
UMIACS-TR-93-49 June 1993CS-TR-3084Adaptive Database Bu�er Allocation Using Query Feedback�ChungMin Melvin Chen Nicholas RoussopoulosInstitute for Advanced Computer Studies andDepartment of Computer ScienceUniversity of Maryland, College ParkE-mail: min@cs.umd.edu, nick@cs.umd.eduAbstractIn this paper, we propose the concept of using query execution feedback for improvingdatabase bu�er management. A query feedback model which adaptively quanti�es the pagefault characteristics of all query access patterns including sequential, looping and most impor-tantly random, is de�ned. Based on this model, a load control and a marginal gain ratio bu�erallocation scheme are developed. Simulation experiments show that the proposed method isconsistently better than the previous methods and in most cases, it signi�cantly outperformsall other methods for random access reference patterns.1 IntroductionThe topic of bu�er management in database management systems has been long investigated inthe past. The goal of such research is to develop a bu�er manager suitable for the database systemin order to enhance the system performance. Early works [Rei76, Kap80, EH84] accomplished thisgoal by adapting conventional allocation and replacement strategies for virtual memory systemto database management systems. Recently, another class of algorithms [CD85, SS86, NFS91]based on the prediction of page access patterns exhibited by queries were proposed. Taking intoaccount the access patterns helps the latter methods to outperform the earlier ones in terms ofsystem throughput.�This research was sponsored partially by NASA under contracts NAS5-31351 and USRA 550-81, by the NationalScience Foundation under grant IRI-8719458. This paper also appears in Proceedings of the 19th InternationalConference on Very Large Data Bases, 1993. 1

bu�er management allocation/replacement policy admissionalgorithms sequential looping random policy[lmin; lmax], rpl [lmin; lmax], rpl [lmin; lmax], rplDBMIN [CD85] [1; 1], � [t; t], MRU [1; 1], RAN, P lmin � AMG-x-y [NFS91] [1; 1], � [x% � t; t], MRU [1; y], RAN P lmin � Apredictive load control [FNS91] [1; 1], � [f(load); t], MRU [f(load); byao], RAN P lmin � ATable 1: Bu�er Management AlgorithmsAlthough algorithms based on prediction of access patterns capture some of the behavior ofdatabase queries, they still have some major de�ciencies. First, the strategies proposed were eligi-ble only for very speci�c patterns; they did not �t well for general pattern (which was classi�ed asrandom accesses). And second, in complicated queries, it is not easy to predict a priori the invokedaccess patterns. To remedy these, a general mechanism capable of automatically characterizingthe access behaviors is desired.In this paper, we propose a framework of database bu�er management featured with queryfeedback. The purpose is to characterize access patterns automatically and re�ne the bu�erallocation from prior query executions, in order to achieve better bu�er utilization, and, hence,improve the overall system throughput. A quantitative model of characterizing query accessbehavior is presented and used for adjusting bu�er allocation. We also show the results of oursimulation which compares the performance improvement of the proposed work over the existingones.The rest of this paper is organized as follows. In Section 2, we review previous work andmotivate the approach of using query feedback for database bu�er management. In Section 3,we introduce the quantitative model for characterizing query access behavior, and describe themechanism of feedback and adaptation to ful�ll the model. Section 4 describes a bu�er manage-ment system using query feedback for both load control and bu�er allocation. A set of simulationresults are given in Section 5, which show the advantages of using feedback in database bu�ermanagement. Section 6 summarizes this work.2 Related Work and MotivationThe problem of bu�er management could be formulated in short as follows. In a database en-vironment where concurrent queries arrive and compete for limited bu�er resources, the bu�ermanager's task is to reduce the disk operations and enhance the system's throughput by utilizinga dedicated bu�er pool for caching the relation pages. When bu�ers are available, the bu�er2

manager needs to decide whether to activate a query in the waiting queue, how many bu�ers toallocate to this query and/or to each relation accessed in this query, and �nally, how to replacebu�ers. Therefore, there are three tasks conducted by the manager: load control, bu�er allocation,and bu�er replacement.The �rst class of database bu�er management algorithms [Rei76, SB76, Tue76, Kap80, EH84]used variations of traditional replacement techniques such as LRU (Least-Recently-Used) andWorking-Set directly applied to the database bu�er pool. However, because of the less pagereference locality found in database systems than that found in virtual memory systems [RR76,EH84], and due to the lack of embedded load control mechanism, these conventional strategiesdo not perform satisfactorily and might cause severe system throughput degradation when bu�ercongestion occurs [CD85].The above techniques failed to take advantage of speci�c page reference behavior exhibited bydatabase algorithms such as nested-loop joins, hash joins, and etc. This was corrected in anothergroup of bu�er management algorithms [SS82, SS86, CD85, NFS91, FNS91] based on the pagereference characteristics exhibited by database queries. In this class of algorithms, load controland bu�er allocation are incorporated.In [SS82, SS86], the authors suggested that in order to run a query e�ciently, a minimumnumber of bu�ers, called hot set size, must be provided during execution. The approach of thehot set based algorithm is improved and re�ned in following papers [CD85, NFS91, FNS91] basedon the classi�cation of reference patters. They are summarized in Table 1, where a sequentialpattern accesses a sequence of distinct pages, a looping pattern accesses a set of pages iteratively,and anything else is called a random pattern. Each pattern is associated with an allowable rangeof allocated bu�ers [lmin; lmax], and a suggested replacement strategy rpl. Essentially, algorithmsin this class only di�er in determining the range [lmin; lmax]. For all algorithms, MRU (Most-Recently-Used) replacement is adopted for looping pattern, RAN replacement|which randomlyselects a page for replacement|is used for random pattern, and no explicit replacement strategyis needed for sequential pattern since only one bu�er page is allocated.For the algorithm DBMIN proposed in [CD85], each pattern is allocated with a �x number ofbu�ers (called locality set), this is re
ected by lmin = lmax for all patterns. For looping pattern,the locality set size t is the number of distinct pages referenced in the loop. An incoming queryis activated only if the current available bu�ers, A, is greater than P lmin | the sum of theminimum bu�er requirement of each access pattern induced by the query. While DBMIN was3

