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Abstract

NIM(a1, . . . , ak;n) is a 2-player game where initially there are n stones on the board and

the players alternate removing either a1 or · · · or ak stones. The first player who cannot move

loses. This game has been well studied. For example, it is known that for NIM(1, 2, 3;n)

Player II wins if and only if n is divisible by 4. These games are interesting because, despite

their simplicity, they lead to interesting win conditions.

We investigate an extension of the game where Player I starts out with d1 dollars, Player II

starts out with d2 dollars, and a player has to spend a dollars to remove a stones. This game is

interesting because a player has to balance out his desire to make a good move with his concern

that he may run out of money. This game leads to more complex win conditions then standard

NIM. For example, the win condition may depend on both what n is congruent to mod some

M1 and on what d1 − d2 is congruent mod some M2. Some of our results are surprising. For

example, there are cases where both players are poor, yet the one with less money wins.

For several choices of a1, . . . , ak we determine for all (n, d1, d2) which player wins.

∗The authors gratefully acknowledge the support of the Maryland Center for Undergraduate Research.
†University of Maryland, Dept. of Computer, College Park, MD 20742. gasarch@cs.umd.edu
‡University of Maryland, Dept. of Computer Science, College Park, MD 20742. jep1911@umd.edu

1



1 Introduction

NIM is a game involving two players removing stones from a board until there are none left. We

define the standard 2-player 1-pile NIM game and then discuss other variants.

Def 1.1 Let a1 < · · · < ak ∈ N and n ∈ N. NIM(a1, . . . , ak; n) is played as follows.

1. Initially there are n stones on the board and their are two players, Player I and Player II.

2. The player’s alternate with Player I going first.

3. During a player’s turn he removes a ∈ {a1, a2, . . . , ak} stones from the board.

4. If a player cannot move he loses.

We often say NIM(a1, . . . , ak) when the n will come later in the sentence.

Notation 1.2 The expression Player I wins means that Player I has a winning strategy that will

work regardless of what Player II does. Similar for Player II wins.

NIM is an example of a combinatorial game. Such games have a vast literature (see the selected

bibliography of Frankel [1]). Variants on the 1-pile version have included letting the number of

stones a player can remove depend on how many stones are in the pile [4], having the players have

different moves allowed [2], allowing three players [6], viewing the stones as cookies that may

spoil [5], and others. Grundy [3] and Sprague [7] showed how to reduce the many-pile NIM games

to 1-pile NIM games. These games are appealing because they are easy to explain, yet involve

interesting (and sometimes difficult) mathematics to analyze.

We give several examples of known win-loss patterns for NIM-games.

Example 1.3

1. Let L ≥ 1. Player II wins NIM(1, . . . , L) iff n ≡ 0 (mod L + 1).
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2. Let L ≥ 2 and even (the case of L odd is a simple mod-2 pattern so we omit it). Player II

wins NIM(1, L) iff n ≡ 0, 2, 4, . . . , L− 2 (mod L + 1).

3. Let L ≥ 3 and odd. Player II wins NIM(1, L−1, L) iff n ≡ 0, 2, 4, . . . , L−3 (mod 2L−2).

4. Let L ≥ 4 and even. Player II wins NIM(1, L−1, L) iff n ≡ 0, 2, 4 . . . , L−2 (mod 2L−1).

5. Let L ≥ 3. Player II wins NIM(2, 3, . . . , L) iff n ≡ 0, 1 (mod L + 2).

6. Let L ≥ 3. Player II wins NIM(L− 2, L− 1, L) iff n ≡ 0, 1, . . . , L− 3 (mod 2L− 2).

We consider a variant of this game where players are also given amounts of money d1, d2 and

they have to pay i dollars to remove i stones.

Def 1.4 Let a1 < · · · < ak ∈ N and n, d1, d2 ∈ N. The NIM(a1, . . . , ak; n, d1, d2) is played just

like NIM except that

1. If a player removes j stones from the board he must spend j dollars.

2. If a player cannot move he loses; however, this can now happen in one of two ways: either

there are < a1 stones on the board or the player does not have enough money to make the

move (typically the player is broke).

If we want to specify just a1, . . . , ak but not n, d1, d2 then we refer to this game as NIM(a1, . . . , ak)

with cash.

Our game is interesting because a player has to balance the desire to play an optimal (in the

unlimited cash version) with desire to not run out of money. This leads to some surprising results.

For example, it is possible that both players are poor yet the one with less money wins. Another

surprising scenario are discussed in Section 5.

In Section 2 we define the state of the game which will be an important concept. In Section 3

we prove a general theorem about what happens if both players are poor. In Section 4, we give a

3



complete description of who wins NIM(1, 2, . . . , L) with Cash. This leads to a speculation which

we discuss and show is false in Section 5. We then, in Section 6 give a complete description of who

wins NIM(1, 3, 4). We then make conjectures and state future research goals in Sections 7 and 8.

