:

By the (dev, ρ) pair we can identify Ẽ ∼= H4 and π1(Σg) ∼= Γ̃. We choose a standard

generator set

Γ = 〈A1, B1, ..., Ag, Bg |
∏

[Ai, Bi] = 1〉.

Definition 4.9. We define the partial words of
∏g

i=1[Ai, Bi] to be W1 = A1,W2 =

A1B1,W3 = A1B1A
−1
1 , ...,W4g =

∏
[Ai, Bi] = 1.

W1

W2

W3

W4
W5

W6

W7

Fig. 4.3: Combinatorial picture of the partial words.

Pick a point x0 ∈ E and a representative x̃0 ∈ H4. Let W1, ...,W4g be the partial

words of
∏

[Ai, Bi], we can connect the points W1x̃0,W2x̃0, ...,W4gx̃0 = x̃0 by geodesics

in H4 that form a triangulation of a 4g-gon into 4g − 2 triangles. Moreover there is
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a unique geodesic plane containing given 3 points in H4, so we have 4g − 2 geodesic

triangles with vertices at W1x̃0,W2x̃0, ...,W4gx̃0. These triangles descend down to define

a piecewise immersion Σg → E which is homotopic to a section.

Definition 4.10. Let sx0 : Σg → E be the piecewise immersion constructed above, it

is well-defined (up to diffeomorphisms homotopic to identity) given a choice of vertex

x0 ∈ E. We call this a standard 4g − 2 geodesic triangle immersion of surface into E.

Let s̃x̃0 : Σ̃g → H4 be the Γ-equivariant lift based at x̃0.

A technical difficulty. Even though sx0 is homotopic to a section, and it can be

well approximated by a smooth immersion, we don’t yet know for sure if sx0 is regularly

homotopic (or homotopic through immersions) to a section. If we know this then we can

safely compute the Euler number ofE as the self-intersection of sx0 . One possible avenue

to show this is to apply Hirsch’s theorem in [11] which guarantees the existence of such

a regular homotopy.

For now we will assume that sx0 is regularly homotopic to a section. An approach

to bound e(E) suggested to the author by Feng Luo is as follows. The piecewise geodesic

section described above is completely determined by the choice of an initial point x̃0 ∈

H4. We can move x̃0 slightly and get a different piecewise section. We hope that the two

sections only intersect transversely, and since each geodesic triangle transervely intersects

another at no more than one point, we would have a rough bound e(E) < (4g− 2)(36g−

23). This number comes from the 4g − 2 geodesic triangles in H4, and each triangle may

possibly intersect 36g − 23 triangles around it if its vertices in H4 are perturbed.

We observe that there are 4 dimensions of freedom in choosing the base point which
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determines the piecewise geodesic section. However, the space of all geodesic planes in-

tersecting a given plane non-transversely has dimension ≥ 4. So a non-trivial problem

here is to show the existence of another piecewise geodesic section transverse to the orig-

inal one.

Definition 4.11. Let A ∈ Isom+(H4) = Möb+(S3) be a rotating loxodromic transfor-

mation with rotation angle not 2kπ for some integer k. Then there is a circle C in S3

containing both fixed points and C is invariant under A. We call C the rotation axis of A.

Also, C bounds a complete totally geodesic 2-dimensional plane H ⊂ H4. Depending on

the context, we also say H is the rotation axis of A.

Lemma 4.12. LetA ∈ Isom+(H4) = Möb+(S3) be a rotating loxodromic transformation

with rotation angle not kπ for some integer k. Then there is a unique 3-dimensional totally

geodesic subspace H3 ↪→ H4 that is A-invariant.

Proof. For all x ∈ R3 = S3 − {∞}, we have (up to a conjugation) A(x) = λR(x) for

some λ ∈ R+ and R ∈ SO(3) − {I}. Any 3-dimensional subspace invariant under A

corresponds to a 2-sphere in S3 invariant under A. This invariant 2-sphere must contain

the fixed points: 0,∞, so it must be a Euclidean plane through 0 in R3. There’s only one

such plane invariant under R which is the one orthogonal to its rotation axis. Thus there

is a unique 3-dimensional totally geodesic subspace invariant under A.

Note that the above is not true if the rotation angle of R is kπ for any interger k.

