UMIACS-TR-93-49 June 1993
CS-TR-3084

Adaptive Database Buffer Allocation Using Query Feedback®

ChungMin Melvin Chen Nicholas Roussopoulos

Institute for Advanced Computer Studies and
Department of Computer Science
University of Maryland, College Park
E-mail: min@cs.umd.edu, nick@cs.umd.edu

Abstract

In this paper, we propose the concept of using query execution feedback for improving
database buffer management. A query feedback model which adaptively quantifies the page
fault characteristics of all query access patterns including sequential, looping and most impor-
tantly random, is defined. Based on this model, a load control and a marginal gain ratio buffer
allocation scheme are developed. Simulation experiments show that the proposed method is
consistently better than the previous methods and in most cases, it significantly outperforms
all other methods for random access reference patterns.

1 Introduction

The topic of buffer management in database management systems has been long investigated in
the past. The goal of such research is to develop a buffer manager suitable for the database system
in order to enhance the system performance. Farly works [Rei76, Kap80, EH84] accomplished this
goal by adapting conventional allocation and replacement strategies for virtual memory system
to database management systems. Recently, another class of algorithms [CD85, SS86, NFS91]
based on the prediction of page access patterns exhibited by queries were proposed. Taking into
account the access patterns helps the latter methods to outperform the earlier ones in terms of

system throughput.

*This research was sponsored partially by NASA under contracts NAS5-31351 and USRA 550-81, by the National

Science Foundation under grant [RI-8719458. This paper also appears in Proceedings of the 19th International

Conference on Very Large Data Bases, 1993.

buffer management allocation/replacement policy admission
algorithms sequential looping random policy
[lmin; lmax]a fpl [lmzn; lmax]a fpl [lmzn; lmax]a fpl
DBMIN [CD&5] [1,1], — [t,t], MRU [1,1], RAN, S lmin < A
MG-x-y [NFS91] [1,1], — [% L, 1], MRU [1,y], RAN S min < A
predictive load control [FNS91] [1,1], — [f(load),t], MRU | [f(load),byao), RAN | 3" 1y < A

Table 1: Buffer Management Algorithms

Although algorithms based on prediction of access patterns capture some of the behavior of
database queries, they still have some major deficiencies. First, the strategies proposed were eligi-
ble only for very specific patterns; they did not fit well for general pattern (which was classified as
random accesses). And second, in complicated queries, it is not easy to predict a priori the invoked
access patterns. To remedy these, a general mechanism capable of automatically characterizing
the access behaviors is desired.

In this paper, we propose a framework of database buffer management featured with query
feedback. The purpose is to characterize access patterns automatically and refine the buffer
allocation from prior query executions, in order to achieve better buffer utilization, and, hence,
improve the overall system throughput. A quantitative model of characterizing query access
behavior is presented and used for adjusting buffer allocation. We also show the results of our

simulation which compares the performance improvement of the proposed work over the existing

ones.

The rest of this paper is organized as follows. In Section 2, we review previous work and
motivate the approach of using query feedback for database buffer management. In Section 3,
we introduce the quantitative model for characterizing query access behavior, and describe the
mechanism of feedback and adaptation to fulfill the model. Section 4 describes a buffer manage-
ment system using query feedback for both load control and buffer allocation. A set of simulation
results are given in Section 5, which show the advantages of using feedback in database buffer

management. Section 6 summarizes this work.

2 Related Work and Motivation

The problem of buffer management could be formulated in short as follows. In a database en-
vironment where concurrent queries arrive and compete for limited buffer resources, the buffer
manager’s task is to reduce the disk operations and enhance the system’s throughput by utilizing

a dedicated buffer pool for caching the relation pages. When buffers are available, the buffer

manager needs to decide whether to activate a query in the waiting queue, how many buffers to
allocate to this query and/or to each relation accessed in this query, and finally, how to replace
buffers. Therefore, there are three tasks conducted by the manager: load control, buffer allocation,

and buffer replacement.

The first class of database buffer management algorithms [Rei76, SB76, Tue76, Kap80, EHR’4]
used variations of traditional replacement techniques such as LRU (Least-Recently-Used) and
Working-Set directly applied to the database buffer pool. However, because of the less page
reference locality found in database systems than that found in virtual memory systems [RR76,
EH84], and due to the lack of embedded load control mechanism, these conventional strategies
do not perform satisfactorily and might cause severe system throughput degradation when buffer

congestion occurs [CD85].

The above techniques failed to take advantage of specific page reference behavior exhibited by
database algorithms such as nested-loop joins, hash joins, and etc. This was corrected in another
group of buffer management algorithms [SS82, SS86, CD85, NFS91, FNS91] based on the page
reference characteristics exhibited by database queries. In this class of algorithms, load control

and buffer allocation are incorporated.

In [SS82, SS&6], the authors suggested that in order to run a query efficiently, a minimum
number of buffers, called hot set size, must be provided during execution. The approach of the
hot set based algorithm is improved and refined in following papers [CD85, NFS91, FNS91] based
on the classification of reference patters. They are summarized in Table 1, where a sequential
pattern accesses a sequence of distinct pages, a looping pattern accesses a set of pages iteratively,
and anything else is called a random pattern. Each pattern is associated with an allowable range
of allocated buffers [l,in, lmas], and a suggested replacement strategy rpl. Essentially, algorithms
in this class only differ in determining the range [l;,in, lnqz]. For all algorithms, MRU (Most-
Recently-Used) replacement is adopted for looping pattern, RAN replacement—which randomly
selects a page for replacement—is used for random pattern, and no explicit replacement strategy

is needed for sequential pattern since only one buffer page is allocated.

