Interconnecting Distributed Legacy Systems: Virtual Environment

Domain Example

Donald J. Welch Jr.
dwelch@cs.umd.edu
Department of Computer Science

University of Maryland *

James M. Purtilo T

purtilo@cs.umd.edu

Institute for Advanced Computer Studies and

Department of Computer Science

University of Maryland

October 1, 1996

Abstract

As the power and utility of virtual reality environ-
ments increases, so do the potential benefits found
from combinding several such environments. But do-
ing so presents the developer with a host of difficult
distributed systems issues. This paper explores what
some of these issues are within the VE domain, relates
our successes to date in overcoming these problems by
means of various automated tools, and suggests ways

to apply our results other target domains.

1 Overview

Building distributed computer systems from ex-
isting applications requires that developers overcome
many types of problems not normally encountered

when developing new software from scratch. We are

*Lieutenant Colonel Welch is in the U.S. Army and
is studying at UMCP through the Army’s advanced civil

schooling program.

TThis research was funded by Office of Naval Research
contract number N000149410320

intensely interested in finding methods and support
tools that will lower the cost of building with legacy
systems, while at the same time improving the qual-
ity any resulting products. Our approach in this re-
search has been to focus on a variety of special do-
mains, wherein issues for dealing with legacy systems
can be examined in depth, with the intent of abstract-

ing these lessons later.

One of these special domains under consideration
is that of building virtual environments (VEs). The
problems encountered in building VEs are not at all
foreign to the distributed computer system developer,
but we have found they may be solved with less effort
by applying some domain-specific software engineering
techniques. The purpose of this paper is to illustrate
what we are developing to help with the interconnec-
tion of legacy VEs, as well as to relate our experi-
ences to the more issues encountered while building
general distributed applications. This paper discusses
requirements for tools that support interconnection of
virtual environments, and will highlight the system
issues such as mixing different communication proto-
cols, distributed event generation, heterogeneous ar-

chitecture and dynamic application structure.

The IVE Domain For our purposes VEs which
include virtual reality, simulation, and telepresence
are interactive systems that provide 3D-graphics, and
possibly other output to the user. Interconnected Vir-
tual Environments (IVEs) are multi-user distributed
virtual environments. The key factor that differenti-
ates IVEs from the rest of the distributed VEs is that
they are made up of legacy VEs that may not have
been designed to interact with each other. The sepa-
rate VEs of an IVE do work together in a cooperative
environment, but the world they represent is tailored
to their individual needs and requires mapping to the
rest of the IVE. Besides looking at reality differently,
these legacy VEs will not necessarily be written with
the same programming language, run on the same op-
erating system or hardware, use similar design archi-
tecture, or use the same interprocess communication
techniques. The component VEs may themselves be
distributed or even be IVEs which increases the com-

plexity of the interconnection.

Research in distributed virtual environments has
been mostly confined to multi-user virtual environ-
ments built from scratch to work together or distribut-
ing the processing of VE tasks to improve perfor-
mance. The EM toolkit and DIVE environment are
two of the best known systems that provide an en-
vironment for building the entire distributed VE.[13]
[4] Virtual Design is another complete VE software
engineering environment that also focuses on using a
wide array of input data and hardware.[1] DGPSE+ is
an experimental environment supporting distributed
graphics support.[9] None of these systems supports
the reuse of legacy VEs.

Three Part Solution Our approach is a three-
pronged attack on the problem. We first define an
abstract interconnection target for all the VEs. This
layer of abstraction shields the developer from the de-

tails of interconnection and allows each VE to commu-

nicate with only one entity — the runtime. The de-
veloper can think in terms of functional requirements
for the message transport, not protocols. The details
of melding disparate architectures, coordinate systems
and programming languages is handled by the run-
time. Using an interconnection runtime abstraction as
a target allows us to capture the development process
with an interconnection generator and description lan-
guage, the second prong of our attack. Finally, to pro-
vide a proper framework for the application of these
two tools we have developed a tailored methodology
that focuses the developers on the salient characteris-
tics of the IVE and allows them to exploit the power

of the environment.

