

ABSTRACT

Title of Document: A STUDY ON THE NEURAL-BASED

PERCEPTRON BRANCH PREDICTOR AND

ITS BEHAVIOR

 Priyadarshini Rajakumar, M.S, 2006

Directed By: Associate Professor, Dr. Manoj Franklin,

Department of Electrical and Computer

Engineering

Branch predictors are very critical in modern superscalar processors and are responsible for

achieving high performance. As the depth of pipeline and instruction issue rate of high-

performance superscalar processors increase, a branch predictor with high accuracy becomes

indispensable. It has been speculated that by 2010 branch prediction will become the most

limiting factor in the performance of a processor, than the memory system. Branch

mispredictions have heavy penalty, causing flushing of the pipeline and re-fetching of

instructions from the correct location.

In recent times, neural based branch predictors, like perceptron predictor, are found to have an

edge over other popular two-level branch predictors. Branch predictors based on neural

learning are the most accurate predictors in the literature as they have sophisticated learning

ability to make predictions based on previous outcomes and predictions. However, they are

expensive to implement. But perceptron based branch predictors are simple and are easy to

implement with less hardware resources. One major advantage of perceptron predictors over

the two-level schemes is that we can have longer global or local history length, and

consequently the perceptron predictor is robust to aliasing, resulting in better prediction

accuracy.

In this thesis, the behavior and the intricacies of the perceptron predictor are extensively

studied. The perceptron predictor has outperformed the classic Gshare predictor with lesser

hardware resource. For a memory size of 64KB, the perceptron branch predictor has prediction

accuracy about 2-10% higher than that of Gshare. The advantage of having longer history

lengths was exploited to determine the performance and the IPC values for the perceptron

predictor and showed commendable results. Also, varying the training parameter and the

number of perceptrons for prediction helped in analyzing the behavior of the perceptron

predictor under different environments.

A STUDY ON THE NEURAL-BASED PERCEPTRON BRANCH PREDICTOR

AND ITS BEHAVIOR

 By

PRIYADARSHINI RAJAKUMAR

Thesis submitted to the Faculty of the Graduate School of the

University of Maryland, College Park, in partial fulfillment

of the requirements for the degree of

MASTERS OF SCIENCE

2006

Advisory Committee:

Professor Dr. Manoj Franklin, Chair

Professor Dr. Yavuz Oruc

Professor Dr. Charles B. Silio

© Copyright by

PRIYADARSHINI RAJAKUMAR

2006

 Dedication

I dedicate this work to God Almighty, for His providence, Strength and His blessings in

helping me complete this work. All Praise be to Jesus Christ alone, and to His glory I dedicate

this work.

 ii

 Acknowledgements

I am grateful to my advisor, Dr. Manoj Franklin, for his guidance and encouragement

during my study here at the University of Maryland. He was always supportive and his

suggestions towards the successful completion of this work are invaluable. This work would

not have been possible without him.

Further, I would like to express my gratitude towards Dr. Charles B. Silio and Dr. Yavuz Oruc

for agreeing to be on my committee and for their suggestions.

I would like to thank my father and my mother, my beloved brother and my sisters for all their

support and prayers that kept me going and helped me finish my work.

I would also like to thank my Uncle and Aunt who have been such a source of encouragement

and support to me. I am always indebted to them for their help and prayers.

I thank all my friends who have been there for me in time of need and for their suggestions and

help.

 iii

TABLE OF CONTENTS

LIST OF TABLES vi

LIST OF FIGURES vii

CHAPTER 1: INTRODUCTION 1

 1.1. Importance of branch predictors 1

 1.2. Limitations of Two-level Techniques using Table-based Predictors 2

 1.3. The Neural Branch Predictor Scheme using Perceptron 4

CHAPTER 2: BACKGROUND 6

 2.1 Basics of branch prediction 6

 2.2. Limitations of Table-based Branch Predictors 9

 2.3. Perceptron-based Branch Predictors 10

CHAPTER 3: DESIGN ASPECTS AND HARDWARE SUPPORT 18

 3.1 Tuning parameters 18

 3.2. Hardware cost 20

 3.3Methodology and implementation 21

CHAPTER 4: EXPERIMENTAL RESULTS 25

 4.1. Prediction Accuracies of Gshare Vs Perceptron Predictor 25

 4.2. IPC Vs Memory size of Perceptron Predictor 28

4.3. Prediction Accuracy Vs Number of Perceptrons 29

4.4. History Length Vs Prediction Accuracy 31

4.5. Training Threshold Vs Prediction Accuracy 34

 iv

CHAPTER 5: SUMMARY AND CONCLUSION 36

5.1. Summary 36

5.2. Conclusion 36

APPENDICES

APPENDIX A 38

APPENDIX B 39

APPENDIC C 41

APPENDIX D 42

Bibliography 43

 v

LIST OF TABLES

1.Table.4.1. Prediction accuracy for Gshare Vs Perceptron predictor for go 25

2.Table.4.2. Prediction accuracy for Gshare Vs Perceptron predictor for cc1 26

 vi

 LIST of Figures

1. Fig 2.1. Branch Prediction Unit Architecture 6

2. Fig. 2.2. Gshare Branch predictor 8

3. Fig .2.3. Perceptron Model 11

4. Fig. 2.4. Perceptron weighted Matrix model. 12

5. Fig 2.5 Block diagram of Perceptron branch predictor 15

6. Fig. 2.6. Linear separability property 17

7. Fig. 4.1. Memory size Vs prediction accuracy with 26

 different History length for go benchmark

8. Fig.4.2. Memory size Vs prediction accuracy with 27

 different History length for cc1 benchmark

9. Fig 4.3 Prediction Accuracy of Gshare Vs Perceptron predictor 27

10. Fig.4.4. Memory size Vs IPC for go 28

11. Fig.4.5 Memory size Vs IPC for cc1 29

12. Fig.4.6. Prediction Rate Vs N for go 30

13. Fig.4.7. Prediction Rate Vs N for cc1 30

14. Fig.4.8. Prediction Rate Vs N for treeadd 31

15. Fig.4.9. Prediction accuracy Vs History length for go 32

16. Fig.4.10. Prediction accuracy Vs History length for cc1 32

17. Fig.4.11. Prediction accuracy Vs History length for treeadd 33

18. Fig.4.12. Theta Vs prediction accuracy for 34

different N and constant h=15 for go

 vii

19. Fig.4.13. Theta Vs prediction accuracy for 35

different N and constant h=15 for cc1

 viii

 1

CHAPTER1. INTRODUCTION

1.1. Importance of Branch prediction

Instruction-level parallelism is made possible with speculation involving predicting the

values even before the actual values are made available. We require accurate prediction

schemes to enhance the performance of speculating these data. Branch prediction is an

indispensable component of modern microarchitectures. When a branch is encountered in a

processor pipeline, stalling the remaining instructions would degrade the performance of

the processor. Instead, predicting the branch outcome and speculative fetching from the

predicted address would allow the processor to execute instructions along the direction of

the predicted path [8].