For the algorithm DBMIN proposed in [CD85], each pattern is allocated with a fix number of
buffers (called locality set), this is reflected by l,.i, = lpnas for all patterns. For looping pattern,
the locality set size t is the number of distinct pages referenced in the loop. An incoming query
is activated only if the current available buffers, A, is greater than > l,;, — the sum of the

minimum buffer requirement of each access pattern induced by the query. While DBMIN was

shown to outperform the conventional algorithms, its strict allocation policy might not result in
best buffer utilization. For example, a looping pattern query with locality set size of 100 will not

be admitted to execution even if there are 90 buffer pages available.

A more flexible allocation algorithm MG-x-y was proposed in [NFS91]. MG-x-y is similar to
DBMIN except on the load control decision and hence the number of buffers allocated. As shown
in Table 1, MG-x-y allows a looping pattern to be executed if at least % ¢ buffers are available;
it allocates up to y buffers to a random pattern, as long as the expected marginal gain' is still
positive and there are still available buffers. It was shown in the same paper that MG-x-y has
better throughput improvement than DBMIN due to its flexible allocation. However, keeping x
and y as global constants for all queries may not be adequate, since different reference strings,

though of same reference patterns, can have completely different faulting behaviors.

In a more recent paper by the same authors [FNS91], a class of predictive load control al-
gorithms were proposed. Subject to the current buffer availability, an incoming query is acti-
vated only if doing so, it will result in better expected system performance. In other words,
liin = f(load) is computed as the minimum buffers needed for a waiting query to be activated
in order to enhance the performance of the current load. For random pattern, {,,4, = byq, is the
expected number of distinct pages referenced based on Yao’s formula [Yao77]. This approach was
shown to be more adaptive to different query loads than MG-x-y. However, the computation of

byao and the expected system performance is based on the assumption of uniform page access?,

which in general is not true>.

Obviously, the main weakness of the algorithms mentioned above lies in their inability of
characterizing different random reference strings. In these schemes, all reference strings, other
than sequential and looping, are categorized as random, and are treated equally based on the
assumption of uniform page accesses. As a consequence, when a query with random reference
strings on its accessed relations is admitted, these algorithms will try to allocate as many buffers
as possible to each relation since the ezpected marginal gain is usually positive for a wide range
of buffer sizes. This neglects the benefit of allocating more buffers to the relations which reduce

the most page faults and less to the others.

Another problem is that for complex queries, the prediction of reference patterns may not

be accurate due to their non-trivial access methods. For example, in a multi-relation join where

!The expected marginal gain is the expected number of page faults reduced per extra buffer allocated.

2The assumption of uniform page access assumes that a sequence of page references to a relation are distributed
uniformly among all pages of the accessed relation.

#byao, in general, is much higher than the real number of page referenced.

non-clustered indices or hash tables are used, according to the classification scheme, the reference
strings on these relations will be simply classified as random, while in fact the real page navigation
may turn out to be of certain locality instead of uniformity. Another class of complex queries
are those found in deductive databases or object-oriented databases. They have totally different
access paths from standard relational algebra paths and unpredictable page reference behaviors.
In deductive database systems, recursive queries usually generate reference strings which are not
sequential or looping. In object-oriented databases, dereferencing of pointers due to its hierarchical
structure also generate more “random” page visits.

To cope with these problems, we propose a feedback mechanism to capture query page ref-
erence behavior by collecting information during query executions. In this feedback model, all
reference strings are associated with a few characteristic values. Buffer management strategies
(including load control and buffer allocation), then are adjusted according to these feedback val-
ues. The exact size of buffers allocated to each reference string is determined by the current buffer
availability and the feedback values that characterize the string. A simple load control mechanism
is also adopted in the algorithm proposed here. However, the algorithm is basically an allocation-
oriented approach as opposed to a load-control-oriented one. Although adaptive replacement
strategies based on (limited) reference history have recently been explored for database systems
[OOW93, Che92], in this paper we assume LRU unless a looping pattern is detected in which case
we use MRU. Simulation results have shown that the feedback is advantageous. Furthermore,

this approach is attractive and practical for the following reasons:

e Recurring and/or mutually-related queries (such as compiled queries, user-defined views,
query embedded applications) are common, and, therefore, the use of the feedback informa-

tion can significantly improve their performance.

e As we mention above, applications in non-relational database models make reference pattern
prediction inadequate since most of the reference strings will be classified as random, and

therefore, feedback is a proper way to collect knowledge about page reference behaviors.

o Most database systems have a software-based buffer manager, which can be extended to

include the feedback mechanism with minimal overhead.

3 The Feedback Model

In this section, we propose a feedback model which is capable of characterizing the faulting

behavior of any reference string using query execution feedback. The model is general in the

sense that the behavior of any reference string will be automatically quantified with a faulting

characteristic record once it is executed.

