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Abstract: Analog circuits are a critical part of industrial electronics and systems. Estimates in the
literature show that, even though analog circuits comprise less than 20% of all circuits, they are
responsible for more than 80% of faults. Hence, analog circuit fault diagnosis and isolation can
be a valuable means of ensuring the reliability of circuits. This paper introduces a novel technique
of learning time–frequency representations, using learnable wavelet scattering networks, for the
fault diagnosis of circuits and rotating machinery. Wavelet scattering networks, which are fixed
time–frequency representations based on existing wavelets, are modified to be learnable so that they
can learn features that are optimal for fault diagnosis. The learnable wavelet scattering networks are
developed using the genetic algorithm-based optimization of second-generation wavelet transform
operators. The simulation and experimental results for the diagnosis of analog circuit faults demon-
strates that the developed diagnosis scheme achieves greater fault diagnosis accuracy than other
methods in the literature, even while considering a larger number of fault classes. The performance
of the diagnosis scheme on benchmark datasets of bearing faults and gear faults shows that the
developed method generalizes well to fault diagnosis in multiple domains and has good transfer
learning performance, too.

Keywords: wavelet scattering networks; analog circuits; rotating machinery; fault diagnosis; scatter-
ing networks; fault isolation; second-generation wavelet transform

1. Introduction

Electronic circuits are ubiquitous in our everyday lives, in applications ranging from
the commercial domain to the safety-critical domain. As a result, unforeseen circuit failures
can have enormous consequences for the safety and financial well-being of their users
and producers [1,2]. Analog circuit failures can be attributed to interconnected failures or
component faults, which are associated with either parametric drift (soft faults) or short
circuit/open circuit [3] (hard faults). Analog circuits have become increasingly complex and
consequentially, fault diagnosis is increasingly difficult, due to: (a) component tolerances,
(b) interactions among components, (c) inadequate accessible measurement nodes; and
(d) the inherent non-linearity in the behavior of analog circuits. Compared to digital circuits,
analog circuits are more susceptible to interference and have fewer measurement nodes.
Interestingly, even though analog circuits account for less than 20% of all circuits, they are
responsible for more than 80% of circuit faults [4,5] Therefore, the fault diagnosis of analog
circuits has become a highly important research area in recent years.

There are two broad categories for fault diagnosis approaches for circuits: analytical
methods and data-driven methods. Circuit transfer function equations are required to
apply analytical methods [6]. If these equations are unavailable, they can be determined
using design principles or parameter identification techniques [7], and fault diagnosis is
then achieved by exposing the circuit to a test stimulus and using the response to estimate
the circuit parameters. This technique is suitable for linear analog circuits but is not feasible
for nonlinear analog circuits because of the complexity involved [8].
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Data-driven methods [9–12] require data obtained under faulty conditions to be avail-
able either through testing, operation, or simulation such that a comparison can be made
to data obtained under healthy conditions for fault diagnosis. Features of the data are
used for this comparison and can be time domain, frequency domain, or time–frequency
domain. Various machine learning approaches such as neural networks, support vector
machines, Naïve Bayes classifier, etc., have been used for fault diagnosis under the broad
umbrella of data-driven methods. Neural-network-based fault-diagnosis approaches [13,14]
have included, for feature generation: kurtosis and entropy [15], wavelet transforms [16],
and fractional wavelet transforms [17]; and for dimensionality reduction: kernel PCA
(kPCA) [16,17]. Support vector machine (SVM)-based [18] fault-diagnosis approaches have
further included, for feature generation: fractional Fourier transform [19], cross-wavelet
transform [20,21], deep belief networks (DBN) [22,23], and empirical mode decomposi-
tion [24]; for dimensionality reduction: parametric t-SNE [20] and principal component
analysis [21]; and for SVM hyperparameter optimization: the double-chains quantum
genetic algorithm [24], the fruitfly algorithm [25], the barnacles mating optimizer algo-
rithm [26], and the firefly algorithm [27]. Naïve-Bayes-classifier-based [28] fault-diagnosis
approaches include, for feature generation: cross-wavelet transform [29]; and for dimen-
sionality reduction: bilateral 2D linear discriminant analysis.

