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Branch predictors are very critical in modern superscalar processors and are responsible for 

achieving high performance. As the depth of pipeline and instruction issue rate of high-

performance superscalar processors increase, a branch predictor with high accuracy becomes 

indispensable. It has been speculated that by 2010 branch prediction will become the most 

limiting factor in the performance of a processor, than the memory system. Branch 

mispredictions have heavy penalty, causing flushing of the pipeline and re-fetching of 

instructions from the correct location. 

 

In recent times, neural based branch predictors, like perceptron predictor, are found to have an 

edge over other popular two-level branch predictors. Branch predictors based on neural 

learning are the most accurate predictors in the literature as they have sophisticated learning 

ability to make predictions based on previous outcomes and predictions. However, they are 

expensive to implement. But perceptron based branch predictors are simple and are easy to 

implement with less hardware resources. One major advantage of perceptron predictors over 

the two-level schemes is that we can have longer global or local history length, and  

 

 



     

 

 

consequently the perceptron predictor is robust to aliasing, resulting in better prediction 

accuracy. 

 

In this thesis, the behavior and the intricacies of the perceptron predictor are extensively 

studied. The perceptron predictor has outperformed the classic Gshare predictor with lesser 

hardware resource. For a memory size of 64KB, the perceptron branch predictor has prediction 

accuracy about 2-10% higher than that of Gshare. The advantage of having longer history 

lengths was exploited to determine the performance and the IPC values for the perceptron 

predictor and showed commendable results. Also, varying the training parameter and the 

number of perceptrons for prediction helped in analyzing the behavior of the perceptron 

predictor under different environments. 
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CHAPTER1. INTRODUCTION 

1.1. Importance of Branch prediction 

Instruction-level parallelism is made possible with speculation involving predicting the 

values even before the actual values are made available. We require accurate prediction 

schemes to enhance the performance of speculating these data. Branch prediction is an 

indispensable component of modern microarchitectures. When a branch is encountered in a 

processor pipeline, stalling the remaining instructions would degrade the performance of 

the processor. Instead, predicting the branch outcome and speculative fetching from the 

predicted address would allow the processor to execute instructions along the direction of 

the predicted path [8].  

 

Speculating the outcome of a branch instruction allows the processor to continue fetching 

instructions from the predicted target without the knowledge of whether that is the correct 

location. If the prediction is correct, the throughput of the system is not affected and 

execution of the remaining instructions continues without interruption. If the prediction is 

wrong, the incorrect instructions have to be flushed from the pipeline, and instruction 

fetching should continue from the correct address. 

 

Branch misprediction is one of the most important causes of performance degradation as 

the number of pipeline stages becomes large. Branch predictors must be improvised in 

order to prevent the penalties of mispredicting branches, more specifically the conditional 

branches, and enjoy the benefits of predicting a branch correctly. 
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In out-of-order processors, mispredictions divide the instruction window into sequentially 

executed segments, limiting the ILP.  As the instruction window increases in size, the 

limitation on performance increases. 

It is difficult to design a branch prediction technique that performs with higher accuracy for 

all kinds of inputs. With a fixed hardware budget as a constraint, it is important to design a 

predictor that provides good accuracy. 

 

1.2. Limitations of Two-level Techniques using Table-based Predictors 

Two-level predictors use saturating counters that are indexed using the address of the 

branch and use the MSB bits of the counter to make the prediction. Whenever the branch is 

taken, the counter is incremented; whenever it is not taken, the counter is decremented. 

 It has been found that branch outcomes are highly correlated to other branches in the 

program. To incorporate global information, two-level predictors have been proposed [2].  

Given the outcome of the previous ‘n’ branches, a Pattern History Table (PHT) is accessed. 

Inside this Pattern history table is a two-bit saturating counter that decrements or 

increments based on whether the branch was predicted correctly or incorrectly. 

These are called two-level table-based branch predictors. In the first level we have a 

Branch History Register (BHR) that stores information of past executed branches. If it 

stores information of all recently executed branches, it is called a Global history register 

and if it stores information pertaining to recent executions of the same static branch, it is 

called a Local history register. This information is used to index the second level, which is 

the PHT having a saturating counter. 
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There are different techniques to design a branch predictor, depending upon the hardware 

budget and the accuracy required. Based on the way by which the PHT is indexed using the 

BHR, we have different kinds of table-based branch predictors. The common Bi-Modal 

predictor has 2 bits for the saturating counter whose outcome is used to predict the 

branches. The GShare (Global Index Sharing) [1] proposed by McFarling has both the 

address and the BHR bits Ex-OR'ed to index into the PHT. A variation of the GShare is 

PShare (Per Address Index sharing). Yeh and Matt [2] came up with multiple layers of 

BHR and PHT to account for both global and local history of branches that has information 

regarding the branch history. But this had high hardware cost and was not feasible. There 

are also combinational predictors having two of the above-mentioned predictors combined 

to predict the branches. For better prediction accuracies, a compromise on hardware 

requirement has to be made for most of the branch predictors. 

 

1.2.1. Demerits of Table based predictors 

The table-based branch predicting schemes have some basic limitations, one of them being 

Aliasing, wherein more than one location on the PHT is indexed causing interference and 

inaccurate prediction. Another disadvantage is that longer history length could not be used 

for better prediction, as the hardware budget is limited. So, there is not much scope for very 

good prediction accuracy beyond a level. 