3.1 The Faulting Characteristic Model

Definition 1 A reference string R = {ry,r2,...} is a finite sequence of page references, where
each reference r; is denoted by the corresponding page number. We use |R| to denote the nor-
malized length of R where consecutive references to the same page are counted as one reference;

and let C(R) be the number of distinct pages referenced in R. a

As an example, suppose R = {3,2,2,1,8,1}, then |R| = 5 because page 2 is referenced twice

in a row and should be counted as only one reference. In this case, C(R) = 4.

Definition 2 Given a reference string R, and an employed buffer management algorithm B, the

faulting function fr p(b) is the number of page faults resulted as a function of allocated buffer

size b. We will simply denote it as f(b) when R and B are understood from the context. a

It follows from the above definitions that:
C(R)=f(C(R)) < frp(b) < f(1) = |R|, forb>1.

This expresses the fact that when a reference string is traced, no matter what buffer management
strategy is adopted, at least C'(R) disk reads must be performed to access all the distinct pages;
and at most |R| page faults can occur when only one buffer page is allocated. In general, there
is no precise mathematical formula to express the page faults as a function of buffer sizes, even
if the values of C'(R) and |R| are known. Though for certain class of replacement algorithms
[M*70], the faulting function on any reference string could be obtained by tracing the string only
once, the overhead of computing and maintaining the number of buffer faults at every buffer size

is large. For this reason, we introduce a model to characterize the faulting function.

Definition 3 (The Faulting Characteristic Model (FCM)) The faulting characteristics of

a faulting function fr p(b) at buffer size by is a triple py, = (g, ¢, s), where

g = (frp(1)— frp(bo))/(bo—1),

frp(1) —C(R)

¢ = 1+(o- 1)fR,B(l) — frp(bo)’

IRl g @ f®)

\ slope g

f(bo)
C(R)
c® P
Figure 1: A Typical Faulting Function
s = the minimum b such that frp(b’) = frp(b)
for all b’ > b.
We call g the average marginal gain, ¢ the critical size, and s the saturated size. O

Intuitively, pp, characterizes the general behavior of fgp(b) in the range 1 < b < by. The
idea is depicted in Figure 1, where a typical faulting function is plotted. Suppose by buffers are
allocated to the reference string, and as a result f(bg) faults occur during the execution. Then
average marginal gain ¢ is the slope of line IL; which connects points (1, f(1)) and (bo, f(bo)),
and it represents the average page fault reduction per extra buffer allocated in the range of 1
to by buffers. The saturated size s is the smallest buffer size beyond which the slope becomes
horizontal. Since s depends only on R and B, but not by, we use sg g for clarity when needed. It
is easy to see that f(s) = f(C(R)) = C(R), and, in general, s is smaller than C'(R)* Critical
size ¢ is the x-axis value of the intersection point of line Li and Lo, where Ly is the horizontal
line f = C(R). In other words, critical size is the expected buffer size around which the rate of

reduction slows considerably.

We use FCM to quantify both the page access and buffer fault behaviors of queries. For each
relation accessed in a query, we associate it with a faulting characteristic record. Also, for each
query, a faulting characteristic record is computed using the combined reference string. Based on
these values, we can tune the buffer allocation in a more intelligent way. Before we go into the

detail of how this is done, we first explain how the faulting characteristics are computed during

*In our experiments, if LRU is used and R is a random pattern, then s LRy ranges from C(R)/3 to C(R)

execution, and discuss how these values are used and refined.

3.2 Feedback Mechanism

Suppose reference string R is currently running under buffer management algorithm B with
dedicated buffer capacity by. According to the definition of FCM, there are four basic numbers
to be computed: frp(bo), |R|, C(R), and sg p.

frB(bo), number of page faults:

A counter for number of page faults is maintained. This counter will simply increase each

time when a page fault occurs.

|R|, normalized length of the reference string:

To detect consecutive references to the same page, two variables are maintained. The first
variable records the previous logical page reference and will be refreshed at each page request;
the other is a counter for |R| which will be increased by one each time when a page different from

the previous reference (which is recorded in the first variable) is requested.

C(R), number of distinct pages referenced in R:

Either a static vector or a dynamic hashing data structure has to be maintained so that when
a page fault occurs, the structure will be searched to see if the faulted page is a new occurrence.

A counter for C'(R) will increase by one whenever a new occurrence encountered.

SR B, the saturated buffer size:

Saturated size depends both on the reference string and the underlying buffering strategy. Its
exact value in general is not easy to calculate, simply tracing the reference string repeatedly for all
buffer sizes to find the saturated size is impractical. However, for LRU replacement, its saturated
sizes can be found efficiently.

According to [M*70], LRU is a special member of a class of replacement algorithms called
stack algorithms. Suppose we accommodate a LRU-stack of size C(R) and trace R under LRU

replacement, then according to that paper,
C(R)
Jriru(b) = C(R)+ D hit(i),
1=b+1

where hit(i) is the frequency of page hits on the ¢’th position relative to the top of the LRU-stack.

