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We are living in a world where it is easy to acquire videos of events ranging

from private picnics to public concerts, and to share them publicly via websites such

as YouTube. The ability of smart-phones to create these videos and upload them to

the internet has led to an explosion of video data, which in turn has led to interesting

research directions involving the analysis of “in-the-wild” videos. To process these

types of videos, various recognition tasks such as pose estimation, action recognition,

and event recognition become important in computer vision. This thesis presents

various recognition problems and proposes mid-level models to address them.

First, a discriminative deformable part model is presented for the recovery

of qualitative pose, inferring coarse pose labels (e:g: left, front-right, back), a task

more robust to common confounding factors that hinder the inference of exact 2D

or 3D joint locations. Our approach automatically selects parts that are predictive

of qualitative pose and trains their appearance and deformation costs to best dis-

criminate between qualitative poses. Unlike previous approaches, our parts are both

selected and trained to improve qualitative pose discrimination and are shared by



all the qualitative pose models. This leads to both increased accuracy and higher

efficiency, since fewer parts models are evaluated for each image. In comparisons

with two state-of-the-art approaches on a public dataset, our model shows superior

performance.

Second, the thesis proposes the use of a robust pose feature based on part

based human detectors (Poselets) for the task of action recognition in relatively un-

constrained videos, i.e., collected from the web. This feature, based on the original

poselets activation vector, coarsely models pose and its transitions over time. Our

main contributions are that we improve the original feature’s compactness and dis-

criminability by greedy set cover over subsets of joint configurations, and incorporate

it into a unified video-based action recognition framework. Experiments shows that

the pose feature alone is extremely informative, yielding performance that matches

most state-of-the-art approaches but only using our proposed improvements to its

compactness and discriminability. By combining our pose feature with motion and

shape, the proposed method outperforms state-of-the-art approaches on two public

datasets.

Third, clauselets, sets of concurrent actions and their temporal relationships,

are proposed and explored their application to video event analysis. Clauselets

are trained in two stages. Initially, clauselet detectors that find a limited set of

actions in particular qualitative temporal configurations based on Allen’s interval

relations is trained. In the second stage, the first level detectors are applied to

training videos, and discriminatively learn temporal patterns between activations

that involve more actions over longer durations and lead to improved second level



clauselet models. The utility of clauselets is demonstrated by applying them to the

task of “in-the-wild” video event recognition on the TRECVID MED 11 dataset.

Not only do clauselets achieve state-of-the-art results on this task, but qualitative

results suggest that they may also lead to semantically meaningful descriptions of

videos in terms of detected actions and their temporal relationships.

Finally, the thesis addresses the task of searching for videos given text queries

that are not known at training time, which typically involves zero-shot learning,

where detectors for a large set of concepts, attributes, or objects parts are learned

under the assumption that, once the search query is known, they can be combined

to detect novel complex visual categories. These detectors are typically trained

on annotated training data that is time-consuming and expensive to obtain, and a

successful system requires many of them to generalize well at test time. In addition,

these detectors are so general that they are not well-tuned to the specific query

or target data, since neither is known at training. Our approach addresses the

annotation problem by searching the web to discover visual examples of short text

phrases. Top ranked search results are used to learn general, potentially noisy, visual

phrase detectors. Given a search query and a target dataset, the visual phrase

detectors are adapted to both the query and unlabeled target data to remove the

influence of incorrect training examples or correct examples that are irrelevant to the

search query. Our adaptation process exploits the spatio-temporal coocurrence of

visual phrases that are found in the target data and which are relevant to the search

query by iteratively refining both the visual phrase detectors and spatio-temporally

grouped phrase detections (clauselets). Our approach is demonstrated on to the



challenging TRECVID MED13 EK0 dataset and show that, using visual features

alone, our approach outperforms state-of-the-art approaches that use visual, audio,

and text (OCR) features.
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Chapter 1: Introduction

We are living in a world where it is easy to acquire videos of events ranging

from private picnics to public concerts, and to share them publicly via websites such

as YouTube. The ability of smart-phones to create these videos and upload them to

the internet has led to an explosion of video data, which in turn has led to interesting

research directions involving the analysis of “in-the-wild” videos. Video events can

be expressed by several sentences, each of which consists of subject, object, scene,

and action. Those sentences are connected by temporal relations (e.g. before,

during). Therefore the complex event representation in the video can be modeled

by these components as figure 1.1. In this thesis, we study action recognition and

complex event analysis in the “in-the-wild” videos among various recognition tasks

in computer vision applications.

1.1 Action Recognition

Action recognition still remains challenging due to great intra and inter vari-

ance of classes, cluttered and occluded background, etc., despite numerous recent

advances. Many researchers extract local image and video features from video se-

quences, separate them into clusters, and generate histogram-based representations.
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Figure 1.1: Video events can be modeled by multiple sentences consisting of subject,

object, scene, and action which are connected by temporal relationships (e.g. before,

during).

Interest points are often extracted by methods such as Harris3D [7], Hessian [8], etc,

to capture shape and motion of local points. HOG [9], silhouettes [10], and SIFT [4]

are commonly used as shape features. As a motion feature, most researchers use

optical flow [10] or other custom representations of space-time volumes, e.g., Liu et

al. [4] use flat gradients within 3D cuboids.

In general, actions can also be inferred from the kinematic movements of a

person’s limbs. However, people are highly articulated, limbs occlude each other,

loose clothing conceals shape, and low resolution or motion blur lose informative

features such as edges. All of these conditions confound pose estimation, making it

a difficult and widely studied problem. To ameliorate these problems, researchers

2



often introduce additional information, e.g., multi-view images or depth information,

if available, to reconstruct pose in 3D coordinates [11–18]. Instead of relying on

additional information, our approach is based on the observation that for many

action recognition tasks, it may be sufficient to infer only a qualitative description of

a pose, e.g., ‘bent’, ‘laying down’, ‘stretching’, ‘crouched’, ‘facing left’, ‘facing right’,

even if the exact joint locations are not identified. We expect models that infer a

qualitative description of a person’s pose to be more robust in the presence of the

problems that confound exact joint localization. We propose a model for inferring

qualitative pose labels automatically from single monocular images. Chapter 2

describes the pose model and chapter 3 employ the pose model into the action

recognition framework.

1.2 Complex Event Analysis

Recent approaches to processing these types of videos use features that range

from low- to mid-level, some even using features that directly correspond to words

that describe portions of the videos [19]. While all of these approaches obtain

competitive results on benchmark datasets, mid-level features that can also describe

the semantic content of a video are desirable since they can be used to describe

the video using language as well as to recognize events. We also study zero-shot

learning, a problem that has received increased attention recently in the machine

learning and computer vision communities. This task, where training examples

of the class of interest are not needed, is appealing due to the large number of

3



objects, actions, events, and other visual categories in the natural world and due

to their long-tail nature. It is well known, for example, that only a relatively few

object categories, such as people and vehicles, have large numbers of example images

that can be used to train detectors, while most other object categories have too

few examples to sufficiently model their appearance by current approaches. Even

when enough training examples are obtained (at great cost) and annotated (at even

greater cost), training detectors involves significant computational resources, making

zero-shot learning even more appealing. Chapter 4 describes the mid-level video

representation and chapter 5 presents how to apply the mid-level representation to

the zero-shot learning task.

4



Chapter 2: Qualitative Pose Estimation by Discriminative Deformable

Part Models

2.1 Introduction

The analysis of human actions in videos is an important task for many com-

puter vision applications. In general, actions can be inferred from the kinematic

movements of a person’s limbs. However, people are highly articulated, limbs oc-

clude each other, loose clothing conceals shape, and low resolution or motion blur

lose informative features such as edges. All of these conditions confound pose es-

timation, making it a difficult and widely studied problem. To ameliorate these

problems, researchers often introduce additional information, e.g., multi-view im-

ages or depth information, if available, to reconstruct pose in 3D coordinates [11–18].

Instead of relying on additional information, our approach is based on the obser-

vation that for many action recognition tasks, it may be sufficient to infer only a

qualitative description of a pose, e.g., ‘bent’, ‘laying down’, ‘stretching’, ‘crouched’,

‘facing left’, ‘facing right’, even if the exact joint locations are not identified. We ex-

pect models that infer a qualitative description of a person’s pose to be more robust

in the presence of the problems that confound exact joint localization. We propose
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a model for inferring qualitative pose labels automatically from single monocular

images.

We model each qualitative pose by a root filter and set of deformable parts,

similar to [2]. Unlike the problem of human detection, for which part deformation is

modeled to introduce invariance to slight pose changes, the problem of qualitative

pose estimation benefits from models that exploit part appearance and deformation

to discriminate between pose changes. While we do not require exact recovery of

joint locations, it is important for part models to provide information that can

be used to discriminate between qualitative poses. For this reason, when training

part models, we ensure that models are tightly clustered in pose space (similar

to Poselets [20]), and train multiple models covering the same physical parts in

various configurations and viewing angles (see Figure 2.1), allowing the relevance of

each part model to be automatically adjusted for each qualitative pose to improve

discrimination. Given trained root and part filters, we optimize appearance and

deformation weights for each qualitative pose and train a multi-class model that

fuses the outputs of each qualitative pose model.

Our main contribution is a qualitative pose detection approach based on state-

of-the-art deformable part models, with parts that are automatically initialized and

trained on semantically meaningful pose clusters that are more discriminative than

those initialized by random [20] or greedy [2] selection (in the latter, parts are

selected to maximize the energy of the corresponding root filter subregion). A

nice property of our approach is that the same parts are shared by all qualitative

pose models (but are incorporated into each model using different weights), which
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Qualitative Pose

Head, chest, and right elbow

Left elbow, hip, and left knee

Figure 2.1: Part appearance provides information that can be used to discriminate

between qualitative poses. In the first row, the figure shows various qualitative poses.

The second and third rows show patches cropped to contain two sets of target joints,

the combination of head-chest-right elbow (row 2) and left elbow-hip-left knee (row

3). We note that appearance of patches covering the same joints varies according to

qualitative poses. Our approach takes advantage of this relationship between part

patch appearance and qualitative pose.

requires that the computationally expensive sliding window search to be performed

only once for each part. We demonstrate the performance of our approach on a

public database and compare against two baseline approaches from [2] and [3].
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In section 2.2, we discuss related work. In section 2.3, we detail our proposed

model. In section 2.4, we present the experimental results that demonstrate the

performance of our approach. We present our concluding remarks in section 2.5.

2.2 Related Work

The literature on pose estimation is vast and includes methods that extract

2D pose using part models [21–29] and that estimate 3D pose from single or multiple

views [11–18]. We focus our discussion on 2D pictorial structure methods as they are

most related to our work. Pictorial structure models were introduced by Fischler and

Elschlager [21] to represent objects as a collection of parts connected by spring-like

connections. Parts encode local appearance and their locations can vary subject

to a specified deformation cost. While a straightforward search for the optimal

locations of parts is computationally expensive, the search becomes practical under

certain conditions. For example, Felzenszwalb and Huttenlocher [2] showed that if

the pictorial structure is acyclic, and the relationships between pairs is expressed in

a restricted form, the generalized distance transform can be used to compute the

globally optimal configuration at a cost that is linear in the number of part locations.

In subsequent work, Felzenszwalb et al. [2] proposed a more general deformable part

model, consisting of roots, parts, and deformation costs which are all discriminitively

trained using Latent SVM. Part locations are automatically initialized from an initial

estimate of the root filter by a greedy cover of high energy areas of the root filter, and

their deformations are optimized efficiently using the generalized distance transform.
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Bourdev et al. introduce a novel concept of parts, Poselets, which are tightly

clustered in both appearance and configuration space [20, 30]. As proposed, these

parts do not necessarily coincide with body segments (e.g. upper arm, lower arm,

torso), but generally capture combinations of portions of parts which are distinctive

in certain views (e.g., frontal face and right-shoulder combination). During training,

candidate Poselets are obtained by repeatedly selecting a random patch in a training

image, finding patches in other images which are near in configuration space, and

training a Poselet detector using these patches. At test time, Poselet detections (or

activations) are obtained by multi-scale sliding window search, and objects are de-

tected either by Max Margin Hough Voting [30] or by clustering mutually consistent

activations [20]. An attractive feature of Poselets is that they can easily propagate

additional labels that were provided with the initial training set, e.g., segmenta-

tion masks and joint locations. Consequently, Poselets have been applied to various

problems, including the estimation of segmentations [31], actions [3,32], subordinate

categorization [33], and attribute classification [34]. Poselets have also been incor-

porated into pictorial structure models for 2D pose estimation [35], with Poselets

organized into a hierarchy of various sizes, covering individual parts, combinations

of parts, and even the entire body.

Several exististing approaches predict discretized viewing directions (which fits

our definition of qualitative pose) as part of their frameworks. Andriluka et al. [14]

train eight independent view-point specific pictorial structure based detectors, whose

outputs are combined using a linear SVM. Each model is trained independently

and uses standard body parts (head, torso, upper/lower legs, upper/lower arms,
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feet). Maji et al. [3] predict discretized viewing directions as part of a static action

recognition framework using the Poselet framework. To achieve this, they train 1200

Poselets, which are applied at test time.

Our approach builds on deformable part models [2] and Poselets [20], but

they are optimized for the purpose of qualitative pose estimation instead of object

detection. Instead of selecting Poselets by random selection [20] or greedy cover [2],

our approach automatically selects clusters from sets of joints whose variations are

predictive of qualitative pose. We train multiple models, one for each qualitative

pose, allowing each model to select part deformation weights that best allow for

discrimination between qualitative poses. Our approach is trained to maximize

discrimination at all levels (parts, deformation weights, combination of output),

unlike [14], and requires few part models (in our experiments we used only 64 parts,

while [3] employed 1200).

