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Abstract

A systematic approach has been developed for
the kinematic analysis of multi-degree-of-freedom
robotic bevel-gear trains. The approach is based
on the idea that the motion of the end-effector
can be described by an equivalent open-loop chain
and that the relative rotations between every two
adjacent links in the equivalent open-loop chain
can be derived from a set of fundamental circuit
equations. The theory is demonstrated by the kine-
matic analysis of a robotic wrist.

Introduction

In order to position and orient the end-
effector of a manipulator arbitrarily in space, it
is necessary that a manipulator has six degrees of
freedom. If we 1imit ourself to single degree-of-
freedom joints, then an open-loop manipulator must
have six joints and seven links. The first three
joints, starting from the base, are commonly
designed to perform gross motion of the end-
effector, and the remaining joints are used to per-
form fine manipulation. For this reason, the first
three moving 1inks are commonly called the arm,
while the last three moving links the wrist. The
kinematic analysis of an open-loop robot manipula-
tor has been studied thoroughly in recent years.
See, for examples, references 5, 12 and 17.

Although open-loop manipulators are popular in
itself, in practice many manipulators are
constructed in a partially closed-loop con-
figuration to ease the actuator design and/or to
reduce the inertia loads on the actuators. For
example, the Cincinnati Milacron T3 uses a three
roll wrist mechanism which is made of a closed-loop
bevel-gear train 15, while Bendix Corporation used
a Rol1-Bend-Roll type bevel-gear wrist mechanism 2.
In contrast to the open-loop design, a manipulator
with partially closed-loop configuration has more
than six joints and the joints may be revolute,
prismatic and/or gear pairs. The kinematic and
dynamic analysis is, therefore, more complicated
than that of an open-loop type.

Various methods for deriving the displacement
equations for_spur-gear trains_can be found in the
literature 1,3,4,6-9,11,13,14,16 Perhaps, the

most promising approach is the systematic method
first introduced by Freudenstein 6, The method
utilizes the concept of fundamental circuits. The
method was elaborated in more detail by
Freudenstein and Yang 8, And recently, a computer
algorithm was developed by Tsai

In bevel-gear trains, the analysis is more
complex due to the three dimensional motion of the
gears and arms. Day, et al. * carried out the
analysis of a bevel-gear train using the concept of
fundamental circuit., However, the motion of the
arm is limited to a rotation about a fixed axis.
Freudenstein, et al suggested a tabular method and
a general_procedure for applying the method was
outlined 7. In this paper, it is shown that the
fundamental circuit equations can be applied to the
analysis of bevel-gear trains using the concept of
relative rotation. The principle is illustrated by
an example.

Kinematic Structure

Functional Representation

This is essentially the schematic drawing of
the mechanism, Shafts, bearings, gears and other
elements are drawn similar to their mechanical
construction. For reasons of clarity and simpli-
city, only functional elements essential to the
structure are shown,

Fig. la shows the functional representation of
a robotic bevel-gear train resembling the
Cincinnati Milacron T3 wrist mechanism 13, The
mechanism has three coaxial inputs, i.e. links 2, 6
and 7. Bevel gears 4, 5, 6 and 7 transmit these
rotations to the end-effector attached to link 4
and housed in the carrier 3. The axis locations of
the turning pairs are as follows:

Axis a : pairs 1-2, 2-7, and 7-6
Axis b : pairs 2-5 and 3-5
Axis ¢ : pair 3-4

Together, this mechanism contains 7 links, 6
turning pairs and 3 gear pairs, The three axes a,
b and c intersect at a point 0 as shown in Fig. la.
The end-effector possesses a spherical motion with
three degrees of freedom,



Fig. la. Functional schematic of a robotic
bevel-gear train.

Fig. 1b. Graph representation of Fig., 1la.

Graph Representation

In the graph representation, links are denoted
by vertices and joints by edges. In order to
distinguish a turning-pair connection from a gear-
pair connection, turning pairs are represented by
thin edges and gear pairs by heavy edges. The thin
edges are labeled according to their axis loca-
tions. Fig. 1b shows the graph representation of
the gear train shown in Fig. la.