Speculating the outcome of a branch instruction allows the processor to continue fetching

instructions from the predicted target without the knowledge of whether that is the correct

location. If the prediction is correct, the throughput of the system is not affected and

execution of the remaining instructions continues without interruption. If the prediction is

wrong, the incorrect instructions have to be flushed from the pipeline, and instruction

fetching should continue from the correct address.

Branch misprediction is one of the most important causes of performance degradation as

the number of pipeline stages becomes large. Branch predictors must be improvised in

order to prevent the penalties of mispredicting branches, more specifically the conditional

branches, and enjoy the benefits of predicting a branch correctly.

 2

In out-of-order processors, mispredictions divide the instruction window into sequentially

executed segments, limiting the ILP. As the instruction window increases in size, the

limitation on performance increases.

It is difficult to design a branch prediction technique that performs with higher accuracy for

all kinds of inputs. With a fixed hardware budget as a constraint, it is important to design a

predictor that provides good accuracy.

1.2. Limitations of Two-level Techniques using Table-based Predictors

Two-level predictors use saturating counters that are indexed using the address of the

branch and use the MSB bits of the counter to make the prediction. Whenever the branch is

taken, the counter is incremented; whenever it is not taken, the counter is decremented.

 It has been found that branch outcomes are highly correlated to other branches in the

program. To incorporate global information, two-level predictors have been proposed [2].

Given the outcome of the previous ‘n’ branches, a Pattern History Table (PHT) is accessed.

Inside this Pattern history table is a two-bit saturating counter that decrements or

increments based on whether the branch was predicted correctly or incorrectly.

These are called two-level table-based branch predictors. In the first level we have a

Branch History Register (BHR) that stores information of past executed branches. If it

stores information of all recently executed branches, it is called a Global history register

and if it stores information pertaining to recent executions of the same static branch, it is

called a Local history register. This information is used to index the second level, which is

the PHT having a saturating counter.

 3

There are different techniques to design a branch predictor, depending upon the hardware

budget and the accuracy required. Based on the way by which the PHT is indexed using the

BHR, we have different kinds of table-based branch predictors. The common Bi-Modal

predictor has 2 bits for the saturating counter whose outcome is used to predict the

branches. The GShare (Global Index Sharing) [1] proposed by McFarling has both the

address and the BHR bits Ex-OR'ed to index into the PHT. A variation of the GShare is

PShare (Per Address Index sharing). Yeh and Matt [2] came up with multiple layers of

BHR and PHT to account for both global and local history of branches that has information

regarding the branch history. But this had high hardware cost and was not feasible. There

are also combinational predictors having two of the above-mentioned predictors combined

to predict the branches. For better prediction accuracies, a compromise on hardware

requirement has to be made for most of the branch predictors.

1.2.1. Demerits of Table based predictors

The table-based branch predicting schemes have some basic limitations, one of them being

Aliasing, wherein more than one location on the PHT is indexed causing interference and

inaccurate prediction. Another disadvantage is that longer history length could not be used

for better prediction, as the hardware budget is limited. So, there is not much scope for very

good prediction accuracy beyond a level.

1.3. The Neural Branch Predictor Scheme using Perceptron

Recently, a perceptron- based branch predictor was proposed by Jimenez and Lin [3] [4].

The perceptron replaces the finite state machine used for state transition in table-based

predictors. The Perceptron predictor uses percepton learning to predict the directions of

 4

conditional branches. It is a correlating predictor that makes a prediction for the current

branch based on the history pattern observed for the previous branches. A perceptron is a

simple learning device that multiplies the input data with weights and sums it up to give a

single output.

The perceptron based branch predictor thus combines the set of inputs which is the Global

BHR with the weights, which attempt to capture the correlation between the past branch

outcomes and the behavior of the branch being predicted, and gives an output that would

determine whether a branch is to be taken or not. The advantage of using perceptrons is that

we can exploit their ability to make use of longer history length, as the size of the

perceptrons linearly scales with the history length, whereas in other schemes the history

length is used to hash the PHT and would cause it to increase exponentially (2
n
 for n bits of

BHR).

This thesis makes the following contributions. We have performed a detailed study of

perceptron based branch predictors. Although a few studies on perceptron branch

predictors have been done before, these studies have focused on a subset of the factors

affecting the performance of perceptron predictors. Our study looks at all the relevant

parameters, and presents all of the results in one place. For comparison purposes, we use a

Gshare predictor also. Perceptron based predictors could achieve better prediction

accuracies with smaller history length than that of Gshare; with increase in the history

length the perceptron predictor performed even better. But with Gshare, just as in most

table-based predictors, increase in history length is not feasible. Yet another finding was

 5

that with an increase in the number of perceptrons, the prediction was better, as more

weights were used in order to predict an outcome.

The rest of this thesis is organized as follows. Chapter 2 describes in detail the background

and related area of research, and presents a detailed look at the perceptron branch predictor.

Chapter 3 describes various issues and techniques for improving the perceptron predictor.

Chapter 4 discusses the experimental framework and the results from simulation

experiments. Chapter 5 summarizes and draws conclusions.

 6

CHAPTER 2: BACKGROUND

2.1. Basics of Branch Prediction

2.1.1. How Branch Predictors Function?

Branch predictors combine the information from the branch history register (BHR) ─ that

stores the previous outcomes of branches ─ and the address of the fetched branch

instruction to predict the branch outcome. This is done at the fetch stage of the pipeline. As

described in Section 1.2, there are various schemes for branch prediction, but the basic

underlying principle remains the same. Figure 2.1 describes the general architecture of

branch predictors [6].

 Fig.2.1. Branch Prediction Unit Architecture (adapted from [6])

The BPU consists of mainly two logical parts, the BTB and the predictor. The BTB is the

buffer where the CPU stores the target addresses of the previous branches if the branch is

to be taken and we need to fetch the next instruction from that target address. The predictor

 7

is that part of the BPU that makes the prediction on the outcome of the branch under

question. There are different parts in a predictor: Branch History Registers (BHR) like the

global history register or local history registers ─ storing the outcome of previously

executed branches ─ and branch prediction tables (BPT) having an asynchronous

sequential machine, more generally a saturating counter.

