
Interconnecting Distributed Legacy Systems: Virtual EnvironmentDomain ExampleDonald J. Welch Jr.dwelch@cs.umd.eduDepartment of Computer ScienceUniversity of Maryland � James M. Purtilo ypurtilo@cs.umd.eduInstitute for Advanced Computer Studies andDepartment of Computer ScienceUniversity of MarylandOctober 1, 1996AbstractAs the power and utility of virtual reality environ-ments increases, so do the potential bene�ts foundfrom combinding several such environments. But do-ing so presents the developer with a host of di�cultdistributed systems issues. This paper explores whatsome of these issues are within the VE domain, relatesour successes to date in overcoming these problems bymeans of various automated tools, and suggests waysto apply our results other target domains.1 OverviewBuilding distributed computer systems from ex-isting applications requires that developers overcomemany types of problems not normally encounteredwhen developing new software from scratch. We are�Lieutenant Colonel Welch is in the U.S. Army andis studying at UMCP through the Army's advanced civilschooling program.yThis research was funded by O�ce of Naval Researchcontract number N000149410320

intensely interested in �nding methods and supporttools that will lower the cost of building with legacysystems, while at the same time improving the qual-ity any resulting products. Our approach in this re-search has been to focus on a variety of special do-mains, wherein issues for dealing with legacy systemscan be examined in depth, with the intent of abstract-ing these lessons later.One of these special domains under considerationis that of building virtual environments (VEs). Theproblems encountered in building VEs are not at allforeign to the distributed computer system developer,but we have found they may be solved with less e�ortby applying some domain-speci�c software engineeringtechniques. The purpose of this paper is to illustratewhat we are developing to help with the interconnec-tion of legacy VEs, as well as to relate our experi-ences to the more issues encountered while buildinggeneral distributed applications. This paper discussesrequirements for tools that support interconnection ofvirtual environments, and will highlight the systemissues such as mixing di�erent communication proto-cols, distributed event generation, heterogeneous ar-chitecture and dynamic application structure.1

The IVE Domain For our purposes VEs whichinclude virtual reality, simulation, and telepresenceare interactive systems that provide 3D-graphics, andpossibly other output to the user. Interconnected Vir-tual Environments (IVEs) are multi-user distributedvirtual environments. The key factor that di�erenti-ates IVEs from the rest of the distributed VEs is thatthey are made up of legacy VEs that may not havebeen designed to interact with each other. The sepa-rate VEs of an IVE do work together in a cooperativeenvironment, but the world they represent is tailoredto their individual needs and requires mapping to therest of the IVE. Besides looking at reality di�erently,these legacy VEs will not necessarily be written withthe same programming language, run on the same op-erating system or hardware, use similar design archi-tecture, or use the same interprocess communicationtechniques. The component VEs may themselves bedistributed or even be IVEs which increases the com-plexity of the interconnection.Research in distributed virtual environments hasbeen mostly con�ned to multi-user virtual environ-ments built from scratch to work together or distribut-ing the processing of VE tasks to improve perfor-mance. The EM toolkit and DIVE environment aretwo of the best known systems that provide an en-vironment for building the entire distributed VE.[13][4] Virtual Design is another complete VE softwareengineering environment that also focuses on using awide array of input data and hardware.[1] DGPSE+ isan experimental environment supporting distributedgraphics support.[9] None of these systems supportsthe reuse of legacy VEs.Three Part Solution Our approach is a three-pronged attack on the problem. We �rst de�ne anabstract interconnection target for all the VEs. Thislayer of abstraction shields the developer from the de-tails of interconnection and allows each VE to commu-