 

1.3. The Neural Branch Predictor Scheme using Perceptron 

Recently, a perceptron- based branch predictor was proposed by Jimenez and Lin [3] [4]. 

The perceptron replaces the finite state machine used for state transition in table-based 

predictors. The Perceptron predictor uses percepton learning to predict the directions of  
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conditional branches. It is a correlating predictor that makes a prediction for the current 

branch based on the history pattern observed for the previous branches. A perceptron is a 

simple learning device that multiplies the input data with weights and sums it up to give a 

single output. 

 

The perceptron based branch predictor thus combines the set of inputs which is the Global 

BHR with the weights, which attempt to capture the correlation between the past branch 

outcomes and the behavior of the branch being predicted, and gives an output that would 

determine whether a branch is to be taken or not. The advantage of using perceptrons is that 

we can exploit their ability to make use of longer history length, as the size of the 

perceptrons linearly scales with the history length, whereas in other schemes the history 

length is used to hash the PHT and would cause it to increase exponentially (2
n
 for n bits of 

BHR). 

 

This thesis makes the following contributions. We have performed a detailed study of 

perceptron based branch predictors.  Although a few studies on perceptron branch 

predictors have been done before, these studies have focused on a subset of the factors 

affecting the performance of perceptron predictors.  Our study looks at all the relevant 

parameters, and presents all of the results in one place. For comparison purposes, we use a 

Gshare predictor also.  Perceptron based predictors could achieve better prediction 

accuracies with smaller history length than that of Gshare; with increase in the history 

length the perceptron predictor performed even better. But with Gshare, just as in most 

table-based predictors, increase in history length is not feasible. Yet another finding was  
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that with an increase in the number of perceptrons, the prediction was better, as more 

weights were used in order to predict an outcome. 

 

The rest of this thesis is organized as follows. Chapter 2 describes in detail the background 

and related area of research, and presents a detailed look at the perceptron branch predictor. 

Chapter 3 describes various issues and techniques for improving the perceptron predictor. 

Chapter 4 discusses the experimental framework and the results from simulation 

experiments. Chapter 5 summarizes and draws conclusions. 
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CHAPTER 2:  BACKGROUND 

 

2.1. Basics of Branch Prediction 

2.1.1. How Branch Predictors Function? 

Branch predictors combine the information from the branch history register (BHR) ─ that 

stores the previous outcomes of branches ─ and the address of the fetched branch 

instruction to predict the branch outcome. This is done at the fetch stage of the pipeline. As 

described in Section 1.2, there are various schemes for branch prediction, but the basic 

underlying principle remains the same. Figure 2.1 describes the general architecture of 

branch predictors [6]. 

 

  Fig.2.1. Branch Prediction Unit Architecture (adapted from [6]) 

The BPU consists of mainly two logical parts, the BTB and the predictor. The BTB is the 

buffer where the CPU stores the target addresses of the previous branches if the branch is 

to be taken and we need to fetch the next instruction from that target address. The predictor 
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is that part of the BPU that makes the prediction on the outcome of the branch under 

question. There are different parts in a predictor: Branch History Registers (BHR) like the 

global history register or local history registers ─ storing the outcome of previously 

executed branches ─ and branch prediction tables (BPT) having an asynchronous 

sequential machine, more generally a saturating counter. 

This work limits itself to the branch predictor part involving prediction of the outcome of 

the predictor and does not delve into the details of the Branch target buffer. So, different 

branch prediction schemes vary from each other in the way the BPT is accessed using the 

BHR and the branch address. Some of the branch prediction schemes are discussed briefly 

below, but emphasis is laid on Gshare, which has been found to be very accurate. 

 

2.1.1. Common Branch Predictors: Gshare 

A very simple branch predictor is the bimodal branch predictor, which hashes the BPT 

consisting of a saturating 2 -bit counter. The state of the counters is stored in this counter 

table that records all the branches’ history. Each branch will then map to a unique counter. 

The branch history table is indexed by some bits of the branch address. 

 

The correlated branch predictors absolves the mapping collision problem faced by Bimodal 

predictors by using two branch history tables, one for keeping the recent branch history 

records and the other one for keeping the state of branches in each entry contained 2-bit 

counter. So, it takes the advantage of the relationship between different branch instructions 

that is certain repetitive branch pattern of several consecutive branches. The local, global 

and global selection, are all correlated predictors, making use of history information from 
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either local or global or both tables. They vary from each other, depending upon whether 

they are globally adaptive or per-address adaptive and the way the PHT is indexed. 

The Gshare predictor is one of the best schemes among the correlating branch prediction 

schemes and has been shown to have better accuracy than other correlating predictors. In 

this thesis work, the performance of the perceptron predictor is compared against Gshare, 

and thus it calls for an understanding as to how Gshare works. All of these predicitng 

schemes are called table-based branch predictors, as they use a history table to predict 

branches. 

The Gshare predictor proposed by McFarling [1] hashes the PHT by Ex-OR'ing the branch 

address bits and the bits from the history table (BHT). This makes the index more explicit 

and hence mapping to the same location on the PHT is reduced. 