2.3 Qualitative Pose Estimation

The block diagram of our approach is shown in Figure 2.2. To reduce overfit-

ting, we divide the training dataset into two sets; one is for training root and part

filters and the other is for training Q(Qualitative)-Pose models by Latent SVM [2]

and calibrating them to each other. Root regions, which are defined as fixed as-

pect ratio bounding boxes whose vertical extents are defined by the head and the

waist of a person, are first cropped from training images and are divided into sets

according to their labeled qualitative pose. Root filters are learned via SVM with
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HOG features constructed from the collected images in each set. Part filters cover

a combination of joints, which are selected manually based on how predictive their

appearance variations are of qualitative pose. In our experiments, parts are defined

by three joints: head - upper torso - right elbow, head - upper torso - left elbow,

right elbow - lower torso - right knee, and left elbow - lower torso - left knee. For

each part, training images are divided into clusters by k-means clustering according

to the similarity of joint configurations. Next, part filters are learned as for the root

filter. The root and part filters are then applied to the second (held out) set of

training images, and the set of activations are used to train the weights of a Latent

SVM model that detects qualitative poses based on root and part filter activations.

During testing, we first extract activations of trained root and part filters by slid-

ing window search. Then, for each qualitative pose model, we select an activation

for each part to maximize the joint model score, and then apply the linear model

learned by multi-class SVM to predict the best matching qualitative pose.

We describe the training process in more detail in the next subsections. In sec-

tion 2.3.1, we provide the model formulation. We then describe root and part filter

training and model parameter optimization in section 2.3.2 and 2.3.3, respectively.

2.3.1 Model Formulation

Let qi, i = 1, 2, · · · , Q denote the set of qualitative poses. A model for each

qualitative pose, Mi = {ri, P, Ai, wi0:K , ~wid;1:K} is trained, where ri is the root

filter for qualitative pose i, P = {p1, p2, · · · , pK} is a set of part filters, Ai =
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{ai1, ai2, · · · , aiK} is a set of anchor positions which specify the relative position of kth

part to the root, and wi0:K and ~wid;1:K are model parameters that weigh appearance

and deformation costs, respectively (~wd is a vector that defines the deformation cost

as in [2]). Every model uses the same set of part filters, P . Q and K denote the size

of the set of qualitative poses and parts, respectively. At test time, filter activations

generate a set of candidate locations for each part. A hypothesized qualitative pose

is formed by selecting one of the candidate part locations for each of the root and

each of the K parts, Li = {li0, li1, . . . , liK}. We model the probability p (Li|I,Mi)

that the configuration is Li given the image I and the model Mi and decompose it

as follows:

p(Li|I,Mi) ∝ p(I|Li,Mi)p(Li|Mi). (2.1)

The distribution p(I|Li,Mi) measures the likelihood of fitting the model to a par-

ticular image given a part configuration, and p(Li|Mi) is the prior distribution that

each part is placed at a particular location. The best configuration Li can be ob-

tained by MAP estimation as

L∗i = arg max
Li∈La(I)

p(Li|I,Mi). (2.2)

The likelihood of configuration Li is modeled as the product of the ith root

likelihood and the individual part likelihoods,

p(I|Li,Mi) = p(I|ri, li0, wi0)
K∏
k=1

p(I|pk, lik, wik). (2.3)

where p(I|pk, lik, wik) = exp(−wikmk(I, l
i
k)), and mk(I, l) measures the response of

the kth filter at position l in image I.
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The prior distribution of the configurations can be expressed as a product of

a root location prior and part location priors given the root location,

p(Li|Mi) = p(li0|Mi)
K∏
k=1

p(lik|li0, aik, ~wid;k). (2.4)

The prior distribution of root location, p(li0|Mi) is modeled as a uniform distribu-

tion, and p(lik|li0, aik, ~wid;k) = exp(−~wiTd;kfd(lik, li0 + aik)) is the probability that the kth

part is placed at lik given the root location. The deformation function fd(li, lj) =[
−dlx − dly − dl2x − dl2y

]T
, where dl = li − lj, is defined as in [2].

The score of a hypothesis is defined as the negative logarithm of equation 2.1,

score(I, Li) = wi0m
i
0(I, l

i
0) +

K∑
k=1

wikmk(I, l
i
k) +

K∑
k=1

~wi
T

d;kfd(l
i
k, l

i
0 + aik). (2.5)

which can be more compactly represented as the dot product, W T
i Φ(I, Li), of model

parameters Wi and a vector Φ(I, Li) specifying a matching score and deformation

cost of each part in its own location,

Wi =
[
wi0; . . . ;w

i
K ; ~wid;1; . . . ; ~w

i
d;K

]
,

Φ(I, Li) = [mi
0(I, l

i
0); . . . ;mK(I, liK); fd(l

i
1, l

i
0 + ai1); . . . ; fd(l

i
K , l

i
0 + aiK) ] . (2.6)

2.3.2 Training Root and Part Filters

We define a root that represents the general position of the entire human

and provides an anchor position for each part (this anchor position will vary with

qualitative pose). The root is defined by the head and the waist (the width of

the box is a fixed ratio of the height, which is defined as the distance between the

head and the waist), and its appearance and position does not greatly change with
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various human poses or actions. For each qualitative pose, a root filter is trained

to model the general location of parts. The part anchor positions are computed by

averaging relative positions of each part to the root in all training images labeled

as the specified qualitative pose. To train a root model of each qualitative pose, we

collect examples cropped around the root region from images labeled as a particular

qualitative pose. We crop and resize each example to a fixed height and aspect ratio.

The height is set to the median value of every cropped root region and the width is

calculated by dividing the height by the fixed aspect ratio. Given these examples,

we extract HOG features from the collected positive examples and randomly select

ten times as many negatives and train linear SVM classifiers to discriminate between

positive and negative examples. As for Poselet training, we scan over background

images that contain no people, collect false positive examples, and retrain linear

SVM classifiers, repeating this process a few times to train the classifier efficiently

with a large number of negative examples. We note that each hypothesis has one

root filter.

To ensure that part filters can be used to discriminate between qualitative

poses, we select parts by clustering combinations of joints that are expected to vary

in predictable ways with respect to qualitative pose. Figure 2.3 shows how parts

composed of certain joint triples exhibit a large spatial and appearance variation

with respect to qualitative pose. We define our parts by clustering the configurations

of combinations of three joints, which in our case define pairs of limbs: head - upper

torso - right elbow, head - upper torso - left elbow, right elbow - lower torso - right

knee, and left elbow - lower torso - left knee.
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Combination of joints (Head – Upper torso – Right elbow)

:Head                                            :Upper torso                                 :Right elbow

180                                                       0                                                -180
o o o

Figure 2.3: The overall appearance and arrangement of the head, upper torso, and

right elbow joints varies significantly with qualitative pose, as shown by the sample

images and illustration of the three corresponding nodes. For this reason, the three

joints together can be considered a discriminative part.

During part filter training, images are first resized to have root regions of the

same size. For each joint triplet, training examples are then selected by cropping a

region containing the three selected joints. For each combination of joints, training

samples are divided into n classes by k-means according to similarity of joint con-

figuration. To cluster part training examples, the joint configuration of each part is

represented as a vector of concatenated joint positions relative to the torso, and the

similarity of joint configurations between two examples is computed by Euclidean

distance between the configuration vectors. Each training sample is resized to the
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median size of the training example. As a result of this process, each joint triplet

generates n parts which correspond to clusters in joint configuration space.

Note that a part, if detected, does not directly imply a certain qualitative pose,

but we expect that some parts are more predictive of certain qualitative poses than

others (our experimental results confirm this). Given the selected training samples

for each part, we train part filters in a similar way to the root filter. The only

difference is that for training the parts we use negative examples extracted from

images in other clusters from the training set while for training the root we extract

them from background images. By including samples from other part clusters as

negative part samples, we train part filters that better discriminate between joint

configurations. After root and part filter training, we obtain Q root filters and 4n

part filters.

2.3.3 Learning Model Parameters

Each image in the training dataset is labeled with its qualitative pose. We

indicate the training dataset as {In, bn}Nn=1, where In is an image and bn is its label.

Given an image and its label, the trained root and part filters can be applied to detect

candidate locations of parts. For every qualitative pose, we learn a deformable part

model over the root and part filters using the latent SVM formulation [2]. For each

qualitative pose, a classifier that scores an image I is defined as

fW (I) = max
L∈Z(I)

W TΦ(I, L), (2.7)
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where Z(I) is the set of all possible combinations of activations (here, we only

consider the locations corresponding to root and part filter activations). Model

parameters can be learned by minimizing the objective function

LD(W ) = 1
2
||W ||2 + C

∑M
i=1 max(0, 1− yifW (Ii)), (2.8)

whereyi =


1 if Ii is a positive example

−1 otherwise.

The standard hinge loss, max(0, 1− yifW (Ii)) is concave when an image Ii is

labeled as positive because the classifier, fW (I) is convex. Latent SVM optimization

specifies the latent value L∗ for every positive image and yields a linear form,

fW (I) = W T
t Φ(I, L∗), (2.9)

where L∗ = arg maxL∈Z(I) W
T
t−1Φ(I, L).

While searching for the best configuration L∗, the algorithm uses the parameter

Wt−1 learned in the previous step. In other words, the semi-convex optimization is

solved by repeatedly optimizing two separate convex functions, a process called “co-

ordinate descent”. The first part of the optimization involves computing the overall

score of each configuration of root and parts and selecting the highest scoring config-

uration. In our case, Z(I) is a small enough set for all candidate configurations to be

considered in a reasonable amount of time. In the second part of the optimization,

we compute the model parameter Wt using a linear SVM.

We consider all configurations in images labeled as other qualitative poses as

negative examples. To avoid considering unlikely configurations as negative exam-

ples, we collect only the best configuration for each root activation. Because negative
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examples are very numerous compared with positive examples, we extract a set of

hard negative examples in every iteration of optimization, and ignore the remaining

negatives during that iteration.

2.4 Experiments

We evaluate our framework on the public INRIA pedestrian database [9], which

consists of images that contain upright pedestrians with annotated bounding boxes.

Our aim in these experiments is to recognize qualitative poses by analyzing the entire

body, so we did not consider datasets such as PASCAL VOC database which contain

many images in which people are often only partially visible. While the INRIA

pedestrian database might be considered easy for the task of human detection, it is

a difficult dataset for the task of determining qualitative pose (as our experiments

will show). To evaluate our approach, we assume that the person has been roughly

localized, using a detector such as that of Felzenszwalb et al. [2], so we focus only

on assigning a qualitative pose label to regions extracted around the annotated

bounding boxes. To increase the effective size of our training set, we also flip images

along the vertical axis. Since bounding boxes may exclude part of a person region

due to annotation errors, we cropped images only after adding a suitably large

amount of padding to the human bounding boxes. We split the database randomly

into three sets using a ratio of 2:2:1; the first split is for training part and root

filters, the second is for validation, and the last is for testing. We discretize the

qualitative pose into 8 discrete bins of angles corresponding to the direction that a

19



Figure 2.4: The weights obtained by the optimization in equation 2.9 for each of

the 8 qualitative pose models (y-axis) and each of the 16 part models (x-axis).

person’s torso is facing with respect to the camera, and so construct 8 qualitative

pose models. Each bin covers 45 degrees.

To train root and part filters, we labeled the head, neck, waist, elbows, and

knees, and specified the qualitative pose of each image. While training part filters,

we set n, the number of clusters obtained from applying k-means of training samples

to 16. We use 200 positive examples and 2000 negative examples for training each

filter. We extract false positives and retrain for ten iterations.

Figure 2.4 shows the appearance weights obtained by the optimization in equa-

tion 2.9 for each of the 8 qualitative pose models. The qualitative poses are along the
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y-axis, ordered in circular fashion from forward-left to left. The part filters trained

on the clustered joint triples are listed on the x-axis. These are also roughly ordered

by the distribution of the qualitative pose labels of the training images belonging to

each cluster, so that parts are also ordered circularly from forward-left to left. As

expected, the strong diagonal weights in many of these images show that the parts

obtained by our approach are indeed predictive of qualitative pose. Conversely,

there still remains enough confusion that it is necessary to combine evidence from

the multiple parts. We conclude that while upper parts (part 1 and 2) are more

associated with qualitative poses, lower parts (part 3 and 4) include variations that

are caused by other sources in addition to qualitative pose.

To evaluate our performance, we implement two state-of-the-art approaches

for our qualitative pose estimation problem. As for our approach, pose-specific

models are first trained independently on a training subset using the deformable

part-based model (DPM) [2] and Poselets [3,20] using the same training, validation,

and test partitions. Independent model scores are calibrated against each other

on a validation set by a multiclass SVM. We applied the DPM training/testing

code as provided by the original authors, with a modified input training set (the

8 qualitative poses), a single component instead of mirrored left-right models (we

care about facing direction), and a subsequent multiclass calibration step. We also

compare to the Poselet code of Bourdev et al. [20], but since the training code is

not provided by the authors, we implement the training procedure described in [20].

We use a pose activation vector that collects detection scores of 1200 Poselets as the

pose representation, as in [3]. Figure 2.5 shows the performance of each independent
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Table 2.1: AUCs of each approaches. F, B, L, and R abbreviate ‘forward’, ‘back-

ward’, ‘left’, and ‘right’, respectively. (The best result in each pose is in bold font.)

BL L FL F FR R BR B

Felzenswalb et al. [2] 0.625 0.668 0.622 0.787 0.566 0.653 0.666 0.741

Maji et al. [3] 0.591 0.719 0.658 0.779 0.715 0.615 0.615 0.742

Our approach 0.761 0.854 0.799 0.896 0.779 0.809 0.827 0.897

qualitative pose model and compares our approach with the other two alternatives on

INRIA pedestrian database. Based on the ROC curves, our approach outperforms

the other methods for every qualitative pose. Table 2.1, which shows the area under

the ROC curves (AUC), also shows that our approach outperforms the alternatives.