This work limits itself to the branch predictor part involving prediction of the outcome of

the predictor and does not delve into the details of the Branch target buffer. So, different

branch prediction schemes vary from each other in the way the BPT is accessed using the

BHR and the branch address. Some of the branch prediction schemes are discussed briefly

below, but emphasis is laid on Gshare, which has been found to be very accurate.

2.1.1. Common Branch Predictors: Gshare

A very simple branch predictor is the bimodal branch predictor, which hashes the BPT

consisting of a saturating 2 -bit counter. The state of the counters is stored in this counter

table that records all the branches’ history. Each branch will then map to a unique counter.

The branch history table is indexed by some bits of the branch address.

The correlated branch predictors absolves the mapping collision problem faced by Bimodal

predictors by using two branch history tables, one for keeping the recent branch history

records and the other one for keeping the state of branches in each entry contained 2-bit

counter. So, it takes the advantage of the relationship between different branch instructions

that is certain repetitive branch pattern of several consecutive branches. The local, global

and global selection, are all correlated predictors, making use of history information from

 8

either local or global or both tables. They vary from each other, depending upon whether

they are globally adaptive or per-address adaptive and the way the PHT is indexed.

The Gshare predictor is one of the best schemes among the correlating branch prediction

schemes and has been shown to have better accuracy than other correlating predictors. In

this thesis work, the performance of the perceptron predictor is compared against Gshare,

and thus it calls for an understanding as to how Gshare works. All of these predicitng

schemes are called table-based branch predictors, as they use a history table to predict

branches.

The Gshare predictor proposed by McFarling [1] hashes the PHT by Ex-OR'ing the branch

address bits and the bits from the history table (BHT). This makes the index more explicit

and hence mapping to the same location on the PHT is reduced.

 Fig. 2.2. Gshare Branch Predictor (adapted from [1]).

 9

2.2. Limitations of Table-based Branch Predictors

These predictors also come up with other limitations cited below:

1. Aliasing: The PHT is limited in size, resulting in many branches mapping to the same

location in the PHT. This causes several branches to address and change values in the

same counter. This is called aliasing or interference. Interference can be positive (outcomes

of other branches helps the current prediction), negative (outcome of other branches

misguides the current prediction), or neutral [9].

2. Period to warm up: With larger more accurate predictors it takes some time for the

PHT to be filled with values, allowing for accurate predictions to be made.

This is a problem in systems with context switches. If the PHT is flushed, then the PHT

needs to be refilled, restarting the learning process. If the PHT is not flushed the branch

characteristics of the program executing previously may degrade performance and require

unlearning to get back to the accuracy prior to the switch.

3. History length: With increase in history length, some of the branch predictors like

Gshare have a detrimental effect as it runs out of bits since gshare requires resources

exponential in the number of history bits. So the scope of improvement with a little

upgrade in hardware budget is absent.

The perceptron based branch prediction has been found to have solved these limitations

faced by table-based predictors and has better prediction accuracy.

 10

2. 3. Perceptron-based Branch Predictors

2. 3. 1. Basic Working of a Perceptron

The perceptron was introduced in 1962 [10] as a way to study brain function [3] [4]. The

Perceptron predictor is a learning hardware structure that predicts the directions of

conditional branches. It is a correlating predictor and makes a prediction for the current

branch based on the history pattern observed for the previous branches.

A perceptron is a learning device [10] that takes a set of input values and combines them

with a set of weights (which are learned through training) to produce an output value. In

our predictor, each weight represents the degree of correlation between the behavior of a

past branch and the behavior of the branch being predicted. Positive weights represent

positive correlation, and negative weights represent negative correlation. To make a

prediction, each weight contributes in proportion to its magnitude in the following manner.

If its corresponding branch was taken, the weight is added; otherwise the weight is

subtracted. If the resulting sum is positive, the branch is predicted to be taken; otherwise it

is predicted to be not taken. The perceptrons are trained by an algorithm that increments a

weight when the branch outcome agrees with the weight’s correlation and decrements the

weight otherwise. This way we ensure the assertiveness of branch outcomes that are

positive.

The perceptron behaves like a neuron (brain cell), which accepts various signals it receives

through dendrites and if the combined signal strength (weights) is greater than the threshold

then it outputs the combined signal. Now a perceptron accepts all the inputs and assigns

them weights depending on the correlation between previous outcomes of that branch.

 11

 .

 Fig.2.3. The Perceptron Model (adapted from [3])

Fig. 2.3 depicts the Perceptron model [3], where input vectors X1… Xn are multiplied by

their corresponding weights W1… Wn. This product is summed up to give the output Y. X0

is always 1 to have a bias input. The perceptron is made to learn a Boolean function Y =

f(X1, ……Xn), where Xi are the bits of the global history shift register for n inputs and the

weights W1 …… Wn give the corresponding correlation weights and are signed integers. The

input vector bits are either 1 for taken and –1 for not taken, and the output Y is 1 for predict

taken and –1 for predict not taken.

The output function Y is given by [3]

Y = W0 + ∑ Xi Wi

A perceptron predictor can be represented by an N × (h+1) matrix having an entry of W

weights, where N is the number of perceptrons and h is the history length. Each row of the

matrix is a (h+1) length weights vector. Each weights vector stores the weights of one

perceptron, and is updated as the perceptron learns from training. In the weights vector W

W0

W1

 ∑

Wi

Wn

Y

1

X1

Xi

Xn

 12

[0…h], the first weight W0 is known as the bias weight and is set to 1. Weights are

typically 8 bits. So, the first column W contains the bias weights of each weights vector.

The global history shift register is represented by a single row matrix H [1...h], which

contains the outcome of the previous h branches represented by a 1 or –1 for taken and not

taken, respectively.

W0 Wn

Gn G0

 Fig.2.4. Perceptron Weighted Matrix Model.

N Perceptrons

(h+1) History length

 PC

Branch outcome

Global Branch History (GHr)

 13

2.3.2. Training the Perceptrons

The PC of the branch instruction is hashed to a particular row of the Weights matrix. This

row acts as a perceptron that is responsible for the prediction of that particular branch. A

single perceptron can be responsible for the predicting of multiple branch instructions. The

outcome of the branch is based on the weight values in that row and on the outcome of the

most recent branches, which are stored in the global history register G.