The standard approach that the vast majority of the methods followed is to extract
features and apply a dimensionality reduction algorithm to obtain a lower-dimensional
feature set which is then fed to a classification algorithm. Extracting features informative for
fault diagnosis requires technical expertise which restricts its application as a generalized
method. Recently, techniques have been proposed involving the direct application of deep
learning methods for fault diagnosis. These techniques use input data to learn features
autonomously through a multi-layered neural network. This avoids the need for manual
feature extraction and feature selection. For example, different 2D representations [30,31]
have been developed for circuit outputs for use with state-of-the-art deep learning networks
such as ResNet50 [32] to achieve fault diagnosis. However, the creation of an optimal custom
deep learning network structure for the problem at hand requires subject matter expertise
and extensive trial-and-error [33]. Inspired by wavelet scattering theory [34] and second-
generation wavelet transform [35], we propose a novel technique that does not need to be
optimized for structure and learns wavelet filters instead of random filters from the data.
Hence, it overcomes the shortcomings of deep learning networks. The remainder of the
paper is organized as follows: Section 2 presents a theoretical background of the techniques
involved in the approach. Section 3 details the developed fault diagnosis methodology.
Section 4 details the application of the approach to the fault diagnosis of two circuits and a
bearing and a gears dataset. The conclusions follow in Section 5.

2. Theoretical Background

As mentioned earlier, in this paper, time–frequency representations are learnt from the
circuit outputs for fault diagnosis using learnable wavelet scattering networks (LWSNs).
This involves modifying wavelet scattering networks, which are fixed time–frequency
representations based on existing wavelets, such that they can learn features that are
optimal for fault diagnosis. Learnable wavelet scattering networks are developed using the
genetic-algorithm-based optimization of second-generation wavelet transform operators.
Support vector machines (SVMs) are used as classifiers for the features learned by the
LWSN. In the following subsections, we review the basics of a wavelet transform, a wavelet
scattering network, a genetic algorithm, and a support vector machine and introduce the
concept of learnable wavelet scattering networks.

2.1. Wavelet Transform

A wavelet transform is a collection of bandpass filters with progressively broader
bandwidths at higher frequencies. A wavelet is a time-limited waveform that has a non-zero
norm and zero average value. Often, signals are piecewise smooth but have momentary
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transients; for example, edges in images or transients caused by rapid changes in economic
conditions in financial time series. The Fourier basis is not suited for the sparse represen-
tation of these signals, as their sinusoids have infinite duration and would require sine
waves of various frequencies for representation. Wavelets, being irregular and of limited
time, require the break-up of a signal into a limited number of variations of the original
wavelet 1√

s ψ
( t−u

s
)
. The scale parameter s is inversely proportional to the frequency. A

small scale s leads to a compressed wavelet, which is ideal for high-frequency signals with
rapidly changing details. A long scale s leads to a stretched wavelet, which is ideal for
slowly changing signals with coarse features; i.e., a low-frequency signal. This increases
the flexibility of the time–frequency analysis. The wavelet transform (1) has scale-varying
basis functions.

W f (u, s) =
∫ ∞

−∞
f (t)

1√
s

ψ

(
t− u

s

)
dt (1)

The continuous wavelet transform (CWT) (2) compares a signal with shifted and
scaled versions of the mother wavelet.

ψ(u, s) =
1

2
j
v

ψ

(
t−m

2
j
v

)
(2)

Here, v is the number of voices per octave, as it requires v intermediate scales to increase
the scale by an octave. Higher values of v result in a finer discretization of the scale parameter
s and an increase in the amount of computation required. The discrete wavelet transform
(DWT) has a much coarser discretization of the scale parameter such that the number of voices
per octave is always one. Depending on the translation parameter discretization, there are
two broad types of DWT: decimated DWT and non-decimated DWT.

Decimated DWT (3): The translation parameter is 2jm, where m is a non-negative
integer and j is the scale. The decimated DWT is a sparse representation; hence, it is used
for compression, denoising, signal transmission, etc.

ψ(u, s) =
1√
2j

ψ

(
t− 2jm

2j

)
(3)

Non-decimated DWT (4): Like in the case of the CWT, the translation parameter
is independent of the scale parameter. The non-decimated DWT is a more redundant
representation than the decimated DWT and is translation invariant.

ψ(u, s) =
1√
2j

ψ

(
t−m

2j

)
(4)

2.2. Wavelet Scattering Networks (WSNs)

In an effort to create interpretable networks that mimic human performance on vision
and auditory tasks, some researchers use wavelet-transform-based methods, as wavelets
are an approximation of the response of the human visual cortex and cochlea to stimuli [36].
For example, the wavelet transform renders a time domain signal to the time–frequency
plane with a decreasing frequency resolution with increasing frequency, which is similar to
the human cochlear response.