Figure 2.6 shows the confusion matrix of the three approaches, obtained after

the independent model outputs are combined using a multi-class SVM. The confu-

sion matrix for our approach has a much more pronounced diagonal than the other

two alternatives, which is expected, given the individual qualitative pose detection

performance. As one would expect, there is a lot of confusion between neighboring

poses. Commonly, ‘forward’ and ‘backward’ are well detected but subtle differences

between right- or left-facing poses are often misclassified. This has also been ob-

served by other researchers [3], who have noted that human perceptual ability also

distinguishes between cardinal directions (front, back, left, right) direction better

than others such as front-right, backward-left, etc. While [2] and [3] achieve different
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Figure 2.5: ROC curves for performance of each qualitative pose model on the

INRIA person database.
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Figure 2.6: Confusion matrix of three approaches. Left: Felzenswalb et al. [2],

Center: Maji et al. [3] and Right: our approach.

performance between qualitative poses, our approach maintains a consistent level of

detection for every class. Table 2.2 shows the overall recognition rate. Errors are

computed by a mean squared error from misclassified class to groundtruth, where

the distance between front and front-right is 1, front and right is 2, and so on. Our

approach outperforms the others using these measures, as well.

2.5 Conclusions

We presented a qualitative pose estimation approach that is based on dis-

criminative deformable part models. Unlike previous approaches, we give special

attention to the selection of part models, replacing random selection and greedy

cover steps with an automatic clustering of part poses. The part appearance and

deformation parameters are trained discriminatively for each qualitative pose model,

and the outputs of all pose models are combined using a multi-class classifier. Our
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Table 2.2: Overall recognition results of three approaches on the INRIA pedestrian

database. (Bold font indicates the best result.)

Recog. rate Errors

Felzenswalb et al. [2] 0.2909 1.9868

Maji et al. [3] 0.2814 1.9431

Our approach 0.3485 1.6810

approach shows improved performance on the INRIA pedestrian database against

two state-of-the-art approaches.
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Chapter 3: Robust Pose Features for Action Recognition

3.1 Introduction

Action recognition still remains challenging due to great intra and inter vari-

ance of classes, cluttered and occluded background, etc., despite numerous recent

advances. Many researchers extract local image and video features from video se-

quences, separate them into clusters, and generate histogram-based representations.

Interest points are often extracted by methods such as Harris3D [7], Hessian [8], etc,

to capture shape and motion of local points. HOG [9], silhouettes [10], and SIFT [4]

are commonly used as shape features. As a motion feature, most researchers use

optical flow [10] or other custom representations of space-time volumes, e.g., Liu et

al. [4] use flat gradients within 3D cuboids.

While pose-based action recognition methods have also been studied [2], they

have generally underperformed methods based on shape and motion features on

difficult “in-the-wild” videos such as those obtained from YouTube. This is because

pose estimation remains a difficult problem in uncontrolled settings and even state-

of-the-art pose estimation approaches are relatively brittle.

In this work, we use a pose feature based on poselets, which captures human

pose without the need for exact localization of joint locations, but instead relies on
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Root (5 joints) Part I (4 joints) Part II (4 joints) Part III (6 joints)
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Person detection Pose Descriptor

Configuration space 

formed by 13 joints

Test image

Pose feature
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formed by joints 

defining part

Compact set

covering space

Context rescoring

Space: R13X2

Space: R5X2 Space: R4X2 Space: R4X2 Space: R6X2

Figure 3.1: Illustration of our proposed posed descriptor and its use for action recog-

nition. The 13 joint pose configuration space is split into subsets of joints, whose

smaller space of configurations we cover greedily with poselet models. This ensures

that common and rare configurations are represented (covered). This improves ac-

tion recognition which models transitions through pose configurations. Given an

image, poselet activations are obtained, as usual, grouped by mutual consistency,

and assembled into an activation vector, which is rescored to incorporate the context

provided by mutually consistent activations.
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Figure 3.2: Illustration of our proposed posed descriptor and its use for action

recognition. We depict the use of the proposed descriptor in a histogram based

video representation.

the representation and detection of coarse qualitative poses (e.g., standing, bending)

which are learned automatically from training data. Poselets [20, 30] are discrim-

inative part models constructed to be tightly clustered in the configuration space

of joints as well as in the appearance space of images, and which have been suc-

cessfully used for detecting people [20, 30], describing human attributes [34], and

recognizing human actions [3, 32, 36] in single images. As more poselets are used

by an object detector, the detector’s accuracy increases, but its efficiency decreases

proportionally with the number of poselets.

While a small number of poselets might be sufficient for detection, for ac-

tion recognition it becomes important to cover the space of pose variations more

completely, since actions are generally modeled as transitions through pose space.

However, the standard poselets training procedure requires too many poselets to

adequately represent the pose space for action recognition. This leads to a loss in
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efficiency, increases the feature descriptor size, and ultimately leads to poor action

recognition performance (as shown in our experiments). This motivates us to mod-

ify the poselet training procedure with the following goals in mind: (1) increase the

coverage of the space of poses, and (2) maintain efficiency by making the set of pose-

lets more compact. To accomplish this we partition the 13 joints into overlapping

subsets (depicted in Figure 3.1), and instead of randomly selecting image rectan-

gles to define poselets as in [30], we select seed rectangles using greedy set-cover to

ensure that most joint configurations in each subset are adequately detected by a

poselet. Our proposed greedy set cover algorithm ensures that each part–defined as

a subset of joints–should generate poselets that cover the entire range of its config-

urations while avoiding redundant poselets (each poselet should detect at least one

new configuration that is not detected by another poselet).

Given a test video, we obtain a pose descriptor from our compact set of poselets

by constructing activation vectors from mutually consistent activations as in [30],

and rescore activations using the context encoded by this vector. We construct

activation vectors for each root activation and create a codebook based histogram

representation using all root activations that have a high enough confidence after

context rescoring. We incorporate the proposed pose features in existing action

recognition [4] with traditional motion and shape features.

Figure 3.2 depicts our approach. To summarize, our contributions are the

following: 1) we improve the compactness and discriminability of the original pose-

lets by a training process that applies greedy set cover to the smaller configuration

spaces of joint subsets, and 2) we are the first to our knowledge to successfully use
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pose as a feature for ”in-the-wild” video-based action recognition.

We evaluate our approach on two benchmarks: YouTube sports dataset [1] and

YouTube action dataset [4]. Our experiments show that the proposed pose feature

provides significant complementary information to the motion and shape features.

In fact, the pose feature alone nearly matches state-of-the-art results, while the

combination with either shape or motion alone improves over the state-of-the-art,

and the combination of all three types of feature outperforms all other alternatives.

In fact, on the YouTube Action dataset, our proposed approach outperforms the

state-of-the-art by over 10%. Our experiments demonstrate the importance of our

modified training procedure to effectively incorporate poselet features into a video-

based action recognition framework.

In section 3.2, we discuss related work. In section 3.3 and 3.4, we describe de-

tails of semantic pose features and incorporating features into an action recognition

framework, respectively. In section 3.5, we present the experimental results that

demonstrate the performance of our approach. We present our concluding remarks

in section 3.6.

3.2 Related Work

Since the literature on action recognition is vast, we describe only recent works

in this section. Liu et al. [4] extract motion and shape features from videos, construct

a compact yet discriminative visual vocabulary using an information-theoretic algo-

rithm, and generate a histogram-based video representation. While this approach
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is effective, it does not make use of pose features. We extend this approach by in-

corporating our proposed pose feature to their features and followed the framework

for action recognition proposed by [4]. Xie et al. [37] explore the use of deformable

part models (DPM) for incorporating human detection and pose estimation into

action recognition. Similar to our method, their work is also based on human poses

but our part models are trained to discriminate between various poses of a person,

unlike DPM’s, which are trained to discriminate between patches in which a person

is present or absent. Le et al. [38] learn features directly from video using indepen-

dent subspace analysis that is robust to translation and selective to frequency and

rotation changes. Todorovic [39] views a human activity as a space-time repetition

of activity primitives and models the primitives and their repetition by a generative

model-graph. Sadanand and Corso [40] propose action bank, consisting of action

detectors sampled according to classes and viewpoints.

Our proposed pose feature is based on the poselets framework introduced by

Bourdev and Malik [30]. Poselets are discriminative part detectors constructed from

tight clusters in the configuration space of the human articulated body as well as in

the appearance space of images. At test time, poselet activations are detected by

multi-scale sliding windows, and persons are detected by Max Margin Hough Vot-

ing [30] or by clustering mutually consistent activations [20]. Poselets have been em-

ployed to improve results in various vision applications, including segmentations [20],

subordinate categorization [33], attribute classification [34], pose [3, 41] and action

recognition [3,32,36]. Unlike all of these extensions of poselets which are applied to

static images, our method extends the use of poselets to action recognition on video
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sequences, producing results that improve on the current state-of-the-art.

3.3 Training Parts and Context Rescoring

3.3.1 Motivation

Poselets are successfully used in detecting humans [30] as well as recognizing

actions [3] in still images but have not been used for video-based action recognition.

While a small number of poselets might be sufficient for detection, for action recog-

nition it becomes important to cover the space of pose variations more completely,

so that we can observe and model transitions through the pose space. However, if

the number of poselets is increased, person detection by clustering consistent activa-

tions may be impractical since the clustering complexity is quadratic in the number

of poselet activations.

We modify the poselet training procedure in three ways to improve its effec-

tiveness and efficiency. First, we manually select three sets of joints predictive of

pose and introduce three parts that cover the extents of those joints in each set. We

also select a set of joints corresponding to the head and torso that are stable and are

suitable for use as a root for our model (similar to the root in DPM models [2], which

serves as a coarse description of the person). Second, we modify the procedure for

selecting a poselet seed, replacing random selection with greedy set cover to satisfy

the following criteria:

1. effectiveness: each part should generate poselets that cover the entire range

of its potential configurations,

32



2. efficiency: poselets should not be redundant.

Third, instead of clustering pairs of mutually consistent poselets to obtain detections

of people, we use all root activations as potential human detections, and rescore them

out by training a classifier on the feature vector containing the activation scores of

the root candidate and of the parts consistent with that root candidate. This yields

a clustering process whose computational requirements increase linearly (instead of

quadratically) with the number of part activations, allowing for the use of a larger

number of poselets in our framework.

3.3.2 Definition of Parts and Training Poselets

Definition of parts: We follow the definition of the root and the parts in [32]

employing a four part star structured model to express human pose for recognizing

actions. The root is defined by the head, shoulders, and hips and the three parts are

defined by pairs of limbs: (head, right shoulder, right elbow, right hand), (head, left

shoulder, left elbow, left hand), and (hips, knees, feet) (Fig. 3.3). Table 3.1 shows

the average procrustes distance among pairs of training configurations, as well as

the coverage of poselets trained on these joints. The table provides the experimental

support for using the combination of the head, shoulders, and hips as a root. Only

the activation vector of the root is rescored and used in the descriptor, since its

coverage is high while the joints belonging to the root are relatively stable, as shown

by the low procrustes distance among the root joints.

Training poselets: The appearance variations of the root and each part are cap-
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Figure 3.3: Joints annotation (left) and definition of root and parts (right).

Table 3.1: Combinations of joints which appear in more than 50 % of YouTube

sports dataset [1] are selected and procrustes distance among configurations of each

combination are computed. The joints that define our root (in bold) achieve the

best trade-off between joint location stability and dataset coverage.

Combination of joints Proc. dist Coverage

l shoulder-l elbow-l hip-l knee 0.6178 0.5255

l shoulder-l elbow-l hand-l hip 1.1526 0.5658

head-l shoulder-l hip-l knee 0.4509 0.5461

head-l shoulder-l elbow-l hip 0.5980 0.6266

head-l shoulder-l elbow-l hip 0.2490 0.6637

head-l shoulder-l elbow-l hip-l knee 0.4789 0.5238

head-l shoulder-l elbow-l knee-l hip 0.7819 0.5641

head-l shoulder-r shoulder-l hip-r hip 0.1390 0.6566

34



tured by multiple poselets trained by covering the configuration space of each part.

Each poselet is trained by the process described in [20]. The patch (seed of a poselet)

chosen in the poselet selection step (described in section 3.3.3) collects 250 patches

that have similar local joint configuration and uses them as positive examples for

training. The patch size is set to one of 96 x 64, 64 x 64, 64 x 96 and 128 x 64 accord-

ing to the aspect ratio of the area that covers the joints comprising a part. We use

the distance metric D(P1, P2) = Dproc(P1, P2) + λDvis(P1, P2) proposed by [20],

where Dproc and Dvis are the Procrustes distance between joint configurations of

both patches and a visibility distance which is set to the intersection over union of

joints present in both patches, respectively. We train a linear SVM classifier with

positive examples and negative examples that are randomly selected from images

which contain no person. We collect false positives with highest SVM scores as hard

negatives (10 times as many as the number of positive examples) and retrain the

linear SVM classifier. This process is iterated three times.

After training the poselets, we extract activations by a multi-scale sliding

window scheme applied to the training images. Each activation is then labeled

as a true positive, false positive, or unknown, using ground-truth annotations of

people and their joints. For each training image, we determine matches between

detections and ground-truth by comparing the detected bounding box to the ground-

truth bounding box that encloses the ground-truth joints, as well as computing the

Procrustes distance between the predicted joint locations (using the seed patch

joint locations) and the ground-truth joint locations. Note that when computing

the Procrustes distance, we exclude rotation because detecting by sliding window
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does not consider rotation. The latter labeling criterion, not used in [20], discards

any false detection whose bounding box matches a ground-truth bounding box but

whose associated joint locations are far from the ground-truth joint locations. Each

activation which has an intersection over union with ground-truth more than 0.5 and

whose Procrustes distance between joints is less than 0.3 is labeled as true positive.

If the intersection over union with ground-truth is less than 0.1, the activation is

labeled as a false positive for the purpose of the subsequent stages. Others remain

unlabeled. Figure 3.4 shows some examples of activations labeled as true positives

and unknown. Assuming that the joint distribution is Gaussian as in [20], the

mean and variance of each joint are computed over true positive poselet activations,

allowing each poselet to have an associated distribution over the position of joints.

3.3.3 Poselet Seed Selection

Our goal is to generate a set of poselets for each part that covers all appearance

variations of that part over its configuration space. If we randomly choose poselet

seeds and train on the nearest neighbors of those seeds as in [20, 30], we find that

many of the training samples are not detected by the trained poselet (or by any

other poselet), i.e., many of the training samples are not “covered” by the set of

poselets. In addition to requiring that each training sample is covered by at least

one poselet, we also require that the poselet covers at least one training sample that

is not covered by any other poselet, otherwise the poselet would be redundant.