Once the outcome is known, the perceptron that was used for the prediction is trained,

depending on whether the prediction was correct, and also based on the pattern history

stored in the global history register G. This is done by updating the weights in the

corresponding row of the W matrix used for predicting the branch.

Let θ be the threshold to train the perceptron [3], which determines the extent to which the

perceptron is trained, and t be –1 if not taken and 1 if the branch is taken. Then the training

algorithm is given by [3]:

 If sign (yout) ≠ t or |yout| ≤ θ then

 For i = 0 to n do

 Wi: = Wi + tXi

 End

 End if

 It has been suggested [3] that the best value for the training threshold θ is

 θ = 1.93×h +14, where h is the history length.

This algorithm increments or decrements the weights, depending upon whether a branch is

taken or not, as essentially t and Xi are either 1 or –1. When outcomes are predicted

 14

correctly, we have a positive correlation and the weights become larger. Likewise, when

the outcomes are predicted incorrectly, the negative correlation decreases the weights. So

the correlation ─ both negative and positive ─ impacts the weights and in turn influences

the prediction [7].

2. 3. 3. The Perceptron Predictor

Now that the structure and basic working principle of the perceptron is known, we

incorporate this perceptron predictor in our hardware. The block diagram in Fig 2.4 shows

the perceptron predictor as a whole. The diagram shows that instead of 2-bit saturating

counters we have a table on N perceptrons and also a training logic. The hardware resource

allocated depends on the number of perceptrons, and the history length for the weights

used.

During the fetch stage,

i) The PC of the branch address is made to index into the perceptron table where

index i belongs to 0…N-1 in the table of perceptrons. So, essentially one row of

the weight matrix is selected.

ii) The row of the perceptron table containing the weights is selected and is

 stored as a vector register P.

iii) The output Y is the dot product of the entries in the global history register

 and the weights from the perceptron table.

iv) The branch is predicted taken when the output Y is positive and is

 predicted as not taken when the output is negative.

 15

 Execution stage:

i) Once the outcome of the prediction is known, the training algorithm uses this

predicted outcome and the actual outcome of the branch to update the weights.

So if the prediction was correct, the weights are incremented; else it is

decremented

ii) This information is then updated in the ith entry of the perceptron

table

 Fig 2.5 Block diagram of Perceptron Predictor (adapted from [3]).

Every time the branch predictor encounters a conditional branch instruction, it

computes the product and makes a prediction. Based on the outcome of the prediction,

 16

instructions are fetched along the direction (path) of the flow of the program and the

branch command is moved to the next pipe stage. After the branch condition

calculation, a check is made to see if the prediction was correct. If not, the subsequent

instructions are flushed from the pipeline, and the PC is updated to continue fetching

from the correct location. In any case, the perceptron is trained, i.e., the predictor is

updated according to the history register at the time of prediction.

Linear Separability:

Perceptrons can only learn a limited class of functions. The output formula for perceptron

is given by:

 O = g (W.I)

Given the sigmoid function noted previously, the perceptron outputs something close to 1 if

the inner product of the weight vector and input vector is greater than zero; otherwise it

outputs something close to 0.

So the perceptron is distinguishing inputs based on where they fall with respect to a

hyperplane in input space (whose coefficients are the weights). The perceptron will learn

correctly if there exists a hyperplane that divides the inputs correctly, i.e., if the function is

linearly separable (in each output for perceptron networks).

The perceptron can only learn two types of inputs, i.e., it is bipolar. It responds to either a

true (a 1) or a false (–1) condition and outputs either 1 or –1. Figure 2.6 [3] illustrates the

linear separability exhibited by perceptrons.

 17

Fig 2.6. Linear Separability Property of Perceptrons (adapted from [4]).

If the set of all possible inputs to a perceptron can be imagined as an n-dimension space,

then for the equation

 Y = W0 + ∑i=1::n Wi Xi

there exists a solution that is a hyperplane having 2 sets of inputs dividing the plane what

the perceptron distinguishes. Therefore, the perceptron can only be given bipolar inputs.

Recent developments on the proposed perceptron branch predictors by Jimenez and Lin

have been suggested to be a promising technology for future microprocessors [18]. It has

been used in studies of hybrid predictors [3]

It has also been suggested by another study that perceptron predictors can also be

implemented using techniques from high-speed arithmetic [17], but the latency of the

predictor is more than 4 cycles with an aggressive clock rate. Also the perceptron predictor

is found to achieve superior accuracy and low latency by choosing the neural weights based

on the path taken to reach a branch rather than the branch address itself [4].

Positive output

Negative output

 18

CHAPTER 3: DESIGN ASPECTS AND HARDWARE SUPPORT

For a fixed hardware budget for the predictor, there are certain parameters that can be

changed in order to get good prediction accuracies. The parameters that are tuned are the

History length and weights, the Number of perceptrons, and the training threshold. A brief

review of our design: we have a Matrix W of N× (h+1) perceptrons, where N is the

Number of perceptrons and h is the History length. This matrix contains the weights of the

perceptrons (Wi…Wn), where weights represent the correlation between the predicted

outcome and the actual outcome of the branch. Typically the weights are of 8 bits.

3.1. Tuning Parameters

3.1.1. History Length

The longer the history length, better is the prediction accuracy [13]. But very long history

length reduces the number of entries in the weight matrix and therefore multiple branches

are indexed into the same location. In a Gshare predictor, increase in History length causes

detrimental effects, because the PHT size increases exponentially with increase in history

length (2
n
 entries in the PHT for a history length of n). But in a perceptron predictor, an

increase in the history length to an optimum number gives very good prediction accuracy

compared to Gshare. When we increase the history length, we increase the weights for that

perceptron. So the decision it makes is more accurate, as it has more information to make

that decision. On the other hand, when we have a very long history length, the number of

entries in the table is reduced, causing aliasing.

In this thesis work, we have varied the history length for the perceptron until the total

hardware cost is 4KB, i.e., h equaling 30, whereas in Gshare that corresponds to h equaling

 19

about 12-14. So clearly for the same hardware cost, we can have a longer history length

than that of two-level predictors like Gshare. And with longer history length, the perceptron

predictor outperforms the Gshare predictor.

3.1.2. Perceptron Weights

The weights used for the perceptrons are signed integers. Typically, they are represented

with 8 bits each. Though we require just 1 bit for the sign, extra bits are required to

represent the threshold θ that influences the weights and hence we need an additional

 [log2 θ] bits. So the total number of bits assigned is the sum of the bits required to assign

the sign bit (which is 1) plus the bits to represent [log2 θ].