 

 

 

                                   Fig. 2.2. Gshare  Branch Predictor (adapted from [1]). 
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2.2. Limitations of Table-based Branch Predictors 

These predictors also come up with other limitations cited below: 

1. Aliasing: The PHT is limited in size, resulting in many branches mapping to the same 

location in the PHT.  This causes several branches to address and change values in the 

same counter. This is called aliasing or interference. Interference can be positive (outcomes 

of other branches helps the current prediction), negative (outcome of other branches 

misguides the current prediction), or neutral [9]. 

 

2. Period to warm up: With larger more accurate predictors it takes some time for the 

PHT to be filled with values, allowing for accurate predictions to be made. 

This is a problem in systems with context switches. If the PHT is flushed, then the PHT 

needs to be refilled, restarting the learning process.  If the PHT is not flushed the branch 

characteristics of the program executing previously may degrade performance and require 

unlearning to get back to the accuracy prior to the switch. 

 

3. History length: With increase in history length, some of the branch predictors like 

Gshare have a detrimental effect as it runs out of bits since gshare requires resources 

exponential in the number of history bits. So the scope of improvement with a little 

upgrade in hardware budget is absent. 

The perceptron based branch prediction has been found to have solved these limitations 

faced by table-based predictors and has better prediction accuracy. 
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2. 3. Perceptron-based Branch Predictors 

2. 3. 1. Basic Working of a Perceptron 

The perceptron was introduced in 1962 [10] as a way to study brain function [3] [4]. The 

Perceptron predictor is a learning hardware structure that predicts the directions of 

conditional branches. It is a correlating predictor and makes a prediction for the current 

branch based on the history pattern observed for the previous branches. 

 

A perceptron is a learning device [10] that takes a set of input values and combines them 

with a set of weights (which are learned through training) to produce an output value. In 

our predictor, each weight represents the degree of correlation between the behavior of a 

past branch and the behavior of the branch being predicted. Positive weights represent 

positive correlation, and negative weights represent negative correlation. To make a 

prediction, each weight contributes in proportion to its magnitude in the following manner. 

If its corresponding branch was taken, the weight is added; otherwise the weight is 

subtracted. If the resulting sum is positive, the branch is predicted to be taken; otherwise it 

is predicted to be not taken. The perceptrons are trained by an algorithm that increments a 

weight when the branch outcome agrees with the weight’s correlation and decrements the 

weight otherwise. This way we ensure the assertiveness of branch outcomes that are 

positive. 

 

The perceptron behaves like a neuron (brain cell), which accepts various signals it receives 

through dendrites and if the combined signal strength (weights) is greater than the threshold 

then it outputs the combined signal. Now a perceptron accepts all the inputs and assigns 

them weights depending on the correlation between previous outcomes of that branch. 
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  Fig.2.3. The Perceptron Model (adapted from [3]) 

Fig. 2.3 depicts the Perceptron model [3], where input vectors X1… Xn are multiplied by 

their corresponding weights W1… Wn. This product is summed up to give the output Y. X0 

is always 1 to have a bias input. The perceptron is made to learn a Boolean function Y = 

f(X1, ……Xn),  where Xi are the bits of the global history shift register for n inputs and the 

weights W1 …… Wn give the corresponding correlation weights and are signed integers. The 

input vector bits are either 1 for taken and –1 for not taken, and the output Y is 1 for predict 

taken and –1 for predict not taken. 

The output function Y is given by [3] 

    

Y = W0 + ∑ Xi Wi 

 

 

A perceptron predictor can be represented by an N × (h+1) matrix having an entry of W 

weights, where N is the number of perceptrons and h is the history length. Each row of the 

matrix is a (h+1) length weights vector. Each weights vector stores the weights of one 

perceptron, and is updated as the perceptron learns from training. In the weights vector W 
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Wi 
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X1 

Xi 
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[0…h], the first weight W0 is known as the bias weight and is set to 1. Weights are 

typically 8 bits. So, the first column W contains the bias weights of each weights vector. 

The global history shift register is represented by a single row matrix H [1...h], which 

contains the outcome of the previous h branches represented by a 1 or –1 for taken and not 

taken, respectively. 

 

 

W0   Wn 

                    

    

 

 

 

   

    

    

 

  

 

 

 

                           

Gn G0 

 

                                               

                                              

 

 

                                            Fig.2.4. Perceptron Weighted Matrix Model. 
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2.3.2. Training the Perceptrons 

The PC of the branch instruction is hashed to a particular row of the Weights matrix. This 

row acts as a perceptron that is responsible for the prediction of that particular branch. A 

single perceptron can be responsible for the predicting of multiple branch instructions. The 

outcome of the branch is based on the weight values in that row and on the outcome of the 

most recent branches, which are stored in the global history register G. 

 

Once the outcome is known, the perceptron that was used for the prediction is trained, 

depending on whether the prediction was correct, and also based on the pattern history 

stored in the global history register G. This is done by updating the weights in the 

corresponding row of the W matrix used for predicting the branch. 

Let θ be the threshold to train the perceptron [3], which determines the extent to which the 

perceptron is trained, and t be –1 if not taken and 1 if the branch is taken. Then the training 

algorithm is given by [3]: 

  

  If sign (yout) ≠ t or |yout| ≤  θ then 

                                      For i = 0 to n do 

                                     Wi: = Wi + tXi 

                                      End 

                       End if  

 It has been suggested [3] that the best value for the training threshold θ is  

                                       θ = 1.93×h +14, where h is the history length. 