We introduce the poselet seed selection to generate an effective and efficient
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True positives

Unknown (Procrustes dist. between joints > 0.3)

Unknown (Intersection / Union < 0.5)

Figure 3.4: Examples of activations labeled as true positives and unknown. The

top-left image shows a seed window for part 1 and a configuration of its joints. In

the right column, 15 examples (5 for true positives, 10 for unknown activations) are

shown in a right of the seed. White and red bounding boxes depict a groundtruth

and detected window, respectively. In the third column, the configuration of its

joints are depicated in a top-left corner of each image.
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set of poselets by considering these two aspects. The poselet seed selection is an

iterative process consisting of two steps: (i) seed selection and (ii) set update, and

each step considers each aspect, respectively. Denote that P is a set of poselets, and

C is a list of training sample IDs that are covered by P . The set T of training patches

is obtained from the physical joints annotated in the training set by enclosing the

annotated joints with a bounding box (plus a suitable amount of padding). First,

in the seed selection step, a patch not included in C is randomly selected and its

poselet is trained. If a poselet is trained, example IDs containing any of its true

positive activation are added to C. Second, the set update step identifies and

removes poselets that are redundant (a poselet is redundant if all the patches it

covers are already covered by other poselets). Given the coverage set C, a small

size P is obtained by approximately solving a set cover problem, which is to identify

the smallest subset which still covers all elements. We use a greedy algorithm to

approximately solve the set cover problem. First, we sort all poselets in P in an

ascending order according to the size of the subset covered by the poselets. Then,

starting with the poselet with the smallest coverage, we remove any poselet from P

if it is redundant.

3.3.4 Context Rescoring

After training the set of poselets to detect the root and the parts, we rescore ac-

tivations by exploiting context among activations of the root and the parts. This step

removes activation vectors that are not consistent with the detected human pose.
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We use labels of activations detected in training dataset for context rescoring. For

each root activation we obtain a set of consistent part activations, where consistency

between root and part activation is measured by the symmetrized KL (Kullback-

Liebler) divergence of their empirical joint distributions dr,p = 1
K

∑
kDSKL(Nk

r , N
k
p ),

where DSKL(Nk
r , N

k
p ) = DKL(Nk

r ||Nk
p ) + DKL(Nk

p ||Nk
r ). Here, Nk

r and Nk
p are the

empirical distributions of the kth joint of root and part, respectively. We treat root

and part as consistent if dr,p is below a threshold. For each root activation, we

construct an activation vector consisting of the root poselet confidence score con-

catenated with a vector of the confidence scores of all part poselets. The score of

the root activation is placed in the first bin and all consistent activations of parts

are placed in their own bins according to the poselet type; multiple consistent ac-

tivations of the same type are detected, but only the maximum score is entered in

the appropriate bin. The remaining bins are filled with zero.

Then, we train a linear SVM classifier with activation vectors and their labels.

At test time, root activations that are classified as false positives are discarded, and

part activations with no mutually consistent root are also discarded as false positives.

Figure 3.5 demonstrates that this context rescoring step effectively improves the

precision-recall performance of both root and part poselet detectors by discarding

many false positives; in the figure, root #52, part 1 #51, and part 3 #58 were

arbitrarily chosen and have typical performance.
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Figure 3.5: PR curves for performance of (a) root #52, (b) part 1 #51, and (c) part

3 #58 on YouTube action dataset. Red lines are obtained before context rescoring

while blue lines are after context rescoring. Typical performance is shown for three

randomly selected parts.

3.4 Video Representation

We extend the framework of [4] to include our proposed pose feature in ad-

dition to motion and shape features. For all features, initial histogram-based video

representations are generated via bag-of-visual words (BoVW). After the initial

representation is generated for each video sequence, compact yet discriminative vi-

sual vocabularies are obtained by feature grouping. A multi-class SVM classifier is

trained using as input the concatenated visual word counts for each of the three

features. Details about extracting motion, shape, and pose features are given in

section 3.4.1 and the method for learning semantic visual vocabulary is described in

section 3.4.2
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3.4.1 Motion, Shape, and Pose Features

To complement our proposed pose feature, we select motion and shape fea-

tures that achieve the best performances in [4, 42] on public datasets consisting of

unconstrained videos.

Motion feature: We use the spatio-temporal interest point detector and descriptor

proposed by Dollar et al. [43], which is described as being advantageous over other

methods such as 3D Harris-Corner detector for action recognition in [4].

Shape feature: The shape feature uses the root position to compute a 3-level

pyramid HOG around the root which shows the best performance among shape

descriptors. [42] The region of interest side length is set to double the maximum

value between the root’s width and height.

Pose feature: We extract activations of root and parts by multi-scale sliding win-

dow and rescore root activations by context rescoring, using the activation vector

constructed from all other mutually consistent poselet activations. Root activation

vectors that are sufficiently confident after context rescoring (confidence > 0) are

used as pose descriptors. The first bin in the activation vector corresponding to the

root activation is excluded from the descriptor, since the root activation score is

used only to confirm whether or not the root and consistent parts fit the particular

qualitative pose model.

For each type of feature, we generate the histogram representation based on

independent features via BoVW, which converts all features to ”codewords” using

k-means based on their descriptions.
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Figure 3.6: Confusion matrix for the YouTube sports [1] data set using combined

feature with motion, pose, and shape feature.

3.4.2 Learning Semantic Visual Vocabulary

The initial vocabulary obtained by grouping similar features based on their

appearance is far from semantically meaningful and its performance is sensitive to

the size of the vocabulary, containing many redundant codewords that do not im-

prove discrimination. We construct a compact yet discriminative visual vocabulary

for each type of feature as proposed by [4]. A vocabulary is made compact by com-

bining two bins of a BoVW if their class distributions are close to each other. Here,

the distance between two distributions, p1 and p2 is measured by Jensen-Shannon

(JS) divergence:

JSπ(p1, p2) =
∑

i=1,2 πiKL(pi,
∑

j=1,2 πjpj),

π1 + π2 = 1, (3.1)

where KL(·) is the KL divergence.

Let C = c1, c2, · · · , cL and X = x1, x2, · · · , xM represent classes and codes,
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respectively. Let X̂ = x̂1, x̂2, · · · , x̂K be the updated clusters of X. A semantic

visual vocabulary can be obtained by minimizing the loss of mutual information

(MI), Q(X̂) = I(C;X)− I(C; X̂)):

Q(X̂) =
K∑
i=1

π(x̂i)JS({p(C|xt) : xt ∈ x̂i}), (3.2)

where π(x̂i) =
∑

xt∈x̂t πt, πt = p(xt) is the prior. By equation 3.1, the mutual

information is changed to

Q(X̂) =
K∑
i=1

π(x̂i)
∑
xt∈x̂i

πtKL(p(C|xt), p(C|x̂i)). (3.3)

The semantic representation X̂ is generated by iterations of computing priors π(x̂i), i =

1, 2, · · · , K and updating clusters i∗(xt) = argminjKL(p(C|xt), p(C|x̂i)). A termi-

nation condition of the iteration is Q(X̂) < ε.

3.5 Experiments

We evaluate our framework on two benchmarks: YouTube sports dataset [1]

and YouTube action dataset [4]. For both datasets, we follow the original authors’

setting for evaluation. The multi-class linear SVM is used as the classifier for action

recognition with vectors combining semantic representations of motion, pose, and

shape feature. Each feature is normalized by L2 norm. Finally, we evaluate the

boost in performance provided by our proposed poselet seed selection versus the

original scheme proposed in [20]. All clustering parameters, including the size of the

initial and semantic vocabulary, are obtained automatically by cross validation.
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3.5.1 Experiments on YouTube Sports Dataset

The YouTube sports dataset [1] consists of a set of actions collected from

various sports which are typically seen in broadcast media. For each feature, we set

the initial vocabulary size to 500 and the semantic vocabulary size to 100. During

training, we store for each poselet the video sequence from which its training images

were selected. For clustering, we set the portion of coverage to 0.8, resulting in 123,

120, 120, and 123 poselets for the root and the three parts, respectively.

Figure 3.6 shows the confusion matrix for classification using motion, pose,

shape, and hybrid (combination of all three) features. The motion feature is useful

for classifying actions in which human locations change significantly, e.g., diving,

horseback riding, and running. On the other hand, the pose feature outperforms

others for actions consisting of distinctive poses, e.g., arm pose after golf swing or

lifting and pose of legs when skating. For walking, the shape feature yields the best

classification performance since walking does not involve particularly distinctive

motions or poses. In table 3.2, the recognition rates using pose feature are the

highest among the three types of features. Using a hybrid of motion, pose, and

shape features yields an improvement in performance over Sadanand and Corso [40],

the state-of-the-art.

3.5.2 Experiments on YouTube Action Dataset

We also evaluate our framework on the challenging YouTube action dataset [4]

consisting of 11 action classes. For clustering, we select 100 poselets for the root and
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Table 3.2: Recognition rates on the YouTube sports data set.

Method Accuracy (%)

Wang et al. [44] 85.6

Le et al. [38] 86.5

Kovashka and Grauman [45] 87.3

Wang et al. [35] 88.2

Wu et al. [46] 91.3

O’Hara and Draper [47] 91.3

Todorovic [39] 92.1

Sadanand and Corso [40] 95.0

Shape 71.3

Motion 75.3

Pose 76.7

Pose + Shape 84.7

Motion + Shape 86.7

Motion + Pose 90.7

Motion + Pose + Shape 96.0

each part. Here, we set the size of the initial vocabulary and semantic vocabulary

to 1000 and 100, respectively.

Figure 3.7 shows the confusion matrix for the YouTube action dataset. Based

on the confusion matrix, our framework has the worst performance on basketball
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 b_sh   cy     di   g_sw h_rid s_ju  sw   t_sw t_ju  v_sp  wa

 0.71        0       0.03    0.03     0.02     0.05       0      0.03     0.01    0.08     0.04

 0.01     0.91        0         0          0         0       0.01    0.04        0      0.01     0.02 

 0.01     0.01     0.90       0       0.01       0          0         0       0.01    0.06        0 

 0.01        0          0      0.92        0      0.02        0      0.02        0      0.02     0.01 

 0.01     0.01        0      0.01    0.89     0.01        0         0       0.01    0.02     0.04 

 0.04     0.01     0.01    0.01       0       0.84     0.01    0.03     0.01    0.02     0.02 

 0.01     0.02        0         0         0         0       0.85     0.02     0.06       0       0.04 

 0.06        0          0      0.01    0.02    0.05        0       0.79     0.05    0.01     0.01 

 0.02        0          0         0      0.01       0       0.02        0       0.95       0          0 

 0.08        0       0.01    0.01       0         0       0.01     0.01        0      0.88        0 

 0.01        0          0      0.03    0.02    0.04     0.05        0       0.01       0       0.84 

Figure 3.7: Confusion matrix for the YouTube action [4] data set using combined

feature with motion, pose, and shape feature.

shooting and walking. Because the pose observed during shooting in basketball

is similar to swinging an arm in tennis or spiking in volleyball, most of the miss-

classified video sequences are classified into those classes. The reason for the low

classification performance for walking is likely the same as for the previous dataset.

In table 3.3, our framework outperformed other algorithms by approximately 10.4%.

Interestingly, using pose feature alone provides recognition rates which matches
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Table 3.3: Recognition rates on the YouTube action data set. We outperform the

state-of-the-art by over 10%.

Method Accuracy (%)

Liu et al. [4] 71.2

Zhang et al. [48] 72.9

Ikizler-Cinbis and Sclaroff [49] 75.2

Le et al. [38] 75.8

Shape 52.3

Motion 62.2

Motion + Shape 72.9

Pose 74.6

Pose + Shape 76.0

Motion + Pose 83.5

Motion + Pose + Shape 86.2

all the state-of-the-art. Figure 4.6 shows some examples of pose features for a

qualitative evaluation.

3.5.3 Boost by Poselet Seed Selection

In this section, we compare our proposed poselet seed selection process against

the random selection process of [20] in performance. The proposed selection process

results in a set of poselets that cover 80% of the training examples (a training sample
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Table 3.4: Top rows: the percentage of the training dataset covered (see text) as

the number of total poselets is varied. Bottom row: the resulting action recognition

rates. The right column shows the coverage and recognition rates of our proposed

selection approach.

random selection proposed

number of poselets 400 800 1200 486

covered set (%)

root 56.1 60.6 62.3 80.1

part 1 48.7 54.4 56.5 80.0

part 3 53.3 59.3 61.7 80.1

recognition rate (%) 63.3 67.3 71.3 76.7

is covered if the poselet detector yields an activation that overlaps sufficiently with

the training sample), which results in a final recognition rate of 76.7 on the youtube

sports dataset [1]. The sizes of the poselets set for root, part 1, and part 3 are

123, 120, and 123, respectively. Part 1 and 2 are mirrored versions of each other,

thus yielding a total of 486 poselets. Table 3.4 shows the performance over various

numbers of poselets chosen by random selection versus our approach. As the number

of poselet grows, the coverage of the training dataset and recognition rate improves

but does not match the recognition rate obtained by our proposed poselet seed

selection until training reaches 300 poselets for the root and each part (for a total

of 1200 for the root and the three parts, as in [34]).
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                          Root #36       Part 1 #57       Part 3 #35                           Root #66       Part 1 #80      Part 2 #42      Part 3 #59 

                          Root #71       Part 1 #84                           Root #27       Part 1 #29      Part 2 #70      Part 3 #89 

                           Root #4       Part 1 #77      Part 2 #40   

                          Root #82       Part 1 #84      Part 3 #82 

                          Root #54       Part 1 #93      Part 2 #45      Part 3 #70 

                          Root #71       Part 1 #84      Part 2 #57       Part 3 #9 

                          Root #71       Part 1 #84      Part 2 #57      Part 3 #19 

b_shooting cycling

diving g_swinging

h_riding s_juggling

swinging t_swinging

t_jumping v_spiking

walking

Figure 3.8: Example root and part activations for each class in the YouTube action

dataset. The left-most image in each example is a region of the test image cropped by

the root activation bounding box (plus padding), with consistent parts highlighted.

