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There are hundreds of millions of songs available to the public, necessitating the use 

of music recommendation systems to discover new music. Currently, such systems 

account for only the quantitative musical elements of songs, failing to consider 

aspects of human perception of music and alienating the listener’s individual 

preferences from recommendations. Our research investigated the relationships 

between perceptual elements of music, represented by the MUSIC model, with 

computational musical features generated through The Echo Nest, to determine how a 

psychological representation of music preference can be incorporated into 

recommendation systems to embody an individual’s music preferences. Our resultant 

model facilitates computation of MUSIC factors using The Echo Nest features, and 

can potentially be integrated into recommendation systems for improved 

performance.  
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Preface 

This thesis is the culmination of three years of research by Team MUSIC of the 
Gemstone Program in the University of Maryland Honors College. We are a diverse 
group of undergraduate students, ranging from majors of Electrical Engineering to 
Neurobiology and Physiology. All of our members enjoy listening to and discovering 
new music, as was the inspiration for joining this project for some members, and most 
of us play some type of musical instrument. The past few years have been both a 
rewarding and challenging experience, as we originally started with twelve members, 
and over the years found ourselves as a small, tightly knit group of six. We have had 
the wonderful opportunity to present our research at the Summer 2015 Society for 
Music Perception and Cognition Conference, and the pleasure of meeting and 
communicating with a few experts in the field of music information retrieval along 
the way.  
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Chapter 1: Introduction 

1.1 Overview of Research 

Music recommendation services are continually developing in response to the 

overwhelming library of music available, as it has become increasingly challenging 

for people to discover relevant music with an average of over 75,000 albums released 

every year in the U.S. (Peoples, 2011). While innovative ways to classify and 

organize the rapidly expanding body of songs have been applied by recommendation 

systems such as Spotify, Pandora, and iTunes, these systems fail to consistently 

predict songs that ideally represent user preference (Barrington, Oda, & Lanckriet 

2009). It has been suggested that current recommendation systems are missing a vital 

component – one which may ultimately produce more accurate recommendations: a 

connection between the intrinsic qualities of the music, and how listeners perceive 

their music (Laplante, 2014). For the purposes of our research, we refer to the 

intrinsic qualities of music as any musical attribute, such as tempo, key signature, and 

instrumentation, which characterizes an individual song. Spotify and Pandora have 

generated characteristic analytical approaches to modeling songs, while iTunes 

integrated user-trend analysis in an attempt to predict user preference. Yet, as far as 

our review of literature has uncovered, there has been little to no unification of these 

bodies of data – preferential and analytical – to produce recommendations that are not 

only based in the inherent qualities of the music, but additionally based upon how the 

user perceives each song. 
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1.2 Overview of Current Music Recommendation Systems 

In general, current recommendation systems rely upon data mining of 

homogenous data sets of user trends or quantitative music models. By relying 

primarily on only one type of data, these systems fail to account for the methods in 

which listeners perceive the different combinations of features prominent in a song. 

While the amount of active users of these systems is substantial, reaching tens of 

millions in the case of Pandora and Spotify (Adegoke, 2014; “Spotify vs. Pandora: 

Number of active users,” 2014), the recommendation accuracy can still be improved 

upon in various aspects. The overall performance of these systems may be inherently 

limited by their “one-sided” data set, as illustrated below in Table 1, and discussed in 

further detail in the literature review section (Section 2). Our focus group study 

results (Section 3) also provide examples of user attitudes toward the performance of 

current music recommendation systems.  

 
Table 1. Summary of current music recommendation system methods  
 
Recommendation 

System Approach Recommender Details Deficiencies 

Pandora Internet 
Radio 

Expert 
Analysis 

Songs modeled by 450 
attributes evaluated by 
professional musicologists 

 
• Inefficient for large collections 

of songs 
• Human bias 
• Cultural bias 

Spotify Quantitative 
Analysis  

Signal processing method to 
automatically generate attribute 
vector for each song 

• Relies heavily on intrinsic song 
similarity 

• No known interaction with 
music perception 

iTunes Genius User Trends  
Songs are related using general 
trend of overall user 
preferences 

• Neglects intrinsic song 
information 

• Generalizes user preferences 

    



 

 
 

3 
 

1.3 Early Stages of Research 

In the initial stages of this research, we desired to create a music 

recommendation system or model that would be based on musical features. We 

originally proposed the development of a model in which the feature metrics were 

generated through signal processing and analysis of the songs. Through signal 

processing, we would generate musically intrinsic features as a basis for more 

objective classification of songs (as compared to human designation of values). The 

resultant feature analysis would be representative of the quantitative audio signal of 

each song. Additionally, we proposed that an automated signal processing system 

would be more effective, as song recommendations could be readily produced 

without requiring human evaluation to assign values to each feature, as done in 

Pandora’s Music Genome Project (“About the Music Genome Project,” 2014). 

In regards to extracting music features, we had planned to use signal 

processing toolkits in MATLAB, such as the MIR (Music Information Retrieval) 

Toolbox (Lartillot & Toiviainen, 2007), to gather information regarding song 

features. Of the preprocessing methods we researched, we discovered that a common 

processing technique involved the transformation of the audio signal in its frequency 

domain using the Mel Scale. This scale is a logarithmic transformation of an audio 

signal to account for the timbral ranges perceived by the human ear (Seyerlehner, 

2010). We attempted to acquire this transformation by computing Mel Frequency 

Cepstral Coefficient (MFCC) features in MATLAB (Tzanetakis & Cook 2002; 

Seyerlehner, Widmer, & Pohle 2008). These features were successful in some cases, 

but ultimately they proved insufficiently discriminative to be useful for our purposes.  
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In addition to these features, we investigated the use of features based on 

Block Level and Frame Level processing of audio signals and their spectra. Frame 

Level analysis takes millisecond fragments of the audio signal and pulls out 

characteristic information that describes musical features of those small sections, 

while Block level analysis groups a collection of frames together to produce a vector 

for different sections of the song, each describing a collection of features 

(Seyerlehner, 2010). We attempted this methodology through use of the sample 

LabRosa MATLAB functions related to MFCC generation and visual representation 

of speech processing provided by Dan Ellis on his MATLAB Audio Processing 

Examples webpage (http://labrosa.ee.columbia.edu/matlab). Using these examples as 

a learning basis, we planned to develop a global feature vector for each song, which 

would be representative of the song’s signature. In order to generate song 

recommendations, we would compare feature vectors between different songs 

through a machine learning program. 

After a period in which our attempts to perform these signal processing 

methods were ineffective, we discovered that a large portion of musical signal 

processing had already been performed by The Echo Nest (“Spotify Echo Nest API”), 

whose features were obtainable via an open source API (application programming 

interface). The extensive database of this company had a large number of features 

readily available, such as valence, loudness, and danceability – and many of these 

features have already been produced for an immense number of songs (“Acoustic 

Attributes Overview”). Various programs such as Spotify use The Echo Nest feature 

data to power their recommendation engines. After discovering this useful tool, we 
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concluded that the previous methodology was too broad for us to feasibly accomplish 

within the time we had left to complete our research. We ultimately decided to focus 

on incorporating predetermined features from The Echo Nest into our approach that 

would use information regarding music perception, and analyzing how they could be 

used more effectively to produce quality music recommendations. 

1.4 General Research Questions 

Our shift in research direction and scope led us to new research questions that 

were more suitable for our team size and timeframe. Our new research questions 

became the following:  

1. How can music perception be incorporated into an automated 

recommendation system? 

2. How will such a system effectively and accurately embody an individual’s 

music preferences?  

Currently, music recommendation methods have a tendency to account only for the 

quantitative musical elements of songs, metadata, and overarching listener trends. 

This is ultimately causing music recommendation to become an indistinctive, 

overgeneralized procedure, with a noticeable absence of analysis toward individual 

perception of music. Many state-of-the-art research studies in the field of music 

information retrieval (Laplante, 2014; Rentfrow, Goldberg, & Levitin, 2011; 

Soleymani, Aljanaki, Wiering, & Veltkamp, 2015) have demonstrated that music 

perception is an integral aspect for formation of music preferences. We decided to 

conduct our research such that we could investigate how to fill this gap in music 

recommendation. 
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Based on our new research direction, we formulated the hypothesis that an 

integration of an effectual model of music perception for preference into existing 

systems will lead to an improved music recommendation system. As we looked for 

models that could represent perception and cognition of music in humans, we 

discovered a well-regarded, highly cited model: the MUSIC Model, presented by 

Rentfrow, Goldberg, & Levitin (2011). This model describes a five-factor layout of 

the structure of individual musical preference, based on the more psychological 

qualities of music perception. In addition to analyzing the applicability of this model, 

we aimed to investigate how this model could be used to develop an automated, 

simplified five-factor model to be implemented in song recommendation for a more 

individualized experience. 

1.5 Purpose and Rationale of the Study 

Our research presents the combination of musically intrinsic features of songs 

with the five-factor MUSIC model for music preference proposed by Rentfrow et al. 

(2011). Similar models have been developed through multiple international studies to 

show that music preferences can be depicted through simplified systems of only a few 

factors (George, Stickle, Faith, & Wopnford, 2007; Desling, Bogt, Engels, & Meeus, 

2008; Schafer & Sedlmeier, 2009; Brown, 2012; Langmeyer, Guglhör-Rudan, & 

Tarnai, 2012). While there have been discrepancies in the opinions of researchers on 

the exact number of factors to include to develop an appropriate model, they tend to 

gravitate towards models of four to five-factors, like that of the MUSIC model. This 

model has only been derived from principal component analysis of participant data on 

song preference. While the MUSIC model may be an effective way to predict user 
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preference, it is not currently developed in a way that is efficient enough to be applied 

to millions of song recordings. The music features developed by The Echo Nest have 

been shown to accurately represent the acoustic attributes of a song (Bertin-Mahieux, 

Ellis, Whitman, & Lamere, 2011; Schindler & Raubner, 2014) in a manner that is 

efficient and objective. We therefore propose a means of producing MUSIC model 

factor values from The Echo Nest features, to produce a model that is simple, 

efficient, informed by research on human music preferences, and hence widely-

applicable. 

1.6 Method Framework 

1.6.1 Study 1 – Focus Groups on Music Recommendation 

Five focus group sessions were conducted with students from the University 

of Maryland at College Park to gain insight on the level of satisfaction with current 

recommendation systems. We additionally asked our participants to listen to and 

analyze thirty-second song segments chosen from ten different songs. They identified 

song characteristics that they found prominent when listening to the selections, and 

also described how they felt about each piece. This provided insight into what 

potential features users might find important when listening to a piece of music and 

evaluating the performance of a music recommendation system. 

1.6.2 Study 2 – Online Survey for Music Preference 

To evaluate the MUSIC model’s ability to predict song preference, 100 

participants from across the United States completed an online survey powered by the 

Qualtrics Online Survey Software (Qualtrics Survey Tool). Those surveyed were 
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tasked primarily with listening to one-minute segments from twenty songs previously 

analyzed by the MUSIC model (Rentfrow et al., 2011). A strong measure of 

correlation between the previously reported MUSIC factors and the preference ratings 

over a majority of the users would support the application of this model to a 

personalized music recommendation system. 

1.6.3 Study 3 – Modeling the MUSIC Factors with Echo Nest Features 

The Waikato Environment for Knowledge Analysis (Weka) (Hall et al., 2009) 

machine learning software suite was used to develop evaluate different classifiers’ 

modeling capabilities for determining a song’s MUSIC model from its The Echo Nest 

features. Sequential analysis of classifiers provided by Weka, such as Gaussian 

Processes and Isotonic Regression, were applied to unify The Echo Nest features and 

MUSIC factor values for all songs from Rentfrow et al. (2011, 2012) found in The 

Echo Nest library, excluding those used in Study 2 for testing purposes. 

1.6.4 Study 4 – Model Evaluation 

Once an appropriate model was determined, it was applied to fifteen of the 

twenty songs (as not all songs were found in The Echo Nest database) from Study 2 to 

experimentally determine their MUSIC factor loadings. These new values were 

applied to the preference data from the online survey via the same correlation metrics 

to evaluate the applicability of the MUSIC values determined from our model to 

personalized music recommendation. 
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Chapter 2: Literature Review 
 

2.1 Automated Music Recommendation 

Our research targets an area of music recommendation that has been largely 

neglected in commercial use: individual music perception. The systems in popular use 

are usually adequate for forming basic recommendations, and are capable of sorting 

songs into broad categories. However, a majority of users believe that there are areas 

for improvement and refinement of the recommendation process, as evident from an 

analysis of qualitative studies and commercial behavior of such programs. By 

understanding how these recommendation systems function, it is easier to recognize 

their limitations and determine why a more rigorous recommendation method – such 

as the one we propose in this thesis – is necessary. In this Section (2.1), we will 

review the current state of commercialized recommendation systems Pandora, 

Spotify, and iTunes Genius.  

2.1.1 Expert Analysis: Pandora Internet Radio 

Pandora Internet Radio (Pandora) is one of the most prolific and enduring 

examples of a commercialized music recommendation system (Celma, 2010), 

boasting a user base of 81.5 million active users ("Spotify vs. Pandora: Number of 

active users," 2014). Pandora has a thorough, ambitious approach to song 

recommendation, known as the “Music Genome Project”. The Music Genome Project 

was an attempt to model songs by a defined vector of approximately 450 attributes, 

each of which are assigned by human “professional musicologists” (Barrington et al., 
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2009). These experts are responsible for defining the descriptors for each song in 

Pandora’s database by assigning values to these attributes in an effort to envelope the 

song’s acoustic content. Attributes range from major and minor tonality and the 

degree of syncopation within a song, to the gender of the vocalist (Barrington et al., 

2009).  

While the impressive number of features within Pandora’s model suggests 

some level of versatility and reliability, the Music Genome Project-powered method 

faces inherent problems. The amount of time and effort required for analysts to rate a 

song’s attributes is fundamentally too intensive to sustain a constantly expanding 

song library, thus rendering the method infeasible in regards to automated 

recommendation within the scope of hundreds of millions of songs. One comparative 

music recommendation system research study (Magno & Sable, 2008) noted the 

“slow rate of content edition to the Pandora database.” 

Furthermore, this method introduces an element of human bias through the 

input of musicologists, as people tend to perceive music uniquely, especially groups 

from different cultures. Music enculturation has been documented by experts in the 

field of music perception as a phenomenon that affects scale pitches and note patterns 

(Morrison & Demorest, 2009). Music from a different culture has been shown to 

evoke a response different to music from a listener’s personal culture; this has 

specifically been cited in cases with Western listeners (Morrison & Demorest, 2009). 

By relying on musical experts to rate songs, Pandora introduces a level of subjectivity 

which may include cultural and human bias, thus reducing the reliability of its 

recommendations to an individual user.  
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Pandora’s Music Genome Project is an example of a content-based filtering 

algorithm (Bogdanov 2011), in which a song is described using self-contained, 

intrinsic characteristics, rather than metadata about the song (such as artist, album, or 

genre). In contrast to a content-based filtering system, Apple’s iTunes Genius makes 

use of collaborative filtering, wherein its recommendations are based upon the related 

song purchases of other consumers (Cremonesi, Garzotto, Negro, Papadopoulos, & 

Turrin, 2011).  

2.1.2 User Trend Approach: iTunes Genius 

For over 10 years, Apple’s iTunes has been available to the public as a media 

player and library with a digital media store, the iTunes Store. This provides Apple 

with a massive database of buyer trends from years of users downloading millions of 

songs and albums, in addition to other media. This metadata provides the backbone 

for iTunes’ recommendation service, iTunes Genius (Barrington et al., 2009). iTunes 

uses Gracenote's MusicID to recognize songs, artists, and albums from a user’s music 

library. This information combined with the user’s song ratings are compared with 

the metadata Genius has collected to generate playlists from the provided library and 

recommend new song purchases (Barrington et al., 2009). Genius therefore relies on 

little to no content-based information, and instead relies on the mindset that general 

buying trends should coincide with each user’s preferences. This type of collaborative 

filtering method has a tendency to keep lesser-known artists in obscurity, as the 

recommendations are based on the more popular artists and albums that are bought by 

users (Magno & Sable, 2008; Barrington, Oda, & Lanckriet, 2009).  
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2.1.3 Quantitative Approach: Spotify 

Spotify expanded its function in the music industry from primarily a music 

streaming site to offering user-specific recommendations upon acquiring The Echo 

Nest in 2014 (“Spotify acquires The Echo Nest,” 2014). The Echo Nest is a platform 

that utilizes signal processing methods to generate an understanding about songs as 

characterized by a set of multiple features that can be utilized by companies or 

programs through an application program interface (API). This API is marketed for 

use in music personalization, display of dynamic information about musical artists, 

audio fingerprinting for recognition purposes, and for applications in interactive or 

remixed music (“We Know Music…”). As of March 2016, The Echo Nest has 

analyzed over 37 million songs characterized by upwards of 1.2 trillion data points 

(“We Know Music…”). Spotify accesses from The Echo Nest song data including 

standard attributes such as tempo, key, time signature; self-developed characteristics 

such as energy and loudness; and artist data such as biographies, news stories, and 

similar artists (“Spotify Echo Nest API”). Spotify combines this quantitative data in 

an undisclosed manner to generate album recommendations and personalized 

playlists for its users. It is believed that Spotify relies too heavily on intrinsic song 

similarity to determine recommendations without incorporating the manner in which 

each song is comprehended by its users (“Spotify Echo Nest API,” 2015).  