In the Appendix we discuss the programs used to generate the data that lead to our theorems.

2 State of the Game

Def 2.1 Let a1 < · · · < ak ∈ N. Assume we are playing NIM(a1, . . . , ak). Let n, d1, d2 ∈ N. We

define the state of the game. In all cases it is Player I’s turn.

1. The game is in state (n; d1, d2) if there are n stones on the board, Player I has d1 dollars, and

Player II has d2 dollars.

2. The game is in state (n,≥ d1,≤ d2) if there are n stones on the board, Player I has ≥ d1

dollars, and Player II has ≤ d2 dollars.

3. States (n,≤ d1,≥ d2) and other variants are defined similarly.

4. The game is in state (n; d1, UF ) if there are n stones on the board, Player I has ≥ d1 dollars

and Player II has unlimited funds (hence the UF ).

5. States (n, UF, d2), (n, UF,≤ d2) and other variants are defined similarly.

6. We will sometimes use the notation (n; d1, d2, II) to mean that it is Player II’s turn.

7. If the game is understood then we use the phrase Player I wins (n, d1, d2) to mean that Player

I has a winning strategy in the understood game starting from that state. Similar for Player

II wins (n, d1, d2).

Def 2.2 If Player I (II) wins from state (n; d, UF ) ((n, UF, d)) then we say that he wins normally.

Note that he can use the same strategy he uses in Standard NIM. If a Player I (II) wins by always

4



removing a1 and waiting (with success) for Player II (I) to not be able to move because have < a1

dollars then we say that that he wins miserly.

3 Miserly Theorem

Theorem 3.1 Let 1 = a1 < a2 < · · · < ak. We assume the game is NIM(a1, . . . , ak) with cash.

1. For all n ≥ 1 Player I wins (n,≥
⌈

n
2

⌉
,≤

⌈
n
2
− 1

⌉
) by playing a miserly strategy.

2. For all n ≥ 0 Player II wins (n,≤
⌊

n
2

⌋
,≥

⌊
n
2

⌋
) by playing a miserly strategy.

Proof:

We prove both parts by induction. In both cases the base case is trivial.

1)

Induction Hypothesis: For all 1 ≤ n′ < n the theorem holds. We can assume n ≥ 2. We can

assume the game is in state (n, ;1 , d2) where d1 ≥
⌈

n
2

⌉
and d2 ≤

⌈
n
2
− 1

⌉
.

Player I’s winning strategy is to remove one stone. We can assume Player II removes a ∈

{a1, . . . , ak} stones. The state is now (n − a − 1, d1 − 1, d2 − a) which satisfies the induction

hypothesis:

d1 − 1 ≥
⌈n

2
− 1

⌉
=

⌈
n− 2

2

⌉
≥

⌈
n− a− 1

2

⌉
.

d2 − a ≤
⌈n

2
− a− 1

⌉
=

⌈
n− 2a

2
− 1

⌉
≤

⌈
n− a− 1

2
− 1

⌉
.

2)

Induction Hypothesis: For all 1 ≤ n′ < n the theorem holds. We can assume n ≥ 1. We can

assume the game is in state (n; d1, d2) where d1 ≤
⌊

n
2

⌋
and d2 ≥

⌊
n
2

⌋
.

Assume Player I removed a ∈ {a1, . . . , ak}. Player II’s winning response is to remove one

stone. The state is now (n− a− 1, d1 − a, d2 − 1) which satisfies the induction hypothesis:
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d1 − a ≤
⌊n

2
− a

⌋
=

⌊
n− 2a

2

⌋
≤

⌊
n− a− 1

2

⌋
.

d2 − 1 ≥
⌊n

2
− 1

⌋
=

⌊
n− 2

2

⌋
≥

⌊
n− a− 1

2

⌋
.

4 NIM(1, 2, . . . , L) with Cash

Throughout this section we assume that L ≥ 2 and the game is NIM(1, 2, . . . , L) with Cash.

Def 4.1 Let f and W be the following functions.

1. f((L + 1)k) = (L− 1)k, W ((L + 1)k) = II .

2. For 1 ≤ i ≤ L f((L + 1)k + i) = (L− 1)k + i, W ((L + 1)k + i) = I .

Note that W (n) is who wins (if both sides have unlimited funds). We will see that f(n) is how

much W (n) needs to win normally.

In the following subsections we determine who wins (1) when both players have ≥ f(n), (2)

when one player has ≥ f(n) and one has < f(n), (3) when both players have < f(n). We then

put these theorems together to obtain a theorem stating exactly who wins when. We only sketch

the proofs since they are similar (but easier) then the ones in Section 6.