This algorithm increments or decrements the weights, depending upon whether a branch is 

taken or not, as essentially t and Xi   are either 1 or –1. When outcomes are predicted 
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correctly, we have a positive correlation and the weights become larger. Likewise, when 

the outcomes are predicted incorrectly, the negative correlation decreases the weights. So 

the correlation ─ both negative and positive ─ impacts the weights and in turn influences 

the prediction [7]. 

 

2. 3. 3. The Perceptron Predictor 

Now that the structure and basic working principle of the perceptron is known, we 

incorporate this perceptron predictor in our hardware. The block diagram in Fig 2.4 shows 

the perceptron predictor as a whole. The diagram shows that instead of 2-bit saturating 

counters we have a table on N perceptrons and also a training logic. The hardware resource 

allocated depends on the number of perceptrons, and the history length for the weights 

used. 

   

During the fetch stage, 

i) The PC of the branch address is made to index into the perceptron table where 

index i belongs to 0…N-1 in the table of perceptrons. So, essentially one row of 

the weight matrix is selected. 

ii) The row of the perceptron table containing the weights is selected and is    

             stored as a vector register P. 

iii)  The output Y is the dot product of the entries in the global history register  

             and the weights from the perceptron table.  

iv) The branch is predicted taken when the output Y is positive and is  

             predicted as not taken when the output is negative. 
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 Execution stage: 

i) Once the outcome of the prediction is known, the training algorithm uses this 

predicted outcome and the actual outcome of the branch to update the weights. 

So if the prediction was correct, the weights are incremented; else it is 

decremented 

ii) This information is then updated in the ith entry of the perceptron 

table

 

 

           Fig 2.5 Block diagram of Perceptron Predictor (adapted from [3]). 

 

Every time the branch predictor encounters a conditional branch instruction, it 

computes the product and makes a prediction. Based on the outcome of the prediction, 
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instructions are fetched along the direction (path) of the flow of the program and the 

branch command is moved to the next pipe stage. After the branch condition 

calculation, a check is made to see if the prediction was correct. If not, the subsequent 

instructions are flushed from the pipeline, and the PC is updated to continue fetching 

from the correct location. In any case, the perceptron is trained, i.e., the predictor is 

updated according to the history register at the time of prediction.  

Linear Separability: 

Perceptrons can only learn a limited class of functions. The output formula for perceptron 

is given by:  

                             O = g (W.I) 

Given the sigmoid function noted previously, the perceptron outputs something close to 1 if 

the inner product of the weight vector and input vector is greater than zero; otherwise it 

outputs something close to 0.  

So the perceptron is distinguishing inputs based on where they fall with respect to a 

hyperplane in input space (whose coefficients are the weights). The perceptron will learn 

correctly if there exists a hyperplane that divides the inputs correctly, i.e., if the function is 

linearly separable (in each output for perceptron networks). 

The perceptron can only learn two types of inputs, i.e., it is bipolar. It responds to either a 

true (a 1) or a false (–1) condition and outputs either 1 or –1. Figure 2.6 [3] illustrates the 

linear separability exhibited by perceptrons. 
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Fig 2.6. Linear Separability Property of Perceptrons (adapted from [4]). 

 

 

 

If the set of all possible inputs to a perceptron can be imagined as an n-dimension space, 

then for the equation  

  Y = W0 + ∑i=1::n  Wi Xi  

there exists a solution that is a hyperplane having 2 sets of inputs dividing the plane what 

the perceptron distinguishes. Therefore, the perceptron can only be given bipolar inputs. 

 

Recent developments on the proposed perceptron branch predictors by Jimenez and Lin 

have been suggested to be a promising technology for future microprocessors [18]. It has 

been used in studies of hybrid predictors [3] 

 

It has also been suggested by another study that perceptron predictors can also be 

implemented using techniques from high-speed arithmetic [17], but the latency of the 

predictor is more than 4 cycles with an aggressive clock rate. Also the perceptron predictor 

is found to achieve superior accuracy and low latency by choosing the neural weights based 

on the path taken to reach a branch rather than the branch address itself [4]. 

  

Positive output 

Negative output 
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CHAPTER 3: DESIGN ASPECTS AND HARDWARE SUPPORT 

For a fixed hardware budget for the predictor, there are certain parameters that can be 

changed in order to get good prediction accuracies. The parameters that are tuned are the 

History length and weights, the Number of perceptrons, and the training threshold. A brief 

review of our design: we have a Matrix W of N× (h+1) perceptrons, where N is the 

Number of perceptrons and h is the History length. This matrix contains the weights of the 

perceptrons (Wi…Wn), where weights represent the correlation between the predicted 

outcome and the actual outcome of the branch. Typically the weights are of 8 bits. 

 

3.1. Tuning Parameters 

3.1.1. History Length 

The longer the history length, better is the prediction accuracy [13]. But very long history 

length reduces the number of entries in the weight matrix and therefore multiple branches 

are indexed into the same location. In a Gshare predictor, increase in History length causes 

detrimental effects, because the PHT size increases exponentially with increase in history 

length (2
n
 entries in the PHT for a history length of n). But in a perceptron predictor, an 

increase in the history length to an optimum number gives very good prediction accuracy 

compared to Gshare. When we increase the history length, we increase the weights for that 

perceptron. So the decision it makes is more accurate, as it has more information to make 

that decision. On the other hand, when we have a very long history length, the number of 

entries in the table is reduced, causing aliasing. 