shown to outperform the conventional algorithms, its strict allocation policy might not result inbest bu�er utilization. For example, a looping pattern query with locality set size of 100 will notbe admitted to execution even if there are 90 bu�er pages available.A more
exible allocation algorithm MG-x-y was proposed in [NFS91]. MG-x-y is similar toDBMIN except on the load control decision and hence the number of bu�ers allocated. As shownin Table 1, MG-x-y allows a looping pattern to be executed if at least x% � t bu�ers are available;it allocates up to y bu�ers to a random pattern, as long as the expected marginal gain1 is stillpositive and there are still available bu�ers. It was shown in the same paper that MG-x-y hasbetter throughput improvement than DBMIN due to its
exible allocation. However, keeping xand y as global constants for all queries may not be adequate, since di�erent reference strings,though of same reference patterns, can have completely di�erent faulting behaviors.In a more recent paper by the same authors [FNS91], a class of predictive load control al-gorithms were proposed. Subject to the current bu�er availability, an incoming query is acti-vated only if doing so, it will result in better expected system performance. In other words,lmin = f(load) is computed as the minimum bu�ers needed for a waiting query to be activatedin order to enhance the performance of the current load. For random pattern, lmax = byao is theexpected number of distinct pages referenced based on Yao's formula [Yao77]. This approach wasshown to be more adaptive to di�erent query loads than MG-x-y. However, the computation ofbyao and the expected system performance is based on the assumption of uniform page access2,which in general is not true3.Obviously, the main weakness of the algorithms mentioned above lies in their inability ofcharacterizing di�erent random reference strings. In these schemes, all reference strings, otherthan sequential and looping, are categorized as random, and are treated equally based on theassumption of uniform page accesses. As a consequence, when a query with random referencestrings on its accessed relations is admitted, these algorithms will try to allocate as many bu�ersas possible to each relation since the expected marginal gain is usually positive for a wide rangeof bu�er sizes. This neglects the bene�t of allocating more bu�ers to the relations which reducethe most page faults and less to the others.Another problem is that for complex queries, the prediction of reference patterns may notbe accurate due to their non-trivial access methods. For example, in a multi-relation join where1The expected marginal gain is the expected number of page faults reduced per extra bu�er allocated.2The assumption of uniform page access assumes that a sequence of page references to a relation are distributeduniformly among all pages of the accessed relation.3byao, in general, is much higher than the real number of page referenced.4

non-clustered indices or hash tables are used, according to the classi�cation scheme, the referencestrings on these relations will be simply classi�ed as random, while in fact the real page navigationmay turn out to be of certain locality instead of uniformity. Another class of complex queriesare those found in deductive databases or object-oriented databases. They have totally di�erentaccess paths from standard relational algebra paths and unpredictable page reference behaviors.In deductive database systems, recursive queries usually generate reference strings which are notsequential or looping. In object-oriented databases, dereferencing of pointers due to its hierarchicalstructure also generate more \random" page visits.To cope with these problems, we propose a feedback mechanism to capture query page ref-erence behavior by collecting information during query executions. In this feedback model, allreference strings are associated with a few characteristic values. Bu�er management strategies(including load control and bu�er allocation), then are adjusted according to these feedback val-ues. The exact size of bu�ers allocated to each reference string is determined by the current bu�eravailability and the feedback values that characterize the string. A simple load control mechanismis also adopted in the algorithm proposed here. However, the algorithm is basically an allocation-oriented approach as opposed to a load-control-oriented one. Although adaptive replacementstrategies based on (limited) reference history have recently been explored for database systems[OOW93, Che92], in this paper we assume LRU unless a looping pattern is detected in which casewe use MRU. Simulation results have shown that the feedback is advantageous. Furthermore,this approach is attractive and practical for the following reasons:� Recurring and/or mutually-related queries (such as compiled queries, user-de�ned views,query embedded applications) are common, and, therefore, the use of the feedback informa-tion can signi�cantly improve their performance.� As we mention above, applications in non-relational database models make reference patternprediction inadequate since most of the reference strings will be classi�ed as random, andtherefore, feedback is a proper way to collect knowledge about page reference behaviors.� Most database systems have a software-based bu�er manager, which can be extended toinclude the feedback mechanism with minimal overhead.3 The Feedback ModelIn this section, we propose a feedback model which is capable of characterizing the faultingbehavior of any reference string using query execution feedback. The model is general in the5