From the graph of Fig. 1b, we observe that
there are three f-circuits (fundamental circuits):
(4,5)(3); (5,6)(2); and (3,7)(2). In this nota-
tion, the first two numbers for each circuit
designate the gear pairs and the third identifies
the arm. See References 3 and 6 for the definition
of fundamental circuit and how to identify the arm,
which is called the transfer vertex.

Canonical Representation

When there are three coaxial links in a mecha-
nism such as links 2, 3 and 5 shown in Fig. la, it
is always possible to reconfigure the turning-pairs
among the three links without affecting the func-
tionality of the mechanism. Fig. 2a shows the
turning-pair connections among links 2, 3 and 5 in
its original form. Figs. 2b and 2c show two alter-
native connections. The number of alternative con-
nections increases with the number of coaxial
links. This suggests a canonical representation
for the graph and its corresponding functional
schematic.

Fig. 2a. Three coaxial links

Fig. 2b. First alternative

Fig. 2c. Second alternative

Recall that a "walk" of a graph is an alter-
nating sequence of vertices and edges beginning and
ending with vertices, and a "path" is a walk in
which all the vertices are distinct. Also recall
that the subgraph obtained by deleting all the
geared edges from an epicyclic-gear train is a
tree. A path made of only thin edges is called a
thin-edged path. In this paper, we shall choose
the graph representation in which all the thin-
edged paths originating from the ground link have
distinct edge labels as the canonical graph, and
the corresponding functional representation as the
canonical schematic., The graph shown in Fig. 1b is
not canonical since the 2-5 and 5-3 edges in the
path 1 » 2+ 54+ 3 » 4 are of the same label. On
the other hand, the graph shown in Fig. 3b is cano-
nical. There are six thin-edged paths originating
from vertex 1, namely, 1 » 2, 152 »3, 1253
+4, 1+25 5,1 6and 1 » 7. Each of these six
paths have distinct edge labels. The corresponding
canonical representation of the mechanism schematic
is shown in Fig. 3a.



Fig. 3a. Canonical schematic of Fig. la.

Fig. 3b. Canonical graph of Fig. 3a.

The Equivalent Open-Loop Chain

The tree obtained by deleting all the geared
edges from a canonical graph represents an open-
loop kinematic chain consisting of 1inks and
lower pairs only. The kinematic analysis of any
link in an epicyclic gear train can, therefore, be
derived by performing the matrix transformation to
the open-loop chain starting from the ground link
and ending at the link of interest. In particular,
we define the thin-edged path which starts from the
ground link and ends at the end-effector link as
the "equivalent open-loop chain" for the wrist.
Fig. 4 shows the equivalent open-loop chain for the
wrist shown in Fig. la.

Fig. 4. The equivalent open-loop chain for the
wrist mechanism shown in Fig. la.

In order to facilitate the analysis, a coor-
dinate system (Xi, Yj, Zj) 1s attached to each link
of the equivalent open-loop chain in accordance
with the Hartenberg and Denavit convention as
shown in Fig. 4. Thus, coordinate system (X1, Y1,
Z1) is attached to 1ink 1 (the reference frame);
(X2, Y2, Z2) to link 2; (X3, Y3, Z3) to link 3; and
(Xq, Y4, Zg) to link 4 (the end-effector). The
origin of the first coordinate system is to be cho-
sen at the intersection of the Zj-axis and the com-
mon normal between Zj-axis and the last axis of the
arm. In Fig. 4, the origin 01 and the X1-axis
have been chosen arbitrarily since we do not know
how the wrist is attached to the hand at this time.
Also, the Xj, i=1 to 4, axes are not shown in Fig.
4, since they are all perpendicular to both Y; and
Zi axes according to the right-hand-screw rule.