nicate with only one entity | the runtime. The de-veloper can think in terms of functional requirementsfor the message transport, not protocols. The detailsof melding disparate architectures, coordinate systemsand programming languages is handled by the run-time. Using an interconnection runtime abstraction asa target allows us to capture the development processwith an interconnection generator and description lan-guage, the second prong of our attack. Finally, to pro-vide a proper framework for the application of thesetwo tools we have developed a tailored methodologythat focuses the developers on the salient characteris-tics of the IVE and allows them to exploit the powerof the environment.Example Problem VEs o�er a chance to proveour techniques work on sticky domain speci�c prob-lems without departing from general purpose inter-connection. To illustrate what is required to intercon-nect virtual environments consider this example. TheU. S. Army wants to take existing VR training de-vices and integrate them into a battle�eld simulatorthat allows small units to practice against each otherwithout the expense of a �eld training exercise. Onetraining device is for a TOW, a wire-guided anti-tankmissile. This simulator's primary mission is trainingthe gunners; no maneuver is involved. The other de-vices are the simulators for M1A1 Abrams tanks. Thegoal is to quickly build an IVE in which the TOWgunners can practice against the the tanks as theytake evasive action. The tanks have a complicated vir-tual world which includes the terrain they maneuverover, and other friendly and enemy armored vehicles.The TOW's view of the terrain must generally coincidewith the tank's, but is much simpler because they donot maneuver. These two types of VEs share a similarvirtual world, but their software is very di�erent.This IVE showcases a raft of problems that the de-velopers must solve to meet the user's requirements.2

Each system uses di�erent event names and requiresdi�erent message content to react to each event. Thecoordinate systems used are di�erent: the tanks usegeographic coordinate systems while the TOWs usepolar coordinates in meters and radians with the originat the TOW location. Even though each VE appearsto use clock time, the IVE requires that the TOWappear in di�erent locations along the tank's axis ofadvance to maximize training opportunities. Finally,the tank simulators must now coordinate with eachother to avoid collisions and contention over movingobstacles in the virtual world.This presents the programmer of an IVE with theneed to integrate disparate VE software into a coher-ent distributed virtual environment. The legacy VEsthat make up the IVE will have events, states and ob-jects that the interconnection software must map ap-propriately. In addition, IVEs require such standardinterconnection services as, dynamic recon�guration,message passing, data storage and data consistency.The rest of this paper is structured as follows: welay out the requirements for interconnecting virtualenvironments in Section 2. We have organized theserequirements into a runtime interconnection abstrac-tion (Section 2.1), an interconnection generator (Sec-tion 2.2) and a methodology to put the tools in con-text (Section 2.3). A discussion of our implementa-tion of the software engineering environment is con-tained in Section 3, divided into three sub-sections:the runtime interconnection software Isthmus (Section3.1), the interconnection generator Zubin and descrip-tion language VIDL (Section 3.2), and our tailoredmethodology (Section 3.3). We conclude our �ndingsin Section 4 and discusses where we are headed withthis research.

2 Software Engineering Intercon-nected Virtual EnvironmentsRequirementsTo specialize modern software engineering tech-niques for IVEs we must �rst understand the require-ments for those techniques in this domain. Before ex-ploring the approach of combining a runtime abstrac-tion, interconnection generator, and tailored method-ology to solve this problem, we will describe the re-quirements of these tools.2.1 Runtime Interconnection AbstractAbstractions have proved valuable in making inter-connections easier to build.[11] The interconnection ofvirtual environments can be quite complex, becausethe legacy VEs may run on specialized hardware usingdi�erent operating systems. They may also be writ-ten in di�erent programming languages that representdata di�erently. IVEs require a myriad of communi-cation types: fast but not necessarily reliable, reliable,uni-cast, multicast, and broadcast. The runtime inter-connection environment serves as an abstract decou-pling agent. Hiding the details behind an abstractionimproves quality and productivity. Heterogeneity inlanguage and architecture is allowed because all com-munication is with the runtime environment, not othercomponent VEs. It also makes it easier to take advan-tage of technology changes such as new communica-tion protocols when maintaining the system.The general services that you would expect to �ndin any interconnection domain include these:� Dynamic Recon�guration An IVE must have thefreedom to join and leave the virtual world at appro-priate times, and to have di�erent mixes of playerswithout changing the software. The structure of theapplication cannot be coded into the interconnectionsoftware.3