sense that the behavior of any reference string will be automatically quanti�ed with a faultingcharacteristic record once it is executed.3.1 The Faulting Characteristic ModelDe�nition 1 A reference string R = fr1; r2; : : :g is a �nite sequence of page references, whereeach reference ri is denoted by the corresponding page number. We use jRj to denote the nor-malized length of R where consecutive references to the same page are counted as one reference;and let C(R) be the number of distinct pages referenced in R. 2As an example, suppose R = f3; 2; 2; 1; 8; 1g, then jRj = 5 because page 2 is referenced twicein a row and should be counted as only one reference. In this case, C(R) = 4.De�nition 2 Given a reference string R, and an employed bu�er management algorithm B, thefaulting function fR;B(b) is the number of page faults resulted as a function of allocated bu�ersize b. We will simply denote it as f(b) when R and B are understood from the context. 2It follows from the above de�nitions that:C(R) = f(C(R)) � fR;B(b) � f(1) = jRj; for b � 1:This expresses the fact that when a reference string is traced, no matter what bu�er managementstrategy is adopted, at least C(R) disk reads must be performed to access all the distinct pages;and at most jRj page faults can occur when only one bu�er page is allocated. In general, thereis no precise mathematical formula to express the page faults as a function of bu�er sizes, evenif the values of C(R) and jRj are known. Though for certain class of replacement algorithms[M+70], the faulting function on any reference string could be obtained by tracing the string onlyonce, the overhead of computing and maintaining the number of bu�er faults at every bu�er sizeis large. For this reason, we introduce a model to characterize the faulting function.De�nition 3 (The Faulting Characteristic Model (FCM)) The faulting characteristics ofa faulting function fR;B(b) at bu�er size b0 is a triple �b0 = (g; c; s), whereg = (fR;B(1)� fR;B(b0))=(b0� 1);c = 1 + (b0 � 1) fR;B(1)� C(R)fR;B(1)� fR;B(b0) ;6

f(b)0

b0

C(R)

f

b
C(R)

slope

|R|

g

sc
L

L
1

2

(s, C(R))

(1, f(1))

(b , f(b))0 0Figure 1: A Typical Faulting Functions = the minimum b such that fR;B(b0) = fR;B(b)for all b0 > b:We call g the average marginal gain, c the critical size, and s the saturated size. 2Intuitively, �b0 characterizes the general behavior of fR;B(b) in the range 1 � b � b0. Theidea is depicted in Figure 1, where a typical faulting function is plotted. Suppose b0 bu�ers areallocated to the reference string, and as a result f(b0) faults occur during the execution. Thenaverage marginal gain g is the slope of line L1 which connects points (1; f(1)) and (b0; f(b0)),and it represents the average page fault reduction per extra bu�er allocated in the range of 1to b0 bu�ers. The saturated size s is the smallest bu�er size beyond which the slope becomeshorizontal. Since s depends only on R and B, but not b0, we use sR;B for clarity when needed. Itis easy to see that f(s) = f(C(R)) = C(R), and, in general, s is smaller than C(R)4. Criticalsize c is the x-axis value of the intersection point of line L1 and L2, where L2 is the horizontalline f = C(R). In other words, critical size is the expected bu�er size around which the rate ofreduction slows considerably.We use FCM to quantify both the page access and bu�er fault behaviors of queries. For eachrelation accessed in a query, we associate it with a faulting characteristic record. Also, for eachquery, a faulting characteristic record is computed using the combined reference string. Based onthese values, we can tune the bu�er allocation in a more intelligent way. Before we go into thedetail of how this is done, we �rst explain how the faulting characteristics are computed during4In our experiments, if LRU is used and R is a random pattern, then sR;LRU ranges from C(R)=3 to C(R)7

execution, and discuss how these values are used and re�ned.3.2 Feedback MechanismSuppose reference string R is currently running under bu�er management algorithm B withdedicated bu�er capacity b0. According to the de�nition of FCM, there are four basic numbersto be computed: fR;B(b0), jRj, C(R); and sR;B.fR;B(b0), number of page faults:A counter for number of page faults is maintained. This counter will simply increase eachtime when a page fault occurs.jRj, normalized length of the reference string:To detect consecutive references to the same page, two variables are maintained. The �rstvariable records the previous logical page reference and will be refreshed at each page request;the other is a counter for jRj which will be increased by one each time when a page di�erent fromthe previous reference (which is recorded in the �rst variable) is requested.C(R), number of distinct pages referenced in R:Either a static vector or a dynamic hashing data structure has to be maintained so that whena page fault occurs, the structure will be searched to see if the faulted page is a new occurrence.A counter for C(R) will increase by one whenever a new occurrence encountered.sR;B, the saturated bu�er size:Saturated size depends both on the reference string and the underlying bu�ering strategy. Itsexact value in general is not easy to calculate, simply tracing the reference string repeatedly for allbu�er sizes to �nd the saturated size is impractical. However, for LRU replacement, its saturatedsizes can be found e�ciently.According to [M+70], LRU is a special member of a class of replacement algorithms calledstack algorithms. Suppose we accommodate a LRU-stack of size C(R) and trace R under LRUreplacement, then according to that paper,fR;LRU(b) = C(R) + C(R)Xi=b+1 hit(i);where hit(i) is the frequency of page hits on the i'th position relative to the top of the LRU-stack.According to our de�nition, the saturated size is the minimum s such that fR;LRU(s) = C(R),8

b

f

|R|
f = /R/

b

f = /R/ = C(R)

f

|R|

f = C(R) f = C(R)

b1 γ

α β + γ

βb + α

+1) b + f = - (

f = -

f

|R|

C(R)C(R)