The average image of some detected poselet is shown to the right (note: there are

other activations that are not shown due to space constraints).
49



3.6 Conclusion

We proposed a robust pose feature based on poselets that is suitable for use in

action recognition tasks involving relatively unconstrained videos. We have shown

that various modifications of the poselet training process improve the representation

power of the set of poselets, generating a set of features that can be seamlessly

combined with existing shape and motion features. Experiments show that our

proposed pose feature provides significant information alone; when in addition to

motion and shape, we obtain state-of-the-art results.
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Chapter 4: Clauselets: Leveraging Temporally Related Actions for

Video Event Analysis

4.1 Introduction

We are living in a world where it is easy to acquire videos of events ranging

from private picnics to public concerts, and to share them publicly via websites such

as YouTube. The ability of smart-phones to create these videos and upload them to

the internet has led to an explosion of video data, which in turn has led to interesting

research directions involving the analysis of “in-the-wild” videos. Recent approaches

to processing these types of videos use features that range from low- to mid-level,

some even using features that directly correspond to words that describe portions

of the videos [19]. While all of these approaches obtain competitive results on

benchmark datasets, mid-level features that can also describe the semantic content

of a video are desirable since they can be used to describe the video using language

as well as to recognize events.

The detection of visual patterns that directly correspond to individual semanti-

cally meaningful actions is practical even in “in-the-wild” videos, as shown by recent

works on benchmark datasets. Izadinia and Shah [50] model the joint relationship
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finish

equal
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Figure 4.1: The illustration of our approach for describing the complex event video

(wedding ceremony) with two level clauselets defined by relevant actions and tempo-

ral relationships. (e.g. cut a cake and then hug and then dance with a kiss) Ground

truth labels contain potentially concurrent actions in particular temporal relation-

ships. Given a video, 1st level clauselets search for relevant labels with the video.

2nd level clauselets group concurrent and consistent labels using coarse temporal

relationships (words colored by red).

between two actions for recognizing high-level event. While pairs of actions cap-

ture more information than single actions alone, valuable information from higher

order interactions remains unused. Ma et al. [51] introduce visual attributes that

combine human actions with scenes, objects, and people for exploring mutual in-

fluence and mining extra information from them. Various approaches jointly model

more than two local object or action detections. Bag-of-words (BOW) is a simple

but still competitive video representation, which is formed by collecting local detec-
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tions and generating a histogram by quantizing the feature space. Spatial-temporal

pyramids collect local detections from different spatial and temporal resolutions of

a video. Various graphical structures to model relations of local detections also

exist. (e.g. HMMs [52], Dynamic Bayesian Networks [53], prototype trees [10],

AND-OR graphs [54], latent SVM [55], Sum-Product Network [56], and Markov

Logic Networks [57]). The key advantage of graphical structures is that they model

the dependence of actions by local relationships while allowing for the joint opti-

mization of a global task-dependent objective function. Our goal is to design a

mid-level representation that builds on previous low- and mid-level representations,

but which is able to capture higher order relationships between actions over small

spatio-temporal neighborhoods without the full use of graphical structures.

We rely on temporal relationships to capture the context between actions and

provide a richer description of a video than each independent action alone. We

define a clauselet as a conjunction of actions that are reliably detected in “in-the-

wild” videos and their temporal relationships. We apply this definition hierarchically

at two levels of granularity, first to detect short sequences involving a limited number

of action labels, and then to relate these detected sequences to each other over larger

time spans and more actions. Given a set of clauselets, we scan the test video, and

use the detected clauselet activations to vote for each clauselet’s dominant event.

We show our approach in figure 4.1. First, videos are split into clips which are

annotated with one or more concurrent actions per clip. Then, 1st level clauselets

detect short actions patterns (e.g. taking pictures, marches, kissing during dancing

etc.) that occur during an event (“wedding ceremony” in the example). Finally,
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2nd level clauselets are formed modeling the temporal relationships between 1st level

clauselets and other 1st level clauselets that cooccur temporally to create a richer

and more discriminative description of the video (e.g. cut a cake and then hug and

then dance with a kiss).

Our contributions are that we:

1. Introduce temporal relationships between actions and groups of actions for

richer video description (1st/2nd level clauselet)

2. Propose a discriminative training process that automatically discovers action

patterns and temporal relationships between them

As our experiments demonstrate, these contributions lead to improvements over

state-of-the-art approaches to event classification.

In section 4.2, we discuss related works. In section 4.3 and section 4.4, we

describe details of 1st and 2nd level clauselets and event recognition, respectively. In

section 4.5, we present the experimental results that demonstrate the performance of

our approach on “in-the-wild” videos from the TRECVID dataset [58]. We present

our concluding remarks in section 4.6.

4.2 Related Work

We divide recent related work into three groups: low-level approaches that

improve video features that capture shape and motion information, mid-level ap-

proaches that model patterns in low-level features with varying degrees of top-down
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supervision, and high-level approaches that apply high-level prior knowledge to low-

and mid-level observations.

Low-level representations are constructed from local features including SIFT [59],

Dollar et al. [43], ISA [38], STIP [60] as well as global features including GIST [61].

Low-level features alone yield competitive performance, however, they do not lever-

age task dependent information and higher order relationships.

Mid-level representations add task-dependent information to extract more in-

formative patterns from low-level features. Amer and Todorovic [56] train a sum-

product network representing human activities by variable space-time arrangements

of primitive actions. Jain et al. [62] introduce mid-level spatio-temporal patches that

discriminate between primitive human actions, a semantic object. Song et al. [63]

learn hidden spatio-temporal dynamics from observations by CRFs with latent vari-

ables and, in the test phase, group observations that have similar semantic meaning

in some latent space.

High-level modeling combines or organizes low- or mid-level detections based

on a knowledge base (KB). Nevatia et al. [64] define an event ontology that allows

natural representation of complex spatio-temporal events common in the physical

world by a composition of simpler events. Brendel et al. [65] combine the proba-

bilistic event logic (PEL) KB with detections of primitive events for representing

temporal constraints among events. Morariu and Davis [57] use the rules that agent

must follow while performing activities for multi-agent event recognition. We note

that in high-level recognition task, the KB is generally used to reduce false positives

of low-level detections by providing spatial-temporal constraints.
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Our proposed representation, the clauselet is a mid-level detector that bridges

the gap between the low- and high-level task. Clauselets share many of the ben-

efits of poselets [20] which are detectors trained to detect patches that are tightly

clustered in both appearance and pose space, for the purpose of detecting people

and their parts. However, in our case, clauselets are tightly clustered in temporal

relationships and video appearance, and our goal is to construct visual event de-

scriptions. Similar to poselets [20] we also rescore clauselet activations by mutually

consistent activations, and find that this greatly improves performance.

4.3 Clauselets

Motivated by the intuition that the temporal relationships between multiple

concurrent actions are important for event modeling, we propose a mid-level repre-

sentation involving multiple actions and their temporal relationships. We define a

clauselet as a conjunction of reliably detected actions and their temporal relation-

ships. We apply this intuition hierarchically at two levels of granularity, first to

detect short sequences involving a limited number of action labels (1st level clause-

lets), and then to relate these detected sequences to each other over larger time

spans and more actions (2nd level clauselets).
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Figure 4.2: 1st level temporal relationships: (a) Allen’s interval logic [5], (b) tem-

poral templates used for searching positive examples by matching to ground truth

annotations; here we use 1st level clauselets of length k=4 blocks (each block is

matched to a clip).

4.3.1 1st level clauselets

4.3.1.1 Model

A 1st level clauselet models sequences containing one or two actions in partic-

ular temporal relationships. We use the 7 base relations of Allen’s interval logic [5]

as the 1st level temporal relationships: before, meet, overlap, start, contain, finish,

and equal. Figure 4.2 (a) shows the definition of the 7 relations. In our experiments,

meet is not used since it is too rigid to capture relations among actions annotated

at a relatively large granularity (10 seconds per clip in our experiments).

A video is split into n clips, t1, · · · , tn, and each clip t is represented by a
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standard set of features concatenated into a feature vector f(t) (see sec 4.5.1). A

1st level clauselet c model consists of k blocks bi for i = 1, . . . , k, each of which must

be matched to a video clip. Each block has an associated weight vector wc,i which

is used to score each valid configuration T = (T1, . . . , Tk) that matches every block

bi to a clip index Ti ∈ {1, . . . , n} as follows:

Sc,T =
k∑
i=1

wc,if(tTi). (4.1)

A configuration T is considered valid if it satisfies a set of temporal deformation rules,

i.e., T ∈ {T1:k|T1 ∈ {1, · · · , n}, Ti−1 ≤ Ti ≤ Ti−1 + 2, i = 2, · · · , k}. These temporal

deformations between blocks are similar to the spatial deformations of parts in a

Deformable Part Model (DPM) [2], although we do not apply a deformation penalty

as long as a configuration is valid. Eq. 5.3 can be evaluated using a recursive

matching process, where given an initial starting clip T1 to which the first block of

the clauselet c is matched, the next block is matched to either T1, T1 + 1, or T1 + 2,

and so on. This process allows the k blocks of a clauselet to span 1 to 2k − 1 clips.

A configuration T of clauselet c is called an activation if Sc,T ≥ λs, where λs is the

activation threshold.

4.3.1.2 Training

The training process requires a set of videos whose clips are each annotated

with a subset of zero, one, or more groundtruth action labels from a large vocabulary.

Because 1st level clauselets are intended to detect an action or pair of actions in

particular temporal configurations, we define a set of temporal templates that are
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Figure 4.3: Example of the matching process (start(a2, a4)). (Directions from truth

matrix(1,1) to three successors indicates temporal deformation.) The green and

orange paths denote the two possible configurations where each block matches is

matched to one clip (note that two blocks might match to the same clip and that

some clips might be skipped). A similar process is applied at test time, but paths

are chosen to maximize SVM scores instead.

matched to groundtruth video annotations to yield a set of configurations T that all

have the same temporal relationships and can be used as positive training samples.
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For each template, we consider the same set of valid configurations as in the matching

process described above, but instead of computing the dot product of block weights

with clip features, we verify that the constraints of each template block are satisfied

by the matched clip annotations. The templates are shown in figure 4.2 (b). Every

template block has one of three rules: T means block bj can only match a clip if

the clip contains action label ai, F means that the clip must not contain action

label ai, and D indicates ’don’t care’. For each action and pair of action labels,

we extract positive training samples by matching these templates to groundtruth

annotations (see fig. 4.3). Assuming that we have A action labels and we instantiate

the templates in figure 4.2 (b) for each action or pair of actions, we have A+11A(A−

1)/2 total templates. The first term is for the 1-action template, and the second

term is for the five 2-action templates that are order dependent yielding templates

per action pair plus equal, which is order independent and yields only one template.

All configurations successfully matched to one template will be used to train one

clauselet. For each template, we also construct a set of negatives by randomly

selecting clip groups that do not contain any of the action labels appearing in that

template.

For each matched configuration we extract the features of the corresponding

clips, concatenate them into a single vector, and train a linear SVM classifier to

separate the positive examples from the negative sample set (which is five times

the size of the positive set). The resulting SVM weights are then partitioned into

the corresponding 1st level clauselet block weights. We then scan over the training

videos (using the learned weights this time), collect false positive activations, and
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retrain linear SVM classifiers, repeating this process a few times with increasingly

more negative examples.

4.3.2 2nd level clauselets

4.3.2.1 Model

The proposed 1st level clauselets are limited in length and number of unique

actions for computational reasons, since SVMs operate over high-dimensional video

features, and more actions or clauselet blocks would lead to combinatorial blowup.

To obtain a richer set of clauselets, which we call 2nd level clauselets, we model the

temporal relationships between the 1st level clauselets, without limiting the number

of action labels, and learn only configurations that are detected in the training videos

instead of enumerating them as in the 1st clauselet training stage. Thus, a 2nd level

clauselet is defined as a group of mutually consistent 1st level clauselets that coocur

in particular temporal configurations.

For each 1st level clauselet ci, we obtain the set of 1st level clauselets ci1, ci2, · · · ,

cim that are concurrent with ci, i.e., they are nearby in time. (see Figure 4.4) For

each activation, we construct a vector x consisting of the activation’s score and the

score of concurrent clauselet activations, grouped by clauselet type and temporal

relationship type, and we use this vector to rescore the activation. Let the head

activation be the activation that is rescored, and let a concurrent activation be any

activation whose temporal interval overlaps the head activation temporal interval

by at least one clip length. Each concurrent activation is classified into one of the
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Figure 4.4: Illustration of the process selecting head clauselet and discovering con-

current activations that are mutually consistent with the head clauselet and cooccur

in particular temporal configuration w.r.t. the head clauselet given the 2nd level

clauselet model.

2nd level temporal relationships with respect to the head activation. These 2nd level

temporal relationships could in theory be any of the 7 base relationships in figure 4.2

(a), but we choose a coarser set of 4 relationships from figure 4.5. Our motivation for

the coarser set of temporal intervals is that the temporal relationships that involve

touching interval endpoints (starts, meets, equals) are less likely to occur and are

more noisy, so we group them with one of our the four coarse temporal relationships

(e.g., equals is part of the Type IV relationship, meet is part of Type I). Figure 4.5

shows the definition of the 4 types of 2nd level temporal relationships. The vector x

is constructed by placing the head activation score as the first feature, and then for

each clauselet and each 2nd level temporal relation, we add a feature equal to the

maximum score of each activation of that clauselet (i.e., we use max-pooling if there
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Figure 4.5: Definition and illustration of 2nd temporal relationships

are multiple activations of the same clauselet and temporal relation type). The total

vector length is 4n+1, where 4 corresponds to the number of temporal relationships,

n is a total number of trained clauselet models, and the 1 corresponds to the head

activation. This activation vector is treated as a feature vector for rescoring the

head activation.