 

In this thesis work, we have varied the history length for the perceptron until the total 

hardware cost is 4KB, i.e., h equaling 30, whereas in Gshare that corresponds to h equaling 
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about 12-14. So clearly for the same hardware cost, we can have a longer history length 

than that of two-level predictors like Gshare. And with longer history length, the perceptron 

predictor outperforms the Gshare predictor. 

 

3.1.2. Perceptron Weights 

The weights used for the perceptrons are signed integers. Typically, they are represented 

with 8 bits each. Though we require just 1 bit for the sign, extra bits are required to 

represent the threshold θ that influences the weights and hence we need an additional 

 [log2 θ] bits. So the total number of bits assigned is the sum of the bits required to assign 

the sign bit (which is 1) plus the bits to represent [log2 θ]. 

 

3.1.3. Training Threshold (θ) 

The training threshold determines the extent to which the perceptron must be trained. From 

the training algorithm we can see that when the magnitude of the outcome y is less than that 

of the threshold θ, the weights are changed. So the weights depend on the threshold value. 

In this work, we show that increasing the value of θ up to a certain optimal point increases 

the prediction accuracy, as the perceptron is trained more. But beyond that point it does not 

seem to impact the outcome and enters into saturation. The threshold value depends on the 

history length, as adding more history length would mean adding more perceptron weights 

and hence the threshold has to be increased to train them. The suggested value for θ given 

in [3] is 1.93 ×h + 14. 
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3.1.4. Perceptron Size 

The number of perceptrons also influences the prediction accuracy of the perceptron 

predictor. With a given a hardware budget, we can increase the number of perceptrons and 

by keeping the history length to an optimum value, we can have very good prediction 

accuracy. This is because, we have more perceptrons, and hence all their weights contribute 

collectively to predict the outcome and therefore it is more accurate. For example, with N x 

h constant at 64 KB, we increase the number of perceptrons, and reduce the history length 

to an optimal value. In this work we have used perceptron sizes ranging from 64 to 2048. 

For the same memory size, the perceptron predictor outperforms the Gshare predictor. 

 

3.2. Hardware Cost 

The hardware budget to be allocated for the perceptron predictor depends on the prediction 

accuracy desired. The hardware cost is distributed between the history length and the 

number of perceptrons. The perceptron predictor gives better prediction accuracy than that 

of Gshare for the same hardware budget. For example, for a 4 KB hardware budget, a PHT 

based predictor can use only a history length of 14 because the PHT increases 

exponentially with increase in the history length, whereas a version of the perceptron 

predictor can use a history length of 30. These longer history lengths lead to higher 

accuracy. To obtain even higher prediction accuracy we can increase the number of 

perceptrons, which demands more hardware. So it essentially is a trade off between 

accuracy and memory size. Also, for applications having programs that have fewer 

instructions or fewer branches, a branch predictor with a smaller history length is 
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preferable, as the distance between correlating branches is not too large and does not 

require that many weights for prediction. 

 

3.3. Methodology and Implementation 

We use software simulation to evaluate the performance of perceptron predictors. We 

compare their performance with the widely used Gshare predictor. 

3.3.1. Platform 

The platform we used for software simulation was the SimpleScalar simulator 

(www.simplescalar.com) [19]. The simulator has its own branch predictors among which 

Gshare is also present. A neural networks branch prediction mechanism was implemented 

over the existing platform. The simulation was done in an out-of-order fashion, and was 

tested on SPEC 2000 benchmarks (www.spec.org) [21] and on Olden benchmarks [22]. 

The Alpha binaries of these benchmarks were used. 

3.3.2. Algorithms 

The code for the perceptron predictor was added onto the existing branch predictor of the 

SimpleScalar simulator, and hence had to follow some of the conventions and declarations 

made in the SimpleScalar branch predictor. In order to do this, some structures were 

written (See Appendix A) to emulate the perceptron behavior. The algorithms for 

determining the output/outcome of the prediction and for training the perceptron predictor 

are discussed in this section. 

 

Some of the essential variables used are: 

Global History Register: 
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The History register where every bit that is on represents a taken branch. 

Speculated Global History: 

History as seen by the perceptron  predictor during lookup 

Perceptron weights matrix W: 

Table of perceptrons containing entries of perceptron, that are represented by 

its weights. 

Algorithm for determining the outcome of prediction, adapted from [3] and included 

in bpred.c : 

            The outcome function: 

i) The hashed perceptron is found in the weights table and the index into this table 

is determined: 

    index = NEURAL_HASH(prediction_dir, 

branch_addr); 

   

ii) The weights of the perceptron are used to compute the output 

for (mask=1,i=0;i<PERCEPTRON_HISTORY; 

 i++, mask<<=1,w++) { 

    if (spec_global_history & mask) 

     output += *w; 

    else 

     output += -*w; 

 

The first entry of the weight is the bias weight (=1) and does not depend on 

history. 
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iii) Then the perceptron prediction is made: 

 y = output >= 0; 
 

The Training function: 

The perceptron is trained after the branch is executed and the outcome is known. 

 i) Maximum and minimum weights are checked before update: 

for (mask=1, i=0;i<PERCEPTRON_HISTORY; i++, 

mask<<=1,w++) { 

   if (!!(history & mask) == taken) { 

    (*w)++; 

    if (*w > MAX_WEIGHT) *w = MAX_WEIGHT; 