(c) looping, MRU(b) looping, LRU(a) sequential

s = C(R) s = C(R)s = 1 Figure 2: Faulting Functions of Sequential and Looping Referencestherefore, as a consequence of the above equation, hit(i) = 0 for all (s+ 1) � i � C(R). We thenhave: sR;LRU = maxfijhit(i) 6= 0; 1 � i � C(R)g:If we associate the trace of R with a LRU-stack of size C(R), sR;LRU can be obtained from theabove expression. Actually, as long as the stack size allocated is greater than or equal to thesaturated size (instead of C(R)), the saturated size can still be computed accordingly. In thecase of insu�cient stack size or the strategy is not LRU, we can either simply set sR;B = C(R)or estimate/compute its value based on some other techniques (refer to [Che92] for more detail).3.3 Use and Adaptation of Faulting CharacteristicsIn this subsection, we discuss how the faulting characteristics can be used to di�erentiate theaccess patterns, and show how they can be adaptively adjusted, over recurring query executions,to re
ect more informed faulting behaviors.Figure 2.a shows a sequential pattern, where the page faults do not reduce as bu�ers increase.Therefore, no matter how many bu�ers are allocated to it, according to our feedback mechanism,the resulting characteristic record is always (g; c; s) = (0; 1; 1). We can use this to detect asequential pattern. As for looping references, its faulting function depends on the replacementstrategy. Figure 2.b shows the case of LRU replacement under which each page reference resultsin a page fault, unless C(R) bu�ers are provided. Therefore, if the feedback characteristic recordsof a reference string R turn out to be (g; c; s) = (0; 1; C(R)) for several di�erent bu�er sizes lessthan C(R), then the reference pattern is more likely looping and, thus, MRU should be triedduring its next execution. Actually, the detection of a looping pattern can be quickly con�rmedby checking if hit(C(R)) = jRj � C(R) during the �rst trace, i.e., every hit goes to the bottom9

of the LRU-stack. On the contrary, Figure 2.c shows the faulting function under MRU, wherecoe�cients �; �;
 are uniquely determined from the values of jRj and C(R)5. Therefore, oncea MRU is adopted for a looping reference string, its faulting function could be expressed as anequation with coe�cients computed from the feedback values of jRj and C(R).
f

|R|

s cb0
b

C(R)Figure 3: An Example of Non-Representative FeedbackFor all reference strings, the obtained faulting characteristics depend on the initial allocatedbu�er sizes b0. If the initial b0 is too close to 1, the resulting characteristic may not represent theaverage behavior over a wider range of bu�er sizes. This is illustrated in Figure 3 which results inc > s. Though this is a rare case, we can simply set the critical size to be equal to the saturatedsize, and adjust it in later executions. We propose here a simple adaptive procedure for adjustingthe characteristic record to obtain a more informed record.For the marginal gain and the critical size, their values are adjusted gradually to best re
ectthe faulting behavior. Formally, let �b be the current characteristic record, where b is the bu�ersize from which �b is computed. Now suppose b0 is the bu�er size allocated for the next execution,then �b0 replaces �b if eithera) b0 > b and rb0 > �, orb) b0 < b and rb0 < �,where rb0 = f(b0)�C(R)s�b0 is the slope between the two points (b0; f(b0)) and (s; C(R)). We call rb0the residual gain at b0. � is a constant threshold set for all reference strings. Intuitively, �b0 is a5In [NFS91], the expected marginal gain for looping patterns is derived, whose value is a constant depending onthe reference string. The formula we give here computes the exact values instead of expected value, the detail ofthe derivations can be found in [Che92]. 10

more informed feedback than �b if b0 is closer to the size beyond which the residual gain becomessmaller than the pre-de�ned threshold �. The �rst conditions in both cases guarantee that undera stingiest bu�er allocation, a less informed record will not replace an earlier more informed one.This assures us that the adaptation, starting from either a under-allocation (case a) or an over-allocation (case b), eventually converges to a well informed characteristic record whose residualgain is close to �.4 Bu�er Management based on FCMIn this section, we describe the load control and bu�er allocation mechanisms based on FCM.Load ControlSince the purpose of this paper is to demonstrate the strength of adaptive bu�er allocation basedon feedback information, a simple load control mechanism is used. The load control depends onthe critical size c of query q. Note that we compute c using the combined reference string of q. Aquery q is activated if A � 0:5 � c;where A is the available bu�ers.Bu�er AllocationIn an environment where several concurrent reference strings are traced, the bu�er allocationalgorithm is used to allocate the bu�ers among the reference strings. For example, bu�ers canbe allocated among concurrent queries, and within each query, the bu�ers assigned to this querycan be again divided among all simultaneously referenced relations. DBMIN and MG-x-y areexamples of such allocation algorithms. However, their allocation strategies for random referencestrings are based on the assumption of uniform page accesses. As an alternative, we introducean allocation algorithm based on the FCM. Since FCM quanti�es the reference behavior fromfeedback, it provides a more accurate information than that based on uniformity.Allocation based on the Marginal Gain Ratio (MGR) Given n concurrent reference strings,we allocate bu�ers proportional to their average marginal gains subject to the following con-straints:a) never allocate more than the saturated size (avoid waste), and11