� Objectbase The interconnection must have an ob-jectbase that provides non-persistent storage, and in-sures data coherency among the component VEs. Itmust be customizable to meet the requirements of thespeci�c IVE, and must support completely transpar-ent grouping of virtual objects. [10]� Interfaces Since the legacy VEs will usually be writ-ten in di�erent programming languages and run ondi�erent systems the interconnection software mustinclude interfaces that minimize changes to the legacysoftware. For performance and ease of integration theinterface module must be written in the same pro-gramming language as the legacy VE and not imposemore interprocess communication overhead.�High Performance The runtime must provide highperformance. Most VEs are pushing performance lim-its already to meet response time requirements so theruntime cannot induce a system bottleneck. At thevery least the interconnection software must be
ex-ible enough to distribute the load appropriately be-tween the component VEs and the runtime.�Distributed Implementation In addition, largeIVEs may require that the runtime environment it-self be distributed to meet performance requirements.This must be an option when implementing the ab-straction.� Event Name Mapping Events in the legacy VEswill not be named the same, and not all events willcorrespond perfectly with other events in the rest ofthe VEs. The runtime must handle event mapping.When focusing on the IVE domain, more speci�c re-quirements for the runtime abstraction manifest them-selves:� Partitioning Large IVEs require the IVE to be par-titioned to minimize unnecessary message tra�c. Inour example the IVE would be partitioned spatially.Vehicles that are more then 10 kilometers apart in thevirtual world would not need to be kept up-to-date on

each other's location.[6]�Multiple Protocols The runtime interconnectionsoftware must provide very fast | usually unreliable| messages along with reliable messaging. A mes-sage with a location update would be sent using afast protocol. If the message was lost, the next up-date would follow quickly and not be disastrous tothe system. A message announcing a \kill" on a tankwould, have to be sent reliably, regardless of speed.One component VE thinking that a tank was alive,while another believed the tank had been destroyedwould be disastrous for the IVE.[7]� Temporal Mapping Both system performance anddesign can induce anachronisms or time errors. Theruntime interconnection software must provide mech-anisms to minimize these e�ects or eliminate theseerrors. Since our example IVE is used for two di�er-ent purposes, simulation time will not always match.During one lengthy exercise for the tanks, numerousTOW gunners could be trained by \teleporting" theTOW around the virtual battle�eld.[3]� Synthetic Events Some events may be created inthe interconnection that a�ect the IVE. These eventsmust be recognized and handled. A simple exampleis a collision between two tanks. The tank simulatorswere designed so that the only tank under human con-trol was the simulator itself. In the IVE some of theother tanks are under human, and therefore, unpre-dictable control. The IVE would have to detect acollision and spawn the appropriate event and mes-sages.� PrioritizedMessages By its nature an IVE createsmany messages. Processing these messages takes cputime and if enough messages build up in a VE's queueit may process a message too late and induce an in-consistency. The IVE must provide a message queueto the VEs with the most important messages �rstwhile still maintaining causal relationships.� Coordinate Translation Each component VE may4

use several coordinate systems. The runtime musttranslate locations so that component VEs always re-ceive locations in coordinate systems that they canhandle.2.2 Interconnection GeneratorThe interconnection generator must capture theprocess of interconnecting VEs and allow the devel-opers to reuse this process. Once the speci�cation ofthe IVE is complete and basic design decisions havebeen made the interconnection generator must createthe interconnection software.The input to the interconnection generator is anIVE speci�c description language. This language mustbe as non-procedural as possible. Code escapes areunavoidable in some areas but their use must be min-imized. The language must be closely linked to theruntime interconnection abstraction and provide anintegration framework while allowing the developer tofocus on major functions of the interconnection bythemselves.The requirements and therefore the speci�cationswill probably be both incomplete and incorrect the�rst time. An cycle of analysis { speci�cation/design{ implementation { test may be iterated many timesduring the life cycle of the IVE. The description lan-guage must support this cycle. It must create atestable interconnection from incomplete descriptionsand create the interconnection with a minimum ofhand-coding so that most work will be captured inthe descriptions and not lost with each iteration.2.3 MethodologyTo e�ectively use these tools requires a tailoredmethodology that discovers the necessary informationso that the developers can create the IVE speci�ca-tion. This methodology then guides the use of the