Example Problem VEs offer a chance to prove
our techniques work on sticky domain specific prob-
lems without departing from general purpose inter-
connection. To illustrate what is required to intercon-
nect virtual environments consider this example. The
U. S. Army wants to take existing VR training de-
vices and integrate them into a battlefield simulator
that allows small units to practice against each other
without the expense of a field training exercise. One
training device is for a TOW, a wire-guided anti-tank
missile. This simulator’s primary mission is training
the gunners; no maneuver is involved. The other de-
vices are the simulators for M1A1 Abrams tanks. The
goal is to quickly build an IVE in which the TOW
gunners can practice against the the tanks as they
take evasive action. The tanks have a complicated vir-
tual world which includes the terrain they maneuver
over, and other friendly and enemy armored vehicles.
The TOW’s view of the terrain must generally coincide
with the tank’s, but is much simpler because they do
not maneuver. These two types of VEs share a similar

virtual world, but their software is very different.

This IVE showcases a raft of problems that the de-

velopers must solve to meet the user’s requirements.

Each system uses different event names and requires
different message content to react to each event. The
coordinate systems used are different: the tanks use
geographic coordinate systems while the TOWSs use
polar coordinates in meters and radians with the origin
at the TOW location. Even though each VE appears
to use clock time, the IVE requires that the TOW
appear in different locations along the tank’s axis of
advance to maximize training opportunities. Finally,
the tank simulators must now coordinate with each
other to avoid collisions and contention over moving

obstacles in the virtual world.

This presents the programmer of an IVE with the
need to integrate disparate VE software into a coher-
ent distributed virtual environment. The legacy VEs
that make up the IVE will have events, states and ob-
jects that the interconnection software must map ap-
propriately. In addition, IVEs require such standard
interconnection services as, dynamic reconfiguration,

message passing, data storage and data consistency.

The rest of this paper is structured as follows: we
lay out the requirements for interconnecting virtual
environments in Section 2. We have organized these
requirements into a runtime interconnection abstrac-
tion (Section 2.1), an interconnection generator (Sec-
tion 2.2) and a methodology to put the tools in con-
text (Section 2.3). A discussion of our implementa-
tion of the software engineering environment is con-
tained in Section 3, divided into three sub-sections:
the runtime interconnection software Isthmus (Section
3.1), the interconnection generator Zubin and descrip-
tion language VIDL (Section 3.2), and our tailored
methodology (Section 3.3). We conclude our findings
in Section 4 and discusses where we are headed with

this research.

2 Software Engineering Intercon-
nected Virtual Environments
Requirements

To specialize modern software engineering tech-
niques for IVEs we must first understand the require-
ments for those techniques in this domain. Before ex-
ploring the approach of combining a runtime abstrac-
tion, interconnection generator, and tailored method-
ology to solve this problem, we will describe the re-

quirements of these tools.

2.1 Runtime Interconnection Abstract

Abstractions have proved valuable in making inter-
connections easier to build.[11] The interconnection of
virtual environments can be quite complex, because
the legacy VEs may run on specialized hardware using
different operating systems. They may also be writ-
ten in different programming languages that represent
data differently. IVEs require a myriad of communi-
cation types: fast but not necessarily reliable, reliable,
uni-cast, multicast, and broadcast. The runtime inter-
connection environment serves as an abstract decou-
pling agent. Hiding the details behind an abstraction
improves quality and productivity. Heterogeneity in
language and architecture is allowed because all com-
munication is with the runtime environment, not other
component VEs. It also makes it easier to take advan-
tage of technology changes such as new communica-

tion protocols when maintaining the system.