In sum, the largest flaws with the current systems using one type of data set 

are inefficiency, inaccuracy, reliance on a significant amount of accumulated 

information from the user population, and failure to effectively utilize musical 

information inherent within the songs themselves. 
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2.2 The MUSIC Model 

2.2.1 MUSIC Model Overview 

A large portion of our model for determining music preference and perception 

is based on a five-factor model developed by Rentfrow et al. (2011). Their work is 

based on the psychological effects that music has on listeners, ranging from dopamine 

release to mental stimulation to the use of musical listening habits as self-identifying 

personality features. The researchers wanted to examine the different aspects of a 

musical composition and examine what specifically impacted the preference of a 

listener toward one specific type of music over another. Many other studies have 

researched similar ideas and have come to inconsistent conclusions as to exactly how 

many factors are taken into account by a listener when determining if they like a 

piece of music, these numbers typically falling between three and seven factors. 

Rentfrow and his colleagues performed several studies to determine if underlying 

psychological factors are the basis for musical preference, and in the first study they 

established a rudimentary version of the five-factor MUSIC model (Rentfrow et al., 

2011).   

2.2.2 MUSIC Model History  

Dr. Jason Rentfrow and his colleagues first proposed a version of the MUSIC 

model in 2003 in the paper “The Do Re Mi’s of Everyday Life.” In this paper, they 

lay the groundwork for their future studies, as well as establish a framework for 

examining musical preferences as they relate to the personality of the listener. They 

examined four different questions relating to this overarching idea: how important is 



 

 
 

14 
 

music to the listener, what are the dimensions of music preference, how can these 

dimensions be characterized, and how do these dimensions correspond to extant 

personality dimensions. They examined these questions through a series of six 

studies, the first of which examined the importance of music in everyday life, the 

second, third, and fourth examined structure of musical preference, the fifth examined 

psychological attributes of music, and the sixth examined music preferences, 

personality, cognitive ability, and self-perception (Rentfrow and Gosling, 2003). 

2.2.2.1 – MUSIC Model First Study Review 
 

The first study utilized a questionnaire packet to examine the attitudes of the 

participants regarding their beliefs and attitudes regarding the importance of music in 

everyday life, whether or not subjects believe music preference has indication of their 

personality, and in what contexts people generally listen to music. This study was 

performed on 74 undergraduate psychology students at the University of Texas 

Austin. The results of this study demonstrated that the subjects considered music to 

be about as important as hobbies are to their everyday life, and that music preference 

is significantly meaningful. Additionally, the subjects believed that musical 

preferences revealed a large amount about their personality, with their importance 

being on a similar level to hobbies and bedrooms (M = 69.4, M = 76.5, and M = 63.4 

respectively, where M is importance). This study revealed the importance of music in 

everyday life, and served as a justification for the development of the MUSIC model 

(Rentfrow, 2003). 
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2.2.2.2 – MUSIC Model Second Study Review 
 

The second study utilized a test developed by Rentfrow and Gosling (2003), 

the Short Test Of Music Preferences (STOMP). This test was used to examine 

whether factor dimensions could be established for music preference. The study 

sample was comprised of 1,704 students at the University of Texas Austin. The 

subjects first completed the STOMP and a number of personality tests, then 

completed the STOMP three weeks later. The results of this study revealed four 

different rudimentary factors: Reflective and Complex, Intense and Rebellious, 

Upbeat and Conventional, and Energetic and Rhythmic. Each of these factors 

included a number of genres with inherent qualities that corresponded to each factor, 

for example, jazz (factor loading of 0.83), metal (factor loading of 0.75), pop (factor 

loading of 0.59), and electronica (factor loading of 0.60) would fall under the factors 

in the same order they are listed. Since the study took place over a number of weeks, 

they were able to examine the stability of musical preference over time, and 

confirmed that the musical tastes of the subjects tended to stay relatively stable over 

time. These results suggested to Rentfrow and Gosling that there existed an 

underlying structure to musical preference. 

2.2.2.3 – MUSIC Model Third Study Review  
 

The third study utilized the same methods from the second study, but 

attempted to confirm the generalizability of the factors and proposed structure across 

sample populations. As such, the sample was comprised of 1,383 University of Texas 

Austin undergraduate students, none of which had participated in the second study. 

Upon analysis of the results, Rentfrow and Gosling found that the factors and 
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structure did indeed remain consistent across populations, but there was little 

significant data regarding crossovers between factors. This ultimately provided more 

support for the four factor model they were proposing. 

2.2.2.4 – MUSIC Model Fourth Study Review 
 

The fourth study tested the four factor model and musical preference structure 

to see if it remained true across geographical locations. Using audiogalaxy.com, 

Rentfrow and Gosling categorized the music libraries of 500 users from 50 states, 

totaling 10 randomly selected users per state, into genres, and then 20 songs were 

randomly selected per user from their respective pools. They then employed judges to 

attempt classification and coding of each song into a genre covered by the STOMP, 

and upon completion the user preference for a specific factor was determined by the 

number of songs within that category. The results of the study correlated with the 

results from the previous two studies, and each factor loading was strong and properly 

oriented. Combined with the previous studies, these results show consistency across 

time, geographic region, and sample population. Based on these results, we can say 

that even this rudimentary model is a very strong predictor of individual music 

preference and can be generalized to any population in the U.S.  

2.2.2.5 – MUSIC Model Fifth Study Review 
 

The fifth study examined the attributes of music that allowed songs to be 

categorized into the four factor groups, and ultimately determined what qualities were 

descriptive of the four factors. To do this, Rentfrow and Gosling chose 25 songs for 

each of the 14 genres contained in the STOMP, and had judges evaluate each song on 

a five point scale to determine where each song would fall categorically. The results 
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showed that within the four factors, there were distinct musical attributes such as 

positive affect, negative affect, rhythm and complexity that defined the contained 

songs.  

2.2.2.6 – MUSIC Model Sixth Study Review 
 

The sixth study served to examine this established factor model and determine 

if there were correlations between the factors and various personality traits of 

listeners. To determine this, Rentfrow and Gosling administered a series of 

personality tests on the subjects from studies one, two, and three. The tests they used 

were: Big Five Inventory, the Personality Research Form – Dominance, the Social 

Dominance Orientation Scale, the Brief Loquaciousness and Interpersonal Response 

Test, the Rosenberg Self-Esteem Scale, the Beck Depression Inventory, the 

Wonderlic IQ Test, and a self-view test designed by Rentfrow and Gosling. The 

results of this experiment showed that different personality traits correlated to the 

genres of music that one would expect. For example, openness and athleticism 

correlated to Intense and Rebellious, extraversion and liberalism correlated to 

Energetic and Rhythmic, and conscientiousness and agreeableness correlated to 

Upbeat and Conventional. Additionally, the factors had overall correlations with the 

tests of 0.977 for Reflective and Complex, 0.863 for Intense and Rebellious, 0.923 for 

Upbeat and Conventional, and 0.851 with Energetic and Rhythmic. This study also 

showed that there was no strong correlation between emotional stability and 

depression with musical preference factors.  
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The sheer amount of testing and reproducibility of these rudimentary factors 

show that this model, even in its early stages, was and is very reliable in terms of 

determining the musical preferences of users, and as such, it can be used extensively 

for user analysis, and from that a recommendation system tailored to individuals can 

be established. The five-factor MUSIC model discussed in Section 2.2.3 below is 

very closely based on the original four factor model that Rentfrow and Gosling had 

generated in their initial research. 

2.2.3 The Five Factors of the MUSIC Model  

 The factors in this model - Mellow, Unpretentious, Sophisticated, Intense, and 

Contemporary - attempt to model the psychological basis of how people perceive 

music. Mellow describes the relaxedness, slowness, sadness, quietness, and other 

non-aggressive aspects of a piece. Unpretentious describes the lack of complexity, 

unaggressive, softness and acoustic nature. Sophisticated describes the complexity, 

intelligence, and dynamic nature of a piece. Intensity describes the distortion, 

tenseness and aggression of a piece. Contemporary describes the percussive nature, 

rhythmic nature, the current, and the danceability of a piece (Rentfrow et al., 2012). 

Table 2 provides descriptions of the MUSIC factors and typical genres that 

commonly match the key characteristics of each factor. 
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2.2.4 Model Development 

Each of these factors has weighted values that additionally describe how 

important a given factor is to a person when they listen to and make preference 

evaluations for music. Rentfrow et al. utilized Principal-Component Analysis (PCA) 

with Varimax rotation to determine that the first feature accounted for 27% of the 

variance in the test population, and that a following parallel analysis showed that five 

eigenvalues of the first factor were the most indicative of a trend. To develop the 

ratings for the factors, the Rentfrow team utilized the same technique on the music 

ratings that the survey participants gave to the sample songs. To determine factor 

loading, Rentfrow and his team performed a PCA with Varimax rotation on the data 

from an additional study where users ranked preference of song excerpts and genre 

    
 

Model Factor Abbreviation Description Typical Genres 

Mellow M Romantic, Relaxing, Unaggressive, 
Sad, Slow, Quiet 

Soft Rock, R &B,   
Adult Contemporary 

    

Unpretentious U Uncomplicated, Relaxing, 
Unaggressive, Soft, Acoustic 

Country, Folk, 
Singer/Songwriter 

    

Sophisticated S Inspiring, Intelligent, Complex, 
Dynamic, Cultured 

Classical, Operatic, 
Avant-Garde,        
World Beat,    

Traditional Jazz 
    

Intense I 
Distorted, Loud, Aggressive, Tense, 
Not Relaxing, Not Romantic, Not 
Inspiring 

Classic Rock, Punk, 
Heavy Metal,        

Power Pop 
    

Contemporary C Percussive, Electric, Rhythmic, 
Danceable, Not Sad 

Rap, Electronica, 
Latin, Acid Jazz, 

Euro Pop 

    

Table 2. Description of the factors present in the MUSIC model, as described by Rentfrow et al. (2012). 
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lists. This provided a basis for the final weighting, where five hierarchical regression 

analyses were performed by overlaying the loadings with the genres, resulting in 

correlations showing values from .74 to .96, with a p value less than .05 for each 

factor, qualifying them as very significant (Rentfrow 2012). These factors were tested 

on multiple occasions by Rentfrow and his colleagues, who determined them to be 

significantly accurate descriptors for musical perception (Rentfrow, 2012). A 

simplified depiction of the general approach sequentially used by the researchers to 

develop the MUSIC model is shown in Figure 1. 

Figure 1. Simplified methodology used to develop the MUSIC model through a series of survey studies 
by Rentfrow et al. (2011, 2012) 
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2.2.5 Model Versatility 

Additionally, a group at the University of Geneva was able to replicate the 

results from the Rentfrow experiments and apply them to previously uncharacterized 

songs, and obtained a confidence interval of about 70%, indicating that the model is 

well-made, and will be accurate even for songs that were not initially used in the 

original dataset (Soleymani et al., 2015). There is some debate on exactly how many 

factors are needed to comprise music preference and cognition, with numbers 

generally varying from four to seven, but we chose this five-factor model because it 

has been more thoroughly researched. The MUSIC Model has been proven to be 

accurate across cultures by a number of research groups in locations such as Japan 

(Brown, 2012), the Netherlands (Delsing et al., 2008), and Malaysia (Chamorro-

Premuzic, 2009) using culturally and geographically appropriate musical excerpts. 

The fact that this model works outside of the demographic it was originally designed 

around is a strong indicator of its versatility and overall strength as a model of 

musical preference.  

Another study was performed at the University of Montreal that examined 

what improvements could be made on musical recommendation systems, and named 

the incorporation of individualized musical taste as one of the more important factors 

(Laplante, 2014). They examined a large body of literature surrounding the influence 

of individual characteristics such as political orientation, race, ethnicity, religious 

beliefs, age, and several others on musical taste and preferences. They noted that 

many of these characteristics corresponded to between four and five features, which 

could be characterized fairly well by the MUSIC model (Laplante, 2014). Combined 
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with the cross-cultural effectiveness of the model, as well as its ability to account for 

a large number of individual characteristics, as a result the MUSIC Model has been 

shown to be an excellent indicator of individual musical preference and taste, which 

led us to select it as our primary factor model for our research. 

2.2.6 Application of the MUSIC Model to Music Recommendation 

The research of Soleymani et al. was useful in understanding the 

methodologies that might be useful for our research question, since it is the only 

example of applying the MUSIC model to music recommendation. It showed how the 

MUSIC model of Rentfrow (2011) could be used to overcome certain issues with 

current content-based music recommendation methods. Soleymani et al. identified 

several major flaws that content-based recommendation systems of the time were 

unable to overcome, even with the additional help of metadata. The largest problem 

this research set out to address was the cold start problem, where a computer model 

cannot adequately draw inferences for new users or items because it has no created 

points of reference for them. Because of this, the recommendations for new users or 

for new items are inaccurate for a significant period of time. There is also a problem 

from the significant bias created towards already popular items, also identified by 

Soleymani et al. 

Soleymani et al. used the samples of music from all of Rentfrow et al.’s five-

factor studies in 2011 (“The Structure of Musical Preferences: A Five-Factor Model”) 

and 2012 (“The Song Remains the Same: A Replication and Extension of the MUSIC 

Model”), for a total of 249 songs spread across 26 genres. They considered it 

important to use not only the studies on Jazz and Rock samples but also the ones that 
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used diverse genres of music, because one of their goals was to separate the five-

factors and the user preferences they modeled from qualitative genres, which are 

problematic in content-based music recommender systems. The five-factor approach 

would also allow a music-recommender system to bypass a similar flaw for genre 

preferences that Soleymani et al. observed, wherein “people tend to associate musical 

preferences with social stereotypes. And though the music might not appeal to a user, 

the stereotype does, which might influence his choices, especially in adolescence” 

(2015). Soleymani et al. believes that these “pitfalls” can be avoided by having users 

give preferences on sample clips of songs, as was done in Rentfrow et al.’s research. 

To test the validity of the five-factor approach to solving the aforementioned 

problems, Soleymani et al. used modulation analysis to extract timbral features from 

the music clips, using methodology from Sturm and Noorzad’s paper, “On automatic 

music genre recognition by sparse representation classification using auditory 

temporal modulations.” They claim to have made this decision because prior research 

has shown that auditory temporal modulation features “work well for genre 

recognition”. A series of transformations on this data were used to estimate the 

MUSIC factors. Three methods of training the model were tested: multilinear 

regression, support vector regression, and regression with sparse representation. 

Across the board, RSS had the best results. The results of the baseline methods 

(user’s average ratings, genre-based, similarity based, and artist based) and the 

attribute-based system were compared using root-mean-square error (RSME) values, 

and attribute-based recommendations were shown to have the lowest error with an 

RMSE value of 0.251±039. This leads Soleymani et al. to conclude that the five-
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factor attribute-based model is able to address the shortcomings of current music-

recommender system methodologies including genre ambiguity, a bias towards 

popular songs and the cold start problem. 

2.3 The Echo Nest 

Given the propensity of current music recommendation systems to utilize The 

Echo Nest for metadata purposes, there exists a large amount of information available 

from, and about The Echo Nest body of musical features. The Echo Nest is a very 

broad body of data that takes into account the more concretely defined features of 

music, such as tempo and key of a piece of music. The Echo Nest is used by some 

currently available music recommendation engines, Spotify being the most 

noteworthy one (“Spotify Acquires The Echo Nest,” 2014). Ellis and his colleagues 

have performed studies on The Echo Nest to determine its accuracy given a 10 million 

song dataset. From this work, they were able to extrapolate numerically similar songs 

given the similarities between the fingerprints of songs (Ellis, Whitman, Jehan, & 

Lamere, 2010). A song’s fingerprint is its collection of features from The Echo Nest 

values that are assigned to the song. The Echo Nest library can then be applied to the 

Million Song Dataset, which was developed by Ellis and Bertin-Mahieux solely to be 

a large amount of data for analysis using things like fingerprinting or metadata 

analysis (Bertin-Mahieux et al., 2011) 

This has provided us with a large body of data to test the crossover between 

the psychological model of preference and quantitative makeup of the songs. Since 

there is a distinct lack of literature surrounding the use of the MUSIC model in 

conjunction with The Echo Nest body of data, we have identified a gap in research 
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that we can fill. Given the accuracy and use of both, such a pairing could allow for 

the development an accurate and useful model that combines the cognitive factors 

with the computational features of The Echo Nest. A simplified outline of the way in 

which The Echo Nest could be used to obtain numerical feature values is shown in 

Figure 2. 

Figure 2. Simplified methodology for the extraction of quantitative music features from The Echo Nest 
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Chapter 3: Study 1: Focus Groups on Music Recommendation 
 

3.1 Methodology 

3.1.1 Motivation 

In our initial collection of data, we wanted to investigate the attitudes of 

music-listeners in regards to the performance of current popular music 

recommendation platforms, such as Spotify and Pandora. Collecting this information 

would allow us to identify which aspects of these systems users found satisfactory, 

and which aspects needed improvement for an ideal song recommendation 

experience. In our model, we would be able to improve upon the shortcomings of the 

current platforms. 

We furthermore set out to discover and familiarize ourselves with musical 

features, such as timbre and instrumentation, which listeners identified in songs. 