Mallat [37] proposed WSNs (Figure 1) as a first step in understanding the success
of Convolutional Neural Networks (CNNs). A wavelet scattering network computes a
representation that preserves high-frequency information, is stable to deformations, and
is translation invariant, which makes it a good feature extractor for classification. It is a
cascade (tree) of convolutions between Gabor wavelet transforms (represented by ψ in
Figure 1) and non-linear modulus and averaging operators (represented by φ in Figure 1),
which “scatter” the signal along multiple paths. The number of paths at each node of
the WSN is the scale of the wavelet transform (scale = 3 in Figure 1), and the number of
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layers of wavelet transforms is typically two. Discrete versions of WSNs were proposed by
Wiatowski [36] and involve existing discrete orthogonal and biorthogonal wavelets.
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Unlike CNNs, a scattering network outputs coefficients at all layers, not just the
last layer, and filters are not learned from data but are predefined wavelets. Thus, the
filters retain their physical meaning, which cannot be said of the filters that are developed
through the learning process in a typical convolution neural network. Operations in both
CNNs and wavelet scattering networks can be represented as P (ρ (x ∗ w)), where x is the
input signal, w is the filter weight, ρ is the nonlinearity, and P is the pooling operator. In
CNNs, the weights w are weights of learned random filters, while in WSNs, the weights
w are the weights of the fixed wavelet filters. Scattering networks provide state-of-the-
art classification accuracies on simple to moderately complex datasets, such as textures
in CUReT dataset [34], or musical genre and environmental sound classification [37],
and images in MNIST dataset [38]. However, for extremely complex datasets such as
ImageNet [39] or TIMIT Acoustic–Phonetic Continuous Speech Corpus [40], CNNs are still
more accurate than scattering networks. A major reason for this is that scattering networks
are fixed-feature generators, while CNNs learn features from the data. As a result, an effort
is made to make the discrete wavelet scattering networks have the learnability property,
such that they can learn features from the data.

2.3. Learnable Wavelet Scattering Networks (LWSNs)

Instead of the fixed wavelet filters of the WSN, the wavelet filters in the LWSN are
learnable using a second-generation wavelet transform (SGWT). The classical wavelet
transform is realized through the translation and expansion of the mother wavelet function.
This definition is very restrictive, so the SGWT does away with it. The lifting method [35]
or the lifting scheme (Figure 2) is a space domain wavelet construction method used to
construct the SGWT filters, and it builds sparse representations by exploiting the correlation
inherent in most real-world data. It consists of three basic steps:

1. Split: Let x(n) be an original signal. In this step, x(n) is divided into two subsets: the
even subset xe(n) and odd subset xo(n). The subsets are correlated according to the
correlation structure of the original signal.

xe(n) = x(2n) (5)

xo(n) = x(2n + 1) (6)
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2. Predict: The odd coefficients xo(n) are predicted from the neighboring even coeffi-
cients xe(n), and the prediction differences d(n) are defined as the detail signal,

d(n)= xo(n)−P(xe(n)) (7)

where P = [p(1), · · · · · · , p(N)]T is the prediction operator.
3. Update: Coarse approximation c(n) to the original signal is created by combining the

even coefficients and the linear combination of the prediction differences

c(n)= xe(n)+U(d(n)) (8)

where U = [u(1), · · · · · · , u(N)]T is the update operator. By iterating on the approxi-
mation signal c(n) using the three steps, the approximation and the detail signal are
obtained at different levels. The optimization of the lifting scheme’s Update (U) and
Predict (P) operators in the LWSN is carried out using the genetic algorithm (GA).
The optimized Update (U) and Predict (P) operators are converted to the wavelet (ψ)
and averaging operators (φ) using Claypoole’s algorithm [35], such that the structure
in Figure 1 can be used to learn time–frequency representations from the data.
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Table 1 illustrates the differences between deep learning networks, wavelet scattering
networks, and learnable wavelet scattering networks.

Table 1. Differences between networks.

Deep Learning Networks Wavelet Scattering Networks Learnable Wavelet
Scattering Networks

Features Learnt from data Fixed wavelet type and
coefficients (not learnt from data)

Wavelet type and
coefficients learnt from data

Features Output at Last layer Every layer Every layer

Number of Layers Variable number of hidden
(convolutional) layers

Two layers (typically) of fixed
wavelets

Two layers of learned
wavelets

Nonlinearity Modulus/Rectified Linear Unit/
Hyperbolic Tangent, etc. Modulus Modulus

Pooling Max/Averaging, etc. Averaging Averaging

Learning Algorithm Gradient Descent and
Backpropagation NA Lifting method and genetic

algorithm

Classifier SoftMax Any (e.g., SVM) Any (e.g., SVM)

Architecture
Various architectures, e.g., ResNet

[32] Alexnet [41], Recurrent
Neural Network [42] etc.