The general services that you would expect to find

in any interconnection domain include these:

¢ Dynamic Reconfiguration An IVE must have the
freedom to join and leave the virtual world at appro-
priate times, and to have different mixes of players
without changing the software. The structure of the
application cannot be coded into the interconnection

software.

e Objectbase The interconnection must have an ob-
jectbase that provides non-persistent storage, and in-
sures data coherency among the component VEs. It
must be customizable to meet the requirements of the
specific IVE, and must support completely transpar-
ent grouping of virtual objects. [10]

e Interfaces Since the legacy VEs will usually be writ-
ten in different programming languages and run on
different systems the interconnection software must
include interfaces that minimize changes to the legacy
software. For performance and ease of integration the
interface module must be written in the same pro-
gramming language as the legacy VE and not impose

more interprocess communication overhead.

¢ High Performance The runtime must provide high
performance. Most VEs are pushing performance lim-
its already to meet response time requirements so the
runtime cannot induce a system bottleneck. At the
very least the interconnection software must be flex-
ible enough to distribute the load appropriately be-

tween the component VEs and the runtime.

¢ Distributed Implementation In addition, large
IVEs may require that the runtime environment it-
self be distributed to meet performance requirements.
This must be an option when implementing the ab-

straction.

¢ Event Name Mapping Events in the legacy VEs
will not be named the same, and not all events will
correspond perfectly with other events in the rest of

the VEs. The runtime must handle event mapping.

When focusing on the IVE domain, more specific re-
quirements for the runtime abstraction manifest them-

selves:

e Partitioning Large IVEs require the IVE to be par-
titioned to minimize unnecessary message traffic. In
our example the IVE would be partitioned spatially.
Vehicles that are more then 10 kilometers apart in the

virtual world would not need to be kept up-to-date on

each other’s location.[6]

e Multiple Protocols The runtime interconnection
software must provide very fast — usually unreliable
— messages along with reliable messaging. A mes-
sage with a location update would be sent using a
fast protocol. If the message was lost, the next up-
date would follow quickly and not be disastrous to
the system. A message announcing a “kill” on a tank
would, have to be sent reliably, regardless of speed.
One component VE thinking that a tank was alive,
while another believed the tank had been destroyed
would be disastrous for the IVE.[7]

e Temporal Mapping Both system performance and
design can induce anachronisms or time errors. The
runtime interconnection software must provide mech-
anisms to minimize these effects or eliminate these
errors. Since our example IVE is used for two differ-
ent purposes, simulation time will not always match.
During one lengthy exercise for the tanks, numerous
TOW gunners could be trained by “teleporting” the
TOW around the virtual battlefield.[3]

¢ Synthetic Events Some events may be created in
the interconnection that affect the IVE. These events
must be recognized and handled. A simple example
is a collision between two tanks. The tank simulators
were designed so that the only tank under human con-
trol was the simulator itself. In the IVE some of the
other tanks are under human, and therefore, unpre-
The IVE would have to detect a

collision and spawn the appropriate event and mes-

dictable control.

sages.

¢ Prioritized Messages By its nature an IVE creates
many messages. Processing these messages takes cpu
time and if enough messages build up in a VE’s queue
it may process a message too late and induce an in-
consistency. The IVE must provide a message queue
to the VEs with the most important messages first

while still maintaining causal relationships.

¢ Coordinate Translation Each component VE may

use several coordinate systems. The runtime must
translate locations so that component VEs always re-
ceive locations in coordinate systems that they can

handle.

2.2 Interconnection Generator

The interconnection generator must capture the
process of interconnecting VEs and allow the devel-
opers to reuse this process. Once the specification of
the IVE is complete and basic design decisions have
been made the interconnection generator must create

the interconnection software.

The input to the interconnection generator is an
IVE specific description language. This language must
be as non-procedural as possible. Code escapes are
unavoidable in some areas but their use must be min-
imized. The language must be closely linked to the
runtime interconnection abstraction and provide an
integration framework while allowing the developer to
focus on major functions of the interconnection by

themselves.