If the rotation angle is π, then A leaves invariant any 2-sphere in S3 that contains the

rotation axis (which is a circle).
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Definition 4.13. Let S1, ..., Sk be subsets of Hn. We define span(S1, ..., Sk) to be the

smallest totally geodesic subspace Hm ↪→ Hn that contains S1, ..., Sk.

Lemma 4.14. Let H1, H2 be two geodesic planes in H4. If span(H1, H2) = H4 then

H1, H2 are either disjoint or intersecting transversely.

Proof. IfH1, H2 intersect non-transversely (along a plane or a geodesic), then span(H1, H2)

is at most 3-dimensional.

Lemma 4.15. Suppose we have a surface group Γ ⊂ G = Isom+(H4), and a choice

of generators and partial words as in Definition 4.9 which are all loxodromic. Let

A,B, P,Q be such loxodromic transformations. Then there is a point x′0 arbitrarily close

to x0 and x′1 arbitrarily close to x1 so that span(x′0, Ax
′
0, Bx

′
0) is either disjoint from

span(x′1, Px
′
1, Qx

′
1) or intersecting span(x′1, Px

′
1, Qx

′
1) transversely.

Proof. Let ∆(x0, Ax0, Bx0) be the geodesic triangle with vertices x0, Ax0, Bx0. The

context is that this is a triangle in H4 which descends to one of the 4g − 2 geodesic trian-

gles immersed in E. Let H = span(x1, Px1, Qx1) and let K = span(H, x0, Ax0, Bx0).

If K is 4-dimensional then we’re done: x′0 = x0. If K is 2-dimensional, then H =

span(x0, Ax0, Bx0). Then we can move x0 an arbitrarily small amount to x′0 outside of

H and the problem is reduced to the case when K is 3-dimensional. This is when H and

span(x0, Ax0, Bx0) intersect along a geodesic.

Case 1: Suppose K is not invariant under A. Then there is a vector v ∈ Tx0K so

that dA(v) 6∈ TAx0K. The condition dA(v) 6∈ TAx0K is an open condition, so we have

the freedom to choose v such that v 6∈ Tx0H . Then there is x′0 arbitrarily close to x0

along the v direction where we have x′0 ∈ K −H and Ax′0 6∈ K. So span(H, x′0) = K,
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thus span(H, x′0, Ax
′
0) = H4. Therefore span(x′0, Ax

′
0, Bx

′
0) and H are either disjoint or

intersecting transversely.

A similar proof works for the case K is not invariant under either B or AB−1.

Case 2: From now we assume that K is invariant under all three transformations

A,B, and AB−1. Since K is 3-dimensional, it divides H4 into two half-spaces.

Case 2a: If A is rotating with angle not kπ for an interger k, then by lemma there

is a unique 3-dimensional geodesic subspace SA invariant under A. We deform x0 to x′0

outside of both K and SA. Thus K ′ = span(H, x′0, Ax
′
0, Bx

′
0) is either 4-dimesional (in

which case we’re done by lemma 4.14), or a 3-dimensional space distinct from K. In the

latter case, A cannot preserve K ′ as well by lemma 4.12, so we are back in Case 1 which

has already been resolved.

The above argument works if either A,B, or AB−1 is rotating with angle not kπ.

Case 2b: Now suppose that A,B,AB−1 are all rotating with angle kπ for some

integer k.

If A,B,AB−1 are all non-rotating, then their action on K is orientation preserving.

Pick a vector v ∈ Tx0H4 that is orthogonal to K. Its images under the differential maps

are dA(v) ∈ TAx0H4 and dB(v) ∈ TBx0H4. So v, dA(v), dB(v) must point into the same

half space of H4 − K because A,B are both orientation preserving. We can then find

x′0 arbitrarily close to x0 along the direction of v, and we have x′0, Ax
′
0, Bx

′
0 are all in

the same half space, and also the distance from x′0, Ax
′
0, Bx

′
0 to K are the same. Thus

span(x′0, Ax
′
0, Bx

′
0) is disjoint from K, in particular span(x′0, Ax

′
0, Bx

′
0) is disjoint from

H .