OS / Network

Application Specific Isthmus

Core Isthmus

Legacy VE

Legacy VE Interface ModuleFigure 1: Layers of a Interconnected Virtual En-vironmenttools and provides a framework for the IVE through-out the rest of its life-cycle. The methodology musttake into account the unique features of connectinglegacy systems as well as the particulars of IVEs.3 Project OverviewTo develop our ideas on software engineering of vir-tual environments (SEIVE) we built a runtime inter-connection environment, description language and in-terconnection generator, and developed a methodol-ogy to guide their use.3.1 Isthmus { Interconnection RuntimeEnvironmentWe have developed Isthmus, a rei�cation of the run-time interconnection abstraction. Isthmus is inspiredby the Polylith software bus.[11] Each instantiationof the Isthmus contains the code necessary to provideboth the general and IVE speci�c services. Each com-ponent VE has its own interface module. All commu-nication in the system is between the interface mod-ules and the Isthmus. This double layering means thatthe interaction between the legacy code and the inter-5

connection software is minimal and simple (Figure 1).The Isthmus can be thought of as a software bus muchsuch as a hardware bus except that the software busdoes not just pass messages, it performs a host of ser-vices while passing the messages.In its simplest sense when the Isthmus receives amessage from a component VE it relays the messageto all the other component VEs. The Isthmus hasits own naming convention for all events in the IVE,therefore, the interface modules map the componentVE event name to the IVE event name.The Isthmus must also keep track of the systemstate in its objectbase. This way the Isthmus canhandle whichever storage model the component VEsuse; messages can include just changes or the completestate. Because the message content will normally haveto be translated each time a message is sent or re-ceived, minimizing the content is desirable because itenhances performance. In addition to virtual objects,global system states are also tracked in the Isthmusobjectbase.In addition, when interconnecting legacy VEs, wewant minimum intrusion into the legacy code, there-fore only sending changes to the system state as op-posed to collecting a complete state prior to sending amessage better meets our needs. For these reasons acomplete system state will have to be maintained onthe Isthmus.The Isthmus objectbase uses a simple lockingscheme to maintain data coherency in the system. Ifour tank tries to move an obstacle that another tankis already moving the Isthmus will not allow it. TheIsthmus is not sophisticated enough to handle simulta-neous manipulation of virtual objects. This is a hardproblem with no universally accepted solution.[12] [5]Since each component VE has its own coordinatesystem, locations must be translated before they are

received by the legacy VEs. Where this translationtakes place is a performance decision. By placingthe translation burden on the Isthmus, the componentVEs are spared this interconnection overhead. How-ever, this means that multi-casting cannot be used,and a message must be generated and sent to eachcomponent VE. If translation is done in the interfacemodule then message tra�c can be reduced by us-ing multi-casting, however, the systems running thecomponent VE must be able to handle this sometimescomputationally intensive load. The Isthmus can alsobe built with a hybrid system, where some messagesare multi-casted and translated by the interface mod-ules and some messages are translated by the Isthmus.To minimize overhead, determining the legality ofchanges to the system state will be done in the com-ponent VEs. However, when legality cannot be com-pletely determined in the component VE, it will usesynchronous messages to \ask permission." If the sys-tem state is legal, the Isthmus sends back a con�rma-tion message. If not, a number of options are availableto include the generation of other events. If in our ex-ample a tank tries to go through a hill, the componentVE knows the physics and will not allow this but, iftwo tanks try to move to the same location the Isth-mus will have to handle it.Grouping of objects is also provided by the Isth-mus. When virtual objects are grouped either per-manently or temporarily, that grouping is transpar-ent to the component VEs. For example if the tankmoves its turret does too, which is also in the object-base. Should the tank pick up a soldier all behaviorsof that tank and actions on that tank are re
ected inthe state of that soldier until he dismounts the tank.Some object groupings will impose di�erent behaviorand attributes of the grouped objects. A tank carryingmine-clearing equipment looks and behaves di�erentlyfrom one that is not.6