   } else { 

    (*w)--; 

    if (*w < MIN_WEIGHT) *w = MIN_WEIGHT; 

    } 

   } 

ii) Then, the real global history register is updated: 

dirpred.bimod is the bimodal predictor and is configured according to the 

neural predictor. 

pred−>dirpred.bimod−>config.neural.glolabl_history <<= 1; 

  pred->dirpred.bimod->config.neural.global_history 

|= taken; 
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iii) If the branch was mispredicted, the global history is restored with  

     the speculative history . 

if (u->prediction != taken) 

pred>dirpred.bimod>config.neural.spec_global_ 

history 

=pred->dirpred.bimod->config.neural.global_history

; 

 

iv) If  |y| > THETA, update is not necessary. Else, for each weight and  

corresponding bit in the history register, increment weights if taken or 

decrement if not taken: 

if (!!(history & mask ) == taken) { 

  (*w)++; 

 else      (*w)--;  

. 

With the algorithms described above, the perceptron predictor can be made to predict a 

branch outcome as well as train the perceptron to adjust its weights according to actual 

outcome of the prediction. These algorithms were made use of in the existing SimpleScalar 

branch predictor. Also, the out-of-order simulator had to be modified to suit the neural 

predictor. Thus, the test environment was arranged to determine the performance of the 

neural predictor against the two-level predictor Gshare. 
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CHAPTER 4:  EXPERIMENTAL RESULTS 

The performance of perceptron predictors was compared against the two-level Gshare 

predictor on SPEC2000 [19] Olden benchmarks [20]. The results showed that the 

prediction accuracy of perceptron predictors was higher than that of Gshare predictors. The 

GShare predictor was tested with a global memory register length varying from 8 to 15, 

and the memory register length of perceptron predictors varying from 10 to 30 and the 

number of entries in the perceptrons table varying from 64 to 2048.  

 

4.1. Prediction Accuracies of Gshare Vs Perceptron Predictor 

The perceptron predictor could achieve better prediction accuracies even with less memory 

size. Also, for the same history length, the perceptron predictor outperformed Gshare. 

Another exciting result is that the perceptron predictor could achieve better prediction 

accuracies than the Gshare with smaller history length. Tables 4.1 and 4.2 show the 

performance of Gshare and perceptron predictor for the go and cc1 benchmarks. 

  Perceptron   Gshare   

 

History 

length/N Pred Accuracy(%) 

Memory 

size(Bytes) History length 

Pred 

Accuracy(%) 

Memory 

size(Bytes) 

10/64 91.11 3840 8 88.2 512 

10/128 91.14 7680 9 89.23 1024 

15/64 91.89 5760 10 89.69 2048 

15/128 92.1 11520 11 90.217 4096 

20/64 92.12 7680 12 90.317 8192 

20/128 92.44 15360 13 90.89 16384 

25/64 92.46 9600 14 90.94 32768 

25/128 92.69 19200 15 90.86 65536 

30/64 92.46 11520       

30/128 92.71 23040       

 

Table 4.1. Prediction Accuracy for Gshare Vs Perceptron Predictor for go 
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 Perceptron 

  

  Gshare  

History 

length/N 

Pred 

Accuracy(%) 

Memorysize 

(Bytes) History length 

Pred 

Accuracy(%) 

Memory 

size(Bytes) 

10/64 85.5 3840 8 83.02 512 

10/128 86.3 7680 9 83.36 1024 

15/64 85.8 5760 10 84.49 2048 

15/128 86.64 11520 11 85.03 4096 

20/64 86.2 7680 12 84.06 8192 

20/128 86.75 15360 13 85.4 16384 

25/64 86.4 9600 14 85.88 32768 

25/128 86.9 19200 15 86.09 65536 

30/64 86.63 11520       

30/128 87.6 23040       

       

 Table 4.2. Prediction Accuracy for Gshare Vs Perceptron Predictor for cc1 

The complete data for the above table for both go and cc1 benchmarks are shown in the Fig 

4.1 and 4.2. It shows that the prediction accuracy for perceptron predictor is much higher 

than that of Gshare for smaller memory size. 

Memory size Vs Pred accuracy for perceptron and Gshare 
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Fig. 4.1. Memory Sizes Vs Prediction Accuracy with Different History Lengths for go 
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Memory size Vs Pred accuracy for perceptron and Gshare 
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Fig.4.2. Memory Size Vs Prediction Accuracy with Different History Lengths for cc1 
 

The graph below shows the prediction accuracy for Gshare Vs perceptron predictor for 

different benchmarks. It shows that the perceptron predictor has better prediction accuracy 

for the same history length of 15 and for a memory size of 64KB. 
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Fig.4.3. Prediction Accuracy of Gshare Vs Neural  
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4.2. IPC Vs Memory size of Perceptron Predictor 

 IPC is an excellent metric to measure the performance of a system. Again, the perceptron 

predictor showed better performance than that of Gshare. The perceptron predictor deals 

with more instructions per cycle and has a higher IPC than Gshare . Increasing the history 

length of the perceptron predictor does not seem to affect the IPC much. On the other hand, 

for the Gshare predictor, upon increasing the memory size (history length), the IPC seems 

to increase but is still less than that of perceptron predictors. 