b) when the demand for bu�ers is high, never exceed the critical size of each string. 2We demonstrate the MGR allocation policy, which has been implemented in ADMS6, with acomplete example and show the adaptation process of the feedback mechanism FCM. A 3-wayjoin query which accesses three base relations simultaneously is taken as an example:select * from 10k1, 10k2, 10k3where10k1.un1 = 10k2.un1 and 10k2.un2 < '500'and 10k1.5000 = 10k3.5000Each relation contains 10,000 tuples spanning over 2,500 pages, while the query results in 1,000tuples. The query is chosen so that none of the reference strings on the relations is of sequentialor looping pattern.Figure 4 tabulates the allocations and feedback values for a sequence of query executions byMGR. Each table denotes an execution, where A is the available bu�ers and column b correspondsto the bu�ers allocated to each relation. Column f(b) is the resulting page faults. Column rdenotes the residual gain computed based on b and f(b) after the execution. Columns g, c and sare the best so far informed faulting characteristic record, they are adjusted properly after eachexecution. We also keep b�, the bu�er size of the best so far informed characteristic record, i.e.�b� = (g; c; s), in the table. b� is used in the future execution to determine if new feedback shouldreplace the current one. Adaptation of characteristic record is marked with an asterisk. Thethreshold � for the residual gain is set to 1.0 in this experiment.Just before the �rst execution, since no feedback information is available, MGR simply allo-cates the available A = 50 bu�ers evenly among all relations. After the execution, f(b); jRj; C(R)and s are obtained, and based on these, r, g, c are computed. Since it is the �rst execution, allfeedback will be kept. Note that jRj; C(R) and s are kept unchanged thereafter.At Execution 2, 100 bu�ers are available, MGR allocates bu�ers proportional to the marginalgains obtained from previous execution, therefore, 10k1 is allocated 100�2:75=(2:75+7:06+0) = 28bu�ers, 10k2 is allocated 100 � 7:06=(2:75+ 7:06 + 0) = 71 bu�ers, and 10k3 is allocated 1 bu�ersince its marginal gain is 0. As a result of this execution, the residual gains for 10k1 and 10k2 arecomputed to be 1:35 and 6:11, both of which are still greater than the threshold value 1:0, andsince they correspond to an execution with more bu�ers than the previous, their characteristicrecords are replaced by the new feedback. For example, for 10k1, the characteristic record gets6ADMS, the Advanced Database Management System, is a database management system developed at theDepartment of Computer Science, University of Maryland, College Park, [RES93].12

Execution 1, A = 50b f(b) r b� g c s jRj C(R)10k1 17 951 1.39 17 2.75 196 372 995 45810k2 17 879 6.98 17 7.06 123 125 992 12510k3 16 897 0.06 16 0.00 1 719 897 853total 2727 Execution 2, A = 100b f(b) r b� g c s10k1 28 924 1.35 28� 2:62� 206� 37210k2 71 455 6.11 71� 7:67� 114� 12510k3 1 897 0.06 16 0.00 1 719total 2276Execution 3, A = 300b f(b) r b� g c s10k1 174 663 1.03 174� 1:91� 282� 37210k2 125 125 0.00 71 7.67 114 12510k3 1 897 0.06 16 0.00 1 719total 1685Execution 4, A = 50b f(b) r b� g c s10k1 9 979 1.43 174 1.91 282 37210k2 40 701 6.77 71 7.67 114 12510k3 1 897 0.06 16 0.00 1 719total 2577Execution 5, A = 100b f(b) r b� g c s10k1 19 944 1.37 174 1.91 282 37210k2 80 402 6.15 80� 7:47� 117� 12510k3 1 897 0.06 16 0.00 1 719total 2243Figure 4: Allocation and Adaptation of MGR13

adjusted from �17 = (2:75; 196; 372) of Execution 1 to a more informed one �28 = (2:62; 206; 372) ofExecution 2. However, for 10k3, since the faulting characteristics at bu�er size 1 are meaningless,the characteristics obtained from Execution 1 �16 = (0:00; 1; 719) will remain unchanged.At Execution 3, 300 bu�ers are available, according to the marginal gain ratios obtainedform Execution 2, 10k1 is �rst allocated 300 � 2:62=(2:62 + 7:67) = 76 bu�ers and 10k2 with300 � 7:67=(2:62+ 7:67) = 223 bu�ers. However, according to MGR, no allocation can exceed thesaturated size, thus only 125 bu�ers will be allocated to 10k2. The remaining 223 � 125 = 98bu�ers are then redistributed among 10k1 and 10k3, but since 10k3 has zero marginal gain andcritical size of 1, 10k1 receives all the remaining bu�ers and results in totally 76+98 = 174 bu�ers.After the execution, the residual gain of 10k1 is 1:03, which is greater than the threshold, so thecharacteristic record is again adjusted from �28 = (2:62; 206; 372) to �174 = (1:91; 282; 372). Thecharacteristic record of 10k2 is not changed since its residual gain r = 0 is less than the threshold.At Execution 4, 50 bu�ers are available, MGR allocates bu�ers based on the adjusted char-acteristic records resulting from the prior three executions. As a result, it produces 2577 pagefaults, which is less than the 2727 page faults produced by Execution 1 where the same bu�er sizeis provided but no feedback is available. No characteristic records are adjusted since the bu�ersize allocated to each relation for this execution is less than the bu�er size associated with thebest informed characteristic record. For example, for 10k2, the allocated bu�er size b = 40 atExecution 4 is less than b� = 71 at Execution 3.And �nally at execution 5, where 100 bu�ers are provided, it produces 2243 page faults, anumber that is slightly smaller than 2276, the one produced at Execution 2 with the same availablebu�er size. This can be attributed to the adaptation of the characteristic record through Execution2 and 3. Also note that the characteristic record of 10k2 is adjusted again after this execution,because its residual gain r = 6:15 is greater than the threshold and its allocated bu�er size b = 80is also greater than b� = 71 (as recorded in Execution 4).We also experimented the MG-x-y algorithm for the same sequence of executions above, forwhich it resulted in equal bu�er allocation among the relations since the reference strings haveequal length and are random on equal size of relations. The page faults are compared with thoseof MGR in Table 2. It can be seen that the adaptability of MGR reduces the page faults.We also plot the faulting curves for MGR and MG-x-y for di�erent bu�er sizes, assuming thatthe above adjusted characteristic record is used for MGR. The optimal replacement algorithmOPT [Bel66], which replaces the page that won't be used in the longest future, is also graphed forcomparison. Figure 5.(a) compares the number of page faults at di�erent bu�er sizes. Relative14