Certain features that engaged listeners as they developed their appreciation or dislike 

for a song would be considered more important in the application of music 

recommendation, and could potentially be integrated into our recommendation 

system. We determined that we would collect data on the frequency of musical 

features and implement these features into our recommendation system. 

When planning this primary data collection, we considered a variety of 

approaches, such as surveys and focus groups. We determined that type of the data 

we wanted to collect would be most appropriately gathered in the form of focus 

groups, for several reasons. We intended for our focus groups as a whole to provide a 
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more general understanding of the subject and a deeper level of communication with 

participants. Conducting focus group studies allowed us to experience face-to-face 

interaction and open-ended questioning with our research’s primary audience: people 

who regularly use music recommendation systems as a tool to expand their song-

listening base. We therefore conducted focus group sessions, in which we would 

facilitate discussion with participants regarding the general attitudes toward popular 

music recommendation systems, and musical features that are most impactful toward 

perceiving songs. 

3.1.2 Participant Enrollment 

Institutional Review Board (IRB) approval was obtained for up to five focus 

groups, jointly incorporating no more than 50 participants for $10 compensation each. 

Participation was limited to the students enrolled in the University of Maryland, 

College Park, mainly for the ease of locational and population availability. 

Information about our focus groups was circulated by posting administration-

approved flyers in highly populated areas around campus. The postings called for 

people that were “interested in talking about music” for an hour-long period, and 

advertised the compensation of $10 for participation in the focus group. Posting 

locations included North Campus Diner, the Clarice Smith Performing Arts Center, 

the Engineering and Chemistry buildings, the Computer Science building, the Art and 

Sociology building, the Susquehanna (English) building, and the Biology-Psychology 

building. A map of the University of Maryland, College Park campus that indicates 

the posting locations can be found in Appendix A1. The same information was 

additionally advertised through email listservs that cater to the Honors College and 
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the School of Music. This spread of advertisement was intended to create a diverse 

sample of students.  

3.1.3 Focus Group Operation 

Our five focus groups were held in a standard-sized classroom in the 

Hornbake Library on the University of Maryland, College Park campus (See 

Appendix A1). Before entering the focus group room, participants were presented 

with a consent form that outlined the research that they would be partaking in, the 

potential risks and benefits, a confidentiality statement and researcher contact 

information. All participants were required to read this information and sign the form 

to indicate their agreement with the statements before entering the room. Participants 

were additionally allowed to write any name they choose to be identified by for the 

session on a nametag that that would be used for the remainder of the focus group. 

We explained to each participant that we would not release or share any identifiable 

or personal information in our research, and that they would receive monetary 

compensation of $10 after the focus group had finished. While waiting for other 

participants to arrive, everyone filled out a demographic information sheet with 

information including their gender, ethnicity, and preferred genre of music. The full 

consent form can be found in Appendix A2.  

Participants sat in a circle facing each other, alongside two members of the 

team who acted as moderators to ask questions and facilitate discussion between 

participants. Each session was video recorded after obtaining written consent from all 

participants, and created transcripts of the recordings for later analysis. Only single 

copies of the recordings were retained under password protection, and stored on a 
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secure drive to avoid compromising the participants’ identities. Over a period of five 

sessions, each approximately an hour-long in duration, we were able to collect 

information from a total of thirty-seven student participants. 

3.1.4 Focus Group Structure 

3.1.4.1     Current Music Recommendation Methods 
 

The focus groups were organized into two main stages: 1) Recommendation 

System Discussion, and 2) Song Feature Analyses. In the first stage, we asked 

participants about their typical method for discovering new songs, and whether they 

used any recommendation platforms to assist them in finding music. This discussion 

of discovering new music involved the following questions:  

1. What is your process for discovering new songs? 

2. Do you use a music recommendation system to help you find new music?  

If so, which one(s)? 

3. How do you feel about the results provided by the recommendation system? 

This portion of the session was designed to develop an understanding of the 

expectations that users had for music recommendation systems, and categorize their 

attitudes toward music recommendation through general positive or negative 

inflection. 

3.1.4.2     Song Feature Analysis 
 

The second portion of our focus groups involved a procedure in which we had 

participants listen to song clips and then describe their reaction to hearing the music.  
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We chose the following songs for this process:  

“Bergamasque” by Debussy (1:00) 

“The Robots” by Kraftwerk (0:55) 

“Mi Raza” by Inkari (2:10) 

“All the Things You Are” by Charlie Parker (0:20) 

“From the Sun” by Unknown Mortal Orchestra (0:00) 

“Generation” by Liturgy (2:10) 

“Luv” by Nujabes (0:11) 

“Flaws” by Bastille (2:07) 

These songs were chosen as a whole to be representative of multiple genres of 

music that would provide contrast to each other. Each song was chosen to represent 

their respective genre because of their use of highly characteristic musical elements.  

• “Bergamasque” by Debussy was chosen for classical for the individual piano 

instrumentation, its melodic quality, open soundscape, and a lack of 

familiarity.  

• “The Robots” by Kraftwerk was chosen for techno/electronic for the heavy 

use of synthesizers, the distinct bassline, and repetitive robotic and futuristic 

sounding vocals and aesthetic.  

• “Mi Raza” by Inkari was chosen for its unique instrumentation and timbre, 

which are typical of Latin and South American music.  

• “All the Things You Are” by Charlie Parker was chosen for jazz for the strong 

presence of a lead saxophone, the quiet accompanying string and percussion, 

and the freeform flow of the music.  
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• “From the Sun” by Unknown Mortal Orchestra was chosen for rock for the 

repeating riffs, the low fidelity quality of the instruments, and the aural 

sensation of someone playing the instrument. 

• “Generation” by Liturgy was chosen for heavy metal because of the 

distortion-heavy, driving, and repetitive guitar riffs.  

• “Luv(sic) Part 1” by Nujabes & Shing02 was chosen for hip-hop because of 

the consistent bass and snare backbeat, the “scratching” sounds characteristic 

of hip-hop DJs, and the looped instrumental clips.  

• “Flaws” by Bastille was chosen for pop for the very upbeat, light 

instrumentals, the standard 4:4 time signature, and the incorporation of catchy 

synthesizer accompaniment.  

Within the scope of our focus groups, it was determined that the specific 

musical content of these eight songs should not be the primary concern of the 

experiment; rather, the observation of the participants’ responses to the types of 

features intrinsic to the music was the main goal. Thus, it may have been plausible to 

have presented differing set of songs to the participants and still have maintained the 

same integrity and overall purpose of the focus groups. 

Segments of approximately thirty seconds within each song were chosen that 

feature the prominent feature of the song, as discussed above. These segments were 

selected to be mostly non-lyrical, as we wanted to ensure that the lyrical content of 

the song itself was not influential in our participants’ reactions. The starting time of 

the selected segment is indicated above. To ensure that focus groups would be 

completed in a timely manner and to minimize participant fatigue, each group only 
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listened to five of the eight selected songs. The songs were selected by following the 

order given above. This sequence was used to separate songs with similar 

characteristics and to allow each song to sound fresh to the participant. While this 

approach could be seen to reduce the amount of data points we were able to collect, 

we felt that this allowed for better conversation of the songs among participants 

without surpassing the one-hour limit. Possible bias arising from the songs each 

group listened to was avoided in the analysis of the transcripts as solely on the types 

of features that participants discussed were extracted, not the exact details of the 

feature at the pertains to the song. 

Participants were asked questions following this format: 

1. How would you describe the music?  

2. What descriptors would you use to describe the song? 

3. What did you focus on the most when listening to the song? 

After listening to and discussing the five songs specified for the given session, the 

moderators facilitated a discussion regarding listening to music in general, asking 

participants to talk about characteristics of music that made them react in a certain 

favorable or unfavorable way. Many of the participants discussed how the song clips 

they had heard sounded similar to other songs they have heard previously. 

3.1.5 Data Analysis 

We created transcripts from the video recordings to be used for analysis of the 

focus groups. For the first part of each focus group session, occurrences were 

tabulated corresponding to each time a music recommendation service was named or 

discussed in a novel manner. Therefore cases of agreement were not counted as novel 
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occurrences. Additionally, each time a service was discussed it was categorized as 

positive, negative, or neutral, based on the experience being described or the word 

choice used by the participant. All cases that were considered ambiguous were 

classified as neutral. For the latter portion of the focus group sessions, comments on 

music were classified with respect to general music features. All transcripts were 

analyzed by at least two researchers to minimize any imposition of bias in this 

process. 

3.2 Results 

3.2.1 General/Demographic Information 

We initially conducted several focus group sessions for the purpose of finding 

out several pieces of information regarding music listening trends, frequently used 

services, as well as what sort of musical qualities were important in developing song 

preference. The participants were comprised of college age students, ranging from 18 

to 22 years of age. The participants comprised a variety of majors, from scientific and 

non-scientific backgrounds. We ran five sessions with a total of 37 participants. Of 

these, 20 identified as female, and 17 as male. The ethnicities were as follows: 11% 

Asian/Pacific Islander, 19% Black, 8% Hispanic, 49% White, and 11% were 

combinations of the aforementioned ethnicities. Participant listed music genre 

preferences were fairly diverse, with larger tendencies toward Alternative Rock/Pop, 

Classic Rock, Metal, Pop, and India Pop/Folk. A complete breakdown of the focus 

group participant demographics can be found in Appendix A3.  
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3.2.2 Attitudes towards Current Recommender Systems 

From these focus group sections, we were able to determine that a majority of 

the participants were constantly looking for superior music recommendation systems 

to the ones they were using at the time. The services that were most frequently 

mentioned were Pandora and Spotify, which were mentioned twenty two and sixteen 

times respectively as the primary method of finding and being recommended new 

music. All of the mentioned methods are shown in Figure 3A. Of those instances, a 

majority of the participants were dissatisfied with the results they were seeing from 

the services, with eight participants stating they were satisfied to fourteen stating 

dissatisfaction with Pandora, and six participants stating they were satisfied to ten 

stating dissatisfaction with Spotify’s recommendation system. The total population of 

participants stated that they were generally dissatisfied with extant recommendation 

systems, stating that they felt the systems were too generalized for mass amounts of 

users, and did not have much focus on what aspects of music the users actually liked. 

These statistics for all of the mentioned methods of finding new music are displayed 

in Figure 3B, and several quotes from participants can be seen in Figure 4. 
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Figure 3. Prevalence and options on sources of new music. A) The number of time each method of 
finding music was mentioned over all sessions is indicated.  B) Expressions of positive or negative 
feelings toward music recommendation methods are shown. In each figure, sources with an asterisk 
(*) indicate a conglomerate source. “Online Blogs” is defined as mentions of Tumblr, Billboard, 
various blogs, Myspace, music review sites, Google, and Soundcloud. “Related music” is defined 
as mentions of related artist lists and CDs. “Other Media” is defined as mentions of television and 
radio. Music ID Services is defined as mentions of Shazam and Soundhound. “Other Playlist 
Services” is defined as mentions of Songza and 8tracks. 
 

A) 

B) 
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Figure 4: Quotes from focus groups regarding recommendation systems. 
 
Spotify “...see the bands that sound 

like it, that are 
recommended, and they’re 
all just bands that I’ve heard 
of, guys that have like 40, or 
like no followers or 
something.” 

“If I start an artist 
radio based on a 
song I like, it’ll be 
like, ‘eh, it’s alright,’ 
and just keep 
skipping past stuff 
until I find stuff that 
I like.” 

“The songs 
[Spotify] 
recommend, I 
already know.” 

Pandora “I wouldn’t go to Pandora to 
find different types of 
music.” 

“It’ll like put you in 
a box. If you listen 
to one thing it’ll only 
suggest stuff that is 
related or sounds 
exactly like it.” 

“You get 
pigeonholed and 
[Pandora] starts 
repeating 
songs.” 

Genius “[Genius] was terrible, I didn’t like it. It never gave 
me good songs.” 

“They never 
have any of the 
songs that I have 
in my library.” 

Soundcloud “I’m not gonna hear about the new classical rock EP or something just 
by going through my Soundcloud feed.” 

 

3.2.3 Prominent Features Noted in a First Listen 

From the transcripts of the focus groups, we analyzed the number of mentions 

for specific musical features or qualities in an attempt to determine what the 

participants focused on predominantly when deciding whether or not they liked a 

piece of music. Over all of the sessions, we found that four specific features stood 

out, each being mentioned at least 30 times: instrumentation, perceived genre, 

rhythm, and song structure. The majority of other features were not mentioned nearly 

as much as these, so we can designate them as the several of the most important 

features for music categorization. 
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3.3 Discussion 

From the trends observed from our focus groups, we were able to draw several 

conclusions regarding the current level of satisfaction within usage of current popular 

recommendation systems, and how they could be improved if necessary. Within the 

focus groups’ discussions, the general dissatisfaction of the performance of popular 

recommendation systems suggested the need for a refined, different approach to 

music recommendation, providing validity to the development of our system. While 

some participants found these systems to be adequate in terms of musical discovery, 

others felt that they could be improved in the way of playlist generation and 

suggestion of new songs based on the user’s individual tastes. These results had 

demonstrated how there is room for improvement in the current state of music 

recommendation. Over half of the focus group participants voiced dissatisfaction with 

the tendency of systems, such as Spotify and Pandora, to neglect specific user profiles 

and personalities in favor of catering to a more generalized audience. While it may be 

logistically more efficient to design a more generalized recommendation system to 

process information for millions of users, these systems still exhibit deficiencies in 

terms of user specificity and how listeners respond to different song features. After 

conduction of the focus groups, we examined methods of how this user-system 

disconnect could be corrected by implementation of additional information regarding 

the user. We came to recognize that the deficit in current systems, as observed in our 

focus groups, could potentially be corrected through the integration of listener 

perception models, especially those formed through the expanding field of extant 

listener-psychology research (Rentfrow & Gosling, 2003; George et al., 2007; 
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Desling et al., 2008; Schafer & Sedlmeier, 2009; Rentfrow et al., 2011; Brown, 2012; 

Langmeyer et al., 2012; Rentfrow et al. 2012). As iterated in numerous psychological 

studies, music perception plays a significant role in the formation of musical 

preferences. Furthermore, many of our participants suggested that music 

recommendation systems should be able to take into account their mood - which 

provided additional reason for us to implement the music perception model into 

recommendation. 

In the song-listening portion of our focus groups, we had asked our 

participants to discuss the features of the music that they felt were most prominent 

and engaging in the listening process. This line of questioning provided insight into 

the relationship between personal song preference, and identification and perception 

of musical features. The most prominent features presented by our participants were 

instrumentation, perceived genre, rhythm, and song structure. We suspect that these 

features were represented with such frequency due to being relatively easy to 

understand for the average listener. Many listeners identify with a preferred genre or 

appreciate a song for its melody, which is broken down into key components, such as 

rhythm and song structure. Instrumentation has several associated features - 

particularly, the timbre and acoustic properties of the instruments used in the song. 

The song structure (e.g., melody) and timbre are often the most easily recognized and 

most defining attributes of a song (Schellenberg & Habashi, 2015), so it logically 

follows that our participants had also identified these features as important song 

properties for their song preferences. The results of the feature identification portion 

of the focus groups are further supported by previous studies (Istok, Brattico, 
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Jacobsen, Ritter, & Tervaniemi, 2013) that have confirmed the importance of music 

genre preferences in cognitive responses to music.  

Following the focus groups, we looked for ways of incorporating these 

primary listening features into our novel music recommendation method, while still 

allowing the recommendation to be automated to account for a large volume of songs. 

Within The Echo Nest API, we were able to obtain tempo, danceability, energy, 

speechiness, liveness, acousticness, and valence as features derived from the intrinsic 

properties (e.g., time signature, beats per minute) of the songs. On the basis of 

instrumentation acting as an important feature for song listeners in developing 

preference, we theorized that acousticness would be one of the more influential The 

Echo Nest factors of our recommendation method. In addition, we could integrate 

inferred information regarding the genre and structure of the song through the energy 

and valence features provided by The Echo Nest.  

There are some possible limitations to our focus group design. For instance, 

the number of participants was highly variant between sessions - some sessions had 

over ten participants, while others had seven or under. This variability was mainly 

due in part to the prospective participants’ decision to attend the focus group session, 

as we had scheduled each session to have close to the same amount of participants. 

Furthermore, some may consider our selection of the songs to be non-objective. We 

believe that the actual musical content of these songs was relatively arbitrary, since 

we were aiming to measure the reactiveness of participants to principle song features 

rather than specific song components. Finally, our focus groups demographics and 

age group were limited to the student body of the University of Maryland - if we had 
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had more time and more resources to collect the data from a more general population, 

we would have attempted to do so. 
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Chapter 4: Study 2: Survey on Music Preference 

 

4.1 Methodology 

4.1.1 Motivation 

The study and results obtained from using the MUSIC model (Rentfrow et al., 

2011) provided data that offered insights into the psychological aspects of music 

perception that was not directly accounted for in the feature values for songs from 

The Echo Nest API. Before attempting to bridge the gap between the mathematically 

precise The Echo Nest computations and the music perception data, we first tested the 

validity of the MUSIC model ourselves. We anticipated using the results from an 

online survey to see if trends in music preferences followed the trends in MUSIC 

factor values across the songs. This would justify using the MUSIC factor values 

along with The Echo Nest feature values in a machine learning model. 