  

 

        Fig. 4.4. Memory Size Vs IPC for go 
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Memory size Vs IPC 
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                    Fig. 4.5 Memory Size Vs IPC for cc1 
 

Intuitively, since the computation required for prediction and update algorithm for the 

perceptron predictor is more, the gain in accuracy is counterbalanced by the increase in the 

computation time and [14] hence the overall IPC does not increase so much and almost 

remains flat for the most part.  

 

4.3. Prediction Accuracy Vs Number of Perceptrons 

Given a hardware budget, we have seen that the perceptron predictor performs better with 

lesser memory size than Gshare. With more available hardware, increasing the number of 

perceptrons gives very good prediction accuracies. This is because the predictor is able to 

decide more accurately as more weights are available to base the decision. So the 
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correlation factor is more, and this builds confidence [15] for the predictor to predict the 

outcome [12].  

 

   Fig.4.6. Prediction Accuracy Vs N for go 
 

 

 
  

Fig.4.7. Prediction Accuracy Vs N for cc1 
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   Fig.4.8. Prediction Accuracy Vs N for treeadd 
 

There is about 5% increase in the prediction accuracy when we increase the number of 

perceptrons from 64 to 2048. This is not too much of an increase in hardware resource 

when compared to the Gshare predictions, where to improve the prediction accuracy by 3% 

the hardware resource increases exponentially and is about four times the hardware 

required by that of perceptron predictor. 

 

4.4. History Length Vs Prediction Accuracy 

The major advantage of the perceptron predictor over the Gshare predictor is that we can 

have longer history length [5] to avoid aliasing and have better prediction accuracy, which 

is shown in Tables 4.1 and 4.1. And, as already discussed, we cannot have longer history 

length for Gshare because it demands more memory size (2
n
 times). 
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prediction Accuracy  Vs History length
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 Fig.4.9. Prediction Accuracy Vs History Length for go 
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  Fig.4.10. Prediction Accuracy Vs History Length for cc1 
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The benchmarks go and cc1 are programs with a large number of instructions and 

consequently a large number of branches are being committed and executed. So, increasing 

the history length will result in more weights and consequently the prediction accuracy 

increases. This is because, by increasing ‘h’ we are able to capture more of the pattern 

history and the correlation is stronger. But after a point, increasing the history length seems 

to have minimal effect on the prediction accuracy. 

prediction Accuracy  Vs History length
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           Fig.4.11. Prediction Accuracy Vs History Length for treeadd  

 

For programs with fewer branch instructions, having a very long history length seems to 

have a detrimental effect. This because some of the entries in the weight matrix of the 

perceptron predictor are empty, and incorrect values are entered in them during training 

and when weights are updated. Each row in the W matrix corresponds to a perceptron and 



 

 34 

 

so this would result in incorrect decisions. Hence, for programs with fewer branch 

instructions, the prediction accuracy seems to increase at first and remains constant until a 

certain point. Beyond that point the prediction accuracy decreases. 

 

 

 

4.5. Training Threshold Vs Prediction Accuracy 

The training threshold parameter determines the extent to which the perceptron predictor 

has to be trained. If the prediction is true and the output is within the range of θ the weights 

are not updated. So as we increase the threshold, the perceptron requires more weights to 

be updated and hence the correlation is stronger. 
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 Fig. 4.12.  θ Vs Prediction Accuracy for different N and constant h=15 
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Fig. 4.13 θVs Prediction accuracy for different N and constant h=15 

 

Figures 4.12 and 4.13 show that as we increase the threshold (θ), the prediction accuracy 

increases up to a certain value and flattens out after that. As we keep increasing the 

threshold further, the prediction accuracy decreases. For large values of the training 

parameter θ, the absolute values of the weight vectors in the W matrix would be large. 

Therefore, if the program suddenly enters a new transitional phase in which the branches 

follow a different pattern, it would take a very long time for the predictor to adjust to the 

new pattern. But, if the branches do not enter into any new phase in which they tend to 

behave differently, a large θ would not be detrimental and is likely to be advantageous. 
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CHAPTER 5: SUMMARY AND CONCLUSION 

5.1. Summary 

With an increasing preference to accurate branch predictors, neural predictors such as 

perceptron predictors seem to be more advantageous than traditional table-based branch 

prediction techniques. One major merit is their ability to use longer global history length 

for prediction. The perceptron predictor has an intrinsic ability to learn from its past 

predictions and the actual branch outcome and uses a training algorithm to update its 

weights. Also, a small increase in the hardware resources in the form of additional 

perceptrons helps the predictor to improve its prediction accuracy further because of the 

increased number of weights for prediction. By tuning the parameters of the perceptron 

predictor, we have obtained prediction accuracies better than the traditional branch 

prediction schemes, more specifically the popular Gshare predictor. 

 

5.2. Conclusion 

In this thesis, a thorough study on perceptron branch predictor and its behavior have been 

done. The contribution of this thesis includes findings on the improved performance of the 

predictor due to increase in number of perceptrons. Also, the response of the predictor to 

the training threshold parameter was studied. 