Theorem 4.2 Let n, d ∈ N. Assume n ≤
⌊

d
L

⌋
+ d.

1. If n ≡ 0 (mod L + 1) and the game is in state (n, UF,≥ d) then Player II wins normally.

2. If n ≡ 1, 2, 3, . . . , L (mod L + 1) and the game is in state (n,≥ d, UF ) then Player I wins

normally.
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Proof sketch:

Whichever player is supposed to win plays the strategy he would play with unlimited funds.

An easy induction shows that he has enough money to do this.

Note that if d1, d2 ≥ f(n) then the player who would win the unlimited game wins normally.

Hence we are now concerned with what happens if one or both players has < f(n).

Theorem 4.3 Let n ∈ N. If d < f(n) then Player II wins (n,≤ d,≥ d).

Proof sketch:

The proof is by induction on n. The base case is easy.

The induction step has two cases.

1. If d ≡ j (mod L), n ≡ j + 1 (mod L + 1), and Player I removes i ≤ j stones then Player

II’s winning response is to remove j − i + 1 stones.

2. In all other cases Player II’s response is to remove one stone.

Theorem 4.4 Let n, d ∈ N. If d2 ≤ d1 − 1, f(n) then Player I wins (n, d1, d2).

Proof sketch:

Player I’s strategy is to always remove one stone.

From Theorems 4.2, 4.3, 4.4 we obtain the following complete description of who wins when.

Theorem 4.5 Let n ≥ 0.

1. If d1, d2 ≥ f(n) then
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(a) If n ≡ 0 (mod L + 1) then Player II wins.

(b) If n ≡ 1, 2, . . . , L (mod L + 1) then Player II wins.

2. If d1 ≥ f(n) but d2 < f(n) then Player I wins.

3. If d2 ≥ f(n) but d1 < f(n) then Player II wins.

4. If d1d2 < f(n) then

(a) If d1 ≤ d2 then Player II wins.

(b) If d1 > d2 then Player I wins.

5 An Incorrect Speculation and a Counterexample

The above example, and intuition, would suggest the following speculation:

If both players are rich then the game will go as it usually does, as both can afford their normal

strategies. If both players are poor, but equal, then Player II should win since Player I will go first

and be at a monetary disadvantage.

This turns out to not be true. We give a simple example:

Consider NIM(1, 3, 4). As noted in Example 1.3 the following is known.

1. If n ≡ 0, 2 (mod 7) then Player II wins.

2. If n ≡ 1, 3, 4, 5, 6 (mod 7) then Player I wins.

Consider NIM(1, 3, 4) with cash. We show that in Player I wins (14; 9, 9). Player I’s winning

first move is to remove 1 stone. Now the game is in state (13; 8, 9, II). If Player II had lots of

money then he would remove four stones. But if he did that here he would be to poor to win! If

Player II removes three or four stones then Player I can adapt a miserly strategy to win. For the

first few pairs of turns Player II has to remove one stone (else he loses) and Player I will respond
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by removing one stone until the game is in state (10; 7, 7). From here this state it is easy to show

that Player I wins.

In the next section we analyze NIM(1, 3, 4) with cash completely.

6 NIM(1, 3, 4) with Cash

Throughout this section we assume that the game being played is NIM(1, 3, 4) with Cash.

Def 6.1 Let f and W be the following functions.

1. f(7k) = 5k, W (7k) = II .

2. f(7k + 1) = 5k + 1, W (7k + 1) = I .

3. f(7k + 2) = 5k + 1, W (7k + 2) = II .

4. f(7k + 3) = 5k + 2, W (7k + 3) = I .

5. f(7k + 4) = 5k + 4, W (7k + 4) = I .

6. f(7k + 5) = 5k + 4, W (7k + 5) = I .

7. f(7k + 6) = 5k + 5, W (7k + 6) = I .

Note that W (n) is who wins (if both sides have unlimited funds). We will see that f(n) is how

much W (n) needs to win normally.

6.1 The Normal Case

The following theorem states when a player can win normally. We omit the easy proof.

Theorem 6.2 Let n ≥ 0.

• If n ≡ 1, 3, 4, 5, 6 (mod 7) and d1 ≥ f(n) then Player II wins (n, UF,≥ f(n)) normally.

• If n ≡ 0, 2 (mod 7) and d2 ≥ f(n) then Player I wins (n,≥ f(n), UF ) normally.
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6.2 A Very Useful Table

To completely analyze NIM(1, 3, 4) with cash we need to know what happens when one or both

players have less than f(n). Table 1 below will be useful.

n a n− a− 1 f(n) f(n− a− 1) f(n) ≤ f(n− a− 1) + a(+1) f(n− a− 1) ≤ f(n)− 1?