3.1.3. Training Threshold (θ)

The training threshold determines the extent to which the perceptron must be trained. From

the training algorithm we can see that when the magnitude of the outcome y is less than that

of the threshold θ, the weights are changed. So the weights depend on the threshold value.

In this work, we show that increasing the value of θ up to a certain optimal point increases

the prediction accuracy, as the perceptron is trained more. But beyond that point it does not

seem to impact the outcome and enters into saturation. The threshold value depends on the

history length, as adding more history length would mean adding more perceptron weights

and hence the threshold has to be increased to train them. The suggested value for θ given

in [3] is 1.93 ×h + 14.

 20

3.1.4. Perceptron Size

The number of perceptrons also influences the prediction accuracy of the perceptron

predictor. With a given a hardware budget, we can increase the number of perceptrons and

by keeping the history length to an optimum value, we can have very good prediction

accuracy. This is because, we have more perceptrons, and hence all their weights contribute

collectively to predict the outcome and therefore it is more accurate. For example, with N x

h constant at 64 KB, we increase the number of perceptrons, and reduce the history length

to an optimal value. In this work we have used perceptron sizes ranging from 64 to 2048.

For the same memory size, the perceptron predictor outperforms the Gshare predictor.

3.2. Hardware Cost

The hardware budget to be allocated for the perceptron predictor depends on the prediction

accuracy desired. The hardware cost is distributed between the history length and the

number of perceptrons. The perceptron predictor gives better prediction accuracy than that

of Gshare for the same hardware budget. For example, for a 4 KB hardware budget, a PHT

based predictor can use only a history length of 14 because the PHT increases

exponentially with increase in the history length, whereas a version of the perceptron

predictor can use a history length of 30. These longer history lengths lead to higher

accuracy. To obtain even higher prediction accuracy we can increase the number of

perceptrons, which demands more hardware. So it essentially is a trade off between

accuracy and memory size. Also, for applications having programs that have fewer

instructions or fewer branches, a branch predictor with a smaller history length is

 21

preferable, as the distance between correlating branches is not too large and does not

require that many weights for prediction.

3.3. Methodology and Implementation

We use software simulation to evaluate the performance of perceptron predictors. We

compare their performance with the widely used Gshare predictor.

3.3.1. Platform

The platform we used for software simulation was the SimpleScalar simulator

(www.simplescalar.com) [19]. The simulator has its own branch predictors among which

Gshare is also present. A neural networks branch prediction mechanism was implemented

over the existing platform. The simulation was done in an out-of-order fashion, and was

tested on SPEC 2000 benchmarks (www.spec.org) [21] and on Olden benchmarks [22].

The Alpha binaries of these benchmarks were used.

3.3.2. Algorithms

The code for the perceptron predictor was added onto the existing branch predictor of the

SimpleScalar simulator, and hence had to follow some of the conventions and declarations

made in the SimpleScalar branch predictor. In order to do this, some structures were

written (See Appendix A) to emulate the perceptron behavior. The algorithms for

determining the output/outcome of the prediction and for training the perceptron predictor

are discussed in this section.

Some of the essential variables used are:

Global History Register:

 22

The History register where every bit that is on represents a taken branch.

Speculated Global History:

History as seen by the perceptron predictor during lookup

Perceptron weights matrix W:

Table of perceptrons containing entries of perceptron, that are represented by

its weights.

Algorithm for determining the outcome of prediction, adapted from [3] and included

in bpred.c :

 The outcome function:

i) The hashed perceptron is found in the weights table and the index into this table

is determined:

 index = NEURAL_HASH(prediction_dir,

branch_addr);

ii) The weights of the perceptron are used to compute the output

for (mask=1,i=0;i<PERCEPTRON_HISTORY;

 i++, mask<<=1,w++) {

 if (spec_global_history & mask)

 output += *w;

 else

 output += -*w;

The first entry of the weight is the bias weight (=1) and does not depend on

history.

 23

iii) Then the perceptron prediction is made:

 y = output >= 0;

The Training function:

The perceptron is trained after the branch is executed and the outcome is known.

 i) Maximum and minimum weights are checked before update:

for (mask=1, i=0;i<PERCEPTRON_HISTORY; i++,

mask<<=1,w++) {

 if (!!(history & mask) == taken) {

 (*w)++;

 if (*w > MAX_WEIGHT) *w = MAX_WEIGHT;

 } else {

 (*w)--;

 if (*w < MIN_WEIGHT) *w = MIN_WEIGHT;

 }

 }

ii) Then, the real global history register is updated:

dirpred.bimod is the bimodal predictor and is configured according to the

neural predictor.

pred−>dirpred.bimod−>config.neural.glolabl_history <<= 1;

 pred->dirpred.bimod->config.neural.global_history

|= taken;

 24

iii) If the branch was mispredicted, the global history is restored with

 the speculative history .

if (u->prediction != taken)

pred>dirpred.bimod>config.neural.spec_global_

history

=pred->dirpred.bimod->config.neural.global_history

;

iv) If |y| > THETA, update is not necessary. Else, for each weight and

corresponding bit in the history register, increment weights if taken or

decrement if not taken:

if (!!(history & mask) == taken) {

 (*w)++;

 else (*w)--;

.

With the algorithms described above, the perceptron predictor can be made to predict a

branch outcome as well as train the perceptron to adjust its weights according to actual

outcome of the prediction. These algorithms were made use of in the existing SimpleScalar

branch predictor. Also, the out-of-order simulator had to be modified to suit the neural

predictor. Thus, the test environment was arranged to determine the performance of the

neural predictor against the two-level predictor Gshare.

 25

CHAPTER 4: EXPERIMENTAL RESULTS

The performance of perceptron predictors was compared against the two-level Gshare

predictor on SPEC2000 [19] Olden benchmarks [20]. The results showed that the

prediction accuracy of perceptron predictors was higher than that of Gshare predictors. The

GShare predictor was tested with a global memory register length varying from 8 to 15,

and the memory register length of perceptron predictors varying from 10 to 30 and the

number of entries in the perceptrons table varying from 64 to 2048.

4.1. Prediction Accuracies of Gshare Vs Perceptron Predictor

The perceptron predictor could achieve better prediction accuracies even with less memory

size. Also, for the same history length, the perceptron predictor outperformed Gshare.

Another exciting result is that the perceptron predictor could achieve better prediction

accuracies than the Gshare with smaller history length. Tables 4.1 and 4.2 show the

performance of Gshare and perceptron predictor for the go and cc1 benchmarks.