See Figure 1 See Figure 1
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2.4. Genetic Algorithm (GA)

The GA [43] mimics the theory of natural selection. As in the case with evolution,
a population consists of individuals which reproduce to create the next generation. This
reproduction involves the combination of genetic material from parents to create an off-
spring. Each subsequent generation will be created by parent individuals by combining
their genes. The selection of parents (individuals) to combine is based on their fitness, and
the fitness of an individual is based on the fitness function. A total of 10% of the individuals
with the best fitness move on to the next generation. This mechanism is called elitism, and
the percentage of the elite individuals can be changed. The remaining individuals take
part in crossover, where the genes of two individuals (parents) are combined to create the
genes of the individual of the next generation (child). Crossover is carried out until the
required number of individuals (children) is created in the next generation. Analogous to
mutation in natural reproduction, random changes are added to the genes of a fraction of
the children created. This helps to avoid getting stuck in the local minima of the optimiza-
tion of the fitness function. The process repeats for the new generation and the subsequent
generations until the predefined maximum number of generations is reached or there is no
improvement in the fitness in consecutive generations.

2.5. Support Vector Machine (SVM)

An SVM is based on the concept of finding decision planes or hyperplanes that
maximize the separation between classes. If the classes are not linearly separable, a kernel
trick is used to map the data into higher dimensions in an effort to separate them. To find
the support vectors and hence construct an optimal hyperplane, the following optimization
problem [44] is solved:

minφ(w) =
1
2
‖w‖2 + C

N

∑
i=1

ξi s.t. yi

(
wTφ(xi) + b

)
≥ 1− ξi (9)

where C is the penalty parameter to guard against overfitting, and ξi are the slack variables
introduced to handle inseparable data. The input data consists of xi and yi, which are the
independent and the dependent variable (class label), respectively. The kernel function φ
transforms the input data xi into higher dimensions.

3. Fault Diagnosis Methodology

The implementation of the diagnostic scheme is depicted in Figure 3. Firstly, a dataset
of signals when the circuit components are degrading is obtained via simulation or exper-
imentation. This dataset is randomly split into a training dataset [XTrain, YTrain] and a
testing dataset [XTest, YTest], where XTrain and Xtest represent the circuit output signals
in the training and the testing dataset, respectively, and YTrain and YTest represent the
corresponding labels (degrading components). A subset of signals (30%), XTrain′, is ran-
domly selected from the entire training dataset to be used with the GA. This is done to
prevent overfitting to the training dataset and to reduce the time taken for GA optimization.
The fitness function used is the Davies–Bouldin (DB) index [45], as it considers the ratio of
within-class and between-class distances. As a result, the minimization of the DB index
leads to maximum separation between the classes. The GA is used to optimize the Predict
and Update operators of the SGWT, such that the DB index is minimized. The genes in
each individual in the GA are the coefficients for the P and U operators that need to be
optimized by the GA. The P and U operators are assumed to be of length 8; hence, the
number of genes in each individual is 16. Other hyperparameters chosen for the GA include
population size: 100, elite count: 10%, crossover fraction: 90%, mutation rate: 5%, and the
stopping criterion of the GA is when there is no appreciable improvement in the fitness
function for 30 consecutive generations. The feature space (XTrainMod) created by the
LWSN, with the optimized P and U operators, is classified using the SVM as the classifier.
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Since SVM hyperparameter optimization is not the focus of this paper, the hyperparameter
optimization was carried out using built-in MATLAB functions.
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4. Experiments and Results

The proposed method was verified using two analog circuits, the Sallen–Key bandpass
filter circuit and the two-switch forward convertor circuit, and two rotating machinery
datasets, CWRU bearing faults dataset and UoC gear faults dataset. Fault data for the
circuits is generated by varying component values around their nominal values within
SPICE, i.e., if the nominal value of a component is Y, the lower range and the upper range
of the deviation constituting the parametric fault of the component is [0.25 ∗ Y − 0.9 ∗ Y]
and [1.1 ∗ Y − 1.75 ∗ Y], respectively. When the component value is between 0.9 ∗ Y and
1.1 ∗ Y, it is considered to be within its tolerance range, i.e., a tolerance range of 10%. The
training data were obtained by conducting 1000 SPICE simulations, where components are
varied in the aforementioned ranges one at a time, while the other components are held at
their nominal values.

4.1. Sallen–Key Bandpass Filter

The first circuit under test (CUT1) is the Sallen–Key bandpass filter (Figure 4), which
is the most frequently studied circuit for analog circuit fault diagnosis. Unlike other pa-
pers that only consider the fault diagnosis of four of the seven passive components, we
considered all seven passive components for fault diagnosis. The parametric fault ranges
for the seven components considered are shown in Table 2. As can be seen from Table 2, we
considered a single class for each component as opposed to other papers in the literature
that consider two classes for each component. The data for each class were split into training
and testing data sets via a 75%–25% split. The LWSN was trained on the training data, and
the testing accuracy of the LWSN is reported in Table 3, along with the testing accuracy of
the original wavelet scattering network and the Gaussian–Bernoulli Deep Belief Network
(GB-DBN)-based approach [22], which was used for comparison. This paper was used for
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comparison because it uses a deep-learning-based feature extractor, the DBN, along with an
SVM for classification. Hence, it is conceptually similar to our paper. The confusion matrix
for the fault diagnosis of the Sallen–Key bandpass filter using LWSN is shown in Table 4.
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Table 2. Nominal values and parametric fault range of Sallen–Key bandpass filter components.