Exec. 1 Exec. 2 Exec. 3 Exec. 4 Exec. 5available bu�er size 50 100 300 50 100page faults of MGR 2727 2276 1685 2577 2243page faults of MG-x-y 2727 2572 1951 2727 2572Table 2: Page Faults Summary for MGR and MG-x-y
0 200 400 600 800 1000 1200

1400

1600

1800

2000

2200

2400

2600

2800

(a)

+

+

+

+

+

+

+

+ ++

+

+

P
a
g
e

F
a
u
l
t
s

Number of Buffers

MGR

OPT

MG−x−y

0 100 200 300 S

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.00

(b)

R
e
l
a
t
i
v
e

P
a
g
e

F
a
u
l
t
s

MGR

OPT

Number of Buffers

MG−x−y

OPTFigure 5: Page Faults Comparison among MGR, MG-x-y and OPTpage faults with respect to OPT are drawn in Figure 5.(b), with bu�er size ranges from 1 to sOPT,where sOPT is the saturated size under OPT replacement strategy. It is not hard to see that MGRperforms much better than MG-x-y. Especially when bu�er size is around 200, the page faultsare reduced to half of the page faults over and above OPT.5 Simulation ResultsIn this section we present a simulation for evaluating the performance of di�erent database bu�ermanagement algorithms. The simulation is similar to the one used in [CD85, NFS91] whichsimulates a closed system with concurrent queries competing for bu�ers.For the purpose of baseline comparison, LRU is selected as a representative since accordingto [EH84, CD85], it makes no signi�cant performance di�erence from the other conventionalstrategies such as Working-Set and Clock. Two schemes, local LRU (LLRU) and global LRU(GLRU) are simulated. Local LRU maintains an LRU list for each relation of the concurrentqueries. Global LRU manipulates the whole bu�er pool under a single LRU list for all queries.There is no load control for global LRU, i.e., a query is admitted immediately as it arrives; for15

local LRU, a query is admitted only when there are still available bu�ers.Since MG-x-y has been shown to outperform DBMIN using a
exible allocation [NFS91], wedo not include DBMIN in the comparison. By trial and error, we have adjusted the values of x andy in MG-x-y so that it reached its best overall performance. Six pairs of (x; y) are experimented:(50, 100), (50, 200), (50, 400), (100, 100), (100, 200), and (100, 400). A query is admitted ifthe available bu�ers are more than the sum of each of its accessed relation's minimum bu�errequirement. After a query is admitted, MG-x-y allocates as many bu�ers as possible to eachrelation, but not exceeding the speci�ed upper bound. See Table 1 for detail.Among the class of predictive load control algorithms [FNS91], the algorithm with the bestoverall performance, called EDU, is chosen as a representative in our simulation. Subject tothe current available bu�ers, EDU activates a query only if it will result in better e�ective diskutilization than the one of the current state. After the query is admitted, it allocates bu�ers inthe same way as MG-x-y does.In MGR, we use a simple load controller based on FCM. As described earlier, a query isadmitted only when the available bu�ers are more than half of the query's critical size. MGRuses the marginal gain ratios for bu�er allocation for both queries and relations. It uses LRUreplacement unless a looping pattern is detected, in which case MRU is used instead. Duringthe simulation, MGR uses the adjusted faulting characteristics for each query. The overhead ofcharacteristics feedback computations is also estimated and included in the simulation, though itis almost comparatively unperceptible to the query computations, according to our experimentson ADMS where MGR is implemented.The reference strings are collected from executing a number of queries against the WisconsinBenchmark database [BDT83] on ADMS. Each base relation contains 10,000 tuples spanning over2,500 pages. The number of participating relations in each query varying from 1 to 3. Table 3shows the access patterns for each of the queries we chose. To illustrate the impact of databasebu�er management, the queries have been chosen such that they access various numbers of distinctpages ranging from 100 to 1; 500. Q1 accesses 250 di�erent pages, Q2 accesses 10 pages of theouter relation and has a looping access on a set of 98 pages of the inner relation. Q3 and Q4have random accesses on their relations, with totally 1110 and 1416 distinct pages referenced,respectively.Three di�erent query mixes are used in the simulation and shown in Table 4. M1 simulatesthe situation where most of the reference strings are either sequential or looping, M2 simulatesthe situation where random references dominate, whereas in M3, all query types have the same16