The requirements and therefore the specifications
will probably be both incomplete and incorrect the
first time. An cycle of analysis — specification/design
— implementation — test may be iterated many times
during the life cycle of the IVE. The description lan-
guage must support this cycle. It must create a
testable interconnection from incomplete descriptions
and create the interconnection with a minimum of

hand-coding so that most work will be captured in

the descriptions and not lost with each iteration.

2.3 Methodology

To effectively use these tools requires a tailored
methodology that discovers the necessary information
so that the developers can create the IVE specifica-
tion. This methodology then guides the use of the

Legacy VE

Legacy VE Interface Module

Application Specific Isthmus

Core Isthmus

OS/ Network

Figure 1: Layers of a Interconnected Virtual Fn-

vironment

tools and provides a framework for the IVE through-
out the rest of its life-cycle. The methodology must
take into account the unique features of connecting

legacy systems as well as the particulars of IVEs.

3 Project Overview

To develop our ideas on software engineering of vir-
tual environments (SEIVE) we built a runtime inter-
connection environment, description language and in-
terconnection generator, and developed a methodol-

ogy to guide their use.

3.1 Isthmus - Interconnection Runtime
Environment

We have developed Isthmus, a reification of the run-
time interconnection abstraction. Isthmus is inspired
by the Polylith software bus.[11] Each instantiation
of the Isthmus contains the code necessary to provide
both the general and IVE specific services. Each com-
ponent VE has its own interface module. All commu-
nication in the system is between the interface mod-
ules and the Isthmus. This double layering means that

the interaction between the legacy code and the inter-

connection software is minimal and simple (Figure 1).
The Isthmus can be thought of as a software bus much
such as a hardware bus except that the software bus
does not just pass messages, it performs a host of ser-

vices while passing the messages.

In its simplest sense when the Isthmus receives a
message from a component VE it relays the message
to all the other component VEs. The Isthmus has
its own naming convention for all events in the IVE,
therefore, the interface modules map the component

VE event name to the IVE event name.

The Isthmus must also keep track of the system
state in its objectbase. This way the Isthmus can
handle whichever storage model the component VEs
use; messages can include just changes or the complete
state. Because the message content will normally have
to be translated each time a message is sent or re-
ceived, minimizing the content is desirable because it
enhances performance. In addition to virtual objects,
global system states are also tracked in the Isthmus

objectbase.

In addition, when interconnecting legacy VEs, we
want minimum intrusion into the legacy code, there-
fore only sending changes to the system state as op-
posed to collecting a complete state prior to sending a
message better meets our needs. For these reasons a
complete system state will have to be maintained on

the Isthmus.

The Isthmus objectbase uses a simple locking
scheme to maintain data coherency in the system. If
our tank tries to move an obstacle that another tank
is already moving the Isthmus will not allow it. The
Isthmus is not sophisticated enough to handle simulta-
neous manipulation of virtual objects. This is a hard

problem with no universally accepted solution.[12] [5]

Since each component VE has its own coordinate

system, locations must be translated before they are

received by the legacy VEs. Where this translation
takes place is a performance decision. By placing
the translation burden on the Isthmus, the component
VEs are spared this interconnection overhead. How-
ever, this means that multi-casting cannot be used,
and a message must be generated and sent to each
component VE. If translation is done in the interface
module then message traffic can be reduced by us-
ing multi-casting, however, the systems running the
component VE must be able to handle this sometimes
computationally intensive load. The Isthmus can also
be built with a hybrid system, where some messages
are multi-casted and translated by the interface mod-

ules and some messages are translated by the Isthmus.

To minimize overhead, determining the legality of
changes to the system state will be done in the com-
ponent VEs. However, when legality cannot be com-
pletely determined in the component VE, it will use
synchronous messages to “ask permission.” If the sys-
tem state is legal, the Isthmus sends back a confirma-
tion message. If not, a number of options are available
to include the generation of other events. If in our ex-
ample a tank tries to go through a hill, the component
VE knows the physics and will not allow this but, if
two tanks try to move to the same location the Isth-

mus will have to handle it.