According to our definition, the saturated size is the minimum s such that fr rru(s) = C(R),

f=/R'=C(R) f=IR
IR IR ! IRT
H f=-(a+)b+B +y
I
|
|
I
i
]
L f=Cc®
CR) I
S=1 b e C(R) b 1 y s= C(RTb
(a) sequential (b) looping, LRU (c) looping, MRU

Figure 2: Faulting Functions of Sequential and Looping References

therefore, as a consequence of the above equation, hit(i) = 0 for all (s4+ 1) < ¢ < C(R). We then

have:

SR,LRU = max{i|hit(i) 75 0,1<2< C(R)}

If we associate the trace of R with a LRU-stack of size C'(R), sg,ru can be obtained from the
above expression. Actually, as long as the stack size allocated is greater than or equal to the
saturated size (instead of C'(R)), the saturated size can still be computed accordingly. In the
case of insufficient stack size or the strategy is not LRU, we can either simply set sg g = C(R)

or estimate/compute its value based on some other techniques (refer to [Che92] for more detail).

3.3 Use and Adaptation of Faulting Characteristics

In this subsection, we discuss how the faulting characteristics can be used to differentiate the
access patterns, and show how they can be adaptively adjusted, over recurring query executions,
to reflect more informed faulting behaviors.

Figure 2.a shows a sequential pattern, where the page faults do not reduce as buffers increase.
Therefore, no matter how many buffers are allocated to it, according to our feedback mechanism,
the resulting characteristic record is always (g,c,s) = (0,1,1). We can use this to detect a
sequential pattern. As for looping references, its faulting function depends on the replacement
strategy. Figure 2.b shows the case of LRU replacement under which each page reference results
in a page fault, unless C(R) buffers are provided. Therefore, if the feedback characteristic records
of a reference string R turn out to be (g,¢,s) = (0,1, C(R)) for several different buffer sizes less
than C'(R), then the reference pattern is more likely looping and, thus, MRU should be tried
during its next execution. Actually, the detection of a looping pattern can be quickly confirmed

by checking if hit(C(R)) = |R| — C(R) during the first trace, i.e., every hit goes to the bottom

of the LRU-stack. On the contrary, Figure 2.c shows the faulting function under MRU, where
coefficients «, 3,7 are uniquely determined from the values of |R| and C'(R)?. Therefore, once
a MRU is adopted for a looping reference string, its faulting function could be expressed as an

equation with coefficients computed from the feedback values of |[R| and C'(R).
f

IR

CR)

E b

Figure 3: An Example of Non-Representative Feedback

For all reference strings, the obtained faulting characteristics depend on the initial allocated
buffer sizes bg. If the initial by is too close to 1, the resulting characteristic may not represent the
average behavior over a wider range of buffer sizes. This is illustrated in Figure 3 which results in
¢ > s. Though this is a rare case, we can simply set the critical size to be equal to the saturated
size, and adjust it in later executions. We propose here a simple adaptive procedure for adjusting
the characteristic record to obtain a more informed record.

For the marginal gain and the critical size, their values are adjusted gradually to best reflect
the faulting behavior. Formally, let p, be the current characteristic record, where b is the buffer
size from which py, is computed. Now suppose &’ is the buffer size allocated for the next execution,

then pys replaces py if either
a) V' >band ry > 6, or
b) v <band ry <4,

where 7y = ﬂb—/%& is the slope between the two points (¥, f(')) and (s, C(R)). We call ry

the residual gain at b’. 0 is a constant threshold set for all reference strings. Intuitively, py is a

°In [NFS91], the expected marginal gain for looping patterns is derived, whose value is a constant depending on
the reference string. The formula we give here computes the exact values instead of expected value, the detail of
the derivations can be found in [Che92].

10

more informed feedback than pj if o’ is closer to the size beyond which the residual gain becomes
smaller than the pre-defined threshold #. The first conditions in both cases guarantee that under
a stingiest buffer allocation, a less informed record will not replace an earlier more informed one.
This assures us that the adaptation, starting from either a under-allocation (case a) or an over-
allocation (case b), eventually converges to a well informed characteristic record whose residual

gain is close to 6.

4 Buffer Management based on FCM

In this section, we describe the load control and buffer allocation mechanisms based on FCM.

Load Control

Since the purpose of this paper is to demonstrate the strength of adaptive buffer allocation based
on feedback information, a simple load control mechanism is used. The load control depends on
the critical size ¢ of query ¢g. Note that we compute ¢ using the combined reference string of g. A
query ¢ is activated if

A>05x%c¢,

where A is the available buffers.

Buffer Allocation

In an environment where several concurrent reference strings are traced, the buffer allocation
algorithm is used to allocate the buffers among the reference strings. For example, buffers can
be allocated among concurrent queries, and within each query, the buffers assigned to this query
can be again divided among all simultaneously referenced relations. DBMIN and MG-x-y are
examples of such allocation algorithms. However, their allocation strategies for random reference
strings are based on the assumption of uniform page accesses. As an alternative, we introduce
an allocation algorithm based on the FCM. Since FCM quantifies the reference behavior from

feedback, it provides a more accurate information than that based on uniformity.

Allocation based on the Marginal Gain Ratio (M GR) Given n concurrent reference strings,
we allocate buffers proportional to their average marginal gains subject to the following con-

straints:

a) never allocate more than the saturated size (avoid waste), and

11

b) when the demand for buffers is high, never exceed the critical size of each string. a

We demonstrate the MGR allocation policy, which has been implemented in ADMS®, with a
complete example and show the adaptation process of the feedback mechanism FCM. A 3-way

join query which accesses three base relations simultaneously is taken as an example:

select * from 10k1, 10k2, 10k3
wherelOkl.unl = 10k2.unl and 10k2.un2 < ’500’
and 10k1.5000 = 10k3.5000

Each relation contains 10,000 tuples spanning over 2,500 pages, while the query results in 1,000
tuples. The query is chosen so that none of the reference strings on the relations is of sequential
or looping pattern.