The Hartenberg and Denavit parameters for the
equivalent_open-loop chain of the Cincinnati
Milacron T3 wrist are given in Table I,

Table I, Hartenberg and Denavit Parameters

for the Cincinnati Milacron T3 Wrist Mechanism

1 3 o4 d;
1 0 a dl
2 0 -a 0

3 0 0 d3

where aj and aj denote the offset distance and the

twist angle between axes Zj and Zj+], respectively,
and dj denotes the translational distance along the
Zj axis.

The equivalent open-loop chain shown in Fig. 4
has been sketched in the configuration in which all
the Xj, i = 1 to 4, axes are parallel to each other
and pointing out of the paper. We shall denote
this position as the "zero position" of the wrist
mechanism, and refer to the displacement of a link
{or a gear) in the mechanism as the rotation of the
link with respect to this reference position, posi-
tive or negative in accordance with the right-hand-
screw rule,

We note that in order to analyze the equivalent
open-loop chain, we need to know the relative angu-
lar displacements of links 4 to 3, 3 to 2, and 2 to
1. These relative angular displacements are to be
derived from the fundamental circuit equations
described in the next section.

Fundamental Circuit Equations

Let i, j denote the vertices of a gear pair in
an f-circuit in which k is the transfer vertex.
Then 1inks i, j and k constitute a simple epicyclic
gear train, and the following fundamental circuit
equation applies:

ik = Ny 85k (1)



where g4y, 8jk denote the relative angular displa-
cements of gears i and j with respect to the arm k,
and Nji denote the gear ratio of the gear pair ij.
Nji =+ T3/Tj, if a positive rotation of gear j
with respect to the arm k produces a positive
rotation of gear i; and Njj = -Tj/Tj, otherwise,
where Tj and T; denote the number of teeth on

gears j and i respectively, and the sense of rota-
tion is defined by applying the right-hand-screw
rule to the rotation of a gear about its Z axis.

By definition, 673 = - 657 and Njj = 1/Njj for all
i and j. Equation (1) is valid whether the gear
train is of spur-gear type or bevel-gear type, and
whether the arm is fixed or rotating, We can write
Eq. (1) once for each f-circuit in the mechanism.
For the gear train shown in Fig. 1 we have

F-circuit (4,5)(3), 043 = Ngg 8c3 (2)
F-circuit (5,6)(2), 85y = N65 862 (3)
F-circuit (3,7)(2), 039 = N73 07 (4)

where Ngp = - To/Tys Nep = - Tg/Tgs and Ny =
T5/73.

We observed that @43 and 632 in Egqs. (2) - (4)
are the relative angular displacements needed for
the analysis of the equivalent open-loop chain,
and, 653, 862, 0672 and @52 are unknown angular
displacements which should be expressed in terms of
the three inputs: 621, 61 and e71. This can be
accomplished by the following coaxial conditions.

Coaxial Conditions

Ltet i, j and k be three coaxial links, then the
relative angular displacements. among these three
links are related by the following condition:

where g denote the relative angular displacement
of link 1 with respect to link j. For the mecha-
nism considered, we have

853 = 059 ~ 837 (6)

862 = 861 ~ 991 (7)
and

872 = 871 = 81 (8)

The Displacement Equations

The fundamental circuit equations along with
the coaxial conditions completely define the rela-
tive angular displacements of the bevel-gear train.
The equations are linear which can be solved in
closed form or by computer algorithms. For the
mechanism shown in Fig. la, the analysis is given
as follows.