Grouping of objects is also provided by the Isth-
mus. When virtual objects are grouped either per-
manently or temporarily, that grouping is transpar-
ent to the component VEs. For example if the tank
moves its turret does too, which is also in the object-
base. Should the tank pick up a soldier all behaviors
of that tank and actions on that tank are reflected in
the state of that soldier until he dismounts the tank.
Some object groupings will impose different behavior
and attributes of the grouped objects. A tank carrying
mine-clearing equipment looks and behaves differently

from one that is not.

e e e === - - ~

Objectbase

1

|

|

|

: Translation
; \ Manager

|

|

|

I

N1
Incomming | <

Outgoing
Message
Handler

Figure 2: Dynamic Architecture View of Isthmus

and Typical Legacy VE

Figure 2 illustrates the objects and message paths
between the Isthmus and legacy VE. For simplicity
this illustrates the Isthmus when it runs on only one
system; 1t becomes a bit more complicated when the
Isthmus itself is distributed. The legacy VE may be
designed using a structured architecture and program-
ming language, but even so we find it convenient to

model all VEs in object-oriented terms.

To illustrate the workings of the Isthmus we will
look at the example of a tank simulator moving in the
virtual world. As it moves i1t sends a location update
message only to the Isthmus. The Isthmus receives
the message and checks to insure that the change in
location is legal (no collisions with other objects in the
system) and sends a confirmation message back to the
tank. It will then store the new location and deter-
mine which other component VEs must be told about
this change to the system state. Only component VEs
with objects located in the spatial area of interest must
be notified. For those, the Isthmus will translate the
coordinates to the appropriate coordinate system and
send the message using the appropriate communica-

tion protocol and priority.

3.2 Zubin and VIDL: Interconnection

Generator and Description Language

The runtime interconnection abstraction is highly
customized to fit the design of the legacy VEs and the
requirements of the IVE. The runtime and interface
modules can be built by hand, but we feel that this
process can be captured and reused by using an inter-
connection generator. The interconnection generator
i1s similar to application generators that allow reuse
of processes in domain specific applications built from
scratch. The difference is, of course, that the whole
application is not being built, but merely the software

that glues together the legacy applications. [8]

We have an experimental interconnection genera-
tor called Zubin for this domain that uses our domain
specific description language dubbed VIDL to gener-
ate the source code for the Isthmus and interface mod-
ules. Zubin uses the Isthmus core runtime and adds
customized services to it as needed. It also gener-
ates the interface modules in the native programming
language for the component VE. The design of VIDL
allows developers to concentrate on the different func-
tions of the IVE independently while the description
language and Zubin provide the integration framework

much like CDSL does for more general applications.[2]

VIDL is designed to create readable source code.
We acknowledge that after Zubin is run, the devel-
oper will have to look at the generated source code
and possible modify it. Having understandable source
code will be very useful when deciding where in the
legacy VE to place the calls to the interface mod-
ule. Therefore the software engineer can declare user-
defined constants in the description language that will
end up in the source code. VIDL also supports two
types of comments: description comments and source
code comments. The source code comments are placed

in the generated source code by Zubin.

The VIDL description gives a mostly non-

procedural description of the software glue that holds
the IVE together. It has sections for declaring the
configuration of the IVE. There are some places in the
IVE description where design decisions are recorded.
It also contains places where code escapes can be in-
serted in the description. The reason we departed
from a purely non-procedural specification to a mesh
of specification and design was we felt the need to
support iteration. The first specification of the IVE
can contain very little design. As a prototype 1s built
and information is discovered, that information can be
captured in the VIDL and the next iteration can be
built and tested.