4.1.2 Survey Structure 

Over a series of three articles, Rentfrow and his colleagues (Rentfrow & 

Gosling 2003; Rentfrow et al., 2011; Rentfrow et al., 2012) presented work regarding 

music perception and intrinsic human psychological traits. We crafted an online 

survey to include songs from the first article from the researchers that presents a fully 

developed five-factor model of music perception (Rentfrow et al., 2011) and tasked 

participants with reporting their preference on a numerical scale for the selected 

songs. Additional questions about song preference, genre preference, ethnicity, age, 

opinions on current music recommendation systems, comfort with listening to 
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different songs, and self-reported MUSIC factor values were also included. The 

survey required 32 questions to be answered in whole. See Appendix B1 for the full 

list of online survey questions. 

4.1.3 Participant Enrollment 

Institutional Review Board (IRB) approval was obtained to conduct the survey 

and use our results in publication.. Using the online survey service, Qualtrics, we 

were able to obtain survey data from 100 participants within the United States with a 

demographic spread comparable to that of the country as a whole. Due to the 

additional restrictions that would come from working with minors, we limited our 

survey participants to those 18 years of age and older. We also limited our participant 

to those less than 50 years of age because they are outside the target audience for 

music recommendation systems (Sikora 2015). 28% of our participants were 18 to 24 

years old, 28% were 25 to 34, 30% were 35 to 44, and 14% were 45 to 50 years old. 

The average age of our participants was 32 years old. Our participants reported a 

diverse range of ethnicities, with 4% identifying as American Indian or Alaskan 

Native, 6% as Asian or Pacific Islander, 20% as Black or African, 17% as Hispanic or 

Latino, and 61% as White or Caucasian. These percentages are roughly similar to the 

racial breakdown of the country, so we do not believe our data was unduly influenced 

by a certain ethnic background. There was more disparity in the gender of our 

respondents; 77% of our respondents were female and only 23% were male. We have 

no explanation for why the participants provided to use were so disproportionately 

female, but we do not believe that it impacted the validity of our results.  

 



 

 
 

43 
 

4.1.4 Song Selection 
 

Given that we wanted to keep the length of the survey at about 30 minutes, 

due to the desire to maintain participant interest and ensure that the cost of the survey 

was manageable, we decided to incorporate twenty songs into the main body of the 

survey. The songs presented in the survey can be found in Table 3 and the audio clips 

can be shared upon request. We imposed several criteria for choosing the songs from 

“Table 3: Five Varimax-Rotated Principal Components Derived from Music 

Preference Ratings in Study 1” from “The structure of music preferences: a five-

factor model” (Rentfrow et al., 2011). The selection process revolved around 

        
        
        

Artist Song Starting Time M U S I C 

Karla Bonoff Just Walk Away 1:35 0.65 0.27 0.26 0.15 -0.02 

Ace of Base Unspeakable 1:16 0.63 0.21 0.13 0.18 -0.01 

Billy Paul Brown Baby 1:51 0.46 0.35 0.26 0.17 0.16 

The Mavericks If You Only Knew 1:05 0.22 0.73 0.07 0.12 0.00 

Uncle Tupelo Slate 1:20 0.14 0.72 0.12 0.20 0.02 

Flaming Groovies Gonna Rock Tonight* 1:58 0.21 0.46 0.12 0.26 -0.03 

William Boyce Symphony No. 1 in B Flat Major 2:50 0.15 -0.03 0.78 0.05 -0.16 

Oscar Peterson The Way You Look Tonight 1:00 0.20 0.02 0.74 0.00 0.09 

Ornette Coleman Rock the Clock 1:18 -0.21 0.22 0.49 0.13 0.35 

Iron Maiden Where Eagles Dare 2:30 0.05 0.15 -0.02 0.71 0.03 

Owsley Oh No the Radio 1:58 0.07 0.06 0.04 0.69 0.09 

BBM City of Gold 1:35 0.16 0.29 0.07 0.59 0.04 

D-Nice They Call Me D-Nice* 1:32 0.02 0.08 0.10 0.17 0.76 

Ludacris Intro 0:00 0.03 -0.06 0.02 0.25 0.72 

Age Lichtspruch* 5:11 0.1 0.07 0.3 0.11 0.45 

Frankie Yankovic My Favorite Polka 1:00 0.00 0.41 0.59 0.09 0.1 

Booney James Backbone* 1:45 0.40 0.07 0.55 -0.03 0.23 

Eilen Ivers Darlin Corey* 1:41 -0.02 0.40 0.45 0.21 0.1 

Doc Watson Interstate Rag 1:00 -0.06 0.57 0.44 0.06 0.11 

Adrian Belew Big Blue Sun 1:30 0.28 0.12 0.12 0.35 0.02 

Table 3. Songs from Rentfrow et al. (2011) featured in survey with one-minute song segment starting at specified time. MUSIC Model 
factor loadings for selected songs additionally provided with permission. Bolded values correspond to significant loadings. Songs with 
asterisk (*) were not used in Study 4 (See Chapter 5). 
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choosing samples with a representative range of statistically significant factor  

loadings for each of the five MUSIC factors, such that no artists and genres were 

repeated. Statistically significant loadings were shown by the authors as those with 

values whose absolute value was greater than or equal to 0.40. All songs chosen as 

being representative of a MUSIC factor had a statistically significant loading on that 

factor. We chose two examples of high loading values for each factor. This was 

determined by looking at the highest factor loading listed, while also considering the 

genre and artist to avoid repetitiveness. We wanted the songs to be from a variety of 

artists and genres to minimize the bias towards any one music style. The genres 

represented included: Classical, Traditional Jazz, Acid Jazz, Mainstream Country, 

Country Rock, Rock-n-roll, Heavy Metal, Power Pop, Classic Rock, Soft Rock, 

Europop, R&B/soul, Rap, Electronica, Polka, Quiet Storm, Celtic, and Bluegrass, as 

identified by the authors of the article. We additionally chose one mid-level loading 

example for each of the factors. This was selected as a song whose factor loading for 

the respective factor was close to 0.40 while still being significant. This resulted in a 

total of three songs selected to represent each factor, or 15 songs in total. When 

possible, these representative songs were chosen so as not include songs with the 

highest or lowest significant loading in its representative factor. The testing set was 

rounded out with five additional songs that contained additional interesting 

characteristics. These included songs with multiple or zero statistically significant 

high loadings to see if they provided unique results about the connection between 

MUSIC factor loadings.  
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We chose one-minute segments of those songs so that we could present the 

listeners with a relatively high number of songs without losing a valid representation 

of the song itself. We decided that samples near the middle section of a piece would 

show the development of the introduction into the main themes of the song as well as 

the climax. We believe that this range of characteristics would provide the most 

representative one-minute segment of the song as a whole. To eliminate bias song to 

song on what this qualification meant, we developed a routine. We calculated the 

time when 40% of the song was completed, plus or minus five seconds, as the 

beginning of our one-minute segment. The five seconds was built in to remove 

awkwardness in the cutoff, such as beginning or ending in the middle of a word. The 

resulting starting times for the selected songs are given in Table 3. 

4.1.5 Data Analysis 

 Analysis of the data collected from this survey was completed mainly through 

regression analysis between the MUSIC factor loadings and each individual 

participant’s provided preference values. The ability of the MUSIC factors’ ability to 

model each participant's preference was analyzed. Finally, the results of this survey 

were additionally incorporated into an evaluation of our proposed method for 

determining MUSIC values for songs via an automated method (discussed and 

presented in Chapter 5). 

4.2 Results 

Our survey participants were able to select up to 5 preferred genres of music, 

and reported diverse preferences. The most preferred genres were Pop/Rock, R&B, 
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Country, and Rap with 74, 63, 42, and 40 respondents preferring them respectively. 

This was an unsurprising result, as these are four of the most prominent genres in 

contemporary American music. See Appendix B2 for a graph of the genre 

preferences. 

 To assess the participants overall responses to the songs, we compared the 

minimum value, 1st quartile, median, 3rd quartile, and maximum value of the 

preferences provided for each song. No song in the survey was universally loved or 

hated by the participants: every song in the survey had at least one participant rank it 

as a 1 and one rank it as a 6. The median and quartile values instead give a better idea 

of overall participant response to each song. The least popular songs were “Rock the 

Clock” by Ornette Coleman and “My Favorite Polka” by Frankie Yankovic. It is 

possible that these songs were generally disliked because their genres, acid jazz and 

polka respectively, are not likely familiar to our participants. The most popular songs 

included Intro by Ludacris, and My Name is D-Nice by D-Nice. Both of these songs 

are rap songs, and a large number of participants identified as preferring the rap 

genre, so this result is unsurprising. However, these songs had a fair number of 

detractors, suggesting that rap is a polarizing genre. This is consistent with the 

anecdotal evidence from our focus group studies. The other songs with high 

preference rankings included pop songs like Unspeakable by Ace of Base and Oh No 

the Radio by Owsley. This shows that among our participants pop music is generally 

considered inoffensive even if not preferred. A few participants were noticeably 

negative in their preferences, with an average rating of less than 2 for all of the songs. 
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One participant was very positive, with an average song ranking above 5.75. Most of 

the participants, however, ranked the songs an average score between 3 and 5. 

 In addition to ranking their preferences of songs, we asked the participants 

questions to create self-reported MUSIC factor values (Q34-Q38, Appendix B1), and 

questions about their music listening habits (Q9-Q11, Appendix B1). To self-report 

MUSIC factor values, participants were asked to indicate their preference on a slider 

bar from 1-6 of how much they prefer songs that could be described by adjectives 

used to define the MUSIC factors. These self-reported values were then transformed 

to a scale of -0.25 to 0.75. After reviewing the values, we decided that other methods 

of analysis would yield better insight into modeling music preferences. When we 

asked participants to describe how comfortable they are when listening to music that 

is of a different genre, 84% of participants responded that they were somewhat 

comfortable or comfortable. No participants responded that they were completely 

uncomfortable listening to music outside of their usual genres. There was a lot of 

variety in how often the participants listen to music outside of their preferred genres, 

but 4% reported that they never do, 15% reported that they do daily, and on average 

our participants listen to music outside their preferred genres several times a month. 

We asked our participants how they would rate the ability of current recommendation 

systems to recommend music that matches their preferences, and 60% reported that 

they find current recommendation systems to be less than satisfactory. This is 

consistent with the previous literature on the subject and the results of our focus 

groups, suggesting that a significant portion of users do not find that the current 

recommendation systems on the market meet their needs. 
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 In order to investigate the MUSIC model’s ability to model user preference, 

we applied multiple linear regression. Minitab Statistical Software was used to 

generate and analyze each regression model. A participant model was generated by 

applying multiple linear regression to the MUSIC values from the Rentfrow et al. 

studies (2011, 2012) and the song preference data of each participant in turn. A few 

different values were recorded for each model, including coefficient of determination 

R2 (as shown in Figure 5), but these parameters were not analyzed in depth for this 

study.  

The main method we analyzed our model was using an ANOVA test. 

ANOVA tables were generated for each participant model, which we were able to test 

for two types of hypotheses. The first hypothesis test was that all slope parameters 

were equal to zero. This gives an indication of the overall significance of our model. 

The second hypothesis was that each slope parameter on each MUSIC factor is zero. 

This yields a more specific analysis of the significance of each MUSIC factor in 

modeling music preference. Residuals were analyzed for major deviations from the 

inherent assumptions of this approach. The residuals checked for are independence, 

normally distribution, and for equal variance. This process was repeated for the 

preferences of each of the 100 survey participants for the four models we tested. 

These models were Direct Data, High/Low, Four-Point Categorical, and Four-Point 

Scale, or Quantitative (see Figure 5). The Direct Data model used the MUSIC factor 

values for the songs as given in Rentfrow et al.’s (2011) article. While this method 

ultimately revealed the most relevant results, we decided to explore the sensitivity of 

the MUSIC factor values by running a more simple models where the factor loadings 
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where binned into different groups. The simplest of which included just two bins: 

high and low. This constituted the High/Low Model. The values were considered high 

if greater than or equal to 0.4 (indication of a significant factor loading). The values 

were considered low if less than 0.4. A slightly more complicated, yet still simplified 

model, divided the factor values into 4 bins. This constituted the Four-Point models. 

The high and low bins were each split into two bins. The first bin included values -

0.25 to 0.09, the second included values 0.10 to 0.34 the third included values 0.35 to 

0.54, and the fourth bin was values above 0.54. The four-point scale was analyzed in 

two ways: one that considered the bins to be consecutive numerical values (Four-

Point Quantitative) and another that considered each as a nominal descriptor (Four-

Point Categorical). We took this approach of binning the MUSIC factors because we 

believed that there could be a decent amount of variation in what the exact factor 

loading as they were determined via surveys, not through any sort of qualitative 

analysis of the song. The purpose of evaluating these different models was to 

investigate how simple the model can be made while still holding meaning. From the 

linear regression, we used Minitab to calculate several parameters including S, R-

squared, R-squared(adj), PRESS, and R-squared(pred), however the only values used 

in our study were the R-squared values. These were calculated for each participant 

model for all four approaches, as shown in Figure 5. While we did not examine the 

binning methods in depth, we did notice some potential issues with them. We believe 

that the High/Low method is an oversimplification of the factors that lessens their 

fidelity. While the R-squared values for the Four-Point Categorical Model looked 

promising, the residuals for this model were strongly heavily tailed, and this 
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abnormality with the residuals could possibly invalidate this data analysis approach. 

The Four-Point Scale data set seems to retain more significance than the High/Low 

approach while still maintaining a more condensed representation of the MUSIC 

factor loadings. As the main purpose of our study was to investigate the MUSIC 

factor model’s ability to predict user preferences and not to optimize this method, we 

chose not to look further into incorporating transformations to allow for more proper 

residuals in modeling. Direct Data seemed to present the most accurate results than 

any of the optimization methods attempted, and so it was analyzed in the most depth 

from this point forward. 

 After our brief experimentation with different methods of binning and 

optimization, we returned to a more in depth look at the analysis that ANOVA 

Figure 5. Distribution of model performances as indicated by coefficient of determination for 
different model methodologies. Note that despite the notable performance of the 4 Categorical Bins 
Method, the regression of these models had largely non-normal residuals. 



 

 
 

51 
 

provided for the Direct Data participant models. We analyzed the p-values for the 

MUSIC model overall to test our first hypothesis (that all slope parameters are zero), 

and for each of the MUSIC factors individually to test for our second hypothesis (that 

each slope parameter on each MUSIC factor is zero). The p-value corresponds to the 

probability that the null hypothesis is observed. A significant p-value indicates that at 

least one of the slope parameters is not zero. If we consider a p-value of 0.05 to be 

significant, 33 participant models meet the criteria. If we are considering 0.01 to be 

significant, 16 participant models are meeting it. While there is a general downward 

trend as shown in Figure 6B, upon closer examination (Figure 6A) there is a spike of 

p-values between 0.01 and 0, which correspond to extremely significant models, and 

suggests that there is legitimacy to our approach in applying the MUSIC model to 

represent music preference. 

In addition to analyzing the model overall, we ran an ANOVA on each of the 

MUSIC factors individually. This was to determine if any of the factors was more or 

Figure 6. Evaluation of Direct participant models as indicated by the p-value for the multiple 
regression model obtained for each participant, n=100. A) Histogram for all participant models with 
respect to model p-value. B) Total number of participant models whose p-values satisfy the specified 
significance level. 

A) B) 
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less significant in modeling user preferences according to our method. We considered 

the idea that if certain factors proved to be significantly better predictors of taste than 

others, then a model could be built on those factors alone. As evident in Figure 7, 

overall this was not the case and the factors are generally consistent. U does appear to 

be a slightly more significant for lower p-values, and I is less significant. The C value 

remains reasonably significant across p-values relative to the other factors. None of 

the MUSIC factor values have such low statistical significance that any of them are 

noticeably more or less relevant in terms of prediction modeling. 

4.3 Discussion 

The intent of the online survey we conducted was to demonstrate that the 

Figure 7. Coefficient p-values for the MUSIC variables in each participant multiple linear 
regression model. This data representation matches that of Fig. 6B, as it indicates the number of 
participant models whose p-values satisfy the specified significance level, but no specified for each 
factor. (M=Mellow; U=Unpretentious; S=Sophisticated; I=Intense; C=Contemporary) 
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MUSIC model constructed by Rentfrow et al. could predict song preferences with 

some degree of accuracy, through analyzing the correlations between each song’s 

designated MUSIC factors and the participants’ corresponding preference of the song. 

Lack of correlation between the elements would have suggested that the two are not 

related, and that the MUSIC model is not an appropriate predictor of a listener’s song 

preferences. However, we found that for 32 out of 100 survey participants (Figure 

6B), the MUSIC model had displayed a standard significant correlation to their 

preference for a song (for a critical value of 0.05). While this percentage indicates a 

minority number of participants, we believe it is still non-trivial, as it demonstrates 

that the MUSIC model shows a non-negligible degree of correlation to the 

participants’ preference ratings. Upon closer examination of the results for 

participants with a p-value less than 0.05, Figure 6A shows that half of these 

participants (16 of 32) displayed a p-value of less than 0.01, indicating an even higher 

level of significance of correlation between their preferences and the MUSIC model. 