 Perceptron Gshare

History

length/N Pred Accuracy(%)

Memory

size(Bytes) History length

Pred

Accuracy(%)

Memory

size(Bytes)

10/64 91.11 3840 8 88.2 512

10/128 91.14 7680 9 89.23 1024

15/64 91.89 5760 10 89.69 2048

15/128 92.1 11520 11 90.217 4096

20/64 92.12 7680 12 90.317 8192

20/128 92.44 15360 13 90.89 16384

25/64 92.46 9600 14 90.94 32768

25/128 92.69 19200 15 90.86 65536

30/64 92.46 11520

30/128 92.71 23040

Table 4.1. Prediction Accuracy for Gshare Vs Perceptron Predictor for go

 26

 Perceptron

 Gshare

History

length/N

Pred

Accuracy(%)

Memorysize

(Bytes) History length

Pred

Accuracy(%)

Memory

size(Bytes)

10/64 85.5 3840 8 83.02 512

10/128 86.3 7680 9 83.36 1024

15/64 85.8 5760 10 84.49 2048

15/128 86.64 11520 11 85.03 4096

20/64 86.2 7680 12 84.06 8192

20/128 86.75 15360 13 85.4 16384

25/64 86.4 9600 14 85.88 32768

25/128 86.9 19200 15 86.09 65536

30/64 86.63 11520

30/128 87.6 23040

 Table 4.2. Prediction Accuracy for Gshare Vs Perceptron Predictor for cc1

The complete data for the above table for both go and cc1 benchmarks are shown in the Fig

4.1 and 4.2. It shows that the prediction accuracy for perceptron predictor is much higher

than that of Gshare for smaller memory size.

Memory size Vs Pred accuracy for perceptron and Gshare

85

86

87

88

89

90

91

92

93

94

3840 7680 15360 30720 61440 122880

Memory size

A
c
c
u
ra
c
y

perceptron1
0
perceptron1
5
perceptron2
0
perceptron2
5
perceptron3
0

Fig. 4.1. Memory Sizes Vs Prediction Accuracy with Different History Lengths for go

 27

Memory size Vs Pred accuracy for perceptron and Gshare

80

81

82

83

84

85

86

87

88

89

90

3840 7680 15360 30720 61440 122880

Memory size

A
c
c
u
ra
c
y

perceptron10

perceptron15

perceptron20

perceptron25

perceptron30

Gshare

Fig.4.2. Memory Size Vs Prediction Accuracy with Different History Lengths for cc1

The graph below shows the prediction accuracy for Gshare Vs perceptron predictor for

different benchmarks. It shows that the perceptron predictor has better prediction accuracy

for the same history length of 15 and for a memory size of 64KB.

prediciton rate of Gshare Vs Neural

70

75

80

85

90

95

go.alpha cc1 anagram. compress95 treeadd

Benchmarks

P
re
d
ic
ti
o
n
 R
a
te

Gshare15

Neural15

Fig.4.3. Prediction Accuracy of Gshare Vs Neural

 28

4.2. IPC Vs Memory size of Perceptron Predictor

 IPC is an excellent metric to measure the performance of a system. Again, the perceptron

predictor showed better performance than that of Gshare. The perceptron predictor deals

with more instructions per cycle and has a higher IPC than Gshare . Increasing the history

length of the perceptron predictor does not seem to affect the IPC much. On the other hand,

for the Gshare predictor, upon increasing the memory size (history length), the IPC seems

to increase but is still less than that of perceptron predictors.

 Fig. 4.4. Memory Size Vs IPC for go

Memory size Vs IPC

1.75

1.8

1.85

1.9

1.95

2

2.05

3840 7680 15360 30720 61440 122880

Memory size

IP
C

Perceptron10

perceptron15

perceptron20

perceptron25

perceptron30

Gshare

 29

Memory size Vs IPC

1.3

1.35

1.4

1.45

1.5

1.55

1.6

1.65

1.7

3.84E+03 7.68E+03 1.54E+04 3.07E+04 6.14E+04 1.23E+05

Memory size

IP
C

perceptron10

perceptron15

perceptron20

perceptron25

perceptron30

Gshare

 Fig. 4.5 Memory Size Vs IPC for cc1

Intuitively, since the computation required for prediction and update algorithm for the

perceptron predictor is more, the gain in accuracy is counterbalanced by the increase in the

computation time and [14] hence the overall IPC does not increase so much and almost

remains flat for the most part.

4.3. Prediction Accuracy Vs Number of Perceptrons

Given a hardware budget, we have seen that the perceptron predictor performs better with

lesser memory size than Gshare. With more available hardware, increasing the number of

perceptrons gives very good prediction accuracies. This is because the predictor is able to

decide more accurately as more weights are available to base the decision. So the

 30

correlation factor is more, and this builds confidence [15] for the predictor to predict the

outcome [12].

 Fig.4.6. Prediction Accuracy Vs N for go

Fig.4.7. Prediction Accuracy Vs N for cc1

 31

 Fig.4.8. Prediction Accuracy Vs N for treeadd

There is about 5% increase in the prediction accuracy when we increase the number of

perceptrons from 64 to 2048. This is not too much of an increase in hardware resource

when compared to the Gshare predictions, where to improve the prediction accuracy by 3%

the hardware resource increases exponentially and is about four times the hardware

required by that of perceptron predictor.

4.4. History Length Vs Prediction Accuracy

The major advantage of the perceptron predictor over the Gshare predictor is that we can

have longer history length [5] to avoid aliasing and have better prediction accuracy, which

is shown in Tables 4.1 and 4.1. And, as already discussed, we cannot have longer history

length for Gshare because it demands more memory size (2
n
 times).