The rescoring function is defined as

fws,S(x) = wTs Sx, (4.2)

where x ∈ R4n+1 is the input activation vector, S ∈ Rm×(4n+1),m ≤ 4n + 1 is a

subset matrix which selects m of the 4n + 1 scores in x and is formed by selecting

the appropriate rows of the identity matrix I4n+1. The weight vector ws ∈ Rm is a

vector that determines how the scores of selected activations are combined linearly

to rescore the head activation.
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4.3.2.2 Training

For each 1st level clauselet, we scan over the training dataset, extract activa-

tions, and assign them as one of three labels: positive, negative, and undecided. If

an activation overlaps 75% or more of the clips in a groundtruth positive example,

it is labeled positive. If the activation clips do not contain any groundtruth action

labels associated with the clauselet, it is labeled negative. Others remain undecided.

The positive and negative activations are used for training 2nd level clauselets.

S and ws are optimized by minimizing the objective function below:

LD(ws, S) =
1

2
wTs ws + C

N∑
i=1

max(0, 1− yifws,S(xi)), (4.3)

where yi, i = 1, 2, · · · , n is a label of the activation vector xi defined as

yi =


1 if head activation of xi is positive

−1 if head activation of xi is negative

The objective function is the same to that of linear SVM model except for the

score function in the hinge loss. To minimize the objective function, we use a

coordinate descent approach that iteratively alternates between SVM and subset

matrix optimizations as follows:

1. Weight learning: optimize LD(ws, S) over ws by learning linear SVM weights

with subset of activation vector Sx

2. Subset selection: optimize LD(ws, S) over S by selecting subset of features
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to minimize the hinge loss of LD(ws, S). The optimization is achieved by

independently deciding whether a feature is included by checking if its inclu-

sion/exclusion decreases the hinge loss.

The subset matrix S selects from among the concurrent activations only those that

are mutually consistent (i.e. those that add to the score of the head activation), and

the weight vector ws decides how much weight each mutually consistent activation

adds to the score of the head activation.

4.4 Event Recognition

We expect that clauselets will serve as useful building blocks for complex high-

level reasoning (e.g., in probabilistic logical frameworks such as [5, 52]). However,

to best isolate their contribution and demonstrate their utility, we employ a simple

voting strategy where each clauselet activation votes for its predominant event class.

Not all 1st level clauselet templates lead to a trained clauselet model, because of

insufficient training examples. Also, not all of the clauselet models that are trained

cast a vote for an event, because they are not sufficiently predictive of a set of events.

For this purpose, we find clauselets that achieve high recall and precision, defined

as follows:

• precision(e, c): ratio of all activations of clauselet c that occur during events

of class e

• recall(e, c): ratio of all instances of event class e containing at least one

activation of clauselet c
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A precision threshold is used to choose clauselets dominant in a certain event while a

recall threshold is used to avoid overfitting to a few positive samples during training.

Table 4.1 shows the number of clauselets used or discarded in voting according to

the precision criterion. To avoid multiple votes by activations of the same type that

are temporally close, we use non-maximum suppression, removing activations if they

overlap temporally more than 50% with one or more activations with higher score.

While not all 1st level clauselets that are trained cast a vote for event recognition,

all successfully trained 1st level clauselets are used for context rescoring in 2nd level

clauselets.

Table 4.1: Number of 1st level clauselets

1 label 1 label 2 label 2 label
(used in voting) (not used in voting) (used in voting) (not used in voting)

# of clets 87 6 372 17

4.5 Experiments

4.5.1 Dataset and parameter setting

We evaluate clauselet based voting event recognition on the TRECVID MED

11 dataset [58] containing 15 complex events. Each event category contains at least

111 videos whose duration varies from several seconds to longer than 10 minutes.

Following [50], we split every video into 10 second clips and annotate 123 action

labels in each clip. We represent each clip by the 6 features used in [50]: ISA (Inde-
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pendent Subspace Analysis) [38], STIP [60], Dollar et al. [43], GIST [61], SIFT [59],

and MFCC (Mel-Frequency Cepstral Coefficient) [66]. For all features, histogram-

based clip representations are generated via bag-of-visual words (BOVW).

We also follow the evaluation setting of [50] that randomly splits the dataset

into training and test set by a ratio of 0.7. We re-split the training dataset into two

sets with a ratio of 0.7 for training 1st level and 2nd level clauselets, respectively.

We compute precision and recall of the trained clauselets, and then empir-

ically set their thresholds to 0.5 and 0.1, respectively, to ensure enough clauselets

are trained and selected for voting. We also set the number of clauselet blocks to 4

in order to limit computational complexity and to extract sufficiently many positive

examples for training (templates become more specific and rare as the number of

blocks increases). We set λs to -0.5 to detect sufficient true positives.

4.5.2 Detection performance

We evaluate our detection performance and compare 1st and 2nd level clauselets

while evaluating the boost obtained by adding 2-label clauselets to 1-label clauselets.

Based on precision and recall, 93 action alone (out of 123) and 359 pairs of actions

and their particular temporal relationships (out of 82533) are selected as 1-label

and 2-label clauselets for the evaluation, respectively. The distribution of temporal

relationships used in 2-label clauselets is given in table 4.2. Before is understandably

dominant but number of other relationships seems to be large enough to be useful

for describing video.
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Table 4.2: Number of interval relations

Temporal
before overlap start contain finish equalrelations

# 180 25 57 34 61 32

Table 4.3 compares the detection performance of 1st and 2nd level clauselets

(note that we are evaluating the ability of the clauselet detector to find the intended

action pattern, not to perform event recognition). To confirm the utility of mutually

consistent subset selection and temporal relationship binning 2nd level clauselets, we

evaluate 2nd level clauselets in three ways: (i) rescoring by collecting all concurrent

activations and without differentiating them based on temporal relationships (second

row in table 4.3), (ii) applying the feature selection scheme to group concurrent and

consistent activations, ignoring irrelevant activations (third row in table 4.3), and

(iii) our proposed approach of applying both feature selection and coarse temporal

relationships in rescoring (last row in table 4.3).

Our experiments confirm two things based on table 4.3. First, 2 label 1st level

clauselets are more accurate detectors than 1 label 1st level clauselet (i.e., they are

more effective at finding the corresponding ground truth patterns of action labels).

This is consistent with the trend in computer vision where detectors of more complex

pattern tend to have fewer false positives. Second, exploiting consistency among

concurrent activations and selecting subset features to maximize the discriminability

seems to increase the detection performance of the clauselets. We note that 2nd

level clauselets provide the more descriptive analysis with comparable detection
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Table 4.3: Comparison of detection performance of 1st and 2nd level clauselets. We

report the Average Precision (AP) of all clauselets, evaluated against the ground

truth action patterns that the clauselets are intended to detect.

1 label 1&2 label

1st level clauselet 0.1497 0.1613

2nd level clauselet
0.1637 0.1906w/o selection matrix S & tempo. relation

2nd level clauselet
0.1638 0.1913w/o temporal relationships

2nd level clauselet 0.1703 0.1915

performance, since multiple actions are related to each other temporally.

4.5.3 Performance in recognizing complex events

We evaluate the voting based event recognition performance of our model

and also compare the proposed clauselets against our baseline including 1st level

clauselets and 2nd level clauselets, excluding various components of our proposed

approach such as coarse temporal relationships and feature selection, in order to

evaluate the impact of each of the components of our approach. Table 4.4 shows

event recognition performances of our models. Votes by relevant clauselet activations

to a particular event are used to compute a mean of average precision (mAP) of the

event. Table 4.4 shows that recognition performance is directly related to clauselet

detection performance. We note that the rescoring scheme alone achieves state-
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Table 4.4: Mean of average precision (mAP) on the event recognition task, obtained

via the our proposed voting scheme.

1 label 1&2 label

1st level clauselet 0.3893 0.4651

2nd level clauselet
0.4016 0.6596w/o selection matrix S & tempo. relation

2nd level clauselet
0.4068 0.6641w/o selection matrix S

2nd level clauselet 0.4371 0.6730

of-the-art performance (0.6639). By additionally including our proposed mutually

consistent clauselet selection and temporal relationships we are able to obtain a

richer description of the video employing various temporal relationships as well as

outperform the state-of-the-art on the event recognition task.

We also compare the recognition performance of our proposed approach against

that of the state-of-the-art in each event category. Table 4.5 compares the perfor-

mance of our approach against two baselines: [50] and [19]. Our approach shows 1%

improvement over state-of-the-art. A 1% percent improvement over the baseline is

larger than the typical improvements we observed for this dataset; e.g., Ramanathan

et al. [19] reported a .29% improvement over their baseline. We did not use any so-

phisticated optimization schemes to tailor clauselets to the complex event prediction

which makes the 1% improvement more significant.

Figure 4.6 shows examples of 1st and 2nd level clauselet activations in some
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Table 4.5: Comparison of clauselets against two baselines.

Event [50] [19] clauselets

Boarding trick 0.7570 0.8402 0.9133

Feeding animal 0.5650 0.4595 0.5472

Landing fish 0.7220 0.6593 0.4902

Wedding ceremony 0.6750 0.7871 0.5696

Woodworking project 0.6530 0.3568 0.5241

Birthday party 0.7820 0.9008 0.9005

Changing tire 0.4770 0.5012 0.6901

Flash mob 0.9190 0.9240 0.8392

Vehicle unstuck 0.6910 0.6173 0.9019

Grooming animal 0.5100 0.5415 0.6464

Making sandwich 0.4190 0.5704 0.6978

Parade 0.7240 0.7335 0.5469

Parkour 0.6640 0.6144 0.5543

Repairing appliance 0.7820 0.7840 0.7329

Sewing project 0.5750 0.6688 0.5402

mean 0.6610 0.6639 0.6730

events for a qualitative evaluation. In this figure, we manually describe the video

using the automatically obtained clauselet activations to show that clauselets are

also useful for video event description as well as for event recognition. Note that

false positives of 1st level clauselet activations (e.g. taking pictures in an event

woodworking project.) are removed by the 2nd level clauselet.
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     Dancing in unison.          Performing play.          Clapping.          Lurching a pole.          Reeling in is before holding objects.   

     Playing instrument.          Yelling starts clapping.          Dancing in unison is before clapping.

     Dancing in unison (head clauselet)         Performing play. (type II) 

     Yelling starts clapping.  (type II)        Dancing in unison is before clapping. (type II)

     People dance in unison and then perform a play. Spectators yell and clap after watching their dance and performance.

     Marching.        Squatting down.        Flipping the board.        Singing in unison.        Marching contains playing instrument. 

     Dancing in unison equals marching.        Fitting bolts.        Marching equals playing instrument.

     Marching (head clauselet)         Marching. (type II)         Squatting down. (type II)

     Marching contains playing instrument.  (type II)        Dancing in unison equals marching. (type I)

     People dance in unison and march.   Then they play instruments during marching.   Someone squats down.

     Cutting wood.        Taking pictures.        Speaking.        Shaping wood.        Smoothing/sanding wood.        Hammering. 

     Speaking is before shaping wood.        Speaking equals holding objects.

     Cutting wood (head clauselet)         Speaking. (type III)         Shaping wood. (type I)         Shaping wood. (type II)         Shaping wood. (type III)

     Cutting wood. (type I)        Cutting wood. (type II)        Cutting wood. (type III)

     Person cut and shape wood.   Then speaking what he is doing.

     Speaking.          Speaking contains unscrewing parts.          Speaking is before holding objects.          Speaking overlaps pointing to the object.

     Speaking start pointing to the object.          Unscrewing parts finishes speaking.          Speaking starts unscrewing parts.

     Speaking is before holding objects. (head clauselet)         Speaking overlaps pointing to the object. (type IV) 

     Speaking start pointing to the object.  (type II)        Unscrewing parts finishes speaking. (type II)

     Person speaks while pointing to an object and then holds the object. After speaking, he unscrews parts from the obejct.
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Description

Flash mob
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Figure 4.6: Example activations of 1st and 2nd clauselets automatically detected

for some events in TRECVID MED11 dataset. Video descriptions are manually

written to emphasize the utility of clauselets for the description task (few additional

words/phrases need to be added to form sentences from the detected clauselets).

Bold activations in a list of 1st level clauselet activations are used to rescore the

head clauselet of each 2nd level clauselet. In a list of 2nd clauselet activations, a

temporal relationship type of each concurrent activation toward head clauselet is

depicted beside the activation. In the parade event, gray words denote the wrong

description due to a false positive 2nd level clauselet.

4.6 Conclusion

We proposed a new mid-level representation, a clauselet, that consists of a

group of actions and their temporal relationships. We presented a training process

that initially trains first level clauselets in a top-down fashion, and then learns

more discriminative 2nd level clauselets models using 1st level activations that are

consistent with each model and occur in particular temporal configurations. We have

shown that the 2nd level clauselets improve over the 1st level clauselets, that they

benefit from the automatic selection of which clauselets are “mutually consistent”

(i.e., are assigned a non-zero weight in the model), that temporal relationships are

important for both levels, and that our final model outperforms state-of-the-art
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recognition techniques on “in-the-wild” data when used in a simple voting scheme.

Qualitative results show that clauselets are not only useful for event recognition,

but the detected first and second level clauselets provide semantically meaningful

descriptions of the video in terms of which actions occurred when with respect to

each other.
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Chapter 5: Learning Visual Clauses for Zero-shot Video Search

5.1 Introduction

The task of zero-shot learning has received increased attention recently in the

machine learning and computer vision communities. The goal is to learn a classifier

that can predict class labels for which data is not available at training time. This

task is appealing due to the large number of objects, actions, events, and other

visual categories in the natural world and due to their long-tail nature. It is well

known, for example, that only a relatively few object categories, such as people and

vehicles, have large numbers of example images that can be used to train detec-

tors, while most other object categories have too few examples to sufficiently model

their appearance by current approaches. Even when enough training examples are

obtained (at great cost) and annotated (at even greater cost), training detectors

involves significant computational resources, making zero-shot learning even more

appealing. A common approach to zero-shot learning is to model visual categories

by decomposing them into parts, attributes, or some other type of component that

can be used to describe object classes without requiring visual examples for each

class. This has been done for detecting animals by their attributes [67], actions by

action components [68], and events by semantic concepts [69].
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dish up bread to a plate

cut up bread cut up bread and then dish it up to a plate

(a) Web domain (b) Target domain

: relevant                    : not relevant

Figure 5.1: Demonstration of the mismatch between (a) the source domain (the

web), in which we train our general phrase detectors and (b) the target domain

where concepts (described by phrases) are in specific spatio-temporal configurations.