Fault Class Fault Code Nominal Value Faulty Range

Healthy F0 NA NA

R1 F1 1 kΩ [0.25 k 0.9 k] and [1.1 k 1.75 k]
R2 F2 1 kΩ [0.25 k 0.9 k] and [1.1 k 1.75 k]
R3 F3 2 kΩ [0.5 k 1.8 k] and [2.2 k 3.5 k]
R4 F4 2 kΩ [0.5 k 1.8 k] and [2.2 k 3.5 k]
R5 F5 2 kΩ [0.5 k 1.8 k] and [2.2 k 3.5 k]
C1 F6 5 nF [1.25 n 4.50 n] and [5.50 n 8.75 n]
C2 F7 5 nF [1.25 n 4.50 n] and [5.50 n 8.75 n]

Table 3. Fault diagnosis accuracy of LWSN and comparison with other methods.

Circuit Literature (GB-DBN) [22] Wavelet Scattering Networks Proposed Method (LWSN)

CUT1 99.12% 90.01% 99.72%
CUT2 84.34% 82.45% 92.93%

CUT2 (Experimental Validation) NA 81.12% 90.71%

Table 4. Confusion matrix for LWSN for Sallen–Key bandpass filter.
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Predicted Class

The Sallen–Key bandpass filter circuit involved seven fault types and one healthy
class to detect and identify, which correspond to the 14 fault types for methods used in
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the literature. From Table 3, it can be seen that the proposed LWSN method achieved a
marginal improvement of 0.7% in the fault diagnosis accuracy over comparable methods in
the literature [18] and a 9% improvement in the fault diagnosis accuracy over a traditional
WSN. As can be seen from the confusion matrix in Table 4, fault type F6, which corresponds
to capacitor C1, was misdiagnosed most often; however, the diagnosis of other fault types
was almost perfect.

4.2. Two-Switch Forward Convertor

The second circuit under test (CUT2) is the two-switch forward convertor circuit
(Figure 5). A forward converter is a switching power supply circuit that is used for energy
transfer when the two switches (transistors) are simultaneously turned on. The parametric
fault ranges for the components considered after sensitivity analysis are shown in Table 5,
along with the values for experimental verification. As can be seen from Table 5, we
considered a single class for each single fault (single component degradation) as opposed to
other papers in the literature that consider two classes for each single fault. The advantage
of doing so is that we could consider one class for every double fault (two components
degrading simultaneously), as can be seen from Fault Codes F14 and F15. If we were to
consider two classes for each single fault, we would have to consider four classes for every
double fault. The data for each class were split into training and testing data sets via a
75%–25% split. The testing accuracy of the LWSN on both the simulation and experimental
data is reported in Table 3, along with the testing accuracy of the original wavelet scattering
network and the Gaussian–Bernoulli Deep Belief Network (GB-DBN)-based approach [22],
which were used for comparison. The confusion matrix for the fault diagnosis of the
two-switch forward convertor circuit using LWSN is shown in Table 6.
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Table 5. Nominal values and parametric fault range of two-switch forward convertor circuit components.

Fault Class Fault Code Nominal Value Faulty Range Experimental Values

Healthy F0 NA NA NA

R1 F1 33 Ω [8.25 Ω 29.7 Ω] and [36.3 Ω 57.75 Ω] 10 Ω, 20 Ω, 40 Ω, 50 Ω

C4 F2 0.1 µF [0.025 µF 0.09 µF] and [0.11 µF 0.175 µF] 0.025 µF, 0.05 µF,
0.12 µF, 0.15 µF