This may additionally be an overly harsh analysis, as in implementation, a user will 

not likely care whether or not a song arose from a statistically significant 

recommendation model, but more so whether or not they like or dislike the 

recommended song. With this in mind, additional analysis of the implementation of 

this data with a machine learning system to predict whether or not a user will like a 

song is considered in Study 4 (see Chapter 5). 

This analysis is not enough to justify using the MUSIC model as a stand-alone 

model on which to generate song recommendations. Based on the results of our 

survey analysis, we believe that the MUSIC model is best used as a high-level 
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categorization feature that may serve to improve the performance of current 

recommendation systems. The MUSIC model has the potential to embody the music 

preferences of a listener according to an emotional orientation, which is an element 

often neglected in favor of automation of song recommendation.  

 One area of our survey that we would like to have changed is the number of 

songs analyzed by each participant. Using twenty songs to generate each participant 

model may have been too small, and cause a misrepresentation of the MUSIC model's 

capability to model preferences for a wide range of individuals. 

We also believe that there was a possibility of optimizing the model by 

manipulating the MUSIC factor values of the songs. While the untransformed data 

provided substantial results, we believe that there is more to be explored with this 

model by testing the sensitivity of the MUSIC factor values in modeling overall 

perception. We also believe that a larger sample size of songs would illustrate a more 

conclusive trend on the influence that the individual MUSIC factors have on 

preference. As shown in Figure 7, Unpretentious (U) was slightly more significant 

and Intense (I) was slightly less significant, although all five factors were fairly 

closely correlated. Data from a greater sample size of songs could either increase or 

decrease the uniformity observed across factors. 
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Chapter 5: Studies 3 and 4: Model Development and Evaluation 
 

5.1 Methodology 

5.1.1 Motivation 

In order to develop a novel method of music recommendation that combined 

elements of automatic data processing and psychological music factors, we needed a 

program that would calculate concrete, mathematical values for songs that could then 

be translated into a corresponding psychological model. To combine both music 

perception data from the MUSIC Model (Rentfrow et al., 2011), a widely reviewed 

and accepted psychological model with calculated data from the content of the song, 

we needed to collect song feature data. 

5.1.2 Data Sets 

At the start of our project, we planned to calculate musical feature values 

ourselves using signal processing in MATLAB. However, we later realized that this 

step of the research could be streamlined entirely through the use of The Echo Nest. 

The Echo Nest is a music intelligence company that provides customers an 

Application Programming Interface (API) which allows people to query their 

database through use of an API key. We registered for an account to receive an API 

key, which provided us with the means to obtain numerical values for different 

features of songs in their database. 

Features in The Echo Nest API dataset include metadata, such as artist name 

and song name, along with data about energy, valence, tempo, and many other 
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features. Many of the features allowed for public use are: acousticness, danceability, 

duration, key, liveness, loudness, mode, speechiness, time signature (“Acoustic 

Attributes Overview”), artist id, artist name, song id, title, timbre, and pitch (Jehan & 

DesRoches, 2014). To build the balance between psychological and numerical music 

information we searched for expert opinions on music perception with respect to 

music recommendations. This led us to discover the MUSIC model, as presented by 

Rentfrow et al. in 2012. 

The article provided information about a study which provided MUSIC – 

where M: Mellow, U: Unpretentious, S: Sophisticated, I: Intense, and C: 

Contemporary – factor loadings for a variety of songs related to psychological traits. 

We then manually inserted the song MUSIC factor values from Tables 1, 3, and 5 of 

Rentfrow et al., 2012, as well as those from an earlier article on the MUSIC model 

(Rentfrow et al., 2011), into an Excel file. The tables contained five Varimax-rotated 

principal components with the first table using song excerpts from a variety of genres, 

the third table using only jazz excerpts, and the fifth table using only rock excerpts. 

The table with various genres included: Avant-garde classical, Latin, Polka, Celtic, 

World beat, and Acid jazz. Once the information was compiled, we wrote a Python 

script to import this list of song data (song title and artist name) into The Echo Nest 

API to retrieve feature values (Figure 2 summarizes the methodology employed by 

the python script). 

In order to gather data from The Echo Nest API about songs we created a 

python file, which along with the appropriate input file would output the song 

features we needed. We also retrieved an API key for The Echo Nest API giving us 
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permission to use their database. The input text file we used contained a list of songs 

and their artists. We used the Pyen Python library for The Echo Nest, which allowed 

us to call The Echo Nest API. We specifically searched for the “audio_summary” 

information for each song present in the input file and from that we saved the song 

title, song ID (a tag for that specific version of the song in The Echo Nest API), 

tempo, danceability, energy, speechiness, liveness, acousticness, and valence to an 

output file. In this manner we collected all of the feature information we needed for 

the songs in the Rentfrow et al. article (2011, 2012) to create our quantitative data set.   

The features searched for included: tempo, danceability, energy, speechiness, 

liveness, acousticness, and valence. . We chose these specific features for two main 

reasons. First, they are the features most correlated with those brought up during our 

Focus Groups (described in detail in Chapter 3). We wanted the features we chose to 

be those identified as most important in determining music preference and since they 

were mentioned in the Focus Groups we made sure to incorporate them in our model. 

Second, we chose the features that were most visible when working with the API and 

since these were located in the audio_summary category they were more accessible. 

All of these features, except for tempo, take on values from 0.0 to 1.0 ("The Echo 

Nest Acoustic Attributes"). These Echo Nest features are described in detail in Table 

4. 
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The outputted values were contained in a spreadsheet next to the MUSIC 

factor loadings, for those that could be found on The Echo Nest API. We found 

numerous results from the same artist on certain song searches; however, overcame 

this by observing that the MUSIC factor values were similar and choosing the first 

result on the assumption that it was closest to the original. We were unable to find a 

portion of the songs in the articles within The Echo Nest API and, therefore, could not 

retrieve The Echo Nest feature values for those songs so these songs were excluded 

from further use in our study. There is a feature in The Echo Nest API where we 

could have uploaded song files for analysis that were not in their database; however, 

we opted against this since we did not have the original song files that were not 

found. 

   
   

Echo Nest Feature 
 

Description 
   

Tempo 
 

• Represents the average speed of the song 
   

Danceability 

 

• Describes the suitability of a track for dancing 
• Considers numerous elements including tempo, 

rhythm stability, beat strength, and regularity 
   

Energy 

 

• Represents intensity throughout the track 
• Contributing features include dynamic range, 

perceived loudness, timbre, and entropy 
   

Speechiness 
 
• Indicates the presence of spoken word in the track 

   

Liveness 
 
• Indicates the presence of an audience in the track 

   

Acousticness 

 

• Indicates the likelihood that the track was created 
by solely acoustic means 

   

Valence 

 

• Provides a description of the level of positivity 
portrayed by the musical features of the track 

   
   

Table 4. Description of The Echo Nest features employed to predict the values of the MUSIC 
model. Descriptions come directly from The Echo Nest developers (Acoustic Attributes Overview) 
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After this process, we realized that approximately 100 data points was not 

sufficient to build a model. In order to build a larger dataset we collected more The 

Echo Nest features using songs from Tables 1, 2, and 3 in Rentfrow et al.’s 2011 

article. This brought the total number of songs in our dataset to 161. A complete list 

of the songs found from the Rentfrow et al. articles that was used in our analysis 

(2011, 2012) can be found in in the Appendix C1. The tables described five Varimax-

rotated principal components from studies with songs from various genres. We were 

cautious to compare the MUSIC factor loadings from this article to that of the 2012 

article because the definitions of the MUSIC factors had changed. In the 2011 article, 

the categories are I: Mellow, II: Urban, III: Sophisticated, IV: Intense, and V: 

Campestral. In terms of the 2012 article, I corresponds to S, II corresponds to U, III 

corresponds to I, IV corresponds to C, and V corresponds to M (Rentfrow et al., 

2012). This collected data lent itself to be input into a machine learning tool in order 

to generate a computationally-defined cognitive model of music preference. 

 

5.1.3 Weka Machine Learning Environment 

We learned that it would not be feasible for us to create a model integrating 

the MUSIC factors and The Echo Nest values without the use of a machine learning 

tool. Machine learning is a process in which a computer program studies the patterns 

present in an existing body of data and is then able to make predictions about new 

data. We eventually discovered Weka, an open source machine learning program. We 

studied this machine learning tool (starting in the Spring of 2015) by watching online 
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tutorials by Professor Ian Witten from the University of Waikato, New Zealand 

(Witten, 2013). 

As we observed the videos and the example machine learning techniques 

employed in them, we came to realize that Weka is a great resource for creating 

algorithms to make predictions. We used Weka by providing it with The Echo Nest 

feature values for songs, and having the program predict the corresponding MUSIC 

values.   

We created a CSV file that contained all of the MUSIC values and The Echo 

Nest values from over 100 songs in the articles “The Song Remains the Same” and 

“The Structure of Musical Preferences: A Five-Factor Model” (Rentfrow et al., 2011; 

Rentfrow et al., 2012). We excluded the twenty songs that were used in our online 

survey from this file in order to have a data set that the final model could be tested on 

for accuracy. Our plan was to see how well our constructed Echo Nest - MUSIC 

model would be able to predict the MUSIC values of the songs we excluded from the 

input data set. In addition, we planned to observe how the machine learning generated 

values aligned with the music preference data collected for 100 participants in the 

online survey. 

5.1.4 Approach to Machine Learning Analysis 

Initially, using various modeling tools in Weka, such as the J48 and ZeroR 

classifiers, we collected baseline data giving predictions for mapping MUSIC factors 

based on The Echo Nest features. The J48 and ZeroR classifiers are meant for 

classification problems (categorizing nominal input groups into nominal output 

groups), and what we needed instead was a regression classifier, which takes in 
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numerical values, and outputs predicted numerical values. Thus, we tried out several 

different regression classifiers to predict the MUSIC values for the songs. 

We tested the Multilayer Perceptron, RBF Network, SMOreg, Linear 

Regression, and LeastMedSq classifiers in Weka. Several of these classifiers, namely 

Multilayer Perceptron and SMOreg were recommended to us by machine learning 

professor Dr. Vurkac at the Society for Music Perception and Cognition (SMPC) 

conference where we presented our research poster in the Summer of 2015. Other 

machine learning tests proposed by various interested parties at the conference 

involved SVM, PNN, Genetic Algorithms, and ID3 - however, these options were not 

available as classifiers in Weka.  

Our procedure in the initial testing of the classifiers was as follows: 

1. Upload the 161 song dataset, containing The Echo Nest values and 

MUSIC values into Weka.  

2. Select the MUSIC attribute of interest, and remove all others. For 

example, keep “M” and remove “U”, “S”, “I”, and “C”. (This was 

necessary as Weka is able to predict only one attribute at a time.) 

3. Select the classifier of interest.  

4. Run the regression classifier.  

We used a 10-fold cross validation as our test option in order for Weka to train the 

model on a different parts of the data set as it constructed the predictive algorithm for 

a MUSIC value. With each run of the program, Weka gave us a summary of the 

performance of the classifier giving a variety of error measures. This showed how 



 

 
 

62 
 

well the algorithm it produced was able predict the MUSIC factor values using the 

given The Echo Nest features. 

5.2 Results 

5.2.1 Model Development Approach 

We tested our input consisting of 161 songs, with attached MUSIC factors and 

The Echo Nest features in Weka as described in the above Methodology section (see 

Appendix C1 for complete list of songs). We systematically tested many of the 

regression classifiers available in the Weka Explorer application in order to see which 

classifiers would produce the lowest error values in response to the test set given. The 

classifiers we chose were Multilayer Perceptron, SMOreg, Linear Regression, Pace 

Regression, Gaussian Processes, and Isotonic Regression. In order to evaluate these 

classifiers, we measured the error by looking at the mean squared error values and 

correlation coefficient values for each model that Weka generated. These error values 

are standard for determining the degree of accuracy of a model (Armstrong & 

Callopy, 1992). In general, low mean squared error values (high correlation 

coefficient values) indicate that the values the classifier is able to predict are close to 

the actual values from the dataset upon which the program constructs its model. We 

noticed, as expected, the values with the lowest mean squared error values also, for 

the most part, had the largest correlation coefficient values. From the error values 

provided by Weka, we were able to compare the results of models using different 

classifiers within Weka. 
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5.2.2 Classifier Determination 

 Our output of the error values for different classifiers and different 

combinations of The Echo Nest features in are shown in Tables 5-9 below, where 

‘Baseline’ represents using all of our desired The Echo Nest features - tempo, 

danceability, energy, speechiness, liveness, acousticness, and valence - in the 

prediction. Whereas ‘No Tempo’ or ‘No …’ represents running the test on all of the 

features except the one listed after ‘No’. We took out different The Echo Nest features 

to observe the how the error changed with varying combinations of the features to 

check that all features were necessary as we conjectured from the Focus Group 

sessions in Chapter 3. The classifiers with the smallest error values were for Gaussian 

Processes (M, S, I, C) and Isotonic Regression (U), as seen in Tables 5-9, where the 

numbers in these tables take values between 0 and 1 representing the percent error in 

terms of correlation coefficient and root mean squared error. Overall, we decided that 

using all of The Echo Nest features (‘Baseline’) and allowing the model to reduce 

weighting of a certain feature for a certain MUSIC value would be the best approach 

since the error values in the last column of Tables 5-9 did not change significantly 

from that of the ‘Baseline’ column.  
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Table 5. M factor prediction errors as indicated by correlation coefficient (CC) and root mean squared error (RMSE). The highest 
correlation coefficient was 0.6286 and lowest root mean squared error was 0.1981, both using the Gaussian Processes Classifier. 
 

 
Baseline No Tempo No Danceability No Energy No Speechiness No Liveness No Acousticness No Valence 

Min MSE/Max Correlation 
Coefficient 

Multilayer 
Perceptron 

         CC 0.5157 0.5256 0.5157 0.4413 0.4881 0.5758 0.5306 0.5137 0.5758 
RMSE 0.2539 0.2326 0.2372 0.2496 0.2534 0.23 0.2526 0.2516 0.23 
Linear 
Regression 

         CC 0.6017 0.5916 0.597 0.4986 0.5281 0.6029 0.5908 0.552 0.6029 
RMSE 0.2033 0.205 0.204 0.2209 0.2162 0.203 0.2052 0.2124 0.203 
Gaussian 
Processes 

         CC 0.6148 0.5946 0.6095 0.5498 0.5632 0.6286 0.6009 0.5876 0.6286 
RMSE 0.2008 0.2045 0.2018 0.2126 0.2101 0.1981 0.2035 0.2062 0.1981 
Isotonic 
Regression 

         CC 0.509 0.509 0.509 0.509 0.4349 0.509 0.509 0.509 0.509 
RMSE 0.2194 0.2194 0.2194 0.2194 0.2301 0.2194 0.2194 0.2194 0.2194 

 
 
 

Table 6. U factor prediction errors as indicated by correlation coefficient (CC) and root mean squared error (RMSE). The highest 
correlation coefficient was 0.3811 and lowest root mean squared error was 0.2349, both using the Isotonic Regression Classifier. 
 

 
Baseline No Tempo No Danceability No Energy No Speechiness No Liveness No Acousticness No Valence 

Min MSE/Max Correlation 
Coefficient 

Multilayer 
Perceptron 

         CC 0.1614 0.2787 0.1856 0.195 0.189 0.164 0.2223 0.2242 0.2787 
RMSE 0.3291 0.2849 0.3027 0.3042 0.2894 0.3132 0.2985 0.2917 0.2849 
Linear 
Regression 

         CC 0.3041 0.3197 0.2565 0.2973 0.2534 0.2608 0.3098 0.2437 0.3197 
RMSE 0.2425 0.2408 0.2464 0.2429 0.2461 0.2463 0.2418 0.2471 0.2408 
Gaussian 
Processes 

         CC 0.3223 0.3515 0.3122 0.3144 0.2679 0.3185 0.3207 0.3129 0.3515 
RMSE 0.2402 0.2372 0.241 0.2408 0.2449 0.2405 0.2401 0.2407 0.2372 
Isotonic 
Regression 

         CC 0.3811 0.3811 0.3811 0.3811 0.3811 0.3811 0.0681 0.3811 0.3811 
RMSE 0.2349 0.2349 0.2349 0.2349 0.2349 0.2349 0.2669 0.2349 0.2349 
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Table 7. S factor prediction errors as indicated by correlation coefficient (CC) and root mean squared error (RMSE). The highest 
correlation coefficient was 0.5755 and the lowest root mean squared error was 0.2176 both using the Gaussian Processes Classifier. 
 

 
Baseline No Tempo No Danceability No Energy No Speechiness No Liveness No Acousticness No Valence 

Min MSE/Max Correlation 
Coefficient 

Multilayer 
Perceptron 

         CC 0.3662 0.4542 0.3343 0.3779 0.4839 0.4325 0.3963 0.3988 0.4839 
RMSE 0.2867 0.2568 0.2887 0.2752 0.2438 0.2558 0.2687 0.27 0.2438 
Linear 
Regression 

         CC 0.5638 0.5137 0.5266 0.5599 0.5638 0.5638 0.537 0.5116 0.5638 
RMSE 0.2185 0.2275 0.2252 0.2192 0.2185 0.2185 0.2233 0.2274 0.2185 
Gaussian 
Processes 

         CC 0.5673 0.5553 0.5238 0.5488 0.566 0.5658 0.561 0.5419 0.5673 
RMSE 0.2176 0.2197 0.2253 0.2209 0.2179 0.2178 0.2186 0.222 0.2176 
Isotonic 
Regression 

         CC 0.4819 0.4819 0.4819 0.4819 0.4819 0.4819 0.4157 0.4819 0.4819 
RMSE 0.2337 0.2337 0.2337 0.2337 0.2337 0.2337 0.2424 0.2337 0.2337 

 
 
 

Table 8. I factor prediction errors as indicated by correlation coefficient (CC) and root mean squared error (RMSE). The highest 
correlation coefficient was 0.8228 and lowest root mean squared error was 0.1681, both using the Gaussian Processes Classifier. 
 