7k 1 7(k − 1) + 5 5k 5k − 1 Y ES Y ES

7k + 1 1 7(k − 1) + 6 5k + 1 5k Y ES Y ES

7k + 2 1 7k 5k + 1 5k Y ES Y ES

7k + 3 1 7k + 1 5k + 2 5k + 1 Y ES Y ES

7k + 4 1 7k + 2 5k + 4 5k + 1 NO NO

7k + 5 1 7k + 3 5k + 4 5k + 2 NO(Y ES) NO

7k + 6 1 7k + 4 5k + 5 5k + 4 Y ES Y ES

7k 3 7(k − 1) + 3 5k 5k − 3 Y ES Y ES

7k + 1 3 7(k − 1) + 4 5k + 1 5k − 1 Y ES Y ES

7k + 2 3 7(k − 1) + 5 5k + 1 5k − 1 Y ES Y ES

7k + 3 3 7(k − 1) + 6 5k + 2 5k Y ES Y ES

7k + 4 3 7k 5k + 4 5k NO(Y ES) Y ES

7k + 5 3 7k + 1 5k + 4 5k + 1 Y ES Y ES

7k + 6 3 7k + 2 5k + 5 5k + 1 NO(Y ES) Y ES

7k 4 7(k − 1) + 2 5k 5k − 4 Y ES Y ES

7k + 1 4 7(k − 1) + 3 5k + 1 5k − 3 Y ES Y ES

7k + 2 4 7(k − 1) + 4 5k + 1 5k − 1 Y ES Y ES

7k + 3 4 7(k − 1) + 5 5k + 2 5k − 1 Y ES Y ES

7k + 4 4 7(k − 1) + 6 5k + 4 5k Y ES Y ES

7k + 5 4 7k 5k + 4 5k Y ES Y ES

7k + 6 4 7k + 1 5k + 5 5k + 1 Y ES Y ES
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Table 1

6.3 If d1 < d2, f(n) then Player II Wins

Theorem 6.3 Let n ≥ 1. If 0 ≤ d1 < d2, f(n) then Player II wins (n; d1, d2).

Proof:

We prove this by induction on n.

Base Case: We leave the Base Case of n = 0, 1, 2, 3, 4, 5 to the reader.

Induction Hypothesis: For all 1 ≤ n′ < n the theorem holds. We can assume n ≥ 5. We can assume

the game is in state (n; d1, d2) where d1 < d2, f(n). We can assume that Player I removes a ∈ {1, 3, 4}

stones.

Case 1: f(n) ≤ f(n − a − 1) + a. Player II’s winning response is to remove one stone resulting in state

(n − a − 1, d1 − a, d2 − 1). This state satisfies the induction hypothesis: (1) Clearly d1 − a < d2 − 1. (2)

Note that

d1 − a < f(n)− a ≤ f(n− a− 1).

Case 2: f(n) ≤ f(n− a− 1) + a + 1.

Case 2.1: d1 ≤ f(n) − 2 Player II’s winning response is to remove one stone resulting in state (n − a −

1, d1 − a, d2 − 1). This state satisfies the induction hypothesis: (1) Clearly d1 − a < d2 − 1. (2)

d1 − a ≤ f(n)− a− 2 ≤ f(n− a− 1)− 1 < f(n− a− 1).

Case 2.2: d1 = f(n) − 1 and W (n − a − 1) = II and f(n − a − 1) ≤ f(n) − 1. Note that since

d1 < d2 we have d2 ≥ f(n). Player II’s winning response is to remove one stone resulting in state

(n− a− 1, d1 − a, d2 − 1). This state satisfies the premise of Theorem 6.2 since

d2 − 1 ≥ f(n)− 1 ≥ f(n− a− 1)
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and W (n− a− 1) = II.

Case 2.3: d1 = f(n)− 1 and (W (n− a− 1) = I or f(n− a− 1) ≥ f(n)− 1). Note that d2 ≥ f(n). By

Table 1 there are only two cases that fall into this category.

1. n = 7k + 4 and a = 1. After Player I removes one stone Player II’s winning response is to remove

three stones resulting in state (7k, d1 − a, d2 − 3). This state satisfies the premise of Theorem 6.2

since

d2 − 3 ≥ f(n)− 3 = f(7k + 4)− 3 = 5k + 1 ≥ f(7k)

and W (7k) = II .

2. n = 7k + 5 and a = 1. After Player I removes one stone Player II’s winning response is to remove

four stones resulting in state (7k, d1−a, d2−4). This state satisfies the premise of Theorem 6.2 since

d2 − 4 ≥ f(n)− 4 = f(7k + 4)− 4 = 5k ≥ f(7k)

and W (7k) = II .