The last case is when two out of the three transformations A,B,AB−1 are rotat-
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ing with angle π, the other is non-rotating. Let C1, C2 be the rotation axes of these

two loxodromic with π-rotation, these are circles in ∂∞H4. Since K is invariant un-

der A,B,AB−1 (by Case 2 assumption), we have ∂∞K ∼= S2 contains the two rotation

axes. We can move x0 to x′0 outside of K. So we have K ′ = span(H, x′0, Ax
′
0, Bx

′
0), and

K∩K ′ = H , thus ∂∞K∩∂∞K ′ = ∂∞H . If ∂∞K ′ does not contain the two rotation axes

then K ′ is not invariant under all three transformations A,B,AB−1 and we are reduced

to Case 1. Otherwise, both ∂∞K, ∂∞K ′ contain the two rotation axes, which means the

two axes are the same circle and the same as ∂∞H = ∂∞K ∩ ∂∞K ′. Now recall that

H = span(x1, Px1, Qx1). We can move x1 an arbitrarily small amount to x′1 so that

H ′ = span(x′1, Px
′
1, Qx

′
1) is not the rotation axis of either A or B or AB−1. Apply the

same argument we get span(x′0, Ax
′
0, Bx

′
0) is either disjoint from H ′ or intersecting H ′

transversely.

This concludes the proof of lemma 4.15

Theorem 4.16. Let E be a disc bundle over a closed surface Σg with a complete uni-

formizable hyperbolic structure E = H4/Γ where Γ is a surface group with a loxo-

dromic standard generator set Ai, Bi and loxodromic partial words W1 = A1,W2 =

A1B1,W3 = A1B1A
−1
1 , ...,W4g =

∏
[Ai, Bi] = 1. Suppose also that all standard 4g − 2

geodesic triangle immersions Σg → E are regularly homotopic to a smooth section of E.

Then

e(E) ≤ (4g − 2)(36g − 23).

Proof. Fix a point x1 ∈ E and a lift x̃1 ∈ H4. We can choose x1 such that no lift x̃1 is in
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the rotation axis of any loxodromic element of Γ. (We can do this since Γ(
⋃

all rotation axes)

has measure 0 in H4.) As before we can construct 4g − 2 geodesic triangles in H4 with

vertices at W1x̃1,W2x̃1, ...,W4gx̃1 which descends to a continuous map sx1 : Σg → E

which is homotopic to a section. The Euler number is the the self-intersection number of

this section. The 4g − 2 geodesic triangle under Γ expand to a countable collection of

geodesic triangles which we name {Tx1,i}i∈Z+ .

We pick x̃0 arbitraily close to x̃1 in a way that x̃0 is not in T1,i for any i. For every x̃′0

in the ball B(x̃0, ε) ⊂ H4 we can once again construct {Tx̃′0,i}i∈Z+ a countable collection

of geodesic triangles from x̃′0 and Γ. Let sx̃′0 : Σg → E be the piecewise geodesic section

based at x̃′0. We have x̃′0 is close to x̃0 which is close to x̃1, so the sections sx1 and sx̃′0 are

arbitrarily close. If we can make the two sections transverse (by choosing x̃′0)), then e(E)

is the local intersection number between them.

Let Si,j ⊂ B(x̃0, ε) be the set of points x̃′0 near x̃0 such that Tx̃′0,j intersects the fixed

triangle Tx1,i non-transversely. By lemma 4.15, the set Si,j has empty interior. Moreover

Si,j is a closed set since disjoint/transverse is an open condition. Therefore by Baire

Category theorem,

S =
⋃

i,j∈Z+

Si,j

has empty interior. So we can choose x̃′0 ∈ B(x̃0, ε) − S and we have Tx1,i is disjoint

or transverse to Tx̃′0,j for any i, j ∈ Z+. Thus we have two arbitrarily close transverse

sections sx1 and sx̃′0 and therefore

e(E) = i(sx1 , sx̃′0) ≤ (4g − 2)(36g − 23).
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Chapter 5: Further directions

The GLT conjecture is still open, and there is room for improvement on our results.

Deformations of flat conformal structures on such a circle bundle is a rich and unex-

plored area of research. All the possible degenerations of quasi-Fuchsian (PSL(2,C),CP 1)

surface groups can also happen in (Möb(S3), S3) on the Euler number 0 component of

discrete representations. Are there other kind of degenerations more specific to this ge-

ometry?

Fix a genus g ≥ 2, we have the set of quasi-Fuchsian surface groups in PSL(2,C)

is connected, parametrized by T (Σg) × T (Σg). Going one dimension higher we find

that the set of quasi-Fuchsian surface groups in SO+(4, 1) is disconnected, because of

different possible Euler numbers for the quotient (S3 − ΛΓ)/Γ. An interesting question

is to what extend does the Euler number classify the components of this quasi-Fuchsian

set?
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