 
Baseline No Tempo No Danceability No Energy No Speechiness No Liveness No Acousticness No Valence 

Min MSE/Max Correlation 
Coefficient 

Multilayer 
Perceptron 

         CC 0.6607 0.695 0.6702 0.5024 0.6727 0.6298 0.6987 0.6454 0.6987 
RMSE 0.2586 0.2342 0.2622 0.3226 0.2425 0.2575 0.2278 0.2539 0.2278 
Linear 
Regression 

         CC 0.7501 0.7461 0.7071 0.6961 0.7398 0.7375 0.7551 0.7384 0.7551 
RMSE 0.1942 0.1955 0.2075 0.2107 0.1975 0.1983 0.1924 0.198 0.1924 
Gaussian 
Processes 

         CC 0.8143 0.8228 0.7915 0.7639 0.8025 0.8127 0.8034 0.8014 0.8228 
RMSE 0.1713 0.1681 0.1803 0.1907 0.1759 0.1717 0.1759 0.1763 0.1681 
Isotonic 
Regression 

         CC 0.7774 0.7774 0.7774 0.7144 0.7774 0.7774 0.7774 0.7774 0.7774 
RMSE 0.1849 0.1849 0.1849 0.2063 0.1849 0.1849 0.1849 0.1849 0.1849 
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Table 9. C factor prediction errors as indicated by correlation coefficient (CC) and root mean squared error (RMSE). The highest 
correlation coefficient was 0.5342 and lowest root mean squared error was 0.1650, both using the Gaussian Processes Classifier. 

 
Baseline No Tempo No Danceability No Energy No Speechiness No Liveness No Acousticness No Valence 

Min MSE/Max Correlation 
Coefficient 

Multilayer 
Perceptron 

         CC 0.3377 0.2305 0.3514 0.3091 0.4158 0.465 0.4298 0.3014 0.465 
RMSE 0.223 0.2266 0.2101 0.2386 0.2073 0.1862 0.1888 0.2028 0.1862 
Linear 
Regression 

         CC 0.498 0.4519 0.3026 0.5101 0.4934 0.498 0.5149 0.498 0.5149 
RMSE 0.1694 0.1742 0.1864 0.1678 0.1697 0.1694 0.1672 0.1694 0.1672 
Gaussian 
Processes 

         CC 0.5283 0.5069 0.4312 0.521 0.5047 0.5307 0.5228 0.5342 0.5342 
RMSE 0.1657 0.1683 0.176 0.1666 0.1683 0.1654 0.1664 0.165 0.165 
Isotonic 
Regression 

         CC 0.3985 0.3985 0.1906 0.3985 0.3985 0.3985 0.3985 0.3985 0.3985 
RMSE 0.1813 0.1813 0.1965 0.1813 0.1813 0.1813 0.1813 0.1813 0.1813 

 
 
 Since a few of the classifiers had similar error values, we decided to 

experiment with different mixes of classifiers to find an overall combination that 

would produce optimal results for predicting MUSIC values. First we collected the 

models for them using the classifiers that resulted in the lowest mean squared error 

and highest correlation coefficient for each of the MUSIC factors, resulting in six 

models (due to the overlap of some lowest mean squared error occurrences with high 

correlation coefficient occurrences). After collecting this model information, we 

decided to choose the next best classifier that had a linear type model equation so that 

we could implement the models ourselves outside of Weka. The classifiers for these 

results included: Pace Regression, SMOreg, and Linear Regression.  

After using the equations from the linear-like models to create predictions, we 

observed that the Gaussian Processes Classifier and the Isotonic Regression Classifier 

would better suit the needs of our predictor. The Gaussian Processes Classifier, 
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having the least error in general over all of the MUSIC factors, was then used to 

model new MUSIC factors. The Isotonic Regression Classifier was also chosen due 

to its ability to tie a MUSIC factor to its most important and telling The Echo Nest 

feature. The Isotonic Regression ties between MUSIC factors and The Echo Nest 

features were that: M was based on Speechiness, U was based on Acousticness, S was 

based on Acousticness, I was based on Energy, and C was based on Danceability (see 

Table 10).  

We also included the linear regression model, shown in Figure 8, for each of 

the factors to get an alternate visualization of the weights of the various The Echo 

Nest features. Here the most positively correlated The Echo Nest features associated 

with MUSIC factors were: Danceability with M, Danceability with U, Acousticness 

with S, Speechiness with I, and Danceability with C. 

      

Song Title Predicted M Predicted U Predicted S Predicted I Predicted C 

 
Based on 

Speechiness 
Based on 

Acousticness 
Based on 

Acousticness 
Based on 
Energy 

Based on 
Danceability 

Just Walk Away 0.422 0.277 0.353 0.015 0.08 

Unspeakable 0.247 0.095 0.065 0.117 0.263 

Brown Baby 0.108 0.277 0.248 0.086 0.117 

If You Only Knew 0.422 0.277 0.201 0.117 0.117 

Slate 0.422 0.277 0.201 0.066 0.117 
Symphony No. 1 in B Flat 

Major 0.247 0.285 0.5 0.014 0.117 

The Way You Look Tonight 0.108 0.285 0.435 0.014 0.21 

Rock the Clock -0.041 0.285 0.435 0.384 0.095 

Where Eagles Dare 0.108 0.065 0.046 0.667 0.04 

Oh No the Radio 0.247 0.046 0.046 0.19 0.117 

City of Gold 0.108 0.277 0.201 0.384 0.163 

Intro -0.041 0.277 0.248 0.117 0.263 

My Favorite Polka 0.247 0.277 0.201 0.074 0.263 

Interstate Rag 0.108 0.285 0.435 0.117 0.095 

Big Blue Sun 0.247 0.277 0.248 0.066 0.117 

Table 10. MUSIC factor Isotonic Regression predictions 
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Figure 8. MUSIC factor Linear Regression models. 

M = 0.0013 * Tempo + 0.2493 * Danceability + -0.5502 * Energy + -1.4067 * Speechiness + -0.2048 * Acousticness + -0.2357 * Valence + 0.5347 
 
U = 0.3513 * Danceability + -0.2089 * Energy + -0.7 * Speechiness + 0.2058 * Liveness + 0.2313 * Valence + 0.0695 
 
S = -0.0021 * Tempo + -0.3738 * Danceability + 0.3173 * Acousticness + 0.2053 * Valence +0.4834 
 
I =0.001 * Tempo + -0.5668 * Danceability + 0.6586 * Energy + 1.044 * Speechiness + -0.1953 * Liveness + -0.1764 * Valence +0.0459 
 
C = -0.0013 * Tempo +0.5846 * Danceability + -0.1049 * Acousticness +0.065 

 
 

5.2.3 Study 4: Model Evaluation 

Once we had tested the ability of these models to generate MUSIC factors we 

used them to create a new set of MUSIC factors for the survey songs described in 

Chapter 4 selected from Rentfrow et al., 2011 which were absent in the training set 

made to create the models. The predictions based on these classifiers are in Appendix 

C2.  

Then, we used the predictions in conjunction with the preferences in the 

survey to attempt a prediction of preference from our predicted MUSIC factors. We 

used the Multilayer Perceptron Classifier on eleven of fifteen survey songs from 

Chapter 4 to build a model for music preference prediction. Only fifteen of the twenty 

survey songs were used because the rest could not be found in The Echo Nest 

database (see Table 3). Furthermore, only eleven of those fifteen were chosen so that 

we could specify a test set to judge the accuracy of the preference predictions. The 

preferences were represented by converting the numerical likings from the survey 

into a binary ‘yes’ and ‘no’ representation. 

After we gathered data on how the Rentfrow et al. (2011) MUSIC model 

handled predicting preferences on its own as well as how our predicted MUSIC 

model using The Echo Nest data handled preference prediction we compared the 
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results in the Figure 9. Of the four songs we tested on, we were able to successfully 

predict all four of them with our model for approximately 31 of the participants, 

whereas the MUSIC model had that success rate for about 22 of the participants. We 

also had no case of incorrectly predicting all four preference likings, whereas the 

MUSIC model had approximately one case of this occurrence. The disparity in results 

of the MUSIC model and our model could have to do with the MUSIC model being 

better suited for a larger dataset, and therefore potentially more generalizable than our 

model based on fewer recordings. In general, our model had results similar to the 

MUSIC model. 

 
Figure 9. Comparison of percentage of songs classified correctly using the Rentfrow et al. model and 
our model. 
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5.3 Discussion 

The Isotonic Regression predictions based on The Echo Nest features showed 

the connection between each MUSIC factor and a specific The Echo Nest feature with 

which it was most correlated. The M factor was based on Speechiness, the U factor 

was based on Acousticness, the S factor was based on Acousticness, the I factor was 

based on Energy, and the C factor was based on Danceability. The Mellow factor was 

defined as “romantic, relaxing, and slow” (Rentfrow et al., 2012), whereas 

Speechiness was defined as having a certain percent of spoken words ("The Echo 

Nest Acoustic Attributes"). The connection between these descriptors could mean that 

songs considered relaxing have more speech than those that are not; however, this 

connection was the most tenuous of the group. The Unpretentious factor described 

“uncomplicated, unaggressive, soft sounding, and acoustic” songs (Rentfrow et al., 

2012) and the Acousticness feature that it was matched up with represents the degree 

to which a sound was created by using acoustic instruments or voice ("The Echo Nest 

Acoustic Attributes)". Acoustic sound has been described as soft (and the definition 

of the U factor included acoustic as a descriptor), and therefore this connection seems 

like a natural choice. The Sophisticated factor was used for “intelligent, complex, and 

cultured” music (Rentfrow et al., 2012), and its match was also Acousticness. 

Although the U and S factors seem to differ in terms of complexity, Acousticness 

does also seem to fit for S because orchestral instruments have high values for 

Acousticness and since the S factor songs typically include classical type music this 

seems appropriate. The Intense factor was used for “loud, tense, and aggressive” 

music (Rentfrow et al., 2012) and it was tied to the Energy feature which is described 
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as measuring the intensity of a piece tied to examples of “fast, loud, and noisy” tracks 

("The Echo Nest Acoustic Attributes"). The Contemporary factor described music in 

terms of it being “current, rhythmic, and danceable” (Rentfrow et al., 2012) and it 

was matched with Danceability, which is supposed to tell how musical elements such 

as “rhythm stability, beat strength, and overall regularity” intertwine to make a song 

that people could find danceable ("The Echo Nest Acoustic Attributes"). It is also 

interesting to note that all of these Isotonic Regression connected features are 

considered acoustic attributes by The Echo Nest which model subjectivity using 

values from 0.0 to 1.0 ("The Echo Nest Acoustic Attributes"). 

The Linear Regression models for prediction the MUSIC factors from The 

Echo Nest features gave more insight into The Echo Nest features that were most 

positively correlated and most negatively correlated to a given factor (see Figure 8 for 

the full equations). It is important to note that although these equations give relations 

between the factors and features, this classifier was not the best performing from 

Tables 5-9, so these are not meant to judge the other classifiers but rather bolster them 

when it agrees. Agreements with the Isotonic Regression classifier are shown in the 

positive correlations for the S and C factors, as shown in Table 11. 

 The error in our predictions of MUSIC factors using Gaussian Processes with  

 The Echo Nest features were shown when we ran the percentage and paired t-tests 

seen in Table 12. The error values, more specifically in the paired t-test values in the 

bottom row were not statistically significant giving us confidence that our predictions 

are comparable to the results of Rentfrow et al. Overall, the percentage error also  
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stayed within about 24% where the error in I seemed to be the smallest. This could 

have to do with the Intense factor having such a solid relation to The Echo Nest 

features used. 

Our models were limited by the classifiers we chose: Gaussian Processes, 

Isotonic Regression, Multilayer Perceptron, and Linear Regression. Due to the limited 

timeframe of our project we chose classifiers that were more accessible in terms of 

creation of models and interpretation of results. However, given more time we could 

have explored other machine learning classifiers better suited for our dataset size. 

Although we performed a thorough modeling of our data, our results are limited by 

the size of our initial dataset of 161 songs. It is preferable to have a larger data set in 

order to make better predictions. We attempted to combat this by using cross-fold 

validation and making sure to keep a small subset of our data unseen from our model 

to test on later. Our results would be stronger and more generalizable had we used a 

larger dataset. 

Factor Positive Correlation Negative Correlation 

M Danceability (+0.2493) Speechiness (-1.4067) 

U Danceability (+0.3513) Speechiness (-0.7000) 

S Acousticness (+0.3173) Danceability (-0.3738) 

I Speechiness (+1.044) Danceability (-0.5668) 

C Danceability (+0.5846) Acousticness (-0.1049) 

   

Table 11. Most positive and most negative correlations of MUSIC factors to The Echo Nest features 
with bolded showing agreement with Isotonic Regression Classifier. 
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Song Percent 
Change in M 

Percent 
Change in U 

Percent 
Change in S 

Percent 
Change in I 

Percent 
Change in C 

Just Walk Away -11.55% -4.00% 6.85% -6.85% 4.10% 
Unspeakable -20.80% 6.20% 1.70% -2.35% 15.25% 
Brown Baby -12.85% -5.05% 3.20% -1.85% 2.90% 

If You Only Knew -0.75% -16.55% 6.95% 2.40% 5.35% 
Slate 18.75% -23.40% 5.55% -8.00% 6.80% 

Symphony No. 1 in B Flat 
Major 0.65% 18.25% -14.30% -0.55% 13.20% 

The Way You Look Tonight 5.50% 15.00% -18.85% 1.30% 1.65% 
Rock the Clock 15.30% 2.10% -13.55% 6.50% -10.70% 

Where Eagles Dare 1.25% -4.00% 6.95% -2.30% 0.60% 
Oh No the Radio 3.45% 9.00% 3.55% -11.60% -1.70% 

City of Gold -3.40% -6.30% 3.45% -9.65% 10.70% 
Intro 0.00% 8.65% 7.90% -0.65% -17.75% 

My Favorite Polka 14.15% -0.45% -18.80% -4.35% 7.30% 
Interstate Rag 2.60% -14.85% 6.20% 5.40% 0.65% 
Big Blue Sun 8.35% 7.05% 6.85% -16.70% 8.80% 

      
      

p-value 0.628 0.857 0.874 0.066 0.180 

      
 

Table 12. Evaluation of our ability to reproduce MUSIC model values. Percent change is calculated by the difference 
in predicted value and original loading divided by 2, the total possible range for the factor loadings. 
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Chapter 6: Conclusion  
 
 

The MUSIC model demonstrates that by using features selected from The 

Echo Nest, a dataset of acoustic information can be used to describe an individual’s 

perception of music, which suggests that musical taste is linked to musicality. The 

overall results obtained from the study indicate that the MUSIC model is a viable tool 

in prediction of music preference. The MUSIC model’s perception-based, 

psychological approach allowed for statistically significant correlations to be drawn 

between its five-factors and an individual’s tastes. With access to a sufficiently large 

dataset, these correlations could then be used for generating music recommendations. 

 Our focus groups at the initial stages of research were used as a measure for 

determining what aspects of songs had significant meaning to the users of music 

recommendation services, as well as how they felt about the recommendation services 

that they had previously used. The noteworthy levels of dissatisfaction with extant 

recommendation systems demonstrated that there is certainly room for improvement. 

The participants indicated that they mostly valued broad, holistic traits of songs – 

such as instrumentation and perceived genre (see Chapter 3 Focus Groups section for 

relevant data). An analysis of the data collected from the online survey allowed us to 

draw connections between an individual’s indicated musical preferences and the 

psychological factors of the MUSIC model. The mathematical values that are 

calculated by The Echo Nest are then used to predict the psychological factors of the 

MUSIC model. In this fashion it is possible to incorporate a psychological 
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perspective into the recommendation system – all while keeping free of ambiguity in 

calculations – through the machine learning capabilities of Weka. 

 This demonstrates a confirmation of our original hypothesis, that the 

integration of an effect model of music perception would allow for improved music 

recommendations when combined with current systems. It was proven in our study 

that the MUSIC factors showed significant correlations to an individual’s taste. These 

results help to fill the existing gap between automated recommendations of songs and 

users’ perception of music, which went previously unfulfilled by popular 

recommendation systems.  