Interconnection and configuration information for
the Isthmus are described in the Interconnection Sec-
tion of the description. Whether or not the Isthmus is
distributed, where it resides is described here. In ad-
dition, the initialization information required for com-

ponent VEs to join the IVE is also related here.

The Component VEs Section contains information
about the different types of component VEs that may
participate in an IVE session. Much of the informa-
tion here will go into the generation of the interface

modules.

Partitioning is described in the Areas of Interest
Section. Areas of Interest may be declared based on
spatial constraints (the most popular), functional des-
ignations, or temporal constraints. This partitioning
— to reduce message traffic — can be handled by us-
ing multi-casting which is useful in large applications,

or by the Isthmus selectively sending messages.

Since many different coordinate systems will be in
use in the IVE, the translation algorithms to convert
coordinates between each coordinate system in use are
described in the Translation Section. The algorithms
are defined as parameterized code escapes because the
translation of coordinate systems is not always a single

mathematical formula. The spherical earth does not

transfer well to a flat map, therefore converting geo-
graphic coordinates requires conditionals and lookup

tables.

The Ewents Section contains descriptions of the
functionality of the IVE. Each event in the IVE has
a list of messages that are sent or received based on
the event. The messages can be synchronous, which
require confirmation from Isthmus or asynchronous.
The developer also designates whether or not a mes-
sage 1s to be filtered based on areas of interest and the
content of the message is defined. Temporal mapping
i1s accomplished here by using the ADJUST declara-
tion. It is another code escape, because by its nature
temporal mapping can be very complicated and ap-
plication dependent. Before the message is sent the
commands in the ADJUST algorithm are executed.
Those commands may include the generation of addi-
tional events. The use of these recursive events gives
the engineer great flexibility in handling this onerous

problem.

The example event declaration (Figure 3) shows the
messages that are passed to relay the information that
a tank has moved. The tank sends a message to the
Isthmus requesting a move to a location using its geo-
graphic coordinates.! If this is a legal move the Isth-
mus will send a message to all TOWs that are within
the same spatial area of interest. This message will not
require confirmation and will be in the TOWSs polar

coordinate system.

The Virtual Objects Section describes the objects of
the virtual world that can be manipulated by any of
the component VEs. Objects are described using in-
heritance which provides less repetitive descriptions,
but more importantly allows more intuitive descrip-

tions of things such as collisions. In the tank descrip-

!The Military Grid Reference System (MGRS) geo-
graphic coordinate system allows location specification

down to one meter with two five-digit coordinates.

evLocation :
MESSAGE SYNCHRONOUS status;
FROM enTank;
PRIORITY REGULAR;
RELIABILITY RELIABLE;
CONTENT (INT vehicleld,
STRING area,
INT x_coord, INT y_coord,
FLOAT orientation);

MESSAGE ASYNCHRONOUS;
TO enTow SPATIAL;
PRIORITY REGULAR;
RELIABILITY UNRELIABLE;
CONTENT (INT vehicleld,
FLOAT direction,
INT distance);

Figure 3: Example Event Description

tion below we are able to say that two vehicles can’t
occupy the same space, as opposed to exhaustively
listing all the objects in the simulation that can’t oc-
cupy the same space. The objects are categorized as
active (they can manipulate other objects), inactive
(they can be manipulated by other objects) or environ-
mental (they cannot be manipulated by other objects).
Environmental objects will not normally be listed; in-
teraction with them will be managed in the compo-
nent VEs. The attributes of the objects are listed
along with the other objects that it can be grouped
with. When listing the potential grouping objects, the
attributes that change when the objects are grouped
is delineated. The coherency rules are declared here
along with a list of events that are fired when a co-

herency rule is violated.

A simple example of the tank virtual object de-
scription is shown in Figure 4. The COORDINATE

SYSTEM declaration indicates that the locations of
all objects will be stored using the csM GRS coordinate
system?. The HOME VFE designates the enTank com-
ponent VE as the controlling VE for the tank. The
attributes that are important to the IVE are listed
and in this case it is just the size of the tank itself.
There are numerous default attributes generated such
as a unique identifier that do not have to be declared
here. The HOLDS declaration tells the software that
the turret object is always grouped with a tank ob-
ject. The coherency rules are declared in a C+4 code
escape and the collision event that is fired in the case

of a coherency violation is listed.