 32

prediction Accuracy Vs History length

90

90.5

91

91.5

92

92.5

93

93.5

10 15 20 25 30

History length(h)

P
re
d
ic
ti
o
n
 a
c
c
u
ra
c
y

64

128

256

512

1024

2048

 Fig.4.9. Prediction Accuracy Vs History Length for go

prediction Accuracy Vs History length

84

84.5

85

85.5

86

86.5

87

87.5

88

88.5

89

10 15 20 25 30

History length(h)

P
re
d
ic
ti
o
n
 a
c
c
u
ra
c
y

64

128

256

512

1024

2048

 Fig.4.10. Prediction Accuracy Vs History Length for cc1

 33

The benchmarks go and cc1 are programs with a large number of instructions and

consequently a large number of branches are being committed and executed. So, increasing

the history length will result in more weights and consequently the prediction accuracy

increases. This is because, by increasing ‘h’ we are able to capture more of the pattern

history and the correlation is stronger. But after a point, increasing the history length seems

to have minimal effect on the prediction accuracy.

prediction Accuracy Vs History length

76

77

78

79

80

81

82

83

10 15 20 25 30

History length(h)

P
re
d
ic
ti
o
n
 a
c
c
u
ra
c
y

64

128

256

512

1024

2048

 Fig.4.11. Prediction Accuracy Vs History Length for treeadd

For programs with fewer branch instructions, having a very long history length seems to

have a detrimental effect. This because some of the entries in the weight matrix of the

perceptron predictor are empty, and incorrect values are entered in them during training

and when weights are updated. Each row in the W matrix corresponds to a perceptron and

 34

so this would result in incorrect decisions. Hence, for programs with fewer branch

instructions, the prediction accuracy seems to increase at first and remains constant until a

certain point. Beyond that point the prediction accuracy decreases.

4.5. Training Threshold Vs Prediction Accuracy

The training threshold parameter determines the extent to which the perceptron predictor

has to be trained. If the prediction is true and the output is within the range of θ the weights

are not updated. So as we increase the threshold, the perceptron requires more weights to

be updated and hence the correlation is stronger.

Theta Vs Prediction accuracy for constant 'h'

91

91.2

91.4

91.6

91.8

92

92.2

92.4

92.6

92.8

20 40 60 80

Theta

p
re
d
ic
ti
o
n
 a
c
c
u
ra
c
y
e

N=64

N=128

N=512

 Fig. 4.12. θ Vs Prediction Accuracy for different N and constant h=15

 35

Fig. 4.13 θVs Prediction accuracy for different N and constant h=15

Figures 4.12 and 4.13 show that as we increase the threshold (θ), the prediction accuracy

increases up to a certain value and flattens out after that. As we keep increasing the

threshold further, the prediction accuracy decreases. For large values of the training

parameter θ, the absolute values of the weight vectors in the W matrix would be large.

Therefore, if the program suddenly enters a new transitional phase in which the branches

follow a different pattern, it would take a very long time for the predictor to adjust to the

new pattern. But, if the branches do not enter into any new phase in which they tend to

behave differently, a large θ would not be detrimental and is likely to be advantageous.

Prediciton accuracy Vs theta for constant h

84

84.5

85

85.5

86

86.5

87

87.5

88

88.5

20 40 60 80

Theta

p
re
d
ic
it
o
n
 a
c
c
u
ra
c
y

N=64

N=128

N=512

 36

CHAPTER 5: SUMMARY AND CONCLUSION

5.1. Summary

With an increasing preference to accurate branch predictors, neural predictors such as

perceptron predictors seem to be more advantageous than traditional table-based branch

prediction techniques. One major merit is their ability to use longer global history length

for prediction. The perceptron predictor has an intrinsic ability to learn from its past

predictions and the actual branch outcome and uses a training algorithm to update its

weights. Also, a small increase in the hardware resources in the form of additional

perceptrons helps the predictor to improve its prediction accuracy further because of the

increased number of weights for prediction. By tuning the parameters of the perceptron

predictor, we have obtained prediction accuracies better than the traditional branch

prediction schemes, more specifically the popular Gshare predictor.

5.2. Conclusion

In this thesis, a thorough study on perceptron branch predictor and its behavior have been

done. The contribution of this thesis includes findings on the improved performance of the

predictor due to increase in number of perceptrons. Also, the response of the predictor to

the training threshold parameter was studied.

Results show that the perceptron predictor outperformed the Gshare predictor even with

less hardware resources. Also, by tuning various parameters like longer history length,

higher threshold value, and increased number of perceptrons, the perceptron predictor

achieved better accuracy, than the Gshare.

 37

In order to maintain fixed hardware budget, we increase the number of perceptrons while

keeping the history length constant and the results showed an increase in prediction

accuracy and this concept was dealt with in this thesis work. The behavior of the

perceptron, when programs with fewer branch instructions use longer history length is

addressed in this thesis to help understand the behavior of the perceptron predictor better.

 38

 APPENDIX

APPENDIX A

Structures used for the perceptron predictor

• The structure given below was a modification made to the existing “bpred.c”

program of Simplescalar simulator [18].

enum bpred_class {
 …

BPredPerceptron, /* perceptron predictor/*
BPred_NUMBER_OF_PERCEPTRONS;

 };
struct bpred_dir_t{
 enum bpred_class class;
 union{
 …
 struct{
 int number_of_perceptrons;
 int weight_vector_bits;

 int perceptron_history_table;
 int *weights_table;
 unsigned long long global_history;
 unsigned long long
spec_global_history;

} perceptronl;
} config;

 };

• The following structure has been added to “bpred.c” of the Simplescalar

branch predictor:
 typedef struct{
 char temp;
 int prediction; /* prediction: 1 for taken,

 0 for not taken */
 int output; /* perceptron output */

 unsigned long long int history;
 int *weights_table;
 int *masks_entry;
 unsigned long long *counter_entry_table;
 unsigned long long *counter;
 } perceptron_update;

 39

APPENDIX B

Configuration of the out of order simulator [18]:

instruction fetch queue size (in inst)

-fetch:ifqsize 8

 extra branch mis-prediction latency

-fetch:mplat 3

 speed of front-end of machine relative to execution core

-fetch:speed 1

 instruction decode B/W (insts/cycle)

-decode:width 4

 instruction issue B/W (insts/cycle)

-issue:width 4

 -bpred:neural 512 8 15 neural predictor config (<nr_of_perceptrons> <nr_of_weights>

< history_length>)

 run pipeline with in-order issue

-issue:inorder false

 issue instructions down wrong execution paths

-issue:wrongpath true

 instruction commit B/W (insts/cycle)

-commit:width 4

 l1 data cache config, i.e., {<config>|none}

-cache:dl1 dl1:128:32:4:l

 l1 data cache hit latency (in cycles)

-cache:dl1lat 1

 l2 data cache config, i.e., {<config>|none}

-cache:dl2 ul2:1024:64:8:l

 l2 data cache hit latency (in cycles)

-cache:dl2lat 10

 memory access latency (<first_chunk> <inter_chunk>)

-mem:lat 18 2

 40

 memory access bus width (in bytes)