6.4 If d2 < d1 + 1, f(n) then Player I Wins

Table 2 below will be useful.
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n a n− a− 1 f(n) f(n− a− 1) f(n) ≤ f(n− a− 1) + a(+3) W

7k 1 7(k − 1) + 5 5k 5k − 1 Y ES II

7k + 1 1 7(k − 1) + 6 5k + 1 5k Y ES I

7k + 2 1 7k 5k + 1 5k Y ES II

7k + 3 1 7k + 1 5k + 2 5k + 1 Y ES I

7k + 4 1 7k + 2 5k + 4 5k + 1 NO(Y ES) I

7k + 5 1 7k + 3 5k + 4 5k + 2 NO(Y ES) I

7k + 6 1 7k + 4 5k + 5 5k + 4 Y ES I

7k 3 7(k − 1) + 3 5k 5k − 3 Y ES II

7k + 1 3 7(k − 1) + 4 5k + 1 5k − 1 Y ES I

7k + 2 3 7(k − 1) + 5 5k + 1 5k − 1 Y ES II

7k + 3 3 7(k − 1) + 6 5k + 2 5k Y ES I

7k + 4 3 7k 5k + 4 5k NO(Y ES) I

7k + 5 3 7k + 1 5k + 4 5k + 1 Y ES I

7k + 6 3 7k + 2 5k + 5 5k + 1 NO(Y ES) I

7k 4 7(k − 1) + 2 5k 5k − 4 Y ES II

7k + 1 4 7(k − 1) + 3 5k + 1 5k − 3 Y ES I

7k + 2 4 7(k − 1) + 4 5k + 1 5k − 1 Y ES II

7k + 3 4 7(k − 1) + 5 5k + 2 5k − 1 Y ES I

7k + 4 4 7(k − 1) + 6 5k + 4 5k Y ES I

7k + 5 4 7k 5k + 4 5k Y ES I

7k + 6 4 7k + 1 5k + 5 5k + 1 Y ES I

Table 2

Theorem 6.4 Let n ≥ 1. If d2 < d1 − 1, f(n) then Player I wins (n; d1, d2).
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Proof:

We prove this by induction on n.

Base Case: We leave the base case of n = 1, 2, 3, 4, 5 to the reader.

Induction Hypothesis: For all 1 ≤ n′ < n the theorem holds. We can assume n ≥ 5. We can assume the

game is in state (n; d1, d2) where d2 < d2 − 1, f(n).

Case 1: W (n) = 1 and d1 ≥ f(n). In this case, by Theorem 6.2, Player I wins.

Case 2: W (n) 6= I or d1 ≤ f(n) − 1. Player I’s strategy is to remove one stone. We can assume Player

II removes a ∈ {1, 3, 4} stones. The game is thus in state (n − a − 1, d1 − a, d2 − a). We show that the

new state satisfies the induction hypothesis. Clearly d1 − a < (d2 − 1)− 1. Hence we need only prove that

d2 − a < f(n− a− 1).

Case 2.1: f(n) ≤ f(n− a− 1) + a. Combine this with d2 < f(n) to obtain

d2 − a < f(n)− a ≤ f(n− a− 1).

Case 2.2: d1 ≤ f(n) − 1. By Table 2 it is always the case that f(n) ≤ f(n − a − 1) + a + 3. Since

d2 < d1 − 1 and d1 ≤ f(n)− 1 we have d2 ≤ f(n)− 3. Hence

d2 − a < f(n)− 3− a ≤ f(n− a− 1) + a + 3− 3− a = f(n− a− 1).

Case 2.3: W (n) = II and f(n) ≥ f(n− a− 1) + a + 1. By Table 2 this case never occurs.

6.5 What if d1 = d2 + 1 ≤ f(n)?

Theorem 6.5 Player I wins (n, f(n), f(n)− 1).

Proof sketch: Player I’s strategy is as follows: If W (n) = I then Player I wins normally. If W (n) = II

then Player I will remove one stone. We omit the induction proof that shows that this works.

Lemma 6.6 Let b ≥ 1. Assume the game starts in state (n, f(n)− b, f(n)− b− 1).
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1. If on the first move Player I removes three or four stones and then Player II removes one stone, then

Player II wins.

2. If on the first move Player I removes one stone and then Player II removes three of four stones, then

Player I wins.

Proof:

1) The game is now in state (n−a−1, f(n)−b−a, f(n)−b−2) where a ∈ {3, 4}. We show that this state

satisfies the premise of Theorem 6.3 and hence Player II wins. Clearly we have f(n)−b−a < f(n)−b−2.

We need f(n)− b− a < f(n− a− 1). It suffices to show that f(n)− a− 1 < f(n− a− 1).