Figure 4 tabulates the allocations and feedback values for a sequence of query executions by
MGR. Each table denotes an execution, where A is the available buffers and column b corresponds
to the buffers allocated to each relation. Column f(b) is the resulting page faults. Column r
denotes the residual gain computed based on b and f(b) after the execution. Columns ¢, ¢ and s
are the best so far informed faulting characteristic record, they are adjusted properly after each
execution. We also keep b*, the buffer size of the best so far informed characteristic record, i.e.
pp» = (g,¢,s),in the table. b* is used in the future execution to determine if new feedback should
replace the current one. Adaptation of characteristic record is marked with an asterisk. The
threshold @ for the residual gain is set to 1.0 in this experiment.

Just before the first execution, since no feedback information is available, MGR simply allo-
cates the available A = 50 buffers evenly among all relations. After the execution, f(b),|R|,C(R)
and s are obtained, and based on these, r, g, ¢ are computed. Since it is the first execution, all

feedback will be kept. Note that |R|,C'(R) and s are kept unchanged thereafter.

At Execution 2, 100 buffers are available, MGR, allocates buffers proportional to the marginal
gains obtained from previous execution, therefore, 10k1 is allocated 100%2.75/(2.75+7.064-0) = 28
buffers, 10k2 is allocated 100 % 7.06/(2.754 7.06 + 0) = 71 buffers, and 10k3 is allocated 1 buffer
since its marginal gain is 0. As a result of this execution, the residual gains for 10kl and 10k2 are
computed to be 1.35 and 6.11, both of which are still greater than the threshold value 1.0, and
since they correspond to an execution with more buffers than the previous, their characteristic

records are replaced by the new feedback. For example, for 10kl, the characteristic record gets

SADMS, the Advanced Database Management System, is a database management system developed at the
Department of Computer Science, University of Maryland, College Park, [RES93].

12

Execution 1, A =50

b | f(b) r b* g ¢ s [R] | C(R)
10kl | 17 | 951 || 1.39 | 17 | 2.75 | 196 | 372 || 995 | 458
10k2 | 17 | 879 || 6.98 | 17 | 7.06 | 123 | 125 || 992 | 125
10k3 | 16 | 897 || 0.06 | 16 | 0.00 | 1 | 719 || 897 | 853
total 2727
Execution 2, A = 100
b | f(b) r b* g c s
10k1 | 28 | 924 || 1.35 | 28* | 2.62* | 206 | 372
10k2 | 71 | 455 || 6.11 | 71* | 7.67* | 114* | 125
10k3 | 1 | 897 || 0.06 | 16 | 0.00 1 719
total 2276
Execution 3, A = 300
b F(b) r b* g c s
10k1 | 174 | 663 | 1.03 | 174* | 1.91* | 282* | 372
10k2 | 125 | 125 || 0.00 | 71 7.67 | 114 | 125
10k3 1 897 | 0.06 | 16 0.00 1 719
total 1685
Execution 4, A = 50
b | f(b) r b* g c s
10kl | 9 | 979 || 1.43 | 174 | 1.91 | 282 | 372
10k2 | 40 | 701 || 6.77 | 71 | 7.67 | 114 | 125
10k3 | 1 | 897 (| 0.06 | 16 | 0.00 | 1 | 719
total 2577
Execution 5, A = 100
b | f(b) r b* g c s
10kl | 19 | 944 || 1.37 | 174 | 1.91 | 282 | 372
10k2 | 80 | 402 || 6.15 | 80* | 7.47" | 117" | 125
10k3 | 1 | 897 || 0.06 | 16 | 0.00 1 719
total 2243

Figure 4: Allocation and Adaptation of MGR

13

adjusted from py7 = (2.75, 196, 372) of Execution 1 to a more informed one pys = (2.62,206,372) of
Execution 2. However, for 10k3, since the faulting characteristics at buffer size 1 are meaningless,

the characteristics obtained from Execution 1 p1g = (0.00,1,719) will remain unchanged.

At Execution 3, 300 buffers are available, according to the marginal gain ratios obtained
form Execution 2, 10kl is first allocated 300 * 2.62/(2.62 4+ 7.67) = 76 buffers and 10k2 with
300%7.67/(2.62+ 7.67) = 223 buffers. However, according to MGR, no allocation can exceed the
saturated size, thus only 125 buffers will be allocated to 10k2. The remaining 223 — 125 = 98
buffers are then redistributed among 10kl and 10k3, but since 10k3 has zero marginal gain and
critical size of 1, 10k1 receives all the remaining buffers and results in totally 76498 = 174 buffers.
After the execution, the residual gain of 10kl is 1.03, which is greater than the threshold, so the
characteristic record is again adjusted from pys = (2.62,206,372) to p174 = (1.91,282,372). The

characteristic record of 10k2 is not changed since its residual gain » = 0 is less than the threshold.