RL F3 100 Ω [25 Ω 90 Ω] and [110 Ω 175 Ω] 30 Ω, 80 Ω, 120 Ω, 170 Ω

L3 F4 100 µH [25 µH 90 µH] and [110 µH 175 µH] 30 µH, 75 µH,
156 µH, 170 µH

R5 F5 0 Ω [0.1 Ω 10 Ω] 2 Ω, 4 Ω, 6 Ω, 8 Ω

R6 F6 0 Ω [0.1 Ω 10 Ω] 2 Ω, 4 Ω, 6 Ω, 8 Ω

R7 F7 0 Ω [0.1 Ω 10 Ω] 2 Ω, 4 Ω, 6 Ω, 8 Ω

R8 F8 0 Ω [0.1 Ω 10 Ω] 2 Ω, 4 Ω, 6 Ω, 8 Ω

R10 F9 0 Ω [0.1 Ω 10 Ω] 2 Ω, 4 Ω, 6 Ω, 8 Ω

R11 F10 0 Ω [0.1 Ω 10 Ω] 2 Ω, 4 Ω, 6 Ω, 8 Ω

R12 F11 0 Ω [0.1 Ω 10 Ω] 2 Ω, 4 Ω, 6 Ω, 8 Ω

R13 F12 0 Ω [0.1 Ω 10 Ω] 2 Ω, 4 Ω, 6 Ω, 8 Ω

R16 F13 0 Ω [0.1 Ω 10 Ω] 2 Ω, 4 Ω, 6 Ω, 8 Ω

RL ∗ C4 F14 100 Ω ∗ 10 µF ( ([0.025 µF 0.09 µF] and [0.11 µF 0.175 µF])
(30 Ω 0.025 µF), (30 Ω

0.175 µF), (170 Ω 0.025 µF),
(170 Ω 0.175 µF)

R1 ∗ R2 F15 33 Ω ∗ 33 Ω
([8.25 Ω 29.7 Ω] and [36.3 Ω 57.75 Ω]) ∗ (10 Ω, 20 Ω), (10 Ω, 40 Ω),

(30 Ω, 10 Ω), (50 Ω, 50 Ω),([8.25 Ω 29.7 Ω] and [36.3 Ω 57.75 Ω])

R2 F16 33 Ω [8.25 Ω 29.7 Ω] and [36.3 Ω 57.75 Ω] 10 Ω, 20 Ω, 40 Ω, 50 Ω

Table 6. Confusion matrix for LWSN for two-switch forward convertor circuit.

Tr
ue

C
la

ss

F0 91.7 0.7 3.5 0.5 3.5
F1 94.4 0.2 5.3
F2 0.5 89.9 9.6
F3 0.8 78.4 3.8 0.8 1.3 14.0 0.8 0.3
F4 0.5 0.3 1.6 89.7 0.3 5.7 0.5 0.8 0.8
F5 0.3 0.3 98.2 0.5 0.5 0.3
F6 0.5 1.2 3.9 1.2 92.0 0.2 0.2 0.5 0.2
F7 3.1 94.8 0.3 1.3 0.5
F8 0.2 14.4 2.0 0.5 0.7 81.9 0.2
F9 0.3 0.3 99.2 0.3
F10 9.9 88.3 1.8
F11 1.0 0.3 0.3 0.8 97.1 0.3 0.3
F12 4.2 0.2 1.0 1.7 0.2 1.0 90.3 1.2
F13 0.5 0.5 0.2 0.2 0.2 98.3
F14 100
F15 4.1 0.7 94.9 0.3
F16 4.7 2.3 2.3 2.3 4.7 83.7

F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16
Predicted Class

The experimental setup that was used to demonstrate our approach is shown in
Figure 6. The two-switch forward convertor circuit (CUT2) was used with pulse width
waveforms to trigger the two switches, generated using an Agilent Arbitrary Waveform
Generator 33250A. The circuit components were swapped out with the components with
values shown in the Experimental values column of Table 5. For instance, to mimic the
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degradation of resistor R1 from its nominal value of 33 Ω, resistors of 10 Ω, 20 Ω, 40 Ω,
and 50 Ω were substituted, and the circuit output was captured at every instance. The
circuit responses captured at the output using an Agilent Digital Oscilloscope 54853A were
classified using the developed fault diagnosis methodology, and the results are provided
in Table 3.
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The sixteen fault types and one healthy class considered for the two-switch forward
convertor correspond to 28 fault types for methods in the literature, and this is a much
more challenging fault diagnosis problem compared to CUT1. From Table 3, it can be
seen that the proposed LWSN method achieved a significant improvement of 8.9% in the
fault diagnosis accuracy over the comparable method in the literature [22] and a 10.9%
improvement in the fault diagnosis accuracy over the traditional WSN. As can be seen
from the confusion matrix in Table 6, fault type F3, which corresponds to resistor RL, was
misdiagnosed as fault type F8 (resistor R8). Other notable misclassifications include the
single fault F1 (resistor R1) and the double fault F15 (resistor R1 and R2). This highlights
the complexity of analog circuit fault diagnosis. However, the developed LWSN method
stands out in terms of fault diagnosis performance in comparison to existing methods.