Case 1: f(n) ≤ f(n− a− 1) + a. Hence

f(n)− a− 1 ≤ f(n− a− 1) + a− a− 1 = f(n− a− 1)− 1 < f(n− a− 1).

Case 2: f(n) = f(n− a− 1) + a + 1. By the Table n ≡ 4, 6 (mod 7).

• If n = 7k + 4 then f(n) = 5k + 4 hence the current state is (7k + 3 − a, 5k + 3 − a, 5k + 2). If

a = 3 then the state is (7k, 5k, 5k + 2) and Player II wins by Theorem 6.2. If a = 4 then the state

is (7k − 1, 5k − 1, 5k + 2) = (7(k − 1) + 6, 5(k − 1) + 4, 5k + 2). Note that 5(k − 1) + 4 <

f(7(k − 1) + 6) = 5(k − 1) + 5. Hence the state satisfies the premise of Theorem 6.3 so Player II

wins.

• If n = 7k + 6 then f(n) = 5k + 5 hence the current state is (7k + 5 − a, 5k + 4 − a, 5k + 3). If

a = 3 then the state is (7k + 2, 5k + 1, 5k + 3) and Player II wins by Theorem 6.2. If a = 4 then

the state is (7k + 1, 5k, 5k + 3). Note that 5k < f(7k + 1) = 5k + 1. Hence the state satisfies the

premise of Theorem 6.4 so Player II wins.

By the Table there are no more cases.

2) The game is now in state (n − a − 1, f(n) − b − 1, f(n) − b − a − 1) where a ∈ {3, 4}. We show that

this state satisfies the premise of Theorem 6.4 and hence Player I wins. Clearly we have f(n)− b− a− 1 <
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(f(n)− b− 1)− 1. We need f(n)− a− 2 < f(n− a− 1). We proved f(n)− a− 1 < f(n− a− 1) in

part 1 so we are done.

Theorem 6.7 Let b ≥ 0. Let n be such that f(n) − b − 1 ≥ 0. Assume the game starts in state (n, f(n) −

b, f(n)− b− 1).

1. If b ≡ 0 (mod 3) then Player I wins.

2. If b ≡ 1 (mod 3) then

• if n ≤ 14(b−1)
3 + 3 or n ≡ 0, 2, 5 (mod 7) then Player I wins;

• if n ≥ 14(b−1)
3 + 4 and n ≡ 1, 3, 4, 6 (mod 7) then Player II wins.

3. If b ≡ 2 (mod 3) then

• if n ≤ 14(b−2)
3 + 9 or n ≡ 1, 3, 4, 6 (mod 7) then Player I wins;

• if n ≥ 14(b−2)
3 + 10 and n ≡ 0, 2, 5 (mod 7) then Player II wins.

Proof: We prove this by induction on b + n.

Base Case: If b + n = 1 then one of the following occurs.

• b = 0 and n = 1. The premise holds since f(n) − b − 1 = 1 − 0 − 0 ≥ 0. Player I wins by

Theorem 6.5.

• b = 1 and n = 0. The premise f(n)− b− 1 ≥ 0 does not hold.

Induction Hypothesis: For all (b′, n′) such that b′ + n′ < b + n the theorem holds. We prove the theorem

for (b, n). We may assume b ≥ 1 since if b = 0 then the theorem holds by Theorem 6.5.

Assume the state is (n, f(n)− b, f(n)− b−1). By Lemma 6.6 we can assume that both Players remove

one stone (in some cases we will not use this). Hence the new state is (n− 2, f(n)− b− 1, f(n)− b− 2).

Note that in the new state the quantity b + n has decreases. Hence, if the new state satisfies the conditions

of the theorem, we can use the induction hypothesis. The Table 3 will be helpful.
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n (n− 2, f(n)− b− 1, f(n)− b− 2) = (n− 2, f(n− 2)−?, f(n− 2)−?− 1)

7k (7(k − 1) + 5, 5(k − 1) + 4− b, 5(k − 1) + 4− b− 1) = (n− 2, f(n− 2)− b, f(n− 2)− b− 1)

7k + 1 (7(k − 1) + 6, 5(k − 1) + 5− b, 5(k − 1) + 5− b− 1) = (n− 2, f(n− 2)− b, f(n− 2)− b− 1)

7k + 2 (7k, 5k − b, 5k − b− 1) = (n− 2, f(n− 2)− b, f(n− 2)− b− 1)

7k + 3 (7k + 1, 5k + 1− b, 5k + 1− b− 1) = (n− 2, f(n− 2)− b, f(n− 2)− b− 1

7k + 4 (7k + 2, 5k + 3− b, 5k + 2− b) = (n− 2, f(n− 2)− (b− 2), f(n− 2)− (b− 2)− 1

7k + 5 (7k + 3, 5k + 2− (b− 1), 5k + 2− (b− 1)− 1) = (n− 2, f(n− 2)− (b− 1), f(n− 2)− (b− 1)− 1)

7k + 6 (7k + 4, 5k + 4− b, 5k + 4− b− 1) = (n− 2, f(n− 2)− b, f(n− 2)− b− 1)

Table 3

Case 0: b ≡ 0 (mod 3). The state is (n, f(n)− b, f(n)− b− 1). By Table 3 note the following:

1. If n ≡ 0, 1, 2, 3, 6 then the new state satisfies the condition of the theorem with b′ = b ≡ 0 (mod 3)

hence Player I wins.