At Execution 4, 50 buffers are available, MGR allocates buffers based on the adjusted char-
acteristic records resulting from the prior three executions. As a result, it produces 2577 page
faults, which is less than the 2727 page faults produced by Execution 1 where the same buffer size
is provided but no feedback is available. No characteristic records are adjusted since the buffer

size allocated to each relation for this execution is less than the buffer size associated with the

best informed characteristic record. For example, for 10k2, the allocated buffer size b = 40 at
Execution 4 is less than * = 71 at Execution 3.

And finally at execution 5, where 100 buffers are provided, it produces 2243 page faults, a
number that is slightly smaller than 2276, the one produced at Execution 2 with the same available
buffer size. This can be attributed to the adaptation of the characteristic record through Execution
2 and 3. Also note that the characteristic record of 10k2 is adjusted again after this execution,
because its residual gain r = 6.15 is greater than the threshold and its allocated buffer size b = 80

is also greater than b* = 71 (as recorded in Execution 4).

We also experimented the MG-x-y algorithm for the same sequence of executions above, for
which it resulted in equal buffer allocation among the relations since the reference strings have
equal length and are random on equal size of relations. The page faults are compared with those
of MGR in Table 2. It can be seen that the adaptability of MGR reduces the page faults.

We also plot the faulting curves for MGR and MG-x-y for different buffer sizes, assuming that
the above adjusted characteristic record is used for MGR. The optimal replacement algorithm
OPT [Bel66], which replaces the page that won’t be used in the longest future, is also graphed for

comparison. Figure 5.(a) compares the number of page faults at different buffer sizes. Relative

14

Exec. 1 | Exec. 2 | Exec. 3 | Exec. 4 | Exec. 5
available buffer size 50 100 300 50 100
page faults of MGR 2727 2276 1685 2577 2243

page faults of MG-x-y 2727 2572 1951 2727 2572

Table 2: Page Faults Summary for MGR and MG-x-y

E MG—x—
2800 + R 149 Y
e
|
2600 a 135
P t
a i
g VvV 1.30—
& 2400 e
125
F 2200 P
a a
u g 120—)
It 2000 e . MGR
MG-x-y 114
s
':
1800
a 110
r
1600 t 105 /
N + s /vy
e + oPT
1400 | | | | | 1‘°CL‘ ‘ ‘ ‘ |
200 200 1000 1200
° 600 800 0 100 200 300 Sorr

Number of Buffers
Number of Buffers

@ (b)

Figure 5: Page Faults Comparison among MGR, MG-x-y and OPT

page faults with respect to OPT are drawn in Figure 5.(b), with buffer size ranges from 1 to sgpr,
where sgpr is the saturated size under OPT replacement strategy. It is not hard to see that MGR
performs much better than MG-x-y. Especially when buffer size is around 200, the page faults
are reduced to half of the page faults over and above OPT.

5 Simulation Results

In this section we present a simulation for evaluating the performance of different database buffer
management algorithms. The simulation is similar to the one used in [CD85, NF'S91] which
simulates a closed system with concurrent queries competing for buffers.

For the purpose of baseline comparison, LRU is selected as a representative since according
to [EH84, CDR&5], it makes no significant performance difference from the other conventional
strategies such as Working-Set and Clock. Two schemes, local LRU (LLRU) and global LRU
(GLRU) are simulated. Local LRU maintains an LRU list for each relation of the concurrent
queries. Global LRU manipulates the whole buffer pool under a single LRU list for all queries.

There is no load control for global LRU, i.e., a query is admitted immediately as it arrives; for

15

local LRU, a query is admitted only when there are still available buffers.
Since MG-x-y has been shown to outperform DBMIN using a flexible allocation [NFS91], we

do not include DBMIN in the comparison. By trial and error, we have adjusted the values of z and
y in MG-x-y so that it reached its best overall performance. Six pairs of (x,y) are experimented:
(50, 100), (50, 200), (50, 400), (100, 100), (100, 200), and (100, 400). A query is admitted if

the available buffers are more than the sum of each of its accessed relation’s minimum buffer

requirement. After a query is admitted, MG-x-y allocates as many buffers as possible to each

relation, but not exceeding the specified upper bound. See Table 1 for detail.

Among the class of predictive load control algorithms [FNS91], the algorithm with the best
overall performance, called EDU, is chosen as a representative in our simulation. Subject to
the current available buffers, EDU activates a query only if it will result in better effective disk
utilization than the one of the current state. After the query is admitted, it allocates buffers in

the same way as MG-x-y does.

In MGR, we use a simple load controller based on FCM. As described earlier, a query is
admitted only when the available buffers are more than half of the query’s critical size. MGR
uses the marginal gain ratios for buffer allocation for both queries and relations. It uses LRU
replacement unless a looping pattern is detected, in which case MRU is used instead. During
the simulation, MGR uses the adjusted faulting characteristics for each query. The overhead of
characteristics feedback computations is also estimated and included in the simulation, though it

is almost comparatively unperceptible to the query computations, according to our experiments

on ADMS where MGR is implemented.

The reference strings are collected from executing a number of queries against the Wisconsin
Benchmark database [BDT83] on ADMS. Each base relation contains 10,000 tuples spanning over
2,500 pages. The number of participating relations in each query varying from 1 to 3. Table 3
shows the access patterns for each of the queries we chose. To illustrate the impact of database
buffer management, the queries have been chosen such that they access various numbers of distinct
pages ranging from 100 to 1,500. Q1 accesses 250 different pages, Q2 accesses 10 pages of the
outer relation and has a looping access on a set of 98 pages of the inner relation. Q3 and Q4
have random accesses on their relations, with totally 1110 and 1416 distinct pages referenced,

respectively.