Objectbase Incomming
Message
Handler

Outgoing
Message
Handler

Partition
Manager

Translation
Manager

Interface
Module

Message
Handler

Other VE
Functions

Data
Storage

:

Isthmus

Legacy VE

Figure 2: Dynamic Architecture View of Isthmusand Typical Legacy VEFigure 2 illustrates the objects and message pathsbetween the Isthmus and legacy VE. For simplicitythis illustrates the Isthmus when it runs on only onesystem; it becomes a bit more complicated when theIsthmus itself is distributed. The legacy VE may bedesigned using a structured architecture and program-ming language, but even so we �nd it convenient tomodel all VEs in object-oriented terms.To illustrate the workings of the Isthmus we willlook at the example of a tank simulator moving in thevirtual world. As it moves it sends a location updatemessage only to the Isthmus. The Isthmus receivesthe message and checks to insure that the change inlocation is legal (no collisions with other objects in thesystem) and sends a con�rmation message back to thetank. It will then store the new location and deter-mine which other component VEs must be told aboutthis change to the system state. Only component VEswith objects located in the spatial area of interest mustbe noti�ed. For those, the Isthmus will translate thecoordinates to the appropriate coordinate system andsend the message using the appropriate communica-tion protocol and priority.

3.2 Zubin and VIDL: InterconnectionGenerator and Description LanguageThe runtime interconnection abstraction is highlycustomized to �t the design of the legacy VEs and therequirements of the IVE. The runtime and interfacemodules can be built by hand, but we feel that thisprocess can be captured and reused by using an inter-connection generator. The interconnection generatoris similar to application generators that allow reuseof processes in domain speci�c applications built fromscratch. The di�erence is, of course, that the wholeapplication is not being built, but merely the softwarethat glues together the legacy applications. [8]We have an experimental interconnection genera-tor called Zubin for this domain that uses our domainspeci�c description language dubbed VIDL to gener-ate the source code for the Isthmus and interface mod-ules. Zubin uses the Isthmus core runtime and addscustomized services to it as needed. It also gener-ates the interface modules in the native programminglanguage for the component VE. The design of VIDLallows developers to concentrate on the di�erent func-tions of the IVE independently while the descriptionlanguage and Zubin provide the integration frameworkmuch like CDSL does for more general applications.[2]VIDL is designed to create readable source code.We acknowledge that after Zubin is run, the devel-oper will have to look at the generated source codeand possible modify it. Having understandable sourcecode will be very useful when deciding where in thelegacy VE to place the calls to the interface mod-ule. Therefore the software engineer can declare user-de�ned constants in the description language that willend up in the source code. VIDL also supports twotypes of comments: description comments and sourcecode comments. The source code comments are placedin the generated source code by Zubin.The VIDL description gives a mostly non-7