Results show that the perceptron predictor outperformed the Gshare predictor even with 

less hardware resources. Also, by tuning various parameters like longer history length, 

higher threshold value, and increased number of perceptrons, the perceptron predictor 

achieved better accuracy, than the Gshare. 
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In order to maintain fixed hardware budget, we increase the number of perceptrons while 

keeping the history length constant and the results showed an increase in prediction 

accuracy and this concept was dealt with in this thesis work. The behavior of the 

perceptron, when programs with fewer branch instructions use longer history length is 

addressed in this thesis to help understand the behavior of the perceptron predictor better. 
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                APPENDIX 

APPENDIX A 

Structures used for the perceptron predictor 

• The structure given below was a modification made to the existing “bpred.c” 

program of Simplescalar simulator [18]. 

 
enum bpred_class { 
 … 

BPredPerceptron, /* perceptron predictor/*  
BPred_NUMBER_OF_PERCEPTRONS; 

     }; 
struct bpred_dir_t{ 
 enum bpred_class class; 
 union{ 
     … 
  struct{ 
   int number_of_perceptrons;  
       int weight_vector_bits;     

  int perceptron_history_table;  
       int *weights_table; 
      unsigned long long global_history; 
          unsigned long long 
spec_global_history; 

} perceptronl; 
} config; 

     }; 
 

• The following structure has been added to “bpred.c” of the Simplescalar 

branch predictor: 
  typedef struct{ 
   char temp;       
   int prediction;    /* prediction: 1 for taken, 

       0 for not taken    */ 
   int output;         /* perceptron output    */ 
  
   unsigned long long int history; 
   int *weights_table; 
   int *masks_entry; 
   unsigned long long *counter_entry_table; 
   unsigned long long *counter; 
  } perceptron_update; 
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APPENDIX B 

 

Configuration of the out of order simulator [18]: 

instruction fetch queue size (in inst) 

-fetch:ifqsize                    8 

 

 extra branch mis-prediction latency 

-fetch:mplat                      3 

 

 speed of front-end of machine relative to execution core 

-fetch:speed                      1 

 

 instruction decode B/W (insts/cycle) 

-decode:width                   4 

 

 instruction issue B/W (insts/cycle) 

-issue:width                      4 

 

 -bpred:neural   512 8 15 neural predictor config (<nr_of_perceptrons> <nr_of_weights> 

< history_length>) 

 

 run pipeline with in-order issue 

-issue:inorder                   false 

 

 issue instructions down wrong execution paths 

-issue:wrongpath              true 

 

 instruction commit B/W (insts/cycle) 

-commit:width                 4 

 

 l1 data cache config, i.e., {<config>|none} 

-cache:dl1                       dl1:128:32:4:l 

 

 l1 data cache hit latency (in cycles) 

-cache:dl1lat                  1 

 

 l2 data cache config, i.e., {<config>|none} 

-cache:dl2                      ul2:1024:64:8:l 

 

 l2 data cache hit latency (in cycles) 

-cache:dl2lat                  10 

 

 memory access latency (<first_chunk> <inter_chunk>) 

-mem:lat                       18  2 
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 memory access bus width (in bytes) 

-mem:width                   8 

 

-tlb:itlb  itlb:16:4096:4:1  instruction TLB config 

 

 total number of integer ALU's available 

-res:ialu                         4 

 

 total number of integer multiplier/dividers available 

-res:imult                       1 

 

  total number of memory system ports available 

  -res:memport     4 
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APPENDIX C 

 

Example 1: 

Branch address                       counter table 

20019b6c            1   −1     1    −1    1     1   −1   −1    −1   −1   −1    1 --- (Xi) – GHR 

20028b10            1    8      8     3     8     4     4     1      1     4    −1    1 --- (Wi) - Selected  

Perceptron                                         

Computation of y =2> 0 so positive and therefore branch is taken  

and weights are same: 

  20028b10         1    8     8     3     8     4     4     1     1     4      1    1     --- (Wi) weights 

 

Example 2: 

Branch address                       counter table 

  20041a8c          1    1    1    −1   −1    −1     1     1    −1     1     −1    −1   --- (Xi) 

  20056b78         1    6   −8   13    6       4      4     5     1    −4      1      1    --- (Wi) 

computation of y =  −21 < 0; so it is not taken and t =  −1 

Weights are updated to: 

 t x xi =          1    −1    −1    1    1     1    −1     −1     1     −1     1 --- (t *Xi)  

    + 

20056b78     1    6    −8    13    6       4      4     5     1    −4       1 --- (Wi) 

    = 

20056b78     1    5    −9    14    7       5      3    4     2    −5       2 --- (Wi) weights 
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APPENDIX D 

 

D.1. Compiling and Running Simplescalar Simulator 

This section describes the procedure to compile and run simplescalar simulator 

To compile the Simplescalar simulator: 
 
 cd $IDIR/simplesim-3.0 
 make 
 
Now, build the compiler itself: 
 
 cd $IDIR/gcc-2.6.3 
 configure --host=$HOST --target=ssbig-na-sstrix --with-gnu-as 
  --with-gnu-ld --prefix=$IDIR  
 make LANGUAGES=c 
 ../simplesim-3.0/sim-safe ./enquire -f >! float.h-cross 
 make install 
 
Running simplescalar for test benchmark go.alpha which is an alpha binary, using 
outorder simulator: 
  

Sim-outorder –bpred neural –bpred:neural  <number_of_perceptrons>  

<nr_of_weights_ bits> <history_length> go.alpha 

The output is then generated and we obtain the simulator statistics that also contain the 

branch predictor statistics. 
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