Substituting Eq. (8) into (4), yields

632 = N73 (871 - 021) (9)
Substituting Eq. (7) into (3), yields

852 = Ne5 (861 - 821) (10)

Substituting Eqs. (9) and (10) into (6) and then
the resulting equation into (2), yields

843 = N54 [Nes (861-021) - N73 (871-821)] (11)

Equations (9) and (11) express the rotation of
the end-effector about the Zp and Z3 axes in terms
of the three input displacements: 921, 661 and
871. The position and orientation of the end-
effector with respect to the frame, the (Xj, Yi,
1) coordinate system, can be obtained from the
following matrix of transformation:

T=A A Ay (12)
where
C8p1 ~CoSBpy  SaSby; g
931 CaCoy SaChy O
1= (13)
0 Sa Ca d
0 0 0 0
_ce32 ~CasBy, -Sasfyy 0
S93p  Caclz, SaChy, 0
Aye (14)
0 -Sa Co 0
| 0 0 0 1
$043 ce43 0 0
A3e (15)
0 0 1 dy
0 0 0 1

where C8ij = COSBijs SO4j = sineij, Ca = COSa
and sq = Sing.

Let pj be the position vector of a point in the
end-effector and expressed in the ith coordinate
system, and let Uj be a unit vector that is
attached to the end-effector and expressed in the
ith coordinate system, then



7, - TP, (16)

U& =T Uh (17)

where
B; = [Pxis Pyis Pzj, 11 (18)
U = [uxi, uyjs uzi, 03F (19)

and t denotes the transpose of the matrix. .

Orientation of the Third Joint Axis:

In the analysis of a robotic wrist, very often
we are interested in knowing the orientation of the
end-effector. Let Z3] be a unit vector attached to
the Z3-axis and expressed in the lst coordinate
system as shown in Fig. 4, then

Z3; = Aj A, [001 0]t (20)
Substituting Eqs. (13) and (14) into (20), yields

=-SacCo 2159 32-SaCa5921C632+5aCaS 921
331= =S8 ,1583,+SaCaCh,1 CO3,=SaCaCoy,
szace32+c2a (21)

0

Orientation of the Second Joint Axis:

Similarly, let Zp1 be a unit vector attached to
the Zp-axis and expressed in the 1lst coordinate
system, then

Eél =[ Sas®,) -Sachy; ca O It (22)

We observe that the Zp-axis can be kept stationary
by holding s21 constant. The Z3-axis can also be
kept stationary by holding the rotations of links 2
and 7. Under this condition the end-effector spins
about the Z3-axis via the rotation of gear 6.

The Angular Velocity Equations

The magnitudes of the relative angular veloci-
ties between links 3 and 2, and 4 and 3 can be
obtained by taking the time derivatives of Egs. (9)
and (11) as shown below:

w3z = Ny3 (wg) = wpy) (23)

943 = Ngg [Ngs (wg) - wp1) = Np3 (upy = wpy)] (24)

where wij denote the magnitude of the angular velo-
city of 1ink i relative to link j, the direction of
which is defined along the common Z-axis between
links i and j. The angular velocity vector w41, of
the end-effector is given as:

gy T gy T3y tugp Zpp tougy Zpy (25)

where 7Z31 and Zp] are given by Egs. (21) and (22),
and Z1] is the unit vector along Zj-axis.

Summary

We have shown that the kinematics of spatial
robotic bevel-gear trains can be analyzed in a
systematic manner, The procedure is very general
and can be applied to the kinematic analysis of any
multi-degree-of-freedom bevel-gear train. The pro-
cedure can be summarized as follows:

(a) Sketch the functional representation/schematic
of the gear train. Number each 1link and label
the axes of the turning pairs.

(b) Determine the degrees of freedom, the input
links, and the ground link for the gear train.

(c) Draw the graph of the gear train from which
determine the fundamental circuits and the
transfer vertices.

(d) Transform both the graph and functional repre-
sentations into canonical forms and then deter-
mine the equivalent open-loop chain for the
gear train.

(e) Assign a coordinate system to each link of the
equivalent open-loop chain according to
Hartenberg and Denavit convention, and then
define the zero-position and gear ratios for
the gear train.

(f) Derive the relative angular displacement

equations for all the fundamental cir-

cuits,

Derive the appropriate coaxial conditions,

Solve the angular displacement equations.

Solve the matrix of transformation for the

equivalent open-loop chain and obtain the angu-

lar velocity equations when necessary.
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