procedural description of the software glue that holdsthe IVE together. It has sections for declaring thecon�guration of the IVE. There are some places in theIVE description where design decisions are recorded.It also contains places where code escapes can be in-serted in the description. The reason we departedfrom a purely non-procedural speci�cation to a meshof speci�cation and design was we felt the need tosupport iteration. The �rst speci�cation of the IVEcan contain very little design. As a prototype is builtand information is discovered, that information can becaptured in the VIDL and the next iteration can bebuilt and tested.Interconnection and con�guration information forthe Isthmus are described in the Interconnection Sec-tion of the description. Whether or not the Isthmus isdistributed, where it resides is described here. In ad-dition, the initialization information required for com-ponent VEs to join the IVE is also related here.The Component VEs Section contains informationabout the di�erent types of component VEs that mayparticipate in an IVE session. Much of the informa-tion here will go into the generation of the interfacemodules.Partitioning is described in the Areas of InterestSection. Areas of Interest may be declared based onspatial constraints (the most popular), functional des-ignations, or temporal constraints. This partitioning| to reduce message tra�c | can be handled by us-ing multi-casting which is useful in large applications,or by the Isthmus selectively sending messages.Since many di�erent coordinate systems will be inuse in the IVE, the translation algorithms to convertcoordinates between each coordinate system in use aredescribed in the Translation Section. The algorithmsare de�ned as parameterized code escapes because thetranslation of coordinate systems is not always a singlemathematical formula. The spherical earth does not

transfer well to a
at map, therefore converting geo-graphic coordinates requires conditionals and lookuptables.The Events Section contains descriptions of thefunctionality of the IVE. Each event in the IVE hasa list of messages that are sent or received based onthe event. The messages can be synchronous, whichrequire con�rmation from Isthmus or asynchronous.The developer also designates whether or not a mes-sage is to be �ltered based on areas of interest and thecontent of the message is de�ned. Temporal mappingis accomplished here by using the ADJUST declara-tion. It is another code escape, because by its naturetemporal mapping can be very complicated and ap-plication dependent. Before the message is sent thecommands in the ADJUST algorithm are executed.Those commands may include the generation of addi-tional events. The use of these recursive events givesthe engineer great
exibility in handling this onerousproblem.The example event declaration (Figure 3) shows themessages that are passed to relay the information thata tank has moved. The tank sends a message to theIsthmus requesting a move to a location using its geo-graphic coordinates.1 If this is a legal move the Isth-mus will send a message to all TOWs that are withinthe same spatial area of interest. This message will notrequire con�rmation and will be in the TOWs polarcoordinate system.The Virtual Objects Section describes the objects ofthe virtual world that can be manipulated by any ofthe component VEs. Objects are described using in-heritance which provides less repetitive descriptions,but more importantly allows more intuitive descrip-tions of things such as collisions. In the tank descrip-1The Military Grid Reference System (MGRS) geo-graphic coordinate system allows location speci�cationdown to one meter with two �ve-digit coordinates.8

evLocation :MESSAGE SYNCHRONOUS status;FROM enTank;PRIORITY REGULAR;RELIABILITY RELIABLE;CONTENT (INT vehicleId,STRING area,INT x_coord, INT y_coord,FLOAT orientation);MESSAGE ASYNCHRONOUS;TO enTow SPATIAL;PRIORITY REGULAR;RELIABILITY UNRELIABLE;CONTENT (INT vehicleId,FLOAT direction,INT distance);Figure 3: Example Event Descriptiontion below we are able to say that two vehicles can'toccupy the same space, as opposed to exhaustivelylisting all the objects in the simulation that can't oc-cupy the same space. The objects are categorized asactive (they can manipulate other objects), inactive(they can be manipulated by other objects) or environ-mental (they cannot be manipulated by other objects).Environmental objects will not normally be listed; in-teraction with them will be managed in the compo-nent VEs. The attributes of the objects are listedalong with the other objects that it can be groupedwith. When listing the potential grouping objects, theattributes that change when the objects are groupedis delineated. The coherency rules are declared herealong with a list of events that are �red when a co-herency rule is violated.A simple example of the tank virtual object de-scription is shown in Figure 4. The COORDINATE