Three different query mixes are used in the simulation and shown in Table 4. M1 simulates
the situation where most of the reference strings are either sequential or looping, M2 simulates

the situation where random references dominate, whereas in M3, all query types have the same

16

query | no. of result | no. of base reference
type tuples relations type
Q1 1000 1 Sequential
Q2 1000 2 Sequential, Looping
Q3 1000 2 Random
Q4 1000 3 Random
Table 3: Query Types
query mix | Q1 Q2 Q3 Q4
M1 40% | 40% | 10% | 10%
M2 10% | 10% | 40% | 40%
M3 25% | 25% | 25% | 26%

Table 4: Query Mixes

frequency.

The number of concurrent queries (concurrency level) varied from 1 to 32. Initially, the queries
are generated until the concurrency level is reached, and thereafter, no new query will be generated
until a query finishes and leaves the system. Concurrent queries are scheduled by round robin
for CPU. Unless mentioned otherwise, the size of the buffer pool is 1,000 pages. In all cases, the

query mixes along with the configurations simulate an 10-bound closed system.

The simulations have been performed under different levels of data sharing. In no data sharing,
all concurrent queries access different copies of the relations or completely different databases. In
partial data sharing, every two of the concurrent queries access the same copy of database. And
in full data sharing, all queries access the same database. The higher the sharing, the better
buffer utilization due to the fact that pages in the buffers are used by several concurrent queries.
However, due to the presence of concurrent queries on different copies of the database, even if a
large number of buffers is available, it is not possible to load all the pages on demand into main

memory simultaneously.

In the rest of this section, we interpret the results of the simulation. In all the presented

figures, the throughput refers to the average number of queries finished per minute.

It should be pointed out that for the first time query runs, MGR simply uses MG-x-y strategy
for allocation since no feedback is available yet. However, after the first query feedback, MGR
uses the faulting characteristics to adjust the allocations for recurring queries. Because MGR
uses more information about the behavior of the queries, it is expected to do better than all other

techniques.

17

T 4.20—

3.20 -
3.00 —

2.80—

2.60T

T 5 10 15 20 25 30
Number of Concurrent Queries

Figure 6: M3, no Data Sharing

Equal Frequency Query Mix

Figure 6 depicts the result of running query mix M3, where sequential and looping references
occur as frequently as random references. In this case, MGR performs much better than all
other strategies. The group of MG-x-y and EDU algorithms have similar performance which is
significantly better than the LLRU and GLRU. As can be seen, MGR using FCM outperforms
the probabilistic method used in MG-x-y and EDU, and the inferior LRUs.

Effect of Sequential and Looping References

Figure 7 compares the throughput of evaluating query mix M1 using different algorithms. Since
sequential and looping references dominate, the use of pattern prediction and flexible allocation
makes MG-x-y perform better than EDU. Load control does not has as much impact as buffer
allocation in sequential and looping query mix. However, MGR, performs even better than MG-
X-¥.

Effect of Random References

Query mix M2 simulates the effect of random references. Figure 8 shows the throughputs.
In this case, the improvement of MG-x-y over LRUs is less substantial when compared to the
previous figure. This is attributed to its inability to characterize random references. On the
contrary, EDU now outperforms MG-x-y due to its ability of blocking a random reference when

available buffers are not sufficient to increase or keep the system performance, thus avoid the

18

FCcooSWQCOoOTITH

~C ToQCOoOTITH

9.50—

9.00—

8.50

8.00

7.50

7.00

6.50

6.00

5.50

5.00

4.50

4.00

Number of Concurrent Queries

Figure 7: M1, no Data Sharing

3.40—

3.20—

3.00—

2.80—

2.60—

2.40 -

2.20—

2.00—

1.80—

5 10 15 20 25
Number of Concurrent Queries

Figure 8: M2, no Data Sharing

19

5.50—

.. MGR .~

o
Q
T

450 7 o>

“C T QCOT"ITH

4.00—

3.50—

Number of Concurrent Queries

Figure 9: M3, Partial Data Sharing

performance degradation. MGR, however, still provides substantial performance improvement,

due to its ability to correctly characterize random access behavior.

Effect of Data Sharing

We used query mix M3 in this set of experiments. Figure 9 shows the result of partial data
sharing. EDU now again performs fairly better than MG-x-y after concurrency level reaches 12.
MGR remains a lot better than all the others.

Figure 10.a shows the effect of full data sharing. For concurrency levels between 1 to 8, GLRU
outperform all other strategies including MGR. This is because in full data sharing, it is easy for
global LRU to keep the locality sets of a few queries in buffers. However, when the number of
concurrent queries increases, this advantage disappears because the overall locality set becomes
too large to be accommodated by the buffer pool, and thus MGR and EDU win again. In this
simulation, EDU is close to MGR, which indicates that when data sharing increases, the impact

of buffer allocation decreases. Overall GLRU and MG-x-y perform roughly the same.