States that are part of the IVE but don’t belong
to a virtual object are declared in the Global States
Section. An example of global states are things such
as weather or lighting conditions. Simulation time is
another global state. If a central clock is to be kept

then it 1s declared here.

The example global state declarations show one
simulation clock declared that starts at 12:00. It ad-
vances with clock time by default. Two global condi-
tions are declared with their possible states and the

default state.

3.3 SEIVE Methodology

Our tailored methodology provides the framework
for the tools and runtime environment. Because of
the nature of IVEs this methodology differs from stan-
dard software engineering. The division into phases is
more functional than chronological, although there is
a causal ordering for some of the steps. Here is a quick
overview of the phases (Figure 6), however the details
of the analysis and the products of each phase are the

topic of another paper.

2This coordinate system is described in the translation

section.

COORDINATE SYSTEM : csMGRS;
OBJECT oVeh :
ATTRIBUTES :

INT x_coord;

INT y_coord;

OBJECT oTank ACTIVE INHERITS FROM oVeh :
HOME VE: enTank;
ATTRIBUTES :
INT size;
HOLDS oTurret;
COHERENCY RULES :
{if (($x_coord + $size) >=
($all.oVeh.x_coord - $all.oVeh.size)
&& ($x_coord - $size) <=
($all.oVeh.x_coord + $all.oVeh.size)
&& (y_coord + size) >=
($all.oVeh.y_coord - $all.oVeh.size)
&& (y_coord - size) <=
($all.oVeh.y_coord + $all.oVeh.size))
return FALSE;
} VIOLATION evCollision;

Figure 4: Example Virtual Object Description

TIME : tCurrentTime = 12:00;

STATE : esTimeOfDay (day, twilight,
night) = day,

esWeather (clear, rain, snow,

fog) = clear;

Figure 5: Example Environmental State Descrip-

tion

IVE Requirements |
Definition

Products Products
I T
Specification/
Design

Isthmus
Runtime

Interconnection
Source Code

()«

‘ IVE Source Code ‘

v

Test

Legacy VE
Source Code

‘Data‘

IVE

Figure 6: Flow Diagram for IVE Methodology

1. Legacy System Analysis This is the analysis of
the legacy virtual environments. The architecture of
the legacy software as well as the function of the VE
must be understood. Some of the products of this
phase are: a list of behaviors of the VE, a list of
environmental states, a table of virtual objects and
their grouping and coherency rules, and a table of

events.

2. IVE Requirements Definition During this phase
the results of Legacy System Analysis are synthesized
into IVE wide products. The other step of this phase
is to discover and document the desired characteristics
of the IVE. This is much like the requirements anal-
ysis of new development. Parts of this phase rely on
Legacy System Analysis, however some of that phase
can’t be properly done without knowledge of what the
user wants the final IVE to do.

3. Specification/Design The products of the Re-

quirements Definition phase are used to write the

VIDL description of the IVE. Along with specifying
what the system should do some design decisions are

made during this phase.

4. Implementation In this phase the Zubin is run,
and the resulting interface source code is manually

linked to the legacy VE.

5. Test There are assessments of the software that
must come from the test phase: first does the IVE
meet the specifications, second does the IVE meet
the requirements, finally does the IVE do what the
user wants, which may not have been captured by the

requirements.

When building an IVE the focus can be towards
interconnecting the existing VEs so that they perform
basically the same functions, or to use existing VEs to
build a system with each VE in the IVE more capable
than it was. Our discussion has been more involved
with the former, but this methodology supports the
latter too, freeing the developer to deal with the VEs

themselves.