SYSTEM declaration indicates that the locations ofall objects will be stored using the csMGRS coordinatesystem2. The HOME VE designates the enTank com-ponent VE as the controlling VE for the tank. Theattributes that are important to the IVE are listedand in this case it is just the size of the tank itself.There are numerous default attributes generated suchas a unique identi�er that do not have to be declaredhere. The HOLDS declaration tells the software thatthe turret object is always grouped with a tank ob-ject. The coherency rules are declared in a C++ codeescape and the collision event that is �red in the caseof a coherency violation is listed.States that are part of the IVE but don't belongto a virtual object are declared in the Global StatesSection. An example of global states are things suchas weather or lighting conditions. Simulation time isanother global state. If a central clock is to be keptthen it is declared here.The example global state declarations show onesimulation clock declared that starts at 12:00. It ad-vances with clock time by default. Two global condi-tions are declared with their possible states and thedefault state.3.3 SEIVE MethodologyOur tailored methodology provides the frameworkfor the tools and runtime environment. Because ofthe nature of IVEs this methodology di�ers from stan-dard software engineering. The division into phases ismore functional than chronological, although there isa causal ordering for some of the steps. Here is a quickoverview of the phases (Figure 6), however the detailsof the analysis and the products of each phase are thetopic of another paper.2This coordinate system is described in the translationsection.9

COORDINATE SYSTEM : csMGRS;OBJECT oVeh :ATTRIBUTES :INT x_coord;INT y_coord;OBJECT oTank ACTIVE INHERITS FROM oVeh :HOME VE: enTank;ATTRIBUTES :INT size;HOLDS oTurret;COHERENCY RULES :{if (($x_coord + $size) >=($all.oVeh.x_coord - $all.oVeh.size)&& ($x_coord - $size) <=($all.oVeh.x_coord + $all.oVeh.size)&& (y_coord + size) >=($all.oVeh.y_coord - $all.oVeh.size)&& (y_coord - size) <=($all.oVeh.y_coord + $all.oVeh.size))return FALSE;} VIOLATION evCollision;Figure 4: Example Virtual Object DescriptionTIME : tCurrentTime = 12:00;STATE : esTimeOfDay (day, twilight,night) = day,: esWeather (clear, rain, snow,fog) = clear;Figure 5: Example Environmental State Descrip-tion

IVE Requirements
Definition

Legacy System
Analysis

Products

Specification/
Design

VIDL

Interconnection
Source Code

Legacy VE
Source Code

Implementation

Products

IVE Source Code Data

Test

IVE

Isthmus
Runtime

Zubin

Figure 6: Flow Diagram for IVE Methodology1. Legacy System Analysis This is the analysis ofthe legacy virtual environments. The architecture ofthe legacy software as well as the function of the VEmust be understood. Some of the products of thisphase are: a list of behaviors of the VE, a list ofenvironmental states, a table of virtual objects andtheir grouping and coherency rules, and a table ofevents.2. IVE Requirements De�nition During this phasethe results of Legacy System Analysis are synthesizedinto IVE wide products. The other step of this phaseis to discover and document the desired characteristicsof the IVE. This is much like the requirements anal-ysis of new development. Parts of this phase rely onLegacy System Analysis, however some of that phasecan't be properly done without knowledge of what theuser wants the �nal IVE to do.3. Speci�cation/Design The products of the Re-quirements De�nition phase are used to write the10