If the buffer pool gets smaller, from 1,000 to 600, the effect of full data sharing become less
significant. This is shown in Figure 10.b, where GLRU now degrades drastically. Also, the
performance improvement of MGR over EDU now increases again. This indicates that when
buffer contention occurs, the buffer management algorithm which can characterize the reference

behavior more accurately will result in better buffer utilization.

20

TS MGR

6.00|

5.50
T n

I 550 N s0q
r o

(o] u

u g

g 500 h 4.50
h o]

p u

U 4.50 t

t 4.00

4.00|
3.50

3.50|

5
Number of Concurrent Queries Number of Concurrent Queries
@ (b)

Figure 10: M3, Full Data Sharing, (a) 1000 buffers, (b) 600 buffers

To summarize, our simulation results show that MGR makes significant performance improve-
ment over the pattern prediction style algorithm MG-x-y and the load-control-oriented algorithm
EDU. In all cases of query mixes with no data sharing, MGR, outperforms the second best strat-
egy with 15% — 30% throughput improvement in average. We also observed the effect of data
sharing, the results showed that, except for the cases of full data sharing with a very large buffer
availability and small concurrency level, MGR is still favored. In sum, the significant performance
of MGR over EDU and MG-x-y can be attributed to the advantage of using query feedback in
adjusting buffer management which is more accurate than the pattern prediction and probabilistic

methods.

6 Conclusion

In this paper, we propose the concept of using query execution feedback for improving database
buffer management. A query feedback model which quantifies the page fault characteristics of
all query access patterns including sequential, looping and most importantly random, is defined.
Based on this model, a simple load controller and a buffer allocation scheme using marginal gain
ratio are developed. The allocation scheme distributes the buffers among concurrent reference
strings according to their quantified characteristics. An extensive set of simulations was conducted
to compare the performance in throughputs of the proposed method with other existing ones. The
simulations show that the proposed method is consistently better than the previous methods and

in most cases, it significantly outperforms all other methods for random access reference patterns.

21

The advantage of MGR is the tuning of the buffer management techniques based on the real

access behavior obtained by query feedback rather than probabilistic query path analysis where

crude assumptions such as uniformity have to be made. Furthermore, since queries are treated as

reference strings, our approach is applicable not only to relational algebra access paths but also

to access paths of other more advanced database systems such as deductive and object-oriented

databases.

References

[BDTS3]

[Bel66]

[CDS5]

[Che92]

[EH84]

[FNS91]

[Kaps0]

[M+70]

[INFS91]

[0O0W93]

[ReiT6]

[RES93]

D. Bitton, D.J. DeWitt, and C. Turbyfill. Benchmarking database systems, a systematic
approach. In Procs. of 9th VLDB, 1983.

L. Belady. A study of replacement algorithms for a virtual-storage computer. IBM
Systems Journal, 5(2):78-101, 1966.

H. Chou and D. DeWitt. An evaluation of buffer management strategies for relational
database systems. In Proceeding of the 11th Intl. Conf. on VLDB, pages 127-141, 1985.

C. Chen. Adaptive query optimization. Thesis Proposal, Department of Computer
Science, University of Maryland, College Park, Nov. 1992.

W. Effelsberg and T. Haerder. Principles of database buffer management. ACM TODS,
9(4):560-595, 1984.

C. Faloutsos, R. T. Ng, and T. Sellis. Predictive load control for flexible buffer alloca-
tion. In Proceeding of the 17th Intl. Conf. on VLDB, pages 265274, 1991.

J. Kaplan. Buffer management policies in a database environment. Master’s thesis,
University of California, Berkeley, 1980.

R. Mattson et al. Evaluation techniques for storage hierarchies. IBM Systems Journal,
9(2):78-117, 1970.

R. T. Ng, C. Faloutsos, and T. Sellis. Flexible buffer allocation based on marginal
gains. In Proceeding of 1991 ACM-SIGMOD Intl. Conf. on Management of Data,
pages 387-396, 1991.

E. J. O’Neil, P. E. O’Neil, and G. Weikum. The LRU-K page replacement algorithm
for database disk buffering. In Proceeding of 1993 ACM-SIGMOD Intl. Conf. on Man-
agement of Data, pages 297-306, 1993.

A. Reiter. A study of buffer management policies for data management systems. Techni-
cal Report TR-1619, Mathematics Research Center, University of Wisconsin-Madison,
1976.

N. Roussopoulos, N. Economou, and A. Stamenas. ADMS: A testbed for incremental
access methods. To appear in IEEF Trans. on Knowledge and Data Engineering, 1993.

22

[RR76]

[SB76]

S582]

[5586]

[Tue76]

[YaoT77]

J. Rodriguez-Rosell. Empirical data reference behavior in data base systems. [FEFE
Computer, 9(11), Nov. 1976.

S.W. Sherman and R.S. Brice. Performance of a database manager in a virtual memory

system. ACM TODS, 1(4), 1976.

G. Sacca and M. Schkolnick. A mechanism for managing the buffer pool in a relational
database system using the hot set model. In Proceeding of the 8th Intl. Conf. on VLDB,
pages 257262, 1982.

G. Sacca and M. Schkolnick. Buffer management in relational database systems. ACM
TODS, 11(4):474-498, 1986.

W. Tuel. An analysis of buffer paging in virtual storage systems. IBM Journal of
Research and Development, 1976.

S.B. Yao. Approximating block accesses in database organizations. Communications

of ACM, 20(4), 1977.

23