While top ranked web search results for short phrases yield good training images,

some incorrect results remain, e.g., the picture of a face for the phrase “cut up

bread.” Even when the image correctly matches a phrase, the image may be of a

different meaning than intended for the target domain and query. Given a complex

search query, our approach adapts the detectors trained on the web domain both

to the target domain and to the specific search query to reduce the influence of

incorrect training samples and training samples that are correct but not relevant to

the search query.
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Despite significant progress, general questions still remain: (1) what attributes,

parts, or other components should be trained? (2) from what data source? (3) how

will the training data be annotated? (4) will the data be sufficiently effective for

modeling queries that are not yet known? The first question is important because

we must have enough components trained to effectively model a large number of un-

known classes. The second and third questions are important because it is difficult

to obtain large training sets when the test domain is unknown, and it is even more

difficult and costly to obtain annotations for training. And finally, the fourth ques-

tion is important because machine learning approaches usually assume that training

and testing data are obtained from the same distribution–in our setting; this is a

problem because neither the target domain nor the set of labels are known.

Motivated by these questions, we study the task of zero-shot learning by video

search using text based queries. Given a textual description of a video search query,

we relate the search query to a set of pretrained visual concept detectors and rank

videos from a test set according to how well they match the query. We address the

first question (which attributes do we train) by assuming that we are provided a

large set of generic concepts (objects, actions, scenes and attributes describing them)

in the form of short text phrases, which we use to train generic visual detectors. If

it is unreasonable to assume that such a large set is available a priori, our approach

can also function by training phrase detectors on demand once the query is known.

We address the source and annotation questions by leveraging the web–we use the

known set of phrases as web search queries, and use the top-ranked image/video

results for training. This not only ensures that we have access to an almost endless
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source of data, but we are also able to weakly associate the phrases as labels to

the images or videos returned by the search, since top ranked results are relatively

clean. Finally, we deal with the question of generalization by adapting the phrase

detectors to the unlabeled target domain once the query is given, exploiting temporal

and spatial patterns to adapt both to the target domain and to the target query.

The goal of this step is to reduce the effect of incorrectly learned concepts (due to

the weak labeling) and also of correctly learned concepts that are not relevant to

the query at hand (see Figure 5.1).

The summary of our system is shown in Figure 5.2. A set of atomic phrases is

trained ahead of time (or after the query is known–there is a trade-off between offline

training cost and online training cost), which yields a set of general (potentially

noisy) phrase detectors. In our current implementation, we train detectors for pairs

of phrases to ensure that there is less ambiguity due to multiple meanings (see

Figure 5.1), but these problems still remain. Once the query is provided by the

user, we compute the score of each phrase pair present in the query on a dataset

drawn from the target domain. Phrase detections are then partitioned into sets of

probably positive and negative, which are then used to learn complex composite

detectors we call “clauses” that model the spatial and temporal phrase coocurrence

patterns. We then iterate between refining the phrase pair detectors to better detect

clauses, and then defining new clauses that better fit the new phrase pairs. This

process is based on our intuition that the intended meanings of phrases in a query

are more likely to repeatedly occur in particular spatio-temporal arrangements with

respect to each other compared to irrelevant or incorrect ones. Once this process is
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Google
Images

(0) Train initial 

phrase pair detectors

 Jump

 Land

 Skatepark

 Skateboard

 ...

(1) Compute the score of 

each phrase pair (L)

(2) Partition phrases 

into positive/negative

(3) Create clauses 

by grouping phrase pairs 

that are nearby 

spatially and temporally

Jump with the skateboard and then 

land on it in a skatepark

...

(4) Refine phrase 

pair scores based on 

clause cooccurences 

(L*)

(5) Refine phrase 

pair detectors 

based on the 

updated scores

Jump   &  Skatepark

Clauses

Jump  &  skatepark

Jump & skateboard

Land & skateboard

Phrase pairs

TRECVID MED13 EK0

Jump & skatepark

Phrase pairs

Jump & skateboard

...

Land & skateboard

Atomic 

phrases
...

Phrase pairs search results.

Figure 5.2: Illustration of the training procedure. Given a set of atomic phrases,

we first train detectors on top ranked search results for phrase pairs. Given an

unlabeled target domain (EK0 in our experiments) and a textual search query, we

adapt the initial phrase pair detectors to the query and target domain through an

iterative process (steps 1 through 5). This process iterates between applying phrase

detectors, grouping phrase detections into spatio-temporal groups we call “clauses”,

and adjusting the individual phrase detectors to better detect clauses, relying on

spatio-temporal coocurrences to eliminate incorrect or irrelevant phrase meanings.
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complete, we apply the clause detectors to the test set, and rank test videos based

on a simple scheme where we count the number of clauses detected in each video.

Our contributions are that we:

1. automatically train a very large set of visual phrase detectors without the need

for manual annotation

2. adapt the set of detectors to the target domain (if different from the source

domain)

3. adapt the phrase detectors to the search query itself

4. exploit spatio-temporal coocurrences during the adaptation process

We demonstrate our approach on the TRECVID MED13 EK0 task [70], and

compare to recent state-of-the-art techniques that rely on the fusion of multiple

modalities (including visual, audio, text). We outperform the current baseline using

just visual features alone, demonstrating the effectiveness of our approach.

5.2 Related Work

Zero-shot Learning: Lampert et al. [67] use semantic attributes for zero-shot ob-

ject categorization using attribute classifiers learned from unrelated existing image

datasets; it is assumed that novel objects are described in terms of these attributes.

Elhoseiny et al. [71] exploit the correlation between textual descriptions of seen

categories and their visual classifiers, and predict the visual classifier of an un-

seen category by comparing its textual description to the seen objects’ descriptions.
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Socher et al. [72] introduce a deep learning model differentiating on a mixture of

seen and unseen classes simultaneously, with knowledge generated by unsupervised

text corpora. These approaches commonly train evidence detectors in the same

domain as the target and predict unseen classes based on the performance of the

detectors. This requires types of annotations such as attributes labels [67] or seen

category labels [71, 72]. Yu et al. [73] argue that designing informative attributes

requires human effort and propose a formulation to automatically design discrim-

inative attributes. Kankuekul et al. [74] propose self-organizing and incremental

neural networks (SOINN) to learn new attributes and update existing attributes in

an online incremental manner and develop a new framework to predict the unseen

object by matching updated attributes relevant to the object. However, they also

train attributes in a noisy domain (i.e. the potential for inconsistency with the tar-

get data exists) but unlike our approach, they do not adapt their detectors to the

target domain.

Event Detection: The literature dealing with this topic is vast, so we narrow

the range to the methods evaluated on the large scale, challenging TRECVID MED

dataset [70]. Yang and Shah [75] propose an unsupervised approach to discover data-

driven concepts from multi-modal signals (audio, scene, and motion) to describe

high level semantics of videos. Ma et al. [51] leverage relevant attributes of video for

event detection. Vahdat et al. [76] present a compositional model, multiple kernel

learning (MKL) latent support vector machine (SVM), treating the locations of

salient discriminative video segments as a latent variable. Yang et al. [77] utilize

related exemplars which convey the precise semantic meaning of an event for complex
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event detection. Ramanathan et al. [19] employ human action and role recognition

for solving the task. All these methods require a training set with annotated event

labels. To eliminate the need for annotated training data, Jiang et al. [6] propose a

MultiModel Pseudo Relevance Feedback (MMPRF) to select a few feedback videos,

assigning assumed relevance judgements to them and ranking videos according to the

statistics collected on them, repeatedly. While this method relies on multiple feature

modalities (audio, video, text), it is most similar to our approach, so we compare to

it as a baseline in our experiments. However, unlike their method directly applying

a model to reselect training examples for updating the model, we refines the model

with cooccurence information before reselecting the examples.

Exploiting Spatial and Temporal Relationships: Spatial or temporal relation-

ships have received increased attention recently, especially for object recognition.

For example, Felzenszwalb et al model spatial relationships between parts and the

object as a whole [2], Bourdev et al. exploit part coocurrences (mutual context)

to rescore part detections [20]. Niebles et al. [78] models activity as a complex

temporal composition of simple actions. Sadeghi and Farhadi [79] and Desai and

Ramanan [80] encode compositional models composing action, poses, and objects

spatially related each other called phraselets (or visual phrases). Most similar to ours

is NEIL (Never Ending Image Learner) a system proposed by Chen et al. [81]which

uses the web to weakly label instances of visual categories, learning and exploiting

their common sense relationships in the process. We additionally model temporal

relationships (to model temporal events), and while the NEIL framework would fit

very well with ours for modeling spatial relationships, we leave this for future work
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and resort to a simpler spatial model of coocurrence (within a frame), ignoring the

spatial extents of objects for computational reasons. Unlike NEIL, we also address

the problem of adapting to test queries and domains for zero-shot learning.

5.3 Learning Visual Clauses

Test queries will consist of textual descriptions involving observable evidence

(scenes, actions, objects). Consequently, our observations will also need to be con-

structed from textual descriptions, so we use the terms phrase and clause to refer

to representations of the video:

• Phrases consist of one or more short phrases from the textual description of an

event, involving relevant objects, actions, and scenes. The textual description

is split up into short phrases that we call atomic phrases.

• Phrase pairs are pairs of atomic phrases for which we train detectors. When

detecting phrase pairs, we use the term phrase activation to denote a spatio-

temporal window for which the phrase pair detector confidence passes a de-

tection threshold.

• Spatial phrase groups are spatially coocurring phrase pairs.

• Clauses are groups of phrases that are spatio-temporally related each other

through temporal relationships between spatial phrase groups. A clause acti-

vation is what we call a group of phrase activations that satisfy the temporal

and spatial relationships of a clause.
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In our current implementation, a training video is split into n clips, t1, t2, · · · ,

tn, and each clip t is represented by a standard set of features concatenated into

a feature vector f(t). Phrase and clause detectors are applied to individual clips

and subclips of videos, respectively. In this section, we will describe the process

for modeling each detector, as well as the phrase detector refinement step based on

clause cooccurence.

5.3.1 Training Initial Phrase Pair Detectors

Given a textual description for each event, the description is broken into short

phrases (atomic phrases), and then every pair of atomic phrases will be used to

train an associated detector1. Initial phrase pair detectors are trained by using web

images. For each phrase pair, 50 images are downloaded via a web image-search

engine (e.g. Google image, Bing, Flickr) by providing the phrase pair as the query

and are used as positive examples; the images of the other phrase pairs will be used

as negative examples. Initially we randomly select 500 negative examples and train

the detector. Then we select hard negative examples by scanning the detector over

the negative sets and collecting the top scoring 500 images and retrain the detector.

The phrase pair detector is trained by minimizing the reconstruction error.

Let X be a matrix of n-dimensional feature vectors for N examples, i.e., X =

[x1x2 · · ·xN ] ∈ Rn×N and Yi ∈ {1,−1}N be the label vector of the ith phrase

pair detector. Labels of positive and negative examples are assigned as 1 and -1,

1We train detectors for pairs of phrases because we observed that web seach results are signifi-

cantly better–though still noisy–if we search for phrase pairs instead of single phrases.
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respectively. For each phrase pair detector, the model parameter Wp,i is obtained

by minimizing the objective function consisting of the reconstruction error, ||Yi −

WT
p,iX||2F and a complexity term, ||Wp,i||2F as below

W∗
p,i = arg min

Wp,i

||Yi −WT
p,iX||2F + γ||Wp,i||2F , (5.1)

where γ is a parameter to balance the label reconstruction error and complexity

term. We solve equation 5.1 by setting its derivative with respect to the parameters

to zero and obtain the optimal parameter W∗
p,i as

W∗
p,i = (XXT + γI)−1XY. (5.2)

The reconstruction error formulation will allow us to relax labels to be con-

tinuous, enabling the adaptation process to adjust the magnitudes of the labels to

be more or less positive or negative.

5.3.2 Training Clause Detectors

5.3.2.1 Model.

A clause detector models multiple phrases that are spatially or temporally

related to each other. The clause detector models k clips ci for i = 1, 2, · · · , k, each

of which has an associated weight vector wi. A clause configuration T is a list of k

clip indexes, one for each of the k clips. The score of a configuration is computed

as follows:
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sT =
k∑
i=1

wTi f(tT (i)). (5.3)

The clause detector matches only valid configurations satisfying simple tem-

poral deformation rules, i.e., T ∈ {T (i)|T (1) ∈ {1, · · · , n}, T (i − 1) ≤ T (i) ≤

T (i − 1) + 2, i = 2, · · · , k}. The configuration T becomes a clause activation if

sT ≥ λs, where λs is the activation threshold.

5.3.2.2 Training.

1. Compute the score of each phrase pair detector: We scan the training

dataset, compute scores, and generate the score matrix Lv ∈ RFv×P , v = 1, 2, · · · , Nv,

where Fv, P and Nv are the number of clips of the vth video, the number of phrase

detectors, and the number of training videos, respectively.

2. Partition phrase pairs into positives/negatives: Based on the score matrix,

we label each clip of the training video as a positive/negative example of the phrase

pair by keeping the top k scoring detections for each phrase pair as positives and

the rest as negatives.

3. Generate clauses from phrase pairs: Any combination of phrases related

spatially and temporally to each other can be a clause candidate. Given a set of

phrase pairs, we generate clauses hierarchically, first grouping phrase pairs related

86



spatially into phrase groups and then using a sequence of propositional constraints

to relate spatial phrase groups temporally (see Figure 5.3 for the sequence of propo-

sitional constraints on spatial phrase groups). For computational reasons, we place

the following constraints on the groups of phrase pairs that can form a clause:

• Each clause models at most one temporal relationship between phrase groups

(this means that a clause relates at most two phrase groups over a sequence

of frames). Instead of considering all temporal relationships, we consider only

loose versions of before and during.