query no. of result no. of base referencetype tuples relations typeQ1 1000 1 SequentialQ2 1000 2 Sequential, LoopingQ3 1000 2 RandomQ4 1000 3 RandomTable 3: Query Typesquery mix Q1 Q2 Q3 Q4M1 40% 40% 10% 10%M2 10% 10% 40% 40%M3 25% 25% 25% 25%Table 4: Query Mixesfrequency.The number of concurrent queries (concurrency level) varied from 1 to 32. Initially, the queriesare generated until the concurrency level is reached, and thereafter, no new query will be generateduntil a query �nishes and leaves the system. Concurrent queries are scheduled by round robinfor CPU. Unless mentioned otherwise, the size of the bu�er pool is 1,000 pages. In all cases, thequery mixes along with the con�gurations simulate an IO-bound closed system.The simulations have been performed under di�erent levels of data sharing. In no data sharing,all concurrent queries access di�erent copies of the relations or completely di�erent databases. Inpartial data sharing, every two of the concurrent queries access the same copy of database. Andin full data sharing, all queries access the same database. The higher the sharing, the betterbu�er utilization due to the fact that pages in the bu�ers are used by several concurrent queries.However, due to the presence of concurrent queries on di�erent copies of the database, even if alarge number of bu�ers is available, it is not possible to load all the pages on demand into mainmemory simultaneously.In the rest of this section, we interpret the results of the simulation. In all the presented�gures, the throughput refers to the average number of queries �nished per minute.It should be pointed out that for the �rst time query runs, MGR simply uses MG-x-y strategyfor allocation since no feedback is available yet. However, after the �rst query feedback, MGRuses the faulting characteristics to adjust the allocations for recurring queries. Because MGRuses more information about the behavior of the queries, it is expected to do better than all othertechniques. 17

2.60

2.80

3.00

3.20

3.40

3.60

3.80

4.00

4.20

4.40

4.60

1 5 10 15 20 25 30

Number of Concurrent Queries

T
h
r
o
u
g
h
p
u
t

MGR

EDU

LLRU

GLRU

MG−x−yFigure 6: M3, no Data SharingEqual Frequency Query MixFigure 6 depicts the result of running query mix M3, where sequential and looping referencesoccur as frequently as random references. In this case, MGR performs much better than allother strategies. The group of MG-x-y and EDU algorithms have similar performance which issigni�cantly better than the LLRU and GLRU. As can be seen, MGR using FCM outperformsthe probabilistic method used in MG-x-y and EDU, and the inferior LRUs.E�ect of Sequential and Looping ReferencesFigure 7 compares the throughput of evaluating query mix M1 using di�erent algorithms. Sincesequential and looping references dominate, the use of pattern prediction and
exible allocationmakes MG-x-y perform better than EDU. Load control does not has as much impact as bu�erallocation in sequential and looping query mix. However, MGR performs even better than MG-x-y.E�ect of Random ReferencesQuery mix M2 simulates the e�ect of random references. Figure 8 shows the throughputs.In this case, the improvement of MG-x-y over LRUs is less substantial when compared to theprevious �gure. This is attributed to its inability to characterize random references. On thecontrary, EDU now outperforms MG-x-y due to its ability of blocking a random reference whenavailable bu�ers are not su�cient to increase or keep the system performance, thus avoid the18

4.00

4.50

5.00

5.50

6.00

6.50

7.00

7.50

8.00

8.50

9.00

9.50

1 5 10 15 20 25 30
Number of Concurrent Queries

T
h
r
o
u
g
h
p
u
t

MGR

MG−x−y

EDU

LLRU

GLRUFigure 7: M1, no Data Sharing
1.80

2.00

2.20

2.40

2.60

2.80

3.00

3.20

3.40

1 5 10 15 20 25 30
Number of Concurrent Queries

T
h
r
o
u
g
h
p
u
t

MGR

EDU

MG−x−y

LLRU

GLRUFigure 8: M2, no Data Sharing19

3.50

4.00

4.50

5.00

5.50

1 5 10 15 20 25 30
Number of Concurrent Queries

T
h
r
o
u
g
h
p
u
t

MGR

EDU

MG−x−y

GLRU

LLRUFigure 9: M3, Partial Data Sharingperformance degradation. MGR, however, still provides substantial performance improvement,due to its ability to correctly characterize random access behavior.E�ect of Data SharingWe used query mix M3 in this set of experiments. Figure 9 shows the result of partial datasharing. EDU now again performs fairly better than MG-x-y after concurrency level reaches 12.MGR remains a lot better than all the others.Figure 10.a shows the e�ect of full data sharing. For concurrency levels between 1 to 8, GLRUoutperform all other strategies including MGR. This is because in full data sharing, it is easy forglobal LRU to keep the locality sets of a few queries in bu�ers. However, when the number ofconcurrent queries increases, this advantage disappears because the overall locality set becomestoo large to be accommodated by the bu�er pool, and thus MGR and EDU win again. In thissimulation, EDU is close to MGR, which indicates that when data sharing increases, the impactof bu�er allocation decreases. Overall GLRU and MG-x-y perform roughly the same.If the bu�er pool gets smaller, from 1,000 to 600, the e�ect of full data sharing become lesssigni�cant. This is shown in Figure 10.b, where GLRU now degrades drastically. Also, theperformance improvement of MGR over EDU now increases again. This indicates that whenbu�er contention occurs, the bu�er management algorithm which can characterize the referencebehavior more accurately will result in better bu�er utilization.20