4 Conclusion and Future Direction

The combination of a tailored methodology, inter-
connection generator and interconnection runtime ap-
Our

experience to date shows that it requires less effort

pears to hold promise for developers of IVEs.

than interconnecting by hand, while providing higher
quality. The Isthmus based architecture simplifies pro-
gramming the interface to the point where we can
automate the process of building the interconnection
software. Automating this process allows the devel-
oper to focus on the larger conceptual problems in-
volved in creating the IVE. Our continuing experi-
ments in the IVE domain serve to refine the methodol-
ogy, description language VIDL, interconnection gen-
erator Zubin and interconnection runtime Isthmus. In

our on-going research, we anticipate exploring the use

11

of these tools to support interconnection in other chal-
lenging domains, with the ultimate intent of contrast-

ing and generalizing the techniques.

References

[1] Peter Astheimer, Wolfgang Felger, and Stefan
Miller. Virtual Design: A generic VR System for
Industrial Applications. Computers and Graphics,
17(6):671-677, November/December 1993.

Cooper-
In Pro-

ceedings of the International Conference on Dis-

[2] Flavio DePaoli and Francesco Tisato.

ative systems configuration in CSDL.

trubuted Computing Systems, pages 304-311, Poz-
nan, Poland, June 21-24 1994.

[3] James W. Duff, James Purtilo, Michael Capps,
and David Stotts.

tributed simulation environments.

Software engineering of dis-
In Proceed-
wngs of the Conference on Configurable Distributed
Systems, pages 202-209, Annapolis, Maryland,
1996. IEEE Computer Society Technical Com-

mitte on Distributed Processing.

[4] Mark Green. Environment Manager. Technical
report, Department of Computing Science, Uni-

versity of Alberta, February 1994.

[6] Mark Green. Shared Virtual Environments: The
Implications for Tool Builders.

Graphics, 20(2):185-189, March/April 1996.

Computers and

[6] Michael R. Macedonia, Michael J. Zyda, David R.
Pratt, Donald P. Brutzman, and Paul T. Barham.
Exploiting reality with multicast groups: A net-
work architecture for large-scale virtual environ-
ments. In Proceedings of the IEEE Virtual Real-
ity Annual International Symposium, pages 2-10,
Research Triangle Park, NC, March 11-15 1995.

[7] Micheal Macedonia and Micheal Zyda. A taxon-

omy for networked virtual environments. In Pro-

ceedings of the 1995 workshop on Networked Re-
alities, Boston, MA, October 26-28 1995.

[8] Hafedh Mili, Fatma Mili, and Ali Mili. Reusing
Software: Issues and Research Directions. IEEE
Transactions on Software Engineering, 21(6):528—
561, June 1995.

[9] Zhigeng Pan, Jiaoying Shi, and Mingmin Zhang.
Distributed Graphics Support for Virtual Envi-
ronments. Computers and Graphics, 20(2):191-
197, March/April 1996.

[10] Przemyslaw Pardyak and Brian N. Bershad. A
group structuring mechanism for a distributed
object-oriented language. In Proceedings of the In-
ternational Conference on Distrubuted Computing
Systems, pages 312-319, Poznan, Poland, June
21-24 1994.

[11] James M. Purtilo. The POLYLITH Software Bus.
ACM Transactions on Programming Languages,

16:151-174, January 1994.

[12] Gurminder Singh, Luis Serra, Willie Png, Audrey
Wong, and Hern Ng. BrickNet: Sharing Object
Behavoirs on the Net. In Proceedings of the IEEE
Virtual Reality Annual International Symposium,
pages 19-25, Research Triangle Park, NC, March
11-15 1995.

[13] Qunjie Wang, Mark Green, and Chris Shaw. EM
- An Environment Manager For Building Net-
worked Virtual Environments. In Proceedings of
the IEEE Virtual Reality Annual International
Symposium, pages 11-18, Research Triangle Park,
NC, March 11-15 1995.

12