• The number of spatial relationships per a phrase group varies from 2 to 4.

We consider only cooccurence as spatial relationship (i.e., we ignore spatial

extents for now).

After running the phrase pair detectors, we have the list of all phrase groups

that coocur spatially in the training set. We then iterate over all unique phrase

groups (and pairs of phrase groups), keeping only those that satisfy the above con-

ditions. Each retained phrase group (or pair of phrase groups) when combined with

one of the temporal templates in Figure 5.3, will generate a candidate clause and

an associated template that encodes temporal relationships between phrase groups

over a sequence of clips.

4. Collect positive and negative examples and train a clause detector:

For each candidate clause, we collect positive and negative examples to train its

detector weights from equation 5.3. The negative set consists of all videos that have
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Figure 5.3: Temporal templates for clauses, Templates are used for searching positive

examples by matching to labels: here we use clause detectors of length k = 3 clips.

no activations for phrase pairs from the query. For each clause, we identify clip

sequences whose phrase activations satisfy the propositional constraints on spatial

phrase groups (in Figure 5.3) and consider them as positive examples.

Once positives are obtained using the clause templates, we randomly select

negative examples from the negative set as many as five times the size of the positive

set and train a linear SVM classifier. We then scan over the negative videos, collect

false positive activations, and retrain the linear SVM classifiers.

5.3.3 Refining Phrase Pair Scores

Clause detectors trained in the previous section can provide contextual and

complementary information for updating phrase pair detectors. For example, the

clause jump with the board and then land on it contains the contextual information

that land on the board does not occur in the beginning of the event. Similarly, jump
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with the board does not end the event described by the clause. We add the contextual

information provided by clause activations to the scores of phrase pair detectors Lv

and retrain phrase pair detectors using the updated scores.

Specifically, we first detect clause activations in the training set. For an acti-

vation a of clause detector c, a configuration matrix I
(a)
c ∈ RFv×k indicating which

clips are selected as part of the activation is constructed as follows:

I
(a)
c (i, j) =


1/S(i)

if clip index i is selected as the jth clip of activation a

of the clause detector c (i.e., T
(a)
c (j) = i)

0 otherwise,

where S(i) =
∑C

c=1

∑|Ac,v |
a=1

∑Gc

j=1 1(I
(a)
c (i, j)) is a normalization vector. C, |Ac,v|, and

Gc are the number of the clause detectors, the number of activations of the clause

detector c on the vth video and, the number of phrase groups composing the clause,

respectively.

Let Pc ∈ RGc×k denote the propositional constraints involving the clause c

and be defined as:

Pc(i, j) =


1 if the jth clip of the clause c contains pi

0 if the jth clip of the clause c contains pi∨ p̄i

−1 if the jth clip of the clause c contains p̄i.

For the clause c, a matrix Ip,c ∈ RGc×P indicating which phrase pairs involved

in an individual phrase group of the clause is generated as below:

89



Ip,c(i, j) =


1 if jth phrase pair is involved in a group pi of the clause c

0 otherwise.

The product of Pi and Ip,i is a matrix that encodes the contextual information

from clause i projected onto phrase pair p. The intuition is that if phrase pair p

appears in the clause and is not negated, its score becomes more positive; if it

is negated, it becomes more negative, and remains unaffected otherwise. Let L∗v

denote the refined the score matrix Lv computed in the previous step and defined

by scores of the clause activations, activated configuration, and the transition of the

contextual information from the clause to the phrases as below:

L∗v = Lv + α
C∑
c=1

|Ac,v |∑
a=1

s(a)c I(a)c PT
c Ip,c, (5.4)

where s
(a)
c is the score of activation a of clause detector c.

5.3.4 Refining Phrase Pair Detectors

To train each phrase pair detector, we use the top k clips according to their

refined scores as the positive training examples. We also select negative examples

from the negative training set as follows. First, we select negative examples ran-

domly and train the detector. Then we scan the negative training set and collect

hard negatives with the highest score as many as 10 times the number of positive

samples and retrain the model.

We then employ the label reconstruction error optimization to obtain the
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phrase pair detectors. The label vector Yi of the ith phrase pair detector is set

the refined scores for positive examples and -1 for negative examples.

5.4 Complex Event Detection

We use visual clauses for detecting complex events. For each event class,

its description containing atomic phrases is given. Clauses and their detectors are

defined and trained based on the relevant event’s description; they are not affected by

other event classes. We employ a simple voting strategy where each clause detector

activation votes (equally) for its relevant event class. We count votes of all clause

detectors from a class for each test video and its score is set to the number of votes.

5.5 Experiments

5.5.1 Dataset and Parameters

We evaluate the approach on the TRECVID MED 13 dataset [70] containing

20 complex events, half of which comes from previous challenges, MED11 [58] and

MED12 [82], respectively. A MED event is a complex activity occurring at a spe-

cific place and time involving people interacting with other people and/or objects.

Actions, objects/people, and scenes consisting of a MED event are loosely or tightly

related temporally and spatially to the overarching activity. The MED13 event

names and numbers of videos in the MED testset are listed in Table 5.1. For each

event, a textual description listing the action, object, and scene that characterizes

the event is provided.
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Table 5.1: MED13 Evaluation Events

Events for MED13

From MED11 From MED12

ID Events # ID Events #

E06 Birthday party 186 E21 Bike trick 16

E07 Changing a vehicle tire 111 E22 Cleaning an appliance 25

E08 Flash mob gathering 132 E23 Dog show 22

E09 Getting a vehicle unstuck 95 E24 Giving directions 32

E10 Grooming an animal 87 E25 Marriage proposal 33

E11 Making a sandwich 140 E26 Renovating a home 33

E12 Parade 233 E27 Rock climbing 18

E13 Parkour 104 E28 Town hall meeting 19

E14 Repairing an appliance 78 E29 Winning race without a vehicle 22

E15 Working on a sewing project 81 E30 Working on a metal crafts project 22

As a training set, various number of videos containing specified MED13 events

are combined with a common set of background videos. There are three training sets

referred to as EK100, EK10, and EK0 according to the number of example event

videos that are provided for each query. EK0 consists of unlabeled background

videos with no example event videos (the zero-shot learning task) and thus our

model is trained only on the unlabeled background set. The test set is combined
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. . . . . .

blow out candles & birthday cake turn lugwrench & car

. . . . . .

move in a coordinated fashion & poeple pull & boat

. . . . . .

rinse & grooming salon washing machine & machine parts

Figure 5.4: Improved ranking after adapting phrase pair detectors to a target domain

and specific query. For each phrase pair, we show the initial web results reranked by

the adapted phrase detector. The top rows and bottom rows show the highest and

lowest scoring images, respectively. Note how the top scoring images much more

closely match the phrase pair, and that incorrect or irrelevant meanings (bottom

rows) are given low score.

with various other MED events videos (Table 5.1) and has approximately 23000

video clips.
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Following the TRECVID MED protocol for EK0, which does not allow the

background set to be annotated, we have three datasets: 1) the source dataset

consists of web images weakly labeled through web search; 2) the target domain

training set is the unlabeled EK0 background set; and 3) the MED test dataset is

the test set.

Every video is represented by multiple key frames collected by selecting one

frame per 10 second clip. We represent each clip by two image-based features:

GIST [61] and SIFT [59]. 960 dimensional GIST feature represents an image glob-

ally and SIFT feature capture local image characteristics. For SIFT features, a

histogram-based bag-of-visual words (BoVW) representation is generated using 4000

words. For training phrase pair detectors, we set the number of positive examples k

to 100. We also set the threshold of clause detectors to 0 (i.e., we leave the default

linear SVM decision threshold unmodified).

5.5.2 Qualitative Performance in Refining Phrase Pair Detectors

Figure 5.4 shows the web images sorted by the score given by the trained

phrase pair detectors, after 5 iterations of adaptation. For each phrase pair, high

scoring images are listed in the first row and low scored images are in the second

row. Phrase pairs are indicated below their examples. In this section, we show the

performance of the phrase pair label refinement qualitatively. Among phrase pairs

in Figure 5.4, examples of blow out candles & birthday cake, move in a coordinated

fashion & people, rinse & grooming salon, and washing machine & machine parts
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Figure 5.5: Mean of Average Precision on the TRECVID MED13 EK0 test set

versus iterations of phrase and clause refinement. Improvements are large, especially

in early iterations. We outperform the results reported in [6] are shown as straight

lines. We use only visual features, while the best reported baseline uses a fusion of

visual, audio, and text (OCR) features. For reference, we also show the performance

reported by [6] for SIN/DCNN, the visual features used by MMPRF.

have an intuitive ordering: examples that are more relevant to the query and to the

TRECVID MED dataset have higher rank and other noisy or irrelevant examples

have lower rank. The refinement over the other two phrase pairs does not performed

as expected. Only the car appears in all images in turn lugwrench & car and the

failure is likely due to incorrect web search results. However, in pull & boat, images

in the second row look like they contain the phrase pair correctly and seem more
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appropriate for the search task.

5.5.3 Quantitative Performance for Complex Event Detection

We compare our method to Jiang et al. [6] who also train their models in the

TRECVID MED EK0 training setting. We use mean of average precision (mAP) as

a metric to evaluate the performance in the complex event recognition, the standard

for the TRECVID MED evaluation. We evaluated the clause detectors on the video

search task every iteration up to the 5th and show the results in Figure 5.5. The

performance increases in each iteration and the proposed approach outperforms the

baseline after the 2nd iteration. The process converged after the 3rd iteration.

Table 5.2 shows the performances of clause detectors trained after the 1st and

5th iteration on individual events. We can see that the performance increases for

every event by at least 1.2%. Note that the variance of the performance in each class

is likely related to the number of event video contained in the test set (table 5.1).

For the latter 10 events, the number of video is relatively small compared to the

first 10 events; their detection performance is lower as well. Table 5.3 compares the

performance of the baseline [6] and our approaches. Note that the baseline approach,

MMPRF, uses visual, audio and text features to achieve their results, while we

use only visual features. Our approach significantly outperforms the individual

feature performance reported by [6]: mAP of 5.33 for audio, 7.63 for text (OCR),

and 2.50 for vision. While we use GIST and SIFT as visual features and [6] uses

Semantic Indexing (SIN) and Deep Convolutional Neural Network (DCNN), the
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Table 5.2: Mean Average Precision (mAP) on TRECVID MED13 EK0 pre-specified

task, by event.

ID E06 E07 E08 E09 E10 E11 E12 E13 E14 E15

itr 1 7.72 6.93 10.95 5.76 8.81 12.15 15.55 8.72 5.14 4.59

itr 5 15.59 11.00 14.54 12.62 9.56 13.53 18.53 10.28 15.39 7.01

ID E21 E22 E23 E24 E25 E26 E27 E28 E29 E30

itr 1 6.68 5.30 7.69 7.95 8.62 8.44 7.33 5.27 8.68 7.40

itr 5 10.93 6.51 10.67 13.73 9.44 11.47 9.40 6.40 9.69 8.47

large difference in performance when restricted to visual features alone is notable.

We also apply the initially trained phrase pair detectors to the task, to further

evaluate their utility for this task without any other machinery. The performance

gap (approx. 9.6% to that of clause detectors after 5th iteration) shows how noisy

the phrase pair detectors are before they are adapted to the target domain and

query.

5.6 Conclusion

We demonstrated an approach to zero-shot learning of complex visual events

using visual phrases learned from weak annotations automatically obtained from

the web. These visual phrase detectors are noisy, and may not necessarily encode

the intended meaning of a text phrase as used in a search query. In addition, it is
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Table 5.3: Mean Average Precision (mAP) comparison with the baseline methods.

Method mAP

SIN/DCNN (vision only) [6] 2.5

MMPRF [6] 10.1

Phrase Pairs 1.6

Clauses (itr 1) 8.0

Clauses (itr 5) 11.2

possible that the training data and test data are not from the same domain (e.g.,

training data could be images and test data consists of videos). For this reason, we

adapt the trained visual phrases both to the search query and to the target dataset

by exploiting spatio-temporal groups of visual phrases that we call visual clauses.

Our experiments show that our approach successfully reduces the effect of incorrect

or irrelevant training data, and outperforms state-of-the-art approaches that use

audio and text (OCR) approaches in addition to visual features.
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Chapter 6: Conclusion

The thesis aims to understand ”in-the-wild” videos such as YouTube. To

describe the video, we study various recognition tasks such as action, pose etc. and

generate event descriptions.

For action recognition, we present a qualitative pose estimation approach that

is based on discriminative deformable part models and developed a robust pose fea-

ture based on this approach. Unlike previous approaches, we give special attention

to the selection of part models, replacing random selection and greedy cover steps

with an automatic clustering of part poses. The pose feature is suitable for use in

action recognition tasks involving relatively unconstrained videos. We have shown

that various modifications of the poselet training process improve the representa-

tion power of the set of poselets, generating a set of features that can be seamlessly

combined with existing shape and motion features.

For complex event analysis, we proposed a new mid-level representation, a

clauselet, that consists of a group of actions and their temporal relationships. We

presented a training process that initially trains first level clauselets in a top-down

fashion, and then learns more discriminative 2nd level clauselets models using 1st

level activations that are consistent with each model and occur in particular tempo-
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ral configurations. We have shown that the 2nd level clauselets improve over the 1st

level clauselets, that they benefit from the automatic selection of which clauselets

are “mutually consistent” (i.e., are assigned a non-zero weight in the model), that

temporal relationships are important for both levels, and that our final model out-

performs state-of-the-art recognition techniques on “in-the-wild” data when used in

a simple voting scheme. We also demonstrated an approach to zero-shot learning of

complex visual events using visual phrases learned from weak annotations automat-

ically obtained from the web. These visual phrase detectors are noisy, and may not

necessarily encode the intended meaning of a text phrase as used in a search query.

In addition, it is possible that the training data and test data are not from the same

domain (e.g., training data could be images and test data consists of videos). For

this reason, we adapt the trained visual phrases both to the search query and to the

target dataset by exploiting spatio-temporal groups of visual phrases that we call

visual clauses.
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