This psychological preference model cannot simply generate music 

recommendations at its current state. The MUSIC model, as a representative type of 

data, is limited because it is only derived from acoustic information – but combined 

with other types of data, it can present musical information in a contrasting and 

complementary way. The strength of the correlations between the MUSIC factors and 

survey participants’ preferences are non-negligible, but not reliable enough, 

indicating the model’s potential as an auxiliary recommendation tool. The five-factors 

from the MUSIC model are applicable as a high-level categorization feature, and be  

used to guide more popular metadata models in a direction that is more grounded in 

musical psychology and emotional response. The most effective way to use the 

MUSIC model for song recommendation is by employing it in conjunction with other 

recommendation systems or techniques. In this way, the model serves as an 

augmentation to the extant methods of recommendation. 
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6.1 Future Research  

 We believe the MUSIC model, if integrated into an existing recommendation 

system, would allow for recommendation results that are more closely based on facets 

of musical perception. By using this method, the recommendations are not overly 

simplified, based solely on the musical content (i.e., tempo or key signature) – which 

may be the case in Spotify’s recommendation system – and are also still viable for 

automated processing of millions of songs, thereby forgoing the processing 

limitations observed by Pandora’s recommendation method.  

 To incorporate the MUSIC model into an existing system, one would need to 

calculate the MUSIC values of songs by inputting those songs’ Echo Nest values into 

Weka. Based on these newly generated MUSIC values, the system can then compare 

and organize songs using the MUSIC factors as an additional basis. These MUSIC 

factors can assist the user by acting as a functional categorization of songs. For 

example, the user might want to listen to songs from a certain genre, such as rock, 

and also wants a song with a high “Intense” aspect and low “Contemporary” aspect 

from the MUSIC model – the recommendation program, assuming it had information 

regarding genre, would first examine the body of songs that fall under the category of 

“rock”, and then further fine-tune its selection by seeing which rock songs have those 

loadings of MUSIC values. This specificity would likely lead to results that are more 

representative of the user’s interest, as it allows the user to pick a type of music that 

fits the general sense of what they want to listen to.  
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 In essence, the MUSIC model becomes a valuable tool for any song search 

engine, since it allows the user to discover songs that best represent how they 

perceive music. The model may not be fully optimized to act as a standalone 

recommendation system, but it is certainly capable of providing contextual 

information for use by music recommendation systems. We encourage future research 

to examine the use of the MUSIC model as a supplemental tool for recommendation 

systems.  
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Appendices 
 

Appendix A: Study 1 Supplemental Information 

 

A1: Focus Group Flyer Posting Locations 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A1: Focus group flyer posting locations. Flyers for our focus groups were posted 
throughout the University of Maryland-College Park campus in the general locations marked by the 
grey page icons. The focus groups were held in a classroom in Hornbake Library, a central location 
of the campus, as shown by the yellow sun icon. Map courtesy of Conferences and Visitors 
Services. 
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A2: Study 1 Consent Form 

Project Title Gemstone Team MUSIC: Focus Group 
Purpose of the 
Study 

This research is being conducted by Prof. Ramani Duraiswami and Gemstone Team MUSIC at 
the University of Maryland, College Park.  We are inviting you to participate in this research 
project because you have shown an interest in music and discovering ways to find new music. 
The purpose of this research project is to develop a method of automated extraction of musical 
features from an audio file by using signal processing and computational techniques, with the 
end goal of enhancing song recommendation capabilities. This music feature-extraction and 
recommendation program paves the way for detailed trend analysis and unique music 
recommendations to be applied commercially and academically. Focus groups are being used to 
determine which musical traits are sought after when finding new music. Furthermore, we intend 
to find out the other individuals’ opinions on currently available music recommendation services 
and what individuals believe could be improved upon. 

Procedures Involvement in this study includes participation in a single focus group, which will entail 
discussing past experiences with music recommendation services as well as the prominent 
musical features in a few clips of audio. A video camera will be placed in the room to record 
the session. The session will take place in the Gemstone Suite in Ellicott Hall at the University 
of Maryland and last no longer than one hour. 

Potential Risks and 
Discomforts 

A possible risk of embarrassment can arise, but is extremely unlikely during the course of the 
focus group. While the questions are designed to avoid sensitive topics, remember that you do 
not have to answer any question that makes you uncomfortable. Discomfort may also arise due 
to the presence of the video camera in the room recording the session. Furthermore, there is a 
potential for the loss/breach of confidentiality given the nature of the focus group and our 
inability to control other participants outside of the focus group. You may choose to go by an 
alias to decrease this risk. 

Potential Benefits  This research is not designed to help you personally, but the results may help the investigators 
learn more about how others view currently available music recommendation system. We 
furthermore hope to learn more about the different musical features that individuals tend to 
focus on in songs they find more appealing. 

Confidentiality Any potential loss of confidentiality will be minimized by password protecting all recordings 
from the focus groups. These recordings will be deleted upon conclusion of the study. 
If we write a report or article about this research project, your identity will be protected to the 
maximum extent possible.  Your information may be shared with representatives of the 
University of Maryland, College Park or governmental authorities if you or someone else is in 
danger or if we are required to do so by law.  

Compensation You will receive $10.   
� Check here if you expect to earn $600 or more as a research participant in UMCP studies in 
this calendar year. You must provide your name, address and SSN to receive compensation. 
� Check here if you do not expect to earn $600 or more as a research participant in UMCP 
studies in this calendar year. Your name, address, and SSN will not be collected to receive 
compensation.  

Right to Withdraw 
and Questions 

Your participation in this research is completely voluntary.  You may choose not to take part at 
all.  If you decide to participate in this research, you may stop participating at any time.  If you 
decide not to participate in this study or if you stop participating at any time, you will not be 
penalized or lose any benefits to which you otherwise qualify. If you are an employee or 
student, your employment status or academic standing at UMD will not be affected by your 
participation or non-participation in this study. 
If you decide to stop taking part in the study, or if you have questions, concerns, or complaints, 
please contact the principle investigator and/or the two co-investigators whose contact 
information is displayed below:  
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Principal Investigator: Ramani Duraiswami 
Email: *Redacted* 

Telephone: *Redacted* 
 

Co-Investigator: Mackenzie Walls 
Email: *Redacted* 

Telephone: *Redacted* 
 

Co-Investigator: Mary Galuardi 
Email: *Redacted* 

Telephone: *Redacted* 
Participant Rights If you have questions about your rights as a research participant or wish to report a research-

related injury, please contact:  
 

University of Maryland College Park  
Institutional Review Board Office 

1204 Marie Mount Hall 
College Park, Maryland, 20742 

 E-mail: irb@umd.edu   
Telephone: 301-405-0678 

 
This research has been reviewed according to the University of Maryland, College Park IRB 
procedures for research involving human subjects. 

Statement of 
Consent 

Your signature indicates that you are at least 18 years of age; you have read this consent form 
or have had it read to you; your questions have been answered to your satisfaction and you 
voluntarily agree to participate in this research study. You will receive a copy of this signed 
consent form. 
If you agree to participate, please sign your name below. 

Signature and Date NAME OF PARTICIPANT 
[Please Print] 

 

SIGNATURE OF PARTICIPANT 
 

 

DATE 
 

 

 

Note: In “Right to Withdraw and Questions” section, investigator phone numbers and 
emails redacted for solely this document, but were faithfully provided on the actual 
form. 



 

 
 

86 
 

A3: Study 1 Demographic Information 

 

 

Gender Occurrences 
Female 20 
Male 17 
Other 0 

Prefer not to 
specify 

0 

 

 

 

Ethnicity Occurrences 
Asian/Pacific 

Islander 
4 

Black 7 
Hispanic 3 

White 18 
Black/Asian 1 

Black/Hispanic 1 

White/Asian 1 

White/Hispanic 1 

Other 0 
Prefer not to 

specify 
1 

 

 

 

 

 

 

Genre Occurrences 
Alternative 
Rock/Pop 

11 

Rock/Metal 6 
Classic Rock 6 

Pop 5 
Indie 

Pop/Folk 
5 

Jazz 3 
Hip Hop 3 

Rap 2 
Classical 
(Piano) 

2 

Country 2 
R&B 1 

Electronic 1 
Reggae 1 
Other 2 

 

 

 

 

 

 

Table A1: Study 1 Demographics: Gender. 
n=37 

Table A2: Study 1 Demographics: Ethnicity. 
n=37 

Table A3: Study 1 Demographics: 
Genre Preference. n=37. Participants 
could list multiple genres 
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Appendix B: Study 2 Supplemental Information 

B1: Survey Script 

Q1: The purpose of this survey is to assess the effectiveness of a novel music 
recommendation method. This method incorporates a model of how we perceive 
music and how it connects to our intrinsic human characteristics. 
  
This survey will contribute to the research efforts of Team MUSIC to develop novel 
ways to recommend music. Your contribution to this survey will remain anonymous 
and unidentifiable, and you may withhold information if you desire. To complete the 
survey, you must answer all the questions. Thank you for agreeing to participate in 
our study. 
 
Q2. Read the below consent form in its entirety and confirm your statement of 
consent by selecting yes, as appropriate. 
 
 

Project Title Gemstone Team MUSIC: Online Survey 

Purpose of the 
Study 

This research is being conducted by Team MUSIC of the Gemstone Honors 
Program at the University of Maryland, College Park, under the supervision of 
Prof. Ramani Duraiswami. The purpose of this research project is to develop a 
novel music recommendation method by using a music perception model to 
organize music in an application programming interface, The Echo Nest. This 
survey will examine the viability of the music perception model for song 
recommendation. 

Procedures Participants in this study will answer a series of questions in an online survey. 
You will be asked to listen to 20 song segments, and indicate your individual 
preference for each song. This survey is estimated to take 30 minutes to 
complete. 

Potential Risks 
and Discomforts 

Some songs in this survey may contain explicit or distressing content, and may 
be considered offensive by certain audiences. There are no other known risks 
that result from participating in this survey. 

Potential Benefits There are no direct benefits from participating in this research. However, the 
results of this research survey may help us learn more about how the cognitive 
music modeled presented can be incorporated into The Echo Nest platform for 
the most effective music recommendation method possible. 

Confidentiality All data collected through this online survey will be confidential, and will not be 
associated with an identifiable information. Only the investigators will be 
allowed to access to the data from this study. If we write a report or article about 
this research project, your identity will be protected to the maximum extent 
possible. Your information may be shared with representatives of the University 
of Maryland, College Park or governmental authorities if you or someone else is 
in danger or if we are required to do so by law. 
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Compensation You will be compensated by Qualtrics. 

Right to 
Withdraw and 
Questions 

Your participation in this research is completely voluntary. You may choose not 
to take part at all. If you decide to participate in this research, you may stop 
participating at any time. If you decide not to participate in this study or if you 
stop participating at any time, you will not be penalized or lose any benefits to 
which you otherwise qualify. If you decide to stop taking part in the study, if you 
have questions, concerns, or complaints, please contact the principal 
investigator: 
 

Principal Investigator: Ramani Duraiswami 
Email: *Redacted* 

Telephone: *Redacted* 

Participant 
Rights 

If you have questions about your rights as a research participant or wish to report 
a research-related injury, please contact 
 

University of Maryland College Park 
Institutional Review Board Office 

1204 Marie Mount Hall 
College Park, Maryland, 20742 

Email: irb@umd.edu 
Telephone: 301-405-0678 

 
This research has been reviewed according to the University of Maryland, 
College Park IRB procedures for research involving human subjects. 

Statement of 
Consent 

By clicking “Yes” below, you are confirming the following: 
You are at least 18 years of age. 
You have read this consent form or have had it read to you. 
You voluntarily agree to participate in this research study. 
You may request a copy of this consent form by emailing the principal 
investigator. 

 
Q3. By selecting the “Yes” choice below, you indicate that you are at least 18 years 
of age; you have read the above consent information; and you voluntarily agree to 
participate in this research study. If you would not like to give consent, please select 
“No” 
 
Q4. Please answer the following questions honestly and to the best of your ability. 
Your answers will remain confidential, and will never be publicly available. 
 
Q5. Please specify your gender. 
(Choices: Male, Female, Prefer not to answer) 
 
Q6. Please specify your ethnicity. (Please select all that apply.) 
(Choices: American Indian or Alaskan Native, Asian or Pacific Islander, Black or 
African American, Hispanic or Latino, White/Caucasian, Other, Prefer not to answer) 
 
Q7. What is your age? 
(Choices: 18-24, 25-34, 35-44, 45-50, 50 or older, Prefer not to answer) 
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Q8. Which type(s) of music do you prefer to listen to or identify with? (Please select 
a maximum of 5) 
(Choices: Avant-Garde, Blues, Classical, Comedy-Spoken, Country, Electronic, Folk, 
Holiday, International, Jazz, Latin, New Age, Pop/Rock, R&B, Rap, Reggae, 
Religious, Vocal, Prefer not to answer) 
 
Q9. How would you describe your experience when listening to music that is from a 
different genre or style than the music you usually listen to? 
(Choices: Uncomfortable, Somewhat Uncomfortable, Somewhat Comfortable, 
Comfortable, Not Applicable) 
 
Q10. How often do you listen to songs that are not associated with the genre or style 
of music that you usually listen to? 
(Choices: Never, Less than Once a Month, Once a Month, 2-3 Times a Month, Once 
a Week, 2-3 Times a Week, Daily, Not Applicable) 
 
Q11. Of the current music recommendation systems that you have used, how would 
you rate its ability to recommend songs that match your music preferences? 
(Choices: Unsatisfactory, Somewhat unsatisfactory, Neutral, Somewhat Satisfactory, 
Satisfactory, Not Applicable – have not used any such system) 
 
Q12. On the following pages, you be presented with 1-minute segments from 20 
songs in a randomized order. Please listen to each segment in its entirety; you will be 
unable to move onto the next page until you have done so. Please listen to the songs 
using headphones or speakers in a quiet, non-distracting environment. 
 
After each segment, you will be asked to rate your preference for the song using a 
slider bar. 
A rating of “6” corresponds to “High Preference,” meaning that you enjoyed 
listening to the segment and would prefer to listen to it again in the future. 
A rating of “1” corresponds to “Low Preference,” meaning that you did not enjoy 
listening to the segment and would not prefer to listen to it again in the future. 
 
We ask you to have an open mind when making your indication. In making your 
selection, consider whether the piece has features that you may find interesting or 
cause you to want to listen to it again in the future even if it is not a style of music 
you may listen to. 
 
If you recognize the song, try to answer to question based on your initial impression 
of the song when you first heard it. 
 
We encourage you to answer the question based on listening to the segment only 
once, indicating your initial preference after listening to the entire segment. You may 
listen to the segment again if necessary to answer the question. 
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*Q13-32 Comprised of presenting a randomized song clip and asking the participant 
to respond in the following manner: 
 
 Please listen to the following clip in its entirety. We ask you to have an open mind to 
different music genres while considering your preference for this song. 
 
Q#. Please use the slider bar below to indicate your preference for this piece. 
A rating of “6” corresponds to “High Preference,” meaning that you enjoyed 
listening to the segment and would prefer to listen to it again in the future. 
A rating of “1” corresponds to “Low Preference,” meaning that you did not enjoy 
listening to the segment and would not prefer to listen to it again in the future. 
 
*Slider bar was from 1 to 6, and this question was repeated for each of the 20 song 
segments* 
 
Q33. This is the final portion of the survey. We will ask you to rate your preference 
of songs that have certain descriptors. We ask that you consider these questions to be 
independent from the questions you have already answered. Please answer these 
following questions as honestly as possible. 
 
Q34. How much do you prefer songs that are romantic, relaxing, unaggressive, sad, 
slow, and/or quiet? 
 
A rating of “6” corresponds to “High Preference,” meaning that you would enjoy 
listening to a song that can be described by at least one of the attributes above. 
A rating of “1” corresponds to “Low Preference,” meaning that you would not enjoy 
listening to a song that can be described by at least one of the attributes above. 
(Slider bar was from 1 to 6) 
 
Q35. How much do you prefer songs that are uncomplicated, relaxing, 
unaggressive, soft, and/or acoustic? 
A rating of “6” corresponds to “High Preference,” meaning that you would enjoy 
listening to a song that can be described by at least one of the attributes above. 
A rating of “1” corresponds to “Low Preference,” meaning that you would not enjoy 
listening to a song that can be described by at least one of the attributes above. 
(Slider bar was from 1 to 6) 
 
Q36. How much do you prefer songs that are inspiring, intelligent, complex, and/or 
dynamic? 
 
A rating of “6” corresponds to “High Preference,” meaning that you would enjoy 
listening to a song that can be described by at least one of the attributes above. 
A rating of “1” corresponds to “Low Preference,” meaning that you would not enjoy 
listening to a song that can be described by at least one of the attributes above. 
(Slider bar was from 1 to 6) 
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Q37. How much do you prefer songs that are distorted, loud, and/or aggressive? 
These songs may also be described as having qualities that are not relaxing, romantic, 
or inspiring. 
 
A rating of “6” corresponds to “High Preference,” meaning that you would enjoy 
listening to a song that can be described by at least one of the attributes above. 
A rating of “1” corresponds to “Low Preference,” meaning that you would not enjoy 
listening to a song that can be described by at least one of the attributes above. 
(Slider bar was from 1 to 6) 
 
Q38. How much do you prefer songs that are percussive, electric, rhythmic, and/or 
danceable? These songs may also be described as having qualities that are not sad. 
 
A rating of “6” corresponds to “High Preference,” meaning that you would enjoy 
listening to a song that can be described by at least one of the attributes above. 
A rating of “1” corresponds to “Low Preference,” meaning that you would not enjoy 
listening to a song that can be described by at least one of the attributes above. 
(Slider bar was from 1 to 6) 
 
Q39. Thank you for completing our survey. By doing so, you have helped us gain 
more insight on how human perception of music can be incorporated into music 
recommendation. Your results will not be published, but conclusions drawn from the 
results of all of the participants will be incorporated in our research and future 
publications. 
If you have any questions or concerns, please feel free to contact us at 
music.gemstone@gmail.com. 
Your involvement in our research is greatly appreciated. 
 