-mem:width 8

-tlb:itlb itlb:16:4096:4:1 instruction TLB config

 total number of integer ALU's available

-res:ialu 4

 total number of integer multiplier/dividers available

-res:imult 1

 total number of memory system ports available

 -res:memport 4

 41

APPENDIX C

Example 1:

Branch address counter table

20019b6c 1 −1 1 −1 1 1 −1 −1 −1 −1 −1 1 --- (Xi) – GHR

20028b10 1 8 8 3 8 4 4 1 1 4 −1 1 --- (Wi) - Selected

Perceptron

Computation of y =2> 0 so positive and therefore branch is taken

and weights are same:

 20028b10 1 8 8 3 8 4 4 1 1 4 1 1 --- (Wi) weights

Example 2:

Branch address counter table

 20041a8c 1 1 1 −1 −1 −1 1 1 −1 1 −1 −1 --- (Xi)

 20056b78 1 6 −8 13 6 4 4 5 1 −4 1 1 --- (Wi)

computation of y = −21 < 0; so it is not taken and t = −1

Weights are updated to:

 t x xi = 1 −1 −1 1 1 1 −1 −1 1 −1 1 --- (t *Xi)

 +

20056b78 1 6 −8 13 6 4 4 5 1 −4 1 --- (Wi)

 =

20056b78 1 5 −9 14 7 5 3 4 2 −5 2 --- (Wi) weights

 42

APPENDIX D

D.1. Compiling and Running Simplescalar Simulator

This section describes the procedure to compile and run simplescalar simulator

To compile the Simplescalar simulator:

 cd $IDIR/simplesim-3.0
 make

Now, build the compiler itself:

 cd $IDIR/gcc-2.6.3
 configure --host=$HOST --target=ssbig-na-sstrix --with-gnu-as
 --with-gnu-ld --prefix=$IDIR
 make LANGUAGES=c
 ../simplesim-3.0/sim-safe ./enquire -f >! float.h-cross
 make install

Running simplescalar for test benchmark go.alpha which is an alpha binary, using
outorder simulator:

Sim-outorder –bpred neural –bpred:neural <number_of_perceptrons>

<nr_of_weights_ bits> <history_length> go.alpha

The output is then generated and we obtain the simulator statistics that also contain the

branch predictor statistics.

 43

 BIBILIOGRAPHY

[1] S. McFarling, Combining Branch Predictors, Technical Report TN-36m, Digital

Western Research Laboratory, June 1993.

[2] T.-Y. Yeh and Y. N. Patt. Two-level Adaptive Branch Prediction, In Proceedings of the

24
th
 ACM/IEEE Int’l Symposium on Microarchitecture, November 1991.

[3] D. A. Jiménez and C. Lin, Dynamic Branch Prediction with Perceptrons, In

Proceedings of the 7
th
 International Symposium on High Performance Computer

Architecture (HPCA), Monterrey, NL, Mexico 2001.

[4] D. A. Jiménez, Fast Path-Based Neural Branch Prediction, In Proceedings of the 36
th

Annual IEEE/ACM International Symposium on Microarchitecture (MICRO

Department of Computer Science), 2003.

[5] Daniel A. Jiménez and Calvin Lin, Perceptron Learning for Predicting the Behavior of

Conditional Branches, In Proceedings of the INNS-IEEE International Joint

Conference on Neural Networks (IJCNN), Washington, DC, July, 2001.

[6] O. Aciiçmez, Ç. K. Koç, and J.-P. Seifert, On the Power of Simple Branch Prediction

Analysis, Cryptology ePrint Archive, Report 2006/351, 2006.

[7] L. N. Vintan and M. Iridon. Towards a High Performance Neural Branch Predictor, In

Proceedings of the International Joint Conference on Neural Networks, volume 2,

pages 868–873, July 1999.

[8] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative Approach,

 44

Second Edition, Morgan Kaufmann Publishers, 1996.

[9] L. Faucett. Fundamentals of Neural Networks: Architectures, Algorithms and

Applications, Prentice-Hall, Englewood Cliffs, NJ, 1994.

[10] F. Rosenblatt. Principles of Neurodynamics: Perceptrons and the Theory of Brain

 Mechanisms. Spartan, 1962.

[11] S. Sechrest, C.C. Lee, and T. N. Mudge, Correlation and Aliasing in Dynamic Branch

Predictors, In Proceedings of the23rd International Symposium on Computer

Architecture, May, 1999.

[12] H. D. Block. The Perceptron: A model for Brain Functioning.

Reviews of Modern Physics, 34:123–135, 1962.

[13] J. Stark, M. Evers, and Y. N. Patt, Variable Length Path Branch Prediction. In

Proceedings of the 8th International Conference on Architectural Support for

Programming Languages and Operating Systems, October 1998.

[14] M. Evers, S. J. Patel, R. S. Chappell, and Y. N. Patt. An Analysis of Correlation and

Predictability: What Makes Two-level Branch Predictors Work? In Proceedings of

the 25th Annual International Symposium on Computer Architecture, pages 52–61,

July 1998.

[15] V. Desmet, L. Eeckhout, K. De Bosschere. Improved Composite Confidence

Mechanisms for a Perceptron Branch Predictor, Ghent University—Ugent

Department of Electronics and Information Systems (ELIS), Parallel Information,

Systems (PARIS) Group, member HiPEAC, Sint-Pietersnieuwstraat, Gent,

Belgium. Journal of System Architecture, March 2006.

 45

[16] O. Cadenas, G. Megson, and D. Jones, Implementation of a Block based Neural

Branch predictor, The University of Reading, Reading RG6 6AY, England, UK.

In the Proceedings of the 8th Euromicro conference, on Digital System Design

(DSD’05), 2005.

[17] Daniel A. Jim´enez and Calvin Lin. Neural methods for dynamic branch prediction.

ACM Transactions on Computer ,Systems, 20(4):369–397, November 2002.

[18] Andr´e Seznec, Stephen Felix, Venkata Krishnan, and Yiannakakis Sazeides. Design

tradeoffs for the Alpha EV8 conditional branch predictor. In Proceedings of the

29th International Symposium on Computer Architecture, May 2002.

[19] Simplescalar Suite Version 3.0, http://www.simplescalar.com

[20] D. Burger and T. Austin, The SimpleScalar tool set, Version 2.0, University of

Wisconsin-Madison Computer Science Department, TechnicalReport #1342,

June, 1997.

[21] SPEC 2000 benchmarks, http://www.spec.org

[22] Olden Benchmarks suite-1.0, http://www.cs.princeton.edu/~mcc/olden.html