3.50

4.00

4.50

5.00

5.50

6.00

1 5 10 15 20 25 30
Number of Concurrent Queries

T
h
r
o
u
g
h
p
u
t

MGR

EDU

GLRU

LLRU

MG−x−y

(a)

3.50

4.00

4.50

5.00

5.50

1 5 10 15 20 25 30
Number of Concurrent Queries

T
h
r
o
u
g
h
p
u
t

MGR

EDU

MG−x−y

LLRU

GLRU

(b)Figure 10: M3, Full Data Sharing, (a) 1000 bu�ers, (b) 600 bu�ersTo summarize, our simulation results show that MGR makes signi�cant performance improve-ment over the pattern prediction style algorithm MG-x-y and the load-control-oriented algorithmEDU. In all cases of query mixes with no data sharing, MGR outperforms the second best strat-egy with 15% � 30% throughput improvement in average. We also observed the e�ect of datasharing, the results showed that, except for the cases of full data sharing with a very large bu�eravailability and small concurrency level, MGR is still favored. In sum, the signi�cant performanceof MGR over EDU and MG-x-y can be attributed to the advantage of using query feedback inadjusting bu�er management which is more accurate than the pattern prediction and probabilisticmethods.6 ConclusionIn this paper, we propose the concept of using query execution feedback for improving databasebu�er management. A query feedback model which quanti�es the page fault characteristics ofall query access patterns including sequential, looping and most importantly random, is de�ned.Based on this model, a simple load controller and a bu�er allocation scheme using marginal gainratio are developed. The allocation scheme distributes the bu�ers among concurrent referencestrings according to their quanti�ed characteristics. An extensive set of simulations was conductedto compare the performance in throughputs of the proposed method with other existing ones. Thesimulations show that the proposed method is consistently better than the previous methods andin most cases, it signi�cantly outperforms all other methods for random access reference patterns.21

The advantage of MGR is the tuning of the bu�er management techniques based on the realaccess behavior obtained by query feedback rather than probabilistic query path analysis wherecrude assumptions such as uniformity have to be made. Furthermore, since queries are treated asreference strings, our approach is applicable not only to relational algebra access paths but alsoto access paths of other more advanced database systems such as deductive and object-orienteddatabases.References[BDT83] D. Bitton, D.J. DeWitt, and C. Turby�ll. Benchmarking database systems, a systematicapproach. In Procs. of 9th VLDB, 1983.[Bel66] L. Belady. A study of replacement algorithms for a virtual-storage computer. IBMSystems Journal, 5(2):78{101, 1966.[CD85] H. Chou and D. DeWitt. An evaluation of bu�er management strategies for relationaldatabase systems. In Proceeding of the 11th Intl. Conf. on VLDB, pages 127{141, 1985.[Che92] C. Chen. Adaptive query optimization. Thesis Proposal, Department of ComputerScience, University of Maryland, College Park, Nov. 1992.[EH84] W. E�elsberg and T. Haerder. Principles of database bu�er management. ACM TODS,9(4):560{595, 1984.[FNS91] C. Faloutsos, R. T. Ng, and T. Sellis. Predictive load control for
exible bu�er alloca-tion. In Proceeding of the 17th Intl. Conf. on VLDB, pages 265{274, 1991.[Kap80] J. Kaplan. Bu�er management policies in a database environment. Master's thesis,University of California, Berkeley, 1980.[M+70] R. Mattson et al. Evaluation techniques for storage hierarchies. IBM Systems Journal,9(2):78{117, 1970.[NFS91] R. T. Ng, C. Faloutsos, and T. Sellis. Flexible bu�er allocation based on marginalgains. In Proceeding of 1991 ACM-SIGMOD Intl. Conf. on Management of Data,pages 387{396, 1991.[OOW93] E. J. O'Neil, P. E. O'Neil, and G. Weikum. The LRU-K page replacement algorithmfor database disk bu�ering. In Proceeding of 1993 ACM-SIGMOD Intl. Conf. on Man-agement of Data, pages 297{306, 1993.[Rei76] A. Reiter. A study of bu�er management policies for data management systems. Techni-cal Report TR-1619, Mathematics Research Center, University of Wisconsin-Madison,1976.[RES93] N. Roussopoulos, N. Economou, and A. Stamenas. ADMS: A testbed for incrementalaccess methods. To appear in IEEE Trans. on Knowledge and Data Engineering, 1993.22

[RR76] J. Rodriguez-Rosell. Empirical data reference behavior in data base systems. IEEEComputer, 9(11), Nov. 1976.[SB76] S.W. Sherman and R.S. Brice. Performance of a database manager in a virtual memorysystem. ACM TODS, 1(4), 1976.[SS82] G. Sacca and M. Schkolnick. A mechanism for managing the bu�er pool in a relationaldatabase system using the hot set model. In Proceeding of the 8th Intl. Conf. on VLDB,pages 257{262, 1982.[SS86] G. Sacca and M. Schkolnick. Bu�er management in relational database systems. ACMTODS, 11(4):474{498, 1986.[Tue76] W. Tuel. An analysis of bu�er paging in virtual storage systems. IBM Journal ofResearch and Development, 1976.[Yao77] S.B. Yao. Approximating block accesses in database organizations. Communicationsof ACM, 20(4), 1977.

23