This survey is based on content from “The Structure of Musical Preferences: A Five-
Factor Model” by Rentfrow et al. (2011), and “The Song Remains the Same: A 
Replication of the MUSIC Model” by Rentfrow et al. (2012). 
 
Notes: 

- In “Right to Withdraw and Questions” section, investigator phone number and email 
redacted for solely this document, but were faithfully provided on the actual form 
 
- Questions 13-32 presented in a random order to each participant. These questions 
additionally required the participant to stay on the page for at least 60 seconds to 
encourage them to listen to the entire song segment 
 
- Questions 34-38 presented in a random order to each participant 
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B2: Study 2 Genre Preferences 

 

 

 

 

Figure B1. Genre preferences specified by Study 2 participants. n=100. Participants were able to select up to 
five preferences. 
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Appendix C: Studies 3 and 4 Supplemental Information 

C1: Song List Used for Machine Learning Training 

Song Title Artist M U S I C 
Children Of Spring Bruce Smith 0.65 0.14 0.38 -0.05 0.01 

Sweet Scene Ali Handal 0.52 0.38 0.31 0.03 0.01 
Sweet 5 Kush 0.5 0.02 0.49 -0.06 0.29 

Newsreel Paranoia Babe Gurr 0.13 0.76 0.18 -0.04 0.03 
Penny Black Bob Delevante 0.25 0.75 0.13 0.01 0.05 
Lana Marie Five Foot Nine 0.34 0.71 0.1 -0.05 0.03 

Praying For Time Carey Sims 0.47 0.65 -0.02 0.05 0.08 
That's Not Rockabilly Hillbilly Hellcats -0.11 0.64 0.27 0.03 -0.02 

Famous Right Where I Am Laura Hawthorne 0.46 0.62 -0.12 0.01 0.1 
Seltzer, Do I Drink Too Much? Ljova 0.04 0.11 0.82 0.06 0.07 
Trumpet Concerto in C major Antonio Vivaldi 0.21 0.05 0.75 0 -0.06 

Who Are You Paul Serrato & Co. 0.07 0.1 0.68 0.02 0.25 
North Africa's Destiny? Moh Alileche 0.06 0.2 0.67 0.01 0.07 

Fernando Esta Feliz Lisa McCormick 0.06 0.27 0.63 -0.03 0.25 
Let's Love Lisa McCormick 0.3 0.29 0.51 0.02 0.16 

Face The Failure Bankrupt -0.05 0 -0.01 0.85 -0.02 
Michigan Squint -0.04 0.03 -0.02 0.83 -0.06 

Over Now Straight Outta Junior 
High -0.06 0.11 0.05 0.82 0 

Death Before Dishonor Five Finger Death Punch 0.08 -0.12 -0.02 0.8 -0.01 
Johnny Fly The Tomatoes -0.06 0.14 0.04 0.79 0.01 
Dick Dater Cougars -0.15 0.21 0.08 0.76 0.08 

White Knuckles Five Finger Death Punch -0.11 -0.12 -0.05 0.74 0.01 
Out Of Lies Dawn Over Zero 0.14 -0.1 -0.03 0.72 0.1 

Get The Party Started Sammy Smash -0.2 0.13 -0.09 0.06 0.76 
Brooklyn Swagger Ciph -0.1 0.15 -0.05 0.07 0.75 

Go Away The Cruxshadows 0.3 -0.21 0.25 0.08 0.5 
Forever In Love - Live Kenny G 0.84 0.07 0.09 -0.01 0.12 

After hours Mezzoforte 0.82 0.01 0.15 0.01 0.16 
Long Ago and Far Away Earl Klugh 0.81 0.11 0.09 0.08 0.18 

Sister Rose Kenny G 0.79 0.06 0.19 0.02 0.12 
In All My Wildest Dreams Joe Sample 0.72 0.12 0.12 0.02 0.3 

Angela Bob James 0.72 0.12 0.16 0.03 0.31 
Come Away With Me Norah Jones 0.54 0.35 -0.04 0.05 0.25 

Smooth Operator Sade 0.54 0.17 0.01 -0.06 0.47 
The St. Louis Blues Bessie Smith -0.06 0.78 0.18 0 0.05 
Gut Bucket Blues Louis Armstrong 0.03 0.78 0.25 0.03 0.07 

Table C1. Songs from Rentfrow et al. (2011; 2012) that were used in machine learning model 
development 
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All Of Me Billie Holiday 0.09 0.76 0.25 -0.14 0.16 

Minnie & The Moocher Cab Calloway & his 
Orchestra -0.11 0.74 0.25 -0.02 0.15 

Charmaine Jacques Montagne 0.18 0.63 0.45 0.1 0.06 
Hobo's Blues Paul Simon 0.25 0.61 0.18 0.21 0.04 

Origin Pharoah Sanders 0.12 0.12 0.85 0.11 0.16 
Moments Notice Pharoah Sanders 0.23 0.18 0.82 0.05 0.08 

Italian Concerto: Presto Jacques Montagne 0.14 0.24 0.82 0.08 0.11 
Ko Ko Charlie Parker 0.11 0.29 0.78 -0.02 0.09 

Directions I Miles Davis -0.08 0.11 0.73 0.22 0.15 
John McLaughlin Miles Davis 0.06 0.2 0.58 0.41 0.19 

Cloudburst Lambert, Hendricks & Ross -0.18 0.31 0.42 0.1 0.39 
Park's Place Royal Crown Revue -0.09 0.4 0.41 0.19 0.37 
Blue Wind Jeff Beck 0.01 0.1 0.15 0.8 0.12 

Nothing Like the Sound of 
Bebop Den Sidran 0.18 0.1 0.1 0.18 0.73 

Sax-A-Go-Go Candy Dulfer 0.25 0.08 0.26 0.25 0.63 
Rose Rouge St. Germain 0.1 0.16 0.46 0.1 0.55 

Pick Up noJazz 0.36 -0.01 0.35 0.15 0.51 
No Surprises Radiohead 0.81 0.12 0.04 0 0.08 

Fake Plastic Trees Radiohead 0.79 0.11 0.02 0.01 0.13 
Reckoner Radiohead 0.73 0.09 0.18 0.12 0.08 

Nude Radiohead 0.66 0.11 0.29 -0.05 0.11 
Dream Brother Jeff Buckley 0.65 0.02 0.13 0.2 0.19 

Weird Fishes/Arpeggi Radiohead 0.64 0.07 0.38 0 0.06 
Girls Death in Vegas 0.62 0.12 0.18 -0.06 0.17 

Deep Blue Arcade Fire 0.6 0.16 0.18 0.04 0.24 
15 Step Radiohead 0.58 0.1 0.35 0.03 0.05 

Hallelujah Jeff Buckley 0.53 0.19 -0.01 -0.08 0.29 
Guess I'm Doing Fine Beck 0.46 0.18 0.1 0.17 0.38 

Eleanor Rigby The Beatles 0.4 0.3 0.03 0.02 0.38 
Honey Don't The Beatles 0.13 0.81 0.08 -0.02 0.19 

Hot Dog Led Zeppelin 0 0.78 0.22 0.07 0.1 
Act Naturally The Beatles 0.09 0.77 0.03 -0.03 0.14 

Parchman Farm Blues Jeff Buckley 0.33 0.76 0.03 0 0.05 
Bron-Yr-Aur Stomp Led Zeppelin 0.23 0.75 0.07 0.06 0.1 

Boogie With Stu Led Zeppelin 0.11 0.63 0.18 0.11 0.3 
Rich Man's Welfare The RH Factor 0.23 0.15 0.74 0.06 -0.01 

One On One Hall & Oates 0.11 0.06 0.7 -0.18 0.35 
Lover Lay Down Dave Mathews Band 0.29 0.12 0.65 -0.17 0.24 

Inca Roads Frank Zappa 0.32 0.11 0.63 0.06 -0.03 
You Enjoy Myself Phish 0.12 0.21 0.59 0.2 0.27 

Black Mountain Side Led Zeppelin 0.39 0.28 0.43 0.12 -0.05 
L.S.F. Mark Ronson 0.31 0.31 0.41 0.21 0.2 

Tension Head Queens of the Stone Age -0.01 -0.11 0.06 0.81 0.03 
Battery Acid Queens of the Stone Age 0.08 0.07 -0.01 0.8 -0.02 
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Burning Inside Ministry -0.1 -0.08 0 0.8 -0.06 
Kick Out The Jams Jeff Buckley 0.02 0.1 0.02 0.79 0.01 

Quick And To The Pointless Queens of the Stone Age 0 -0.04 -0.08 0.78 -0.13 
Misfit Love Queens of the Stone Age 0.07 0.01 0.08 0.78 0.02 

The Invisible Man Queen -0.06 0.04 0.24 0.71 0.06 
Higher Ground Red Hot Chili Peppers -0.04 0.05 0 0.71 0.26 

Sabotage Beastie Boys 0.12 -0.02 -0.19 0.63 0.09 
Down on the Street The Stooges 0.07 0.38 0.13 0.56 0.3 

Electioneering Radiohead 0.45 0.12 -0.06 0.52 -0.03 
Jerry Was A Race Car Driver Primus 0.18 0.27 0.08 0.39 0.03 

Saturday Night Ozomalti 0.04 0.03 0.12 0.26 0.19 
Under Pressure Queen 0.24 0.15 -0.07 0.12 0.64 

Crazy Little Thing Called Love Queen 0.16 0.4 -0.01 -0.03 0.64 
When Doves Cry Prince 0.15 0.05 0.11 -0.01 0.63 

Listen To The Music The Doobie Brothers 0.06 0.42 0.24 -0.07 0.59 
Comfortably Numb Pink Floyd 0.31 0.2 0.11 0.09 0.53 

Symphony No. 3 Philip Glass 0.1 -0.02 0.83 0.13 -0.1 
Jumping the Creek Charles Lloyd 0.04 -0.01 0.71 0.06 0.26 

Bohemian Beer Party Walter Legawiec & His 
Polka Kings -0.02 0.34 0.66 0.08 0.1 

I Wish You Love Mantovani 0.33 0.07 0.64 -0.06 -0.14 
Mambo Numero Cinco Hilton Ruiz 0.17 0.07 0.64 -0.06 0.17 
You Brought Me Up Meav 0.22 0.09 0.61 0.11 0.11 

Take Me in Your Arms Dean Martin 0.21 0.28 0.55 0.08 -0.08 
Waxing Moon Jah Wobble -0.06 0.13 0.53 0.14 0.32 
I Fell in Love Carlene Carter 0.18 0.79 -0.11 0.08 -0.02 

Texas Tornado Tracy Lawrence 0.21 0.76 -0.13 0.08 -0.01 
Let the Mystery Be Iris Dement 0 0.65 0.27 0.06 0.11 

Razzle Dazzle Bill Haley and His Comets 0.16 0.47 0.36 0.14 0.02 
Cold Feelings Social Distortion -0.04 0.05 0.02 0.78 0.08 

Get it On Kingdom Come 0.06 0.16 0 0.66 0.02 
When our Love Passed out on 

the Couch X -0.14 0.1 0.26 0.66 0.15 

Wildflower Skylark 0.68 0.24 0.13 0.06 -0.01 
I Love You Kenny Rankin 0.59 0.26 0.26 0.14 -0.02 

Laughter in the Rain Earl Klugh 0.58 0.08 0.37 -0.19 0.19 
Seltzer Do I Drink Too Much? Ljova 0.16 0.05 0.77 0.12 0.01 

The Keel Laddie Golden Bough -0.19 0.31 0.71 0.05 0.13 
North Africa's Destiny Moh Alileche 0.06 0.09 0.7 0.1 0.17 

Sonata A Major Bruce Smith 0.26 0.18 0.69 -0.03 -0.01 
Concerto in C Antonio Vivaldi 0.27 0.09 0.68 0.05 -0.05 
Still Too Late Ron Sunshine 0.33 0.04 0.59 0.01 0.2 

And What You Hear Twelve 20 Six -0.07 0.14 0.59 0.28 0.26 
Falling Down Ezekiel Honig 0.07 0.12 0.54 0.11 0.3 

Night of the Living Mambo Mamborama 0.24 0.05 0.47 0.05 0.34 
With the North Wind The Tossers 0.11 0.33 0.44 0.13 0.05 
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Never Mind Linn Brown 0.35 0.41 0.42 0.02 -0.02 
Fernando Esta Feliz Lisa McCormick 0.3 0.17 0.38 0.08 0.32 

Who Are You? Paul Serrato & Co. 0.16 -0.04 0.38 0 0.13 
Penny Black Bob Delevante 0.11 0.75 0.2 0.03 0.16 

Newsreel Paranoia Babe Gurr -0.09 0.73 0.23 0.08 0.18 
Lana Marie Five Foot Nine 0.19 0.72 0.19 -0.07 0.11 

Praying For Time Carey Sims 0.29 0.72 0.04 0.07 0.15 
Hard to Get Over Me Babe Gurr 0.03 0.69 0.02 0.01 0.07 

My Remembrance of You Diana Jones -0.02 0.58 0.44 0 0.05 
Carrots and Grapes Curtis 0.01 0.54 0.29 0.18 0.22 
Passing Through Mark Erelli 0.23 0.52 0.33 -0.04 -0.04 

Once in a Lifetime Doug Astrop 0.34 0.49 0.27 -0.03 0.29 
Sweet Scene Ali Handal 0.37 0.47 0.37 -0.03 0.05 

Angel Epic Hero 0.32 0.39 0.29 0.15 0.07 
Let Me In Travis Abercrombie 0.39 0.39 -0.18 0.33 0.07 
Michigan Squint 0.03 0.03 0.09 0.83 0.06 

Johnny Fly The Tomatoes 0.14 0.04 0.03 0.8 0.05 
Death Before Dishonor Five Finger Death Punch 0.09 -0.04 0.07 0.77 0.18 

Over Now Straight Outta Junior High 0.02 0.1 -0.02 0.76 0.01 
Salvation Five Finger Death Punch -0.08 -0.07 0.08 0.76 0.11 

Face the Failure Bankrupt -0.15 0.06 0.14 0.76 0.15 
Dick Dater Cougars 0.03 0.08 0.07 0.76 0.14 
Out of Lies Dawn Over Zero -0.13 -0.14 0.18 0.75 0.15 
Girlfriend The Peasants 0.09 0.09 -0.12 0.73 -0.03 

Prove It To Me Tiff Jimber 0.31 0.2 -0.08 0.68 0.05 
White Knuckles Five Finger Death Punch -0.19 -0.07 0.18 0.63 0.17 

Brooklyn Swagger Ciph -0.11 0.07 0.04 0.15 0.68 
Get the Party Started Sammy Smash -0.19 0.09 -0.07 0.15 0.65 

Go Away The Cruxshadows 0.09 0.04 0.18 0.28 0.56 
Sesame Hood Grafenberg All-Stars -0.28 0.26 0.14 0.31 0.51 

Close The Alpha Conspiracy 0.21 0.07 0.36 0.24 0.5 
Big City Michael Davis 0.29 0.12 0.41 0.16 0.43 

Children of Spring Bruce Smith 0.5 0.39 0.4 -0.07 0.14 
Let's Love Lisa McCormick 0.46 0.34 0.37 0.08 -0.08 

Seltzer, do I Drink Too Much? Ljova 0.1 -0.03 0.82 -0.02 -0.01 
Johnny Fly The Tomatoes 0.02 0.14 0.12 0.73 -0.06 

Sweet Scene Ali Handal 0.73 0.06 0.23 -0.01 0.03 
       
       

Notes: 
 
- The bolded items represent songs that had two sets of MUSIC values from different 
studies from Rentfrow et al. (2011; 2012). These were kept to reduce bias in choosing 
one and strengthen our model when confronted with multiple versions. 
 
 



 

 
 97 
 

 

 

C2. Additional Classifier Predictions 

Table C2: MUSIC factor Gaussian Processes predictions 

Song Title Predicted M Predicted U Predicted S Predicted I Predicted C 
Symphony No. 1 in B Flat Major 0.163 0.335 0.494 0.039 0.104 
The Way You Look Tonight 0.31 0.32 0.363 0.026 0.123 
Rock the Clock 0.096 0.262 0.219 0.26 0.136 
If You Only Knew 0.205 0.399 0.209 0.168 0.107 
Slate 0.515 0.252 0.231 0.04 0.156 
Where Eagles Dare 0.075 0.07 0.119 0.664 0.042 
Oh No the Radio 0.139 0.24 0.111 0.458 0.056 
City of Gold 0.092 0.164 0.139 0.397 0.254 
Just Walk Away 0.419 0.19 0.397 0.013 0.062 
Unspeakable 0.214 0.334 0.164 0.133 0.295 
Brown Baby 0.203 0.249 0.324 0.133 0.218 
Intro 0.03 0.113 0.178 0.237 0.365 
My Favorite Polka 0.283 0.401 0.214 0.003 0.246 
Interstate Rag -0.008 0.273 0.564 0.168 0.123 
Big Blue Sun 0.447 0.261 0.257 0.016 0.196 
 

 