4.3. Bearing Fault Diagnosis

In rotating machinery applications, rolling bearing faults are the most common, lead-
ing to the performance deterioration of machinery. Hence, bearing fault diagnosis plays
a vital role in the health management of machinery [46]. To test the effectiveness of the
method across different domains of fault diagnosis, the developed method was tested
on a bearing faults benchmark dataset. The Case Western Reserve University (CWRU)
motor bearing dataset was generated using a test rig consisting of a 2 hp Reliance Electric
motor, a torque transducer/encoder, a dynamometer, and drive-end and fan-end Svenska
Kullager-Fabriken deep-groove ball bearings. Inner ring, outer ring, and rolling element
defects were manufactured into the bearings. The motor was run at a near-constant speed
(1720–1797 r/min) with different loads (0–3 hp) provided by the dynamometer. Vibration
data were collected using accelerometers, which were vertically attached to the housing
with magnetic bases. Sampling frequencies were 12 kHz for some of the tests and 48 kHz
for the others. Further details can be found at the CWRU Bearing Data Center website [47].
As shown in Table 7, one healthy bearing and three fault modes, including the inner ring
fault, the rolling element fault, and the outer ring fault, were classified into ten categories
(one health state and nine fault states) according to different fault sizes. A plot of the data
can be seen in Figure 7. The data were resampled such that the entire dataset had a constant
sampling rate, and then, the data were split into chunks with sizes of 1024. The dataset
was then split into training and testing datasets in the ratio of 75%:25% using stratified
sampling. The LWSN achieved 99.2% accuracy for the testing dataset, which is comparable
to the state-of-the-art methods [48]. The confusion matrix is shown in Table 8.
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Table 7. CWRU faults.

Fault Mode Description

Health State the normal bearing at 1791 rpm and 0 HP
Inner ring 1 0.007-inch inner ring fault at 1797 rpm and 0 HP
Inner ring 2 0.014-inch inner ring fault at 1797 rpm and 0 HP
Inner ring 3 0.021-inch inner ring fault at 1797 rpm and 0 HP

Rolling Element 1 0.007-inch rolling element fault at 1797 rpm and 0 HP
Rolling Element 2 0.014-inch rolling element fault at 1797 rpm and 0 HP
Rolling Element 3 0.021-inch rolling element fault at 1797 rpm and 0 HP

Outer ring 1 0.007-inch outer ring fault at 1797 rpm and 0 HP
Outer ring 2 0.014-inch outer ring fault at 1797 rpm and 0 HP
Outer ring 3 0.021-inch outer ring fault at 1797 rpm and 0 HP
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The CWRU bearing dataset involves nine fault classes and one healthy class. As can be
seen from the confusion matrix in Table 8, for the bearing fault diagnosis, fault types F3 and
F9 were misdiagnosed most often; however, the diagnosis of other fault types was perfect.

4.4. Gear Fault Diagnosis

The second rotating machinery fault diagnosis dataset considered was the University
of Connecticut (UoC) gear fault dataset [49]. The CWRU dataset and the UoC dataset were
ranked the simplest and the most difficult benchmark dataset, respectively [48], for rotating
machinery fault diagnosis. The average RMS and the average power of the signals in
the CWRU and the UoC dataset were 0.27, −9.36 dB and 0.07, −21.91 dB, respectively.
Preprocessing methods such as stochastic resonance [50] can be used to enhance weak fault
characteristics in datasets such as UoC; however, in this paper, the LWSN method was
applied directly to the raw vibration data.

In the UoC dataset, nine different gear conditions were introduced to the pinions
on the input shaft, including healthy condition, root crack, missing tooth, spalling, and
chipping tip with five different levels of severity. All the collected datasets were used
and classified into nine categories (one health state and eight fault states missing, crack,
spall, chip5a, chip4a, chip3a, chip2a, and chip1a) to test the performance. The data were
resampled such that the entire dataset had a constant sampling rate, and then, the data
were split into chunks with sizes of 1024. The dataset was then split into training and
testing datasets in the ratio 75%:25% using stratified sampling. The LWSN achieved 96.51%
accuracy for the testing dataset, and the confusion matrix is shown in Table 9. Our result is
marginally better, as the best result reported in [48] was 96.19%. Since the UoC dataset had
3600 samples per fault class and there were nine fault classes, the developed method is able
to process the big data of rotating machinery.

Table 9. Confusion matrix for LWSN for the UoC dataset.
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Healthy 99.0 0.1 0.1 0.1 0.1 0.1 0.3