2. If n ≡ 4 (mod 3) then the new state has b′ = b−2 ≡ 1 (mod 3) and n′ ≡ 2 (mod 7), hence Player

I wins. (Since b ≡ 0 (mod 3) and b 6= 0 we have b ≥ 3 so b− 2 ≥ 0.)

3. If n ≡ 5 (mod 3) then the new state has b′ = b−1 ≡ 2 (mod 3) and n′ ≡ 3 (mod 7), hence Player

I wins.

Case 1.1: b ≡ 1 (mod 3) and n ≤ 14(b−1)
3 + 3. It is easy to show that in this case f(n) − b − 1 ≥ dn/2e

and f(n)− b− 2 ≤ dn/2e − 1. Hence, by Theorem 3.1 Player I wins.

Case 1.2: b ≡ 1 (mod 3) and n ≥ 14(b−1)
3 + 4.

1. If n ≡ 0 (mod 7) then the new state has b′ = b ≡ 1 (mod 3) and n′ ≡ 5 (mod 7); hence Player I

wins.

2. If n ≡ 1 (mod 7) then the new state has b′ = b ≡ 1 (mod 3) and n′ ≡ 6 (mod 7). Player II wins
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so long as n′ = n− 2 ≥ 14(b−1)
3 + 4. We have

n = 7k + 1 ≥ 14(b− 1)
3

+ 4.

Using mod 7 one can easily show that actually

n = 7k + 1 ≥ 14(b− 1)
3

+ 8.

The lower bound on n′ follows.

3. If n ≡ 2 (mod 7) then the new state has b′ = b ≡ 1 (mod 3) and n′ ≡ 0 (mod 7). Hence Player I

wins.

4. If n ≡ 3 (mod 7) then the new state has b′ = b ≡ 1 (mod 3) and n′ ≡ 1 (mod 7). Player II wins

so long as n′ = n− 2 ≥ 14(b−1)
3 + 4. We have

n = 7k + 3 ≥ 14(b− 1)
3

+ 4.

Using mod 7 one can easily show that actually

n = 7k + 3 ≥ 14(b− 1)
3

+ 10.

The lower bound on n′ follows.

5. If n ≡ 4 (mod 7) then the new state has b′ = b − 2 ≡ 2 (mod 3) and n′ ≡ 2 (mod 7). Player II

wins so long as n′ = n− 2 ≥ 14(b′−2)
3 + 10 = 14(b−4)

3 + 10. We have

n = 7k + 4 ≥ 14(b− 1)
3

+ 4 =
14(b− 4) + 14× 3

3
+ 4 =

14(b− 4)
3

+ 18

Hence clearly

n′ = n− 2 ≥ 14(b− 4)
3

+ 16 ≥ 14(b− 4)
3

+ 10.
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The lower bound on n′ follows.

6. If n ≡ 5 (mod 7) then the new state has b′ = b − 1 ≡ 0 (mod 3) and n′ = n − 2 ≡ 3 (mod 7).

Since b′ ≡ 0 (mod 3), Player I wins.

7. If n ≡ 6 (mod 7) then the new state has b′ ≡ b ≡ 1 (mod 3) and n′ ≡ 4 (mod 7). Player II wins

so long as n′ = n− 2 ≥ 14(b−1)
3 + 4. We have

n = 7k + 6 ≥ 14(b− 1)
3

+ 4.

Using mod 7 we one can easily show that actually n = 7k + 6 ≥ 14(b−1)
3 + 6.

The lower bounds on n′ follows.

Case 2: b ≡ 2 (mod 3). This case is similar to Case 1 (and all its subcases) above.

6.6 What happens when d1 = d2 < f(n)?

The following theorems have proofs similar in spirit to that of Theorem 6.5 and 6.7 hence we omit the

proofs.

Theorem 6.8 Let n ≥ 1 and the game is in state (n, f(n) − 1, f(n) − 1). Player I wins iff n ≡ 0, 2, 5

(mod 7).

Theorem 6.9 Let b ≥ 0. Let n be such that f(n) − b ≥ 0. Assume the game starts in state (n, f(n) −

b, f(n)− b).