VIDL description of the IVE. Along with specifyingwhat the system should do some design decisions aremade during this phase.4. Implementation In this phase the Zubin is run,and the resulting interface source code is manuallylinked to the legacy VE.5. Test There are assessments of the software thatmust come from the test phase: �rst does the IVEmeet the speci�cations, second does the IVE meetthe requirements, �nally does the IVE do what theuser wants, which may not have been captured by therequirements.When building an IVE the focus can be towardsinterconnecting the existing VEs so that they performbasically the same functions, or to use existing VEs tobuild a system with each VE in the IVE more capablethan it was. Our discussion has been more involvedwith the former, but this methodology supports thelatter too, freeing the developer to deal with the VEsthemselves.4 Conclusion and Future DirectionThe combination of a tailored methodology, inter-connection generator and interconnection runtime ap-pears to hold promise for developers of IVEs. Ourexperience to date shows that it requires less e�ortthan interconnecting by hand, while providing higherquality. The Isthmus based architecture simpli�es pro-gramming the interface to the point where we canautomate the process of building the interconnectionsoftware. Automating this process allows the devel-oper to focus on the larger conceptual problems in-volved in creating the IVE. Our continuing experi-ments in the IVE domain serve to re�ne the methodol-ogy, description language VIDL, interconnection gen-erator Zubin and interconnection runtime Isthmus. Inour on-going research, we anticipate exploring the use

of these tools to support interconnection in other chal-lenging domains, with the ultimate intent of contrast-ing and generalizing the techniques.References[1] Peter Astheimer, Wolfgang Felger, and StefanM�uller. Virtual Design: A generic VR System forIndustrial Applications. Computers and Graphics,17(6):671{677, November/December 1993.[2] Flavio DePaoli and Francesco Tisato. Cooper-ative systems con�guration in CSDL. In Pro-ceedings of the International Conference on Dis-trubuted Computing Systems, pages 304{311, Poz-nan, Poland, June 21-24 1994.[3] James W. Du�, James Purtilo, Michael Capps,and David Stotts. Software engineering of dis-tributed simulation environments. In Proceed-ings of the Conference on Con�gurable DistributedSystems, pages 202{209, Annapolis, Maryland,1996. IEEE Computer Society Technical Com-mitte on Distributed Processing.[4] Mark Green. Environment Manager. Technicalreport, Department of Computing Science, Uni-versity of Alberta, February 1994.[5] Mark Green. Shared Virtual Environments: TheImplications for Tool Builders. Computers andGraphics, 20(2):185{189, March/April 1996.[6] Michael R. Macedonia, Michael J. Zyda, David R.Pratt, Donald P. Brutzman, and Paul T. Barham.Exploiting reality with multicast groups: A net-work architecture for large-scale virtual environ-ments. In Proceedings of the IEEE Virtual Real-ity Annual International Symposium, pages 2{10,Research Triangle Park, NC, March 11-15 1995.[7] Micheal Macedonia and Micheal Zyda. A taxon-omy for networked virtual environments. In Pro-11

ceedings of the 1995 workshop on Networked Re-alities, Boston, MA, October 26-28 1995.[8] Hafedh Mili, Fatma Mili, and Ali Mili. ReusingSoftware: Issues and Research Directions. IEEETransactions on Software Engineering, 21(6):528{561, June 1995.[9] Zhigeng Pan, Jiaoying Shi, and Mingmin Zhang.Distributed Graphics Support for Virtual Envi-ronments. Computers and Graphics, 20(2):191{197, March/April 1996.[10] Przemyslaw Pardyak and Brian N. Bershad. Agroup structuring mechanism for a distributedobject-oriented language. In Proceedings of the In-ternational Conference on Distrubuted ComputingSystems, pages 312{319, Poznan, Poland, June21-24 1994.[11] James M. Purtilo. The POLYLITH Software Bus.ACM Transactions on Programming Languages,16:151{174, January 1994.[12] Gurminder Singh, Luis Serra, Willie Png, AudreyWong, and Hern Ng. BrickNet: Sharing ObjectBehavoirs on the Net. In Proceedings of the IEEEVirtual Reality Annual International Symposium,pages 19{25, Research Triangle Park, NC, March11-15 1995.[13] Qunjie Wang, Mark Green, and Chris Shaw. EM- An Environment Manager For Building Net-worked Virtual Environments. In Proceedings ofthe IEEE Virtual Reality Annual InternationalSymposium, pages 11{18, Research Triangle Park,NC, March 11-15 1995.
12