Missing Tooth 0.3 98.6 0.3 0.3 0.3 0.1 0.1

Root Crack 0.7 1.3 91.6 1.1 1.4 0.9 0.9 1.3 0.9

Spalling 0.3 98.2 0.1 0.8 0.3 0.3

Chipping Tip 1a 1.0 0.3 0.4 0.4 95.5 0.6 0.7 0.4 0.7

Chipping Tip 2a 0.4 0.3 0.1 0.6 98.2 0.1 0.3

Chipping Tip 3a 0.1 0.1 0.1 0.1 0.1 99.0 0.1 0.1

Chipping Tip 4a 0.1 0.3 0.6 0.1 0.1 0.3 98.2 0.3

Chipping Tip 5a 0.1 0.1 0.1 99.5

Healthy Missing
Tooth

Root
Crack Spalling Chipping

Tip 1a
Chipping

Tip 2a
Chipping

Tip 3a
Chipping

Tip 4a
Chipping
Tip 5a

Predicted Class

4.5. Transfer Learning

In recent years, transfer learning has been gaining importance, as it enables knowledge
acquired through training on data to be transferred from a source domain to gain insight in
the target domain. This importance rises from the fact that it is very challenging to collect
data from all possible conditions that machinery may encounter. Umdale et al. [51] created
different datasets by dividing the original CWRU dataset based on speed and load, as can be
seen in Table 10. For instance, in dataset D1, the goal was to determine if training on lower
speeds in the source data set would still enable us to achieve acceptable fault diagnosis on a
dataset with higher rotational speeds, as can be seen from the target dataset of D1. In dataset
D2, the opposite was true—the goal was to determine if datasets with higher speeds would
have vital information for fault diagnosis at lower speeds, whereas mixtures of speeds were
considered in datasets D3 and D4. The maximum training and testing accuracies reported
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by [51] are shown in Table 10, where testing accuracies are an indication of the effectiveness of
transfer learning. As can be seen from Table 10, the developed LWSN is more effective for
transfer learning across all four datasets. Exploratory work suggests that LWSN can perform
at least as well as deep learning networks at transfer learning, but further work needs to be
undertaken to determine if there is a fundamental improvement.

Table 10. Comparison of transfer learning accuracies across different datasets.

Dataset Source Dataset Target Dataset Training
Accuracy [51]

Testing
Accuracy [51]

Training Accuracy
(LWSN)

Testing Accuracy
(LWSN)

D1
1730 RPM and 3

HP 1750 RPM
and 2 HP

1772 RPM and 1
HP 1797 RPM

and 0 HP
97.22 97.02 100 99.96

D2
1772 RPM and 1
HP 1797 RPM

and 0 HP

1730 RPM and 3
HP 1750 RPM

and 2 HP
94.17 92.88 100 99.87

D3
1730 RPM and 3

HP 1797 RPM
and 0 HP

1750 RPM and 2
HP 1772 RPM

and 1 HP
96.92 95.77 100 99.39

D4
1750 RPM and 2

HP 1772 RPM
and 1 HP

1730 RPM and 3
HP 1797 RPM

and 0 HP
95.77 94.48 100 99.93

These results imply that the LWSN network can extract discriminative information
from raw data effectively and achieve fault classification with high accuracy, irrespective of
the complexity and domain of the dataset.

5. Conclusions

Traditional fault diagnosis methods involve the extraction of fixed representations in
the time domain, frequency domain, or time–frequency domain. These methods require
technical expertise for designing appropriate features from the fixed representations. In this
paper, a new feature extraction technique based on learnable wavelet scattering networks
was developed to diagnose faults primarily in analog circuits and rotating machinery. By
learning a time–frequency representation from the data, the developed method has a better
ability to extract essential features of the fault signals. This results in better fault diagnosis
accuracy, by almost 9%, compared to the state-of-the-art fault diagnosis method in the liter-
ature. By considering more classes for fault diagnosis than any other paper in the literature,
a more thorough fault diagnosis was demonstrated. The fault diagnosis performance of
this method was verified by experiments on the two-switch forward convertor circuit. The
experiments indicated that the fault diagnosis model trained on simulation data is able
to effectively diagnose faults from the actual circuit. Analog circuits and gears/bearings
are the predominant sources of faults in electronic systems and rotary mechanical systems,
respectively. The developed fault diagnosis approach was applied to the CWRU bearing
faults and the UoC gear faults benchmark datasets and achieved fault diagnosis accuracy
that is comparable to state-of-the-art methods. Since the UoC gear faults benchmark dataset
is considered the most challenging benchmark dataset in rotating machinery fault diagnosis,
this speaks to the ability of the developed method to extract weak fault signatures. Hence,
the generalizability of the developed fault diagnosis approach across the most common
industrial fault diagnosis domains was demonstrated. Initial experiments indicated that
the developed approach is also effective in transfer learning; however, further experiments
need to be carried out to confirm these observations.

The incorporation of learnability in traditional wavelet scattering networks resulted in
a 10% improvement in fault diagnosis accuracy. As opposed to deep learning networks,
the developed learnable wavelet scattering networks do not require an extensive trial-and-
error process to optimize their structure. Additionally, the developed learnable wavelet
scattering networks learn wavelet filters as opposed to the random filters learnt in deep
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learning networks. Hence, the filters learnt by learnable wavelet scattering networks are
interpretable, which enables wavelets to be used to gain further insight into circuit faults.
The interpretability of the wavelets learnt by the learnable wavelet scattering networks and
digital circuit fault diagnosis are possible avenues for future research.
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