1. If b ≡ 0 (mod 3) then

• if n ≤ 14(b−1)
3 + 11 or n ≡ 1, 3, 4, 6 (mod 7) then Player I wins;

• if n ≥ 14(b−1)
3 + 12 and n ≡ 0, 2, 5 (mod 7) then Player II wins.
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2. If b ≡ 1 (mod 3) then

• if n ≤ 14(b−1)
3 + 5 or n ≡ 0, 2, 5 (mod 7) then Player I wins;

• if n ≥ 14(b−1)
3 + 6 and n ≡ 1, 3, 4, 6 (mod 7) then Player II wins.

3. If b ≡ 2 (mod 3) then Player II wins.

6.7 The Complete Theorem

Theorem 6.10 Let n, d1, d2 ≥ 0.

1. If d1, d2 ≥ f(n) then Player I wins iff n ≡ 1, 3, 4, 5, 6 (mod 7).

2. If d3−i < f(n) ≤ di then Player i wins.

3. If d2 < d1 − 1, f(n) then Player I wins.

4. If d1 < d2 then Player II wins.

5. Let b ≥ 0. Let n be such that f(n)− b− 1 ≥ 0. Assume the game starts in state (n, f(n)− b, f(n)−

b− 1).

(a) If b ≡ 0 (mod 3) then Player I wins.

(b) If b ≡ 1 (mod 3) then

• if n ≤ 14(b−1)
3 + 3 or n ≡ 0, 2, 5 (mod 7) then Player I wins;

• if n ≥ 14(b−1)
3 + 4 and n ≡ 1, 3, 4, 6 (mod 7) then Player II wins.

(c) If b ≡ 2 (mod 3) then

• if n ≤ 14(b−2)
3 + 9 or n ≡ 1, 3, 4, 6 (mod 7) then Player I wins;

• if n ≥ 14(b−2)
3 + 10 and n ≡ 0, 2, 5 (mod 7) then Player II wins.

6. Let b ≥ 0. Let n be such that f(n)− b ≥ 0. Assume the game starts in state (n, f(n)− b, f(n)− b).

(a) If b ≡ 0 (mod 3) then
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• if n ≤ 14(b−1)
3 + 11 or n ≡ 1, 3, 4, 6 (mod 7) then Player I wins;

• if n ≥ 14(b−1)
3 + 12 and n ≡ 0, 2, 5 (mod 7) then Player II wins.

(b) If b ≡ 1 (mod 3) then

• if n ≤ 14(b−1)
3 + 5 or n ≡ 0, 2, 5 (mod 7) then Player I wins;

• if n ≥ 14(b−1)
3 + 6 and n ≡ 1, 3, 4, 6 (mod 7) then Player II wins.

(c) If b ≡ 2 (mod 3) then Player II wins.

7 Our Conjecture

Def 7.1 Let N be a NIM game. fN (x) is the least d such that

• If Player I wins (n, UF, UF ) then he wins (n; d, UF ).

• If Player II wins (n, UF, UF ) then he wins (n;UF, d).

The following conjecture is true for all of the NIM games discussed in the first section of this paper.

Conjecture: Let N be a NIM game. Let b1, . . . , bL,M such that Player II wins N iff n ≡ bi (mod M).

Then, for all 0 ≤ i ≤ M − 1,

• f(i) ≤ M − L− 1.

• For all k ≥ 0, for all 0 ≤ i ≤ M − 1, f(Mk + i) = (M − L)k + f(i)

8 Future Directions

We are confident that we can get general theorems for NIM(1, L) and NIM(1, L − 1, L). In addition we

will prove some general theorems that will make these proofs less detailed then those in this paper. Finally,

we are confident that we can get our conjecture proved.

9 Appendix
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Standard NIM

( x , y ) = ( i n p u t (NAT) , i n p u t (NAT) )

While x>0

c o n t r o l = i n p u t ( 1 , 2 )

i f c o n t r o l == 1

( x , y ) = ( x +10 , y−1)

e l s e

i f c o n t r o l == 2

( x , y ) = ( y +17 , x−2)

9.1 Program for finding f(n)

Program Finding f(n) takes as input the takeaway set {a1, . . . , ak}, the number of stones n, and the win set

{w1, . . . , wQ}. The program produces an array f of size n where each position represents f(n).

22



Program Finding f(n)

i n p u t (a1 < · · · < ak )

i n p u t (n )

i n p u t (W )

For i = 0 t o n

i f ( i < a1 )

t h e n f(i) = 0

e l s e i f (W (i) = II )

t h e n

f o r ( j = 0 t o ak )

i f (W (i− aj) = II )

t h e n

f(i) = aj + f(i− aj)

x = aj + f(i− aj)

b r e a k

e l s e

f(i) = x
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